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ABSTRACT OF THE DISSERTATION 

MULTI-RESOLUTION MODELING OF MANAGED LANES WITH 

CONSIDERATION OF AUTONOMOUS/CONNECTED VEHICLES 

by 

Somaye Fakharian Qom 

Florida International University, 2016 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

Advanced modeling tools and methods are essential components for the analyses 

of congested conditions and advanced Intelligent Transportation Systems (ITS) strategies 

such as Managed Lanes (ML). A number of tools with different analysis resolution levels 

have been used to assess these strategies. These tools can be classified as sketch planning, 

macroscopic simulation, mesoscopic simulation, microscopic simulation, static traffic 

assignment, and dynamic traffic assignment tools. Due to the complexity of the managed 

lane modeling process, this dissertation investigated a Multi-Resolution Modeling 

(MRM) approach that combines a number of these tools for more efficient and accurate 

assessment of ML deployments.  

This study clearly demonstrated the differences in the accuracy of the results 

produced by the traffic flow models incorporated into different tools when compared with 

real-world measurements. This difference in the accuracy highlighted the importance of 

the selection of the appropriate analysis levels and tools that can better estimate ML and 

General Purpose Lanes (GPL) performance. The results also showed the importance of 

calibrating traffic flow model parameters, demand matrices, and assignment parameters 
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based on real-world measurements to ensure accurate forecasts of real-world traffic 

conditions. In addition, the results indicated that the real-world utilization of ML by 

travelers can be best predicated with the use of dynamic traffic assignment modeling that 

incorporates travel time, toll, and travel time reliability of alternative paths in the 

assignment objective function. The replication of the specific dynamic pricing algorithm 

used in the real-world in the modeling process was also found to provide better forecast 

of ML utilization.   

With regards to Connected Vehicle (CV) operations on ML, this study 

demonstrated the benefits of using results from tools with different modeling resolution 

to support each other’s analyses. In general, the results showed that providing toll 

incentives for Cooperative Adaptive Cruise Control (CACC)-equipped vehicles to use 

ML is not beneficial at lower market penetrations of CACC due to the small increase in 

capacity with these market penetrations. However, such incentives were found to be 

beneficial at higher market penetrations, particularly with higher demand levels. 
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CHAPTER 1  

INTRODUCTION 

 Background 1.1.

Modeling of transportation systems is an essential component of transportation 

system planning and engineering. Transportation modeling tools are generally 

categorized as sketch planning, macroscopic, mesoscopic, or microscopic based on the 

resolution in which traffic flows are simulated. Some of these models have static or 

dynamic traffic assignment to predict route selections by travelers. The traffic models of 

regional demand models are considered as macroscopic models. The demand forecasting 

models generally utilize a simple macroscopic traffic flow relationships to assess network 

performance during the demand modeling steps. Microscopic models are utilized to 

model smaller networks and are able to model individual vehicle interactions at small 

time intervals. Mesoscopic models have more detailed traffic representation than 

macroscopic models, but lower representation than microscopic models. Mesoscopic 

models allow the modeling of sub-networks such as small to medium regional networks. 

Mesoscopic simulation models generate and track individual vehicles. However these 

models describe the relationship between congestion and travel time through macroscopic 

traffic flow parameters such as volume, density, and speed.  

Existing transportation tools are different in their applications and data 

requirements. Less detailed tool types can be used for large networks, while more 

detailed tool types are appropriate for smaller networks. All tool types are useful for 
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transportation analysis and a combination of these tools may be proper for different 

applications depending on network size and the level of analysis. 

Depending on the level of details, each tool type can be applied in the modeling 

process. An integrated approach of the different modeling levels can produce a powerful 

modeling environment. However, selecting, integrating, and interfacing different tools 

are the big challenges in transportation modeling. Therefore, the best methods for 

integrating and the benefits of combining these tools need to be clearly documented. 

Although this has been discussed in recent years, clear methods and assessments still 

need to be done.  

Advanced modeling tools and methods are specially needed for the analyses of 

congested conditions and advanced Intelligent Transportation Systems (ITS) applications 

such as managed lanes (ML), smart work zones, incident management, freight corridors, 

and integrated corridor management. Depending on the level of the analyses and the 

specific problem under consideration, a number of tools have been used to assess these 

strategies including tools that can be classified as sketch planning, Dynamic Traffic 

Assignment (DTA), macroscopic simulation models, mesoscopic simulation models with 

different levels of details, microscopic simulation models, and a combination of these 

tools. The modeling community is increasingly faced with challenges when selecting and 

combining these tools for the modeling of congested conditions and advanced strategies 

(Hadi et al., 2013).  

A Multi-Resolution Modeling (MRM) approach is proposed in this study for 

combining modeling tools with different traffic analysis resolutions of ML and associated 

advanced strategies. The resolution is the level of detail and precision used in the 
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representation of the transportation network in a model or simulation. There are two 

definitions of MRM given by Davis and Hilestad (1998): 

1. Building an integrated model involves different levels of simulation  

2. Using a combination of the consistent models of the same project with 

different levels of modeling 

An example of a simple partial MRM is to use demand forecasting models to 

provide initial demand estimates to mesoscopic or microscopic modeling tools. A full 

MRM utilizes a mesoscopic simulation-based DTA models for a large sub-area using trip 

demands from the demand models, and produce input data. Then, the microscopic models 

can be used to provide detailed analyses of selected sub-areas, corridors, or facilities. The 

MRM addresses issues that are beyond the capabilities of macroscopic, mesoscopic, and 

microscopic models. Examples of the MRM are shown in ‎Figure 1-1 (FHWA, 2013a). 

 
 Examples of MRM Structure (FHWA, 2013a) Figure 1-1

 A typical application of the MRM approach is used in networks in which the 

initial demand matrices are estimated based on the approved regional demand forecasting 

process and then wide area diversion and bottleneck impacts are modeled using 
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mesoscopic-based DTA models, followed by detailed analysis of traffic operations using 

microscopic models.  

The Federal Highway Administration (FHWA) traffic analysis toolbox documents 

have provided guidance regarding the use of traffic analysis tools including simulation 

and DTA modeling tools, as can be found at http://ops.fhwa.dot.gov/trafficanalysistools. 

However, it is necessary to build on the existing state of practice and research and 

development efforts to establish a comprehensive framework for multi-resolution 

analyses to support the modeling processes. It is clear that additional tools and methods 

will have to be built and developed to support MRM (FHWA, 2012a). 

Addressing the abovementioned needs is critical to modeling advanced strategies 

such as managed lane, ramp metering, smart work zone, and freight corridor 

management. This research investigates the use of MRM for managed lane strategy 

analysis with consideration of advanced strategies such as autonomous and connected 

vehicles. 

 Problem Statement 1.2.

Modeling of transportation systems is an important component of transportation 

system engineering and planning. Transportation modeling tools are generally 

categorized as sketch planning, macroscopic, mesoscopic, or microscopic based on the 

resolution of traffic flows. Existing transportation modeling simulation types are different 

in their implementations and data requirements. Microscopic traffic simulation provides a 

detailed performance of traffic congestion as well as the interaction between individual 

vehicles. However, modeling a large network of microscopic simulation models can be 

http://ops.fhwa.dot.gov/trafficanalysistools
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costly and time-consuming. Previous experience shows that the development of newly 

integrated traffic simulation models could be more useful by linking them to regional 

travel demand, mesoscopic DTA-based, and microscopic models. (Rousseau et al., 2008). 

Modeling tools used in transportation analyses are not integrated well enough to 

provide a complete and accurate assessment of the transportation systems. The need for 

model integration is increasingly recognized considering the needs to support the 

decision-making process and the tools supporting. Agencies need to evaluate many 

strategies by using tools that are sensitive to supply and demand calibration. In turn, this 

requires the use and integration of analysis tools across multiple resolutions 

(macroscopic, mesoscopic, and microscopic). Other data analysis and modeling support 

tools are also necessary for an effective modeling process (FHWA, 2013a). 

One of the potential applications of MRM is the modeling of ML strategies. The 

utilization of advanced simulation methods is required accurately to assess the impacts of 

the ML and the associated operation strategies. Also, agencies require knowing the 

amount of the diverted volumes to a managed lane, which affected the revenue and 

congestion on both the ML and the General Purpose Lanes (GPL). They also need to 

know how the traveler will respond to changes in toll policies, such as changing the toll 

schedule or vehicle occupancy restriction. These questions can be answered by utilizing 

advanced modeling combined with network and demand calibration, and validation 

methods (Hadi et al., 2013).  

 Simulation-based DTA tools at a different level of analysis can be utilized to 

simulate the dynamics of traffic flow, particularly under congested conditions with 

consideration of queue spillback effects on traffic patterns after each assignment iteration. 

http://ascelibrary.org/action/doSearch?ContribStored=Rousseau%2C+G
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However, the data required for calibrating DTA models and the demand calibration effort 

are main concerns of modelers and planners when considering the use of such these 

dynamic traffic models (Hadi et al., 2012a). DTA models can be designed for several 

types of pricing strategies such as fixed, time-of-day, and congestion pricing. DTA 

models are able to consider a route-choice behavior problem in managed lane utilization. 

DTA are able to apply the concept of a generalized cost approach in modeling the 

selection of managed lanes by traveler. The generalized cost function is a utility function 

of travel distance, travel times, travel time reliability, and lane monetary cost (FHWA, 

2012a). 

Pricing, vehicle restriction, or access control can be used to improve system 

performance of the ML. In this regard, operating ML with preferential treatments of 

vehicles with advanced technologies such as Autonomous Vehicles (AV) or Connected 

Vehicles (CV) could be beneficial since the performance of these vehicles are expected to 

improve the mobility and safety of ML. There will be also a time when the designation of 

special lanes for these vehicles will be advantageous to commuters. Special lanes for 

vehicle eligibility are established through High Occupancy Vehicle (HOV) lanes, High 

Occupancy Toll (HOT) lanes, truck lanes, and so on. It should be noted, however, that the 

managed lanes with vehicle eligibility restrictions present enforcement challenges. In 

addition, vehicle restriction and eligibility must be implemented at the appropriate time, 

considering the proportion of the vehicle types in traffic. The market penetration of 

advanced vehicle technology will also be driven by the purchase rates of these advanced 

vehicles and the replacement rates of conventional vehicles (FHWA, 2012b). To assess 

the interactions between advance vehicle technology and manually driven vehicles, it is 
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necessary to use advanced models of each that have sufficient details to capture their 

interactions. A MRM approach that combines macroscopic, mesoscopic, and microscopic 

simulation modeling with DTA is proposed in this research.  

 Research Goal and Objectives 1.3.

The goal of this dissertation is to develop and assess methods and tools using 

MRM in the evaluation of ML strategies. This research assesses the effectiveness of 

MRM methods and tools in the modeling of ML in different levels of analysis with the 

consideration of advanced vehicle technologies. The specific objectives of this study are 

including:  

1. Develop and test criteria to select modeling tools for ML strategies. 

2. Investigate the ability of existing tools with different levels of modeling to 

meet the ML modeling criteria.  

3. Develop methods for use in support of agency modeling of ML utilizing 

MRM. 

4. Apply and assess the recommended MRM methods in the modeling of ML. 

5. Apply different pricing approaches in the modeling of ML. 

6.  Assess the use of MRM in the modeling of Adaptive Cruise Control (ACC) 

and Cooperative Adaptive Cruise Control (CACC) as examples of 

autonomous and connected vehicle strategies, respectively. 

 Research Contributions 1.4.

This study aims to explore the effectiveness of different levels of modeling when 

used separately and in combinations. This study demonstrates how MRM can be used to 
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answer questions related to the effectiveness of ML strategies with different incentives 

(preferential treatments), pricing strategies, and access restrictions to improve system 

performance. In particular, this dissertation shows how tools with different resolution 

levels can be used to model diversion due to changing toll schedules and the benefit of 

providing access and intensives for AVs and CVs. 

A number of questions related to MRM are answered in this dissertation. A 

question that has been asked is what the value of going to more detailed resolutions such 

as utilizing dynamic traffic assignment combined with mesoscopic and possibly 

microscopic simulation for ML modeling. This study demonstrates the ability of different 

tools in modeling the operations of ML and GPL. Transportation agencies have also used 

models with supply and demand parameters that are not well calibrated based on detailed 

real-world data. This dissertation answers the question of the value of resources in better 

identification of modeling parameters. 

This dissertation then answers a third question, which is tools with different 

resolutions can predict shifts to ML volume to changes in ML policies such as changes in 

toll schedule, that has not been adequately answered in previous studies. Answering this 

question is critical for the decision to select tools with specific resolutions for the 

agencies. 

The impacts of using different parameters such as Value of Time (VOT), Value of 

Reliability (VOR), and toll in the assignment objective and utilizing fixed vs. stochastic 

VOT in the modeling results are also investigated. A unique method for increasing 

reliability in the generalized cost function is developed in this study that provides an 

effective and easy to use the method for including reliability in the route choice behavior. 
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Finally, this study demonstrates how to use the MRM to model AVs and CVs on 

ML modeling. This modeling allows the determination of when and how it will be 

advantageous to provide preferential treatments to vehicles to use MLs. 

 Dissertation Organization 1.5.

This section summarizes the organization of this document by presenting an 

overview of the chapters in this document.  

Chapter 2 presents a review and assessment of past research related to the 

objectives and tasks of this study. First, a review is presented of existing simulation and 

DTA tools with emphasis on previous experience with MRM. Second, a review is 

presented for ML modeling approaches at different levels of details ranging from sketch 

planning tools to microscopic simulation modeling. Chapter 2 finally reviews existing 

literature on the effects of AVs and CVs on traffic operations and illustrates the potential 

positive impacts on traffic mobility. 

Chapter 3 presents the methodology and tasks that have been carried out through 

this study. This chapter explains the task sequence and the link between different tasks. 

The tasks of this study are including: 

 Data sources and pre-processing 

 Tool exploration and selection 

 Model input/output conversion 

 Supply calibration 

 Trip demand estimation 

 Application of MRM to ML 
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 Assessment of the mobility impacts of AVs/CVs in ML 

Chapter 4 presents the results of using MRM to model ML for a case study 

utilizing the methodology explained in Chapter 3.  

Chapter 5 summarizes the findings of this research in the MRM framework in the 

context of managed lane modeling with consideration of AVs/CVs. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter presents a review and assessment of past researches related to the 

objectives and tasks of this study. First, a review of existing simulation and DTA tools 

with focus on MRM is presented. Second, a review is presented for ML modeling 

approaches at different levels of details ranging from sketch planning tools to 

microscopic simulation modeling. Eventually, existing literature on the effects of 

advanced autonomous and connected vehicle technologies on traffic operations, 

illustrating the potential positive impacts on traffic mobility is reviewed in this chapter. 

 Multi-Resolution Modeling (MRM) 2.1.

Analysts need to use a combination of tools with different resolutions, 

functionalities, and capabilities to take a full advantage of advances in traffic modeling. 

However, one main problem that arises when using a combination of different modeling 

tools is the difficulty of using the interfacing and integrating processes, as well as using 

data from various data sources and resolutions (Holyoak and Branko, 2009). The 

interfaces between tools have been in one direction, from macroscopic level to the 

microscopic level, in the most previous applications of MRM. However, two-way 

interfacing is also possible, and has not been adequately considered in previous 

transportation modeling levels (Duthie et al., 2012). 
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The modeling of advanced vehicle technologies in this dissertation can actually be 

considered as a full MRM. The research on MRM is in its initial stages and there is still a 

lot to be learned regarding this type of analyses.  

 Review of Simulation and Dynamic Traffic Assignment (DTA) Tools  2.1.1.

DTA is becoming an increasing acceptance in the transportation community. 

DTA models provide a more realistic traffic flow and driver response modeling patterns 

compared to static models used in traditional demand forecasting models by accounting 

for changing traffic conditions in small time intervals (15-30 minutes is usually used). 

More details about DTA can be found in Hadi et al. (2013), Hadi et al. (2012a), Hadi et 

al. (2012b), Chiu et al.(2011), and FHWA (2012a). 

One of the main benefits of using DTA to model traffic networks is that the 

outputs of the model describe the time-dependent network states. Outputs from the model 

include time-dependent system level, and link level performance statistics.  

Based on the discussion in Hadi et al. (2012b), DTA models are able to capture 

many realities in the transportation network that static assignment cannot capture, 

including vehicle trajectories, traffic performance, and driver routing decisions in 

response to congested conditions and advanced management and pricing decisions. A 

comprehensive review of DTA–based tools and their approaches was conducted by Hadi 

et al. (2012a) in IITS research lab at Florida International University (FIU). The summary 

of the review is presented in Appendix 1. 

The simulation-based DTA tools described in Appendix 1 vary in the level of 

details from macroscopic to mesoscopic to microscopic. Tools with different levels of 
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resolution are suitable for different applications. However, combining these tools in a 

single application can provide capabilities and functionalities that are not possible with 

the use of one type of model as described in the next section. 

 Previous Experiences of MRM  2.1.2.

MRM refers to a modeling framework that combines microscopic, mesoscopic, 

and macroscopic representations of traffic flow. There is a consensus that such 

framework can be a useful tool to better assess traffic operations and advanced strategy 

impacts.  

The Federal Highway Administration’s (FHWA) Office of Operations classified 

the structures as partial and full MRM (FHWA, 2012a), as shown in ‎Figure 2-1.  

 
 Example of Modeling Structures (FHWA, 2012a)   Figure 2-1

Sbayti and Roden (2010) compared the use of a partial MRM (macroscopic model 

to microscopic model structure) versus a full MRM (macroscopic to mesoscopic to 

microscopic model structure). In the partial MRM, a sub-area from the demand 

forecasting model was converted to run in a microscopic simulation tool. When using a 
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full MRM approach, the outputs from the macroscopic model were fed into a mesoscopic 

DTA model, which produces time-dependent flows that are capacity constraints, and are 

used as inputs to microscopic models. They also identified the common challenges to 

integrate the regional demand models and network simulation tools including network 

and demand calibration, network input and output conversion, and hardware processing 

to support the integration of different levels of modeling. 

In recent years, a few studies have used MRM in practices. A combination of the 

DynasT mesoscopic tool and VISSIM microscopic tool was used by Shelton and Chiu 

(2009). In their study, a sub-area was cut from a large regional DynusT network. To 

conduct this process, a conversion tool was developed to read files from DynasT inputs 

and outputs and generated the corresponding network and demands in the format required 

by VISSIM. ‎Figure 2-2 illustrates the modeling framework that was used by Shelton and 

Chiu (2009). 

 
 Modeling Framework for Mesoscopic-Microscopic Integration  Figure 2-2

(Shelton and Chiu, 2009) 
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Martin al. (2011) developed a partial MRM framework that involved the macro 

and microscopic simulation models. The travel demand forecasting model was 

implemented in VISUM simulation tool. A cut subarea from the VISUM macroscopic 

model was fed to the VISSIM microscopic simulation tool. Duthie et al. (2012) also used 

a combination of TransCAD (macroscopic demand forecasting model), VISTA 

(mesoscopic simulation-based DTA model), and VISSIM (microscopic simulation-based 

DTA model).  

In summary, it can be concluded that MRM has recently been referenced as an 

approach to improve the assessment of the impacts of time-varying traffic demand that 

are capacity constrained and the associated vehicle routings that can be used as inputs to 

microscopic simulation model. 

 Managed Lane (ML) Modeling Structure  2.2.

ML strategies are innovative ITS strategies to address congestion problems. These 

strategies involve operating lanes adjacent to the GPL of a freeway facility and providing 

congestion-free trips to eligible users. A Combination of access control, pricing, and 

vehicle eligibility defines the different types of ML. ML policies are adjusted to local 

traffic conditions. The toll values are different based on the time-of-day and the level of 

congestion. In an advanced toll policy, different toll values are applied to different user 

groups utilizing dynamic congestion pricing schemes (Hadi et al., 2013). 

The key feature that distinguishes ML from traditional capacity improvements is 

the operational flexibility to actively respond to the current situation, and continuously 

keep the facility in optimal conditions. The criteria to select the operation parameters of 
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ML can include one or more of the following: preserving a certain level of service in the 

ML, maximizing revenue, supporting environmentally-friendly vehicles, improving trip 

reliability, improving safety, and encouraging the use of public transit (FHWA, 2008c). 

Although the objective of the strategies utilized in existing managed lane applications is 

mainly to maintain an acceptable level of service of the priced lanes, studies show that 

travelers in general purpose lanes also benefit from managed lane deployments (Safirova 

et al., 2013; and Janson & Levinson, 2013). 

Successful implementation of ML strategies requires using advanced modeling 

methods to allow better assessment of the impacts of changes in traffic conditions and the 

impact of operation strategies. Simulation-based DTA tools are suitable candidates for 

use in ML modeling. These tools utilize simulation to capture the dynamics of traffic 

flow in congested conditions (Shabanian, 2014).  

A variety of modeling approaches have been proposed to assess managed lane 

implementations. These approaches range from high-level sketch planning tools to micro-

level modeling of individuals’ behaviors and traffic operations (DeCorla-Souza and 

Whitehead, 2003; Li and Govind, 2003; Murray et al., 2001; and He et al., 2000). 

 Sketch Planning and Demand Model-Based Tools 2.2.1.

The Federal Highway Administration (FHWA) developed an open-source sketch 

planning tool (POET-ML) to perform a quick evaluation of ML performances and pricing 

policies. The inputs required to use this spreadsheet include eligibility policies such as 

occupancy restrictions; physical characteristics such as the lengths and the number of the 

lanes, median types, and buffer types; and demand information such as the peak hour 
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volumes on ML and GPL facilities. The user can change the current policy according to 

the results produced by the tool. The outputs from the tool include the potential impacts 

on travel demands, revenues, mobility, and the environment (FHWA, 2008a). 

Another spreadsheet-based application, developed by the University of Texas at 

Austin is the Project Evaluation Toolkit (PET). PET includes a trip demand estimation 

module for time-of-day modeling and route choice behavior with different demand types. 

MLs may be directly implemented in PET by adjusting tolling rates by vehicle type and 

time of day. Vehicles types can be excluded from using the HOV and ML lanes by 

setting the tolls extremely high (Kockelman et al., 2012). 

The Florida ITS Evaluation (FITSEVAL) is another sketch planning tool 

developed for the Florida Department of Transportation (FDOT) by Hadi et al. (2008) at 

Florida International University in Miami, Florida to evaluate and assess ITS advanced 

strategies through the Florida Standard Urban Transportation Model Structure 

(FSUTMS) framework. This tool evaluates the effects of different ITS applications 

including ML, on network performance measures such as Vehicle Mile Traveled (VMT) 

and Vehicle Hour Traveled (VHT), crash statistics, emissions, average speed, and fuel 

consumption. The ML module in FITSEVAL utilizes the static assignment of the Cube 

software. 

The FHWA developed an interactive spreadsheet sketch planning tool, referred to 

as the Tool for Rush-Hour User Charge Evaluation (TRUCE) to quantify the impacts of 

congestion pricing on urban highways. In its current form, the model considers scenarios 

for congestion pricing on the network. The pricing strategy is changed based on the travel 

time savings (FHWA, 2008b). 
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The Florida Department of Transportation (FDOT) in 2013 developed a standard 

approach for managed lane demand forecasting applications in the FSUTMS as a project 

with different phases. Phase I focused on the use of static assignment in developing route 

choice in managed lane modeling and analysis. The developed model was used to 

determine the proportion of drivers willing to use ML, given the charged tolls and the 

difference in performance between ML and GPL lanes, based on a static assignment 

procedure combined with a willingness-to-pay curve (Ruegg et al., 2013). In Phase II, the 

choice between GPL and ML was formulated by a logit model in the mode choice step of 

the traditional four-step demand forecasting procedure (Parsons Brinckerhoff, 2013).  

The Florida’s Turnpike Enterprise (FTE) in 2012 focused on estimating the 

express lanes traffic operations as a function of variable toll rates. FTE developed a tool 

which is referred to as the Express Lanes Time of Day (ELToD). ELToD utilizes a 

dynamic pricing policy, VOT, and VOR in the evaluation. An important input to ELToD 

is the O-D matrices which are output from the travel demand models. ELToD assumes 

the daily traffic and hourly distribution constant and estimates the diversion that will 

occur between the general purpose lanes and express lanes given these volumes. This can 

be done by solving the supply/demand equilibrium problem considering both the toll 

level and travel times for each analysis time interval (FTE, 2012).  

 Data Analytical Tool 2.2.2.

The ITS Data Capture and Performance Management (ITSDCAP) is real-world 

data-based evaluation and analysis tool that was developed for the FDOT by Hadi et al. 

(2012c) at Florida International University. One of the functionalities of this tool is to 
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evaluate and analysis ITS implementation. Procedures were developed in the ITSDCAP 

tool to evaluate advance ITS strategies such as managed lanes, ramp metering, incident 

management, and smart work zone. The benefits of managed lanes should be evaluated 

for both planning and operational purposes. The impacts of MLs are considered in this 

tool by the performance measures including travel time, travel time reliability, maximum 

throughput, and toll revenue. 

 ML Modeling Input Parameters 2.2.3.

Two essential components of the managed lane choice are the Value of Time 

(VOT) and Value of Reliability (VOR). VOT is the measure of a driver’s willingness-to-

pay for travel time savings. VOR is a component that affects a traveler’s decision to 

choose the ML, and is expected to be a function of travel distance, income, and car 

occupancy. 

The FDOT evaluated the modeling of ML in Southeast Florida Regional Planning 

Model (SERPM) model (FDOT, 2013). The calibration of the ML model within the 

SERPM framework identified the use of a VOT of $11.75/hour, and a range of $0.00 to 

$2.99 for VOR. The VOR in this estimation seems to be low. This value is based on 

stated and revealed preference surveys from fall 2011 (Resource Systems Group, 2012).  

Calibrating models based on state and revealed preference surveys for the Florida 

Turnpike’s tolling model resulted in a VOT ranging from $3/hour to $13.50/hour, based 

on trip purpose and income level (Dehghani et al., 2003). A survey conducted by the 

Florida’s Turnpike Enterprise (FTE) in 2005 showed that 91% of the responders 

perceived the benefit of paying the toll in terms of service, safety, and convenience (FTE, 
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2005). Nava et al. (2013) selected a VOT of $15.50/hour for SOV and HOV users and a 

VOT of $46.50/hour for commercial trucks.  

Recent findings recommended adding travel time reliability as a decision factor in 

the assignment process, and introducing VOR in the generalized cost function. 

(Cambridge Systematics. Inc, 2012). In order to obtain travel time reliability from stated 

and revealed preference surveys, the Resource Systems Group (2012) associated travel 

time reliability with travel time distribution entropy. The entropy was calculated as a 

function of the mean and standard deviation of the travel time distribution. The value of 

reliability was estimated in dollar per unit of entropy.  

Minnesota was the first state to implement a dynamic pricing algorithm that 

updates the toll based on HOT lane density and density variability every three minutes, 

with a goal to keep the level of service at C (Janson and Levinson, 2013). Tolls charged 

to vehicles were adjusted every three minutes according to HOT lane vehicle density. In 

this research, dynamic pricing approach in managed lane is applied to model the managed 

lanes. 

The Strategic Highway Research Program SHRP 2 C04 project (2013) conducted 

a number of policy implications in terms of VOR and VOT and found a range of VOT 

from $5 to over $50 per hour and increasing by $100 per hour when trip demand is high. 

Therefore, toll values and policies had the significant impacts in the congestion condition 

on ML. In the SHRP 2 C04 project, a lognormal distribution is assumed for the 

distribution of the value of time. The SHRP 2 C04 research team also evaluated the 

reliability ratio (VOT/VOR for an average trip distance). They found ratios in the range 



 

21 

 

of 0.7 to 1.5 for various model specifications based on stated preference (SP) survey 

(SHRP 2 C04, 2013).  

Another important input parameter in ML modeling is link capacity for ML. The 

Highway Capacity Manual (HCM) is the primary source for estimating highway capacity 

for planning and operation applications. In addition, estimating capacity based on real-

world data rather than the HCM method is recommended when real-world data is 

available, especially when there are observations that the capacity at the real-world is 

different from the average conditions recommended by the HCM. 

A number of approaches and methods were proposed to estimate the capacity 

measurement for the modeling of ML. Some researches focused on the capacity 

estimation based on the different demands in different time intervals over different days 

(Dervisoglu et al., 2009; Chao et al., 2005; and Jia et al., 2010). Other researches were 

conducted to approximate the capacity by fitting data into fundamental diagrams such as 

speed-flow and flow-occupancy models (Bassan and Polus, 2010; Rakha and Mazen, 

2010; and Wang et al., 2012).  

 Dynamic Traffic Assignment (DTA) Implementation in ML Modeling  2.2.4.

The impacts of advanced strategies such as ML are particularly significant when 

the facility is operating near its capacity. Applying these strategies is time-dependent and 

highly sensitive to changes in traffic flow performance. Therefore, these applications 

require more advanced and detailed modeling frameworks, compared to the approaches 

used in traditional demand forecasting. The use of simulation-based DTA has been 

proposed as a modeling method to provide more accurate and reliable analyses of ML. To 
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better understand the difference between STA and DTA, it is necessary to first 

understand the main components of traffic assignment procedures that run sequentially 

and iteratively seeking a convergence. These three main components are including 

network loading, shortest path identification, and trip demand assignment to the 

identified alternative path (Shabanian, 2014 and Hadi et al., 2013).  

The I-95 managed lane facility in Miami, Florida, was evaluated in a study 

conducted by Shabanian (2014) using two different approaches including managed lane 

costs in the objective function, which is an approach traditionally applied in toll 

modeling, and utilizing a willingness-to-pay curve in conjunction with the DTA. The ML 

modeling in the abovementioned study contains a toll diversion process, as well as a 

congestion-based (dynamic) tolling selection process, so that it estimates the toll trips and 

the toll costs for each time segment in the managed lanes.  

The application of a simulation-based DTA to the evaluation and operation of ML 

lanes was investigated by Abdelghany et al. (2000). The Dynasmart is able to model 

dynamic route choice behavior in ML modeling. A special purpose k-shortest path 

algorithm was included in Dynasmart tool. Dynasmart was able to represent several 

operating characteristics of the ML including lane utilization in terms of adding a new 

lane to the facility, physical separation of the ML, ML pricing approaches, and 

preferential treatments. 

Kerns and Paterson (2011) developed a dynamic toll algorithm to the toll prices at 

based on traffic density. They used the micro simulation-based DTA in the TransModeler 

tool to enhance the development and implementation of a dynamic toll algorithm. 
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 Mobility Impacts of Advanced Vehicle Technology  2.3.

Advanced vehicle technologies such as AVs/CVs are expected to change the 

traffic flow with consideration of car-following, lane-changing, and gap acceptance 

modeling of individual vehicles. The is still a need to assess the impacts of these 

advanced vehicle technologies if these vehicles systems are implemented in combination 

with other ITS advanced strategies like ramp metering, managed lanes, and integrated 

corridor management, their effects need to be well known to justify the additional 

investment in these technologies.  

In these coming years, the market penetrations of autonomous Vehicle (AV) and 

Connected Vehicle (CV) technologies are expected to increase significantly. Two 

examples of these technologies are Adaptive Cruise Control (ACC) as an example of 

autonomous vehicle technology and Cooperative Adaptive Cruise Control (CACC) as an 

example of connected vehicle technology. These technologies have the potential impact 

to increase traffic throughput by shorter following distances between vehicles. ACC is an 

automotive capability that allows a vehicle's cruise control system to adapt the vehicle's 

speed to the traffic network. Adding a wireless vehicle-vehicle communication to ACC 

system has been proposed by CACC systems. The CACC is developed to enhance the 

car-following feature of ACC utilizing shorter distance gaps than ACC. The idea of using 

CACC is not only to keep a proper following distance behind another car, but also to 

allow cars to cooperate by communicating with each other while in the adaptive cruise 

control mode. (FHWA, 2015; FHWA, 2013b; and Reich, 2013).  

As mentioned earlier in this research, vehicle eligibility and preferential 

treatments on ML have been implemented into HOV lanes, HOT lanes, truck lanes, and 
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so on. The market penetration of the ACC and CACC technology will be driven by the 

purchase rates of advanced vehicles and the replacement rates of vehicles that are not 

equipped with advanced technologies (FHWA, 2013b). To assess the interactions 

between ACC or CACC vehicle technologies and conventionally driven vehicles, it is 

necessary to use microscopic models that can capture the interactions between these 

different vehicle types (Reich, 2013).  

Most of the tools used in previous studies on modeling and evaluating the impacts 

of ACC and CACC on traffic flow and operations are based on microscopic traffic 

simulation (FHWA, 2015; and FHWA, 2013b). In addition, these studies have not 

addressed the impacts of these technologies combined with ML strategies on ML 

utilization and system performance. However, there is a need to assess their interactions 

to ensure the best performance possible with their use as advancements are made in both 

connected vehicles and ML strategies. This research investigates the use of models with 

different resolutions for this assessment. The research utilizes models with different 

resolutions , including a demand forecasting model based on a macroscopic traffic flow 

model and a mesoscopic simulation-based DTA model, combined with the results 

obtained from microscopic simulation modeling to investigate the interactions between 

ML strategy and traffic streams with a proportion of the vehicles equipped with CACC 

vehicle technologies.  

Microscopic simulation has been used to evaluate traffic flow performance, when 

considering advanced vehicle capabilities, as well as driver behavior including car-

following, lane-changing, and time gap settings (Bifulco et al. 2013, Ngoduy, 2013, and 

Tapani, 2013). Kesting et al. (2007) identified significant improvements in performance 
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measures with the use of ACC. According to that study, at 10 percent market penetration, 

the maximum travel time delays of individual vehicle can be reduced by about 30 percent 

and the total delay by 50 percent at 100% pet ration rates of ACC. Van Driel and Van 

Arem (2008) focused on the effects of ACC vehicles in congested conditions and they 

found that the ACC equipped vehicles significantly reduced the maximum queue length. 

Elefteriadou et al. (2012) also found out that ACC vehicles are able to significantly 

increase the speeds in bottleneck locations at a low market penetration rate of 20%.  

 However, ACC could produce positive results in the all evaluations. Shladover et 

al. (2012) applied microscopic simulation modeling to estimate the effect of different 

market penetrations of ACC on highway capacity based on car-following behaviors. 

Their results showed that conventional ACC is unlikely to produce any significant 

changes in highway capacity because drivers selected the gap settings similar to the gaps 

they choose when driving manually. Similarly, Davis (2004) found that bottlenecks can 

occur for ACC penetration rates of 40% or more because of longer time gap selected by 

the drivers. Other studies (Wang and Rajamani, 2010; Arnaout and Bowling, 2014; and 

Calvert et al., 2012) evaluated the importance of gap setting with respect to capacity 

impacts of ACC vehicles. They found that ACC systems can result in longer time-gaps 

between vehicles to increase safety and may adversely impact reliability. 

On the other hand, recent research efforts, based on microscopic simulation, 

confirm that the increase in market penetration of CACC will significantly increase 

capacity. Shladover et al. (2012) applied microscopic simulation modeling to estimate the 

effect of different market penetrations of ACC and CACC on highway capacity. They 

used AIMSUN, which is a microscopic simulation tool because it was the only simulation 
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tool, in which the NGSIM model of oversaturated freeway flow could be implemented to 

provide the most realistic representation of manually drivers’ car-following behavior in 

congested conditions. The results from this research showed that conventional ACC was 

unlikely to produce any significant changes in the capacity of the highways due to longer 

gap by using the ACC system. On the other hand, the CACC was able to increase 

capacity with a moderate to high market penetration. With CACC drivers have more 

confidence in using shorter gap settings. These results showed a maximum lane capacity 

of about 4,000 vehicles per hour if all vehicles were equipped with CACC. The lane 

capacity increased approximately linearly from 2,000 to 4,000 as the percentage of 

CACC vehicles increased from zero to one hundred. The increase in capacity is due to 

CACC’s capability that most drivers are willing to travel at much shorter time gaps than 

usual. Shladover et al. (2012) also tested a scenario to assess the effects of the different 

combinations of ACC and CACC market penetrations based on the time gaps chosen by 

drivers in field tests with the remaining vehicles manually driven.  

A few researchers also looked at evaluating the effect of CACC on advanced ITS 

strategies such as ramp metering for use during congested conditions utilizing 

microscopic simulation. Scarinci et al. (2013) discussed a new ramp metering strategy 

called Cooperative Ramp Metering (CoopRM), which takes advantage of the presence of 

CACC vehicles. Compared to the network without utilizing CoopRM, a microscopic 

simulation of the CoopRM system showed significant improvements in the traffic 

performance with the reduction of congestion. These results showed that the maximum 

on-ramp flow that can merge into gaps created by cooperative vehicles on the main line 

was a function of the size of the achievable gap, the main line flow, the platoon size, and 
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the CoopRM cycle length. The results confirmed the reduction in the congestion area due 

to a better merging maneuver that was estimated to be between 50% and 70% depending 

on the on-ramp flow. Also, the number of vehicles not able to find a suitable gap 

decreased between 60% and 80%.  

Pueboobpaphan et al. (2010) assessed an algorithm for on-ramp merging to assist 

in the merging process using microscopic simulation. The algorithm encourages smooth 

deceleration of the mainline vehicles upstream of the merging area in order to create gaps 

for ramp vehicles. They considered a merging assistant algorithm for situations that the 

mainline traffic is combined with manual and CACC vehicles and the ramp traffic only 

consists of manually driven vehicles. The results showed that the effectiveness of the 

merging assistant algorithm can be different based on the demand and percentage of 

CACC vehicles on the mainline. 

The most current use of tools in the modeling and evaluating the impacts of ACC 

and CACC on traffic flow and operations are based on microscopic traffic simulation 

models. Most of the assessments that used microscopic simulation models focused on 

analyzing these advanced technology impacts on traffic flow without the consideration of 

using ACC or CACC on exclusive lanes such as MLs. However, additional researches 

should consider the application of these technologies as advancements are made in the 

areas of CACC or ACC and managed lane strategies. Regional or sub-area impacts of 

these advanced vehicle technologies on ML facilities needs to be studied and MRM is a 

powerful approach to achieve this purpose, as will be investigated in this dissertation.  
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 Summary 2.4.

Analysts need to use combinations of tools with different resolutions, 

functionalities, and capabilities to take a full advantage of advances in traffic modeling. 

However, one main problem to use of combinations of different modeling tools is the 

difficulty in interfacing, integrating, and using information from various data sources and 

resolutions (Holyoak and Branko, 2009). The interfaces between tools have been in one 

direction, from the low level of modeling details, macroscopic level, to the high level of 

modeling details, microscopic level, in the most previous applications of MRM. 

However, two way interfacing, which is full MRM, is also possible and can be beneficial, 

and has not been sufficiently considered in previous transportation modeling levels 

(Duthie et al., 2012). 

A comprehensive evaluation of simulation tools and MRM strategies has been 

presented in this research to assess the capability of each tool. Most existing modeling 

efforts of ML have used toll and travel time value with consideration of VOT. Recent 

efforts also showed that the use of the VOR is important to better reflect the user 

behavior. The studies also investigated the importance of accounting for variations of 

VOT and VOR by the user category and the randomness of these values within each user 

category. 

The advancements in AVs and CVs technologies require advanced tools to allow 

the modeling of the operations of vehicles with these technologies on ML. The studies 

based on microscopic simulation showed that the applications of CVs has the potential to 

increase capacity. Their results can be input to macroscopic and mesoscopic-based DTA 

tools to provide better assessment of the impacts on route diversion. 
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CHAPTER 3  

METHODOLOGY 

The focus of this research is on developing and testing processes to use  

the Multi-Resolution Modeling (MRM) for assessing and selecting ML strategies 

utilizing different levels of analyses including sketch planning, different levels of 

simulation, and DTA models.  

This chapter presents an overview of the methodology and tasks implemented 

throughout this study. In general, the methodology follows sequential steps to achieve the 

objectives of this research. The first step is the data collection and pre-processing, which 

makes use of the data that is becoming available from multiple sources with the 

advancements in data collection technologies and sharing. Next, a combination of tools is 

selected for the modeling and analysis of this research. After the tool selection, the next 

step is to develop a method to automate the conversion of the input and/or output data 

between different levels of selected modeling tools. Then, the traffic network and demand 

parameters (supply and demand) are calibrated utilizing real-world measures such as 

traffic flow, queue length, and travel time on each link. The trip matrices are estimated 

for short time intervals (e.g., 15 minutes or 30 minutes) as required by DTA models. The 

Origin Destination Matrix Estimation (ODME) processes associated with different tools 

are tested for this purpose. Next, an assessment is made of the ability of different tools to 

predict diversions between ML and GPL under different congestion levels and toll 

policies. This chapter also investigates the impacts of different assignment modeling 

parameters including the inclusion of reliability in the generalized cost function, the use 
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of different VOT and VOR values, and the use of distribution of VOT. Finally, a method 

is presented to assess the mobility impacts of vehicles with ACC and CACC technologies 

on ML and GPL, when giving preferential treatments on ML. Figure 3-1 shows the 

methodology steps. The remaining subsections of this document discuss the methodology 

in more detail. 

 
 Methodology Steps Figure 3-1

 Overview of Developed MRM Framework 3.1.

Figure 3-2 illustrates the MRM framework proposed in this project for the general 

analysis. As shown in this figure, the framework consists of three components: 
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 Data sources and tools that allow the utilization of data from multiple 

sources to support modeling tasks. 

 Supporting environment that assist modelers in developing, calibrating, and 

processing the results of the selected modeling tools. 

 Modeling tools of different types and resolution levels that allow the 

estimation of various performance measures. 

 
 Development of General Multi-Resolution Modeling (MRM) Framework Figure 3-2

Figure 3-2 shows a general MRM framework that could be adopted for ML 

modeling. The following subsections discuss the application of the framework 

components for the purpose of this study in the modeling of ML. 



 

33 

 

 Tool Exploration and Selection 3.1.1.

An assessment is performed to select and use analysis tools for this research. 

 Hadi et al. (2012a) developed a list of criteria for the assessment of simulation-based 

DTA tools. These criteria can be used to allow general comparisons of various modeling 

tools to meet the needs of the specific modeling problem. In this research, a spreadsheet 

is produced that lists these criteria. Additional criteria that are specific to the modeling of 

ML and ACC/CACC modeling are added to the list of general criteria by Hadi et al. 

(2012a). Some important criteria that are in the spreadsheet are mentioned below: 

 Ability to constrain the demand arriving at the study link by the upstream 

link capacity and the downstream queuing storage. 

 Ability to allow fixing paths for parts of the demands and assigning the 

remaining demands. 

 Ability to enable a lane-by-lane simulation. 

 Ability to model multiple types of travelers with different Willingness-To-

Pay (WTP) parameters. 

 Ability to include various relevant factors in the generalized cost of the 

assignments with different coefficient values by traveler types. 

 Ability to shift demands between ML and GPL using the general cost 

function or WTP behavioral model. 

 Ability to model the impact of ACC and CACC proportion on the capacity 

of the link at each iteration of the assignment. 

 Utilization of static versus dynamic assignment.  

 Ability to model freeway and signalized arterial streets. 
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 Ability to accommodate diversion to alternative routes.  

A list of the criteria (the original and added requirements) is included in 

 Appendix 2. It should be mentioned that this summary table is completed based on the 

feedback from additional reviews, vendor response, and testing of these tools. The tool 

selection process should be based on the project under consideration and future plans for 

further application. 

 Data Sources and Pre-Processing 3.1.2.

Advanced modeling tools such as DTA and simulation tools require high-quality 

processed data to ensure that the developed model applications accurately simulate 

existing real-world conditions under different scenarios. The needed inputs for these 

simulation models with DTA capabilities, including network parameters (link length, 

free-flow speed, and capacity), signal timings, and dynamic demand matrices. Data 

sources and tools that are used to develop, validate, and calibrate the models in this 

research are listed below: 

 Data from demand models including calibrated network data and initial 

demand matrices. 

 Real-world data including volume, speed, occupancy, and travel time 

measurements from traffic detectors. 

 ML toll schedule. 

 Model Input/output Conversion 3.1.3.

As stated earlier in the literature review, an effective MRM approach to advanced 

strategy analysis relies on tools with different modeling levels that complimenting each 
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other to deliver the required functionality. To support the use of the combination of these 

tools, there is a need to utilize tools that automatically convert input/output data from one 

tool format to another. The typical input data to DTA and simulation models include: 

network data, demand data, and signal control data. However, the inputs data files for 

different modeling tools are in different formats. Thus, the conversion tools and processes 

are modeled to automatically convert the inputs and sometimes the outputs from one tool 

to the required inputs by another tool. In addition, conversion tools and processes can 

also be developed to assist in converting collected real-world data to modeling tool 

inputs. Existing or newly developed tools by others is used in this research. The 

following are further descriptions of the data that need to be converted. 

The modelers have to perform editing of the converted network and most likely 

input other parameters not available from the original source of the network. In addition, 

in many cases, more details have to be added to the network when using less detailed to 

high detailed models. As with travel demand forecasting models, one of the important 

inputs of advanced modeling tools is the network physical attributes. However, more 

detailed attributes of the network have to be added when considering from regional 

demand models to mesoscopic to microscopic simulation. The original networks as coded 

in the demand models may also have errors and inconsistencies that may not affect the 

regional model results but may result in errors when running more detailed models or 

inaccurate results. These errors and inconsistencies need to be resolved before using this 

network as the inputs to the more detailed models. 

The network conversion process in this research utilizes NEXTA, an open-source 

tool described earlier in the review of literature. NEXTA converts the network shape files 
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that are exported from regional demand models to network inputs accepted by other 

modeling tools. A configuration “import_GIS_Setting.csv” file is needed to map field 

names between the shape files and the NEXTA format, which includes a series of CSV 

files.  

The demand matrices can also be converted to the required formats using 

NEXTA. Similar to the configuration file for the network, the “input-demand-meta-

data.csv” file is used by NEXTA to read and interpret the trip tables exported from the 

regional demand model or other sources. The demand configuration file in NEXTA needs 

to be provided with information related to different demand types and demand time 

periods. To summarize, a configuration file in the NEXTA allows a user to change the 

network and demand files. There are two different ways to define the demand inputs 

including time-fixed demand matrix with starting time and ending time and time-

dependent demand matrices (e.g. 15-30 minutes). 

 Supply Calibration 3.1.4.

Calibration of simulation and DTA tools is a complex process that requires 

examining the results of the models in relation to real-world data and iterations of 

adjustments of demand, supply, and assignment input parameters. The type of supply side 

parameters depend on the level of the model. Supply calibration of macroscopic and 

mesoscopic models considers estimating the capacity, jam density, free-flow speeds, and 

traffic flow model (TFM) parameters. These parameters are evaluated based on network 

performance by comparison with the real world measures. The parameters of TFM can be 

calibrated by fitting pre-defined curves to real-world data using different methods of 
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regression and optimization. TFMs in macroscopic and mesoscopic models are based on 

empirical curves that map the density to flow or speed to volume/capacity ratio. For 

microscopic models, the calibration parameters are related to individual drivers and 

vehicles such as lane-changing, car-following, gap acceptance behaviors, and vehicle 

type and performance (Shabanian, 2014).  

Various statistical performance measures are calculated to assess the quality of 

the calibration and the degrees of deviation between simulated and real-world measures. 

Available measures include the Mean Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE), Root-Mean-Square Error (RMSE), and R-squared (  ). Different 

measures describe different aspects of calibration results. RMSE is a measure of the 

differences between simulated values and the real-world measures. MAE is defined in 

terms of absolute values of differences between the simulated and real-world measures, 

and MAPE is defined as the absolute percentage of the differences between the simulated 

and real-world measures. Compared to MAPE, RMSE gives more weight to the terms 

with larger differences by using a second order of the differences. Another important 

measures that is used in this study to assess the simulated values in comparison to real-

world measures is R-Squared, which is the measure reflecting how close the simulated 

results are compared to actual real-world data when fitting a regression line between 

these two sets of values. Following equations are the expressions for these measures.         
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(3-4)            
∑ (       )
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Where    is the estimated performance measures based on the simulation at time 

interval t,      is the corresponding real-world measures, and   ̅  
is the mean of the real-

world measures (     . N is the total number of the time intervals (Lyman and 

Longnecker, 2001).  

 Trip Demand Estimation 3.1.5.

The time-variant trip matrix estimation is an important step in the assignment 

process. DTA requires trip matrices specified for short time intervals (e.g., 15 minutes or 

30 minutes). The derivation of these matrices is one of the most challenging aspects of 

DTA. Most of the time, these matrices are derived based on initial demand matrices that 

had been estimated by regional demand models for longer periods of time. Other models 

are time-of-day models that produce trip matrices by peak period. Either way, these 

demand matrices have to be converted to time-variant trip matrices. The demand 

calibration or estimation aims to estimate the trip tables for short intervals (15-minute 

intervals in this case) based on an initial matrix obtained from the regional demand 

model. The resulting matrices, when loaded onto the calibrated network, should be able 

to replicate the observed link volume and congestion pattern (Shabanian, 2014).  

An ODME process is used in this study to estimate the time variant matrices 

starting with the peak period regional model, while attempting to reduce the difference 

between the link counts and simulated volumes. In this research, the ODME modules in 

existing DTA tools are used in the estimation. These modules require field data from 

sensor data, which should be defined and prepared before the ODME process. The 
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ODME modules based on the DTA in Cube, DTALite, and VISUM are compared in 

terms of their ability to replicate real-world data. 

 Modeling Tools and Methods 3.1.6.

As illustrated in Figure 3-3, transportation system modeling tools can be classified 

as different levels including sketch planning, analytical, macroscopic, mesoscopic, and 

microscopic simulation tools in the modeling of ML. In this study, the following tools are 

used and their results are compared to model ML. 

 ELToD developed by Florida’s Turnpike Enterprise (FTE), which has an 

analytical traffic flow model and static assignment (FTE, 2012). 

 DTALite developed by Zhou and his group at Arizona State University, 

which is an open-source mesoscopic simulation-based DTA tool (Zhou and 

Taylor, 2012). 

 VISUM provided by the PTV Group, which has a macroscopic traffic flow 

modeling tool with static and dynamic traffic assignment (PTV Vision 

VISUM 14, 2013).  

 Cube Avenue from Citilabs, which is a mesoscopic DTA tool (Citilabs, 

2013). 

The tools listed above have already been summarized in Appendix 1 and 

 Appendix 2 to use in the modeling of ML. 

 Application of MRM to ML 3.2.

To achieve the effective modeling of ML, the MRM approach described in the 

previous section is applied and evaluated in this study utilizing different tools and 
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modeling parameters. The following descriptions are the assignment parameters that are 

investigated in this study. The remaining subsections describe the different aspects of ML 

modeling, which are considered in this research. 

Figure 3-3 shows the components of this framework that are used in this study for 

the purpose of ML modeling. 

 
 Multi-Resolution Modeling (MRM) for Managed Lanes (ML) Figure 3-3

 Generalized Cost Function 3.2.1.

For modeling of ML in this study, the generalized cost function used in the 

assignment process involves the VOT, VOR, and toll costs. To determine the impact of 

incorporating the VOR in the analysis, only the toll costs and VOT are initially included 

in the assignment. In this case, the generalized cot function can be expressed in  

Equation 3-5. If the summation of route travel time and the added equivalent time is still 

smaller than the congested time in GPL, ML is more attractive to the user. In this 
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approach, selecting the route is governed by the user equilibrium assignment procedure, 

based on the generalized costs of different paths.  

(3-5)    U            TC              

where  

U  Utility function for route choice, f (time and cost), 

    Estimated travel time (minute), 

TC  Toll cost (dollar), 

    Travel time coefficient, and 

    Toll cost coefficient. 

The parameter    in the above equation is related to the value of time. A value of 

time of $30 per hour means that the user pays $30 to save one hour, or 50 cents for every 

minute of saved time. In most current static and dynamic assignment applications, an 

average VOT is used and the variability in user’s perception of VOT is ignored. The 

variability is expected due to different socio-economic user categories, the variation of 

users within each category, and the variation of user attributes between days. However, a 

distribution of VOT, possibly combined with a categorization of users by income and/or 

other attributes, can better capture the preference of different road users for different 

traffic conditions. In the SHRP 2 C04 project, a lognormal distribution is assumed for the 

distribution of the value of time, as shown in ‎Figure 3-4 . In this figure, given a toll value 

of $20, the proportion of payers shown in the blue area are the people that have VOT 

savings exceeding (SHRP 2 C04, 2013).  
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 Lognormal Distribution for VOT Based on SHRP 2 C04 Project  Figure 3-4

(SHRP 2 C04, 2013) 

With the same average travel time for two different alternative routes, drivers 

generally prefer the more reliable alternative with the least day-to-day variability in travel 

time. However, travel time reliability has not been sufficiently considered in previous 

managed lane modeling. One of the important contribution of this project is to develop a 

function that estimates the reliability for inclusion in the generalized cost function of the 

assignment. in the in the modeling of ML to assess the impact of travel time variability in 

the diversion to the ML. Measuring reliability requires to be translated into measures 

represented by the 80
th

 or 95
th

 percentile of travel time indices versus the median. In this 

study, a methodology is proposed to incorporate the impacts of travel time reliability in 

the selection of managed lanes. 

 The methodology uses the general function proposed in the SHRP 2 L03 project 

(Margiotta et al., 2013). The parameters of the function for the case study of this project 
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(I-95 northbound corridor in Miami) were developed using the regression analysis 

proposed in the SHRP2 L38C project. The SHRP 2 L38C project developed the 

regression equation that estimates travel time reliability as functions of demand/capacity 

(d/c) ratio, lane hour lost due to incidents, and weather conditions as shown in Equation 

3-6 (Hadi et al., 2014): 

 

                                                                       (3-6) 

where   

       nth
 percentile TTI, 

     Lane-hour lost, 

        Critical demand-capacity ratio, 

        Hours of rainfall exceeding 0.05 inch,  

        Segment length (mi), and 

                            Coefficients for n
th

 percentile TTI. 

According to this equation,       is the n
th

 percentile travel time indices. The 

TTI is the ratio of the travel time at the specific percentile to the free flow travel time for 

the study segment. Then, the travel time of 80
th

 and 95
th

 percentiles are calculated. 

Following descriptions are the variables used in the equation based on SHRP 2 L38C 

(Hadi et al., 2014): 

 “Lane hour lost: The average number of lanes blocked per incident or work 

zone multiplied by the average duration of blockage and the total number of 

incidents or work zones during the time interval. 
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 Critical demand-capacity ratio (dccrit): The ratio of demand to capacity 

during the most critical hour of the study period. 

 Hours of rainfall exceeding 0.05 inch (R0.05”). The hours of rainfall when 

exceeding 0.05 inch during the study period.” 

Table 3-1 Coefficients for Different TTI Percentile (Hadi et al., 2014) 

Percentile
th

                           

10 0.561 0.271 0.001 0.009 -0.952 0.034 -0.013 0.541 

50 0.693 14.000 0.001 0.003 -14.681 -0.452 0.081 1.511 

80 0.704 12.802 0.002 0.003 -12.991 -0.782 0.141 1.882 

95 0.741 10.763 0.001 0.004 -10.433 -0.632 0.092 1.862 

99 0.762 6.792 0.001 0.003 -5.864 -0.591 0.053 1.992 

Mean 0.762 12.103 0.001 0.002 -12.631 -0.411 0.071 1.512 
 

To add the reliability and associated values in the generalized cost function, 

Equation 3-7 is utilized to incorporate the travel time 80
th

 and 95
th

 percentiles as 

estimated from Equation 3-6. 

 (3-7)   U               +          +          

where  

U  Utility function for route choice, f (time, cost, reliability), 

TT  Estimated travel time (minute), 

TC  Toll cost (dollar), 

    Travel time coefficient, 

    Toll cost coefficient, 

  = Coefficient for reliability measure (80
th

 percentile of travel time), and 

  = Coefficient for reliability measure (95
th

 percentile of travel time). 
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As explained in the review of literature, the VOR represents travelers’ willingness 

to pay for the reduction in travel time variability. The SHRP2 C04 project evaluated the 

reliability ratio (VOT/VOR) for an average trip distance and found that the ratio is in the 

range of 0.7 to 1.5 based on a stated preference (SP) survey conducted in that project 

(SHRP 2 C04, 2013). In this study, a value of 1.1 is assumed for the ratio VOT/VOR, 

which is corresponding to           , and    is calculated according to the following 

equation: 

(3-8)                        

Where    is assumed to be equal to     assuming that travelers put the same 

weight on the 80
th

 and 95
th

 percentile travel time. This method requires an inclusion of an 

additional reliability term in the mode choice model and the use of Equation 3-6 and 

Equation 3-8 to estimate the reliability. However, it also requires an estimation of the 

LHL and R0.05” to estimate the 80
th

 and 95
th

 percentile of travel time indices.  

 Dynamic Pricing 3.2.2.

In emulating the real-world in the DTA models, the toll is updated for each 

interval, based on the maximum density of the ML so as to preserve the desired level of 

service in ML, as is done in the real-world toll schedule. In this approach, the DTA 

assignment computes the link density (veh/mi/ln) for each time segment by dividing the 

hourly assigned volumes per lane by the link speed (mi/hr), as follows:  

                         
                              

                  
                        (3-9) 

To achieve dynamic pricing in the modeling of ML, a script language in Cube 

Avenue was developed in this study to code the link density (veh/mi/ln) for each time 
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segment and, to identify the largest density on the ML by comparing the link densities for 

all of the links of the ML for each direction. Once the largest density is found at the end 

of each time segment, the toll cost (dollar) is obtained from an input lookup table based 

on the values used in different scheduled toll policies. 

 Assessing the Impacts of Advanced Vehicle Technology Utilizing MRM to ML  3.3.

 Capacity Impact Estimation based on Microscopic Simulation 3.3.1.

As stated earlier, the lane capacity as a function of the proportions of ACC/ 

CACC vehicles was estimated by Shladover et al. (2012), using microscopic sim0ulation 

to estimate the effect of different market penetrations of ACC and CACC on freeway 

capacity. The distribution of time gap settings that drivers used in a real field test was 

used in the simulation. In the study conducted by Shladover et al. (2012), it was 

necessary to develop and validate several mathematical models such as car-following 

logic for each operational mode, merging of vehicles entering from an on-ramp, and free 

driving of a vehicle in uncongested condition.  

As implied from the first bullet above, each of the three vehicle operational modes 

(manual driving, ACC, and CACC with platooning) has its own following logic. The 

parameters of the used car-following models are the current distance between vehicles, 

speeds of both the preceding and following vehicles, and vehicle lengths. The simulation 

tool that they used to assess the capacity impacts was AIMSUN, which is a microscopic 

simulation tool.  

The maximum flow for manually driven vehicles on a simulated freeway link was 

assumed to be about 2,200 veh/ln/hr. Thus, the minimum time headway for manual 
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driving was estimated to be 1.64 sec (≈3,600/2,200 veh/ln/hr). The desired time gaps of 

the ACC or CACC vehicles were selected from the gaps actually selected by drivers in 

the field test as listed below: 

 ACC: 31.1% at 2.2 sec, 18.5% at 1.6 sec, 50.4% at 1.1 sec 

 CACC: 12% at 1.1 sec, 17% at 0.9 sec, 24% at 0.7 sec, and 57% at 0.6 sec. 

The simulation results showed a narrow range of maximum flow rate (between 

2,018 veh/ln/hr and 2,100 veh/ln/hr) with different market penetration of ACC. When the 

percentage of ACC increased to 80%, the maximum flow rate increased to just about 

2100 veh/ln/hr. The increase in the percentage of ACC vehicles to more than 80%, 

actually led to a small decrease in capacity to 2,054 veh/ln/hr, because of the longer time 

gap of the ACC compared to manual driving. ‎Table 3-2 shows the simulation results for 

the capacity estimates with different market penetrations of ACC vehicles. 

Table 3-2 Simulation Results for Different Percentage of ACC (Shladover et al., 2012) 

Percentage of ACC Vehicles (%) Lane Capacity (veh/ln/hr) 

0 2000 

20 2070 

40 2094 

60 2094 

80 2100 

100 2054 

‎Table 3-3 presents the capacity estimates with different percentages of CACC 

vehicles in the traffic stream. It was shown by Shladover et al. (2012) that the lane 

capacity increased significantly from 2,018 veh/ln/hr to 4,000 veh/ln/hr as the market 

penetration of CACC vehicles increased from 0% to 100%. At 20% market penetration, 

the lane capacity increased by 3%; at 40% market penetration, the capacity increased 

more than 10%; and at 60% market penetration, the increase in the capacity is about 23%. 
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Table 3-3 Simulation Results for Different Percentage of CACC (Shladover et al., 2012) 

Percentage of CACC Vehicles (%) Lane Capacity (v/hr/ln) 

0 2018 

20 2092 

40 2230 

60 2500 

80 2890 

100 4000 

Finally, Shladover et al. (2012) tested the effects of different combinations of 

ACC and CACC market penetrations with the remaining vehicles manually driven. ‎Table 

3-4 shows the impacts of the combination of ACC and CACC with different market 

penetration on the lane capacity.  

Table 3-4 Estimation of Lane Capacity for ACC and CACC Vehicles at Time Gaps Chosen 

by Drivers in Field Data with the remaining vehicles manually driven (Shladover et al., 2012) 

P
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Percentage of CACC Vehicles  

 
10% 20% 30% 40% 50% 60% 70% 80% 90% 

10% 2065 2090 2170 2265 2389 2458 2662 2963 3389 
20% 2065 2110 2179 2265 2378 2456 2671 2977 0 

30% 2077 2127 2179 2269 2384 2487 2710 0 0 

40% 2088 2128 2192 2273 2314 2522 0 0 0 

50% 2095 2133 2188 2230 2365 0 0 0 0 

60% 2101 2138 2136 2231 0 0 0 0 0 

70% 2110 2084 2155 0 0 0 0 0 0 

80% 2087 2101 0 0 0 0 0 0 0 

90% 2068 0 0 0 0 0 0 0 0 

 Modeling of CACC Vehicle on Managed Lanes Based on Macroscopic and  3.3.2.

Mesoscopic Simulation  

The results from microscopic simulation, as described above, confirm that 

increasing in market penetration of CACC significantly increases capacity. The market 

penetration of CACC technology is expected to increase in the next 25 years until 

reaching 100%, at a rate that depends on the prediction model and the associated 

assumptions. If preferential treatment is given to CACC vehicles when using ML, this 
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can result in an increase in their percentage on ML and it is expected that the mobility 

benefits of these devices will be achieved sooner. One important contribution of this 

study is to illustrate how a multi-resolution approach can be used to assess advanced 

vehicle technology on the performance measurement of ML. For this purpose, this study 

assesses the impacts of CACC vehicle technologies on ML, GPL, and overall system 

performance including alternative routes using macroscopic and mesoscopic models 

based on capacity estimates from microscopic simulation models. The assessment is 

based on the capacity estimated by Shladover et al. (2012), as described in the previous 

section. This capacity is coded as a variable in the demand forecasting modeling tool with 

macroscopic traffic model, and a mesoscopic simulation-based DTA tool. The capacity is 

allowed to vary in each assignment iteration, as a function of the percentages of CACC in 

traffic streams in that iteration, according to the findings from the microscopic simulation 

study. 

This approach demonstrates the power of MRM in the modeling of CACC vehicle 

with the capacity estimated using microscopic simulation and mesoscopic simulation-

based DTA to assess the sub-area impacts and diversions between ML, GPL, and other 

alternative routes considering preferential treatments of equipped vehicles. For each 

percentage of these technologies, this research compares the mobility benefits based on 

the traffic flow models in the utilized tools. Attempts are also made to model the impacts 

of CACC based on the regional level of modeling utilizing Cube Voyager. 

The DTA tools used in this component of the research should accept different 

user classes in different facility types and should also be able to vary the capacity 

dynamically based on the proportions of the user classes. These capabilities should allow 
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different CACC market penetration scenarios, different pricing schedules, and 

generalized cost function to be applied to different user groups. First, an attempt is done 

to model the impacts of CACC in Cube Voyager (Citilabs, 2013), which is a demand 

forecasting modeling tool with a macroscopic traffic model and static traffic assignment 

(STA). The CACC-equipped vehicle is coded as a user group with origin-destination 

demands estimated based on each investigated market penetration of connected vehicles.  

The scripting language of the Cube software is used to code the capacity as a 

variable that is a function of the CACC proportion on each facility, as determined during 

the assignment iterations, the script language in Cube is also used to implement different 

tolling strategies on the ML for different user groups including single occupancy 

vehicles, high occupancy vehicles, and CACC-equipped vehicles on ML, as described 

later in this section. The tolling algorithm, implemented in the script language, is 

dynamic and changed with the congestion level on ML. This algorithm emulates the 

pricing algorithm currently used to set the pricing dynamically on the I-95 Express ML in 

Miami, FL, which is the case study in this research.  

In this script to model ML with different user groups, the approach involves 

adding the toll cost to the generalized utility function of the link for use in the assignment 

process that determines the diversions to/from ML. In this study, four user groups and 

their demand matrix are obtained from the regional demand forecasting model: Drive 

Alone (DA), Shared Ride of 2 occupants (SRP2), Shared Ride of three or more occupants 

(SRP3), and Truck. According to the I-95 Express tolling strategy, the DA and SRP2 

vehicles pay the same toll to access ML. Therefore, the DA and SRP2 matrices are 

grouped together and are referred to as Tolled Vehicles (TV) in the assignment module. 
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As with the real-world implementation of I-95 Express, the script is written to allow 

SRP3 vehicles to use the ML without any cost or restriction, and trucks are not allowed to 

use the ML. Different market penetrations of CACC vehicles are investigated by creating 

new user groups with their own O-D matrices based on the market penetration. To 

emulate real-world conditions, as much as possible, the O-D demands are estimated and 

assigned for each 15-minute period. The estimation is based on initial O-D matrices for 

the sub-area extracted from the demand forecasting model, and is adjusted utilizing the 

ODME procedure based on real-world counts collected from multiple sources. 

The static assignment of Cube Voyager is then conducted by running the 

assignment for each of the 15-minute trip tables. The output files contain volumes and 

speeds for each time intervals that are combined and used to assess the impacts of CACC 

and the associated ML tolling strategies. It should be mentioned, however, that the runs 

with the 15-minute demands are independent from each other, and the run for one 

interval is not affected by the results of the previous interval because static assignment is 

not capable of modeling these interactions between time intervals. In addition, the 

utilized traffic flow models normally used in demand forecasting models are less 

accurate, particularly under congested and queuing conditions, which may affect the 

results. This is addressed in this study by using mesoscopic simulation based-DTA 

modeling, as described below. 

To consider the dynamic interaction between traffic assignment and system 

performance under congested conditions, this study uses a mesoscopic simulation-based 

DTA to model different CACC market penetration and ML strategy combinations. To 

accomplish this, there is a need for a toll that allows varying the capacity dynamically 
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based on the proportions of CACC vehicles in the traffic stream, as described earlier with 

the static assignment. The mesoscopic simulation-based DTA tool, Cube Avenue 

(Citilabs, 2013), satisfies this requirement since it allows the use of the Cube script 

language to vary the speed in each iteration, in a similar manner to what described earlier 

for static assignment. This DTA tool also allows the coding of different user groups with 

different ML preferential treatments, pricing schedules, and generalized cost functions, as 

is done in the static assignment of Cube Voyager.  

A script language is created for the execution of the mesoscopic simulation-based 

DTA, in a similar approach to the one used in the static assignment modeling described 

earlier. However, instead of running the STA module for 12 consecutive periods of 15-

minute intervals as had to be done with the STA, the DTA is run for the whole modeling 

period as allowed by DTA. Obviously, this procedure is expected to produce superior 

results compared to the STA, because the DTA and associated simulation models the 

dynamic interactions between assignment and traffic flow performance including the 

consideration of queues and queue spillbacks in subsequent time intervals. Different toll 

pricing schedules for different percentages of CACC vehicles are tested to assess the 

impacts on the diversion rate between ML and GPL and the performance of these 

facilities.  

 Summary 3.4.

Advanced modeling strategies require advanced methods and tools that work 

together to deliver the required results. The methodology presented in this chapter 
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suggested integrating the components of the methods and tools into a single MRM 

framework.  

This study recommended the selection of the modeling tools based on the 

comprehensive criteria. For this purpose, an assessment was done to select and use the 

modeling tools in this research to meet the modeling requirements in the MRM 

framework.  There is also a need for the selection of the best parameters of the traffic 

flow models, demand, and assignment. This chapter described how these parameters can 

be selected and assessed. 

The proposed MRM framework was applied and evaluated in this study for 

modeling ML and the impacts of associated operational and pricing strategies. This 

chapter also described how the proposed MRM framework can be implemented to a case 

study that assesses the operations of AVs/CVs on ML. 
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CHAPTER 4  

APPLICATION OF DEVELOPED METHODOLOGY  

The methodology described in the previous chapter was applied to a network, 

which was called the exploration network. The purpose of using the exploration network, 

which has already been modeled and calibrated with a mesoscopic simulation-based DTA 

tool (Cube Avenue) by Hadi et al. (2013), was to explore and examine the concepts and 

the components of the MRM proposed in this study and to select the best concepts and 

modeling tools for the purposes of this study. Since the exploration network has been 

examined in detail in a previous study by Hadi et al. (2013), its use yields a good 

assessment of the methods, tools, and procedures of this study. The remaining parts of 

this chapter describe the related efforts in this research.  

 Data Processing and Importing to DTA Tools 4.1.

The case study used in this research to assess the tools and methods was a sub-

area around the I-95 corridor in Miami, FL, as shown in ‎Figure 4-1. This network has a 

total number of 288 nodes, 303 links and 57 zones. Two-lane managed lanes are 

deployed along the I-95 corridor with a soft barrier separation from parallel general 

purpose lanes. This relatively small network has been modeled, calibrated, and tested in a 

mesoscopic simulation-based DTA tool (Cube Avenue) by Hadi et al. (2013), which 

allows a better comparison of different managed lane modeling tools and assessment of 

the developed MRM procedures. 
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 Exploration Network, Extracted Subarea from the SERPM Model Figure 4-1

A number of modeling tools were used in this study, which includes two 

macroscopic tools, ELToD coded in Cube and VISUM, and two mesoscopic DTA tools, 

Cube Avenue and DTALite. As mentioned above, the network has been modeled in the 

Cube environment in the previous research project conducted by the research team, 

which provides a basis for modeling the same network in the other two tools, DTALite 

and VISUM. The following section describes the related efforts for data preparation and 

model conversion. 

 Network and Demand Data Conversion  4.1.1.

Data Conversion to DTALite 

The first step was to create a set of shape files describing the network to be 

imported to NEXTA from Cube Avenue. The network data structure in these files defines 
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the basic node and link structure used in the NEXTA tools, along with the attributes for 

each link and node. 

The node and link shape files exported from the Cube model were imported into 

NEXTA, the graphical user interface for DTALite, through the network importing 

function. The corresponding link and node attributes, such as the number of lanes, free-

flow speed, link capacity, traffic control type, and so on, were configured in the 

“Import_GIS_Setting.csv” of NEXTA. All NEXTA data files are in the CSV format. In 

addition, the link types used in the Cube model are different from those used in DTALite. 

In Cube, there is no limitation in the number of link types, while a total number of 12 link 

types are allowed in DTALite. The conversion of link types from Cube to DTALite was 

conducted based on the matches listed in ‎Table 4-1. 

Table 4-1 Required Link Type to Model Traffic Network in DTALite 

Cube Model NEXTA/DTALite 

10-19: Freeway  

20-29: Divided arterial 

30-39: Undivided arterial 

40-49: Collector 

50-59: Centroid connector 

60-69: One-way facility 

70-79: Ramps 

80-89: Exclusive HOV lanes 

90-99: Toll facilities 

1: Freeway 

2: Highway/Expressway 

3: Principal arterial 

4: Major arterial 

5: Minor arterial  

6: Collector 

7: Local 

8: Frontage road 

9: Ramp 

10: Zonal connector 

100: Transit link 

200: Walking link 

It should be noted that the zone layer is not required in the Cube model as the 

zone centroid information is specified through centroid nodes. However, the zone 

numbers have to be explicitly specified in NEXTA. In this study, the zone number 
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attribute is added to the nodes located at the centroid of the zones. ‎Figure 4-2 shows the 

final imported network in NEXTA.     

 
 Final Imported Network in NEXTA Figure 4-2

In addition to the network data, the demand data should be imported into 

simulation tools to run the assignment model. In this research, the demand matrices from 

the Cube Avenue model were imported into the other two tools and used as baseline 

initial matrices in the analysis. It should be mentioned that these demands were derived 

by Hadi et al. (2013) based on the initial demand matrices extracted from the Southeast 

Regional Planning model for the peak period, and they were further calibrated using the 

static Cube Analyst ODME procedure. The Cube demand matrices were converted to the 

csv file format and imported into NEXTA through the demand meta database 

configuration file in NEXTA as shown in ‎Figure 4-3. As illustrated in this figure, the user 
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has to specify the vehicle type, demand matrix type, and the corresponding time period 

covered by the matrix. 

 
 Demand Import Interface in NEXTA Figure 4-3

Before running the DTALite model, the user needs to configure the scenario 

setting file, which is the “input_scenario_settings.csv” file. The scenario settings file 

allows changing the characteristics of the scenarios being run, as well as creating various 

traffic scenarios that can be run simultaneously. Scenario attributes such as the demand 

multiplier, traffic flow model parameter, and number of days for running a scenario can 

be changed in this file. The user can also define different simulation scenarios such as 

managed lane, work zone, and incident scenarios to be modeled in this file. In this study, 

a managed lane scenario was created using this function, as shown in ‎Figure 4-4. 
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 Managed Lane Scenario Configuration Figure 4-4

Data Conversion to VISUM 

VISUM provides an Add-In feature to import network files from other software 

such as NEXTA or Cube. However, after applying this function, a further check is still 

needed to ensure the consistency of the network presentation and data inputs, as different 

models may have different spatial and temporal resolutions. In this study, the input link 

types and node types were updated first. The corresponding GIS shape files were 

prepared based on the format required by VISUM and imported into VISUM. The Cube 

demand matrices were then converted into csv or excel files and imported into 

VISUM. ‎Figure 4-5 and ‎Figure 4-6 show the related VISUM functions and the final 

imported network and demand matrix in VISUM, respectively. 
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 Imported Network in VISUM Figure 4-5

 
 Imported Demand Matrix in VISUM Figure 4-6
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 Supply Network Calibration 4.1.2.

As explained in the methodology chapter, the network supply calibration 

estimates the network parameters such as capacity and other traffic flow model (TFM) 

parameters that define network performance in producing travel time, forming queues, 

and queue spillbacks.  

Different modeling tools have different traffic flow models. For example, the 

Bureau of Public Road (BPR) function is usually used in the FSUTMS model within the 

Cube environment although the Akcelik model has also been used. DTALite allows the 

use of BPR, Spatial Queue Model, and Newell’s N-Curve model. VISUM also provides 

multiple forms of traffic flow models such as Isochrones and Spatial Queue Model. This 

study examines the impacts of utilizing calibrated and uncalibrated TFM parameters, 

which are capacity and jam density, on the simulation results using different modeling 

tools.  

The previous study conducted by Hadi et al. (2013) on the segment of I-95 

emphasized that only data from congested segments that are not affected by downstream 

bottlenecks should be used to calibrate these parameters. This could be explained that 

only in these locations, the complete range of data points from uncongested conditions to 

congested conditions was available. In this study, the bottleneck locations on the I-95 

northbound segment in Miami (NW 79
th

 St and NW 103
rd

 St on-ramp merge area) with 

different tools and different TFMs were identified for this purpose. 

The speeds at the bottleneck locations on the I-95 northbound segment in Miami 

at NW 79th St and NW 103rd St on-ramp merge area with different tools and different 

TFMs are compared to the real-world measurements in ‎Figure 4-7 and ‎Figure 4-8. Note 
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that the calibrated capacity and jam density in Cube Avenue are 1,850 vehicles per hour 

per lane (veh/hr/ln) and 190 vehicles per mile per lane (veh/mi/ln), respectively. 

However, the default values (uncalibrated) for capacity and jam density in both VISUM 

and DTALite are 1,800 (veh/hr/ln) and 180 (veh/mi/ln), respectively. As shown in ‎Figure 

4-7, the average speeds obtained from the implementation of BPR and Akcelik curves in 

Cube Avenue are close to the observed real-world speed measurements, especially during 

the time period between 5:00 pm and 6:30 pm. It can be seen that without the application 

of the calibrated capacity and jam density in DTALite software, the bottleneck location 

speed does not follow the same trend as the real-world speed, but with the calibrated 

parameters, the DTALite speeds show the correct trend. The results of VISUM shown 

in ‎Figure 4-8 indicate that the differences between the runs with the calibrated and 

uncalibrated capacities are not as high. This could be due to the fact that the default 

parameters are not significantly different from the calibrated parameters. The comparison 

of the speeds at the NW 103rd St. bottleneck location in Figure 4-8 shows that the Cube 

Avenue results overestimated the congestion between 3:30 pm and 5:00 pm. During this 

period, DTALite and VISUM speed results follow the trend of the real-world 

measurements better and the use of the calibrated capacity and jam density in the TFM 

model improves the simulation results. This trend confirms that the queuing model of 

Cube Avenue underestimates the speed at the point of congestion (closest detector to the 

bottleneck’s starting point).  



 

63 

 

 
 Comparison of Different TFMs on Bottleneck Location Speed, NW 79

th
 St Figure 4-7

 
 Comparison of Different TFMs on Bottleneck Location Speed, NW 103

rd
 St Figure 4-8
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The quality of the supply calibration was evaluated based on the measures of the 

RMSE and the MPAE. ‎Table 4-2 presents the results of RMSE, MAPE, minimum 

negative difference, maximum positive difference, and the average difference for the 

simulated speeds using different DTA tools with and without the calibrated capacity and 

jam density in the TFM model. Note that the real-world speed measurements were used 

as a reference. As shown in Table 4-2, the use of the calibrated TFM parameters reduces 

the deviations from the real-world speeds. Both DTALite and VISUM tools produce 

better results than Cube Avenue. Using the Ackcelik function with Cube Avenue 

improved the results. However, in order to assess how each model works, it is not enough 

to perform the comparison at this point and there is a need to compare the performance 

along highway segments that capture the spatial extents of congestion.  

This is addressed next by speed contours for the studied segment. Figure 4-9 

shows the speed contours of the study area utilizing different TFMs in the different DTA 

tools. As shown in this figure, DTALite and VISUM tools slightly produce better results 

than Cube Avenue utilizing calibrated parameters along the studied segment. Queue 

forming and dissipating in DTALite with calibrated parameters are as the real-world. 

However, using Cube Avenue with BPR function cannot capture the spatial extents of 

congestion along the studied corridor. 
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Table 4-2 Performance Measures for TFM Calibration Results Using Different DTA Tools 

Comparison 

Cube 

Avenue 

(BPR 

Model) 

Cube 

Avenue 

(Akcelik 

Model) 

DTALite 

(Newell’s 

Model 

without 

Calibrated 

Parameters) 

DTALite 

(Newell’s 

Model with 

Calibrated 

Parameters) 

VISUM 

(BPR Model 

without 

Calibrated 

Parameters) 

VISUM 

(BPR Model 

with 

Calibrated 

Parameters) 

Bottleneck Location at NW 79
th

 St 

RMSE 
Speed 

(mi/hr) 
14.41 11.72 11.66 9.01 10.21 9.30 

MAPE 
Speed 

(%) 
26.45 18.25 25.21 17.9 19.89 19.28 

Maximum 

Positive 

Estimation 

Difference from 

Observed Data 

(mi/hr) 

 

0.08 13.69 8.70 11.18 9.69 

Minimum 

Negative 

Estimation 

Difference from 

Observed Data 

(mi/hr) 

 

-29.50 -17.53 -16.05 -17.87 -13.54 

Average Estimation 

Difference 

from Observed Data 

(mi/hr) 

 

-7.88 -4.95 -6.30 -6.48 -5.01 

Bottleneck Location at NW 103rd St 

RMSE 
Speed 

(mi/hr) 
11.32 8.12 6.78 6.70 9.31 9.70 

MAPE 
Speed 

(%) 
23.28 18.48 17.22 16.68 20.06 22.11 

Maximum Positive 

Estimation 

Difference from 

Observed Data 

(mi/hr) 

N/A 0.04 11.65 10.51 17.84 17.52 
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Comparison 

Cube 

Avenue 

(BPR 

Model) 

Cube 

Avenue 

(Akcelik 

Model) 

DTALite 

(Newell’s 

Model 

without 

Calibrated 

Parameters) 

DTALite 

(Newell’s 

Model with 

Calibrated 

Parameters) 

VISUM 

(BPR Model 

without 

Calibrated 

Parameters) 

VISUM 

(BPR Model 

with 

Calibrated 

Parameters) 

Minimum 

Negative 

Estimation 

Difference from 

Observed Data 

(mi/hr) 

-20.87 -17.54 -9.79 -9.78 -12.30 -14.07 

Average Estimation 

Difference 

from Observed Data 

(mi/hr) 

-9.37 -5.96 -3.68 -3.96 -2.42 -2.06 

Along Study Segment 

RMSE 
Speed 

(mi/hr) 
26.32 19.84 21.35 13.24 20.08 14.18 

MAPE 
Speed 

(%) 
44.12 29.77 38.28 21.68 36.80 23.65 

Maximum Positive 

Estimation 

Difference from 

Observed Data 

(mi/hr) 

3.24 2.98 5.68 4.25 5.16 5.46 

Minimum 

Negative 

Estimation 

Difference from 

Observed Data 

(mi/hr) 

-12.49 -10.18 -8.45 -7.30 -9.78 -10.14 

Average Estimation 

Difference 

from Observed Data 

(mi/hr) 

-8.48 -4.89 -6.45 -3.17 -5.38 -3.36 
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 Speed Contours for the Study Corridor Utilizing Different TFMs Figure 4-9

 

Cube Avenue (BPR Model with Calibrated Parameters) 

DTAlite (Newell's Model with Calibrated Parameters) 

(Newell's Model without Calibrated Parameters)rs) 

DTAlite (Newell's Model without Calibrated Parameters) 

VISUM (BPR Model with Calibrated Parameters) VISUM (BPR Model without Calibrated Parameters) 

Observed 

Cube Avenue (Akcelik Model with Calibrated Parameters) 
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  Origin-Destination Matrix Estimation (ODME) 4.2.

The estimation of time-variant trip matrices is an important step in dynamic traffic 

assignment-based tools. DTA analysis requires dynamic or time-variant trip matrices 

specified for short time intervals (e.g., 15 minutes or 30 minutes). However, regional 

demand models are usually daily or time-of-day models that can only produce daily trip 

matrix or trip matrix for peak periods. An origin-destination matrix estimation process is 

needed to fill in such a gap, that is, to estimate the trip tables for short intervals based on 

an initial matrix obtained from the regional demand model and field data. A simple 

ODME method is the factorization method that applies factors to convert daily or time-

of-day demand matrices to matrices for short time intervals. The more widely used 

methods are estimating the O-D matrix by minimizing the difference between the 

simulated performance measures and real-world measurements using an optimization 

procedure. The resulting time-variant matrices, when loaded onto the calibrated network, 

should be able to replicate the observed link volumes and congestion patterns.  

An ODME tool is usually provided with currently available static and dynamic 

traffic assignment software. For example, Cube Analyst and its updated version Analyst 

Drive are the ODEM modules in Cube. The TflowFuzz module is the ODME module in 

VISUM. An ODME tool can also be accessed in the NEXTA interface of DTALite. As 

stated earlier, the time-variant trip matrix for the study network has been calibrated by 

Hadi et al. (2013). The core of that demand calibration in that study was the application 

of a static assignment-based ODME and further fine-tuning the resulting matrix to 

improve the results. The exploration of a further refinement of the O-D matrix using 
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dynamic O-D estimation was done to see the improvement of the assignment results in 

present research. The following were tested in this study regarding the ODME process. 

 How well do the assignment tools work when the O-D matrix is estimated 

using the ODME procedure that is included and interfaced with another 

tool? 

 Whether utilizing the ODME procedure of tools can improve on the O-D 

estimated by an ODME procedure from another assignment tool. 

The sensor data include 15-minutes volume counts collected at 87 locations on the 

GPL, ML, and ramps of the I-95 facility in Miami, FL, and were read by the ODME 

module in each tool. ‎Figure 4-10 displays the green squares to represent the detector. 

 
 Schematic of Sensor Locations for the ODME Process  Figure 4-10
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 ODME Process in Cube 4.2.1.

‎Figure 4-11 presents a comparison of simulated link volumes with real-world 

traffic counts for two different types of matrices. The first type represents the factorized 

demand matrix based on the matrix extracted from regional demand. The second is the 

calibrated demand matrix from the study of Hadi et al. (2013), which was obtained by 

using a combination of the ODME procedure and fine-tuning of the results. Note that 

these simulated results are obtained from running the Cube Avenue dynamic traffic 

assignment tool. As shown in this figure, the simulated link volumes cannot replicate the 

observed link volumes when using the factorized initial demand matrix obtained based on 

the regional demand model matrix. The corresponding R
2
 is only 0.29. With the 

calibrated demand, the simulated link volumes become more similar to the observed link 

volumes with a R² value of 0.80. 

 
 Comparison of Observed vs. Simulated Link Volume Produced by Cube Figure 4-11

Avenue Utilizing DTA 

 ‎Figure 4-12 presents the comparison results when using the ODME procedure in 

Cube. When using the initial factorized input demand matrix as an input to the ODME, 

the R² value only improved from 0.29 to 0.39. This indicates that inputting low quality 
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demand matrices to the ODME process does not allow the ODME to provide good 

results. When using the calibrated demand as the input for the ODME process, the 

improvement in the R² value is not significant from 0.29 to 0.39 and from 0.8 to 0.81 for 

the initial demand and calibrated demand, respectively. This is due to the fact that the 

ODME in Cube has already been used as part of the derivation of the calibration matrix 

in the previous study. In addition, the Cube ODME process utilizes demands from the 

static assignment during the optimization process and is not able to capture queue 

spillback in space and time.  

 
 Comparison of Simulated vs. Observed Link Volumes after Running ODME Figure 4-12

in Cube  

 ODME Process in VISUM 4.2.2.

A matrix estimation function is provided in VISUM through a dynamic 

TFlowFuzzy (TFF) module. As with the ODME modules available in other tools, it 

iteratively adjusts the demand matrix such that the assigned link volume can be close to 

reference data such as count data. It is a dynamic process that is able to capture queue 

spillback in space and time. As mentioned earlier in Section 4.2, one of the tasks in this 

research is to examine how the DTA tool performs when using the calibrated matrices 
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from another DTA tool. Therefore, in this study, the 15-minutes factorized and calibrated 

O-D matrices from the research by Hadi et al., (2013) were used as input matrices for the 

VISUM analysis. Figure 4-15 presents the dynamic traffic assignment results for link 

volumes using the factorized demand matrices from the regional model, as well as the 

calibrated Cube demand matrices in VISUM. As shown in this figure, most of the 

simulated link volume using the initial factorized demand matrices are either 

underestimated or overestimated with a R² value of 0.47. Also, as shown in this figure, 

running the VISUM DTA with the calibrated demand can produce link volumes that are 

relatively close to the observed values with a R² of 0.82, which is similar to the Cube 

Avenue results.  

Figure 4-15 and Figure 4-16 present the results of simulated link volume after utilizing 

the ODME in VISUM. Significant improvements in the simulated link volumes can be 

observed in Figure 4-16. Compared to the results in Figure 4-15, the R² value improved 

to 0.79 and 0.96 when using the uncalibrated and calibrated matrices as inputs to the 

VISUM ODME process, respectively. This indicates that the dynamic ODME procedure 

used in VISUM is more effective than the static assignment-based ODME in Cube that 

was implemented, as discussed earlier.  
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 Comparison of Observed vs. Simulated Volume Produced by VISUM Figure 4-13

Utilizing DTA 

 
 Comparison of Simulated Link Volumes vs. Observed Link Volume after Figure 4-14

Running ODME in VISUM 

 ODME Process in DTALite 4.2.3.

In the NEXTA, the graphic user interface of DTALite, the user can run a dynamic 

ODME process by enabling the ODME mode in the “input_scenario_settings.csv” file 

and configuring the setups in the “ODME_Settings.txt” file. The ODME parameters, such 

as the number of iterations, the amount of adjustment allowed per iteration, and the 

calibration time period; which could be a portion of the modeling period, can be specified 

in these files. ‎Figure 4-15 and ‎Figure 4-16 compare the simulated link volume with the 
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observed values with and without using the dynamic ODME process in DTALite. The 

results in these two figures are very similar to those obtained using the VISUM software. 

With the input of the factorized demand matrix based on the regional model, the 

implementation of ODME can improve the R² value from 0.47 to 0.81, while the R² value 

can increase from 0.82 to 0.96, with the calibrated demand matrix as input. Again, these 

results emphasize the importance of the dynamic ODME compared to the static ODME 

of Cube. 

 
 Comparison of Observed Link Volumes vs. Simulated Link Volume Produced Figure 4-15

by DTALite  Utilizing DTA 

 
 Comparison of Simulated Link Volumes vs. Observed Link Volume after Figure 4-16

Running ODME in DTALite 
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 Summary of Tool Assessment for Demand Estimation 4.2.4.

Demand matrix estimation is an undetermined problem as the number of 

equations for link counts is usually much lower than the number of unknown O-D pairs. 

It is important, therefore, to manage the estimation process to ensure the reasonableness 

and the correctness of the estimated demands. Table 4-3 and Table 4-4 compare the 

goodness-of-fit for the simulated link volume based on the above results. The measures 

listed in these two tables show that DTALite can produce better volume results than the 

other two tools, although the VISUM software results are also similar. A better demand 

matrix used as input to the ODME process (such as the previously calibrated demand 

matrix) can produce a more realistic replication of real-world volume counts, compared 

to utilizing a simple factorized demand matrix. The implementation of the dynamic 

ODME in VISUM and DTALite can better capture the queue forming and dissipation 

than the static assignment-based ODME implemented in Cube, which can result in more 

accurate volume counts. As shown in‎Table 4-3 Table 4-3 and Table 4-4, the ODME 

module in Cube does not improve the results significantly compared to that based on 

static assignment. However, the dynamic ODME in VISUM and DTALite are able to 

produce much better results because they enhance the model for congestion pattern 

replication than the ODME based on static assignment in Cube.  

Table 4-3 Goodness of Fit for Simulated Volume Based on Factorized Demand Matrix 

Goodness-of-Fit Statistics 

Initial Demand 

Running DTA  

without ODME 
Running ODME Optimization 

Cube VISUM DTALite Cube  VISUM DTALite 

MAE 123.48 108.13 101.56 112.51 80.74 68.21 

MAPE (%) 20.61 18.69 16.11 15.35 13.32 12.52 

RMSE(veh/ln/15min) 181.32 158.79 149.14 165.21 118.56 100.16 

R squared 0.29 0.46 0.47 0.39 0.72 0.81 
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Improved Demand Estimation Utilizing  

ODME Optimization (%) 
8.88 25.33 32.84 

 

Table 4-4 Goodness of Fit for Simulated Volume Based on Calibrated Demand Matrix 

Goodness-of-Fit Statistics 

Calibrated Demand 

Running DTA  

without ODME 
Running ODME Optimization 

Cube VISUM DTALite Cube  VISUM DTALite 

MAE 67.79 62.13 62.19 63.44 59.71 55.18 

MAPE (%) 11.21 11.09 10.98 11.02 10.9 10.62 

RMSE(veh/ln/15min) 95.15 91.24 91.33 93.15 87.68 81.03 

R squared 0.80 0.821 0.832 0.81 0.95 0.96 
Improved Demand Estimation Utilizing  

ODME Optimization (%) 
2.09 3.9 11.27 

 Application of MRM to ML 4.3.

The developed MRM framework is applied in this section to model the ML and 

the impacts of associated operational and pricing strategies. The ML are simulated using 

the different levels of modeling as described earlier in this research. The resulting 

demand and performance measures of the ML, GPL, and alternative routes utilizing 

different modeling strategies were examined and compared with each other, as well as to 

real-world traffic and toll data. The sensitivity analysis of the value of time distribution, 

value of reliability, and toll pricing policies were also conducted in this research.  

 VOT Consideration in ML Modeling  4.3.1.

As explained earlier, VOT converts the monetary value of toll cost into equivalent 

time. This equivalent time can be then added to the utility function of the ML facility, 

based on Equation 3-5. In most DTA tools and their applications, an average value of 

VOT is commonly used. However, a distribution of VOT, possibly combined with the 

categorization of users by income and/or other measures, can better capture the 

preference of different road users In the SHRP 2 C04 project, a lognormal distribution 
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was recommended for the distribution of the value of time and the default average VOT 

used in the SHRP 2 C04 was, $20 per hour, as explained in detail in Section 3.2.1. 

In this study, using the fixed VOT and distribution of VOT was tested utilizing 

the DTALite because this tool allows the users to define a distribution for the VOT, 

which is not possibly or easily done in the other tools tested in this study. The default 

average VOT in DTALite is $1 for every 5 minutes (that is, $12/hour). ‎Figure 4-17 shows 

the default distributions for VOT based in the DTALite. 

 
 VOT Distribution in DTALite (DTALite User Manual, 2012) Figure 4-17

In this study, the toll data for I-95 northbound in April, 2015 was also obtained 

from FDOT D6 TMC. Averaging the toll values for over a period of 10 weekdays shows 

that the average toll is between $6 and $7 during the congested PM peak period with an 

average value of $6.30, as shown in ‎Table 4-5. The time saved by travelers based on real-

world detector data for non-incident days is usually between 6 to 10 minutes depending 

on the congestion level in the GPL. Paying an average toll value of $6.30 implies that the 

traveler’s value of time is about $27 to $43. 
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Table 4-5 Real-World Toll Value ($) for I-95 Northbound in April, 2015 

Time Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Average 

15:31 5.00 5.50 5.50 5.50 5.75 5.75 5.75 5.75 6.00 5.75 5.63 

15:42 6.00 6.50 6.00 6.25 5.50 5.75 6.00 6.75 6.50 6.25 6.15 

16:10 5.50 7.25 5.75 5.75 5.75 6.00 6.00 6.00 6.00 6.00 6.00 

16:24 5.50 7.25 5.75 5.75 6.00 6.00 6.25 6.00 6.00 6.00 6.05 

16:36 5.50 7.00 5.75 5.75 6.00 6.00 6.25 6.25 6.25 6.00 6.07 

16:51 5.50 7.00 5.75 5.75 7.00 6.00 6.25 7.25 6.50 6.00 6.30 

17:10 5.50 7.00 6.00 6.50 7.00 6.25 6.25 6.75 6.75 6.25 6.42 

17:24 5.75 7.50 6.00 7.00 7.50 7.25 6.5 6.75 7.00 7.00 6.82 

17:36 5.75 6.50 5.50 7.00 7.75 7.00 7.00 7.25 7.50 7.00 6.82 

17:41 5.75 7.75 5.50 7.50 7.50 6.75 6.75 7.25 7.00 6.75 6.85 

18:10 5.50 7.75 5.50 6.75 6.75 6.00 6.75 7.00 6.5 6.00 6.45 

18:21 5.50 7.00 6.25 6.25 6.25 5.50 6.25 6.25 6.5 6.00 6.17 

Based on the above discussion, a sensitivity analysis was conducted in this study 

to find the best value of time that produces the observed shift to the ML in the DTALite 

tool. A number of average VOT values, $12, $20, $30, $40, and $50, were used in the 

sensitivity analysis (utilizing a distribution for VOT) and the results of diverted volume 

to ML are presented in ‎Figure 4-18 and Table 4-6. From this figure and table, it appears 

that the value of time of $40 produces the closest results to the real-world diverted 

volume to ML, which is much greater than the value of $13.44 used in the SERPM 

model. It should be noted that in addition to saved travel time, this VOT most likely 

accounts for other factors not considered in the generalized cost function such as travel 

time reliability, comfort, safety, and the travel time experience in past days, which could 

include more congested days and incident days compared to the present day.  
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 Comparison of Diverted Volume to ML for Different VOTs Figure 4-18

The next step was to examine if utilizing a distribution of VOT, instead of a fixed 

value produces better correspondence to real-world diversion. A fixed value of time of 

$40 (without utilizing distribution VOT) was used to estimate the diverted volume to ML 

to compare the results with using the same average VOT from a distribution. 

Table 4-6 Diverted Volumes (veh/ln/15min) to ML for Different VOTs 

Time 

(PM) 
$12 $20 $30 $40 $50 

$40 Fixed 

(without Distribution) 
Real-World 

15:30 320 350 340 410 410 403 380 

15:45 400 350 340 390 370 380 385 

16:00 410 400 350 420 390 370 400 

16:15 280 390 400 400 406 375 420 

16:30 360 450 380 410 370 391 415 

16:45 300 420 400 412 352 403 400 

17:00 320 380 320 381 369 341 404 

17:15 430 430 390 380 400 370 385 

17:30 290 320 310 349 375 320 379 

17:45 280 300 290 345 370 308 365 

18:00 330 330 300 354 341 325 358 

18:15 300 290 300 350 331 304 361 
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The For each value of VOT, the differences between the simulated diverted 

volumes and the real-world observations were quantified in terms of RMSE and the 

MAPE, as listed in ‎Table 4-7. The MAPE and RMSE values in Table 4-7 confirm that the 

estimated distribution of VOT with an average VOT of $40 produces better results 

compared to the real-world volumes on the ML. As indicated in this table, the 

corresponding RMSE and MAPE for this case are 18 veh/ln/15min and 4.01%, 

respectively. The results in ‎Table 4-7 also confirm that the use of fixed VOT without 

utilizing the distribution of VOT does not produces as good results as when using a VOT 

distribution. The RMSE and MAPE values for the fixed $40 VOT are 40 veh/ln/15min 

and 9.03%, respectively. 

Table 4-7 Goodness of Fit Statistics for Diverted Volume Replication Based on Different VOT 

Goodness-of-Fit Statistics 

Value of Time $ (VOT) 

$12 $20 $30 $40 $50 

$40 Fixed 

(without 

Distribution) 

MAPE (%) 16.50 9.70 11.86 4.01 5.73 9.03 

RMSE(veh/ln/15min) 73.94 41.76 52.11 18.11 26.60 40.34 

 VOR Consideration in ML Modeling 4.3.2.

As explained in Chapter 3, the developed methodology functions to calculate the 

80
th

 and the 95
th

 percentiles were used to estimate the reliability in this study. The used 

functions were developed based on the regression analysis in the previous study (Hadi et 

al., 2014) with one-year traffic detector data and event data in 2012 for the I-95 

northbound corridor in Miami, as explained in Section 3.2.1. 

As the travel time indices are calculated based on the real-world data, they may 

not be consistent with the modeled values. Therefore, instead of directly using these 

calculated values in the traffic assignment, the ratios of the 80
th

 and 95
th

 percentile travel 
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time indices to the mean travel time index were calculated and these ratios were 

multiplied with the simulated mean travel times in the assignment to obtain the simulated 

80
th

 and 95
th

 percentile travel time indices. These resulting indices are then added to the 

generalized cost function utilized in the dynamic traffic assignment based on Equation 3-

7.  

In Equation 3-8,    is assumed to be equal to     assuming that travelers put the same 

weights on the 80
th

 and 95
th

 percentile travel time reliability. This study assumes that the 

VOT/VOR ratio is 1.1 based on the assumptions from the SHRP2 C04 project. Based on 

Equation 3-8 and the above assumptions         and     are estimated to be 22, 10, and 

10, which are the total VOT of $22 and VOR of $20.  

 ‎Figure 4-19 and ‎Figure 4-20 show the diverted volumes to ML with and without the 

consideration of VOR, respectively utilizing different modeling tools. As shown in these 

figures, the results generated from different ML modeling tools are closer to real-world 

observations when the VOR is considered in the ML modeling.  

 
 Comparison of Diverted Volume to ML without VOR Utilizing Different Tools Figure 4-19
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 Comparison of Diverted Volume to ML with VOR Utilizing Different Tools  Figure 4-20

The corresponding MAPE and RMSE values to the results presented in 

 ‎Figure 4-19 and ‎Figure 4-20 are summarized in ‎Table 4-8. All results are based on a $40 

VOT, which was presented in the previous section. The results show that DTALite 

without the consideration of VOR can produce better results compared to other tools, 

relative to the real-world diverted volumes to the ML. When the VOR is considered, the 

results from all tools are significantly improved. 

Table 4-8 Goodness-of-Fit Statistics for Diverted Volume Replication with and without the 

Consideration of VOR  

Goodness-of-Fit Statistics ELToD 
Cube 

Avenue 
DTALite VISUM 

With 

Consideration 

of VOR 

RMSE 

(veh/ln/15min) 
12.00 9.18 8.23 10.77 

MAPE (%) 2.29 1.96 1.89 2.27 

Without 

Consideration 

of VOR 

RMSE 

(veh/ln/15min) 
54.30 46.22 31.02 37.03 

MAPE (%) 13.36 11.29 6.93 8.68 
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 Dynamic Pricing 4.3.3.

The previous analysis assumed a fixed pricing to the modeling of ML. The benefit 

of modeling the dynamic toll policy used for the I-95 northbound managed lane in 

Miami, FL instead of a fixed toll value was also investigated in this study. Instead of a 

fixed toll, the dynamic I-95 ML pricing is defined as a function of maximum traffic 

density along the managed lanes with the purpose of maintaining a desired level of 

service, as is done in the real-world. This toll policy was modeled in Cube Avenue using 

the script language of Cube. The script language in Cube Avenue was used in this 

research for dynamic pricing in ML modeling. During each time interval in Cube 

Avenue, the maximum link density is calculated by comparing the densities of all ML 

links in each direction. Once the maximum density is found, the corresponding toll cost 

($) is obtained by looking up a predefined toll policy table. 

 ‎Table 4-9 shows the I-95 ML toll policy before March 1, 2014. In order to relieve 

the congestion along the ML, FDOT D6 increased the minimum toll from $0.25 to $0.50 

and the maximum toll from $7.00 to $10.50 as shown in Table 4-10. This study aims to 

test the robustness of the ML modeling to estimate the increase in diversion when 

changing the managed lane pricing and other policies. Since VISUM and DTALite only 

allow a fixed toll rate, they are not included in this dynamic analysis. 

Table 4-9 I-95 ML Old Toll Policy (Before March, 2014) 

Level Of Service 
Road Density (veh/mi/ln) Toll Cost ($) 

Minimum  Maximum Minimum  Maximum 

A 0 11 0.25 0.25 

B 12 18 0.5 1.25 

C 19 26 1.5 2.75 

D 27 35 3 3.75 

E 36 45 3.75 6 

F >45 6 7 
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Table 4-10 I-95 ML New Toll Policy (After March, 2014) 

Level Of Service 
Road Density (veh/mi/ln) Toll Cost ($) 

Minimum  Maximum Minimum  Maximum 

A 0 11 0. 5 0. 5 

B 12 18 0.5 1.55 

C 19 26 1.5 8.5 

D 27 35 8.5 9.5 

E 36 45 9.5 10.5 

F >45 10.5 10.5 

‎Figure 4-21 shows the toll-density curves of the ML with the old and new toll 

policies for the I-95 ML based on utilizing dynamic pricing model in Cube Avenue and 

ELToD. It should be noted that the observed data in this figure refer to the density 

estimated from the real-world detector data. It can be seen from this figure that the new 

policy resulted in a reduction in the density of the managed lanes due to higher toll cost 

and this was also reflected in the utilized tool results.  

 
 Comparison of Toll-Density Curves for Old and New Toll Policies for I-95 Figure 4-21

Northbound Utilizing Different Tools 
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 ‎Figure 4-22 presents the corresponding results for the diverted volume to ML 

when using the old and new toll policies with different tools. It can be seen in this figure 

that ELToD, a static assignment-based ML model, underestimates the diverted volumes 

to the ML based on the old toll policy and the new toll policy However, the dynamic 

assignment-based managed lane model implemented in Cube Avenue can produce the 

diverted volume results similar to the real-world measurements. It can also be seen that 

the differences between the diverted volume to the ML in the simulated and observed 

data before and after implementing the policy are the same, which indicates that the ML 

models in ELToD and Cube Avenue are robust in capturing the impacts of toll policy 

changes.  

 
 Comparison of Diverted Volume to ML Using Old and New Toll Policies for I-Figure 4-22

95 Northbound Utilizing Different Tools 

The results of the percentage share of ML volumes compared to total volumes 

along the corridor utilizing different tools for different toll scheduled policies are 

presented in ‎Table 4-11. The percentage of ML share in this table is calculated as the 
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number of vehicles diverted to ML divided by total number of vehicles traveling along 

the corridor at the entrance of managed lanes. 

Table 4-11 Variation of Percentage of ML Share with Respect to toll Scheduled Policy 

Utilizing Different Tools (%) 

Time 
Old Toll Policy New Toll Policy 

ELToD Cube Avenue Real-World ELToD Cube Avenue Real-World 

15:30 32.44 35.10 36.21 27.78 29.70 30.60 

15:45 32.57 34.97 36.61 27.52 29.28 31.00 

16:00 32.71 36.34 38.62 27.42 29.53 32.18 

16:15 32.32 38.68 40.23 28.04 32.20 33.82 

16:30 35.02 41.31 40.47 30.30 32.69 33.42 

16:45 35.17 41.66 39.10 29.61 34.03 32.18 

17:00 34.70 41.20 38.62 28.98 34.44 32.53 

17:15 34.77 42.00 40.23 29.30 34.92 33.42 

17:30 32.39 41.59 40.23 27.78 35.32 33.73 

17:45 32.53 41.98 38.62 27.63 35.48 32.93 

18:00 32.93 41.68 37.01 28.01 35.00 31.56 

18:15 32.63 40.39 37.01 27.90 32.83 30.60 

 Modeling of Cooperative Adaptive Cruise Control (CACC) in ML Utilizing   4.4.

MRM  

 Capacity Impact Estimation based on Microscopic Simulation 4.4.1.

As stated earlier in the methodology chapter, the lane capacity as a function of the 

proportions of CACC vehicles in the traffic stream was estimated by Shladover et al. 

(2012), using microscopic simulation. The time gap distribution that was used in a real-

world field test were used as inputs into a car-following model in the AIMSUN 

microscopic simulation tool. The parameters of the car-following models are the distance 

between vehicles, speeds of both the preceding and following vehicles, and vehicle 

lengths.  
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The scenario with all manually driven vehicles was used as the base scenario. The 

simulation of this base scenario resulted in an average capacity of 2,018 veh/ln/hr, in 

accordance with the Highway Capacity Manual (HCM) estimates.  

The desired time gaps of ACC-equipped and CACC- equipped vehicles used in 

the simulation were identified from the gaps selected by drivers in the field test, as listed 

below: 

 ACC: 31.1% at 2.2 sec, 18.5% at 1.6 sec, and 50.4% at 1.1 sec 

 CACC: 12% at 1.1 sec, 17% at 0.9 sec, 24% at 0.7 sec, and 57% at 0.6 sec 

When basic ACC vehicles with the above time gaps were simulated in the traffic 

stream, the capacity increased within a narrow range from 2,018 veh/ln/hr to 2,100 

veh/ln/hr, which is close to the base scenario capacity, regardless of the market 

penetration. This can be explained by noting that drivers of ACC-equipped vehicles use 

similar time gap setting to the time gaps that they set when they drive manually (the base 

scenario). However, when various combinations of manually driven and CACC vehicles 

were considered, the results showed that the capacity grew slowly the CACC market 

penetration was low, and then it grew more rapidly as the market penetration increased 

further. With 100% of CACC vehicles in the traffic, the lane capacity would increase 

from 2,018 veh/ln/hr to 3,970 veh/ln/hr, which means 97 % capacity increase, compared 

to the base capacity. ‎Figure 4-23 shows the percentage of lane capacity increases with the 

different market penetration of CACC vehicle based on the results from Shladover et al. 

(2012). 
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 Impacts of CACC Proportion on Lane Capacity (Shladover et al., 2012) Figure 4-23

The results from microscopic simulation, according to Shladover et al. (2012), 

indicate that the capacity is not significantly impacted by the introduction of ACC-

equipped vehicles into the traffic stream. However, the increase in the percentage of 

CACC technology significantly increases the capacity. If preferential treatment is given 

to CACC vehicles when using ML, this is expected to result in an increase in their 

percentage on ML and thus is expected to improve the mobility benefits of these devices 

by having more CACC vehicles concentrated on the lanes, which is a condition for 

capacity improvements. These potential impacts are investigated in this research by using 

demand forecasting modeling based on STA and mesoscopic simulation modeling based 

on DTA using the results from the microscopic simulation. This analysis approach can be 

considered as a multi-resolution modeling (MRM) approach since it uses results from 

macroscopic, mesoscopic, and microscopic models.  
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 Modeling the Impacts of CACC Vehicle Based on Macroscopic and Mesoscopic 4.4.2.

Simulation  

This study examined the assessment of the impacts of CACC vehicle technologies 

on the performance of ML and GPL in the exploration network using macroscopic and 

mesoscopic models based on capacity estimates from microscopic simulation models by 

Shladover et al. (2012), as described in the previous section. The assessment was based 

on the capacity estimated by Shladover et al. (2012). This capacity was coded as a 

variable in demand forecasting modeling tool with macroscopic traffic model and a 

mesoscopic simulation-based DTA tool. The capacity was allowed to vary in each 

assignment iteration, as a function of the percentages of CACC in traffic streams in that 

iteration, according to the findings from the microscopic simulation study. 

Macroscopic traffic flow-based STA and mesoscopic simulation-based DTA were 

used to assess diversions between GPL and ML, in response to different CACC-equipped 

vehicle market penetrations and different ML strategies in the exploration network, which 

includes eight miles of the northbound direction of the I-95 freeway corridor in Miami, 

FL with 288 nodes, 303 links and 57 zones. As described earlier in the methodology 

section, three different user groups of demand matrices were used in the model: Tolled 

Vehicles, Shared Ride of three or more occupants (SRP3), and Truck. SRP3 were 

allowed to use the ML without any cost or restriction, and trucks were not allowed to use 

ML. 

In this research, the mobility impacts of CACC-equipped vehicles were modeled 

first based on the macroscopic traffic flow-based STA implemented in the SERPM. The 

same scenarios were also modeled in Cube Avenue, a mesoscopic simulation-based DTA 
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tool. The results from STA and DTA were aggregated into peak period values for 

comparison purposes.  

Although various projections have been reported in the literature to predict the 

market penetration of CACC vehicles from now until year of 2040, there is no consent 

yet on one specific projection. Therefore, a sensitivity analysis was conducted in this 

study to examine the impacts of CACC vehicle market penetration. Four values of market 

penetration were considered in the study: 0%, 20%, 60%, and 100%. Also, a tolling 

policy was tested in this study to give incentive to the vehicles equipped with CACC and 

encourage them to use the managed lanes by providing toll pricing discount to these 

vehicles. The rationale behind this policy is that for a given demand, the maximum 

managed lane throughput is expected to increase as the percentage of CACC vehicles 

traveling along the managed lanes increases due to the smaller gaps between vehicles, 

which may help reduce congestion on the ML and along the parallel GPL. In addition, 

two demand levels were included in the analysis; one corresponding to the existing travel 

demand, and another with 100% increase in demand to represent an extreme case of 

increase in future demand. 

The impacts of the CACC market penetration, toll discount rates and demand 

level on the portion of travelers that select the managed lanes under different scenarios 

was examined first using STA and the corresponding results are displayed in ‎Figure 4-24.  
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 Variation of Percentage of ML Share with Respect to CACC Market Figure 4-24

Penetration Using STA 

As shown in ‎Figure 4-24, based on the STA analysis, the percentage of ML share 

increases with the increase in the CACC market penetration for a given demand level and 

toll discount. It should be noted that the percentage of ML share in this figure is 

calculated as the number of vehicles diverted to managed lanes divided by the total 

number of vehicles traveling along the corridor at the entrance of managed lanes. The 

managed lane has two entrance points close to each other at the beginning of the system 

and the ML and GPL are separated until the end of the system. There are many ramps 

feeding the system and the higher percentages of vehicles that can be diverted to ML at 

the beginning of the system. It should be noted that due to the separation between ML 

and GPL, on-ramp vehicles have to use the GPL and cannot use the ML. In addition, all 

vehicles at the entrance of the system that are destined to off-ramps on the study 

segments are not able to use the ML due to the fact that they are not able to exit the ML 
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to get to the off-ramps. Thus, the separation between GPL and ML creates a maximum 

limit on the number of vehicles that are able to use the ML.   

With the base demand, this increase is from about 42% for 0% CACC market 

penetration to about 45%-46% for 100% CACC market penetration depending on the 

values of the toll discount rate. It appears that with the current demand, at small market 

penetrations of CACC, the increase in capacity due to CACC is small according to the 

relationship between the capacity and CACC vehicle proportion used in this study. Thus, 

as incentives are given to CACC vehicles and they divert to the ML in the assignment 

iterations.  

At higher market penetrations and with the base demand level, the capacity 

increase on the GPL and ML is significant, reducing the congestion on the GPL and the 

ML, and thus results in the motivation to shift to the ML. As the demand doubled with an 

increase of 100% in demand, the percentage of the ML share shows a significant increase 

from about 42% for 0% CACC market penetration to 48%-58% for all CACC toll 

discount rates when the CACC market penetration is 100%. Also, it can be seen that the 

increase in the toll discount rate for vehicles equipped with CACC can attract more 

vehicles to use managed lanes, especially when the market penetration of CACC is high. 

For example, at 60% market penetration, the ML share increased from 46% to about 54% 

when 100% discount is provided. 

‎Figure 4-25 presents the DTA model-based results of the percentage share of ML 

volumes, compared to the total volumes along the corridor. Again, the percentage of ML 

share in this figure is calculated as the number of vehicles diverted to ML divided by the 

total number of vehicles traveling along the corridor at the entrance of managed lanes. It 
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is interesting to note that the results in this figure show similar trends to those shown 

in ‎Figure 4-24, as described earlier. However, the increase in the ML percentage share 

with the increase in demand and toll discount is more in the DTA modeling, compared to 

the STA modeling, which reflects the ability of DTA to better model congestion impacts. 

Compared to the STA modeling, simulation-based DTA considers the capacity constraint 

and the queue propagation, and thus produces more realistic results.  

 
 Variation of Percentage of ML Share with Respect to CACC Market Figure 4-25

Penetration Using DTA 

It can be seen from Figure 4-25 that for the scenarios with the base demand, the 

percentage of ML share can be increased from 42% when the CACC market penetration 

is 0% to 47%-52% for 100% CACC market penetration, which is higher than the 

percentage share of 45% - 46% resulted from the STA modeling. Similarly, for the high 

demand scenario (100% increase in demand), the percentage of ML share is about 42% 

for 0% CACC market penetration, and is about 48% - 58% for 100% CACC market 

penetration based on the STA results. These values are 52% - 60% for 100% CACC 
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market penetration according to the DTA modeling results. It should be noted that the 

high demand causes higher congestion, which gives incentives for more drivers to use the 

ML, and therefore results in a higher ML percentage share. Another example comparison 

is that 60% CACC market penetration with the base demand, proving 100% discount, 

increases market penetration from 43% to 45% according to the STA, and from 45% to 

50% according to the DTA. 

One of the bottleneck locations was at the NW 103rd St. interchange along the 

study corridor as identified earlier in Section 4.1.2. ‎Figure 4-26 presents the 

corresponding worst speed at this location along the GPL during the analysis period, 

according to the STA analysis.  

The results in this figure show that the speed at the bottleneck location increases 

when the market penetration of CACC is increased and the discount rate is increased 

because of the higher roadway capacity associated with the higher percentage of CACC 

and the increasing shift to ML. When the CACC market penetration is less than 20%, the 

toll discount does not show a significant impact on the bottleneck location speed. This 

can be explained again by the earlier discussion that with small market penetrations of 

CACC the increase in capacity due to CACC is small according to the relationship 

between capacity and CACC vehicle proportion used in this study. Thus, as incentives is 

given to CACC vehicles and they divert to ML in the assignment iterations, the 

congestion on the ML increases, and causes the CACC vehicle to shift back to the GPL. 

However, an about 5 mi/h increase in the speed at bottleneck can be observed 

from ‎Figure 4-26 due to toll discounts at the higher CACC market penetrations.  
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When the demand is increased by 100%, the speed at the bottleneck location 

becomes lower compared to the scenarios with the base demand. However, the changes 

of bottleneck location speed with respect to the CACC market penetration and toll 

discount rates are similar for these two demand levels. 

 
  Variation of Speed at Bottleneck Location with Respect to CACC Market Figure 4-26

Penetration Using STA 

‎Figure 4-27 presents the corresponding DTA analysis for the speed at the worst 

bottleneck location, along the GPL. As shown in this figure, the bottleneck location speed 

is improved with the increase in the CACC market penetration, especially at the high 

CACC market penetrations.  
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 Variation of Speed at Bottleneck Location with Respect to CACC Market Figure 4-27

Penetration Using DTA 

A close comparison of the results in ‎Figure 4-26 and ‎Figure 4-27 reveals that for 

the scenarios with the base demand, the implementation of different toll discounts can 

cause about 5 mi/h difference in the bottleneck location speed given a CACC market 

penetration of 100% based on both STA and DTA simulations. However, increasing the 

toll discount rate from 0% to 100% at the 100% CACC market penetration can improve 

the bottleneck location speed from 30 mi/h to 40 mi/hr according to the DTA analysis, as 

shown in ‎Figure 4-27, while such improvement in bottleneck location speed is only from 

30 mi/hr to 35 mi/hr according to the STA results in ‎Figure 4-26. This is consistent with 

the impacts of the toll discount rate on the percentage of ML share utilizing STA and 

DTA, as shown in ‎Figure 4-24 and ‎Figure 4-25, in which DTA modeling results show 

more vehicles using the ML than the STA modeling results, which causes a higher speed 

at the bottleneck location in DTA modeling compared to STA modeling. 
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The results of this section demonstrate the benefit of using results from tools with 

different levels of modeling to support each other’s analyses. In general, the trends 

obtained based on results from the STA modeling of advanced vehicle technologies in 

terms of the market share of traffic in ML and the reduction in congestion on GPL are 

consistent with those obtained from DTA. However, DTA results show more significant 

shifts due to better modeling of traffic congestion. The results also show that providing 

toll incentives for CACC-equipped vehicles to use express lanes is not beneficial at a 

lower market penetration due to the small increase in capacity with these market 

penetrations. Such incentives are beneficial at higher market penetrations, particularly 

with higher demand levels.  

 Summary  4.5.

The MRM framework developed in Chapter 3 was applied in this study to model 

managed lanes and the impacts of associated operational and pricing strategies. To 

achieve this purpose, the methodology described in Chapter 3 was applied to a network, 

which has already been modeled and calibrated with a mesoscopic simulation-based DTA 

tool (Cube Avenue) by Hadi et al. (2013), to explore and examine the concepts and the 

components of the MRM in this study.  

A number of modeling tools used in this case study includes: Express Lanes Time 

of Day (ELToD) coded in Cube and VISUM as the macroscopic tools, and Cube Avenue 

and DTALite as the mesoscopic DTA tools. The first step was to convert the network and 

demand data from the calibrated network in Cube by Hadi et al. (2013) to VISUM and 

DTALite utilizing a set of shape files and demand matrices.  
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This research examined the impacts of the calibrated and uncalibrated TFM 

parameters in the simulation results using different modeling tools. The results showed 

that the use of calibrated TFM parameters reduces the deviations from the real-world 

speeds. Both DTALite and VISUM tools produce better results than Cube Avenue. Using 

the Ackcelik function with Cube Avenue improved the results.  

The power of ODME modules in Cube, VISUM, and DTALite tools were tested 

and compared to optimize the demand matrices estimation in comparison to the real 

world measures in this research. The results showed that DTALite can produce better 

volume results than the other two tools. A better demand matrix used as input to the 

ODME process (such as the previously calibrated demand matrices) can produce a more 

realistic replication of real-world volume counts, compared to utilizing simple factorized 

demand matrices. The implementation of the dynamic ODME in VISUM and DTALite 

can better capture the queue forming and dissipation than the static assignment-based 

ODME implemented in Cube, which can result in more accurate volume counts. 

The developed MRM framework was applied in this research to model managed 

lanes and the impacts of associated operational and pricing strategies. The findings from 

 SHRP 2 C04 were applied to set the generalized cost function in DTALite because it 

allows the users to define the distribution of the value of time among other explored tools 

in this study. The results showed that the value of time of $40 produced the closest results 

to the real-world diverted volume to ML. These results also confirmed that utilizing a 

distribution of VOT, instead of a fixed value, produces better correspondence to the real-

world diversion. 
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In addition, a methodology was proposed to incorporate the impacts of travel time 

reliability in the selection of managed lanes. The value of 1.1 was assumed for the ratio 

VOT/VOR in this study. In this research, the 80
th

 and 95
th

 percentile travel time 

reliability were estimated for the modeling of ML. The results confirmed that there are 

significant differences between simulated volumes to ML when VOR is not added to the 

generalized cost function. 

In terms of the dynamic pricing approach in the ML modeling, the dynamic I-95 

ML pricing is defined as a function of maximum traffic density along the managed lanes 

with a purpose of maintaining a desired level of service, as is done in the real-world. The 

results showed that the dynamic assignment-based managed lane model implemented in 

Cube Avenue can produce closer results of diverted volume to the real-world 

measurements. However, ELToD as a static assignment-based ML model underestimates 

the diverted volumes to the ML based on the old toll policy and the new toll policy.  

Eventually, the developed MRM framework was applied in the assessment of the 

impacts of CACC vehicle technologies on the performance of ML and GPL utilizing 

macroscopic and mesoscopic models based on capacity estimates from microscopic 

simulation models. The capacity was allowed to vary in each assignment iteration, as a 

function of the percentages of CACC in traffic streams in that iteration. The trends 

obtained based on results from the macroscopic simulation are consistent with those 

obtained from mesoscopic simulation-based DTA. However, DTA results show more 

significant shifts due to better modeling of traffic congestion. The results also show that 

providing toll incentives for CACC-equipped vehicles to use express lanes is not 
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beneficial at a lower market penetration due to the small increase in capacity with these 

market penetrations.   

CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS  

This study proposes methods for selecting and combining tools with different 

analysis resolutions for modeling Managed Lanes (ML) and the associated advanced 

strategies. The methods show how data analysis support tools and transportation system 

modeling tools can be integrated for an effective modeling of ML. This research also 

demonstrates how a Multi-Resolution Modeling (MRM) approach can be applied to 

assess the operations of Adaptive Cruise Control (ACC) and Cooperative Adaptive 

Cruise Control (CACC), as representatives of Autonomous Vehicles (AVs) and 

Connected Vehicles (CVs) on ML with different incentives (preferential treatments), 

pricing strategies, and access restrictions. The following subsections are the conclusions 

based on the results of this research and the recommendations for future works. 

 Conclusions  5.1.

A number of tools with different levels of modeling have been developed to 

assess ML strategies. Selecting and combining these tools for modeling of congested 

conditions and advanced strategies such as managed lanes are the challenging tasks for 

transportation modelers. A critical component of the MRM framework is to select the 

right tools to meet the modeling requirements. A list of criteria was developed in this 

research for the assessment of simulation tools to model ML with consideration of 
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AVs/CVs. These criteria can be used by agencies to allow general comparisons of various 

modeling tools to meet the needs of the specific modeling problem.  

Among the analysis support tools, this study identified automatic data conversion 

between tools with different resolutions, as a critical component needed for the success of 

MRM frameworks. Such tools should automatically convert the input/output data from 

one tool format to another. To demonstrate the benefits of this type of tools, this research 

utilized NEXTA, an open-source tool that can convert the network shape files and 

demands from regional demand models to inputs accepted by other modeling tools. This 

tool was successfully used in this study to support the research activities by converting 

the inputs and/or outputs to formats acceptable by different tools.   

The calibration of simulation and Dynamic Traffic Assignment (DTA) tools is 

another important component of MRM that requires analysis support tools and methods. 

With DTA-based models, the calibration process requires iterations between the 

adjustments of supply, demands, and assignment input parameters. Supply calibration of 

macroscopic and mesoscopic models involves estimating the segment’s capacity, free-

flow speeds, jam density, and other Traffic Flow Model (TFM) parameters. The quality 

of the calibration was assessed in this research, based on the degree of deviation between 

simulated and real-world measurements, as measured by the Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), Root-Mean-Square Error (RMSE), 

and  

R-Squared (  ). 

 The supply calibration performed in this study illustrates the importance of 

specifying the capacity and jam density parameters based on detector measurements in 
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macroscopic and mesoscopic simulation-based DTA tools. The effects of calibrating 

these parameters in a number of tools were assessed and compared. The results showed 

that the use of the calibrated capacity and jam density in the TFM model improves the 

simulation results, and reduces the deviations from the real-world speeds.  

The trip matrix estimation is an important step in the assignment process. DTA 

requires time-dependent trip matrices in short time intervals (e.g., 15 minutes or 30 

minutes). Therefore, an Origin-Destination Matrix Estimation (ODME) process is needed 

to estimate the trip tables for short intervals based on an initial matrix obtained from the 

regional demand model and field data. The performance of ODME modules in Cube, 

VISUM, and DTALite tools were tested and compared to optimize the demand matrices 

estimation in comparison to the real world measures in this research. The results showed 

that DTALite ODME process can produce better link volume results than the other two 

tools although the VISUM software results are close. It was also found that the quality of 

the O-D estimation is dependent on the quality of the initial O-D matrix that significantly 

affects the ODME process in all tools. The advantages of the dynamic ODME in VISUM 

and DTALite compared to the static ODME in Cube were clearly illustrated in this 

dissertation.   

The results of this research also demonstrated the importance of specifying the 

parameters of the generalized cost function including the correct VOT and the 

incorporation of VOR that have not been commonly used in traffic assignment practices. 

These two parameters are the statistical distribution of the VOT, instead of the fixed 

value of VOT, and the utilization of VOR in the generalized cost function of the 

assignment. The results showed that the VOT of $40 produced the best results in terms of 
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predicting the utilization of ML. This value is much higher than the value of time 

commonly used in the assignment practices. For example, the VOT of $13.3 used in the 

SERPM model. The results from this research also confirmed that utilizing a distribution 

of VOT, instead of a fixed value, produces better predictions of real-world utilization of 

ML. 

 The VOR essentially represents travelers’ willingness to pay for the reduction in 

travel time variability. Previous researches on the estimating reliability either used a 

scenario-based approach that was too time-consuming to incorporate in the assignment 

iterations, or used a simplified approach that did not account for important factors that 

affect unreliability such as incidents, work zones, and bad weather. In this study, an 

innovative methodology was proposed to assess the travel time reliability in the traffic 

assignment process associated with managed lane modeling. The method was based on 

regression equations developed as part of the SHRP 2 L03 project and later calibrated for 

the case study corridor (I-95 corridor in Miami) in the SHRP 2 L38C project. According 

to these equations, the travel time reliability is estimated as functions of demand/capacity 

(d/c) ratio, lane hour lost due to incidents and work zones, and weather conditions. The 

equation allows the prediction of various percentile travel time index. In this research, the 

VOT/VOR ratio was assumed to be of 1.1 according to SHRP2 C04’s findings. It was 

also assumed that travelers put the same weight on the 80
th

 percentile (worst four days in 

20 days) and the 95
th

 percentile travel time (worst one day in 20 days) reliability for the 

modeling of ML. However, this can be modified in the future if new results become 

available. The results showed that there are significant differences between the simulated 

and real-world volumes of ML when the VOR is not added to the generalized cost 
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function. These results highlighted the importance of utilizing the VOR in the generalized 

cost function.  

This study also investigated weather ML modeling is able to predict shifts in ML 

volumes when the tool schedule is changed by transportation agencies to divert traffic out 

of the managed lanes to improve their performance. The results showed that when 

emulating the dynamic congestion pricing in the model, DTA-based tools produce 

volume diversions that are comparable with real-world data. However, static assignment 

models were less successful to predict the exact volumes but they also produced 

reasonable results in terms of the amount of shift to ML.  

Finally, the developed MRM approach, with the selected parameters as described 

above, was implemented to evaluate the impacts of advanced vehicle technology. For this 

purpose, this research assessed the impacts of ACC and CACC vehicle technologies on 

ML and GPL using static and dynamic assignment models based on capacity estimates 

from microscopic simulation models. The lane capacity as a function of the proportions 

of CACC vehicles was estimated by Shladover et al. (2012) using microscopic simulation 

to estimate the effect of different market penetrations of ACC and CACC on freeway 

capacity. This capacity was then added and coded in static and dynamic traffic 

assignment models in the present research as a variable that is a function of the 

percentages of ACC and CACC in the traffic streams in each assignment iteration. 

 The impacts of CACC were tested in this study combined with a tolling policy 

that gives incentives to the vehicles equipped with CACC to encourage them to use the 

managed lanes by providing toll pricing discounts to these vehicles. The rationale behind 

this policy was that for a given demand, the maximum managed lane throughput was 
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expected to increase as the percentage of CACC vehicles traveling along a lane increases 

due to smaller gaps between vehicles. 

 The results of this study demonstrated the benefit of using findings based on 

modeling tools with different levels of modeling to support each other’s analyses. In 

general, the trends obtained based on results from the static assignment modeling of 

advanced vehicle technologies in terms of the market share of traffic in ML and the 

reduction in congestion on GPL are consistent with those obtained from DTA. However, 

the DTA results showed more significant shifts due to better modeling of traffic 

congestion. The results also showed that providing toll incentives for CACC-equipped 

vehicles to use express lanes was not beneficial at lower market penetrations due to the 

small increase in capacity corresponding to these market penetrations. Such incentives 

are beneficial at higher market penetrations, particularly with higher demand levels.  

 Recommendations for Future Works 5.2.

As mentioned earlier, this study aims to explore the effectiveness of different 

levels of modeling when used separately and in combination in the modeling of ML. A 

number of research topics can be recommended to extend the results of this study, as 

listed below:  

 Incorporating microscopic simulation modeling in the developed MRM for 

the modeling of ML. Microscopic simulation model can be evaluated in the 

modeling of ML utilizing diverted volume with different simulation tools 

and using the data from microscopic simulation as inputs to macroscopic 

and mesoscopic simulation tools.  
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 Testing the MRM framework for a larger network that includes parallel 

arterials to the ML facility to assess the effect of the full MRM framework 

in the diversion of ML.  

 Implementing the explored concepts of the MRM framework to other 

advanced traffic and demand management strategies such as incident 

management, smart work zones, and integrated corridor management  

 Developing tools to convert real-world data to format that can be used to 

support the modeling process. This tool should be able to convert the real-

world data to the acceptable data format in the different modeling tools. 

 Developing tools to support alternative analysis that post processes the 

outputs from different models and produces additional statistical parameters 

and visualization for the use in alternative comparisons. 

 Assessing the benefits of the VOT and VOR by different user types in the 

modeling of ML. The stratification of VOT and VOR can be based on user 

income, trip purpose, vehicle occupancy, or a combination of all. 

Considering these parameters can replicated the diverted volume to the ML 

as is done in the real-world. 

 Evaluating the impacts of different fixed and dynamic pricing schemes on 

the utilization of ML using the MRM approach. The benefit of the dynamic 

pricing schemes can be investigated in different levels of ML modeling. 

 Utilizing additional field data to estimate the capacity in different market 

penetration of AVs/CVs to confirm the values used in this study based on 

the microscopic simulation.  
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 Showing how CV/AV modeling can be further enhanced by using 

microscopic simulation to model weaving, merging, and diverging at the 

entry and exit points of ML.   
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APPENDICES  

APPENDIX 1. Review of Simulation and Dynamic Traffic Assignment (DTA) Tools 

VISUM 

Verkehr In Stadten Simulation Modeling, which means “Traffic in Towns 

Simulation Modeling” (VISUM) is a tool that allows modeling transportation systems 

and includes a DTA model that has been added to this software for the advanced 

modeling of the interaction between traffic path performance and route selection. The 

DTA model assigns dynamic Origin-Destination (O-D) matrices onto the network based 

on Dynamic User Equilibrium (DUE). The model converges to the equilibrium state in 

which no travelers can have less experienced travel time by unilaterally changing their 

paths (PTV Vision VISUM 14, 2013).  

To represent a spillback in VISUM, it is assumed that each link is characterized 

by two time-varying bottlenecks: one located at the beginning, and another located at the 

end of the link, called “entry capacity” and “exit capacity", respectively. VISUM applies 

Traffic Flow Fuzzy (TFlowFuzzy) model to allow Origin-Destination Matrix Estimation 

(ODME) using observed count data and simulated volumes. The matrix estimation data is 

done using an iterative method to adjust the initial O-D matrix cells to achieve better 

matching of observed and simulated volumes (PTV Vision VISUM 14, 2013).  

 DYNASMART 

Dynamic Network Assignment-Simulation Model for Advanced Telematics 

(DYNASMART) is one of the first DTA tools developed to implement a simulation-DTA 
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modeling of transportation networks by Mahmassani et al. (2009). DYNASMART 

provides a mesoscopic level of traffic representation, which combines a microscopic level 

of representation of individual travelers with a macroscopic description of traffic flow. 

Link travels and movements of vehicles are governed by a modified version of the 

Greenshield’s macroscopic speed-density relationship, but vehicular movements are 

tracked at the level of individual vehicles or groups of vehicles. Delay is computed using 

node transfer logic based on the time that takes for vehicles to transfer. The model 

assumes that O-D demands and departure times are provided. DYNASMART was 

initially tested on the Fort Worth network to evaluate real-time route guidance for 

incident and non-incident conditions under varying degrees of information supplied to 

different user classes. Additionally, DYNASMART was tested in the early stage of 

development using the Baltimore and Irvine network. Recently, DYNASMART was 

successfully used as a research tool for assessment, and used also as a part of advanced 

strategy implementations. This tool is not currently commercially available. 

DynusT 

DYNamic Urban Systems for Transportation (DynusT) was developed at the 

University of Arizona based on DYNASMART. DynusT is an open source program that 

was developed by Chiu (2012).  

The default assignment in DynusT is based on a gap-based assignment which 

replaces the Method of Successive Average (MSA) assignment in a recent version of 

DynusT although the MSA assignment can still be requested. The gap-based assignment 

produces much better convergence and computational efficiency compared to MSA (Chiu 
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and Bustillos, 2009). DynusT is an open-source tool and is not commercially available, 

although the developers can sign agreement to provide technical support. It has been used 

in a number of projects in recent years. 

VISTA  

The Visual Interactive System for Transportation Algorithms (VISTA) tool is a 

DTA-based software operated by VISTA Transport Group, Inc. (VTG) VISTA iterates 

between two modules, which are Path Generation (PG) and Dynamic User Equilibrium 

(DUE). In the first iteration, PG finds the time-dependent shortest path between each O-D 

pair at each departure time, assigns all vehicles to their shortest paths, and then simulates 

the vehicle movements to update travel costs. In subsequent iterations of PG, a fixed 

percentage of vehicles (as opposed to all vehicles) are allowed to move to the shortest 

paths before simulation. The DUE finds the optimal percentage of vehicles to be shifted 

from every other path onto the current shortest path. It then simulates these new vehicle 

trajectories to find new path costs and the new shortest path set. Convergence is 

measured after exercising both the PG and DUE modules by comparing the travel times 

across all vehicles with the same origin, destination, and departure time. VISTA VISTA 

has the ability to incorporate traffic signals, intersection movements, signal optimization, 

variable message signs, and multiple vehicle types including fixed-route transit vehicles 

and incidents that temporarily reduce capacity. VISTA can be run from a command line 

or using the web-based graphical user interface, which includes a geographic information 

system editor for the purpose of visualizing the network and animating results. More 

details on VISTA’s framework can be found in Ziliaskopoulous (2000). This software 
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was tested for Chicago, Austin, and Dallas/Fort Worth metropolitan planning regions 

networks. However, the application of this software is still limited, particularly in recent 

years. 

Dynameq  

 Dynameq is a DTA software developed by INRO Consultants, Inc. Dynameq is a 

DUE-based model that iterates between finding time-dependent path flows and 

determining the corresponding path travel times. Vehicles are assigned to paths using the 

MSA, which assigns a decreasing fraction of vehicles to the shortest path in subsequent 

iterations. The fraction is equal to one divided by the current iteration number, so that in 

the first iteration, all vehicles are assigned to the shortest path. Half of all vehicles are 

assigned to the shortest path in the second iteration, and so on. The developers have also 

tested more efficient and better converging methods of assignment (Mahut et al., 2007). 

Although Dynameq is a DUE-based model and vehicles do not switch paths en-route, 

lane-changing decisions are made upon entering each new link. Modeling individual 

lanes has the advantage of explicitly modeling scenarios when certain types of vehicles 

are restricted from specific lanes such as high occupancy vehicle lanes. To improve 

computational efficiency and allow for regional-level modeling, Dynameq’s behavioral 

rules are simplified relative to other microscopic simulators. These simplifications 

include not allowing vehicles to reconsider their lane choice. Also, the model is updated 

each time an event occurs, rather than at pre-defined time intervals. Thus, Dynameq may 

be considered as higher fidelity mesoscopic model. More information about Dynameq 

and its application can be found in Mahut et al. (2004) and Florian et al. (2008). 
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DynaMIT  

Dynamic Network Assignment for the Management of Information to Travelers 

(DynaMIT) is a DTA model developed at the Massachusetts Institute of Technology. It 

has an online version that obtains real-time traffic data and predicts network conditions 

and an offline version mainly used as a planning tool. DynaMIT has two major 

components including demand simulator and a supply simulator that interact with each 

other to estimate the state of the system. The demand simulator makes use of historical 

O-D matrices and generates travelers with certain socio-economic characteristics based 

on the actual population. Route choice models are then used based on historic travel 

times to assign a habitual travel behavior for each traveler. In the next step travelers 

adjust their routes or departure times from their habitual behavior in the presence of 

network information. This is accomplished by Probit or nested Logit models using path 

travel time and cost as trip attributes. The demand is then aggregated and an online 

calibration model based on an autoregressive process using the Kalman filtering approach 

adjusts the demands to match real time data. The demand matrices are then disaggregated 

into individual lists of drivers as in the initial step and are loaded onto the simulator. The 

supply simulator captures the behavior of the network using traffic flow models. Links 

are divided into smaller segments, and each segment is associated with a speed-density 

relationship and a queuing part. A deterministic queuing model produces the waiting 

times in the queues using the output and queuing capacities of the segment. Capacities 

and several other parameters used in the speed-density equations can be calibrated both 

off-line and online. The simulator then updates the speeds and densities by loading the 

demand on the network in a time-based manner. The model was successfully applied to 
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small networks such as Southampton, Lower Westchester County, and Irvine to study 

various traffic-related problems. This tool can be considered as a research tool since it 

has not been made available to agencies. More information on DynaMIT can be found in 

Ben-Akiva et al. (2009). 

Cube Avenue 

Cube Avenue is a dynamic traffic assignment extension of Cube Voyager 

(Citilabs, 2013). It models traffic at more details than the Cube Voyager’s Highway 

program which utilizes macroscopic models, and at less detail than microscopic models. 

With Cube Avenue, routes and flow rates change during the modeling period based on 

congestion. One of the strength of Cube Avenue for regions that use the Cube modeling 

environment is to apply the same data format and scripting language as Highway Cube 

Voyager. Using this scripting language also provides more flexibility in modeling 

approaches.  

 The assignment in Cube Avenue is based on user equilibrium utilizing the MSA 

method.  

TRANSIMS 

Transportation ANalysis and SIMulation System (TRANSIMS) is an open-source 

software developed at the Los Alamos National Laboratory to conduct transportation 

system analysis. It consists of four steps, one of which estimates demand by an activity-

based model, which is not available in other assignment tools. TRANSIMS has been 

implemented for large networks such as Dallas and Portland; however, it requires an 
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extensive amount of input data compared to other DTA models. More information about 

TRANSIMS can be found in Lee et al. (2014). 

DTALite 

DTALite is an open-source light-weight DTA package that has been developed by 

Zhou and Taylor (2012) and supported by FHWA to allow a rapid utilization of advanced 

dynamic traffic analysis capabilities. DTALite is a mesoscopic simulation-based DTA 

package that works in conjunction with the Network EXplorer for Traffic Analysis 

(NEXTA) graphical user interface. The DTALite tool aims to integrate modeling and 

visualization capabilities using a modularized design, the open-source suite of simulation 

plus visualization interface.  

The traffic assignment and simulation modules in DTALite iterate to either 

capture day-to-day user response or find steady-state equilibrium conditions. Speed, 

volume and density measures at the network, specific links, and vehicle trajectories can 

be visualized using the NEXTA user interface (Zhou and Taylor, 2012). 

DTALite is a link-based simulation with capacity constraints and it has been used 

recently in several pilot and research project sponsored by FHWA program (FHWA, 

2013a). More information about NEXTA/DTALite can be found at 

https://code.google.com/p/NEXTA (DTALite, 2012). 

TransModeler 

TransModeler is a microscopic simulation-based traffic assignment tool offered 

by Caliper (Caliper Corporation, 2011). One of the interesting features of TransModeler 
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is that it allows the network modeling based on the microscopic, mesoscopic, and/or 

macroscopic simulation level in the same run.  

TransModeler applies different algorithms that are suitable for microscopic 

simulation-based DTA. TransModeler can handle large-scale networks based on the 

microscopic simulation-based DTA. Micro-level simulation provides a more accurate 

representation of traffic and management operations compared to mesoscopic modeling. 

As these models become more efficient, this increases their attractiveness. However, 

calibration microscopic simulation still requests significantly more time than mesoscopic 

models, especially when combined with DTA.  

More information about TransModeler can be found at 

http://www.caliper.com/TransModeler/Simulation.htm (Caliper Corporation, 2011). 

VISSIM 

Verkehr In Stadten Simulation, which means “Traffic in Towns Simulation 

(VISSIM) was developed by PTV Group in Germany (PTV Vision, VISSIM 7, 2013). 

Most existing simulation models operate using link-node configurations. VISSIM is a 

detailed microscopic simulation tool that models vehicles at the 0.1-second resolution 

level. VISSIM differs from these models and it utilizes a link-connector structure. This 

involves coding movement individually at each intersection, allowing for increased 

precision and flexibility in modeling traffic flow. Although this process has been 

simplified in more recent versions of the software, it is more complex than coding link-

node models. VISSIM can display microscopic simulation results in 3D animations, 

including a feature that allows viewing from a selected driver’s perspective. VISSIM has 

http://www.caliper.com/TransModeler/Simulation.htm
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also a power programing extension that allows modelers to program advanced 

managements and pricing strategies that correspond to real-world advanced strategies. 

VISSIM recently released the new version of VISSIM 8 which allows the user to specify 

the demands based on predetermined turning movement or to utilize DTA between 

origins and destinations. In addition, the tool has a ML model to estimate the diversion 

between ML and General Purpose Lanes (GPL). (PTV Vision, VISSIM 8, 2015). 
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APPENDIX 2. Summary of Criteria for Tool Assessment 
 

Criterion Cube Voyger ELToD VISUM DTALite DynsuT Dynameq Cube Avenue VISSIM 
Trans 

Modeler 
CORSIM 

General Criteria (Hardware, Software, Interface, and etc) 

Open Source No Yes No Yes Yes No No No No No 

Utilization of 

Additional Hardware 

Computational 

Capabilities 

None 

Requires 

Cube 

Voyager 

None None None None 
Requires Cube 

Voyager 
None None None 

Flexibility in 

Modifying Procedures 

Cube scripting 

language can be 

modified  

Implementati

on of Cube 

Voyager 

Can use API utilizing 

Python script 

language 

Open source. 

Codes can be 

modified. But 

difficult to 

modify. 

Open source. 

Codes can be 

modified  

Using a 

Python-based 

API  

to implement 

advanced 

strategies 

Cube scripting 

language can be 

modified  

Can use API 

utilizing 

Python script 

language 

Can use 

script 

language or 

API to 

implement 

advanced 

strategies 

The Real 

Time 

Extension 

(RTE) 

facility 

allows 

coding of 

advanced 

strategies 

User 

Interface/Software 

Interface 

Make use of 

Cube 

environment 

powerful 

interface 

Implementati

on of Cube 

Voyager 

State of the art 

interface. There is no 

interface with other 

tools 

Use the 

NEXTA 

interface, 

which is a 

user friendly 

interface. 

Data in 

NEXTA can 

be converted 

to Cube and 

VISSIM 

Use the 

NEXTA 

interface. The 

interface has 

been developed 

to convert 

DynusT files to 

VISUM, which 

can then be 

converted to 

VISSIM 

Similar in 

design to the 

Emme 4 

interface 

Make use of 

Cube 

environment 

powerful 

interface 

State of the 

art interface. 

There is no 

interface with 

other tools 

State of the 

art. 

Interfaced 

with 

TransCAD 

Good user 

interface 

but limited 

interface 

with other 

software 
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Criterion Cube Voyger ELToD VISUM DTALite DynsuT Dynameq Cube Avenue VISSIM 
Trans 

Modeler 
CORSIM 

Shortest Path and Path Choice 

Assignment Type 

Static user 

equilibrium 

(UE). Several 

algorithms 

available 

including 

1. Bi-Conjugate 

Frank-Wolf 

method, path-

based gradient 

projection 

assignment 

2. Gradient 

Projection 

Algorithm, 

origin based 

3. Junction 

based 

 

 

Use the static 

user 

equilibrium 

in Cube 

Voyager 

Use different types of 

static and dynamic 

assignment including: 

Static : 
1. Incremental 

assignment 

2. Equilibrium 

assignment 

3. Equilibrium Lohse 

assignment(Time 

Based User 

Equilibrium) 

4. Assignment with  

Intersection Capacity 

Analysis (ICA) 

Stochastic assignment 

5. TRIBUT (Time 

Based User 

Equilibrium) 

Dynamic : 

1. TRIBUT 

Equilibrium (Time 

Based User 

Equilibrium) 

2. Dynamic User 

Equilibrium (DUE) 

3. Dynamic stochastic 

assignment 

4. Equilibrium 

assignment , Linear 

User Cost Equilibrium 

(LUCE) 

Dynamic user 

equilibrium 

(DUE). 

Alternative 

methods are 

available 

including 

MSA, Fix 

Switching 

Rate (FSR), 

Day-to-Day 

learning, and 

OD Matrix 

Estimation 

(ODME) 

MSA and 

recently 

introduced 

GFV-based 

method that 

performs 

significantly 

better 

Dynamic user 

equilibrium 

(DUE) 

1. Fastest path 

combined with 

regular  MSA 

2.flow 

balancing 

MSA 

Gradient-Like 

algorithm 

Dynamic user 

equilibrium 

(DUE) utilizing 

MSA 

Dynamic user 

equilibrium 

(DUE). 

 

Dynamic 

user 

equilibrium 

(DUE). 

 

Use a static 

assignment 

before the 

simulation 

but this 

feature is 

not 

normally 

used. 
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Criterion Cube Voyger ELToD VISUM DTALite DynsuT Dynameq Cube Avenue VISSIM 
Trans 

Modeler 
CORSIM 

En-route Dynamic 

Routing (e.g., in-

vehicle dynamic 

navigation system, 

DMS) 

No No No 

Yes.  

In-vehicle 

and DMS
1
) 

Yes. 

In-vehicle and 

DMS 

No No 

No.  

But divert at 

DMS using 

API 

Yes No 

Specification of Fine-

Grained Assignment 

Interval (e.g., 15-30 

minutes) 

No No Yes Yes Yes Yes Yes Yes Yes Yes. 

Allows Fixing Paths 

for Parts of the 

Demands 

No. 

But can be 

emulated by 

restricting the 

link in the path. 

For specific 

demands 

(maybe difficult 

in some cases) 

No. 

But can be 

emulated by 

restricting the 

link in the 

path. For 

specific 

demands 

(maybe 

difficult in 

some cases) 

Yes Yes Yes Yes 

No. 

 But can be 

emulated 

restricting the 

link in the path. 

For specific 

demands (maybe 

difficult in some 

cases) 

Yes Yes No 

Convergence Criteria Link based Link based Trip based Trip based Trip based Trip based Link based 

Convergence 

in the form of 

the ‘P
2
’ and 

‘V
3
’ 

statisticsi 

DUE
4
 

relative gap 
N/A 

                                                           
1
 DMS: Dynamic Massage Sign 

2
 ‘P’ : The percentage of links on which flows change by less than 5% between successive iterations „ 

3
 ‘V’:  The percentage change in total user costs or time spent in the network between successive iterations 

4
 DUE: Dynamic User Equilibrium  
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Criterion Cube Voyger ELToD VISUM DTALite DynsuT Dynameq Cube Avenue VISSIM 
Trans 

Modeler 
CORSIM 

Outputting and Using 

Interval-based 

Convergence Gap 

N/A N/A 
Utilizes gap for the 

whole iteration. 

Utilizes gap 

for the whole 

iteration  

Utilizes gap for 

the whole 

iteration.  

Utilizes gap 

for each 

interval. 

Utilizes gap for 

the whole 

iteration. 

NA 

Interval-

based 

relative 

gaps and 

uses only 

the average 

gap 

N/A 

Assignment of 

Individual Vehicles 
No No No Yes Yes Yes No Yes Yes N/A 

Assignment of 

Multiple Demand 

Types 

Yes. 

 Different user 

classes for each 

demand type 

defined by user 

Yes. 

Different user 

classes for 

each demand 

type defined 

by user 

Yes. 

Based on each user 

classes, by 

considering each 

demand type as type 

of PrT (Private 

Transpiration) system 

in link attribute 

Yes.  

Allows only 

three 

different 

types of 

users: SOV, 

HOV, and 

Truck.   

However, the 

value of time 

can be 

specified as a 

random 

variable for 

each user 

type  

Yes.  

Allow only 

three different 

types of users: 

SOV
1
, HOV

2
, 

and Truck 

Yes. 

 Different user 

classes for 

each demand 

type defined 

by user 

Yes. 

 Different user 

classes for each 

demand type 

defined by user 

Yes. 

 Based on 

each user 

classes, by 

considering 

each demand 

type in link 

attribute 

Yes. 

 Based on 

vehicle 

class, or 

driver 

group 

N/A 

                                                           
1
 SOV: Single Occupancy Vehicle 

2
 HOV: High Occupancy Vehicle 
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Criterion Cube Voyger ELToD VISUM DTALite DynsuT Dynameq Cube Avenue VISSIM 
Trans 

Modeler 
CORSIM 

Traffic Flow Model (TFM) 

Traffic Flow Model 

Type 
Macroscopic Macroscopic Macroscopic Mesoscopic Mesoscopic Msoscopic Mesoscopic Microscopic 

Microscopi

c 
Microscopc 

Queuing and 

Spillback 
No No Yes Yes Yes Yes Yes Yes Yes Yes 

Modeling of 

Signalized Arterials 
Yes No Yes Yes Yes Yes Yes Yes Yes Yes 

Modeling of Freeways Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Modeling of 

Alternative Routes to 

Facilities 

Yes 

No.  

Only ML and 

GPL 

Yes Yes Yes Yes Yes Yes Yes Yes 

Automatic 

Calculation of Signal 

Timing in Dynamic 

Traffic Assignment 

Yes No Yes Yes Yes Yes Yes No Yes NA 

Lane-by-Lane 

Simulation 
No No No No No Yes No Yes Yes Yes 

Merging/Weaving 

Simulation 
No No No No No Yes No Yes Yes Yes 

Modeling Turn Lane 

and Bay Length 
No No No No No Yes No Yes Yes Yes 
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Criterion Cube Voyger ELToD VISUM DTALite DynsuT Dynameq Cube Avenue VISSIM 
Trans 

Modeler 
CORSIM 

ML Modeling 

Generalized Cost in 

Assignment 

various 

Variables using 

scripting 

language 

Various 

variables 

using 

scripting 

language 

Allows travel time 

and toll in the 

generalized cost 

function 

Allows travel 

time and toll 

in the 

generalized 

cost function 

Allows travel 

time and toll. 

Allows travel 

time, distance,  

and toll in the 

generalized 

cost function 

Various 

variables using 

scripting 

language 

Various 

variables 

using 

scripting 

language 

Allows 

travel time 

and toll in 

the 

generalized 

cost 

function 

N/A 

Incorporation of 

Willingness-To-Pay 

(WTP)  into 

Assignment 

Yes Yes No No No Yes Yes 

In ML 

modeling 

uses WTP 

with DTA 

Yes N/A 

Link Access 

Restrictions/Prohibiti

ons by Vehicle Type 

Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Modeling Managed 

Lanes and Reversed 

Lanes 

Yes, but fixed 

during period of 

time 

Yes, but 

fixed during 

period of 

time 

Yes, but fixed during 

period of time 
Yes Yes Yes Yes Yes Yes Yes 

Fixed and Time-of-

Day Pricing by User 

Types 

Yes Yes Yes Yes Yes Yes Yes Yes Yes N/A 

Dynamic Pricing N/A No No No Yes Yes Yes Yes Yes N/A 

Inhomogeneous  VOT 

and VOR 

By user type, no 

randomization 

By user type , 

no 

randomizatio

n 

By user type and  

statistical distribution 

By user type  

and statistical 

distribution 

By user type  

and statistical 

distribution 

Utilizing 

INRO,By user 

type 

By user type , no 

randomization 

By user type  

and statistical 

distribution 

By user 

type  and 

statistical 

distribution 

N/A 
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Criterion Cube Voyger ELToD VISUM DTALite DynsuT Dynameq Cube Avenue VISSIM 
Trans 

Modeler 
CORSIM 

Advanced Vehicle Technology 

Capacity as a 

Function of 

Proportion of Vehicle 

Types 

Yes 

Maybe 

emulated by 

coding PC
1
 

and trucks 

Maybe emulated by 

coding PC and trucks 

Maybe 

emulated by 

coding PC 

and trucks 

Maybe 

emulated by 

coding PC and 

trucks 

Yes Yes Yes 

Can be 

emulated 

by coding 

PC and 

trucks 

Maybe 

emulated 

by coding 

PC and 

trucks 

Fixed and Time-of-

Day Pricing by 

different percentage 

of Advanced Vehicle 

Technology 

Yes 

Maybe 

emulated by 

coding PC 

and trucks 

Maybe emulated by 

coding PC and trucks 

Maybe 

emulated by 

coding PC 

and trucks 

Maybe 

emulated by 

coding PC and 

trucks 

Yes Yes Yes Yes 

Maybe 

emulated 

by coding 

PC and 

trucks 

                                                           
1
 PC: Passenger Car 
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