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ABSTRACT OF THE DISSERTATION
DOPING AS A POSSIBLE MEANS TO CREATE SUPERCONDUCTIVITY IN
GRAPHENE
by
Kiar J. Holland
Florida International University, 2016
Miami, Florida
Professor Grover Larkins, Major Professor
The possibility of creating superconductivity in Highly Oriented Pyrolytic Graphite
(HOPG) by means of doping was investigated. Bulk HOPG samples were doped with
phosphorous using either ion-implantation or by Chemical Vapor Deposition growth with
phosphine in the gas mixture. The methods for testing the graphene samples, once doped,
were done by performing R vs. T measurements, and determining via observation
suppressed superconductive characteristics signaling the presence of the Meissner Effect
in a strong applied magnetic field. Before doping, the resistance vs. temperature (R vs. T)
characteristic of the HOPG was measured. The R vs. T characteristic was again measured
after doping, and for surface multilayers of graphene exfoliated from the post doped bulk
sample. A 100 to 350 mT magnetic field was supplied, and the R vs. T characteristic was
re-measured on a number of samples.
Phosphorous-implanted HOPG samples exhibit deviations from the expected rise in

resistance as the temperature is reduced to some point above 100 K. The application of a
modest magnetic field reverses this trend. A step in resistance at a temperature of

approximately 50-60 K in all of the samples is clearly observed, as well as a second step



at 100-120 K, a third at a temperature range of 150-180 K and a fourth from about 200-
240 K. A response consistent with the presence of magnetic field flux pancake vortices in
phosphorous implanted HOPG and in phosphorous-doped exfoliated multilayer graphene
has been observed. The lack of zero resistance at low temperatures is also consistent with
pancake vortex behaviour in the flux-flow regime. The presence of magnetic vortices

requires, and is direct evidence of superconductivity.
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I.  INTRODUCTION

Electrical resistance causes a loss of power from point A to point B, due to the
effects of Joule heating [1]. This conversion of electrical power leads to heat dissipation.
As the temperature increases, the electrical resistance increases further [2]-[14], which can
make the device unreliable, inefficient, slow, and increases the probability of premature
failure [15]-[41]. In order to offset electrical (resistive) losses in power transmission,

utility companies generate more power than is delivered to the end user [1].

Superconductivity is a phenomenon that typically appears at very low temperatures.
A superconductor exhibits zero resistance while also expelling a magnetic field [42]. A
room temperature superconductive material could facilitate the implementation of many

power intensive systems (in MRIs etc.) [43], [44].

A room temperature superconductor would revolutionize technology; not only in the
field of electrical and electronic engineering; but also in the extended capabilities
attainable and new levels of freedom in the design and uses of electronic devices.
Computers would work faster, cooler and more reliably [15]-[41]. Mobile devices would
have increased battery life. The cost of electricity generation and transmission would

lower, and the list goes on [1].

To date, there have not been any room temperature superconducting materials found
[45]-[52]. This is why the search for new types of superconductors with higher critical

temperatures is critical.

Carbon is known to possess a large number of allotropes, exhibiting interesting and

unique mechanical, chemical and electrical properties [91]. Recently, quite a number of



researchers have turned their attention to graphene [92]-[108], [162], a two dimensional
carbon structure that could be used as a test object to study properties necessary for
superconductivity [161], [163].

An economical method of obtaining graphene was discovered by Andre Geim and
Konstantin Novoselov in 2004 when they pulled ordinary adhesive tape off the surface of
graphite [53], [54], producing a monolayer of carbon atoms adhered to the tape. Through
their work, they discovered that this single carbon layer was not only the thinnest known
material, but also the strongest [53], [54], [111]. The high conductivity and translucent
properties of graphene sparked the interest of the photovoltaic industry and touchscreen
manufactures, among many other groups. Geim and Novoselov went on to win the Nobel

Prize in Physics in 2010 for their work [53], [54].

Doping graphene, due to its close coupling or strong scattering by plasmons as well
as phonons has led many to the belief that the Critical Temperature of a superconductor
can be raised higher than previously observed in other materials [72]-[78]. More
specifically, it has also been suggested that this can be done by raising the density of

conduction electrons for each graphene sheet [58]-[66].

Highly Oriented Pyrolytic Graphite (HOPG) was used in preliminary studies of this
work, as interlayer coupling in it is weak [109], [110]. This makes it provide a good
approximation for graphene. The robust mechanical nature of HOPG, along with its ease
of use made it the preferred starting material. An electrical response suggestive of
superconductivity in phosphorous (electron donor) implanted Highly Oriented Pyrolytic
Graphite was observed. The ultimate critical temperature in this system appeared to be in

excess of 100 K. It was noted that the critical temperature may be considerably higher if



damage incurred during the doping process was minimized. This further positioned
HOPG as the starting material of choice.

The phenomenon described in this work strongly suggests the presence of
superconductivity, and as a result, the decision was made to proceed based on the
possibility that superconductivity is present. However, it should be noted that it is not
possible to rule out some new and previously undiscovered physical manifestation of the
extreme anisotropy and two dimensionality of the material. Due to the results of this

work, no viable, established alternative to superconductivity can be proposed at this time.

II. PROBLEM STATEMENT

Prior to our work, there has never, to our knowledge, been an exhaustive,
systematic attempt to dope graphene to create a high temperature superconductor.
Phosphorus doped graphene created by Plasma Enhanced Chemical Vapor Deposition
has not been created or studied and should have unique characteristics. A safe, custom
system, built in-house, will need to be created to achieve phosphine Plasma Enhanced
Chemical Vapor Deposition. We will need to build a custom cryogenic system for
measuring graphene and HOPG at near absolute zero while also going to high
temperatures so that we do not miss an above room temperature transition. A magnetic
field generator will need to be built for the system so that the sample being tested is not
disturbed when the physical apparatus is applied. We will need to develop custom
software to orchestrate automation from highly accurate voltage measurements, control
current generation, compressor, temperature monitoring and temperature controller. A

magnetic susceptometer will need to be constructed, capable of near absolute zero



temperatures while also being sensitive enough to detect slight changes in the magnetic

field of a thin film.

Hypothesis:

Based on our previous work of doping HOPG with boron and phosphorus
dopants, we determined that doping using phosphorus and other electron
donors could create a high temperature superconductor.

Graphene doped with electron donors should create flux vortices and
become a type Il superconductor.

Graphene doped using plasma enhanced Chemical Vapor Deposition will
minimize damage to the lattice and allow longer coherence lengths. This
will improve its superconductivity but create flux flow which will add to the
resistance.

Multilayer graphene doped using ion implantation will create columnar
defects that will pin the flux vortices and prevent them from moving. This
will create pancake vortices and lower the resistance when the graphene is
superconducting.

The mixed state region will have a very wide transition phase since the
anisotropy of graphene is much higher than that of known type Il
superconductors.

We expect to see a Hall Effect sign reversal since similar type Il

superconductors see this.



1. BACKGROUND

In doped graphene, it has previously been hypothesized [72]-[74], [76] that the
close coupling or strong scattering of electrons by both phonons and plasmons indicates a
potential for superconductivity at considerably higher temperatures than previously
observed [112]-[136]. Kopelevich et al. [57]-[67] reported a few cases of suspected
superconductivity in Highly Oriented Pyrolytic Graphite, however the results were
inconclusive.

As far as it is known, our prior work [72] is the first in which a systematic attempt
was made to substitutionally dope HOPG/graphene/graphite into a superconductive state.
Later work by Scheike et. al. [140]-[159] and Ballestar [160] also provided hints of
possible superconductivity in doped graphite. The work described herein details the
efforts in attempting to confirm or disprove these results as originating from

superconductivity.

A. Highly Oriented Pyrolytic Graphite (HOPG)

The focus on the use Highly Oriented Pyrolytic Graphite (HOPG) was due to the
difficulties involved with doping graphene, and concerns with how to physically handle
graphene in a testing environment without damaging samples. HOPG is easily handled
and is structurally a “stack” of graphene sheets [55].

HOPG is available in four different grades of quality; with ZYA being the highest
and ZYH being the lowest [79]-[82]. The lower the mosaic spread, the lower the angle of

deviation of the grain boundaries from the perpendicular axis and hence, a more highly



ordered HOPG sample [83], [84]. Thi means that there will also be a larger grain size for

higher order HOPG as well [84].

Table 1. HOPG Grades. Data Collected and Confirmed from [79]-[84].

Mosaic Spread L
Grade Chip size, mm
Value Accuracy
ZYA 0.4° +0.1°
ZYB 0.8° 10.2°
10x10
ZYD 1.5° +0.3°
ZYH 3.5° +0.5°

While this would affect doping, using lower quality- lower cost ZYH grades for
early trials of different doping techniques is more economical. Higher grade HOPG can
be used for techniques that prove to be promising in the lower grade ZYH. Furthermore, a
slightly less oriented HOPG sample may have beneficial doping properties due to easier

implantation in defect areas.



Figure 1: A HOPG sample with scratch used to indicate the bottom side.

B. Type 1 Superconductivity

On July 10, 1908, helium was successfully liquefied by a Dutch physicist named
Heike Kamerling Onnes by using several precooling stages as well as the Hampson-
Linde cycle [164]. This discovery allowed for testing temperatures that could not be
achieved before. By reducing the pressure, he was able to go below helium’s boiling
point of 4.2 K for a final temperature of 1.5 K [164],[165]. Three years later in 1911, he
found that solid mercury wire submerged in liquid helium had a resistance that abruptly
dropped to zero at 4.2 K [164],[165]. This was the first discovery of superconductivity
[164],[165]. Later, many other single element type I superconductors were discovered, as

seen in Table 2.



Table 2. Type 1 Superconductors. Data from [166].

Material Te (K) Slﬁgﬁ?e Material Te (K) shitﬂﬁere
Lead (Pb) 7.196 FCC | |Zinc(Zn) 0.85 HEX
Lanthanum (La) 4.88 HEX Osmium (Os) 0.66 HEX
Tantalum (Ta) 4.47 BCC Zirconium (Zr) 0.61 HEX
Mercury (Hg) 4.15 RHL Americium (Am) |0.60 HEX
Tin (Sn) 3.72 TET Cadmium (Cd) |0.517 HEX
Indium (In) 3.41 TET Ruthenium (Ru) |0.49 HEX
Palladium (Pd) 33 ) Titanium (Ti) 0.40 HEX
Chromium (Cr) 3 _ Uranium (U) 0.20 ORC
Thallium (TI) 2.38 HEx | Hafnium(Hf)  0.128 HEX
Rhenium (Re) 1.697 HEX Iridium (Ir) 0.1125 FCC
Protactinium (Pa) |1.40 TeTr | Beryllium(Be) 0.023 HEX
Thorium (Th) 1.38 Fcc | |Tungsten (W)  0.0154 BCC
Aluminum (Al) 1.175 FCC Platinum (Pt) 0.0019 -
Gallium (Ga) 1.083 ORC Lithium (Li) 0.0004 BCC

Molybdenum (Mo) 0.915 BCC Rhodium (Rh) 0.000325 | FCC

It can be seen that excellent conductors such as copper, silver and gold are not
superconductors [166]. This is because they are in a tightly packed FCC lattice structure
that creates damping of the electron phonon interaction [166]. The FCC lattice
superconductors that appear on the list are able to create adequate lattice vibrations
because they have a low modulus of elasticity which promotes phonon-mediated electron

coupling [166].



C. Meissner Effect

In 1933, German physicists Walther Meissner and Robert Ochsenfeld discovered
that a superconductor would expel its magnetic field when transitioning to its
superconducting state [167]-[171]. This phenomenon that would later be known as the
Meissner Effect, means that superconductors are perfect diamagnets in addition to being
a perfect conductors [167]-[171]. The superconductor will exclude magnetic fields that
would have otherwise flowed through it, by means of current loops to cancel these fields
out (screening currents) [167]-[171]. However, this cancelling breaks down when the
applied magnetic field crosses a critical value H. [167]. After crossing the critical value,
superconductivity will completely cease in type | superconductors [168],[169]. In type 1l
superconductors, after crossing the critical value, there will be a mixed state (also known
as a vortex state) where the magnetic flux will increasingly penetrate the material even
though there will remain to be no resistance to electric current [170],[171]. There is then
a second critical applied field strength where superconductivity will completely cease

[170],[171].

D. Inherent Superconductive Traits

Brothers Fritz and Heinz London showed in 1935 that the magnetic field decays
exponentially from the surface, which would later be known as the London penetration
depth [172]. Although it provided an explanation for the Meissner effect as well as
resistanceless transport through experimental observations, it did not provide microscopic
explanations [173], [174]. These microscopic explanations were given in 1957 by BCS

theory [175].



In 1956, Leon Cooper described a phenomenon where fermions (such as electrons)
can have an arbitrarily small attraction towards each other and lead the pair to have a
lower energy than the Fermi energy [174]. This shows that the fermions are paired which
became known as Cooper pairing [170], [173]-[176]. This is a unique phenomenon that
happens at low temperatures. Normally, electrons would repel each other due to each
having a negative charge as stated by Coulomb repulsion [170], [173]-[176]. At low
temperatures, the positive ions of the lattice will be attracted to the electrons enough to
move toward it and create an area of positive charge density surrounding that area in the
lattice [170], [173]-[176]. If the positive charge created is high enough, it will attract
other electrons and overcome their repulsion to each other to create a pair [170], [173]-
[176]. After this electron-phonon interaction develops a Cooper pair, the result adds the

half spin electrons to create a boson [170], [173]-[176].

In 1957, John Bardeen, Leon Cooper, and John Robert Schrieffer found that the
condensate of these Cooper pairs could explain, on a microscopic level,
superconductivity [170]. Since Cooper pairs become a boson, they can form a large
Bose-Einstein condensate with overlapping pairs [170], [173]-[176]. To break these
pairs, they would need to break all the pairs that have condensated as a whole, which
creates an oppositional barrier and is a crucial necessity for superconductors [170], [173]-
[176]. This was called BCS theory (an abbreviation of their last names) and they went on

to receive the Nobel Prize in Physics in 1972 [176].
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E. Type 2 Superconductors

In 1957, superconductors were classified into two types when Alexei Alexeyevich
Abrikosov investigated what happen in Ginzburg-Landau theory if « were large instead
of small where « is the ratio between superconducting penetration depths and coherence
length [177],[178]. Type Il superconductors are comprised mostly of metallic compounds
and alloys which can yield a higher critical temperatures T than type | superconductors
[177],[178]. The superconducting "perovskites" (metal-oxide ceramics that normally
have a ratio of 2 metal atoms to every 3 oxygen atoms) also belong to this type Il group

[177],[278].

The A15 phases are series of intermetallic compounds with the chemical formula
AzB (where A is a transition metal and B can be any element) and have a specific

structure [179]-[184].

The first time the A15 structure compound was observed was in 1931 when an
electrolytically deposited layer of tungsten was examined [179]. Several compounds of
the A15 structure were discovered in the following years including the discovery of
vanadium silicide (V3Si) which exhibited superconductivity at around 17 K in 1953

[179]-[184].

In 1954, Niobium-tin (NbsSn) was discovered to be a superconductor [185],[186].
In 1961, after several years of investigating, this compound showed that it could
superconduct with large currents and strong magnetic fields. This gave it practical

applications to be used with high-power magnets and electric machinery [185]-[194].
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Niobium and titanium (NbTi) alloy is a type Il superconductor with a critical
temperature of 10 Kelvins and a critical magnetic field of 15 Teslas [195]-[198]. In 1962,
at Atomics International, T.G. Berlincourt and R.R.Hake discovered the high critical
magnetic field and high critical supercurrent density that it processes which gives it a
critical role in the superconducting magnet industry [199]-[214]. It has been used in all
particle accelerators so far and for the vast majority of MRI systems [199]-[214]. It is a
ductile alloy with mechanical properties which make it easy to fabricate and use [199]-

[214].

The first of the oxide superconductors was created in 1973 by a DuPont researcher
named Art Sleight [178]. He found that BaPbO3; and BaBiO3 had a critical temperature
of 13 K and in the late 1970s, other metal oxides were found to be superconductors as

well [178].

The field of superconductivity changed dramatically in 1986, when J. Georg
Bednorz and K. Alex Miiller produced a material, La,CuQy4, with a critical temperature of
35 K [215]. This material is different from the previous classes of material in that it has a
complex crystal structure made from several components, based around copper oxide
units [215]. This discovery earned Bednorz and Mdiller a Nobel Prize, and was followed a
year later by the discovery, by Paul Chu and colleagues, of a superconducting ceramic,
YBa,Cu30; (often abbreviated to YBCO or 1-2-3 from the ratio of its metal atoms) [215].
This ceramic had an even higher critical temperature of around 92 K [215]. This meant

for the first time that a material exhibited superconducting behavior at temperatures
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above that of liquid nitrogen (77 K), which is much cheaper and easier to handle than

liquid helium [215].

In July 30, 1998, Scientists in Rischlikon, Switzerland succeeded in doubling the
transition temperature at which a material becomes superconducting and loses all
resistance to the transport of electrical current [216]. In a paper published in "Nature"”, a
group of scientists from IBM's Zurich Research Laboratory, the Universities of Geneva
and Neuchatel (Switzerland), as well as Antwerp (Belgium), reported the successful
incorporation of strain into the atomic lattice of a superconducting oxide film, thereby
raising the transition temperature of the oxide material from 25 to 49 Kelvin [216].
Besides having practical significance and potential for new record transition
temperatures, this finding also highlighted the role played by atomic lattice parameters in

the mechanism of superconductivity [216].

The theory of type Il superconductor and the discovery of superfluidity in helium-
3 lead Alexei Alexeyevich Abrikosov, Vitaly Ginzburg, and Anthony James Leggett to
be awarded the Nobel Prize in October 7, 2003 [216]. According to their work, vortex
lines in a superfluid are analogous to the flux lines that occur in a type Il superconductor
when it is placed in a magnetic field [216]. In rotating superfluid *He, the vortex structure

is particularly rich [216].

The work of Anthony J. Leggett was crucial for understanding the order
parameter structure in the superfluid phases of *He [216],[217]. His discovery was that

several simultaneously broken symmetries can appear in condensed matter [216],[217].
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This allowed for a deeper understanding of complex phase transitions in fields such as

liquid crystal physics, particle physics and cosmology [217].

In 2015, an article published in Nature by researchers of the Max Planck Institute
suggested that under extreme pressure, H,S transitioned to H3S and entered a
superconductive state with a transition temperature of 203 K [218]. The pressure used
was 150 gigapascals which is 1.5 million times atmospheric pressure, in a diamond anvil
cell [218]. As of 2015, this gives hydrogen sulfide the highest accepted superconducting
critical temperature [218]-[228]. By substituting a small part of sulfur with phosphorus
and using even higher pressures than what was used for the 203 K T, it has been
predicted that it may be possible to raise the critical temperature to above 0 °C and even
achieve room-temperature superconductivity [218]-[228]. Their research suggests that
other hydrogen compounds could superconduct at up to 260 K which would match up

with the original research of Ashcroft [217],[225],[226].

It is important to note that 150 gigapascals is an extremely high pressure to sustain
and work with which limits the practicality of using hydrogen sulfide in many
applications. Mercury barium calcium copper oxide (HyBa,Ca,Cu3Og) remains as the
highest transition temperature superconductor at ambient pressure that has been

confirmed by multiple independent research groups, with a T, of 133 K [229].

F. Magnetism

Examination of the volume of prior work [232]-[272] done to characterize and
model the behaviour of magnetic vortices in layered superconductors leads to the

conclusion that pancake vortices would be the preferred vortex form if this extremely
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anisotropic material (the ratio of the in-plane resistivity to the normal direction resistivity
in pure multilayer graphene is greater than 100,000:1) is superconducting [273]-[274]. A
more specific conclusion [267], is that for graphene stacks with interlayer distances of 0.2
nm and relatively long magnetic penetration depths (graphene and graphite are
diamagnetic materials with high levels of magnetic anisotropy [275], [276]) that the
interlayer coupling, if the material was superconductive with a magnetic self-pinning

attractive force between pancake vortices in layers i and j is given as follows:

2 2. : :2|a2 :
o ?s p,+|—1‘s —I—j‘S
Flr.,j,i z—/oqzﬁ-{ J (1)
where:
A=2371s (2)

A is the two dimensional (2D) thin-film screening length; 4, is the effective penetration

depth parallel to the graphene planes and s is the interlayer spacing.

Where the layers i and j are adjacent and the vortices are directly vertically aligned,

this reduces to:

A 2-2
F(z,01)~ 22
167z Z1|

(3)
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It can be seen that that the magnetic pinning force between two pancake vortices in
adjacent layers is proportional to the square of the interlayer spacing and inversely
proportional to the fourth power of the magnetic field penetration depth within the layer.

The single pancake vortex pinning energy is given by Clem [268] as:

UOE(¢0/47Z-)ZS//1§b (4)

where Agp is the in-plane penetration depth.
This gives a self-pinning characteristic temperature for a single pancake vortex in
YBa,Cuz07.x of 1200 K and vortex motion begins to be a problem at about 1/20 of that

temperature. Expressions (5) and (6) below [268] are given for YBa,Cu3O7.x:

U, /ks =1200K )

where the flux motion temperature regime is:

U, /ky)/20=60 K (6)

The inter-plane separation of graphene is 0.2 nm and that of YBa,Cu3O7.x is 1.2 nm
so if the in-plane penetration depth A4, is the same the expected temperature where flux
motion regime begins to be important for graphene would be about 10 K. This is an upper
estimate given that the measured conduction anisotropy in graphite is significantly
greater than that of YBa,Cu3O7.x. It is expected that realistic estimates for the onset

temperature for flux-flow would be much lower. Therefore, the expectation is that, even
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if the material is superconducting with Cooper pairs, the resistance, due to flux flow
effects, would be non-zero even at low temperatures and currents.

The strength of attraction of a pancake vortex to a vacancy due to implantation
damage is related to the size of the vacancy and the in-plane penetration depth that
governs the physical size of the pancake vortex. The pinning force at low temperatures
will not be significant in this highly anisotropic material unless pancake vortices, which
can be pinned to a vacancy, have numerous similar vortices pinned at vacancies in
adjacent layers. Pancake vortex “stacks” can form at these adjacent vacancies, which may
result from implantation damage. The pinning force of these stacks would be from the
summation of the vortices in the stack’s mutual magnetic and Josephson interactions
[266].

The pinning energy and the temperature required to “melt” one of these vortex
stacks are proportional. Once a stack melts, all of the vortices in the stack are free to
move and immediately contribute to resistive losses in the material. This would lead to
the expectation of upwards steps in resistance at the melting temperatures of the various
height pancake vortex stacks. Pancake vortex stacks will still form, regardless of the
presence of implantation damage; however, the probability of adjacent vacancies leading
to the formation of vertical stacks would be less in materials without columnar defects to
stack along. A doped-while-grown material would therefore be less likely to have sharp
steps as the pancake vortices would be less vertically aligned and more tilted away from
the normal to the layers (greater spread in layer-to-layer offsets).

Magnetization measurements on thin film superconductors where the penetration

depth is many times greater than the film thickness have been done by Berdiyorov [277]
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and a number of theoretical works [275]-[310] that are consistent with the experimentally
observed results exist. The results from Berdiyorov are best summarized thus: first, the
magnetization is negative and, second, the magnetization has a “valley” or quasi-
parabolic shape as a function of temperature and/or applied field. This is quite different
from what is seen for thicker, classical, samples where pancake vortices are not formed
and the applied magnetic field is expelled from the bulk of the sample.

The primary differences that thin films (where the thickness is far less than the
magnetic penetration depth) show in comparison to materials with a unity ratio of
thickness to penetration depth (in an AC susceptometer) are: (1) a smaller net signal as
the screening is smaller and (2) a broader, depressed, transition as a function of
temperature due to the field penetration and vortices [311]-[351].

In Hall effect measurements on mixed state layered superconductors with weak flux
pinning, it has been widely observed that the presence of a vortex state with mobile
vortices often leads to a sign reversal in the Hall voltage as the sample goes through the

transition [352]-[355].
G. Resistance versus Temperature

The Resistance versus Temperature measurement is one of the most basic ways to
determine the presence of superconductive properties [415]. Once the critical temperature
is passed and the sample goes into the superconducting phase, there will be a sudden drop
in resistance [42]-[52], [416].

Prior work on doped HOPG [72] showed that the sample’s resistance never went to
zero, even at low temperatures. Flux-flow resistance was identified to be the potential

reason for non-zero resistance at low temperatures [230], [231]. Flux pinning has been
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indicated as the key to reducing this flux-flow resistance in layered high critical
temperature semiconductors [230]-[270]. Consideration must also be given to the
nanometer scale thickness of the exfoliated graphene film under test, as it relates to the
magnitude of the test current used in R vs. T measurements [412]-[414], [417]-[419]. This
current must be as small as possible or it could potentially influence the results due to
either local magnetic fields or heating.

Due to the sensitivity of carrying out R vs. T measurements on thin films, numerous
data points are taken in order for an accurate result to be attained. In order to lessen the
difficulty, greater focus should be placed on the ability to detect when even a small
portion of the sample is superconducting, which will lead to much smaller steps than seen
in classical superconductors.

The four probe measurements are the industry standard for measuring
superconductors as well as semiconductors [86]-[88]. For superconductors, the collinear
probe arrangement is more popular due to its stronger signal strength at lower resistances,
as well as a lower need for the Hall Effect measurement (as with semiconductors) [86].
This helps to increase the signal to noise ratio as well as eliminating the effect of probe

resistance or contact resistance [86], [87].

Two outer probes are used to source current while two other probes placed between

them measure the voltage drop [86]-[88].
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Figure 2: Four probe measurement. Collinear setup. Picture courtesy of [89].
The resistivity is then calculated by using the following:

\Y
Po = ZaﬂST =8ap0, (7

Where ‘@’ is the thickness correction factor and s is the spacing between probes,
presumed to be equal [89]. Since graphene is extremely thin, the correction factor will be
determined by use of the plot below, and substitute it for K in the following formula,

where t is the thickness and m is the slope:

an K(Ejm ®)
S
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Figure 3: Correction factor plot. Picture courtesy of [89].

The delta mode method being implemented by the Keithley Delta Mode System

6221/2182A is displayed below:
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Figure 4: Delta Mode reading calculation. Screenshot of Keithley’s help menu in
test program.

Since the current being supplied is switching polarity but remains at the same absolute
value, the difference in potential between V1 and V2 is twice as large as the voltage
should be. The same can be said for the difference between V3 and V2. Therefore, we

arrive at the expression:
V, =negative _edge =(V, -V, )/ 2 (9)
V, = positive_edge =(V, -V, )/2 (10)

The final voltage reading would be the average of these two readings:
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V, =V, +Vv,)/2 (11)

V, =[(v, -V,)/ 2+, -V,)/2]/2 (12)

V, =[v, -V,)/2+(V,-V,)]/4 (13)

This method is beneficial as it eliminates linear thermoelectric drift. The drift only

has to be linear with respect to the 3 points being measured, as seen in the figure below.

(Vs +V, 4 2dV,) r___________...

(V) +Vy

—

¥

Voltage
(v)

e\

i

(Vy 4V +dVy)

Time —>»

Figure 5: Delta Mode Cancelling Thermoelectric drift.

Letting V: represent the offset caused by the thermoelectric drift and dV;
represent the change in the offset of thermoelectric drift since the initial V; (to simulate

drift going upwards or downwards):

V, =[V, +V,)-(V, +V, +aV,)]/2 (14)

vV, =V, -V, —dv,)/2 (15)
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V, =[(V, +V, +2dV,)-(V, +V, +dV,)]/ 2 (16)

Vv, =(V, +2dVv, -V, —dv,)/ 2 (17)

V¢ is removed in expanding V, and Vy,. Once Vs is calculated, we see that all the dV; s are

cancelled:

V, =(V, +V,)/2 (18)

V, =V, =V, +dV,)/2+(V, +2dV, -V, —dV,)/2]/ 2 (19)
V=V, -V, —aV, +V, +2dV, -V, —dV, )/ 4 (20)

V, =[v, -V,)+(V, -V,)]/4 (21)

This final value for Vs represents a single reading that has removed any linear

thermoelectric drift that occurred between V; and Vs.

H. Magnetic Field Measurement

To detect the Meissner Effect, a susceptometer (also called a magnetometer) is used

to detect the shift in magnetism.
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Figure 6: Schematic of magnetometer. Picture courtesy of [90].

M represents the material, s is the coil that is around the material, r is the reference
coil, ¢ is the compensation for compensation of imbalance between Vs and V, with no
sample present. p is outer coil generating the magnetic field and G is the current going to

the external coil [90].
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When V, and V; are balanced, (no magnetic field change) V4 should be zero,
otherwise the material is causing an imbalance, repelling the magnetic field. To quench
the superconducting properties, a strong magnetic field is applied to the sample [387]-

[411].

Iv. EXPERIMENTAL

All samples used in this work were HOPG ZYH specimens with a mosaic spread of
3.5° + 1.5°, grain size of 30-40 nm and density of 2.255 - 2.265 g/cm®. Prior to the first
use, 10 to 15 monatomic layers were removed from every sample by exfoliation to ensure
a pristine layer for initial testing. More than 20 bulk HOPG samples and over 35
exfoliated thin graphite layers, — both doped and non-doped, — were tested in this work.
For all samples, preparation proceeded as follows:

All samples were scratched on one side, to indicate the bottom of the sample.
Although the HOPG samples have two working sides, it was important to keep track of
which side was the bottom after the single sided cleaning and doping process. Before
doping, regardless of whether doping was by implantation or through Chemical Vapor
Deposition growth, the sample was placed into a closed cycle refrigeration system and

the Resistance vs. Temperature (R vs. T) characteristic of the HOPG was measured.

A. Exoliation

Exfoliation, pioneered by Novoselov and Geim [92]-[108], has been used to obtain
samples for measurements by a large number of other researchers and is widely utilized.
Kapton® tape made of polymide [85] has in the past been used successfully to peel a

layer of graphene from highly oriented pyrolytic graphite. This tape is meant for high
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vacuum usage due to its uniform silicone adhesive layer which ensures air bubbles will

not be trapped in between the tape and the object it is adhering to [85]. Air bubbles will

lead to outgassing that can make the vacuum pressure unstable, which is undesirable
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Figure 7: System created for sample preparation. Chuck with through hole to
create vacuum, capable of holding down HOPG sample. Silicon Kapton® tape was
added to give a soft surface for the HOPG to rest, which was found to give a better

vacuum seal. Vacuum system with tubes connected to chuck shown on the left.
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Figure 8: Sample preparation system with HOPG sample secured to chuck via
vacuum seal. A piece of Kapton® tape will be laid on top of the HOPG, and
carefully pressed down to remove all air bubbles.

This makes Kapton tape ideal for the application of peeling graphene since an air
bubble would translate into an area of graphene that may not lift off, leading to a non-
continuous flake of graphene. Also, the resistance of the Kapton®tape, in this application,
approaches infinity as its resistance is much higher than the resistant measurement devices

can read (thus, not contributing to the resistance of the sample being measured).

Theoretically, this process should only remove a single layer of graphite (graphene).
Practically however, this is not generally the case. There are many factors causing several
layers to be peeled off simultaneously. Examples such as: an uneven sample surface
allowing the lowest layers to pull top layers along with it and layers simply being stuck

together with a force greater on the top layer than on the bottom. In order to mitigate this
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effect, a second or even third peel of the initial peel can be taken (thus, dividing the layers

of graphene to eventually approach 1).

The move from bulk ion-implanted HOPG to exfoliated (peeled) graphene from ion-
implanted HOPG allowed the removal of bulk effects from the physics occurring in the
first 20 nm where the greatest damage from the dopant implantation were located [56].
The use of phosphine as a dopant in doped-while-grown plasma Chemical Vapor

Deposition films was observed to minimize the implantation damage.

Removal of graphene from tape was investigated using solvents that would dissolve
the adhesive. Having graphene without tape would allow for uniform thermal expansion
as well as being able to test the doped side directly. It would also allow for closer stacking
of samples during susceptibility measurements, which would give a stronger response
since the effective sample thickness could be made to be much larger than the London

penetration depth.

Each solvent was placed in a glass beaker and graphene on either Kapton® or
Scotch® general purpose tape was placed in the beaker, completely submerged by the
solvent. The beaker was then covered with plastic wrap to avoid evaporation and placed
in a fume hood for over 24 hours. After that time, the graphene was removed, placed on a

lint free towel and removal from the tape was attempted using two tweezers.
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Table 3. Solvents tested for graphene lift off from Kapton® vacuum tape and general
purpose Scotch® tape. The green shade denotes lift off while still floating in the
solvent. Yellow shading denotes lift off with the aid of tweezers. Red denotes no lift

off.
Lift Time
Solvent Tape |Off?|Difficulty| In Comments Solubility
(y/n) solvent
3M® General
Purpose Vacuum |Yes |Hard 24hrs | Difficult to get full piece to remove.
Adhesive
Cleaner
3M® General
Purpose Scotch® |Yes |Hard 24hrs | Difficult to get full piece to remove.
Adhesive
Cleaner
TCE Scotch® |No Very Hard |24hrs Scotch tape curled and could not remove
graphene
Kerosene Vacuum |Yes |Hard 24hrs | Partial Lift off. Some flakes still remain.
Kerosene Scotch® |No |Very Hard |24hrs
Goof-Off® Vacuum |Yes |Easy 24hrs Gra_phene slid off tape when pushed
horizontally
Graphene stuck to napkin when put
Mineral Spirits |Vacuum |Yes |Easy 27hrs  |upside-down and only used tweezers to
lift tape off.
Mineral Spirits |Scotch® |No |Very Hard |27hrs

Extremely easy to remove. Graphene
stuck to napkin when put upside-down
and only used tweezers to lift tape off.
Easiest scotch tape removal.

Pieces came off but scotch tape was

Xylene Scotch® |Yes |Easy 27hrs

MEK Scotch® |No |Very Hard |27hrs i ey Ry

Goo-Gone® Vacuum |Yes |Easy 27hrs

Goo-Gone® Scotch® |Yes |Medium |27hrs ;gtr ti'tacl)lgf ?;usg;](;v?’ﬁ;cg i;ag;?:; able to
Krud-Kutter® Vacuum |Yes |Easy 27hrs

Krud-Kutter® Scotch® |Yes |Medium |27hrs | Very similar to goo-gone.

Turpentine Vacuum |Yes |Easy 27hrs

Turpentine Scotch® |Yes |Medium |27hrs
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As seen in Table 3, TCE, Xylene and MEK were the best solvents from the ones we
tested. These either floated off while still in the solvent or were taken off with little to no
resistance. Out of those 3, MEK has the added benefit of being soluble in water, making

the post removal or residue safe and easy.

For fear of altering the sample, the tape removal process was implemented in later

testing. However, this may be an important finding for future work.

B. Resistance versus Temperature Measurement

In order to achieve a high level of sensitivity, there should be little to no noise, little
to no thermoelectric error and high precision present in the measuring equipment. The
Keithley Delta Mode System 6221/2182A in conjunction with LabView allows for the

noise to be minimized, thermoelectric error to be eliminated completely while being able

to take measurements at a 1 nV resolution [86].
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Figure 9: Keithley 6221 DC and AC current source (on left) and Keithley 2182A
nanovoltmeter (on right) with external cooling fan in between to keep airflow
constant for cooling of the device.
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Figure 10: The peeled sample lifted from the HOPG, loaded into the cryogenic
system where probes are placed collinearly onto a continuous area of graphene.

The probes are placed firmly enough to maintain contact, but not so firm that they
puncture the material. This is verified after the sample is taken out of the chamber by

making sure no holes have been created.

During this measurement portion, the temperature is brought down to 2.5 Kelvin by
a compressed helium cooled cryogenic system. This is done under vacuum for the health

of the cryogenic system but should not affect the measurements.
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Figure 11: Colinear Probes positioned on sample with broken pieces of Lanthanum
Aluminate (LaAl) placed near the edges to prevent curling.

After several trial runs of bringing samples down to 2.5 Kelvin and back to room
temperature, the ends of the samples were observed to be curling upwards. This curling

had a noticeable change on the response of the sample, thus a method to secure the
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sample was achieved by placing Lanthanum Aluminate (LaAl) on the edges. LaAl was
chosen for its high thermal conductivity, which would ensure that the sample temperature
itself would not be affected. LaAl was also chosen due to its low electrical conductivity,

which ensured that there would be no shorting or interference between collinear probes.

When signs of superconductivity are present, additional R vs. T measurements is
carried out in the presence of a magnetic field. Characteristics that are reduced
substantially in the presence of a magnetic field can be interpreted as possibly being due
to superconducting properties so it is also important to apply this magnetic field without

physically disturbing the sample.
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Figure 12: Coil created in-house to generate magnetic field. This slides over the
outer shield and was adjusted to make the center of the coils on the same plane as
the sample. The ends of the copper coils are connected to a 4 amp DC source.

C. Programming for Resistance versus Temperature Measurements

Extensive programming was done in LabView to efficiently carry out the laborious
runs. This was an ongoing process refining and optimization. Additions were made to
prevent any previous errors that we saw from happening again. One of the first programs
that were created for the R vs. T measurements was the data acquisition VI. This fully

automated the Delta measurements as well as monitoring the temperature in the
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cryogenic system. The program takes an initial temperature measurement to determine if
the run is cooling or warming and then determines if it will need to turn the heaters on
later. If it determines that it is cooling, it will take a packet of 250 measurements and then
divide them into 10 sub packets. Each of those 10 sub packets will be an average of 25
measurements. For warming, it will take the full packet of 250 measurements and simply
get the average to give 1 average measurement from the entire packet. It then displays
this information and records it along with other pertinent information, to a Comma
Separated Value file before moving on to the next measurement. Comma Separate Value
files allow the data to be saved in a table structure while being able to opened by text
editors or as spreadsheets. For cooling runs, the program text messages the user to alert
them that the cooling run has completed. This lets the user know that they need to turn off
the compressor as well as the water that cools the compressor. Then it sends the Comma
Separate Value file and the picture of the R vs T on screen data display to everyone on the

team which it also does at the end of the warming run (see Appendix 26 to Appendix 51

).

Later, this program was turned to a subVI with an outer VI that controlled the

compressor (see Appendix 25 to Appendix 38).
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Figure 13: Flow chart for R vs. T measurement subVI for data acquisition.
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All measurements were averaged delta mode in nature and each data point recorded
was the result of 250 individual readings averaged together. Measurement speed was
approximately 10 seconds per final averaged data point recorded. All measurements were
made at the minimum practical stimulus current, always 10 pA or less (typically 1 pA), to
avoid current induced degradation of the responses. After initial testing, the samples were
doped with phosphorous using either ion-implantation or by Chemical VVapor Deposition

growth with phosphine in the gas mixture.

D. Doping HOPG

One electron donor (phosphorous), and an electron acceptor (boron) were selected
initially for testing the hypothesis. The primary doping method of ion implantation was
preferred simply due to expediency. Low energies and doses were used to minimize
damage.

A response suggestive of superconductivity in phosphorous (electron donor)
implanted HOPG was observed [72]. The estimated critical temperature in this system is
in excess of 100 K and, may very likely be considerably higher if damage incurred during
the doping could be further minimized. It must be stated that the observed
“superconductive type” effect is very likely confined to a very thin layer somewhat
further into the HOPG than the peak of the implantation distribution (Figure 15). Doping
with electron acceptors (boron) [72] has not been observed to induce the effect despite
their probably having caused less damage (lower mass, lower dose and same energy) to

the HOPG than the phosphorus.
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The computed depth profile of the ion-implanted phosphorous in graphite and the
computed damage profile are shown in Figure 15, curves 1 and 2. The corresponding
computed profiles for the ion-implanted argon in graphite are shown in Figure 33, curves
3 and 4. Since there is no characterized implantation model for the stopping power of
HOPG as a substrate we selected the closest substrate material in the library, graphite, for

the simulation.
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Figure 15: SRIM simulated distribution of (1) phosphorus ions implanted in
graphite at Ep = 10 keV, (2) damage in graphite lattice caused by implant and (3)
probable region of effect.

Minimal doping and energy levels were deliberately selected in order to minimize
the damage done by the implantation to the graphene sheets in the HOPG. This reduces

the disorder in the lattice. This damage could potentially provide scattering centers.

These scattering centers would very likely have a negative impact on any electron-
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electron coupling mechanism, regardless of whether the coupling mechanism is phonon
or plasmon mediated.

An array species were chosen for ion-implantation doping to provide us with a
bigger picture of what dopants were most promising for investigation. Prior to doping,
SRIM simulations were performed to characterize their stopping characteristics seen in

Table 4.

Table 4. Stopping and range for ion-implanted species at 10 keV and 5 keV for
argon. Green highlights the species that showed features that warrant further
investigation.

Ato_m Crygtal lonic | Valence il | ST Projected | Longitudinal Latzel

Element |Radius| Radius Charge| Electrons Mass | Donor or Range (A)| Straggle (A) Straggle
(pm) (pm) (amu) |Acceptor? (A
Aluminum 118 67.5 3+ B 27 acceptor 149 49 37
Arsenic 114 72 3+ 5 75 donor 104 25 20
Beryllium 112 59 2+ 2 9 acceptor 442 171 130
Fluorine 42 22 T+ 7 19 acceptor 193 68 50
Lithium 167 90 1+ 1 7 acceptor 612 234 187
Nitrogen 56 30 3+ 5 14 donor 230 84 62
Sodium 190 116 1+ 1 23 acceptor 169 58 43
Sulfur 88 51 4+ 6 32 donor 125 38 30
Phosphorus 98 58 3+ 5 31 donor 132 41 32
Argon 71 71 0+ 8 40 neutral 72 22 17

Each dopant was ion-implanted at a low dose (1.2x10° cm™) and on a separate
HOPG sample with a high dose (1.2x10™ cm™) using an energy of 10 keV and current of

104 pA. Argon was used to create columnar damage, which will be seen in sample 023
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and was implanted at 5 keV to give it a shallower implantation depth than the previous

implanted phosphorus.

Table 5. Dose and concentration for ion-implanted species. All were done at 10 keV
with the exception of argon which was done at 5 keV. All used a current of 104 pA.
Green highlights the species that showed features that warrant further
investigation.

Low Dose |High Dose Concentration Congentration

Element (ions/cmz) (ions/cmz) at Low Doge at High Doge
(atoms/cm?) | (atoms/cm®)
Aluminum | 1.20E+08 | 1.20E+11 | 9.8E+13 9.8E+16
Arsenic | 1.20E+08 | 1.20E+11 | 1.92E+14 1.92E+17
Beryllium | 1.20E+08 | 1.20E+11 | 2.81E+13 2.81E+16
Fluorine |1.20E+08 | 1.20E+11 | 7.06E+13 7.06E+16
Lithium | 1.20E+08 | 1.20E+11 | 2.05E+13 2.05E+16
Nitrogen | 1.20E+08 | 1.20E+11 | 5.71E+13 5.71E+16
Sodium | 1.20E+08 | 1.20E+11 | 8.28E+13 8.28E+16
Sulfur | 1.20E+08 | 1.20E+11 | 1.26E+14 1.26E+17
Phosphorus| 1.20E+08 | 1.20E+11 | 1.17E+14 1.17E+17
Argon | 1.20E+08| None | L4°E+l4 None

Since phosphorus showed the best results (which will be talked about and shown
later in the Results section) and was the easiest for us to work with, many other ion-
implantations were performed. One was a multi implantation method that used 5
different energies shown in Table 6. This was performed from highest energy to lowest

so that the deepest penetration energy does not have to cross through a prior doped

section. These were done with a low dose (1.2x10% cm™) and current of 104 pA.
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Table 6. Multi-energ

implantation of phosphorus for sample 065.

Sample Energy 1 | Energy 2 | Energy 3 | Energy 4 | Energy 5
b (keV) (keV) (keV) (keV) (keV)
065 20 10 6 3 1

The doped-while-grown material was prepared in a proven graphene Chemical

Vapor Deposition system using plasma enhanced Chemical Vapor Deposition on HOPG

substrates. The HOPG was used as a seed crystal as it was easier to remove the doped-

while-grown layer from the HOPG via exfoliation than a monolayer from copper foil.

The gas mixture was methane at 20 sccm, hydrogen at 10 sccm, argon at 14 sccm and

0.1% phosphine in an argon carrier gas at 5 sccm. The plasma power was 30 W for 15

minutes as seen in Table 7. The substrate temperature was 800 °C and two pieces of

partially overlapping copper film were placed adjacent to the HOPG in order to provide a

visual witness that graphene had been grown as seen in Figure 16.

Table 7. Plasma Enhanced CVD reci

e. Phosphine used was 1000 ppm in argon.

Flow Rate ( sccm)

Plasma

Methane

Hydrogen

Argon

Power

Phosphine| (w)

Deposition
Time

(s)

Deposition
Temperature
(°C)

Annealing
Temperature
(°C)

20

10

14

30

900

800

900

Figure 16: Copper witness visually showing graphene after successful Chemical
Vapor Deposition process.
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Figure 17: Graphite sample holder with array of HOPG samples loaded. Two
copper witness samples are placed at the upper left corner of the array to indicate
the position of the first sample in the series.

After doping, either by implantation or through growth, the sample was placed in
the closed cycle refrigeration system again. The R vs. T characteristic of the HOPG was

then re-measured. All measurements were averaged delta mode in nature and each data
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point recorded was the result of 250 individual measurements averaged together.
Measurement speed is approximately 10 seconds per final averaged data point recorded.
All measurements were made at the minimum practical stimulus current, always 10 pA or
less (typically 1 pA), to avoid current induced degradation of the responses.

After the measuring of the R vs. T characteristic of the post doped bulk sample the
doped surface was exfoliated using silicon adhesive Kapton® film tape to remove
multilayers of graphene for testing. These multilayer graphene films, still on the tape,
were then placed into the closed cycle refrigeration system and the R vs. T characteristic
of the graphene multilayer stack was measured. To check that the graphene exfoliations
were affected by an applied magnetic field similarly to the bulk phosphorous ion-
implanted HOPG shown in Figure 22 a modest, calculated, 100 to 350 milli-Tesla
magnetic field was supplied by a dc driven coil placed externally over the refrigerator
vacuum shroud and the R vs. T characteristic was re-measured on a number of samples.

In addition to the R vs. T measurements, several samples were tested in SQUID
magnetometer and AC susceptometer. The results of these measurements and details of
Hall effect measurements on one of our exfoliated doped-while-grown samples and a
Raman characterization of the film are presented in the results section below.

Estimating the thickness of graphene can be roughly done by measuring the light
transmission of a monolayer of the material. As a guide, the thickness for of the material
can be determined as T = (.977) " for n layers. Other considerations, such as the film tape
transmission, must be made which adds more uncertainty to the estimation method. In
order to obtain more accurate information as to the thickness of the exfoliated layers

bound to the adhesive backing of the tape, Raman spectroscopy was performed. This was
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done at both room temperature and T = 77 K on different positions on the exfoliated
material. Room temperature van der Pauw and Hall measurement were performed in an
attempt to determine the resistivity of the Phosphine-doped Graphene; as well as the nyp

density and mobility values of the material.

E. Susceptometer

% CRYOD‘/IE'

o |

Figure 18: Susceptometer System.
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Figure 19: Outer coil, inner coil and 2 pieces of single bore alumina.

In Figure 19 we see coils used for susceptometer. On the left, is the outer coil that
is responsible for delivering the magnetic field. All turns are in the same direction. Inner
coil, on the right, is used for detecting the magnetic field. These have half the windings
going in one direction, and the other half going in the opposite direction. This cancels
out the field being received and should give a remaining voltage representative of the

Meissner effect experienced by the sample. Leads exit on the top.

The Alumina was chosen for its high thermal conductivity, while also being an
electric insulator. This ensures that the sample is lowered to the appropriate temperature
while also preventing shunting of superconductivity. The diameter allows them to fit into
the inner coil and rest the sample between the two pieces of alumina. The position of the

sample is adjusted so that it is located in the center of one of the winding directions (so
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located either ¥ or % of the height of the inner coil). The Alumina is raised and lowered

accordingly, using a spacer.

Figure 20: Brass guides, custom made to center coils. These are screwed on top of
the coldhead.

Figure 21: Outer coil, inner coil, alumina with sample between alumina pieces and
centered using custom sample holder are placed on top of the coldhead and held in
placed by 4 brass guides that wedge the assembly in place.
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The complete assembly was covered by an aluminum shroud that was wrapped 6
times in aluminized mylar. The final aluminum shield was placed over this to create the
vacuum seal. A Signal Recovery Model 7270 DSP Lock-in amplifier was used to create
the signal to the outer coil as well as measure using the inner coil. LabView software

was created to control all functions of this system (see Appendix 25 to Appendix 37).

To see if the system was working correctly, we used a YBa,Cu307.x Hairpin sample
since this is a known superconductor. We found that a reliable reading could not be

yielded, after numerous attempts to balance the coils and find the lowest noise frequency.

V. RESULTS

Phosphorous-implanted HOPG samples were shown in prior work [72] to have
exhibited deviations from the expected rise in resistance as the temperature is reduced to
some point above 100 K (Figure 22). The relatively large drop in resistance at lower
temperatures (by a factor of more than 2) was also considered a possible indication of
superconductivity in the sample. It was also noted that the application of a modest
magnetic field reversed this trend. All of this as well as the resistance vs. temperature

curve for non-doped HOPG are shown in Figure 22 overleaf.
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Figure 22: Measured R vs. T dependence of a phosphorous-implanted HOPG
sample. Curve 1 (black) is before implantation, curve 2 (red) is of the phosphorous-
implanted sample before magnetic field was applied, curve 3 (green) is of the
phosphorous-implanted sample with magnetic field applied and curve 4 (blue) is of
the phosphorous-implanted sample after the magnetic field applied in curve 3
magnetic field was removed.

o

The lack of zero resistance and the modest magnetic field (maximum attainable was
less than 0.035 T) required to quench the effect even in the exfoliated multilayer

graphene samples is shown in for a representative sample.
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Figure 23: R vs. T of thin film exfoliated from phosphorous-doped HOPG measured
without (1) and with 0.035 T applied magnetic field (2).
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Figure 24. Aluminum ion-implanted sample. Bulk HOPG with low dose.
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Figure 25. Arsenic ion-implanted sample. Peel with low dose.
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Figure 26. Beryllium ion-implanted sample. Bulk with low dose.
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Figure 27. Fluorine ion-implanted sample. Bulk with low dose.
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Figure 28. Lithium ion-implanted sample. Bulk with low dose.
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Figure 29. Nitrogen ion-implanted sample. Bulk with low dose.
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Figure 30. Sodium ion-implanted sample. Bulk with low dose.

2.1E-03

1.9E-03

1.7E-03

1.5E-03

1.1E-03

Resistance (Ohm)
H
w
m
o)
w

9.0E-04

7.0E-04

5.0E-04

Sample 106_S Low Peel 000

o
a1
o

100 150 200 250 300
Temperature (K)

350

Figure 31. Sulfur ion-implanted sample. Bulk with low dose.
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Beryllium, fluorine, lithium and sulfur did not show any features at high or low
doses (see Appendix 15 -Appendix 20 , Appendix 23, Appendix 24 ). Aluminum
showed features for both low and high while sodium showed features only at high doses
(see Appendix 7 -Appendix 9, Appendix 21, Appendix 22 ). All of the pentavalent
species (arsenic, nitrogen, phosphorus) showed features (Appendix 5, Appendix 6 ,
Appendix 10 -Appendix 14 ). Since phosphorus showed the strongest features and was
also the easiest to work with, more in depth research was focused on it.

In order to better understand the potential causes for the observed results, a number
of R vs. T characteristics are examined, shown in Figure 32, of similarly exfoliated
graphene films taken from bulk phosphorous-implanted HOPG samples.

Comparing characteristics (a)-(d) in Figure 32 it is clear that there is a step in
resistance at a temperature of approximately 50-60 K in all of the samples. Upon close
examination of the data, it can be determined that there is a second resistance step at 100-
120 K, a third at a temperature range of approximately 150-180 K and, yet a fourth at a
temperature from about 200-240 K.

Additional steps can be observed in the R vs. T characteristics of just about all of
the samples. The most probable explanation is that the features are due to magnetic

vortex lattice melting and subsequent flux-flow losses.
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Figure 32: Measured R vs. T of four thin films exfoliated from phosphorous-
implanted (Ep = 10 keV, dose 1.2x108 cm-2) HOPG samples. (a) HOPG-008, layer
3; (b) HOPG-019, layer 3; (c) HOPG-019, layer 6; (d) HOPG-021, layer 7. The layer
numbers indicate the number of multilayers peeled from the host sample, i.e. layer 7
would be the 7" layer exfoliated from that sample.

To see if additional lattice damage by neutral ion species could increase pinning,
which could only occur if magnetic vortices were present, and reduce losses, a sample
which had been previously implanted with phosphorous but had not yet been exfoliated

was sent back for implantation with argon. This implantation was done at reduced energy

(5 keV) and the same dose as the phosphorous implantation (1.2 x 10® cm™) to place the
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damage in front of the peak in the phosphorous distribution. If the resistance was indeed
due to flux-flow, a stronger pinning would be observed in the R vs. T characteristic.
Figure 33 shows the computed range distributions for the phosphorous (1) and the argon
(3) implants in this HOPG sample and the computed damage distributions caused by

implanted phosphorous (2) and argon (4).
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Figure 33: This represents the simulated normalized distributions of implanted
atoms and lattice damage caused by implanted atoms versus depth in HOPG. This
represents the simulated normalized distributions of implanted atoms and lattice
damage caused by implanted atoms versus depth in HOPG. Curve 1 is the
calculated distribution of the implanted phosphorous, curve 2 is the computed
damage caused by the implanted phosphorous, curve 3 is the calculated distribution
of the implanted argon and curve 4 is the computed damage caused by the
implanted argon.
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The R vs. T characteristic of an exfoliated graphene multilayer from this doubly
implanted sample (phosphorous followed by argon) is shown in curve 1 of Figure 34.
Note that the first R vs. T characteristic taken showed the same qualitative behaviour as
the samples in Figure 32.

An anomaly in the form of a small notch can be observed in curve 1 of Figure 34
overleaf. Its size (18 data points each from 250 averaged measurements) is considered too
great to be either noise or a measurement error. This notch is at a temperature of 132 K
and gave cause to re-measure the sample multiple times. These re-measurements were
performed without disturbing the sample or altering the refrigerated environment. In
these subsequent R vs. T re-measurements, shown as curves 2 through 4 in Figure 34, a
large and abrupt step was observed. The step was in the temperature region of 210-230 K
on the first re-measurement. On a second re-measurement it was observed to have moved
upward to a temperature of 250-260 K. On a third, and final, re-measurement, the step

was noted to have migrated upwards to a temperature of 264-267 K.
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Figure 34: R vs. T of a thin film sample peeled off phosphorous-implanted and then
argon-implanted bulk HOPG-023. Curves 1 to 4 are four identical sequential runs
with the same probe position.

It can be determined that there is no contact issue present when all four R vs. T
characteristics for the graphene multilayer from sample HOPG-023 are plotted together
on the same graph (Figure 34). It can be seen that the low temperature and the high
temperature resistances have not been changed significantly from run to run. It is also
clear that the notch observed in the first R vs. T characteristic is an attempt for the

material to move to the resistance state achieved in the later runs and cannot be dismissed

as spurious.
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Figure 35. Multi energy implantation Sample 065.

For our multi energy ion-implantation sample seen in Figure 35, we see prominent
valleys at around 260 K for all runs except the initial run. This valley first appears when
the magnetic field is applied and continues to grow after the field is removed for the
following runs. On the fourth run, this valley continues all the way down to 200 K. This
feature is similar to the phosphorus followed by argon multi energy implantation in

Figure 34.
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Figure 36. PECVD graphene grown in the presence of phosphine. First peel taken
from bulk HOPG.

In Figure 36 we see a representative R vs. T measurement of a graphene grown in
the presence of phosphine using our custom plasma enhanced CVD system. The
transition can clearly be seen at 240 K and leveling off at 150 K before dropping again at
50 K. As expected, since the flux vortices are not pinned, they are free to flow, rather
than being abruptly dismantled as see in the ion-implanted samples. This transition has
been seen in over 50 of our samples.

The SQUID magnetometer measurements of a doped-while-grown exfoliated thin
film are shown in Figure 37. They consist of a Zero-Field Cooled magnetization run
followed by a Field Cooled magnetization run. The hysteresis loop in the Zero-Field

Cooled to Field Cooled curves begins to open at a temperature of approximately 260 K.
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Figure 37: Magnetization measurements: Zero-Field Cooled (ZFC) and Field
Cooled (FC) M/H plots along with a1 T Field Cooled M/H plot for a film exfoliated
from a doped-while-grown Plasma Chemical VVapor Deposition sample.

Additionally, when the horizontal axis of the Zero-Field Cooled magnetization run
is converted from T to H/Hc, (temperature to the Magnetic Field / Upper critical field of
the vortex state) and the data is re-plotted, similar results are attained to those seen in the
experiments and calculations done by Berdiyorov’s [277] and Novosolev [278]-[287] The
Figure 38 (Fig 3.2 in [277]) shows the qualitative shape of a pancake vortex array in a

type | superconductor. The thickness here is much less than the magnetic penetration
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depth (ratio less than unity). Figure 38(d) would provide the greatest similarity to the

samples used in this work as it has no “hard pinning” sites (anti-dots).

05 10 156 20 25 30
H/H

c2

Figure 38: The free energy (a-c) and magnetization (d-f) as a function of the applied
magnetic field for a filled square (a,d) and for the square with two (b,e) and four
(c,f) anti-dots. The insets show the free energy for higher vorticity. The vertical lines
show the ground state transitions between different vortex states and open circles
indicate continuous transitions between different vortex states. The GL parameter is
k =0.28 [277].

Re-plotting the data of the phosphorous-doped-while-grown Chemical Vapor
Deposition exfoliated graphene film Zero-Field Cooled curve given in Figure 37, a
comparison can be made with Figure 38(d). The temperature information was converted
to the ratio of H to Hc, so as to make the comparison with Figure 38(d) [277]. The best
comparison that can be made qualitatively is via observing the shape of the curves. This
is due to the fact that there is no known value for Hc, for the phosphorous-doped-while-

grown Chemical Vapor Deposition exfoliated graphene film. This is shown in Figure 39.

Note the step in the curve at low H/Hc; in Figure 39. This corresponds qualitatively to
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one of the discontinuous jumps in Berdiyorov’s data and, should the measurement
temperature have been taken to lower values, would most likely have continued

vertically.

Magnetization -M/H,

0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 22

H/H,

Figure 39: Phosphorous-doped during growth in plasma Chemical Vapor
Deposition graphene sample zero-field-cooled magnetization results plotted on same
axis type as used in Berdiyorov’s work. Note same general shape as in Figure 38(d).

The AC susceptometer measurements for a representative doped-while-grown
exfoliated thin film are shown in Figure 40(a) and Figure 40(b). In addition to each of the
full-scale plots, a corresponding plot with a magnified vertical axis is shown. A
representative plot from a known superconductor is also included as Figure 41 for

comparison. Note the small transition that is relatively broad and begins in the area of

150 K (this may be depressed as a result of the measurement field).
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Figure 40: AC Susceptometer results for a graphene film on Kapton® tape
exfoliated from a phosphorous-doped-while-grown Chemical Vapor Deposition
sample. (a) film was cut into multiple pieces and the pieces were stacked to increase
the screening fraction; (b) magnified vertical axis AC susceptometer results for the
same sample and run as shown in (a).
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Figure 41: AC Susceptometer results for a Pr2-xCexCuO4 superconductor in the
same instrument as was used to produce the data shown in Figure 40. The magnified
transition region is shown in the inset.
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The final measurements that have been done included a Raman spectrum of one of

our exfoliated films to estimate the film’s thickness (Figure 42).
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Figure 42: Raman spectra for a film on Kapton® tape exfoliated from a
phosphorous-doped-while-grown Chemical Vapor Deposition graphene sample. The
peak ratios give a thickness of approximately 5 monoatomic layers.

The number of layers can be determined by analysing the ratio G/2D. The Raman
spectrum plot in Figure 42 indicates a G/2D ratio of 646 K/385 K, which is a little less
than 2. This clearly indicates that the graphene material is multi-layered. As the G/2D

ratio for 5 monolayers of graphene is about 3.8, the measurements suggest that the

exfoliated layers are composed of about 5 to 6 monolayers.
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Hall Effect measurements at temperatures of 297 K and 80 K are shown in Figure
43. The change in sign of the Hall voltage is not due to issues in instrumentation. The

contacts and extraction calculations were left unaltered between both runs.
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Figure 43: Hall effect at T = 293 K and T = 80 K for the same film on Kapton® tape
exfoliated from a phosphorous doped-while-grown Chemical Vapor Deposition
graphene sample as is shown in the Raman spectrum in Figure 42.

For both positive and negative field directions, four different configurations were
averaged in resistivity mode and Hall configurations via use of a Hall card and switch

from a Keithley model 7001 Switch System.

The great amount of coupling in the conductivity tensor (Vx« and V,y) required the
data to be symmetrized in order to yield only the induced magnetic field. This is shown in

Figure 44. (i.e. [Vyxy +8— Vxy 8))
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Figure 44: Graph of the four point resistance (averaged over all contact
configurations) of the device at room temperature and in OT field. Vxx preamplifier
reversed the polarity. 4 terminal resistance of the film determined to be 45 mOhm.

The Hall signal shown below in Figure 45 (red trace in Figure 43) suggests a two
dimensional carrier density of 4.70 X 10''/cm?. This result was seen after the different
voltage probe and current configurations were made symmetric at room temperature.
Using the resistivity obtained from the data shown in Figure 44, an effective mobility of
590 cm?/Vs was calculated. This result is dependent on knowing the exact sample

thickness which is somewhat uncertain due to roughness and topological factors.
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Figure 45: Graph of the Hall signal after symmetrization the different voltage probe
and current configurations were made symmetric at room temperature.

Figure 46 (blue trace in Figure 43) shows the graph of the Hall voltage at 80 K
taken after symmetrisation. As can be seen, the density (Hall slope) has not changed

dramatically, but increased slightly.
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Figure 46: Graph of the Hall signal after symmetrization the different voltage probe
and current configurations were made symmetric at 80K.

VI. DISCUSSION

To verify that our delta measurement cryogenic system was working correctly, we
did several R vs. T measurements using known superconductors. Since we know what
the output should look like for the R vs. T measurement, it would be easy to deduce what
problems we were having with our system, if any. The first superconductor that we
tested was a YBa,Cu;O;x target that was grown in-house, several years prior. The

thickness of these targets was 3 mm while being 8 mm in diameter. Since the volume

71



was large, we expected to see a clear response. A current bias of 1ImA was used after
trying several biases out to see which gave the cleanest signal while still giving us a high
level of sensitivity. Since the delta resolution decreases a decade for every decade
increase in current bias, keeping the current bias low was the key. Lanthanum Aluminate
was placed under the YBa,Cu;0;.« target to prevent shunting of superconductivity while
also being thermally conductive. Our collinear probe setup was then positioned on the
sample, using the same positioning and spacing that we would be using for our HOPG
samples. Due to YBa,CuzO;x’s rough surface, Indium dots were placed between the
probes and YBa,Cu;0;.x surface. Since Indium is an extremely malleable material it was
able to enhance contact when pushed into the surface of the YBa,Cu;0,x. Because the
probe spacing is so much greater than the coherence length of YBa,Cuz0-.x, the addition
of Indium would not affect the superconductive behavior [137]-[139]. On cooling we see
that it starts transitioning at 21 Kelvin, then reaching zero resistance at 10.6 Kelvin (see R
vs. T for YBa2Cu307-X Target in Appendix 1). On warming, it starts transitioning at
88 Kelvin, and reaches zero resistance at 68 Kelvin. This is exactly what we expect to
see from a sample of this thickness. The difference in the transition temperature for
cooling and warming are largely due to the volume of the sample. The top surface of the
target will take longer to cool than the thermocouple under the stage, where the
temperature readings are taken. These are the transition temperatures we expected, so we
know that our temperature measurements as well as cooling system are working
correctly. There's also a lack of noise in this measurement, which is ideal. These are the
transition temperatures we expected, so we know that our temperature measurements as

well as cooling system are working correctly.
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The YBa,Cu;O7.x Hairpin filter is 1 millimeter thick and 8 millimeters square.
Lanthanum aluminate was placed under the sample in the same manner as the YBa,Cuz0-.
x target aforementioned, as well as Indium dots being placed under the probes to create
better contact. The Hairpin filter has a higher density than the target, with a smoother
surface. For the R vs. T measurement, we see that the Hairpin sample experiences a
transition on cooling of 42 Kelvin (see R vs. T for YBa2Cu307-X Hairpin in Appendix
2 ). It reaches zero resistance at 27 Kelvin. For Warming, it begins the transition at 92
Kelvin, and reaches zero resistance at 83 Kelvin. The transition temperature between
warming and cooling has a difference of 50 Kelvin whereas for YBa,Cu;0;.x Target, the
difference was 67 Kelvin. This makes sense because as a sample gets thinner, the
transition temperature will be closer for Warming and Cooling since the sample is
cooling at a faster rate on the surface. The current bias for the Hairpin filter was 1 micro
amp. Since the current was far lower for this measurement, we see a result that is noisier
than the Target, which used 1000 times more current.

To further verify our system, we performed an R vs. T measurement using Niobium
which is an element type Il superconductor (see R vs. T for Niobium in Appendix 3).
We used the same set of procedures as the YBa,Cu3O7.x Target and Hairpin samples,
with the exception of using the Indium between the probes. This was not needed due to
the smoother surface of the Niobium. A bias of ImA was used during cooling but had
slightly more noise than desired, so the bias was raised to 10mA for warming. We see
that the transition temperature is 9.244 Kelvin. We see an abrupt transition with only 1
data point between the initial transitioning temperature to its zero resistance state.

Moreover, this in-between point is most likely due to the transitioning taking place
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during the 11 second measuring cycle and being averaged with the resistance before the
transition period. Since Niobium has a transition temperature of 9.3 Kelvin, our
measurement is only 0.056 Kelvin off. It is also worth noting that the warming run ended
at 200 Kelvin due to a power failure. This was far beyond the transition temperature, so
the run was not repeated. However, this inspired us to buy a large universal power supply
to prevent this from happening in future runs.

During an R vs. T run on a bulk sample, we accidentally discovered what a loss of
contact of our probes would look like during a measurement (see Loss of Contact in
Appendix 4). The probes were placed on the sample with little to no pressure applied.
This meant that there was very little contact being made to the surface of the HOPG at
room temperature. During the cooling cycle, thermal contraction would cause the HOPG
and lanthanum aluminate to get slightly smaller, resulting in a loss of contact mid run.
This occurred at 146 Kelvin and then happened again on warming at 223 Kelvin. Since
this is the bulk HOPG sample, it's expected to have a shift between warming and cooling
since the top of the sample will not cool as fast, but we see drop to zero resistance
instantaneously. This is indicative of a type 1 superconductor, and we know that if
HOPG was to superconductive, it would be a type 2 superconductor. There was no
noticeable change that we could see, caused by applying a magnetic field. During the
cooling run, we watched it the entire time, and noticed that the indicator light at the
bottom right-hand corner of the Keithley Model 6221 current source started to blink
when it fell to the O resistance reading. According to the Keithley Model 6221 manual,
this indicates that there is an open circuit. We performed a continuity test via the Triaxial

connection on the chamber which connects to the current probes inside to verify this.
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Although this was accidental, this gave us a valuable look at what it is like to have a loss
of contact during a run. Extra care was given in future runs to make ensure that firm
pressure was applied to the probes for ample contact to the sample surface.

Arsenic is stripped of its 3 outermost electrons in the S and P orbitals, prior to ion
implantation, to give it a crystal ionic radius of 72 pm. On impact with the HOPG
surface, the charge neutralization process returns the electrons, giving it an atomic radius
of 114 pm. At this radius, with an energy of 10 keV, the projected range is 104 A with a
longitudinal straggle of 25 A and lateral straggle of 20 A. When this pentavalent atom
comes to rest, it becomes an electron donor for neighboring carbon atoms since it has 1
extra valence electron.

For the first run on the arsenic peel 001 which had a low dose implantation which
yielded a concentration of 1.92E+14 /cm?®, there is an abrupt change in slope at 255
Kelvin, which continues to 148.77 Kelvin and levels off until reaching 94 Kelvin (see As
Low Peel in Appendix 5. Directly after this run, and without taking the sample out of
the chamber or disturbing the probes, we did another run using a magnetic field.

For the magnetic field run, we see that the slope between 94 Kelvin and 255 Kelvin
IS not as prominent. This is very subtle, and it is not clear if this is experiencing a
transition due to flux flow.

For the high dose implantation which yielded a concentration in HOPG of
1.92E+17 /cm®, we see a negative temperature coefficient down to 134 Kelvin (see As Hi
Peel in Appendix 6 ). This phenomenon is seen in semiconductors and means that as the
temperature increases, the number of active charge carriers increases. However, since we

do not see a freeze out region, this would not be considered an intrinsic or even extrinsic
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semiconductor. There does not seem to be any sign of superconductivity at this
concentration.

Aluminum is stripped of its 3 outermost electrons in the S and P orbitals, prior to
ion implantation, to give it a crystal ionic radius of 67.5 pm. On impact with the HOPG
surface, the charge neutralization process returns the electrons, giving it an atomic radius
of 118 pm. At this radius, with an energy of 10 keV, the projected range is 149 A with a
longitudinal straggle of 49 A and lateral straggle of 37 A. When this trivalent atom
comes to rest, it becomes an electron acceptor for neighboring carbon atoms since it has 1
less valence electron.

For Run 002 of our low dose implantation which had a concentration in HOPG of
9.8E+13 /cm®, we see a decrease in resistance from 264 Kelvin down to 210 Kelvin (see
Al Low Bulk Run 002 and Run 003 - MF in Appendix 7). This step appears to be a
transition indicative of a type Il superconductor. The resistance flattens until reaching
114 Kelvin where resistance descends again until reaching the bottom temperature.
When a magnetic field was applied, the transition was suppressed by 14 Kelvin for the
first transition temperature (250 Kelvin) and by 9 kelvin for the end of that transition
(201 Kelvin). After that, the resistance flattens out to 114 Kelvin, which is identical to
the previous temperature. When the magnetic field was removed, the first transition is
identical to the magnetic field run, beginning at 250 Kelvin and ending at 201 Kelvin (see
Al Low Bulk Run 003-MF and Run 004 in Appendix 8). The resistance flattens out for
a longer range of temperatures, decreasing after 68 Kelvin.

We see a slightly negative temperature coefficient with the resistance remaining

constant from 230 Kelvin to 183 Kelvin in our high dose Aluminum implantation with a
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concentration of 9.8E+16 /cm® (see Al High in Appendix 9 ). This resembles the 49
Kelvin window for the first transition seen in the low concentration sample, but shifted
down 20 Kelvin. This shows that the lower concentration of aluminum ion implantation
promoted features consistent with type Il superconductors better than the higher
concentration.

Nitrogen is stripped of its 3 outermost electrons in the S and P orbitals, prior to ion
implantation, to give it a crystal ionic radius of 30 pm. On impact with the HOPG
surface, the charge neutralization process returns the electrons, giving it an atomic radius
of 56 pm. At this radius, with an energy of 10 keV, the projected range is 230 A with a
longitudinal straggle of 84 A and lateral straggle of 62 A. When this pentavalent atom
comes to rest, it becomes an electron donor for neighboring carbon atoms since it has 1
extra valence electron.

For our low dose implantation with a concentration in HOPG of 5.71E+13 /cm®, we
see a transition at 283 Kelvin that ends at 261 Kelvin (see N Low, Peel 000, Run 002 and
Run 003 — MF in Appendix 10 ). When the magnetic field was applied, although the
transition ended at 261 Kelvin as well, we see it diverge from the previous pattern at 278
Kelvin. Instead of having a rounded apex, there appears to be a small amount of
suppression present. Afterwards, the two trend lines converge. When the magnetic field
run was followed by a non-magnetic field run, we see that the trend lines are very similar,
and in some places, overlapping (see N Low, Peel 000, Run 003 — MF and Run 004 in
Appendix 11 . This may be due to residual flux vortices that were induced by the
magnetic field still being present in the sample. This prompted us to remove graphene

peels to explore the two-dimensional effect that the nitrogen low concentration doping
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may have been having. On the third exfoliation, we see that the first abrupt resistance
decrease occurs at 329 Kelvin and ends at 319 Kelvin (see N Low, Peel 003, Run 002 and
Run 003 — MF in Appendix 12 ). From 319 Kelvin to 280 Kelvin, there is a linear
decrease in resistance. At 280 Kelvin, there is a linear increase in resistance to 235
Kelvin at which point it begins to decrease in resistance again. Each one of these
prominent features is suppressed when the magnetic field is applied, resulting in a smooth
curve. After the curve in that region, the resistance continues to decrease as the
temperature goes down. This is 5 Kelvin less than the non-magnetic field run prior, and
can be considered to have been shifted and suppressed. On the final run, the magnetic
field was removed, and we see that the drop in resistance most likely occurred at a higher
temperature then our system achieves during runs (see N Low, Peel 003, Run 003 — MF
and Run 004 in Appendix 13). At 319 Kelvin, the drop of resistance stops and increases
until 306 Kelvin. From there it decreases to 280 Kelvin at which point, it increases to 230
Kelvin where it then starts to decrease until the bottom temperature. Comparing run 002
and run 004, we see that they have very similar features and Run 004 has a slightly lower
resistance which is overlapping with the magnetic field run. This shows a residual effect
of the magnetic field which causes it to maintain a lower resistance. This can partly be
explained by pancake vortices melting. The presence of a magnetic field causes a
suppression of features which returned when the magnetic field is removed. However, a
change in the current flow is induced by the magnetic field, seen in following runs.

The high dose implantation with a concentration in HOPG of 5.71E+16 /cm®, did

not have any signs of superconductivity (see N High in Appendix 14 ). There was a mild
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negative temperature coefficient but did not have any prominent steps or features. Lower
doses of nitrogen ion implanted into HOPG warrants future investigation.

Beryllium is stripped of its 2 outermost electrons in the S orbital, prior to ion
implantation, to give it a crystal ionic radius of 59 pm. On impact with the HOPG
surface, the charge neutralization process returns the electrons, giving it an atomic radius
of 112 pm. At this radius, with an energy of 10 keV, the projected range is 442 A with a
longitudinal straggle of 171 A and lateral straggle of 130 A. When this bivalent atom
comes to rest, it becomes an electron acceptor for neighboring carbon atoms since it has 2
less valence electron.

For the beryllium low-dose sample with a concentration in HOPG of 2.81E+13
Jcm?®, there are no signs of superconductivity present (see Be Low in Appendix 15 ). The
curve is featureless with a positive temperature coefficient. For the high dosage with
concentration in HOPG of 2.81E+16 /cm®, the R vs. T response changed slightly, giving
it a slightly negative temperature coefficient but still does not have any prominent
features (see Be High in Appendix 16 ).

Fluorine is stripped of its 7 outermost electrons in the S and P orbitals, prior to ion
implantation, to give it a crystal ionic radius of 22 pm. On impact with the HOPG
surface, the charge neutralization process returns the electrons, giving it an atomic radius
of 42 pm. At this radius, with an energy of 10 keV, the projected range is 193 A with a
longitudinal straggle of 68 A and lateral straggle of 50 A. When this univalent atom
comes to rest, it has 3 more electrons than its neighboring carbon atoms but will accept

an additional electron to fill its last orbital.
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Fluorine low dosage with a concentration in HOPG of 7.06E+13 /cm® has a very
slight negative temperature coefficient that is featureless with no signs of
superconductivity (see F Low in Appendix 17 ). The high dosage with concentration in
HOPG of 7.06E+16 /cm?®, has a positive temperature coefficient but it is also featureless
as well as having no signs of superconductivity (see F High in Appendix 18).

Lithium is stripped of its outermost electron in the S orbital, prior to ion
implantation, to give it a crystal ionic radius of 90 pm. On impact with the HOPG
surface, the charge neutralization process returns the electrons, giving it an atomic radius
of 167 pm. At this radius, with an energy of 10 keV, the projected range is 612 A with a
longitudinal straggle of 234 A and lateral straggle of 187 A. This is the furthest range for
species that we have tested. When this univalent atom comes to rest, it becomes an
electron acceptor for neighboring carbon atoms since it has 3 less valence electron.

Lithium low dosage with a concentration in HOPG of 2.05E+13 /cm®, has a very
slight negative temperature coefficient that is featureless with no signs of
superconductivity (see Li Low in Appendix 19 ). The high dosage with a concentration
in HOPG of 2.05E+16 /cm®, has a positive temperature coefficient but it is featureless
with no signs of superconductivity (see Li High in Appendix 20).

Sodium is stripped of its outermost electron in the S orbital, prior to ion
implantation, to give it a crystal ionic radius of 116 pm. On impact with the HOPG
surface, the charge neutralization process returns the electrons, giving it an atomic radius
of 190 pm. At this radius, with an energy of 10 keV, the projected range is 169 A with a

longitudinal straggle of 58 A and lateral straggle of 43 A. When this univalent atom
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comes to rest, it becomes an electron acceptor for neighboring carbon atoms since it has 3
less valence electron.

The low dosage of sodium ion implanted with a concentration in HOPG of
8.28E+13 /cm®, has the most extreme negative temperature coefficient out of the samples
we have seen (see Na Low in Appendix 21 ). At our highest temperature of 345 Kelvin,
the resistance is 1.8 milliohms. The resistance continues to go up, as temperature goes
down until 58 Kelvin where are the resistance is 3.1 milliohms. It then goes down to a
final resistance of 2.7 milliohms at 3 Kelvin which is still a higher resistance then the
highest temperature. This may have potential as a semiconductor or in other applications
where such a negative temperature coefficient is desirable.

For the high sodium dosage with a concentration in HOPG of 8.28E+16 /cm®, we
see a small step at 235 Kelvin (see Na High in Appendix 22 ). Dosages in this range or
higher may merit future investigation.

Sulfur is stripped of its 4 outermost electrons in the S and P orbitals, prior to ion
implantation, to give it a crystal ionic radius of 51 pm. On impact with the HOPG
surface, the charge neutralization process returns the electrons, giving it an atomic radius
of 88 pm. At this radius, with an energy of 10 keV, the projected range is 125 A with a
longitudinal straggle of 38 A and lateral straggle of 30 A. When this hexavalent atom
comes to rest, it becomes an electron donor for neighboring carbon atoms since it has 2
extra valence electrons.

Both low dosages and high dosages of sulfur which have a concentration in HOPG

of 1.26E+14 /cm® and 1.26E+14 /cm® respectively, have a featureless negative
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temperature coefficient in their R vs. T curves (see S Low in Appendix 23 and S High in
Appendix 24 ). No signs of superconductivity are present.

A response consistent with the presence of magnetic field flux vortices in
phosphorous implanted Highly Oriented Pyrolytic Graphite and in phosphorous-doped
exfoliated multilayer graphene has been observed. The melting of stacks of pancake
vortices of varying lengths can account for the repeated nature of the observed steps in
the Resistance versus Temperature characteristics of the material. The lack of zero
resistance at low temperatures is also consistent with pancake vortex behaviour in the
flux-flow regime. Thus the observed features can be described using the pancake vortex
phenomenon. The presence of magnetic vortices requires, and is direct evidence of,
superconductivity. The small Meissner effect may simply mean that the volume fraction
of material involved is quite small or that the penetration depth is significantly larger than
the sample thickness.

The material that was subjected to post doping argon implantation (damage)
showed a discontinuous step in resistance at a temperature of about 265 K. The initial
findings from prior work [72], led to the conclusion that the ultimate critical temperature
in this system under test was in excess of 100 K and, may have very likely been
considerably higher if damage incurred during the doping process was minimized.
Clearly this conclusion has not been voided and, based on the material with phosphine in
the Plasma Chemical Vapor Deposition growth gas mixture, may well be valid for a
transition at a temperature of greater than 300 K.

It was observed that in addition to the first multilayer of Phosphine doped graphene,

there was also present a great amount of graphite layered material adhering to the desired
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layers. This extra material may have the effect of acting as a parallel conductor, shunting
the graphene transport to some degree, however we are unable to ascertain what effect
this additional material has on the transport measurements with our current experimental

apparatus.

Vvil. CONCLUSION

By using several known superconductors, we were able to verify that our cryogenic
system was working correctly. When testing the YBa,Cu3O,x Target, we used indium
between the Surface and probes. Even though this is not typically used for our HOPG and
graphene samples, this did not change the measurement process and still allowed us to
confirm proper system functionality. Another deviation was that we used 1 milliamp
since YBa,Cu;0;.x Is a low conducting ceramic until it becomes superconducting. This
changed the sensitivity of our Delta measurements when compared to our HOPG and
graphene samples but showed that our transition temperature was accurately at 88 Kelvin.
The thickness of the sample (3mm) caused the top surface to cool slower than the bottom
and led to a cooling transition temperature of 21 Kelvin. During cooling, which is 18
times faster than warming, this becomes more noticeable. For warming, this temperature
gradient becomes negligible.

When testing the YBa,Cus;0,.x Hairpin filter which was 1 millimeter thick, we saw
that there was a cooling transition temperature of 42 Kelvin and warming transition
temperature of 92 Kelvin. Since the same current was used as the YBa,Cu;0-.x target, we
can assume that heating caused by current is equal and the cooling transition temperature

being closer to the warming transition temperature is solely due to the sample being
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thinner. The lower temperature gradient assured us that for thin graphene peels, this will
be significantly lower.

When testing our element type Il superconductor niobium, we found that our
warming transition temperature was 9.244 Kelvin which is 0.056 Kelvin from its known
transition temperature of 9.3 Kelvin. This further confirms that our thermocouples are
working correctly and have high accuracy. We also saw that our system was capable of
measuring an instantaneous drop in resistance even at very low temperatures. This one
was also important for refining our set up to include a universal power supply which
would continue measurements during power failures.

We learned that our Keithley Model 6221 will blink or source zero current with a
blue indicator light on the front panel if there is an open circuit due to a loss of contact.
The measurement will also drop to zero in voltage causing a erroneous reading in the
resistance since there is no current running through the material. This happens virtually
instantaneously due to thermal contraction. Although this was not desired, this shows us
that small or gradual steps we were to see in future runs could not simply be explained by
loss of contact.

For our low dose ion implantation of arsenic, we saw a change in slope at 255
Kelvin which continues to 148.77 Kelvin. There could be a very gradual transition
occurring. With a magnetic field applied, the change in slope happened more gradually
but did not create a change conclusive enough to determine if there is flux flow present.
The higher dose of Arsenic ion implantation did not appear to have this effect. Exploring

a lower dose of arsenic could potentially enhance the features we saw or simply
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minimizing the damage that could be lowering the coherence length, by using a Chemical
Vapor Deposition arsenic graphene growth.

On our aluminum ion implanted sample with low dosage, we see an abrupt step at
264 Kelvin which ends at 210 Kelvin. When the magnetic field was applied, this step was
suppressed by 14 Kelvin. The end of the transition was suppressed by 9 Kelvin. This
shows a clear change caused by the magnetic field. On the following run, when the
magnetic field was removed, there appears to be residual effects that cause the run to look
identical to the magnetic field run. This can be explained by residual vortices that were
induced by the prior run. For the higher dosage of arsenic, we do not see this step. This is
most likely due to more damage in the sample. For future work, a stronger magnetic field
could be applied to see if the step gets suppressed further. A higher grade of HOPG
(ZYA) could be explored as well as Chemical Vapor Deposition growth with aluminum
present.

The low dose ion implantation of nitrogen showed a negative temperature
coefficient with a step a 283 Kelvin and ending at 261 Kelvin. When the magnetic field is
applied, we see that instead of an abrupt step it changes to a gradual slope near the
transition apex. Outside of that, the 2 runs are very close to each other and even
overlapping at higher temperatures. When the magnetic field was removed, the following
run was identical to the previous magnetic field run. There appears to be a residual effect
caused by the magnetic field. For future work, a stronger magnetic field should be
applied since there was not a strong change when the magnetic field we used was present.

Upon further investigation, we did several peels to test the 2D characteristics that

would closely approximate multi-layered grapheme [420]. There appeared to be 3
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prominent changes in the slope that were linearly connected. This multi-step region
occurred between 329 Kelvin and 235 Kelvin. These steps disappear when the magnetic
field is applied, and just turns to a smooth curve in that region. The overall resistance also
lowers when the magnetic field is applied in that region butt on the following run when
the magnetic field is removed, the features return and the overall resistance in that region
remains identical to what it was with the field applied. This shows that there was a
residual effect that occurred from the magnetic field that affected the resistance but still
allowed the features to return. The fact that the magnetic field change the response
warrants future investigation. The higher dose appears to be featureless due to excess
damage.

For the beryllium low dose bulk sample, there are no features present. For the high
dosage, it changes to a negative temperature coefficient but does not show any features.
There are no signs of superconductivity present.

Fluorine had a slight negative temperature coefficient at low dosages but a positive
temperature coefficient at high dosages. Both were featureless and did not show signs of
superconductivity.

Lithium had a slight negative temperature coefficient at low dosages but a positive
temperature coefficient at high dosages. Both were featureless and did not show signs of
superconductivity.

For the low dosage of sodium, we see an extremely negative temperature
coefficient. Even after the freeze out region, the resistance was higher then the resistance
at 345 Kelvin. There were no features present and there are no signs of

superconductivity.
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For the high dosage of sodium, we saw a small step at 235 Kelvin. This could be a
transition for just several layers in the bulk HOPG that is being shunted by non
superconducting layers in the HOPG. Testing with a magnetic field and removing
several layers while testing each layer should be done to explore this feature.

Both low dosages and high dosages of sulphur yielded a negative temperature
coefficient but did not show any features. There are no signs of superconductivity
present.

For the phosporous doped samples the repeated steps in the resistance versus
temperature characteristics can be seen to be independent of the manner in which the
phosphorous-doped HOPG and graphene were doped. These steps become discontinuous
at elevated temperatures when Argon (damage) is added. This is consistent with the
results that are expected for thin superconducting films with and without damage.

The observed electrical resistance and magnetic behaviours of the samples under
test can be seen to be consistent with superconductivity, even though a lack of zero
resistance at low temperature was observed. In fact, the high degree of anisotropy in
graphite and graphene predicts that if the material is a superconductor there would be
significant magnetic flux-flow losses down to very low temperatures [68], [69]-[71].

The magnetic response of phosphorous-doped HOPG and graphene is as would be
expected for superconductors of similar physical characteristics. That is (1) that the
superconducting region is thin in comparison to the London (magnetic) penetration depth
and (2) that the high level of anisotropy in the material is favourable for the formation of
pancake vortices. The observed quenching of the R vs. T curve by application of a

magnetic field is also to be expected for a superconductor.
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The magnetization and susceptibility results for phosphorous-doped HOPG and
graphene suggests (1) a transition temperature above 260 K for the magnetization based
upon the Zero-Field Cooled to Field Cooled Hysteresis loop and (2) a transition
temperature above 150 K based upon the AC susceptometer measurements. There is no
trace of ferromagnetism in the results as both the magnetization and susceptibility are
negative in the lower temperature region.

In going from room temperature to a temperature of 80K, The Hall voltage has
been observed to undergo a sign change during Hall Effect measurements. This
phenomenon has been observed in other, known and accepted, superconductors that are
in the flux-flow region of the mixed or vortex state [356]-[386]. It is also seen in
anomalous ferromagnetism. Since there are (1) no ferromagnetic atoms and (2) no atoms
with d or f electron shells in the sample, it is highly unlikely that ferromagnetism is
involved in these Hall measurements. The fact that the magnetization and magnetic
susceptibility are both negative suggests that ferromagnetism played no part in the sign
reversal in the Hall voltage.

The aforementioned evidence forces us to conclude that phosphorous-doped Highly
Oriented Pyrolytic Graphite (and phosphorous-doped graphene) is a superconductor with
a transition temperature between 150 K and 260 K. Some of the data acquired hints at a
possibility that the transition temperature in the best samples may approach room
temperature.

In summary, we were the first to systematically and exhaustively dope graphene for
the purposes of creating a high temperature superconductor. We were the first to study

the characteristics of Plasma Enhanced Chemical Vapor Deposited graphene in a
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phosphine environment due to our custom system built and certified for that purpose. We
successfully built a cryogenic system that can achieve 2.5 Kelvin measurements, all the
way up to 348 Kelvin, with a removable magnetic field coil system that does not disturb
the sample. Detailed software was created from scratch to automate almost every aspect
of our delta measurements to ensure consistency while also providing convenience. This
software successfully controlled voltage measurements, current generation, compressor
functionality and monitoring, temperature monitoring and heaters to allow above room
temperature measurements. We were not successful in creating a high accuracy
susceptometer due to ambient noise, however, we compensated by sending our samples
to an external research facility to achieve the same goals.

e We have created the highest transition temperature on record, of upwards of 260
Kelvin with indications of near room temperature transitions using perfected
doping techniques.

e All of the pentavalent electron donors showed signs of superconductivity
(phosphorus, nitrogen, arsenic). These showed strongest features for low dosage.

e We saw that flux vortices were created in doped graphene, indicating it is a type Il
superconductor.

e As expected, Plasma Enhanced Chemical VVapor Deposition doping minimized the
damage to our graphene lattice and allowed longer coherence lengths than ion
implanted doping. This also gave us flux flow which added to our resistance and
prevented us from seeing a zero resistance superconductor.

e lon Implanted doping created columnar defects that pinned our flux vortices.

This created pancake vortices that melted off in stages, causing multiple steps.
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[5]

[6]

[7]

8]

[9]

The mixed state region appeared to be much larger than we expected, with high
temperature boundaries upwards of 260 Kelvin and low temperature boundaries
unmeasurable by our equipment (may occur at temperatures under 3 Kelvin or not

at all). This is the first time this phenomenon has been seen.
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Appendix 1 Rvs. T for YBa,CuzOy.x Target
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Appendix 2 R vs. T for YBa,Cu3O7.x Hairpin
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Appendix 3 R vs. T for Niobium
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Appendix 4 Loss of Contact
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Appendix 5 As Low Peel
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Appendix 6 As Hi Peel
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Appendix 7 Al Low Bulk Run 002 and Run 003 - MF
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Appendix 8 Al Low Bulk Run 003-MF and Run 004
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Appendix 9 Al High
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Appendix 10 N Low, Peel 000, Run 002 and Run 003 — MF
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Appendix 11 N Low, Peel 000, Run 003 — MF and Run 004
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Appendix 12 N Low, Peel 003, Run 002 and Run 003 — MF
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Appendix 13 N Low, Peel 003, Run 003 — MF and Run 004
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Appendix 14 N High
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Appendix 15 Be Low
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Appendix 16 Be High
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Appendix 17 F Low
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Appendix 18 F High
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Appendix 19 Li Low
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Appendix 20 Li High
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Appendix 21 Na Low
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Appendix 22 Na High
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Appendix 23 S Low
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Appendix 24 S High
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Appendix 25 Flow Chart for Cryo4-Delta Measure ver 23 Auto compressor

and two separate files generated- VI name was disconnected on cooling in

previous version.vi
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Appendix 26 Flow Chart For - Header Gen (SubVI) version 2 - run logger

attempt to add comments.vi
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Appendix 27 Flow Chart For - R vs T SubVI LakeShore part - SubVI for R

vs T run v3 - Case structure removed.vi
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known state.
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Appendix 28 Flow Chart For - RunCalculatorINI.vi
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File Location

Open
Configuration
Data
Does the file exist?

Create a new file

YES
Section
Sample input Default value will be
and Key Read Key sent as initial run
; Does the key

Layer input exist? number

from ’
front panel

YES
A\ 4
Add 1 to run number

A 4

Write Key Convert run number to
Save the data string and display on front
panel
A 4
Close Configuration Data
Closes the reference for the > Error?
file J NO
\ 4
YES The program will stop

Show error messages
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Appendix 29  Cryo3- Magnetometer Ver 2.vi
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Page 1
Cryo3- Magnetometer Ver 2-1.vi

C:\Users\LabVIEW-user\AppData\Local\Temp\Cryo3- Magnetometer Ver 2-1.vi
Last modified on 5/20/2016 at 5:55 PM
Printed on 5/20/2016 at 5:57 PM

Cryo3- Magnetometer Ver 2-1.vi

— ‘ ‘ : . ) Osc Output ,
ample  Low Temperaturs (in kelvin) High Temperature (in kelvin) frequeney (10000) | Mag Calibrated e T
008 511 o4 290 ’
v % 41.00k
J 501.350 v
amplitude (0.10)
Run #

Hos00 Pag Locked
de offset (0.00) 501.350 mv Lacked

Operator £ e

Kiar L *J|Phase Degrees Locked

501.350 mv

XY Graph Plot 0

start phase (0.00)

Volts in mV

U i 0 U ] 0 0 ] i 0 i U 0 0 g U 0 0 i 0 v
2640 266.0 2680 270.0 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000 3020 3040 3060 3080 3100 3120 3140 316.0 318.0 3200 3220 3240
Temperature in K

Number of Samples taken

0
LakeShore GPIB (Default: 12) Osc GPIB to HP 33120A

*|GPIBO:12:INSTR W & GPIBO 6 hd
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Page 2 "“ﬁt

Cryo3- Magnetometer Ver 2-1.vi =
C:\Users\LabVIEW-user\AppData\Local\Temp\Cryo3- Magnetometer Ver 2-1.vi
Last modified on 5/20/2016 at 5:55 PM

Printed on 5/20/2016 at 5:57 PM

<tas phaso 00
roquancy {1005 - 551K

ampitnso im0

Lk s GRS (Dot 121

e B =

E Time Delay
Time Delay
Inserts a time delay into the calling VI.

This Express VI is configured as follows:

Delay Time: 30 s

Build XY Graph
H Build XY Graph

formats the data displayed on an X-Y Graph.
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Page 3 &_
Cryo3- Magnetometer Ver 2-1.vi

C:\Users\LabVIEW-user\AppData\Local\Temp\Cryo3- Magnetometer Ver 2-1.vi
Last modified on 5/20/2016 at 5:55 PM
Printed on 5/20/2016 at 5:57 PM
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Page 4 1_‘5:

Cryo3- Magnetometer Ver 2-1.vi =

C:\Users\LabVIEW-user\AppData\Local\Temp\Cryo3- Magnetometer Ver 2-1.vi
Last modified on 5/20/2016 at 5:55 PM
Printed on 5/20/2016 at 5:57 PM

Convert from Dynamic Data
Convert from Dynamic Data
Converts the dynamic data type to numeric, Boolean, waveform, and array data types for use with other
VIs and functions.

> Wait
| Wait
Delays for a certain time interval before the output data dependence becomes valid.
ﬁ Wa.l'tZ
| Wait

Delays for a certain time interval before the output data dependence becomes valid.
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Appendix 30  Cry03- SubVI: SR7270 8-bit R232 comms.vi
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7270
Page 1 oo
FEdirs

SR7270 8-bit RS232 comms.vi i
C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 8-bit RS232 comms.vi

Last modified on 5/11/2009 at 7:01 PM

Printed on 5/20/2016 at 8:01 PM

Connector Pane

SR7270 8-bit RS232 comms.vi

VISA session (for class) TZT0 VISA session
hnd
RS error out

error in (no error)

This VI forces the RS232 settings in the instrument and current VISA session, if this is using RS232, to 38400 baud ar
8 data bits, allowing subsequent binary dump commands, that respond with 8-bit data, to work correctly.

12 May 2009: First release

Front Panel
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Page 2 i |
SR7270 8-bit RS232 comms.vi et

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 8-bit RS232 comms.vi
Last modified on 5/11/2009 at 7:01 PM
Printed on 5/20/2016 at 8:01 PM

Block Diagram

True
ets interface to 38400 baud,

R5232 8 data bits, 1 stop bit, even parity

Send command one character al a time
and wait for echo

100ms Delay ensures unit has
tirme to switch baud rate and bits

B = Instr
Intf Type ¥
error in (o erod) [E]visa session
[ [ error out

H False :h
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Appendix 31 Cryo3- SubVI: SR7270 Configure Reference Channel-Single

Reference.vi
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Page 1 et
SR7270 Configure Reference Channel - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM

Connector Pane

SR7270 Configure Reference Channel - Single Reference.vi

Update
Update Reference Phase -
+90 degrees 1] Osc Amp Out
VISA session (for class) 1270 VISA session

Reference Harmonic

i Ref Harmonic Out
“—— Ref Locked
Auto Phase —— error out

Reference Input Jﬂ clr'FeEn | |_— Reference Phase out

Reference Phase

error in (no error) Osc Freq Out
Oscillator Amp (V rms)
Reference Mode
Oscillator Freq (Hz)

This VI controls the reference channel signal source, oscillator amplitude and frequency, reference phase and
harmonic for either a single reference channel or for channel 1 when using the dual reference or dual harmonic
modes

12 March 2009: First Release
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Page 2
SR7270 Configure Reference Channel - Single Reference.vi cI"nan
C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.lIb\SR7270 Configure Reference
Channel - Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM

Front Panel
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SR7270 Configure Reference Channel - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM

ref
chan

Block Diagram

Update
Reference Mode

Update Reference Phase

+90 degrees

Auto Phase

CTES

Reference Input

Previous Reference Input

I

[ oooo0) lll.lll:a

Checks to see if setting has changed from previous value; if
s0 sends command to set to required value

qTrue )

Set Reference Input

el

efer

bl

nce
—
Previous Reference

I
o
3
o
3
-

g

Reference Phase

IIM L —
Previous Reference Phase

[DELE

Oscillator Freq (Hz)
[obiH

Previous Oscillator Frequency (Hz)

Previous Oscillator Amp (V rms)
[DbLb

VISA session (for class)

i O it |l i | Il | ittt | kil ) Ll (118

Format Into String

o

error in (no error)

|
|

.m
[]

Ref Harmonic Out

Osc Freq Qut

FDEL ]
Osc Amp Out
PDEL |
A Reference Phase

I

Reference Phase out

Ref Locked

g

S
&l

VISA session

rror out
5

jninisisisisisisisisisisisisisisinsisisisisinininisisininininlisininlinininln]
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Page 4 | 1270
SR7270 Configure Reference Channel - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM

01[0.8]

Handles presses of the +90 degree button

200.00

OO O O O O O O O O O O O O O O O O O O O O O O O O O O OO OO OO T
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Page 5 | 1270
SR7270 Configure Reference Channel - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM

2 [0-81 73T [« . - - - +

|

Checks to see if setting has changed from previous value; if
so sends command to set to required value
1

Set Reference Harmonic

REFN1 %d S E‘
— I T e bt Reference Harrnonic‘
5| F REFN %d

g |

—1

ininisisisisisisisisisisisisisisisinisisisisinininininisinininininlnininin]
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Page 6 | 1270
SR7270 Configure Reference Channel - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM
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SR7270 Configure Reference Channel - Single Reference.vi

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:02 PM

3[0.8] hd Kdlhd Kk d (kS i i i +

:

Checks to see if setting has changed from previous value; if

so sends command to set to required value
'_—

True

Set Reference Phase

ininisisisisisisisisisisisisisisisinisisisisinininininisinininininlnininin]

ﬁ False :h
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SR7270 Configure Reference Channel - Single Reference.vi

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:02 PM

mEmE.
4 10-8) ST el T T

Checks to see if setting has changed from previous value; if
so sends command to set to required value
] I &

qTrve

Set Oscillator Frequency

PR Oscillator Freq (Hz

Format Into Strin

ininisisisisisisisisisisisisisisisinisisisisinininininisinininininlnininin]

ﬂ False :h
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Page 9 | 7210
SR7270 Configure Reference Channel - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM

> [0.8] hd hdlhd Rl id(Nd KKk i +|

Checks to see if setting has changed from previous value; if
so sends command to set to required value
] I L

Set Oscillator Amplitude

cillator Amp

Format Into String

ininisisisisisisisisisisisisisisisinisisisisinininininisinininininlnininin]

d False :b
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Page 10 | 7210
SR7270 Configure Reference Channel - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM

6[0.8
LRy iy 1y 2 Y R S

| +

Runs the Auto-Phase function

ininisisisisisisisisisisisisisisisinisisisisinininininisinininininlnininin]

ﬂ False :h
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SR7270 Configure Reference Channel - Single Reference.vi

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:02 PM

710.8] had hdlidRdidRd hdididididid +|

Checks Reference Phase if AQN has run

B
TI of if update boolean (set by Auto-measure)
jv;

is set
True
REFP1
[999;
REFP st tn
@ o
1000
- 1m0 —=
s
vrtived

ininisisisisisisisisisisisisisisisinisisisisinininininisinininininlnininin]

]ﬂFaIse :b
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Page 12 | 12i0
SR7270 Configure Reference Channel - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Reference
Channel - Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:02 PM

Stores present setting so that if routine is
repeatedly called unnecessary commands are
not sent

»f Previous Reference Input

»# Previous Reference Harmonic

ininisisisisisisisisisisisisisisisinisisisisinininininisinininininlnininin]
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Appendix 32 Cryo3- SubVI: SR7270 Configure Sensitive-Single Reference.vi
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Page 1 | 7270
SR7270 Configure Sensitivity - Single Reference.vi seh

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM

Connector Pane

SR7270 Configure Sensitivity - Single Reference.vi

Update
Auto Sensitivity - 1 Range Annotations Out[]
VISA session (for class) 2270 = VISA session
Input Mode d | —] 28 =" Auto Sensitivity out
AC Gain | Auto Measure out
Auto AC Gain — Range Out
Range | ACGAIN out
error in (no error) error out

Auto Measure -
Reference Mode

This control sets the full-scale sensitivity of the signal channel, or that of the first channel in the dual reference or
harmonic modes. It also sets the AC gain

12 March 2009: First Release
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SR7270 Configure Sensitivity - Single Reference.vi

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -

Single Reference.vi
Last modified on 5/11/2009 at 6:58 PM
Printed on 5/20/2016 at 8:03 PM

Page 2

1270
3en

Front Panel
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Page 3 | 7270
SR7270 Configure Sensitivity - Single Reference.vi seh

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM

Block Diagram

Update

-
=
3
3
3
)

Reference Mode Auto Sensitivity out

o]
| Auto sensitivity Checks to see if setting has changed from previous value; if |
. so and if AUTO AC GAIN is off, sends command to set to Auto Measure out

Auto Measure

’7 ~ _ required value,
|: | dTrue :h A Auto Measure

Range Annotations Out[]

Input Mode

Set AC Gain Level

1270
I_g\im
s,

VISA session

error out

error in (no error)

|
|
|
3

Iﬂ False :h
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Page 4 | 7270
SR7270 Configure Sensitivity - Single Reference.vi seh

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM

(OO 0000T0g B
140 0.6) =P

Changes Sensitivity Indicators to match
voltage or current input input modes ﬁ

I W« ¥

Voltage input mode - aux

o

Voltage input mode
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SR7270 Configure Sensitivity - Single Reference.vi

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM

4z

.Voltage input mode

Voltage input mode|

IN!A
2nV
SnV
10nV

o R |

Current mode - wide ban

209
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Page 6 | 7270
SR7270 Configure Sensitivity - Single Reference.vi seh

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM

Checks to see if setting has changed from previous value; if
so sends command to set to required value.

]j False :h
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Page 7 [ 7210
SR7270 Configure Sensitivity - Single Reference.vi SEN

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM

.Eli:!-fl"lillllB-B-IInIE-llEIH-!-!l!l: 3[0.,6] :E-!-Il!u-!ﬁluﬂ-gnﬂlénulﬂ

Checks to see if setting has changed from previous value; if
so sends command to set to required value
' ol i

[True —P

|
|
|
|
|
|
|
|
|
|
|

1
iislninisisininisininisisininininisinisiaisisininisisisinininisinininininin

d False :b
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Page 8 | 7270
SR7270 Configure Sensitivity - Single Reference.vi SEN

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM

OO 0000 00000000004 M OO 000000000000 0]
4 [0.61 RlsTTsle el e (s 4 s

|
|
|
|
|
|
|
|
|
|
|
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Page 9 | 7270
SR7270 Configure Sensitivity - Single Reference.vi SEN

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM

-llll!-I-hhl-Il!-hl-!-h!-l-l-'1 0000000000000
k3 5 - [#]+] ]3]

[#[[3][+][s]3]

|
|
|
|
|
|
|
|
|
|
|

1
iislninisisininisininisisininininisinisiaisisininisisisiaininisininininininl

d True :b

Read present AC GAIN and
Sensitivity settings - prevents

setting to out of range values
Toooooonig (uisisEalninls
1 10.1]

IIIIIHIHIIIIII-Z: 01[0.1] :IIIII}I-EIIIIIII

i
|
|
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SR7270 Configure Sensitivity - Single Reference.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Sensitivity -
Single Reference.vi

Last modified on 5/11/2009 at 6:58 PM

Printed on 5/20/2016 at 8:03 PM
|‘l-I-.-I-I-I-I-.-I-IIIIIIII]IIIII:m:.I.I.I.nlllnllllllllllllnllllll

Stores present settings so that if routine is
repeatedly called unnecessary commands are F—
not sent

rPrevious Range

P Previous AC Gain

{)ﬁPreuious Auto AC Gain

Page 10

1270
3en
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Appendix 33  Cryo3- SubVI: SR7270 Configure Signal Channel Input.vi
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SR7270 Configure Signal Channel Input.vi

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Signal

Channel Input.vi
Last modified on 5/11/2009 at 6:57 PM
Printed on 5/20/2016 at 8:04 PM

Page 1 | f270
signal
chan

Connector Pane

SR7270 Configure Signal Channel Input.vi

Update
Line Frequency Rejection Fi...

VISA session (for class)

Taro

VISA session

signal
har

Input Mode Out

Input Mode J |
Input Connector Shells |
Input Device

error in (No error) =
Line Frequency

b= arror out

This VI configues the input signal channel and the line-frequency rejection filter.

12 March 2009: First Release

Front Panel
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Page 2

SR7270 Configure Signal Channel Input.vi

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Signal
Channel Input.vi

Last modified on 5/11/2009 at 6:57 PM

Printed on 5/20/2016 at 8:04 PM

Block Diagram

Update_E ll-]llllllll-lll ll:m: IIIEI‘I]III
Input Mode [[U16H 1 Reads present VMODE setting and sets input mode ===
to match
Previous Input Mode [N 1 Ib E d'lrue :h
Input Connector Shells [CTER !
Previgus Input Connector Shells @— TMODE :

Line Frequency |(USR
Rejection Filter

I

[Previous Line Frequency Rejection Filter 8 2 VMDDE I VISA session
Line Frequency a
210
- Y
Previous Line Frequency E fid
VMODE
Input Device 9 e
mm
Previous Input Device [[TEW Input Mode Qut

rRInput Mode

VISA session (for class) @
error in (no error) II'-LE

|
i
|
1
1
|
|
{

n dFalse :h
0.0 ]
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SR7270 Configure Signal Channel Input.vi
C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Signal

Channel Input.vi

Last modified on 5/11/2009 at 6:57 PM

Printed on 5/20/2016 at 8:04 PM

|
|
|
;
|
|
|
|
|
|
|

P O OO 00000000004
110.51

Fronti]:
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SR7270 Configure Signal Channel Input.vi

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Signal
Channel Input.vi

Last modified on 5/11/2009 at 6:57 PM

Printed on 5/20/2016 at 8:04 PM

H False :h

Checks to see if Line Fillter setting has changed from previous
value; if 50 sends commands to set to required value

|
L
|

W raise —pf
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SR7270 Configure Signal Channel Input.vi

CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Signal
Channel Input.vi

Last modified on 5/11/2009 at 6:57 PM

Printed on 5/20/2016 at 8:04 PM

OO OO O T 3 70, 5) P O OO O O OO
= O [#][s] [#][+] [#]i#][#] [¢]

Checks to see if Line Frequency setting has changed from previous
value; if so sends commands to set to required value

True

— 1270
»
LINES0 0 i l

|
|
|
1
|
|
|
|
|
1

ﬂ False :b
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Page 6 | 1270
SR7270 Configure Signal Channel Input.vi ﬁ
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Signal
Channel Input.vi
Last modified on 5/11/2009 at 6:57 PM
Printed on 5/20/2016 at 8:04 PM

inizininininisinininisininiuin
...... - [#][+] [s][+] [s]i+]]8] [+
Checks to see if input coupling mode setting has changed from previous
value; if 50 sends commands to set to required value

True
S ICS
;
; il
| FET O

|
|
|
1
|
]
|
|
|
1

ﬂ False :h
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Page 7 | 1210
SR7270 Configure Signal Channel Input.vi s,:'%';ﬁ[
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Signal
Channel Input.vi
Last modified on 5/11/2009 at 6:57 PM
Printed on 5/20/2016 at 8:04 PM
|‘:|lllllllll]lIl[lllll]lIlllllll]l:m: llll&l]ul[laléll]ﬁ[lllullal[l

A Previous Input Mode Stores present settings so that if routine is

repeatedly called unnecessary commands are
not sent

{rﬂ Previous Input Connectar Shells I

r ¥ Previous Line Frequency Rejection Filter I

+A Previous Line Frequency I

H¥ Previous Input Device

|
|
|
1
|
]
|
|
|
1
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Appendix 34 Cryo3- SubVI: SR7270 Configure Virtual Reference Mode.vi
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SR7270 Configure Virtual Reference Mode.vi
C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Virtual
Reference Mode.vi

Last modified on 5/11/2009 at 7:05 PM

Printed on 5/20/2016 at 6:39 PM

Page 1 .7270
W ref
mode

Connector Pane

SR7270 Configure Virtual Reference Mode.vi

VISA session (for class) 1270 VISA session
Virtual Reference Mode J v ref
error in (no error) el

This VI turns the Virtual Reference Mode on or off.

error out

12 March 2009: First Release

Front Panel
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Page 2 | 7270
SR7270 Configure Virtual Reference Mode.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Virtual
Reference Mode.vi
Last modified on 5/11/2009 at 7:05 PM
Printed on 5/20/2016 at 6:39 PM

Block Diagram

III.Illllll]l'Illllllll'l]lll.lllll::ll'l]lll.Illllll].'.l.l.l.l.'l].l

v pdate
o=

Virtual Reference

Made — B4 [ Reads present Virtual Refmode setting
Previous Virtual Reference Mode [ and updates it if necessary

dTrue P

VISA session (for class)

VISA session
error in (no error)
error out
|[ Tas :: i

inininisisinisisisisisinsinininisisisinininininisisisinininisisinininininininin|

d False :h
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Page 3 | 1270
SR7270 Configure Virtual Reference Mode.vi
CA\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Configure Virtual
Reference Mode.vi
Last modified on 5/11/2009 at 7:05 PM
Printed on 5/20/2016 at 6:39 PM
i]-llllllll]llllllllllIlIllllllllll:m:lIlIllllllllllll]llllllllllIlIlll 1

Stores present settings so that if routine is
repeatedly called unnecessary commands are
not sent

|)ﬂPrevious Virtual Reference Mode|

juininisisisinininisisininisininisinisinininisinisininininisisinininininininin]
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SR7270 Initialize.vi
C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Initialize.vi

Last modified on 5/11/2009 at 6:57 PM
Printed on 5/20/2016 at 8:05 PM

Connector Pane

SR7270 Initialize.vi

ID query

Stop Bits

Data Bits

Interface

Serial Number

IP Address

Port

error in (no error)

Parity

Baud Rate

reset

This VI passes the addressing information in the instrument decriptor to the Instr Open VI and returns the instrume

ID. You can optionally reset the instrument by setting the front panel reset control. You must run this VI before usi
any of the instrument driver VIs for this instrument.

Instrument Descriptor
VISA session

error out

12 May 2009: First Release

Front Panel

08199244

192.168.11.6

o Yo |remow
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SR7270 Initialize.vi

C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 Initialize.vi
Last modified on 5/11/2009 at 6:57 PM

Printed on 5/20/2016 at 8:05 PM

Block Diagram

Quary ID and device type registers Reset inatrument Send default setup
10 que .
—— O e St debmiter to a comma

_ i o

o} query L

T @: R EEvsa sessin
ety f3 i v S . : T
Interface

Jr’m‘-'

|- EN . M =¥ Wi =¥ Fahe
[ust-inoazn-oeons:

Serial Number|
L =]
EX

0 Dol —pf
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Appendix 36  Cryo3- SubVI: SR7270 VISA WriteRead.vi
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SR7270 VISA Write/Read.vi wertivd

C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM

Connector Pane

SR7270 VISA Write/Read.vi

Invalid Command
-Command Parameter error
Output Data Array

VISA session (for class) {2210 VISA session
Hviso

Write Command String d ﬂm mrd lL Response 1
Translate DC. n to SEN; DCB n — I | Response 2

error in (no error)

Response 3

Response 4

error out
--------------- Output Overload

ADC Triggered

Reference Unlock
""""" Input Overload

This VI should be used instead of standard VISA write or write-read constructs since it supports the software
handshaking required when using the RS232 interface. It also handles correctly the USB and Ethernet interfaces, anc
the following types of instrument response:-

Single response, e.g. to X (output) command

Multiple responses, e.g. to M (monitor) command

Array responses, e.g. to DC (dump curve) command

Response to * (speed transfer) command

It also reports the instrument's status

12 May 2009: First Release
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Page 2 E
SR7270 VISA Write/Read.vi i
C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM

Printed on 5/20/2016 at 8:00 PM

| ]

Front Panel
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SR7270 VISA Write/Read.vi o

C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM

Block Diagram

233



Page 4 '
SR7270 VISA Write/Read.vi o

C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM

ioEol
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SR7270 VISA Write/Read.vi o

C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi

Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM

i
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SR7270 VISA Write/Read.vi

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM
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SR7270 VISA Write/Read.vi

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM
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C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM
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C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM

Printed on 5/20/2016 at 8:00 PM
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C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM
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C\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\SR7270LV8.IIb\SR7270 VISA Write/Read.vi
Last modified on 5/11/2009 at 7:02 PM
Printed on 5/20/2016 at 8:00 PM
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Appendix 37  Cryo4-Delta Measure ver 23 Auto compressor and two

separate files generated- VI name was disconnected on cooling in previous

version.vi
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Cryo4-Delta Measure ver 23 Auto compressor and two separate files generated- VI name was disconnectt
C:\Users\LabVIEW-user\AppData\Local\Temp\Cryo4-Delta Measure ver 23 Auto compressor and two
separate files generated- VI name was disconnected on cooling in previous version.vi

Last modified on 5/20/2016 at 5:21 PM

Printed on 5/20/2016 at 5:36 PM

Cryo4-Delta Measure ver 23 Auto compressor and two separate files generated- VI name was disconnected

Sensor A Cooling  Semsor B Cooling

Rws T Cooling
2500000

Current (&) Magnetic Fieid

1000 No Magnatic Fled < 230000

Operstor Rum Number
Kiar

Comments 22500001

Resistance
2

00 400 500 500 700 800 900 1000 1100 1200 1300 L00 1500 1600 1700 1600 1900 2000 Z100 200 2304 2400 Z00 2600 700 2600 2900 3000
Temparature in K

Sensor AWarming  Sensor B Warming

Resistance

W00 100 MO0 1600 1800 200 200 2400 200 2800 300 3;0
Temparature in K
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Cryo4-Delta Measure ver 23 Auto compressor and two separate files generated- VI name was disconnectt
C:\Users\LabVIEW-user\AppData\Local\Temp\Cryo4-Delta Measure ver 23 Auto compressor and two
separate files generated- VI name was disconnected on cooling in previous version.vi

Last modified on 5/20/2016 at 5:21 PM

Printed on 5/20/2016 at 5:36 PM

on cooling in previous version.vi
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Cryo4-Delta Measure ver 23 Auto compressor and two separate files generated- VI name was disconnectt ad

C:\Users\LabVIEW-user\AppData\Local\Temp\Cryo4-Delta Measure ver 23 Auto compressor and two

separate files generated- VI name was disconnected on cooling in previous version.vi
Last modified on 5/20/2016 at 5:21 PM

Printed on 5/20/2016 at 5:36 PM

Get the name of the VI
This VI

When to turn on
Med Heater (in Kelvin)

Path to CSV path for BMP

Cooling - Sample

— [ Layer

R vs T Casling

When to turn on
Low Heater {in Kelvin)

Sensor A Codling
& Digital =

Sensor_B Coaling

lf' Di‘;i’.cﬂ

Sensor A Cooling [Send an email of BMP and SV

O O e e e o o o e e O O o O Y E T LT T

Run Number

Sensor B Cooling

el

o Cooling

jaNsiaf=isisinisfafafsisfsinisiaiafsiafsisfuisfafiniaiainininiainiafiaiafsisiafaiafiaiainiafuisfaisiainisfaiaiuisiainiafugsiuisfaiaisiuinfuisiuinsisininiuinfn}

0 [0 1] —p OO OO T O

Rws T Cooling
T —

Export Image

g File Type
s Target
l Path
N

Hide Grid
Always Overwrite

R vs T Cooling
E—

"
Export Image
J File Type
1T Target
[ Path
' Hide Grid
» Always Overwrite

Save BMP and EPS files

slizialufaiafsialzisisinisiaiaizializisiaiaiaiaiainisisiaiaiainbisialnini]
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F70 read all and command_SubVLvi
C:\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
Last modified on 5/20/2016 at 5:58 PM

Printed on 5/20/2016 at 5:58 PM

Page 1

F 7o
ALL

Connector Pane

F70 read all and command_SubVLvi

Operation Status
Compressor Temperature

F70 Command F70 Firmware Version
VISA resource name in = = '?.:ﬂ'q ﬁ'_— Operation Hours

VISA resource name out
error out
==———====Compressor Pressure

error in ==

F-70 compressor RS232 communication driver.

This VI can directly output reading of T1, T2, T3, P1, P2, Firmware version, operation hours, and compressor statu:
(state of operation, alarms etc.). It can also send operation command (turn ON/OFF compressor and cold head, et
when compressor is in configuration mode 1.

It can be used as a sub-vi in other program.
It takes two inputs:

1. VISA resource name (COM1, COM2, etc.)
2. F70 command (you can choose from the drop down list (Turn on compressor and cold head, turn of compressc
and cold head, cold head pause, read all temperatures, read all pressures, read status bits etc.)

It outputs the following (depending on the input F70 command):

1. Compressor temperature (T1, T2, T3)

2. Compressor Pressure (P1, P2)

3. Compressor status bits (configuration mode, state of operation, alarms, system on, etc.)
4. Firmware version and operation hours.

General Information about F-70 RS232 communication protocol.

This section describes the F-70 compressor RS232 interface only. It does not describe overall operation or safety of
the F-70 compressor. Please refer to the F-70 operating manual for operating instructions and warnings. The
information in this section should be used only after safe operation of the F-70 compressor is understood.

1. F-70 Front Panel Connection: Male DB-9 connector

Pin 2 = Receive

Pin 3 = Transmit

Pin 5 = Earth Ground (connected to compressor chassis ground)

2. RS232 parameters.
a. Baud - 9600

b. No parity

c. 8 bit data

d. 1 bit stop
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Page 2 | F70

C:\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
Last modified on 5/20/2016 at 5:58 PM
Printed on 5/20/2016 at 5:58 PM

The F-70 sends no unsolicited messages. It only responds to commands from a host computer.

NOTE

RS232 commands that change operation of the F-70 compressor (on, off, reset, cold head run, cold head pause a
pause off) have equal value as front panel key press control. The F-70 will respond equally to either source of contr
input in the order in which it is received.

NOTE

There are no error routines or checks to prevent possible conflicts if a compressor is both connected to a diagnostic
interface (DB25) control element and an RS232 control element except:

1. RS232 commands that change operation of the F-70 compressor are active only when the compressor is set for
DB25 Configuration Mode 1 (reference operating manual). R$232 commands that transmit data are active for bo
DB25 Configuration Mode 1 and Mode 2.

2. In Configuration Mode 1, active DB25 operating signals will take priority over front panel key press and RS232
control. DB25 Configuration Mode 2 does not permit either RS232 or front panel key press control.

RS232 Command List (See the Command Set section below for command descriptions and examples)
1. Information Commands

$TEA: Read all temperatures $TEn: Read temperaturen(n=1,2,3, or 4)

$PRA: Read all pressures $PRn: Read pressure n (n =1 or 2)

$STA: Read status bits $ID1: Read firmware version and elapsed operating hours

2. Operating Commands

$ON1: On $OFF: Off

$RS1: Reset $CHR: Cold head run

$CHP: Cold head pause $POF: Cold head pause off

3. Responses: $7?7: Invalid command received

Command Structure

The individual bytes of any communication packet (frame) are restricted to the ASCII domain of 0x20 (20H, space

through Ox7E (7EH, tilde), plus 0x0D (carriage return).

The basic communication frame from the host computer to the F-70 compressor is comprised of a start character
command mnemonic, data (if required), checksum, and a message end character.

Start Character: This is always 0x24 (24H, dollar sign).
Command: This is a 3 character mnemonic. It defines the action which will be taken by the controller.

Data: Data will be transmitted as ASCII text equivalents. Example: the number 123 will be text 123", In the event t

e P [ . o ' P i amm A i . R ]
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F70 read all and command_SubVLvi aLL
C:\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
Last modified on 5/20/2016 at 5:58 PM
Printed on 5/20/2016 at 5:58 PM
a 110ating point NUMDEr Is TO De CoNveyed, TNen IT will alSO DE IN PIaIN TeXt. EXample: L23.Y will De TexXt “L/3.97. 1ne
data field length is fixed depending on the command that is issued. This will be defined at the command level.

Checksum (CRC-16): The checksum is a 16 bit CRC (CRC-16). It is transmitted as four-digit ASCII hex. Example: a
bit binary checksum "001001110101011" in four-digit ASCII equals "23AB". The check sum calculation includes the
"$" start character, command field, and data field (if present). See section E below for description of CRC-16
generation.

End of message: This is always 0xOD (ODH carriage return). This assures that the end of message character falls outs
the standard text domain and will not be incorporated in commands, data, or checksums.

The response frame from the F-70 compressor is similar to the command frame, but includes delimiters between
various fields.

Start Character: This is always 0x24 (24H, dollar sign).
Command: This is a 3 character mnemonic. It is the same as (echoes) the command sent from the host controller

Delimiter: This is always 0x2C (2CH, comma).

Data: Data will be transmitted as ASCII text equivalents. Example: the number 123 will be text "123". In the event t
a floating point number is to be conveyed, then it will also be in plain text. Example: 123.9 will be text "123.9". The
data field length is fixed depending on the command that is issued. This will be defined at the command level.

Checksum(CRC-16): The checksum is a 16 bit CRC. It is transmitted as four-digit ASCII hex. Example: a 16 bit bin
checksum "001001110101011" in four-digit ASCII equals "23AB". The check sum calculation includes the "$" start
character, command field, data fields (if present), and all commas including the comma preceding the checksum.
See section E below for description of CRC-16 generation.

End of message: This is always 0xOD (ODH carriage return). This assures that the end of message character falls outs
the standard text domain and will not be incorporated in commands, data, or checksums.

Command Set

$TEA: Read all temperatures
Command with checksum and carriage return = $TEAA4B9<cr>
Response: $TEA,T1,72,73,T4,<crc-16> <cr>

T1 through T4 are compressor internal temperatures in degrees C.
T1 = Compressor capsule helium discharge temperature

T2 = Water outlet temperature

T3 = Water inlet temperature

T4 is inactive (returns "000") for most F-70 variants.
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C:\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
Last modified on 5/20/2016 at 5:58 PM
Printed on 5/20/2016 at 5:58 PM

11 through 14 are compressor internal temperatures in degrees C.

T1 = Compressor capsule helium discharge temperature

T2 = Water outlet temperature

T3 = Water inlet temperature

T4 is inactive (returns "000") for most F-70 variants.

The temperature fields are always 3 characters long and are rounded to the nearest degree. Temperatures less the
100 °C have leading zeroes.

Example: $TEA,086,040,031,000,3798 <cr> corresponding to T1 = 86°C, T2 = 40°C,
T3 = 31°C and where 3798 is the checksum and <cr> is the carriage return,

$Ten: Read selected temperature (n = 1, 2, 3, or 4)
Command with checksum and carriage return = $TE140B8<cr>, $TE241F8<cr>, $TE38139<cr>, or $TE44378<cr>
Response: $TEN,Tn,<crc-16> <cr>

Example: host sends $TE140B8cr. The response from the compressor is $TE1,086,ADBC<cr> corresponding to
temperature T1 = 86°C and where ADBC is the checksum and <cr> is the carriage return.

$PRA: Read all pressures
Command with checksum and carriage return = $PRA95F7 <cr>
Response: $PRA,P1,P2,<crc-16> <cr>

P1 is the compressor return pressure in PSIG. P2 is inactive (returns "000") for most
F-70 variants.

The pressure fields are always 3 characters long and are rounded to the nearest whole number. Pressures less thai
100 psig have leading zeroes.

Example: $PRA,079,000,0CEC<cr> corresponding to P1 = 79 psig and where 0CEC is the checksum and <cr> is the
carriage return.

$PRn: Read selected pressure (n = 1 or 2)
Command with checksum and carriage return = $PR171F6<cr> or $PR270B6<cr>
Response: $PRn,Pn, <crc-16> <cr>

Example: host sends $PR171F6<cr>. The response from the compressor is $PR1,079,2EBD <cr> corresponding to
pressure P1 = 79 psig and where 2EBD is the checksum and <cr> is the carriage return.

$STA: Read Status bits
Command with checksum and carriage return = $STA3504 <cr>
Response: $STA,status bits, <crc-16> <cr>

The status bits are contained in a four character field that is the ASCII hex equivalent of a 16 bit word. For exampls
status bit field of "0301" is equivalent to a binary '0000001100000001". The left most character is the MSbit. Bits ar
defined as follows:
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C:\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
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11 through 14 are compressor internal temperatures in degrees C.

T1 = Compressor capsule helium discharge temperature

T2 = Water outlet temperature

T3 = Water inlet temperature

T4 is inactive (returns "000") for most F-70 variants.

The temperature fields are always 3 characters long and are rounded to the nearest degree. Temperatures less the
100 °C have leading zeroes.

Example: $TEA,086,040,031,000,3798 <cr> corresponding to T1 = 86°C, T2 = 40°C,
T3 = 31°C and where 3798 is the checksum and <cr> is the carriage return,

$Ten: Read selected temperature (n = 1, 2, 3, or 4)
Command with checksum and carriage return = $TE140B8<cr>, $TE241F8<cr>, $TE38139<cr>, or $TE44378<cr>
Response: $TEN,Tn,<crc-16> <cr>

Example: host sends $TE140B8cr. The response from the compressor is $TE1,086,ADBC<cr> corresponding to
temperature T1 = 86°C and where ADBC is the checksum and <cr> is the carriage return.

$PRA: Read all pressures
Command with checksum and carriage return = $PRA95F7 <cr>
Response: $PRA,P1,P2,<crc-16> <cr>

P1 is the compressor return pressure in PSIG. P2 is inactive (returns "000") for most
F-70 variants.

The pressure fields are always 3 characters long and are rounded to the nearest whole number. Pressures less thai
100 psig have leading zeroes.

Example: $PRA,079,000,0CEC<cr> corresponding to P1 = 79 psig and where 0CEC is the checksum and <cr> is the
carriage return.

$PRn: Read selected pressure (n = 1 or 2)
Command with checksum and carriage return = $PR171F6<cr> or $PR270B6<cr>
Response: $PRn,Pn, <crc-16> <cr>

Example: host sends $PR171F6<cr>. The response from the compressor is $PR1,079,2EBD <cr> corresponding to
pressure P1 = 79 psig and where 2EBD is the checksum and <cr> is the carriage return.

$STA: Read Status bits
Command with checksum and carriage return = $STA3504 <cr>
Response: $STA,status bits, <crc-16> <cr>

The status bits are contained in a four character field that is the ASCII hex equivalent of a 16 bit word. For exampls
status bit field of "0301" is equivalent to a binary '0000001100000001". The left most character is the MSbit. Bits ar
defined as follows:
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11 through 14 are compressor internal temperatures in degrees C.

T1 = Compressor capsule helium discharge temperature

T2 = Water outlet temperature

T3 = Water inlet temperature

T4 is inactive (returns "000") for most F-70 variants.

The temperature fields are always 3 characters long and are rounded to the nearest degree. Temperatures less the
100 °C have leading zeroes.

Example: $TEA,086,040,031,000,3798 <cr> corresponding to T1 = 86°C, T2 = 40°C,
T3 = 31°C and where 3798 is the checksum and <cr> is the carriage return,

$Ten: Read selected temperature (n = 1, 2, 3, or 4)
Command with checksum and carriage return = $TE140B8<cr>, $TE241F8<cr>, $TE38139<cr>, or $TE44378<cr>
Response: $TEN,Tn,<crc-16> <cr>

Example: host sends $TE140B8cr. The response from the compressor is $TE1,086,ADBC<cr> corresponding to
temperature T1 = 86°C and where ADBC is the checksum and <cr> is the carriage return.

$PRA: Read all pressures
Command with checksum and carriage return = $PRA95F7 <cr>
Response: $PRA,P1,P2,<crc-16> <cr>

P1 is the compressor return pressure in PSIG. P2 is inactive (returns "000") for most
F-70 variants.

The pressure fields are always 3 characters long and are rounded to the nearest whole number. Pressures less thai
100 psig have leading zeroes.

Example: $PRA,079,000,0CEC<cr> corresponding to P1 = 79 psig and where 0CEC is the checksum and <cr> is the
carriage return.

$PRn: Read selected pressure (n = 1 or 2)
Command with checksum and carriage return = $PR171F6<cr> or $PR270B6<cr>
Response: $PRn,Pn, <crc-16> <cr>

Example: host sends $PR171F6<cr>. The response from the compressor is $PR1,079,2EBD <cr> corresponding to
pressure P1 = 79 psig and where 2EBD is the checksum and <cr> is the carriage return.

$STA: Read Status bits
Command with checksum and carriage return = $STA3504 <cr>
Response: $STA,status bits, <crc-16> <cr>

The status bits are contained in a four character field that is the ASCII hex equivalent of a 16 bit word. For exampls
status bit field of "0301" is equivalent to a binary '0000001100000001". The left most character is the MSbit. Bits ar
defined as follows:
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11 through 14 are compressor internal temperatures in degrees C.

T1 = Compressor capsule helium discharge temperature

T2 = Water outlet temperature

T3 = Water inlet temperature

T4 is inactive (returns "000") for most F-70 variants.

The temperature fields are always 3 characters long and are rounded to the nearest degree. Temperatures less the
100 °C have leading zeroes.

Example: $TEA,086,040,031,000,3798 <cr> corresponding to T1 = 86°C, T2 = 40°C,
T3 = 31°C and where 3798 is the checksum and <cr> is the carriage return,

$Ten: Read selected temperature (n = 1, 2, 3, or 4)
Command with checksum and carriage return = $TE140B8<cr>, $TE241F8<cr>, $TE38139<cr>, or $TE44378<cr>
Response: $TEN,Tn,<crc-16> <cr>

Example: host sends $TE140B8cr. The response from the compressor is $TE1,086,ADBC<cr> corresponding to
temperature T1 = 86°C and where ADBC is the checksum and <cr> is the carriage return.

$PRA: Read all pressures
Command with checksum and carriage return = $PRA95F7 <cr>
Response: $PRA,P1,P2,<crc-16> <cr>

P1 is the compressor return pressure in PSIG. P2 is inactive (returns "000") for most
F-70 variants.

The pressure fields are always 3 characters long and are rounded to the nearest whole number. Pressures less thai
100 psig have leading zeroes.

Example: $PRA,079,000,0CEC<cr> corresponding to P1 = 79 psig and where 0CEC is the checksum and <cr> is the
carriage return.

$PRn: Read selected pressure (n = 1 or 2)
Command with checksum and carriage return = $PR171F6<cr> or $PR270B6<cr>
Response: $PRn,Pn, <crc-16> <cr>

Example: host sends $PR171F6<cr>. The response from the compressor is $PR1,079,2EBD <cr> corresponding to
pressure P1 = 79 psig and where 2EBD is the checksum and <cr> is the carriage return.

$STA: Read Status bits
Command with checksum and carriage return = $STA3504 <cr>
Response: $STA,status bits, <crc-16> <cr>

The status bits are contained in a four character field that is the ASCII hex equivalent of a 16 bit word. For exampls
status bit field of "0301" is equivalent to a binary '0000001100000001". The left most character is the MSbit. Bits ar
defined as follows:
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C:\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
Last modified on 5/20/2016 at 5:58 PM
Printed on 5/20/2016 at 5:58 PM

11 through 14 are compressor internal temperatures in degrees C.

T1 = Compressor capsule helium discharge temperature

T2 = Water outlet temperature

T3 = Water inlet temperature

T4 is inactive (returns "000") for most F-70 variants.

The temperature fields are always 3 characters long and are rounded to the nearest degree. Temperatures less the
100 °C have leading zeroes.

Example: $TEA,086,040,031,000,3798 <cr> corresponding to T1 = 86°C, T2 = 40°C,
T3 = 31°C and where 3798 is the checksum and <cr> is the carriage return,

$Ten: Read selected temperature (n = 1, 2, 3, or 4)

Command with checksum and carriage return = $TE140B8<cr>, $TE241F8<cr>, $TE38139<cr>, or $TE44378<cr>
Response: $TEN,Tn,<crc-16> <cr>

Example: host sends $TE140B8cr. The response from the compressor is $TE1,086,ADBC<cr> corresponding to
temperature T1 = 86°C and where ADBC is the checksum and <cr> is the carriage return.

$PRA: Read all pressures
Command with checksum and carriage return = $PRA95F7 <cr>
Response: $PRA,P1,P2,<crc-16> <cr>

P1 is the compressor return pressure in PSIG. P2 is inactive (returns "000") for most
F-70 variants.

The pressure fields are always 3 characters long and are rounded to the nearest whole number. Pressures less thai
100 psig have leading zeroes.

Example: $PRA,079,000,0CEC<cr> corresponding to P1 = 79 psig and where 0CEC is the checksum and <cr> is the
carriage return.

$PRn: Read selected pressure (n = 1 or 2)
Command with checksum and carriage return = $PR171F6<cr> or $PR270B6<cr>

Response: $PRn,Pn, <crc-16> <cr>

Example: host sends $PR171F6<cr>. The response from the compressor is $PR1,079,2EBD <cr> corresponding to
pressure P1 = 79 psig and where 2EBD is the checksum and <cr> is the carriage return.
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Page 9 gg&
F70 read all and command_SubVLvi ALL

CA\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
Last modified on 5/20/2016 at 5:58 PM
Printed on 5/20/2016 at 5:58 PM

Front Panel
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Page 10 g .:?.&
F70 read all and command_SubVLvi ALL
CA\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi

Last modified on 5/20/2016 at 5:58 PM

Printed on 5/20/2016 at 5:58 PM
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Page 11 g .:?.&
F70 read all and command_SubVLvi aLL
CA\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
Last modified on 5/20/2016 at 5:58 PM

Printed on 5/20/2016 at 5:58 PM
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Page 12 g .:?.Ea
F70 read all and command_SubVLvi ALL
CA\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi

Last modified on 5/20/2016 at 5:58 PM

Printed on 5/20/2016 at 5:58 PM
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F70 read all and command_SubVLvi aLL
CA\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi

Last modified on 5/20/2016 at 5:58 PM

Printed on 5/20/2016 at 5:58 PM

Block Diagram

H
HH
LR

gt
e

fs ueatrol

Cond gan S te i e e da

259



Page 14 | F 70
F70 read all and command_SubVLvi ALL

CA\Users\LabVIEW-user\AppData\Local\Temp\F70 read all and command_SubVLvi
Last modified on 5/20/2016 at 5:58 PM
Printed on 5/20/2016 at 5:58 PM
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Appendix 39 Fast Sweep -Kiar v17 changed from Pseudo to differential.vi
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Fast Sweep -Kiar v17 changed from Pseudo to differential-2.vi
C\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep -Kiar v17 changed from Pseudo to
differential-2.vi

Last modified on 5/20/2016 at 6:05 PM

Printed on 5/20/2016 at 6:06 PM

Page 1

FAST
DARME
EWEEF

Connector Pane

Fast Sweep -Kiar v17 changed from Pseudo to differential-2.vi

Resistor Value 1] Voltage on Graphene
Sample Clock Rate FAST Total Time in seconds
Max Output volage JJ oy tTotaI Points Measured after...
Number of Big steps | Step Size in Volts
Current
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Page 2 | o
Fast Sweep -Kiar v17 changed from Pseudo to differential-2.vi SWEEP
CA\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep -Kiar v17 changed from Pseudo to

differential-2.vi

Last modified on 5/20/2016 at 6:05 PM

Printed on 5/20/2016 at 6:06 PM

1. Description:

This example demonstrates how to continuously output a waveform using an internal sample clock. The automati
regeneration of data has been disabled, so new data has to be provided throughout the duration of the continuous
Analog Output operation. This allows the generation of any arbitrary frequency as this VI computes new data for
each iteration of the loop, maintaining phase continuity of the signal.

1L Instructions for Running:

1. Select the Physical Channel to correspond to where your signal is output on the DAQ device.

2. Enter the Minimum and Maximum Voltage range.

3. Specify the desired Sample Clock Rate of the output Waveform. Higher sample clock rates will produce a
smoother waveform.

4. Manually specify the Analog Output buffer size, in number of samples. A larger buffer would help non-
regenerative operations avoid errors due to occasional high CPU load.

Note:

The Analog Output buffer has to be at least as big as the amount of data being written to the board per iteration. T
recommended buffer size would be at least twice the amount of data being written to the board per iteration.

5. Enter the Waveform Information. See the documentation of the Basic Function Generator SubVI for informatio
on each parameter.

IIl. Block Diagram Steps:

1. Create an Analog Output Voltage channel.

2. Configure the task to prohibit the automatic regeneration of data.

3. Call the DAQmx (Sample Clock) VI to set the sample clock rate. Additionally, set the sample mode to Continuot
4, Read the actual sample clock rate (eventually coerced depending on the hardware used).

5. Compute the desired waveform, using the buffer size and the actual update rate, This VI keeps track of the phase
the waveform to ensure that the generated signal is continuous.

6. Write the waveform to the output buffer.

7a. Call the Start V1. This is only needed when the loop is executed for the first time.

7b. Do nothing.

8. Loop continuously until user presses the Stop button. Every iteration computes and writes a new waveform to 1
buffer.

9. Call the Clear Task VI to clear the Task.

10. Use the popup dialog box to display an error or warning if any.

IV. 1/O Connections Overview:

Make sure your signal output terminal matches the Physical Channel I/O Control. For further connection
information, refer to your hardware reference manual.
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Fast Sweep -Kiar v17 changed from Pseudo to differential-2.vi
C\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep -Kiar v17 changed from Pseudo to
differential-2.vi

Last modified on 5/20/2016 at 6:05 PM

Printed on 5/20/2016 at 6:06 PM

Page 3

FAST
DacHE
SWEEF

Front Panel

e et Vit 3 5 o g - g e

e g ok st g
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Page 4 | Mo
Fast Sweep -Kiar v17 changed from Pseudo to differential-2.vi SWEEF

C\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep -Kiar v17 changed from Pseudo to
differential-2.vi

Last modified on 5/20/2016 at 6:05 PM
Printed on 5/20/2016 at 6:06 PM
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Page 5 | FasT
DAGME

Fast Sweep -Kiar v17 changed from Pseudo to differential-2.vi SWEEF

CA\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep -Kiar v17 changed from Pseudo to
differential-2.vi

Last modified on 5/20/2016 at 6:05 PM

Printed on 5/20/2016 at 6:06 PM

Block Diagram

Bl
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Appendix 40 Fast Sweep v7 Current step and resistor added to csv.vi
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Page 1 :I:_\\’f

Fast Sweep v7 Current step and resistor added to csv.vi

C:\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep v7 Current step and resistor added to csv.vi
Last modified on 5/20/2016 at 6:09 PM
Printed on 5/20/2016 at 6:11 PM

Fast Sweep v7 Current step and resistor added to csv.vi

Resistor Value
Number of Big steps
Start Voltage
Sample Clock Rate
Magnetic Field

Sample # -
Layer # -‘J—;I;l\'{

Cryo State
Operator
Comments

Calculates the current from the total number of steps.
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Page 2 :I:_v

Fast Sweep v7 Current step and resistor added to csv.vi =

C\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep v7 Current step and resistor added to csv.vi
Last modified on 5/20/2016 at 6:09 PM
Printed on 5/20/2016 at 6:11 PM

First Tewg: Firul Temp Bien Nummber

Totl Time in peconds  Step fmin Amps  Step Site in Vsiti

Mumber of 83g Stepa * [ Sample Clack fate /10 = Total 8 of Staps far Cutpurt

Max Outpet Wottage * 2/ Total # of Staps = Stap Maight In¥.

Clo Rate

Creof T

6065 A0C3 2003 DD I06S A GOES AXCS
Conment

LE4 L4 LE4 1064 A0S BOE4  AF4 L4E4 164 1B4 2 2184

e 1067 1866 1065 L4 1663
Curent

2ifa 2864 LEEA W64 LE4 L4 1064 EDES 6GES AGES 2065 OO0 2065 ADES G065 BO0ES L0424 LAEA 1664 LBE4 2064 234
Curent

1668 1667 1666 1065 14 166
Curent
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Page 3 [T
LV

Fast Sweep v7 Current step and resistor added to csv.vi
C\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep v7 Current step and resistor added to csv.vi
Last modified on 5/20/2016 at 6:09 PM

Printed on 5/20/2016 at 6:11 PM

el Comtpanon

e =T

TriTems

e tening=] -

E Build XY Graph
7| Build XY Graph
formats the data displayed on an X-Y Graph.

Convert to Dynamic Data
Convert to Dynamic Data
Converts numeric, Boolean, waveform and array data types to the dynamic data type for use with

Express VIs.
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Fast Sweep v7 Current step and resistor added to csv.vi

Page 4

C:\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep v7 Current step and resistor added to csv.vi

Last modified on 5/20/2016 at 6:09 PM
Printed on 5/20/2016 at 6:11 PM

T
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thedy

LV
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¥ et v eman
[rom
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Fast Sweep v7 Current step and resistor added to csv.vi

C\Users\LabVIEW-user\AppData\Local\Temp\Fast Sweep v7 Current step and resistor added to csv.vi

Last modified on 5/20/2016 at 6:09 PM
Printed on 5/20/2016 at 6:11 PM
Convert to Dynamic Data2
Convert to Dynamic Data

Page 5

Converts numeric, Boolean, waveform and array data types to the dynamic data type for use with

Express VIs.

272

LV




Appendix 41 Find Start and End (SubV1).vi
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Page 1 | fifr
Find Start and End (SubVI).vi £h

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\Find Start and End (SubVI).vi
Last modified on 5/20/2016 at 6:05 PM
Printed on 5/20/2016 at 6:15 PM

Find Start and End (SubVI).vi

Array Size JiNG Start
Ref Voltage . End
L Length

Array Size

Ref Voltage
.

n *

[

Start

Finish

Second half of array

u‘ False :ﬂl
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Page 2 sqggr
Find Start and End (SubVI).vi ED

C:\Users\LabVIEW-user\Desktop\KELVIN & TUA\Kelvin\Find Start and End (SubVI).vi
Last modified on 5/20/2016 at 6:05 PM
Printed on 5/20/2016 at 6:15 PM

First half of array
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Appendix 42 GmailAttachmentSender.vi
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GmailAttachmentSender.vi

C:\Users\LabVIEW-user\AppData\Local\Temp\GmailAttachmentSender.vi
Last modified on 5/20/2016 at 6:16 PM
Printed on 5/20/2016 at 6:16 PM

GmailAttachmentSender.vi

Subject
Body J_J p
Attachment 1
Attachment 2

error in (No error) m————
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Page 2
GmailAttachmentSender.vi @
CA\Users\LabVIEW-user\AppData\Local\Temp\GmailAttachmentSender.vi
Last modified on 5/20/2016 at 6:16 PM
Printed on 5/20/2016 at 6:16 PM

#TOr in (no error)

Sendar's Na { = @ MailMessage ;I |; = MailMessage o

fram To

B = MailhdressCollection 3
Add

4 5 Msilacdress 1)
address

Recipient's Nai

Atmac
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GmailAttachmentSender.vi

CA\Users\LabVIEW-user\AppData\Local\Temp\GmailAttachmentSender.vi

Last modified on 5/20/2016 at 6:16 PM
Printed on 5/20/2016 at 6:16 PM

B = SmipChiert H
Erabless!

E o smapclient 5

messige

W B

o

B % Attachmentallection 31

Add

4 Attachemens 3
laName

-

rem |

],G Attachment
SleName

Page 3

B =+ MailMessage 5
Dispose
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Appendix 43 Header Gen (SubV1) version 2 - run logger attempt to add

comments.vi
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Page 1
Header Gen (SubVI) version 2 - run logger attempt to add comments.vi 1
C:\Users\LabVIEW-user\AppData\Local\Temp\Header Gen (SubVI) version 2 - run logger attempt to
add comments.vi
Last modified on 5/20/2016 at 6:17 PM
Printed on 5/20/2016 at 6:19 PM

Header Gen (SubVI) version 2 - run logger attempt to add comments.vi

Name
reference new file path (Not A Path i...
reference 2 — %-— t Run Number
Name X

Magnetic Field
Probe Arrangement
Boolean

Name

Name

High Level (A)
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Appendix 44 Periodic Fast Sweeps Temp Dependent v2b SubVI load with

callers Default.vi
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Page 1
Periodic Fast Sweeps Temp Dependent vZb SubVI load with callers Default.vi 3
C:\Users\LabVIEW-user\AppData\Local\Temp\Periodic Fast Sweeps Temp Dependent v2b SubVI load
with callers Default.vi
Last modified on 5/20/2016 at 6:19 PM
Printed on 5/20/2016 at 6:20 PM

Periodic Fast Sweeps Temp Dependent v2b SubVI load with callers Default.vi
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Page 2
Periodic Fast Sweeps Temp Dependent v2b SubVI load with callers Default.vi &
CA\Users\LabVIEW-user\AppData\Local\Temp\Periodic Fast Sweeps Temp Dependent vZb SubVI load
with callers Default.vi
Last modified on 5/20/2016 at 6:19 PM
Printed on 5/20/2016 at 6:20 PM

e e e s

= gq'* - il . = [ .

o &l I s

H Time Delay
Time Delay
Inserts a time delay into the calling VI.

This Express VI is configured as follows:

Delay Time: 20 s
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Appendix 45 Periodic Sweeps Temp Dependent v4c - Neg to Pos - Num runs

calculated.vi
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Page 1
Periodic Sweeps Temp Dependent v4c - Neg to Pos - Num runs calculated.vi 3
C:\Users\LabVIEW-user\AppData\Local\Temp\Periodic Sweeps Temp Dependent v4c - Neg to Pos -
Num runs calculated.vi
Last modified on 5/20/2016 at 6:21 PM
Printed on 5/20/2016 at 6:23 PM

Periodic Sweeps Temp Dependent v4c - Neg to Pos - Num runs calculated.vi
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Page 2
Periodic Sweeps Temp Dependent v4c - Neg to Pos - Num runs calculated.vi &
C\Users\LabVIEW-user\AppData\Local\Temp\Periodic Sweeps Temp Dependent v4c - Neg to Pos -
Num runs calculated.vi
Last modified on 5/20/2016 at 6:21 PM
Printed on 5/20/2016 at 6:23 PM

E Time Delay
Time Delay
Inserts a time delay into the calling VI.

This Express VI is configured as follows:

Delay Time: 20 s
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Appendix 46 RunCalculatorINl.vi
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Page 1 | run
RunCalculatorINLvi HUM

C\Users\LabVIEW-user\AppData\Local\Temp\RunCalculatorINLvi
Last modified on 5/20/2016 at 6:24 PM
Printed on 5/20/2016 at 6:24 PM

RuncCalculatorINLvi
Sample — Run Number
Layer HUM file created?
found?
Run Number
SEIEIL : file created?
SampleNum .
Layer found?
LayerNum .

B CoUsers\LabVIEW -userDocuments\My Programs\Delta Measure Testing)Test MeasurementsiRunbumTrackerini "ﬂ
=
24 .

file created?

Run Number

i
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Appendix 47 RuninfoLogger.vi
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Page 1 m
RunInfologger.vi LOGGER:
C:\Users\LabVIEW-user\AppData\Local\Temp\RunInfoLogger.vi
Last modified on 5/20/2016 at 6:24 PM
Printed on 5/20/2016 at 6:25 PM

RunInfoLogger.vi

Run Info ——— 1ro

LOGGER

Prog Delta Measure Testing\Test Measurements\Runinfo_Log.txt '_LE

Run Info

=
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Appendix 48 SubVI for Rv T run v3 - Case structure removed.vi
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Sub VI for R v T run v3 - Case structure removed.vi

CA\Users\LabVIEW-user\AppData\Local\Temp\Sub VI for R v T run v3 - Case structure removed.vi

Last modified on 5/20/2016 at 6:25 PM
Printed on 5/20/2016 at 6:25 PM

Sub VI for R v T run v3 - Case structure removed.vi

Cluster
When to turn on Med Heater ...
Magnetic Field

Path to CSV

L path for BMP

Name

Name JJ &%
Current (A) J’

Name

Name

Name

When to turn on Low Heater ...

| . Path to EPS

Run Number
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Sub VI for R v T run v3 - Case structure removed.vi

C:\Users\LabVIEW-user\AppData\Local\Temp\Sub VI for R v T run v3 - Case structure removed.vi

Last modified on 5/20/2016 at 6:25 PM
Printed on 5/20/2016 at 6:25 PM

Sample # Comments

| oo

Layer #
|

Current (A) Magnetic Field

u o Magnetic Field I

a.plerar,nr
| Kiar

XY Graph
4,000000-]
3200000
3.600000-
3.400000-]
3.200000-]
3.000000-]
2800000~

2600000

Resistance

2400000+
2.200000-
2.000000-
1.800000-
1600000~
1400000~
1.200000-} . . 0 i g
00 400 60.0 0.0 1200 1400

Clustar

Ctl Refnum for Graph

&

Ctl Refnum For Sensor A

&

Ctl Refaum For Sensor B

&

Ctl Refaum for Runbum

&

Run Number

Path

VI File Mame T

" 0 "
1600 180.0 w000
Temperature in K

to CSV Path for BMP

i

] O
200 2400

When 1o tum on
Low Heater (in Kelvin)

250
When to turn on
Med Heater (in Kehvin)

A 260

3200 3400 3600

Page 2

Sensor A1

0.0000 |

0.0000 ]

Plat 0
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Page 3 @
Sub VI for R v T run v3 - Case structure removed.vi 3

C:\Users\LabVIEW-user\AppData\Local\Temp\Sub VI for R v T run v3 - Case structure removed.vi
Last modified on 5/20/2016 at 6:25 PM

Printed on 5/20/2016 at 6:25 PM

@ Build XY Graph
Build XY Graph

formats the data displayed on an X-Y Graph.

<0t Convert from Dynamic Data
Convert from Dynamic Data
Converts the dynamic data type to numeric, Boolean, waveform, and array data types for use with other
VIs and functions.
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Page 4 %
Sub VI for R v T run v3 - Case structure removed.vi 3

C:\Users\LabVIEW-user\AppData\Local\Temp\Sub VI for R v T run v3 - Case structure removed.vi
Last modified on 5/20/2016 at 6:25 PM
Printed on 5/20/2016 at 6:25 PM
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Appendix 49 Sweep Up and Down v5e - Neg to Pos - MF selection and

CryoState added.vi
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Sweep Up and Down v5e - Neg to Pos - MF selection and CryoState added..vi
C\Users\LabVIEW-user\AppData\Local\Temp\Sweep Up and Down v5e - Neg to Pos - MF selection
and CryoState added..vi

Last modified on 5/20/2016 at 6:27 PM

Printed on 5/20/2016 at 6:28 PM

Sweep Up and Down v5e - Neg to Pos - MF selection and CryoState added..vi

Magnetic Field

Sample # ==
Layer # JJ—IV

Cryo State
Operator
Comments

Calculates the current from the total number of steps.
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Sweep Up and Down v5e - Neg to Pos - MF selection and CryoState added..vi

CA\Users\LabVIEW-user\AppData\Local\Temp\Sweep Up and Down v5e - Neg to Pos - MF selection

and CryoState added..vi
Last modified on 5/20/2016 at 6:27 PM
Printed on 5/20/2016 at 6:28 PM

Manual sweep from OmA to 100mA. Reading voltage on 21824
Need GPIB connections for both 6221 and 21824,

Py R |

Valsge

4065 ASES AGES 2SS 2065 1SES LGES 5066 0%k

Cument

Curmant

Curret

Page 2

# of Steps on last run

oo ERY
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Sweep Up and Down v5e - Neg to Pos - MF selection and CryoState added..vi
CA\Users\LabVIEW-user\AppData\Local\Temp\Sweep Up and Down v5e - Neg to Pos - MF selection
and CryoState added..vi

Last modified on 5/20/2016 at 6:27 PM

Printed on 5/20/2016 at 6:28 PM

N
e e e e Hi

[0}

Page 3

LV
P

g Build XY Graph
%% | Build XY Graph

formats the data displayed on an X-Y Graph.
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Page 4 [T
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Sweep Up and Down v5e - Neg to Pos - MF selection and CryoState added..vi
CA\Users\LabVIEW-user\AppData\Local\Temp\Sweep Up and Down v5e - Neg to Pos - MF selection
and CryoState added..vi

Last modified on 5/20/2016 at 6:27 PM

Printed on 5/20/2016 at 6:28 PM

]

—

| ...... o

Ll

B2l
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Appendix 50  TextMessageGeneral.vi
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TextMessageGeneral.vi

C:\Users\LabVIEW-user\AppData\Local\Temp\TextMessageGeneral.vi
Last modified on 5/20/2016 at 6:28 PM
Printed on 5/20/2016 at 6:29 PM

TextMessageGeneral.vi

Recipient's Email Address
Extra Email Addresses
Body

error in (no error)

error out
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Appendix 51  Voltage reading with DC current always on v4 Compressor

Automatically on and off.vi
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Page 1 :I:_\\’,'
Voltage reading with DC current always on v4 Compressor Automatically on and off.vi

C\Users\LabVIEW-user\AppData\Local\Temp\Voltage reading with DC current always on v4
Compressor Automatically on and off.vi

Last modified on 5/20/2016 at 6:29 PM
Printed on 5/20/2016 at 6:30 PM

Voltage reading with DC current always on v4 Compressor Automatically on and off.vi

Sample #

Layer # - :I:_v
Operator 1
Comments ———J

305



Page 2 :I:_v
Voltage reading with DC current always on v4 Compressor Automatically on and off.vi

CA\Users\LabVIEW-user\AppData\Local\Temp\Voltage reading with DC current always on v4
Compressor Automatically on and off.vi

Last modified on 5/20/2016 at 6:29 PM
Printed on 5/20/2016 at 6:30 PM

Kelthley GPIB must be ON
and restart if it wasnt
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Page 3 :I:_v
Voltage reading with DC current always on v4 Compressor Automatically on and off.vi o~
C:\Users\LabVIEW-user\AppData\Local\Temp\Voltage reading with DC current always on v4
Compressor Automatically on and off.vi
Last modified on 5/20/2016 at 6:29 PM
Printed on 5/20/2016 at 6:30 PM

_. —_‘B] b == [} Ewd
e | B

1

; Build XY Graph
| Build XY Graph

formats the data displayed on an X-Y Graph.
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Voltage reading with DC current always on v4 Compressor Automatically on and off.vi
C:\Users\LabVIEW-user\AppData\Local\Temp\Voltage reading with DC current always on v4
Compressor Automatically on and off.vi

Last modified on 5/20/2016 at 6:29 PM

Printed on 5/20/2016 at 6:30 PM
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Page 5 :I:_\\’,'
Voltage reading with DC current always on v4 Compressor Automatically on and off.vi

C\Users\LabVIEW-user\AppData\Local\Temp\Voltage reading with DC current always on v4
Compressor Automatically on and off.vi

Last modified on 5/20/2016 at 6:29 PM
Printed on 5/20/2016 at 6:30 PM

E Time Delay
Time Delay
Inserts a time delay into the calling VI.

This Express VI is configured as follows:

Delay Time: 5 s
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