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ABSTRACT OF THE THESIS  

PESTICIDES AND POLLINATION OF IMPERILED 

PLANTS OF THE LOWER FLORIDA KEYS 

by  

Brittany Marie Harris 

Florida International University, 2016  

Miami, Florida  

Professor Suzanne Koptur, Major Professor 

Degraded pollinator habitat may have far-reaching consequences for recovery of 

imperiled flowering plant populations. Studies indicate that broad-spectrum insecticides 

used in mosquito abatement are detrimental to non-target invertebrates, including 

pollinators. A decline in efficient pollinators can reduce plant fitness by decreasing 

reproductive output and constraining genetic diversity, a challenge for rare plants.  

In 2015, I monitored flower visitation and fruit set of three imperiled plant species 

throughout protected areas on three islands in The Lower Florida Keys. These islands 

consist of conservation land fragmented by intermittently dispersed residential 

neighborhoods that seasonally spray insecticides for mosquito control. Flowers open at 

treatment sites had decreased flower visitor activity following insecticide applications, 

but only species that require invertebrate agents for pollen transfer had significantly 

reduced fruit set. Implications of mosquito insecticides near conservation lands may pose 

immediate threats to invertebrate pollinators and flowering plants that require pollinators 

for reproduction, although long-term threats to genetic diversity are unknown for 

automatic self-pollinating species.  
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I. Literature Review 

 

History of Mosquito Control in Florida 

South Florida is a tourist destination renowned for its warm weather, sandy 

beaches, and diversity of subtropical flora and fauna. It was not always a desirable place 

to live or visit, however, and until the early 20th century was sparsely inhabited (Patterson 

2004). According to writings from early European explorers, Florida was “flat, watery, 

and populated with an exceptionally large number of mosquitos” (Patterson 2004), as 

Florida’s subtropical coastal wetlands are ideal breeding grounds for mosquitos (Dale & 

Knight 2008). Aggressive nuisance mosquitos not only deterred early explorers from 

settling in Florida, but also transmitted deadly disease to many of those who did 

(Connelly & Carlson 2009). 

Since the discovery of the mosquito’s role as a disease vector, humans have 

struggled to eradicate mosquitos with continuously evolving techniques. Yellow fever 

and malaria epidemics through the 1880s provoked anti-mosquito sentiment and the 

earliest efforts for mosquito abatement. Projects targeted mosquito breeding sites by 

draining wetlands and stocking drainage ditches with predatory mosquito fish throughout 

much of Florida; such ditches are still part of the topography on Big Pine Key today. 

These projects were permanent and effective at controlling the spread of yellow fever and 

malaria but were expensive, labor intensive, and therefore, short-lived (Patterson 2004; 

Connelly & Carlson 2009). Eradication efforts were considerably renewed after WWII, 

when chemical insecticides became widely available. Insecticides, like dichloro-

diphenyl-trichloroethane (DDT), were inexpensive and highly effective at rapid 
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knockdown of nuisance and disease vector mosquitos (Patterson 2004; Connelly & 

Carlson 2009). Throughout Florida, nearly all existing mosquito control districts created 

spray programs incorporating these revolutionary insecticides (Connelly & Carlson 

2009), use of which was extensive and unregulated. 

Although insecticides were celebrated as a complete solution to mosquito 

eradication, scientists recognized the need for alternative methods (Connelly & Carlson 

2009). Risk of adverse effects of indiscriminate spraying were not initially considered, 

and within several years, widespread and unregulated application of DDT had 

documented inadvertent effects on non-target organisms. Rachel Carson brought many of 

these concerns to the public forefront in her book Silent Spring (Carson 1962). She and 

other scientists questioned indiscriminate use of insecticides and suggested adverse 

effects to non-target organisms, pest resistance to chemicals, bioaccumulation in 

individuals and the environment, and potential for chemicals to drift into unintended 

areas (Patterson 2004). Pioneering studies reported that aerial DDT applications 

decreased fecundity and resulted in population declines in eagles, peregrine falcons, and 

other predatory birds (Connell 1999). Banning the use of DDT for mosquito control was 

critical to recovery of these bird populations (USFWS 2010a). Those early studies raised 

public awareness of potential risks towards irresponsible insecticide use by the 

administering agencies (Patterson 2004).  
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Impacts on Non-Target Organisms  

  Nearly sixty years of empirical evidence suggest that broad-spectrum insecticides 

used in mosquito control are detrimental to non-target organisms, particularly 

invertebrates. Non-target impact studies have in recent years encouraged regulation and 

limitations on insecticide use by some mosquito control districts (USFWS 2014); 

however, insecticides are regularly administered to control high abundances of adult 

nuisance mosquitos in some regions. Florida mosquito control districts primarily use 

pyrethroids (Permethrin) in ground application, and DiBrom® (Naled), an 

organophosphate, for aerial missions (Connelly & Carlson 2009). They are dispersed via 

an ultra-low volume (ULV) system that emits fine mist particles of undiluted insecticide 

for expansive coverage of flying insects (Zhong et al. 2010). These broad-spectrum 

adulticides are both neurotoxins, intended to reduce or eliminate pestiferous insects; 

neither is taxon specific (USEPA 2006). Naled and Permethrin are approved for use in 

public health and agriculture to control a variety of crop pests (Coats et al. 1989; 

USEPA 2002), and they are marketed to control beetles, mosquitos and other Dipterans, 

Hemipterans, and Orthopterans of economic importance (Bradbury & Coats 1989). 

Naled, used in aerial missions by mosquito control districts throughout Florida, is no 

longer available to homeowners and professionals for use in or around neighborhoods 

(USEPA 2002), and has been banned from use by countries in the European Union 

(European Commission 2012) due to potential health effects to humans to pets.  

  Invertebrates vary in response to insecticide exposure. Broad-spectrum adulticides 

are effective on an array of invertebrates, but lethality is greatest for small organisms 

with a high surface to volume ratio (Johansen 1977; Tomlin 2000; Wisk et al. 2014). 
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Although invertebrates differ in response to insecticides, honeybees (Apis mellifera), are 

currently the only terrestrial invertebrate assessed in non-target toxicity studies in the 

EPA registration process for Naled and Permethrin (USEPA 2002; USEPA 2006); other 

studies suggest that multiple species of butterflies and wild bees may be more 

appropriate test subjects (Tepedino et al. 1996; Hoang et al. 2011). In addition to EPA 

evaluation, other non-target impact studies generally focus on a very small subset of 

economically important and well-studied species, namely honeybees and Daphnia sp. 

(Breidenbaugh & Szalay 2010; Brittain 2010; Hoang et al. 2011; Antwi & Reddy 2015). 

Few studies quantify differences in lethality between invertebrate groups, such as 

pollinator assemblages (Johansen 1972; Arena & Sgolastra 2014). Considering 

variability in response among taxa and functional groups, singular focal species may not 

be good general representatives of non-target organisms collectively. 

Neighboring invertebrates receiving the same insecticide exposure, organisms 

with similar functional traits, and even closely related organisms are frequently shown to 

respond differently to insecticides. Pyrethroids are ‘highly toxic’ to non-target aquatic 

invertebrates (e.g.,, Daphnia sp., Ephemeroptera larvae) at low concentrations 

(Bradbury & Coats 1989), while neighboring mollusks exposed to the same 

concentrations may experience no negative effects (Coats et al. 1989). Functionally 

similar groups (e.g., pollinator guilds) and taxonomically similar groups (e.g., bees) may 

also be affected differently. In a breeding system study of a bee-pollinated plant in the 

Lower Florida Keys, Liu and Koptur (2003) noted reduced flower visits of Melissodes 

spp. and Xylocopa micans, but not of Megachile spp. following an aerial mosquito 

insecticide application. Extensive studies suggest that insecticides like permethrin and 
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Naled are lethal to honey bees (Apis mellifera) (Fischer et al. 2014; USEPA 2002; 

USEPA 2006), while other members of Apoidea may experience sub-lethal effects at 

similar doses (Vaughan et al. 2014). In addition, butterflies from the family Lycaenidae 

experience mortality more readily than those of Hesperiidae (Bargar 2012).  

Life histories may provide some insight into species-specific sensitivity at various 

spatial scales. Activity of immature stages, feeding behavior, seasonality, and timing of 

spraying can all affect insecticide exposure and sensitivity. Nocturnal invertebrates are 

potentially more vulnerable to insecticide exposure during evening truck applications 

than morning aerial applications, and vice versa for diurnal feeders and foragers 

(Longley & Sotherton 1997; Breidenbaugh & Szalay 2010). In addition, phytophagous 

beetles experience greater lethality than predaceous beetles (Coats et al. 1979), 

indicating that diet may be an important factor for toxicity among organisms. Nesting 

and burrowing in enclosed areas (e.g., tree and stem holes, underground, or within 

flower buds or leaves) could also provide some protection from ambient insecticide 

spray, while above ground nesters may be more vulnerable to airborne insecticide 

particles (Salvato 2001; Wisk et al. 2014). Varying responses of functionally similar 

groups to equal insecticide concentrations may depend upon the spatial scale of 

observations chosen for a given study: groups that appear to vary in sensitivity at one 

scale of resolution may exhibit similar responses at another scale (Brittain 2010). In a 

landscape analysis of agricultural insecticides and pollinator species diversity, multiple 

insecticide applications at a small spatial scale caused significant declines in wild bee 

species richness but not butterfly species richness, while both groups experienced 

declines at the regional scale (Brittain 2010).  



 

6  

  

Sub-lethal effects and population recovery of non-target organisms from 

insecticide applications also have an important temporal component that may vary 

throughout the mosquito control season. Sub-lethal toxicity may prolong certain death or 

decrease fecundity in some organisms by reducing foraging or diminishing feeding, thus 

having a marked effect on reduction in growth, reproduction, and behavioral changes 

(Tan 1981b; Coats et al. 1989; Devillers 2002). Bioaccumulation may also have an 

effect on non-target species, in which compound exposure to insecticides may increase 

lethality. Brittain et al. (2010) found that native bee species richness was not affected 

after one insecticide application in an agricultural field in Italy, but after two to three 

applications, bee richness markedly decreased. Zhong et al. (2009) found a similar 

correlation between butterfly larval mortality and repeated insecticide exposure 

applications. Larval mortality was lowest after one aerial ULV application of Naled for 

mosquito control, and highest mortality after the sixth and final treatment. Even if 

insecticides are applied at sub-lethal doses, multiple rounds of exposure by the end of 

the season could have cumulative detrimental effects (Brittain 2010; Zhong et al. 2010). 

While frequent applications may increase toxicity, studies suggest that extended time 

between insecticide applications may assist population recovery for non-target 

organisms. Mulla et al. (1992) found 50-100% lethality in non-target aquatic 

invertebrates immediately following a pyrethroid application; populations of Odonata, 

Hemiptera, and Coleoptera recovered within 2 weeks, while Ephemeroptera populations 

did not. Mosquito insecticide spay frequency can have marked effects on 

bioaccumulation and may, therefore, be an important factor for population impact 

studies on non-target organisms.  
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Field and lab toxicity studies suggest that pyrethroids and organophosphates 

adversely affect an array of non-target terrestrial invertebrates. Impact studies suggest 

that mosquito adulticides have direct adverse effects to butterflies (Bargar 2012; Carroll 

& Loye 2006; Eliazar & Emmel 1991; Hennessey & Habeck 1991; Salvato 2001; Zhong 

et al. 2010), parasitoids (Coats et al. 1979), and native and non-native bee pollinators 

(Kevan & Plowright 1989; Kevan et al. 1997; Liu & Koptur 2003; Wisk et al. 2014). In 

addition, non-target impact studies from agricultural applications of the same broad-

spectrum insecticides are numerous (Schleier & Peterson 2014; Fischer & Moriarty 

2014); however, these studies should be extrapolated with some degree of caution, as 

concentrations, application method, and frequency vary for uses between agriculture and 

mosquito control (USEPA 2006; Schleier et al. 2012). Future research is needed to 

understand the factors that affect responses of broad-spectrum adulticides to non-target 

invertebrates, including the role of life history traits of various species and spatial and 

temporal responses, factors that are not well understood, and for which extensive field 

studies and knowledge of the species of concern could provide much valuable 

information. 

 

Indirect Effects on Community Function 

While evidence suggests that mosquito insecticides have a direct effect on non-

target invertebrates, studies on indirect effects (e.g., on trophic interactions and 

mutualisms) are less frequent in the literature (Brittain et al. 2010). In a mesocosm study, 

broad-spectrum mosquito insecticides reduced zooplankton population causing reduced 
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fitness of one of two amphibian species in a trophic cascade across four trophic levels 

(Relyea & Diecks 2008). These types of small-scale closed system studies can be 

effective at isolating interaction mechanisms, but are not a realistic replacement for field 

monitoring (Shaw & Kennedy 1996). Indirect effects on invertebrate interactions can be 

confounded by external variables, such as alternative food resources, refuge habitat, or 

temporal variation in life histories (Niemi et al. 1999). Long-term studies on a large 

spatial scale may be necessary for indirect effects of insecticide exposure to be 

discernable (Niemi et al. 1999; Brittain 2010).  

Ambient mosquito insecticide spray may affect community processes by 

disrupting interactions between plants and insects (e.g., pollination). Plants that depend 

on pollinators are vulnerable to changes in pollinator presence (Kearns et al. 1998; Dunn 

et al. 2009), which may bring adverse effects to reproductive fitness (i.e., fruit and seed 

set) (Kevan 1975; Johansen 1977; Tepedino 2000; Brittain et al. 2010). By some 

estimates, over 90% of all angiosperms benefit from or depend on insect pollinators for 

reproductive fitness (Buchmann & Nabhan 1997), including many rare plants and 

economically valuable agricultural crops, such as blueberries, almonds, cucurbits, 

mangoes, and avocados (Tepedino 1979; Kevan et al. 1990). Studies in agricultural 

systems suggest that broad-spectrum insecticides indirectly affect plant reproduction by 

reducing pollinator abundance (Johansen 1977; Kevan & Plowright 1989; Brittain et al. 

2010). In an agricultural field in Italy, seed set, seeds per plant, and flower visitor 

abundance of a horticultural Petunia were significantly reduced after two applications of 

fenitrothion, an organophosphate, though pollinator species richness increased (Brittain et 

al. 2010). In another textbook example, a significant seasonal decrease in blueberry crop 
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production was measured during aerial insecticide applications to a nearby forest (Kevan 

& Plowright 1989); blueberries require pollinators for fruit set, therefore decreased native 

pollinator abundance in the field reduced lowbush blueberry production.   

Although empirical evidence suggests that broad-spectrum insecticide 

applications are detrimental to pollinators, many of these studies are in controlled lab 

settings and fail to consider sub-lethal effects to behavior (e.g. reduced foraging for floral 

resources) and consequential effects to reproduction in flowering plants (Allen-Wardell et 

al. 1998).  Liu and Koptur (2003) observed a noticeable decrease in flower visitors to 

Chamaecrista lineata var. keyensis in the Lower Florida Keys following an application of 

mosquito insecticides (Liu & Koptur 2003). Further research is needed to understand 

indirect effects of mosquito insecticides on community function, including pollination 

systems, food webs, trophic cascades, and other invertebrate symbiotic interactions.   

 

Implications of Indirect Effects for Conservation 

Many rare plant species are dependent on invertebrate flower visitors for fruit and 

seed production.  Not only is sexual reproduction in rare plants essential to maintaining 

genetic diversity necessary for long-term persistence (Bond 1994), but frequently rare 

species have advanced pollination systems in which reproduction does not occur in the 

absence of flower visitors (Tepedino 2000). Tepedino (2000) found that 24 of 26 rare 

plants in the Southwest US required invertebrates as a pollinating agent for fruit set. 

Pollinators encourage gene flow by moving gametes between plants of the same species, 

and at the same time, can be agents of selection on plant floral morphology and even 

speciation (Tepedino 1979; Kearns et al. 1998; Johnson & Steiner 2000).  
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Hennessey and Habeck (1991) investigated effects of ambient mosquito 

insecticide on pollinator visitation and fruit set of the federally endangered Key Tree 

Cactus (Pilosocereus robinnii) in the Lower Florida Keys. However, they found no 

significant difference in fruit set rates between treated and untreated sites, as this species 

is highly self-compatible and readily produced fruit in ‘bagged’ flowers excluded from 

pollinators. Differences in flower visitation rates could not be calculated because visitors 

were not present during observation periods for all P. robinnii individuals, including 

unsprayed sites. The authors suggest that efficient pollinators may no longer be present 

throughout P. robinnii’s range (Hennessey & Habeck 1991). Although the plant species 

has declined by 80% between 1994 and 2007 (USFWS 2010b), autogamy allows the 

species to persist, but may prevent new individuals from adapting to a changing 

environment, such as salt-water intrusion, herbivory, or disease (Tilman 1994; Proctor et 

al. 1996; Bond 1994). 

  

Drift into Non-Target Areas  

 Insecticide drift in non-target areas is a potential challenge for managing 

vulnerable species at the wild-land urban interface. Drift from mosquito insecticide 

applications can have adverse effects, including lethality, to non-target organisms (Zhong 

et al. 2010). In a drift investigation study, residues of two mosquito control insecticides, 

fenthion (pyrethroid) and Naled (organophosphate), were found deposited on cellulose 

pads in ‘no spray zones’ in protected areas throughout the Florida Keys (Hennessey et al. 

1992). While fenthion residues applied by trucks were found at 50m inside non-target 

areas, drift residues of Naled applied by aircraft ranged from 30m up to 750m into ‘no 
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spray’ zones (Hennessey et al. 1992), including habitat of the endangered Bartram’s 

scrub hairstreak and other rare invertebrate and flowering plant species (Hennessey and 

Habeck 1991). In another Florida Keys drift study, truck ULV applications of permethrin 

were deposited on filter papers in non-target area offshore in the Florida Keys Marine 

Sanctuary weeks after application (Pierce et al. 2005). Drift concentrations, distance, and 

persistence are inconsistent among studies and are likely influenced by a multitude of 

external factors (Schleier et al. 2012).  

Application methods can affect insecticide dispersal and drift into non-target 

areas. In Florida, mosquito control districts primarily apply insecticides by aircraft to 

cover large populations of nuisance mosquitos over large areas, and trucks for smaller 

populations in neighborhoods. Both methods use Ultra-Low Volume systems that emit 

small, undiluted mists of insecticide particles that persist in the air column until 

volatilized or degraded. Suspended particles maximize the potential for contact with adult 

flying mosquitos, allowing for rapid knockdown of high mosquito abundances (Haile et 

al. 1982; Mount et al. 1996). With minimal wind during applications, the small particle 

size creates an even extensive coverage with faster degradation (i.e., lower persistence) 

and less concentrated drift than other methods like aerial thermal fog applications 

(Hennessey et al. 1992). However, various spray attachments are available for the ULV 

systems that emit a range of droplet sizes that can affect drift distance and concentrations, 

which results in inconsistencies between studies that investigate adverse effects to non-

target organisms (Dukes et al. 2004; Breidenbaugh et al. 2009). For example, in a study 

comparing two ULV nozzle attachments, insecticide drift was found on yard strings over 

8000m from flight path for both methods, with one attachment causing 17% fiddler crab 
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mortality at 4,500m from spray source, and the other causing little to no fiddler crab 

mortality (Dukes et al. 2004).  

Abiotic factors during the time of insecticide spray also affect drift distance and 

concentration, and should be an important consideration in mosquito abatement near 

sensitive habitat for rare species. Humidity, wind speed, wind direction, and atmospheric 

stability determine the rate and distribution of ground deposition and particles suspended 

in the air column (Schleier et al. 2012). Insecticide spray applied with the Ultra-Low 

Volume system drifts downwind, and concentrations decrease with distance from the 

source of spray (Pierce et al. 2005). High humidity, high temperature, and stable 

atmospheric conditions are positively correlated with rates of ground deposition (Schleier 

et al. 2012). Under stable atmospheric conditions with low wind speeds, drift is minimal 

and concentration near the source of spray is highest (Dukes et al. 2004). Accordingly, 

non-target invertebrates in flight near application routes are most vulnerable to 

insecticide exposure (Longley & Sotherton 1997). The optimum conditions for 

insecticide efficacy for mosquitos that are least harmful to non-target organisms are 

unclear, but calm winds, stable atmospheric conditions, warm temperatures, and low 

humidity are optimal for predictable consistent application (Connelly & Carlson 2009; 

USEPA 2002). 

Field studies are scarce and inconsistent on insecticide persistence in the 

environment and exposure routes to non-target organisms. Toxicity studies on the 

persistence of both Naled and permethrin are frequently derived from degradation of 

particles in soil (URS Corporation 2004); however, the vast majority of ULV applied 

insecticides do not reach the soil surface.  For truck ULV applications, 1% to 30% of 
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insecticide particles reach the ground within 100m of spray source, with an average of 

10% ground deposition within 180m (Schleier et al. 2012); most particles remain 

suspended in the air column or as foliar residues until they degrade or volatilize. 

Pesticides that reach the soil surface degrade within half an hour (USEPA 1997), whereas 

surface residues (such as filter papers exposed in the open) have a half-life of 1.5 to 55 

hours in full sunlight and 8 to nearly 100 hours in darkness (Hennessey et al. 1992; 

USEPA 1997; Tietze et al. 1996). Rapid breakdown in soil suggests that soil microbes 

likely facilitate insecticide degradation (USEPA 1997), and therefore, half-life on soil 

surface may not be a good indicator of environmental persistence. In addition, insecticide 

particles not volatilized must penetrate the canopy layer before reaching the soil surface, 

and interception by the canopy is dependent upon foliar density (URS Corporation 2004), 

which varies between sprayed areas. Permethrin residues can remain on vegetation for 

several days (Pierce et al. 2005; USEPA 2006). For broad-spectrum insecticides, 

deposition on vegetation, flowers, and fruit may increase routes of exposure for resting or 

foraging invertebrates through dermal contact, nesting materials, or ingestion (URS 

Corporation 2004; Wisk et al. 2014), although these routes are not well understood for 

non-target organisms and are likely dependent upon a number of temporal and spatial 

factors, as well as on the behavior of the organisms of interest. 

Conclusion 

Toxicity from broad-spectrum insecticides is variable among non-target 

organisms and not fully understood. Sub-lethal affects can acutely affect vital behavioral 

activity, such as feeding and reproduction; this may have an unapparent impact on 

mutualistic relationships and trophic interactions that are not generally considered in lab 



 

14  

  

toxicity studies. Life history traits of individual species may be key to susceptibility to 

broad-spectrum insecticides. Although much research has been dedicated to 

understanding abiotic factors that influence insecticide dispersion and lethality in non-

target organisms, additional research is imperative to understand ensuing community 

level biotic interactions. Trophic interactions and mutualisms, such as pollination, are 

crucial for community function and are likely affected by invertebrate declines from 

broad-spectrum mosquito insecticides. However, community-level studies are rarely 

considered in broad-spectrum insecticide impact studies.  

   Aerial and truck ULV applied mosquito insecticides have also been shown to drift 

into non-target areas, such as protected areas. This can be problematic for species that 

depend on protected habitat for survival, such the Schaus Swallowtail Butterfly, the 

Miami Blue, or Bartram’s Scrub Hairstreak, as well as rare plants that depend on 

pollinators for reproductive success. In addition, spatial and temporal conditions of 

insecticide spray may greatly affect impacts to non-target organisms, which may explain 

much of the variability in results for previous impact studies. Timing of the day 

insecticides are sprayed, spray frequency, time between sprays, nearby refuge habitat for 

invertebrates, and spray drift distance and concentration may affect the degree of 

exposure and toxicity to non-target organisms. One consistent result in the literature is 

that multiple insecticide applications in one season has the greatest effect on non-target 

invertebrate populations. Mosquito control districts should therefore be cautious in high 

frequency of spray applications by alternating abatement methods for management. 

Additionally, creating buffer zones of ‘no spray’ routes near sensitive conservation areas 
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may alleviate negative direct and indirect consequences of broad-spectrum insecticides to 

non-target organisms. 

With expanding urban development in South Florida, protected species in 

fragmented habitats are more exposed than ever to anthropogenic activity at the wild-land 

urban interface. Although direct impacts of insecticides on invertebrates have been well 

documented, there is an urgent need to understand indirect effects to flowering plants, 

both common and rare, that occur in protected areas and are susceptible to drift from 

broad spectrum insecticides. Several plant species within the National Key Deer Refuge 

(NKDR) in the Lower Florida Keys have currently been proposed for endangered status, 

yet potential consequences of insecticides on pollination of the species are unknown. An 

opportunity to contribute to a better understanding of this potential threat to the 

pollination system of these and other sensitive plant species presented itself when David 

Bender of the US Fish and Wildlife Service approached Dr. Suzanne Koptur, a 

pollination biologist and my major advisor, for prospective funding to undertake such a 

project; indirect effects of broad-spectrum insecticides are not always obvious and, 

consequently, are infrequently studied. Though funding for the proposal we developed 

was not secured through USFWS, the proposed objectives provided an excellent 

opportunity for a master’s research project in pollination and plant conservation, a subject 

of much personal interest. My resulting thesis project received immense support from 

USFWS - NKDR staff, Garden Club of America and Pollinator Partnership, the USDA-

NIFA, and the Kelly Foundation. My intent is for this study to provide a better 

understanding of the role pesticides have on pollinators and plant reproduction, so that 
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conservation agencies may consider pollinator habitat and community processes in efforts 

to protect plants and wildlife in conservation areas.  
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II. Pesticides and Pollination of Imperiled Plants of the Lower Florida Keys  

 

Introduction 

Degraded pollinator habitat may have far-reaching consequences for recovery of 

imperiled flowering plant populations at the wild-land urban interface. Global declines in 

invertebrate pollinators are linked to a suite of factors, including reduced habitat quality 

from broad-spectrum insecticide applications (Kevan & Plowright 1995; Tepedino et al. 

1996; Buchmann & Nabhan 1997; Potts et al. 2010; Brittain 2010).  Studies suggest that 

insecticides used in mosquito abatement are detrimental to non-target flying 

invertebrates, including pollinators (Kevan & Plowright 1989; Eliazar & Emmel 1991; 

Salvato 2001; Brittain 2010; Zhong et al. 2010; Bargar 2012). Declines in pollinator 

abundance and species richness have a significant impact on reproductive fitness of 

imperiled flowering plants (Allen-Wardell et al. 1998; Kearns et al. 1998; Tepedino 

2000).  Pollinator availability influences flower visitation rates and fruit set in animal 

pollinated plants (Kearns et al. 1998). A decline in effective flower visits often leads to 

pollen limitation in plants, resulting in reduced fruit set and seed set (Kearns et al. 1998). 

Despite the fact that 90% of flowering plants benefit from or rely upon insect pollinators 

for reproductive fitness (Buchmann & Nabhan 1997), plant-pollinator interactions are 

rarely considered in conservation strategies for flowering plants (Tepedino et al. 1996; 

Buchmann & Nabhan 1997; Kearns et al. 1998; Johnson & Steiner 2000).  

 Rare plants and plants with specialized breeding systems are particularly 

vulnerable to decreased pollinator visitation. Pollinators enhance genetic diversity of 

flowering plants by assisting in sexual reproduction and outcrossing, thereby improving 
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reproductive fitness, a goal for stabilizing rare populations (Kearns et al. 1998; Johnson 

& Steiner 2000; Marcot & Molina 2007). Many rare plants also have advanced 

pollination systems, which can make them dependent upon pollinators for reproduction 

(Tepedino 2000; Spira 2001). In addition, flowering plants with specialized pollinator 

relationships (e.g., monophilic and oligophilic plants) are more vulnerable to pollinator 

declines than plant species visited mostly by generalist pollinators (Allen-Wardell et al. 

1998; Johnson & Steiner 2000; Xiao et al. 2016).  

Though most plants benefit from, or rely on pollinators for reproduction, 

flexibility in reproductive strategies for plants may mask ecological effects of decreased 

flower visitors from insecticide application. Automatic self-pollination is a common fail-

safe mechanism in short-lived herbaceous plants when efficient pollinators are sparse 

((Bond 1994; Proctor et al. 1996). For rare plants, however, reliance on self-fertilization 

can constrain genetic diversity (Allen-Wardel et al. 1998). For example, deleterious 

alleles may surface that would have otherwise been masked by heterozygosity in 

offspring produced from two unrelated parent individuals (Charlesworth & Charlesworth 

1987). This mechanism may mask ecological instability, such that populations may be 

apparently viable but doomed in the long run, harboring an ‘extinction debt’ (Tilman 

1994; Chen 2009; Johnson & Steiner 2000). Understanding the reproductive strategies 

and pollinator dependency of rare plants could assist in management efforts to improve 

habitat quality for pollinators, thereby reducing threats to rare plant populations. 

  National Key Deer Refuge in the Lower Florida Keys contains a high diversity of 

flowering plants and invertebrate pollinators, including several federally listed species 

endemic to the Keys (Gann et al. 2007). Development of roads and neighborhoods 
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throughout the Refuge have resulted in a matrix of fragmented wildland patches with an 

increased edge exposure to anthropogenic activity (Koptur 2006). Increasing urbanization 

and tourism around the Refuge has consequently increased the demand for mosquito 

abatement (Hennessey et al. 1992). The Florida Keys Mosquito Control District 

(FKMCD) applies mosquito insecticides between mid-spring and late fall in the Lower 

Florida Keys, throughout neighborhoods and roads adjacent to Refuge land.  

 Insecticides can drift outside of target areas into adjacent wildland habitat that 

serve as a refuge for native biota (Hennessey et al. 1992; Pierce et al. 2005; Zhong et al. 

2010; Bargar 2012). Drift can pose a potential challenge for managing vulnerable species 

at the wildland-urban interface. In a study in the Lower Keys to quantify drift distance 

into conservation land, aerial drift residues of Naled were found up to 750 meters within 

a ‘no spray’ zone, while ground pyrethroid residues from ULV application were found 

50m outside of the target area (Hennessey et al. 1992). Reports of drift distance and 

persistence are inconsistent across studies, as these factors are influenced by abiotic 

factors and application methods; for example, one study found drift residues as far as 

8000m from flight path (Dukes et al. 2004). These insecticides can be fatal to non-target 

invertebrates at the wildland-urban interface and potentially pose threats to ecological 

processes within wildland communities (Hennessey & Habeck 1991; Liu & Koptur 

2003).  

Extensive studies, particularly in the Florida Keys, suggest that broad-spectrum 

adulticides used in mosquito abatement negatively affect non-target invertebrates, 

including pollinators (Eliazar and Emmel 1991, Hennessey and Habeck 1991, Kevan et 

al. 1997, Salvato 2001, Carroll et al. 2006, Zhong et. al 2010, Bargar 2011, Hoang et al. 
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2011). However, indirect effects to plant-pollinator interactions and reproductive fitness 

in pollinator dependent plants are not very well understood (Hennessey & Habeck 1991; 

Brittain et al. 2010).  

Effects on plant reproduction are dependent on both lethal and sub-lethal effects 

to potential pollinators and dependency of plants on flower visitors for fruit and seed 

production. Non-target organisms respond differently to insecticide exposure throughout 

the mosquito control season (Brittain 2010; Zhong et al. 2010). Sub-lethal effects and 

frequency of treatments may be important factors for consideration in impact studies and 

population recovery of non-target organisms. Sub-lethal exposure can decrease fecundity 

in some organisms by reducing feeding time or feeding cessation (i.e., decreased flower 

foraging) and having a marked effect on reduction in growth, reproduction, and 

behavioral changes (Coats et al. 1979; Tan 1981a). Behavioral changes in foraging could 

have secondary adverse effects for plants that rely on efficient flower visitors for 

pollination; however, this is rarely investigated (Allen-Wardell et al. 1998). Frequent 

insecticide application may also lead to bioaccumulation in non-target species, in which 

compound exposure to insecticides throughout the season may increase lethality (Brittain 

2010; Zhong et al. 2010). Furthermore, reducing the frequency of insecticide applications 

(> 14 days between applications) can have a positive effect on population recovery for 

some common non-target organisms, although recovery lengths may vary for species 

(Mulla et al. 1982). 

In the present study, I investigate potential direct and indirect effects of ambient 

mosquito insecticide spray on flower visitation and reproductive success of two imperiled 

and one common plant species in protected areas in the Lower Florida Keys. I consider if 
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extended time between spray applications (> 14 days between applications) has a less 

negative effect on proportion fruit set.  In addition, I consider effects of multiple seasonal 

insecticide applications on visitation to flowers and proportion fruit set, and if 

populations exposed to one seasonal insecticide spray exhibit similar results.  My 

hypothesis is that flowers open following an insecticide application at sites that are 

frequently treated will have lower visitation rates, and therefore, lower fruit set than 

synchronously open flowers in unsprayed areas. I also postulate, from evidence in 

previous studies, that areas exposed to only one insecticide treatment will have little 

effect on flower visitation and fruit set. Provided that adverse effects to pollinators are 

not irreversible in areas with frequent seasonal spray activity (i.e., recovery of pollinator 

populations occurs between mosquito spray seasons), flowers open before the mosquito 

spray season at treated areas should have similar flower visitation rates and fruit set to 

control sites at the same time.  

 

Methods 

Study Sites 

The Lower Florida Keys (Lower Keys) is the southernmost portion of the 

subtropical island chain in extreme South Florida. It consists of submerged and exposed 

marine oolitic limestone substrate, in which vegetative communities are shaped by small-

scale elevational gradients (Ross et al. 1992). Upland outcroppings of limestone 

throughout the Lower Keys create unique pine rockland and rockland hammock habitat 

(Ross & Ruiz 1996) for a large diversity of flora and fauna, including many narrowly 

endemic species (Gann et al. 2007). Pine Rockland historically occurred along the South 
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Florida Miami Rock Ridge through a portion of the Lower Florida Keys and the 

Bahamas, however, this habitat has been under continuous decline with pressures from 

urban development and habitat degradation from fire exclusion, invasive species, and sea 

level rise (USFWS 2015). Estimates suggest that only 2% of the original pinelands 

outside of the Everglades remain intact in South Florida (Koptur 2006). The IUCN 

globally endangered habitat is fire dependent and features an open canopy sparsely 

dominated by South Florida Slash Pine (Pinus elliottii var. densa), several species of 

understory palms and shrubs, and a species rich herbaceous layer (USFWS 1999, Saha et 

al. 2011). Federal and State conservation areas cover large tracts of land throughout the 

Lower Keys. Much of the remaining pine rockland outside of the Florida mainland 

occurs within National Key Deer Refuge (NKDR) in the Lower Keys. NKDR pine 

rockland is habitat for several federally endangered and threatened flowering plant and 

butterfly species.  

I investigate effects of mosquito insecticide spray on flower visitation and 

reproductive output of two imperiled plants at the wildland-urban interface in the present 

study. Chamaecrista lineata var. keyensis (Pennell) H.S.Irwin & Barneby and Linum 

arenicola (Small) H.J.P. Winkl. are pine rockland endemic species that are proposed for 

federal endangered listing status under the Endangered Species Act (USFWS 2015). 

Because these species are rare and limited in geographic distribution, I also studied 

Pentalinon luteum (L.) B.F.Hansen & Wunderlin, which is located throughout South 

Florida and the Caribbean.  
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Figure 1. Study location on No Name Key, Big Pine Key, and Lower Sugarloaf Key in 

the Lower Florida Keys. Red shading is the remaining pine rockland habit in the Keys, 

and green is rockland hammock habitat. 

 

In the present study, sites for each of the three focal species are on Federal and 

State conservation land on one or more islands in the Lower Florida Keys, including: Big 

Pine Key, Lower Sugarloaf Key, and No Name Key (Figure 1).  These islands consist of 

conservation land fragmented by intermittently dispersed residential neighborhoods that 

seasonally spray insecticides for mosquito control. The frequency of mosquito adulticide 

missions are highly variable, and are regularly in response to complaints from residents; 

although spray is also a priority if health risk is high from a vectored disease. Only 

occasionally did spray missions occur more than once per week at treatment sites. The 

Florida Keys Mosquito Control District (FKMCD) generally posts the schedule and maps 

for aerial and truck adulticide missions between 6 and 24 hours before a spray mission. 

Because of the sporadic and uncertain mosquito spray schedule, I located potential 

treatment sites near historically sprayed areas (Figures 2 – 5). The selected control and 
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treatment sites varied per species based on location of extant populations, and are 

therefore described individually for each species.  The sites had potential to be sprayed at 

disproportionate frequencies and some sites had potential to not be treated at all for the 

2015 season. 

 

Flower Visitation 

Flower visitation rates can be a good measure of pollinator abundance and 

changes in populations (Kearns & Inouye 1993). In addition, quantifying flower 

visitation rates can account for sub-lethal behavioral effects of insecticides on pollinators, 

such as feeding cessation or flight inhibition (Coats et al. 1979; Tan 1981b). I conducted 

timed flower visit observations for each focal plant species to measure direct effects of 

mosquito insecticide treatments to flower visits. Flower visitor observations for each 

plant species consisted of 10-minute interval watches of a known number of open flowers 

from a randomly selected patch of plants. I calculated a visitation rate of number of visits 

per number of flowers per unit time (Dafni 1992, Kearns and Inouye 1993). When 

possible, I recorded duration of each flower visit. Floral visitors were identified to 

species when possible and a voucher specimen of each species was collected and 

preserved.  

Flower visit observations were conducted during the overlap of peak mosquito 

abatement season and peak flowering season for each species over the summer of 2015 

(July and August); P. luteum and L. arenicola had extended periods of observation. 

Initial flower visitor observations at Lower Sugarloaf (treatment site) began after 
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multiple insecticide applications had occurred in order to account for potential delayed 

effects from insecticide accumulation (Brittain 2010; Zhong et al. 2010). I conducted 

watches at control and treatment sites for each species the morning after nightly truck 

insecticide missions or the morning of aerial insecticide missions. Each observation day 

for a species consisted of at least three 10-minute watches between 0800 -1200h at each 

site. Observations occurred only on sunny to slightly cloudy days to exclude visitation 

difference associated with rain or extreme weather (Kearns & Inouye 1992). Wind speeds 

and relative humidity were variable between watches, but a large number of observations 

occurred with conditions represented at each site to account for this variation. The order 

of sites for flower visitor observations in any one day were randomly chosen to avoid 

bias, normally no more than two sites per day. Insecticide treatment applications were 

replicated three times for P. luteum and L. arenicola by either truck or aerial application; 

however, replications of truck and aerial applications were too small to analyze 

individually.  

Because the plant species in the present study flower at different periods and 

occur at different areas with different spray regimes, methods and results are described 

individually for each species. For each species, I analyzed for differences in flower 

visitation rates between sprayed and unsprayed sites after an adulticide application.  

Flower visitation rate (no. visits/flower/min) were analyzed with Mann-Whitney U tests. 

All analyses were carried out in SPSS version 23.0 (IBM Corp. 2013). 
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Reproductive Output 

Following flowers open during insecticide spray for populations in areas sprayed 

and areas not sprayed allows for comparisons of fruit set that could reveal any negative 

effects of pesticides to plant reproduction. Chamaecrista lineata var. keyensis (Liu & 

Koptur 2003) and Pentalinon luteum (Koptur unpublished data) require pollination by an 

external agent for successful reproduction (i.e., fruit set and seed set); therefore, a 

reduction in flower visitation will likely result in decreased fruit set. For species that 

automatically self-pollinate without an agent, decreased pollinator visits may not have a 

significant effect in the short term, even if reproduction is enhanced with visitation.  

 To determine the indirect effect of ambient mosquito insecticides on plant 

reproduction, I assessed proportion fruit set by taking simultaneous observations at 

control and treatment sites. For sites with large populations of focal plant species (> 50 

open flowers on a given day), I randomly selected plants along a 20-meter wide and 400-

meter long transect. All transects ran parallel to the truck spray route so as not to 

confound the effect of distance from spray route. The exception to this is one reference 

control site for each species 1 km from the road (Figure 3). Control sites have not been 

treated with insecticides for many years. All individuals marked were reproductively 

active and at least 5 meters from the nearest neighbor. In addition, all plant species have 

one-day flowers, to insure that flowers open following insecticide spray could have only 

been visited after spray occurrence. After insecticide applications, I marked the pedicel of 

open flowers at treatment and control sites. Within 7-12 days, I revisited marked 

individuals to determine if flowers were fertilized (i.e., produced fruit with at least one 

seed) or aborted. Fruit set was analyzed with Chi-square tests with adjusted residuals and 
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a Bonferonni corrected p-value for contingency tables larger 2x2 (Beasley & Schumacker 

1995).  

 

Chamaecrista lineata var. keyensis 

 Chamaecrista lineata var. keyensis, Big Pine Partridge Pea, is an herbaceous 

legume (Caesalpinioideae) endemic to pine rocklands in the Lower Keys. In September 

2015, this species was proposed by USFWS for federal endangered listing status 

(USFWS 2015). Extant populations occur only on Big Pine Key within intact pine 

rockland habitat, and occasionally along disturbed roadsides adjacent to pine rockland 

(Ross and Ruiz 1996). In the summer of 2015, plants were numerous and reproductive at 

the few pine rockland sites on Big Pine Key that were not overgrown with shrubs and 

hardwoods (Figure 2). Plants were also present in shady sites but had fewer reproductive 

individuals than plants in full sun. Observations indicate peak flowering season from 

May until August, which coincides with peak mosquito abatement. During the summer of 

2015, populations were located at two control sites and three potential treatment sites in 

protected areas adjacent to residential neighborhoods where mosquito spray applications 

had been concentrated historically (Figure 2). Control sites had not been treated with 

insecticides for many years (USFWS personal comm.).  

 Flowers of C. lineata are yellow and slightly bilaterally symmetrical with faint 

red coloration where the base of the clawed corolla joins the reddish-brown stamens. 

Pollen is released from poricidal anthers when visited by ‘buzz’ pollinators (Liu and 

Koptur 2003). Although self-compatible, flowers will not be pollinated without an 
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efficient visitor (Liu & Koptur 2003), therefore a reduction in flower visitation by buzz 

pollinators will likely reduce fruit set in C. lineata populations exposed to ambient 

mosquito adulticides. In a study on the breeding system of this species on Big Pine Key, 

decreased flower visits to C. lineata following an insecticide application near residential 

neighborhoods were observed (Liu & Koptur 2003).  

Flower visitation watches and fruit set observations for plants at all sites took 

place from late May to mid-August. However, no mosquito adulticide missions occurred 

on any C. lineata occupied habitat during the 2015 flowering season. There was potential 

for permethrin to have drifted into one patch of C. lineata located near Whispering Pines 

Subdivision in southeast Big Pine Key (Figure 2), although this patch was between 350 

and 550 meters from the truck ULV route. Truck spray missions in this subdivision 

occurred 5/8/2015, 8/1/2015, and 8/12/2015. I conducted flower visitor observations and 

marked open flowers the morning after the second and the third truck missions, to 

determine if drift from nearby applications had any direct or indirect effect on pollinators 

and plant reproduction. I pooled observations for both treatment dates and pooled 

simultaneous observations for plants not near spray routes. I used a Mann-Whitney U test 

to compare flower visitation rates between populations and a chi-square test for 

differences in fruit set proportions.  
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Figure 2. Chamaecrista lineata var. keyensis individuals used in the present study on Big 

Pine Key. Only Whispering Pines subdivision was sprayed in 2015.  Flower visitation 

rates and proportion fruit set were simultaneously measured for individuals at Control 

Sites and in the area labeled Critical Habitat (> 350m from spray route) following 

mosquito insecticide applications at Whispering Pine. 

Linum arenicola 

Linum arenicola (Linaceae), Sand Flax, is a small grass-like perennial herb with 

bright yellow one-day flowers about 1cm in diameter. Upon maturity, capsular fruits 

dehisce and release up to 10 glossy light brownish-yellow seeds. It is an endangered 

species in Florida and was proposed for federal endangered listing status at the end of my 

Whispering 

Pines 
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2015 field season along with C. lineata var. keyensis (USFWS 2015). Linum arenicola is 

endemic to South Florida and thought to be a pine rockland endemic species (Ross and 

Ruiz 1999). In the Lower Keys, this species occurs on various edge habitats. Habitat 

degradation from lack of fire (i.e., increased canopy closure) has likely restricted this 

species to disturbed roadside and marginal lands (USFWS 2015). It has been extirpated 

from many other islands in the Lower Keys (Hodges & Bradley 2006; Ross & Ruiz 1996; 

USFWS 2015). In my study, populations were frequently found growing alongside 

multiple grass species, Agalinis fasciculata, Chamaecrista lineata var. keyensis, 

Rhyncospora colorota, Euphorbia pergamena, Piriqueta cistoides subsp. caroliniana, 

and many other low-lying herbs.  
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Figure 3. Big Pine Key. Linum arenicola (LINARE) and Pentalinon luteum (PENLUT) 

control sites within National Key Deer Refuge on Big Pine Key.  Sites for both species 

occurred road-side with one remote reference site for each species.  

 

Observations for L. arenicola took place on two islands with different mosquito 

abatement regimes. Outside of the South Florida mainland, viable populations of Linum 

arenicola only occur on Big Pine Key and Lower Sugarloaf Key (Figures 3&4). I 

measured flower visitation rates and fruit production at three control sites on Big Pine 

Key (Figure 3) and one treatment site on Lower Sugarloaf (Figure 4). No mosquito spray 

Control Sites 
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missions occurred on Big Pine Key in 2014 or 2015 on or near Linum arenicola occupied 

habitat. Before field observations began on Lower Sugarloaf, 4 aerial missions and 11 

ULV truck spray missions had occurred since the beginning of the 2015 mosquito spray 

season (Appendix A1). In 2015, observations occurred the morning of aerial adulticide 

missions on July 2nd and August 12th, and the morning after a truck mission on July 28th. 

Simultaneous observations were also taken at control sites, within 3 days of each of these 

treatments. When possible, observations were conducted at intervals greater than two 

weeks between spray missions. Three additional sampling observations were taken at the 

beginning of the 2016 mosquito season, from April 1 to May 15, over 150 days since the 

last spray mission.  

 
Figure 4. Linum arenicola (LINARE) and Pentalinon luteum (PENLUT) populations 

along mosquito adulticide ULV truck route on Lower Sugarloaf Key. The route for aerial 

missions covers the whole island (not shown). 

Treatment Site 
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The breeding system of Linum arenicola was unknown prior to this study, so I 

conducted exclusion trials to determine if L. arenicola can reproduce in the absence of 

flower visitors. The reproductive biology of closely related species suggested self-

incompatibility and a fly pollinator (Kearns and Inouye 1994). At 0700h, as flowers buds 

were breaking (but before anthesis), I randomly selected up to 10 plants with open 

flowers from each of two 10m2 plots.  I marked and bagged flowers to prevent flower 

visitor access (n=20). Because plants are tall (36cm ± 9.8cm) and wiry, with very small 

flowers, I bagged the whole stem that bore an inflorescence. The inflorescence was 

randomly chosen if there were more than one per plant; if there were more than two 

emerging flowers per plant, only two were randomly marked. Exclusion bags were 12cm 

x 8cm mesh drawstring bags that allow wind, but prevent flying flower visitors (Kearns 

& Inouye 1994). It was perhaps possible for ants to enter from the stem base, but I very 

rarely saw ants visiting flowers. Visitor exclusion bags were removed before sunset, by 

which time all flowers had senesced. Seven days later, the plant was revisited to 

determine for each flower if fruit was set or the flower aborted. Some plants were used 

again at different trial periods. I repeated this experiment on four occasions throughout 

July 2015 at one control site, for 80 flowers from 24 plants.  

To understand if mosquito insecticides have a direct and/or indirect effect on 

flower visitation and fruit production in Linum arenicola, I used a modified Before After 

Control Impact (BACI) design (Stewart-Oaten et al. 1992). The BACI design includes 

simultaneous measurements at several control sites and a treatment site before the onset 

of the mosquito spray season and after a spray application has occurred (Table 1). The 
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BACI designs are generally used for assessing long-term effects when one impact occurs 

at only one site, in which multiple measurements are taken over time after the impact. It 

can also be a useful design for measuring short-term impacts when treatments are 

replicated at the treatment site along with simultaneous measurements at control sites. 

Replicates consisted of three mosquito insecticide applications at the treatment site in the 

middle of the mosquito spray season for flower visitation rate and fruit set observations. 

Measuring multiple control sites throughout the sampling period accounts for natural 

pollinator fluctuations across space and time. Taking observations before the mosquito 

spray season and after multiple spray missions at the treatment site account for changes 

in flower visitation and fruit set at the particular impact site.  Table 1 provides a summary 

of groups and times that were analyzed for flower visitation rates and proportion fruit set. 

 

Table 1. The Before After Control Impact (BACI) design for investigating direct and 

indirect effects of mosquito insecticide on Linum arenicola. Summary table lists groups 

and time intervals that will be analyzed to isolate mosquito spray as the variable 

responsible for differences in flower visitation and fruit set. 

 

Differences in flower visitation rates between treatment and control groups were 

analyzed with Mann-Whitney U tests at each time interval and spray replicate. Flower 

visitation within groups over time, before the spray season (n=3) and after replicate 

Site Type Time Interval Observation Season & Year 
Number of  

Replicates 

Control & Treatment After Spray Missions Summer 2015 3/site 

Control & Treatment  Before the Spray Season Spring 2016 3/site 

Treatment 
Before Spray Season & 

After Spray Missions 
Summer 2015 & Spring 2016 3/ year 

Control 
Before Spray Season & 

After Spray Missions 
Summer 2015 & Spring 2016 3/year 
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applications (n=3), were analyzed with Kruskal-Wallis tests. I used Mann-Whitney U 

tests for post-hoc pairwise comparisons between intervals to determine where differences 

in visitation were significant.  

To determine if L. arenicola requires flower visitation for reproduction, I 

compared proportion fruit set from ‘bagged’ open flowers, in which insect visitation was 

prevented, to ‘exposed’ open flowers at the same site. To assess differences in fruit set as 

a result of mosquito spray activity, I used a Chi-Square cross-tabulations for each set of 

groups and time periods as discussed for flower visitation rates and as outlined in Table 

1.  

Pentalinon luteum 

  Pentalinon luteum (Apocynaceae), Wild Allamanda, Wild Unction, or 

Hammock’s Viper Tail, is a perennial liana with large yellow tubular flowers and long 

(from 5 – 25 cm each half-fruit) mericarpous fruits that split at the base and nearly meet 

back up at the tips. Fruits may produce up to several hundred wind dispersed seeds 

(Koptur unpublished data). This species occurs throughout the Caribbean and South 

Florida in a variety of habitats. In the Lower Keys it occurs in rockland hammocks, 

coastal berm/coastal strand, and infrequently in pinelands. Pentalinon luteum plants are 

self-incompatible, and will only produce fruit and seed when fertilized with pollen from 

the flower of an unrelated plant (Koptur unpublished data).  Flowers are open for one 

day, from just before sunrise to near sunset, and are visited frequently by long-tongued 

bees and less frequently by skippers and butterflies in the Lower Keys (personal 

observation). Many plants were flowering from late May through November in 2015. 
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Flower visitation rates and fruit set observations for P. luteum were conducted on 

Big Pine Key, No Name Key, and Lower Sugarloaf Key. Big Pine Key contained three 

control sites: two roadside and one remote (Figure 3). The population co-occurring with 

L. arenicola on Lower Sugarloaf Key was the treatment site (Figure 4). Observations 

were conducted after the same three adulticide missions as L. arenicola and, when 

possible, fruit set was observed at intervals greater than two weeks between sprays.  

 
Figure 5. No Name Key. Pentalinon luteum population occurring parallel to the ULV 

truck route on No Name Key within National Key Deer Refuge boundary 

 

Flower visitation and fruit set analyses for P. luteum were conducted in a similar 

manner as the BACI design described for Linum arenicola.  However, the onset of 

flowering for P. luteum occurred after the first mosquito spray mission, therefore 

observations before the mosquito spray season were not possible. I compare flower 

visitation rates and fruit set that were simultaneously observed at control and treatment 

sites after each insecticide spray. I used Mann-Whitney U tests and Chi-Squared 
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analyses, respectively; these include observations for each replicate spray and for fruit set 

observations > 5 weeks after treatment to test for recovery between spray missions.  

While Lower Sugarloaf was treated multiple times before field observations 

began (See Appendix 1), No Name Key received only one mosquito truck spray mission 

in the 2015 spray season. I conducted an additional analysis for observations on the No 

Name Key population before and after the spray mission to test for differences in flower 

visitation and fruit set after only one application (Figure 5). Flower visitation rates were 

analyzed with a Mann-Whitney U test, while fruit set was analyzed with a Chi-squared 

test in a 2x2 contingency table. 

  

Results 

Chamaecrista lineata var. keyensis 

Because of the recent critical habitat designation for the endangered Bartram’s 

Scrub Hairstreak Butterfly (Strymon acis bartrami) in late 2014 (USFWS 2014), 

FKMCD did not apply adulticides near any roads adjacent to pine rockland habitat where 

Chamaecrista lineata var. keyensis was directly observed. The critical habitat designation 

for the endangered butterfly includes all pine rockland within National Key Deer Refuge 

where its sole larval host, Croton linearis, can potentially occur (USFWS 2014). Studies 

in the Florida Keys prior to the federal listing of Bartram’s Scrub Hairstreak indicated 

that drift from mosquito insecticides are detrimental to the recovery of the imperiled 

butterflies (Eliazar & Emmel 1991; Salvato 2001; Hoang et al. 2011; Bargar 2012; 

USFWS 2014). Because of these studies, critical habitat for Bartram’s Scrub Hairstreak 

includes ‘no spray’ buffer zones in areas occupied by the endangered butterfly (Figure 2). 
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In addition, adulticide applications are limited in areas where Bartram’s scrub-hairstreak 

has not been observed but Croton linearis may occur (unoccupied habitat). Unoccupied 

critical-designated habitat buffers (Figure 2) limit mosquito insecticide spray to once 

every 30 days when mosquito landing rates are ‘very high’ (personal comm. with 

FKMCD). Regulations also restrict aerial adulticide applications on Big Pine Key to once 

yearly in the case of emergency situations (personal comm. with FKMCD). This critical 

habitat coincides with observed occurrences of Chamaecrista lineata var. keyensis 

throughout C. lineata’s range.  

Because FKMCD spray locations and scheduling of spray missions are sporadic, 

occur with little notice, and spray routes through critical habitat included recent 

regulations, times and locations for spray activity were not predictable. I conducted 

flower visitation and fruit set observations at multiple potential locations on Big Pine Key 

(Figure 2) every two weeks, however, the only spray activity that occurred near sub-

populations of C. lineata, was in Whispering Pines subdivision over 350 meters from 

critical habitat and C. lineata occurrences. I observed flower visitors and fruit set after 

three of the eight spray applications that occurred in this neighborhood (Appendix 1).  

There was no significant difference in fruit set between areas historically not sprayed for 

mosquitos and the ‘Critical Habitat’ > 350 meters from activity. Because truck spray 

routes began in the adjacent neighborhood before initial sampling observations took 

place, before and after measures could not be collected. The decrease, although not 

significant, in fruit set (p-value = 0.082) and flower visitation rates between control and 

critical habitat is likely attributed to variation in habitat quality between sites from lack of 

prescribed fire (i.e., canopy closure), and not necessarily from insecticide drift.  Although 
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not quantified, plants in fire maintained sites and along roadsides had more flowers and 

less foliage than plants at overgrown sites, which may also affect the rate of flower 

visitation and fruit set. Before after impact studies, multiple treatment sites with similar 

distances from spray source, caged pollinator experiments, and/or drift residue collections 

within pine rockland in the Lower Keys may provide further information on any potential 

effects of insecticides within buffer zones for critical habitat.  

 

 

Linum arenicola 

Mosquito Spray and Flower Visitation Rates 

  I used visitation rates to open flowers as a proxy to measure changes in pollinator 

abundance following mosquito insecticide spray (Table 2). Following the BACI design, 

flower visitation rates were calculated simultaneously at control and treatment groups 

before the mosquito spray season (n=4, n=3) and after insecticide applications (n=3, n=4) 

in the middle of the spray season. There was little difference in visitation rates over time 

at control sites (p = .205), indicating consistency in visitation rates to open flowers at 

control sites for all observations June - August 2015 and April - May 2016, after and 

before the mosquito spray season, respectively. There was a difference in flower 

visitation rates between treatment and control sites before the mosquito spray season 

began (p = .04), indicating some variation in pollinator abundance between sites before 

spray seasons (Figure 6).  However, visitation rates to flowers open after an insecticide 

spray was substantially lower in flowers exposed to ambient mosquito spray than flowers 
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open at unsprayed areas during the same time period (p < 0.0001) and flowers at the 

same treatment site before the mosquito spray season (p < 0.001; Figure 6).  

 

Groups Time Interval 
# of 

Flowers 
Time (min) 

Flower 

Visitation 

Rates 

Control After Spray 2015 72 210  .0284 

Control Before Spray 2016 169 314 .0227 

Treatment After Spray 2015 67 155 .0109 

Treatment Before Spray 2016 72 160 .0016 

Table 2. Summary of Flower Visitation Rates to Linum arenicola and total observation 

times for control sites at Big Pine Key and the treatment site on Lower Sugarloaf after 

multiple spray missions during mosquito spray season (July – August 2015) and before the start 

of mosquito spray season (late March – early May 2016). 

 

 
Figure 6. Pollinator Visitation Rates (no. visits/open flower/min) to Linum arenicola 

populations at control sites (Big Pine Key) and the treatment site (Lower Sugarloaf Key) after 

multiple seasonal spray missions (July – August 2015) and before the start of mosquito spray 

season (late March – early May 2016). Means with different letters are significantly different 

(Mann-Whitney U, p < .05) 
 

a

c

a

b

0

0.01

0.02

0.03

0.04

Control Sites Treatment Site

F
lo

w
er

 V
is

it
at

io
n
 R

at
e

After Spray Season

Summer 2015

Before Spray Season

Spring 2016



 

41  

  

Visitors to L. arenicola during this study consisted of an array of small and 

medium sized bees in the Lower Florida Keys, including several species of Sweat Bees 

(Tribes Augochlorini and Halictini), Megachile georgica, Anthidiellum notatum 

ruimaculatum (Megachilidae), and flower flies of the genus Ocyptamus (Syrphidae). 

Occasionally, small butterflies and skippers visited flowers, but they were not consistent 

and visited for very short durations (1sec. ± 1).  

 

Breeding system of Linum arenicola 

   Flower manipulation experiments to prevent flower visitors conducted in the 

summer of 2015 indicate that Linum arenicola is self-compatible and can self-pollinate in 

the absence of flower visitors. Approximately 74% of flowers enclosed in mesh bags 

produced fruit (n = 57), indicating a high degree of automatic self-pollination. However, 

self-pollination is facultative in L. arenicola. When flowers are visited and pollen is 

deposited on the stigma, the whole corolla abscises as a unit. If pollen is not deposited by 

the end of the flowering period (between 1200 and 1500h of the same day), the flower 

senesces, and the corolla matts up and twists the filaments, causing the anthers to come 

into contact with the stigma and deposit self-pollen (personal observations). The senesced 

petals usually turn white and can remain matted for several days. It is also likely that 

wind or rain may facilitate mechanical pollination.  

Open flowers ‘exposed’ to potential visitors may have had increased fruit set by 

increasing the possibility of pollen movement between or within flowers. Bagged flowers 

that prevented flower visitors had a significantly lower proportion fruit set than flowers 

open under natural conditions (p < 0.01, X2 = 8.025, df =1; Figure 7). Interestingly, fruit 
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set proportion in bagged flowers did not significantly differ from mean proportion of 

flowers open at treatment sites following a mosquito insecticide application (p > .05, X2 = 

1.72, df =1). Observations and exclusion trials are limited means of understanding the 

breeding system. Further controlled studies on the breeding system are necessary to 

elucidate the mechanisms for self-pollination, as well as to understand how much cross-

pollination takes place under non-sprayed conditions. However, for the importance of 

this study, my exclusion experiments demonstrated that flowers will set fruit without 

visitation, and access to flower visitors increase fruit set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Manipulation experiments on Linum arenicola flowers comparing fruit set with 

‘exposed’ open flowers and ‘bagged’ open flowers to prevent flower visitation. Means 

with different letters are significantly different (Chi-square, p < .01) 
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Linum arenicola 

Mosquito Insecticide Spray and Proportion Fruit Set  

 

To determine if mosquito insecticides have an immediate indirect effect on Linum 

arenicola, a self-pollinating species, I measured and compared proportion fruit set at 

control sites on Big Pine Key and the treatment site on Lower Sugarloaf Key before 

initiation of the mosquito spray season and after multiple insecticide applications in the 

middle of the spray season. Sample replicates for the control group before the onset of 

the first mosquito spray application (n=3) were not significantly different from each other 

(p = 0.738, X2 =0.607), nor were the sample replicates (n=3) for observations that 

occurred after mosquito spray application dates (p = 0.914, X2 = 0.012); therefore, 

samples were pooled for observations occurring before spray treatments and for 

observations occurring after spray dates. Sample replicates were also pooled for 

treatment sites before the spray season (p = 0.950, X2 =0.102) and for replicates after the 

spray season (p = 0.861).  
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Figure 8. Mean Proportion Fruit Set for Linum arenicola populations at control sites (Big Pine 

Key) and the treatment site (Lower Sugarloaf Key) after multiple seasonal spray missions (July 

– August 2015) and before the start of mosquito spray season (late March – early May 2016). 

Means with different letters are significantly different (Chi-square, p < .05) 
 

Fruit set proportions did not differ over time under non-spray conditions, but did 

differ over time at the sprayed location (Figure 8).  Proportion fruit set between the 

treatment and control group before the spray season was not significantly different, 

indicating little difference in fruit set between sites under non-sprayed conditions. Fruit 

set was higher at non-sprayed sites than at treatment sites after multiple insecticide 

sprays, but the difference was not significant.  However, within the treatment site, fruit 

set was significantly lower after exposure to mosquito spray than before the spray season 

(p < .05). Considering the high degree of automatic self-pollination in Linum arenicola 

without flower visitation (Figure 7), any reduction in fruit set after mosquito insecticide 

spray may be substantial for this species. 
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Pentalinon luteum 

Mosquito Insecticide Spray and Flower Visitation Rates 

As in Linum arenicola, flower visitation rates to Pentalinon luteum were used as a 

proxy to compare pollinator abundance after insecticide applications in areas treated with 

mosquito insecticides and areas that are not treated. Because seasonal flower initiation in 

P. luteum began after the mosquito spray season for this study, flower visit observations 

included simultaneous measurements at the Big Pine Key control sites and the Lower 

Sugarloaf Key treatment site (Figures 3 & 4) after multiple spray applications for the 

2015 mosquito spray season (Appendix 1).  

There was little variation in visitation rates to P. luteum within control sites, 

indicating consistency in visitation rates throughout the sampling period. Visitation rates 

were significantly lower to P. luteum flowers open after insecticide spray applications at 

treatment sites than visitation rates to flowers open at the same time at untreated sites 

(Figure 9). For the population at the treatment site, there was a significant increase in 

visitation rates 5 to 10 weeks after the spray season concluded.  Although there was an 

increase at the treatment site in flower visitation rates between spray missions when 

compared to visitation rates immediately following an insecticide spray, it was still 

substantially lower still than the visitation rates at the control sites.  Table 3 provides a 

summary of flower visitation rates to Pentalinon lutem at all sites and observations 

periods. 
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Figure 9.  Flower Visitation Rates (no. visits/open flower/min) to Pentalinon luteum  

populations at control sites (Big Pine Key) and the treatment site (Lower Sugarloaf Key) after 

multiple seasonal spray missions (July – October 2015). Means with different letters are 

significantly different (Mann-Whitney U, p < .05) 

 

 

 

Groups Time Interval 
# of 

Flowers 
Time (min) 

Flower 

Visitation 

Rates 

Control After Spray 2015 72 175 .0860 

Treatment After Spray 2015 61 105 .0010 

Treatment >14days after Spray (2015) 72 160 .0063 

No Name Key Day Before Spray 9 85 .0212 

No Name Key After One Spray 13 50 .0123 

Table 3. Summary of flower visitation rates (no. visits/open flower/min) to Pentalinon 

luteum and observation times. Control sites at Big Pine and treatment site on Lower 

Sugarloaf included multiple spray missions during mosquito spray season (July – August 

2015). Flower visitation rates on No Name Key the day before and the day after the one 

insecticide spray mission in 2015 were included in a separate analysis. 

 

In my study, P. luteum was visited primarily by skippers, butterflies, and long-

tounged bees, including Euglossa dilemma (Tribe Euglossini), a potentially invasive 
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green orchid bee from Mexico and Central and South America (Liu & Pemberton 2009). 

E. dilemma was not previously documented in the Lower Keys, although its presence on 

the mainland has been known since 2003 (Skov & Wiley 2005), likely indicating recent 

migration to the southernmost tip of Florida. This long-tonged bee was the primary 

flower visitor during observations for this study. Pollinator efficiency of the orchid bee to 

P. luteum is unknown, but this species has also been documented to visit closely related 

plant species with similar shaped flowers, such as Allamanda neriifolia, a horticultural 

plant common in South Florida (Pemberton and Wheeler 2006).  

 

Pentalinon luteum 

Mosquito Insecticide Spray and Fruit Set 

  Comparison of proportion fruit set between treated and untreated sites lets me 

measure if ambient mosquito insecticide spray had an indirect effect on plant 

reproduction. Because Pentalinon luteum is a self-incompatible species (Koptur 

unpublished data), reduced flower visitation will likely result in pollen limitation and a 

reduction in reproductive output. Simultaneous measurements were taken for populations 

at sites that were treated and untreated immediately following an insecticide application 

for three spray replicates. While there was no significant difference in proportion fruit set 

at control sites over the sampling period, there was a significant difference in fruit set 

between the Lower Sugarloaf treatment site and the Big Pine Key control sites at each 

replicate spray treatment (p < 0.01; Figure10).  
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Figure 10.  Proportion fruit set for Pentalinon luteum at Big Pine Key control sites and 

Lower Sugarloaf Key treatments sites following insecticide spray and 14 days after spray 

activity. Means with different letters are significantly different (Chi-square, p < .05) 

 

 

Additionally, observations were taken at the two-week time interval between 

aerial spray 1 and truck spray 2 for the sampling period. Chi-square comparisons between 

proportion fruit set in the treatment population immediately following insecticide spray, 

observations two weeks after spray at sprayed sites, and proportion fruit set 

simultaneously taken at control sites, produced a 3x2 contingency table, in which 

adjusted residuals were used for post-hoc analysis between groups with Bonferonni 

corrected p-values for each variable contributing to the overall analysis (Beasley & 

Schumacker 1995). Results of the Chi-squared analysis indicate a significantly higher 

proportion fruit set in P. luteum three weeks after an insecticide application (Figure 10) 

compared to flowers open following an insecticide application. In addition, there was no 

significant difference in fruit set between the control group and flowers open two weeks 
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after a spray activity (Figure 10). Additional sampling dates at various extended intervals 

between spray are necessary to strengthen this analysis, but results could suggest 

recovery of indirect effects (i.e., increase in reproduction resulting from increased 

foraging behavior) of mosquito insecticide spray on fruit production after three weeks 

between sprays. 

 

Flower visitation and Fruit Set Before and After One Insecticide Spray 

  Studies indicate that pesticide bioaccumulation may influence the degree of 

lethality to non-target invertebrates. Multiple insecticide treatments within the spray 

season may result in bioaccumulation of pesticides, in which pollinators experience 

lethality more readily than when exposed to one or infrequent treatments in the spray 

season (Brittain 2010, Zhong et al. 2010). I analyzed flower visitation rates and 

proportion fruit set for Pentalinon luteum at No Name Key to further test if only one 

insecticide treatment in a season can have an effect on pollinators. No Name Key was 

treated with insecticides only once during the 2015 mosquito control season, therefore, I 

monitored open flowers the day before and flowers open the day after an evening truck 

spray. Although flower visitation and fruit set was significantly lower for Pentalinon 

luteum after multiple insecticide sprays at Lower Sugarloaf Key (Figures 9 & 10), one 

spray treatment did not have a significant effect on flower visitation rates (Figure 11) or 

proportion fruit set (Figure 12) between observations before spray and after spray 

activity.  
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Figure 11. Flower visitation rates to open flowers of Pentalinon luteum on No Name Key, 

the day before, the day after, and 10 weeks after a mosquito insecticide application on 

this site.  Means with different letters are significantly different (Chi-square, p < .05) 
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Figure 12. Proportion fruit set of open flowers of Pentalinon luteum on No Name Key, 

the day before and the day after a mosquito insecticide application on this site.  Only one 

application occurred on No Name Key for the spray season. Means with different letters are 

significantly different (Chi-square, p < .05) 

 

 

 

 

 

Discussion 

Understanding the effects of mosquito spray on obligate relationships between 

pollinators and plants may provide insight to management practices to increase overall 

success of pollination, thereby preventing extinction of imperiled plants. Knowledge of 

the reproductive strategies for plant species of concern is imperative to determine if 

insecticide spray can have a potential indirect effect on reproduction. Pollinator exclusion 

experiments are limited measures of understanding the breeding system, but can answer 
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two important questions for determining if mosquito insecticides have an indirect effect 

on fruit set: is fruit set dependent on flower visitation?, and if a species can self-pollinate, 

does visitation enhance fruit set? For species that automatically self-pollinate, decreased 

pollinator visitation may not have an apparent effect on fruit set. Linum arenicola readily 

produced fruit when flowers were ‘bagged’ (i.e., pollinators were excluded), however 

reproductive output was higher for plants with flowers accessible to pollinators in 

untreated areas. Despite its ability to self-pollinate in absence of pollinators, L. arenicola 

reproduction was negatively affected by mosquito spray applications. Further 

investigation on the breeding system of L. arenicola is necessary to determine long-term 

effects of self-pollination when flower visitation rates are decreased from ambient broad-

spectrum insecticides. Although studies suggest that flowers of ruderal herbaceous 

species may be visited less frequently than plants with more specialized pollination 

systems. 

Direct effects of mosquito insecticides were apparent for plant species exposed to 

ambient mosquito spray. Visitation rates to flowers of L. arenicola and P. luteum were 

significantly lower after insecticide applications than visitation rates to flowers in 

unsprayed areas. For L. arenicola, there was a lower visitation rate at the treatment site 

before the spray season as compared to simultaneous observations at the control sites, 

however, this decrease was only slight when compared to the decrease in visitation 

between sites after mosquito spray, and for before and after observations within the 

treatment site. It is possible that there is natural variation in pollinator abundance between 

islands, or that pollinator populations are unable to fully recover between mosquito spray 

seasons on Lower Sugarloaf Key. For flowering plants that benefit from pollinator 
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visitation, and particularly species like P. luteum that will not produce fruit when 

unvisited, decreased visitation may indirectly affect reproduction by decreasing pollen 

deposition. Although flower visitation may rates may rebound after a few weeks between 

spray, as shown for P. luteum, for sites that are sprayed frequently or for flowering plants 

with short flowering periods, decreased flower visitation may have very strong negative 

effects on plant fitness.  

Self-incompatible species at the wild-land urban interface are particularly 

vulnerable to broad-spectrum mosquito insecticides, as evident in Pentalinon luteum. 

When flower visitation rates were lower after a mosquito insecticide spray, fruit set rates 

were also significantly lower. Though P. luteum is not a rare species, per se, it can be a 

good model indicator of potential consequences of ambient mosquito insecticide on self-

incompatible species.  

As current agreements between USFWS and Florida Keys Mosquito Control 

District (FKMCD) stand, Chamaecrista lineata var. keyensis only occurs in critical 

habitat and may be buffered from any apparent negative effects to reproduction from 

mosquito insecticide drift. FKMCD did not perform any aerial or truck adulticide 

applications within 300 meters of known viable C. lineata populations in 2015. The 

population in the ‘no spray’ zone adjacent to Whispering Pines Subdivision was shown to 

not have a significantly different fruit set value from other populations far from potential 

drift. Lack of truck adulticide missions in unoccupied critical habitat could have been a 

result of the unusual drought in the early summer, which decreased FKMCD spray 

activity throughout the Lower Keys. However, further investigation is needed, as 

adulticide regimes seasonally vary and can depend on health risks or population 
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explosions of disease vector and nuisance mosquitos. In addition, USFWS issues permits 

to FKMCD for mosquito abatement routes and frequency on a yearly bases, so these 

variable may change over time. A multi-season study could capture yearly differences. 

From this one season study, it is apparent that 2015 critical habitat regulations for 

Bartram’s scrub-hairstreak buffer truck ULV insecticide drift from Chamaecrista lineata 

var. keyensis populations and its pollinator guild by restricting mosquito insecticide 

activity on pine rockland habitat. 

As new diseases pose threats to human health in south Florida, the pressure to 

control mosquito vectors by chemical means will likely increase. However, alternative 

methods (such as larvicides, genetically modified mosquitos, and biocontrol 

management) may prove beneficial to the continued cooperation between plants and 

pollinators, while providing relief from nuisance and potential disease vector mosquitos.   
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Appendix  

 

Focal species: Pentalinon luteum       

 Round 1 Round 2 Round 3  

Site 

Truck 

spray 

Aerial 

Spray Total 

Truck 

Spray 

Aerial 

Spray Total 

Truck 

Spray 

Aerial 

Spray Total 

Site 

Total 

2015* 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

10 11 4 15 12 4 16 12 5 17 29 

11 0 0 0 1 0 1 N/A N/A N/A 1 

           

  

 

         

Focal species: Linum arenicola       

 Round 1  Round 2  Round 3   

Site 

Truck 

spray 

Aerial 

Spray Total 

Truck 

Spray 

Aerial 

Spray Total 

Truck 

Spray 

Aerial 

Spray Total 

Site 

Total 

2015* 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

10 11 4 15 12 4 16 12 5 17 29 

                 

    

 

       

Focal species: Chamaecrista lineata var. keyensis 
    

 Round 1  Round 2  Round 3   

Site 

Truck 

spray 

Aerial 

Spray Total 

Truck 

Spray 

Aerial 

Spray Total 

Truck 

Spray 

Aerial 

Spray Total 

Site 

Total 

2015* 

1 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

5 1 0 1 2 0 2 3 0 3 8 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

A1. The number of insecticide spray missions (truck, aerial, and total) that occurred in 2015 at 

each site for each focal species before a sampling round took place. The bold number in each 

round is the application type (truck or aerial) that occurred immediately before that sampling 

round. * Site Total for 2015 are the number of insecticide mission for all of the 2015 mosquito 

spray season: 5/5/2015 – 10/7/2015. Sampling efforts occurred in the middle of the mosquito 

spray season when peak flowering coincided with peak spray season. 
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