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ABSTRACT OF THE THESIS 

DEVELOPMENT OF A PRIMARY ION COLUMN FOR MASS SPECTROMETRY-

BASED SURFACE ANALYSIS 

by 

Raul A. Villacob 

Florida International University, 2016 

Miami, Florida 

Professor Francisco A. Fernandez-Lima, Major Professor 

Secondary Ion Mass Spectrometry (SIMS) is a powerful technique for high spatial 

resolution chemical mapping and characterization of native surfaces. The use of massive 

cluster projectiles has been shown to extend the applicable mass range of SIMS and 

improve secondary ion yields 100 fold or beyond. These large projectiles however, 

present a challenge in terms of focusing due to the initial spatial and kinetic energy 

spreads inherent to their generation. In the present work, we describe the development 

and construction of a novel primary ion (PI) column employing a gold nanoparticle – 

liquid metal ion source (AuNP-LMIS) and the coupling to ultrahigh resolution mass 

spectrometers (e.g., Fourier Transform Ion Cyclotron Resonance Mass Spectrometer, FT-

ICR MS) for accurate chemical characterization of complex biological surfaces. This 

work describes the ion dynamics, development and the experimental characterization of 

the AuNP-LMIS. 
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1 INTRODUCTION 

 

1.1 Surface Analysis and Mass Spectrometry Imaging. 

 

An ongoing pursuit in the analytical community has been the characterization and 

chemical mapping of micro and nanoscale objects1 in a way to better understand the 

chemical makeup, both organic and inorganic, of the main constituents of biological 

systems2. In the past 20 years, Mass Spectrometry Imaging (MSI) instrumentation has 

become the technique of choice for characterization and chemical mapping of substances 

in complex matrices at micrometric and submicrometric scales3. Mass spectrometry-

based surface characterization is not defined by one particular approach, but rather 

encompasses a variety of probes and mass analyzers. For example, MSI techniques can 

be categorized by the nature of the probe, their varying ionization mechanisms and 

instrumental conditions (e.g. vacuum vs ambient)4. These features define the effective 

mass range and spatial resolution characteristic to each probe, thereby also defining the 

applications2,3,5. Matrix-Assisted Laser Desorption (MALDI), Laser Electrospray 

Ambient Ionization (LAESI), Liquid Extraction Surface Analysis (LESA), and 

Desorption Electrospray Ionization (DESI) are ambient techniques that have shown 

success in chemical imaging of cell cultures and fresh tissue samples5,6. In addition, 

ambient techniques can be easily integrated with post-ionization separation techniques 

like ion mobility spectrometry (IMS) and tandem MS/MS systems3,7.  Traditionally, other 

ion beam based vacuum probes based have provided better spatial resolution (Secondary 

Ion Mass Spectrometry, SIMS)8. While progress have been made in both ambient and 

vacuum technologies, the ability to interrogate submicrometric domains remains 



 
 

2 

 

challenging (see Figure 1 for typical application range)3, 9. In addition to the spatial 

resolution, recent advances have permitted the 3D-chemical mapping using SIMS.  

A brief description of the different MSI techniques follows: 

Secondary Ion Mass Spectrometry (SIMS): Secondary Ion Mass Spectrometry is a 

vacuum technique that utilizes a energetic primary ion (PI) beam (keV-MeV) to 

desorb/sputter material from a surface10. Some of this material may become ionized, 

becoming secondary ions (SI) during the desorbtion process by different mechanisms, 

dependent on the projectile size and energy and sample nature (organic or inorganic). 

SIMS provides high spatial resolution for both 2D and 3D chemical imaging (<300 

nm)10. Resolution is primarily limited by the PI beam focus at the target, which can be 

Figure 1. Mass range and spatial resolution of common MSI techniques. 
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controlled employing ion optics and time-pulsing schemes (IO). The SIs are mainly 

composed of singly charged fragments and intact molecular ions of the surface of 

interest11. 

Matrix-Assisted Laser Desorption Ionization (MALDI). Matrix Assisted Laser Desorption 

Ionization is a pressure-independent surface technique. The sample surface of interest is 

coated with a protic matrix, which is exposed to laser pulses (e.g., 337 and 355 nm) 12. 

This process occurs by a coherent phonon excitation via pulsed laser shots that leads the 

matrix and sample to form a localized hot plume of gas, interacting with the sample 

surface12. At this stage, these interactions can foster the generation of ions via gentle 

protonation and deprotonation processes. This technique is one of the most popular MSI 

technique, having widespread usage in the analysis of biological and organic materials 

thanks to the ability of generating molecular ions ranging of up to 100,000 m/z, with a 

typical spatial resolution in the tens of microns, and ease of hyphenation with other 

techniques3, 9. The matrix crystal size often defines the spatial resolution limit and the 

mass range of the analysis3,9. 

Desorption Electrospray Ionization (DESI). Desorption Electrospray Ionization is an 

ambient technique where ions are generated by directing a focused jet stream of 

electrosprayed droplets to a sample surface7. Droplets from this stream impact the 

sample, expand, and desorb material as they recoil back into the gas phase generating 

mostly intact molecular ions3. Thanks to the gentleness of the ionization mechanism, 

minimal damage is done to the morphology of the sample and it can complemented with 

other imaging techniques for 2D and 3D analysis5. 
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Laser Ablation Electrospray Ionization (LAESI).  Laser Ablation Electrospray Ionization 

combines DESI and MALDI to provide high spatial resolution MSI, along with 2D and 

3D chemical mapping capabilities13. A mid-infrared (IR) laser ablates material from the 

sample surface and an orthogonal electrospray source emitting charged droplets provides 

further ionization of the ejected material via charge exchange mechanisms similar to 

conventional electrospray ionization (ESI)13. The spatial resolution is typically limited by 

the laser spot size. 

Liquid Extraction Surface Analysis (LESA).  Liquid Extraction Surface Analysis is an 

ambient ionization technique, where a nanoelectrospray pipette is directed to a site on the 

sample to perform a localized solid-liquid extraction14. The probing tip is then transferred 

to a mass spectrometer inlet, where the extracted material is ionized via electrospray 

ionization. LESA can be utilized for 2D and 3D imaging, including single-cell analysis 

for certain eukaryotic species by utilizing ultra-fine nanocapillaries for sample probing14. 

It must be noted that there are other variants of MSI but SIMS stands alone as the main 

technique for nanoscale 2D and 3D imaging at the intra-cellular level11, 15.  

1.2. Secondary Ion Mass Spectrometry and Operational Regimes  

 Over the last decades, SIMS has become the go-to tool for the characterization 

of native untreated surfaces at the microscale and nanoscale10-11. The sensitivity for SIMS 

measurements extremely high when compared to other MSI methods due to the nature of 

the interrogation, allowing for routine detection of atomic species at parts per billion, 

with a dynamic range of 109 when coupled with multiple detectors or multichannel 
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detectors10. Fluctuations in the SI emission are fairly common and quantification 

typically requires the usage of reference materials10. 

 

Figure 2. Depiction of SIMS process. A primary ion impacts the upper sample 

monolayers, generating photons, electrons, secondary ions and neutrals. 

SIMS operational modes depend on the analysis of uppermost monolayers of the 

sample or the analysis of the composition as a function of depth, referred to as Static 

SIMS and Dynamic SIMS, respectively10. These modes differ in the PI dose or number of 

impacts per cm2. In static SIMS, this goal is achieved by bombarding the sample surface 

with less than 1013 ions/cm2 for the given field of view. Beam fluence, or dose density 

beneath this threshold is referred to as the staying within the static limit. Analyses 

conducted under the static limit perturb less than 1% of the irradiated surface of the 

sample, allowing the overall morphology relatively intact2, 10. Within the static limit, 

damage is generally reduced to the upper sample monolayers, allowing the subsurface of 

the sample to go mostly undisturbed16. However, the low sputter yields associated with 
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common projectiles coupled with the poor ionization efficiency yields low number of 

SIs17. In surpassing the static limit (>1x1013 ions/cm2) one enters the range of Dynamic 

SIMS. In Dynamic SIMS a continuous beam of ions (DC or near DC) is employed where 

the number of incident ions exceeds the atom count at the surface, leading to a gradual 

sample erosion10. Ion dosages in this mode generally are in excess of 1.0x1014 ions/cm2, 

thus damage to the sample is far more pronounced, due to irreversible changes in the 

morphology of the sample9-10. Conventional atomic projectiles has been known to lead to 

loss of all molecular information, generally relegating the technique to elemental and 

small molecules18. Yet in this operational mode, one can thoroughly profile the chemical 

make-up of the sample as a function of depth. Dynamic SIMS also provides enhanced 

sputter and ionization yields, maximizing sensitivity for trace analysis10. However, 

advances in projectiles have allowed for Dynamic SIMS to become widely applicable by 

incurring significantly reduced damage19,20. Other advances capitalize on the DC-nature 

of the beam in this mode, allowing for nanoscale analyses to be performed with ease 

(>250 nm)15. 

The 2D static SIMS operation is preferred in order to better localize analytes on 

the sample surface while minimizing sample damage10. When MSI is used, chemical 

images of the surface are generated by rastering the PI beam and co-locating the emitted 

SIs to that probing site 10. A mass spectrum is acquired from each probed site and 

rendered as a pixel, with the collection of many points (pixels) for the 2D-SIMS image. 

In the case of 3D SIMS imaging, 2D data points are recorded with respect to their depth 

chemical information (XY vs Z), referred to as voxels, instead of pixels21. Dynamics 

SIMS is common for 3D-SIMS as the higher dosage allows for the necessary yields over 
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time to generate voxels, consequently providing better limits of detection (LOD) over 

Static SIMS (2D imaging)22.  A voxel considers both lateral (XY) and depth (Z) 

resolution in order to define the effective resolution21. Dynamic SIMS for 3D imaging 

has been characterized to have excellent depth resolution with damage reduced to the first 

5-10 nm of the sample, depending on the PI employed23. In addition, the DC nature of the 

beam has allowed for the best recorded focusing possible in SIMS, with commercial 

instrumentation offering spatial resolutions of 50-200 nm to be achieved by experienced 

users15. 

Most conventional molecular application-oriented SIMS instrumentation utilize 

time of flight (TOF) analyzers. These analyzers have very fast cycle times, as generation 

of SIMS images requires the collection of spectra from an average of ~ 1 million pixels10. 

Time of flight analyzers equipped with position-sensitive detectors are routinely capable 

of generating images in minutes, yet these lack the resolving power required to perform 

exact chemical identification of molecular ions from complex organic substrates, such as 

biological surfaces11.Table 1 shows typical probes and mass analyzers utilized to obtain 

different types of chemical data, from elemental to intact molecules. More about 

instrumental advancements in SIMS for mass analyzers will be discussed in Chapter 4.



 
 

8 

 

 

Table 1. Description of current SIMS instrumentation.
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1.3 Motivation for the Research of Primary Ion Sources in SIMS: Mechanistic and 

Practical Aspects 

 

 The removal of material from a surface following the impact of a PI beam and 

the yields and efficiencies of these processes are rooted in the characteristic of the 

ionization mechanism. Ionization mechanisms vary as a function of the projectile size, 

composition and energy. Atomic PI sources are the standard probes for most SIMS 

applications, but they falter in the generation of significant molecular ion signals, 

especially intact secondary molecular ions. Such problem is rooted in that atomic 

projectiles generate fragments, as opposed to molecular ions due to their high impact 

energy. This section will focus on briefly highlighting the different ion-solid and 

ionization mechanisms (atomic and molecular), and their dependence with the type of 

projectiles. 

Ion-solid interaction, sputtering and dependence on size and energy 

 The sputtering and ionization mechanisms are mainly defined by the size of the PI, 

kinetic energy, incident angle, beam fluence (current/pulse), sample nature (organic, 

inorganic, organometallic) and atomic structural organization (lattice, etc)10-11, 24,24,25. 

Fundamental work by Sigmund and coworkers proposed that sputtering processes may 

follow 3 general mechanisms, defined by the energy transfer onto the atoms and 

molecules at the surface upon ion impact25-26. These mechanisms models are: 1) thermal 

spiking (1 eV>)25, 2) direct recoil (>20 eV)27,28 and 3) the linear collisional cascade (1-20 

eV)25-26. This is also reference as the “hardness” of the impact, or whether it involves 

elastic or inelastic collisions as the probe interacts with the surface material. They 

proposed that sputtering by atomic projectiles generally fall in the linear collisional 
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cascade model25-26, 29. This model is based on Newtonian mechanics, rooted in a binary 

collision approximation model; emission of material occurs due to the momentum 

transfer from the elastic collision of the incident ion with the surface, making it a purely 

kinetic processes25-26, 29. Energy transfer in the linear-impact cascade is based on knock-

on transfers per binary collision (billiard-ball effect). In this type of energy-transfer 

process, molecules rarely escape prior to fragmentation as the impact cascade 

propagates25-26. Thus, emission of intact molecules requires less energetic processes, 

where material in the excited region moves in a concerted manner24, 29. This can result in 

the escape of matter at key energies, without the occurrence of fragmentation as all 

components of the molecule are homogenously energized.  

As opposed to elastic processes, inelastic collisions from projectile impacts can 

induce electronic excitation, resulting in the formation of localized heat (or what is 

defined as a thermal spike model)30. Sputtering of this nature is regarded as kinetically 

assisted potential sputtering, where the initial impact to generate the concerted, non-linear 

motion leading to emission contributes energy to generate the thermal spike30-31. Factors 

influencing the occurrence of such elastic or inelastic collisions have been strongly 

correlated to the projectile cross-section, the energy per constituent distributed on the 

projectile upon impact (if considering clusters), and the molecular forces holding these 

projectiles together32,33,20. 

 



 
 

11 
 

 

Figure 3. Comparison of sputtering mechanisms based on projectile size. Smaller projectiles engage in a binary collision 

cascade, while larger projectiles generate localized surface plasma’s leading to thermal spiking. 
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Secondary Ion Generation Mechanisms 

 Whereas the defining factors for sputtering models are fixed, SI generation models 

are substantially greater in variety24. This is rooted in the complexity of ion-surface 

interactions. Generally, SIs are mainly single charged and angular distributions are 

influenced by the incidence angle of the ion, and energy distributions generally fall 

within a Gaussian distribution between 2-5 eV. Secondary ion formation depends on the 

electronic properties of the parent atom/molecule, the electronic properties of the 

substrates surface, the subsequent polarity of the ions formed, and the type of PI source 

used. The bond breakage model (Slodzian) suggest that atomic SI species follow from 

fragmentation and emission, followed by charge transfer processes immediately after34,35. 

The electron tunneling model (Yu) describes SI generation from metallic materials. This 

model states SI’s are generated via resonance charge transfer processes, based on the 

availability of valence electrons in metals36,37. The Langmuir-Saha local thermodynamic 

equilibrium model (LTE Formalism) describes the ionization processes as a result of 

localized thermodynamic excitation, generally used to describe sputtering with atomic 

beams, but is applicable to contexts of polyatomic projectile impacts29,30. 

 Models exclusive to molecular ion generation are more limited, and tend to 

overlap with MALDI-based observations. Rabalais’s model proposes that molecular 

species are emitted in a charged state, and may become neutralized or fragmented within 

a certain range from the surface as a way for molecule to dissipate internal energy38,39. 

Since the probability for neutralization and fragmentation of SI’s is influenced by the 

excitatory energy deposition, projectiles with lower energies such as polyatomic species 

are preferred over atomic species. Benninghoven’s precursor model states an energy 
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gradient is generated around the impact site40,16;the impact energy induces fragmentation 

of existing molecules at the site, however molecular ions further away are provided an 

excitatory energy large enough to promote the ion emission without fragmentation17. 

Larger projectiles have been found to have increasingly significant impact cross-sections, 

thus removing larger material from the surface. However, the energy distribution in these 

impacts is more discrete in nature and evenly distributed on the surface as a function of 

size33. For large projectile impacts, MALDI-based models have been utilized were the 

emission of intact molecular species is a result of the concerted motion characteristic of a 

thermal spike process12. Relaxation of the thermodynamically excited surface coincides 

with the generation of a plume of electrons, protons and emitted ions. Work by Michl and 

Cooks has also brought into consideration the occurrence of the thermodynamical spike 

as a step-wise process, where PIs are generated through a collisional cascade, and 

additional ions are emitted afterwards due to thermal excitation41,42. However, occurrence 

of these spikes and emitted species depend on the matrix, as organic and inorganic 

samples will require different energies to create a thermally excited area41. Delving 

deeper into these localized thermodynamic spikes, there is a variety of recombination and 

energy isomerization reactions43,44,45. More recent work by Delcorte has summarized the 

occurrence of these plumes during polyatomic projectile impacts46,47. Photon-induced 

fragmentation (electronic excitation) electron-induced fragmentation, anionization, 

cationization, and neutralization processes are the most prevalent outcomes within these 

plumes. Of these processes, anionization and cationization are the only ones of interest as 

they result in the generation a molecular ion. Nonwithstanding, cationization is more 

prevalent, as positive charged SIs are more stable when compared to their negative 



 
 

14 
 

counterparts47. In the cationization/anionization process, a cation is co-emitted along with 

a neutral molecule with equal momentum during the sputter process46. The secondary 

positive molecular ion species may interact with another sputtered neutral (direct 

interaction) or be sputtered as an excited neutral which emits electrons during its 

relaxation process as a product of ion-ion/ion-neutral interactions. The usage of 

polyatomic and cluster projectiles has been found to promote the formation of 

energetically gentle plumes. Subsequently, recombination mechanisms like anionizations 

and cationization processes become dominant in the plumes47. Additionally, larger 

projectiles evacuate greater amounts of materials from the surface, increasing the 

probability of ion generation as there are both more species to transfer charges and 

excited neutrals emitted. 

Theoretical Tools for Examination of Projectile-Surface Interactions 

In order to extend these models, X been performed new theoretical studies, based 

on molecular dynamics (MD)48. MD simulations can also be enhanced by utilizing ab-

initio methods, for interactions that are very complex such as hydrodynamic effects 

illustrating massive cluster impacts49,50. Common variables in the simulations are the 

cluster nature, surface material, projectile velocity, and incidence angle. In atomic 

projectile impact simulations, the initial impact interactions occur at the femtosecond 

scale, and mostly occur around the perturbance caused by the energy of the incident ion48. 

The transferred energy exceeds the nuclear forces holding together the surface atoms and 

molecules. For atomic models, this stage can be elucidated by employing binary 

collisional approximation (BCA) according to Sigmund’s sputtering model24. Programs 

commonly utilized to model these processes are Stopping Range of Ions in Matter, and 
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Marlowe51,52. The former is far more prevalent, and has been found to be able to model 

some cluster systems, however it has difficulties simulating the full life-span of the 

projectile and surface following PI impact53. Fully elucidating a cluster impact however 

still remains challenging due collective effects from many-body interactions and 

concerted motions of atoms characteristic to a thermal spike mechanism53. In molecular 

dynamic calculations the forces between different constituents of the system are 

computed based on positions and interaction potentials50, 53. Hamiltonian equations of 

motion are integrated to produce information regarding the velocity and direction of the 

particle per time step48, 53. MD models also provide behavior information for a range of 

energies, bond breakage/formation processes, and the morphology of the interaction50. 

1.4 Atomic Ion Sources 

Primary Ion (PI) columns initially were based on monoatomic ion sources, which 

were generally constricted to analyzing fragments or elemental compositions10-11. This 

was due to the violent collisional cascade ionization mechanism related to these 

projectiles energy, around ~50 eV/nucleon, far beyond thermal spiking region24, 34.  Due 

to the collisional cascade mechanism, deeper layers of the sample generally become 

damaged, making any depth-specific molecular data difficult to obtain11, 25. These atomic 

probes generally utilize metal or noble gases as projectiles, such as gallium, cesium, 

indium, xenon, argon, oxygen, bismuth and gold10.  

The types of PI emitters/sources divided in Field Emission Sources(FES), Liquid 

Metal Ion Sources (LMIS), Electron-Gas Impact Sources, Thermal Ionization, plasma-

desorption products (252Cf PD) and DC-Glow Discharge (Duoplasmatrons)10. Field 
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emission sources involve a filament coated in a metal eutectic, from which the ionized 

metal is emitted54. Metals become ionized via an electron-metal electron exchange 

process driven by quantum tunneling54-55. Such a process is ignited by applying a high 

potential across the filament, leading to the formation of an electrified interface (Taylor 

Cone) for ion emission56. Cs+ PI beams were the first to be used from FES, demonstrating 

a good amount of source brightness with stable current output, reasonable energy spread 

for focusing and decent life-times55. Further work optimized the basic geometry, 

materials and emitter properties for a variety of metals57,58. Duoplasmatrons were some of 

the earliest sources as well, employing principles similar to those in inductively coupled 

plasma (ICP) sources59. A high-velocity stream of oxygen, halogen or noble gas is 

impacted by electrons from a cathode-anode discharge, generating a ionized gas area that 

is shaped by a magnetic field, creating a fine plasma59. These sources are known to work 

well with oxygen (O+, O-), generating ions with excellent reactivity59. Gas-Electron 

Impact sources employ a gas jet were expansion occurs, and the stream is ionized by 

electrons from an EI source perpendicular to the path of the gas60. The electrons are 

trapped and ionize the residual gas; ions are extracted and accelerated. This type of 

source has been used to generate very stable Ar+, O+, and Kr+ beams, yet with a very 

wide energy spread inherent to the mechanism of ion generation 5, 15. Currently, many of 

these sources are still utilized in commercial instrumentation (e.g., CAMECA ion 

microprobes); however their use has been largely eclipsed by polyatomic projectiles for 

molecular analyses. Thermal Ionizers were reserved to the usage of metal salts with low 

melting points such as cesium iodide, where the salt housed in a reservoir was heated and 

directed by an electrostatic potential on a fritted film, where the ions are emitted from18. 
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This source still sees plenty of commercial usage in elemental analyses due to its ease of 

focusing, down to tens of nanometers in instruments such as the Cameca “nanoSIMS” 

product line61,62,63.  

One of the more unorthodox sources is the usage of 252Cf isotopes for Plasma 

Desoprtion Mass Spectrometry (PDMS), a technique analogue to SIMS64. In this source 

fission products are used to bombard the sample64 followed by the generation of SIs and 

neutral species. The high energy of the fission fragments is able to generate significant 

intact molecular ion yields, desorb intact molecular biological species and is considered 

the entry point into the ionization of surface-bound biomolecules64,65. 

1.5 Polyatomic and Cluster Ion Sources 

The start of the polyatomic projectile era was driven by several needs of the SIMS 

community, such as enhancing secondary molecular ion yields. Prior work by the charged 

particle physics communities proved decreased surface damage cross-sections were 

obtained when using cluster projectiles, as well as non-linear enhancements in secondary 

emitted material11,32. H.H. Andersen’s work in the 1970s was the first evidence of non-

linear enhancements, where sputtering yields for Te+ and Te2
+ were compared on Au, Ag 

and Si substrates66. A precision-measured piece of quartz was attached to a microbalance; 

this allowed for the measurement of volume of sputtered material per projectile 

bombardment time period66. The results showed that non-linear enhancements were 

detected in all substrates bombarded, with sputtering ratios between Te2
+/Te+ spanning 

from 1.30 to 2.27. Further work compared ions from monoatomic species based on 

weight to evaluate if the same non-linear enhancements were observed, with a linear 

trend still present67. The ratio of molecular to atomic SI species was also measured 
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utilizing Te2
+/Te+ and  Se2

+/Se+ , with results supporting the occurrence of non-linear 

enhancement in secondary molecular ion generation as opposed to secondary atomic 

ions67. 

During the late 1980’s, Appelhans and coworkers devised a gas-electron capture 

source utilizing sulfur hexafluoride gas (SF6) that produces a distribution of SF6
0,- 

(neutral/anion combined beam) projectiles68. This novel type of probe laid the 

groundwork for comparisons between atomic and polyatomic projectiles.  Relative SI 

sputtering efficiencies (ε), the number of SI per incident ion impact for a particular m/z 

value per unit time for interrogation of organic substrates (Codeine, Tylenol, etc) were 

compared between SF6
0, and Cs+ beams68. Analyses were performed with equivalent 

acceleration and similar instrumental parameters in order to minimize deviation. Results 

showed that efficiencies for desired (M+H) ions showed enhancement factors from 9 

(300 m/z) to 24 (137 m/z) with the SF6
0,- beam, and an increase in LOD by a factor of 

~103 68. Evaluation of damage cross-sections stems from comparisons of each projectile’s 

transformation probability, the probability (P) that an atomic or molecular species leaving 

the surface will be in an ionized state, is defined as P 

 
𝑃 =

𝑌𝑠
𝜎𝜗0𝜃

 
(1.1) 

where Ys is the sputter yield and 𝜎𝜗0𝜃 is defined as the surface coverage term68. 𝜗0𝜃 is 

defined as sample preparation-related variance, which was the same for both samples. 

The polyatomic projectiles produced 1.8 times the damage per impact compared to the 

Cs+ ions,  and a 2.5 times increase in transformation probability for SF6
0,-. Theoretical 

conclusions stated that this projectile exhibited gentler ionization mechanisms compared 
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to Cs+ 46.This transformation probability in itself defines the useful yield, another 

nomenclature to distinguish between sputter yield (neutrals and ions) and the SI yield68. 

 Work in the late 1980s by M. G. Blain, Della-Negra and E. A. Schweikert also 

explored the benefits of a polyatomic CsnIM
q+ beam, by comparing with Cs+, Cs2I, and 

Cs3I2
+ projectiles69. Additional comparisons included the usage of coronene (C24H12

+) and 

its dimers as projectiles. These projectiles were generated by desorpsion ionization by 

252Cf fission fragments impacts69. Non-linear collision cascades were postulated in this 

work, defined as a product of a non-linear ionization mechanism favoring molecular ion 

generation (thermal spike mechanism), as well as non-linear yield enhancements30, 40, 69. 

The expression for ionization yield enhancement for a single homonuclear (cluster) 

projectile is defined as 

 𝑌𝐴𝑛(𝐸)/𝑛𝑌𝑎(𝐸/𝑛) ≥ 1 (1.2) 

Yn(E) = nY1(E/n), where Yn(E) is the yield for a projectile of (n) homonuclear 

constituents and nY1(E/n) is the yield for successive monoatomic projectile impacts 

corresponding to the number of constituents66,69. An expanded expression for 

heteronuclear polyatomic projectiles is also defined. Comparisons took place over a range 

of energies from 5 to 28 keV. SI yields were measured in an event-by-event mode to 

examine individual projectile-surface interactions. SI yields for different projectiles were 

obtained and compared, as each individual impact provided a complete data set per 

projectile type. Comparison of Cs+ and CsnIM
q+ resulting yields on a phenylalanine target 

display an enhancement factor up to 10 for molecular ion generation (164 m/z), 

influenced by the projectile’s impact energy. Comparisons of CsnIM
q+ and nC24H12

+ 
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((M+/2M-H+)  against Cs+ impacts on a gold target showed that the largest, non-linear 

enhancements in yield were found when utilizing the largest projectiles (Cs3I2
+, C48H26

+), 

with enhancement factors for of 5 and 4.5 for Au- SIs, respectively69.  Oxygen cluster O2
+ 

projectiles were also utilized in these efforts, being a highly useful tool for surface 

sputtering4. The O2
+ projectiles are still frequently used in many SIMS instrumentation, 

particularly for the CAMECA product lines as sputtering beam with the best focusing 

potential to date. However, its usage as a surface cleaning and eroding beam has been 

eclipsed by massive gas clusters, which have significantly enhanced sputter yields, 

penetration and create no reactive species. 

Further work of high relevance was also performed by researchers at Institute of 

Nuclear Physics in Orsay by Della-Negra and co-workers. They focused on the study of 

novel cluster and polyatomic sources, in order to further evaluate the occurrence of non-

linear enhancements by utilizing a variety of projectiles, both metallic and organic70. 

Other aims involved differences in terms of the ionization mechanisms and subsequent 

yields from organic, inorganic and composite materials, and post-impact projectile fate71. 

A platform for studying these interactions at very high energies (MeV) and performing 

comparisons between projectiles, also known as the ORION project was also created70. 

These studies also were one of the first to employ an event-by-event mode for SIMS, 

which will be discussed more in depth in Chapter 3. Their work provided valuable 

information regarding the distributions of Aun
q+,CsnIM

q+, and CN
+q projectiles from a 

variety of source types such as LMIS, electron-gas impact and solid substrate 

sputtering72. Aun
q+ distributions were mapped utilizing the ORION platform based on 

TOF measurements on the PI column utilizing a series time-pulsed of deflector plates. A 
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distribution of Au+, Au2
+, Au3+, Au4+, and Au5

+ projectiles was measured from a Au-Mn 

eutectic LMIS73. These projectiles were compared amongst each other at slow and swift 

velocities, significant gains in yield were found with increasing projectile size in 

particular for organic targets73-74. 

A primary aspect of this work was focus on the use of larger cluster projectiles, 

including the first instance of fullerene projectiles75. Briefly, a compressed pellet 

consisting of 90% C60 was impacted by a Cs+ PI beam, generating C60
- species. These 

were charge compensated via collisions following high-energy acceleration inside of a 

N2-filled cylindrical gas shell, stripping the projectiles of electrons. C60
+ and C60

+2 and 

C+70 species were detected from this source type and utilized as primary projectiles for 

the evaluation of low (keV) and high (MeV) energy impacts, as well as comparisons with 

other novel cluster projectiles at the time75,72. Comparisons between projectiles (Au(1-5)
+1, 

C60
+, C70

+) at low velocities on two targets were performed at 20kV acceleration. A target 

made of heterogenous layers as well as a homogenous phenylalanine surface were 

completed to compare surface penetration and SI yields based on the target and projectile 

utilized. Results showed that gold clusters penetrated roughly 3 times deeper as opposed 

to fullerene-based projectiles, with a lower emission yield on the layered heterogenous 

target and an overall lower emission yield on the phenylalanine target76. Mechanism 

observations proved that the larger impact cross-section and lower energy/nucleon meant 

the C60
+ projectile deposited most of its energy on the surface upon impact, reducing its 

overall penetration and enhancing surface-derived emissions while reducing depth-

damage. Work by Van Stipdonk and coworkers compared the relative yields of Ga+, C60
+ 

and Cs3I2
+ employing a novel discrete projectile mapping approach, based on similar 
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principles to the previously discussed event-by-event mode, with the inclusion of a 

secondary electron detector for localization of individual impacts77. In this approach, the 

PI beam is considerably collimated and pulsed at a very high rate ~(500 Hz), resulting in 

a very small beam fluence (10-100 impacts/s)77. Results noted increases in overall SI 

yields increases with both projectiles, with C60
+ generating SIs with an efficiency two 

times greater than the CsI cluster beam. However, C60
+ also generated a significant 

increase of cluster/molecular ion species (CsI)2I
- and CsI, with an enhancement factor 4 

times greater of (CsI)Cs+ projectiles, and over 50 times greater than Cs+ and Ga+ 77. 

However, regardless of the evident benefits and surmounting body of work to support the 

usage of metallic and fullerene cluster projectiles the complexity in generating these type 

of PI beams and the difficulty in subsequent focusing made them impractical for some 

time. 

Gillen and coworkers used a SF5
+ source for chemical mapping of thin organic 

films in comparison to an Ar+ source. Based on an improved source design from 

Delmore’s work, an SF5
+ beam was focused down to a ≤50 µm spatial resolution and 

operated at voltages from 3-15 kV78. The SF5
+ beam provided some of the expected 

benefits such as increased molecular ion yields, effectively perform molecular ion 

imaging of the target surface with significant SI and sputter yielded increases. During 

depth profiling it was able to effectively remove damaged layers to continuously expose 

fresh, unperturbed material78. It was capable of restoring surfaces damaged by the Ar+ 

source, restoring molecular ion signals for molecular ion species with the Ar+ was unable 

to sustain for more than a few surface monolayers. This effect of molecular ion signal 

restoration was noted in thin organic films, on bulk biological materials, and on polymer-
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based materials78. Theoretical and mechanistic insights showed that the projectile 

generated an expected non-linear cascade, generating SIs within the thermal spike model 

energy’s threshold. Simulations utilizing SRIM proved that while the surface impact 

cross-section was greater, all energy was immediately dissipated in the upper 

monolayers, with very minimal depth-specific damage52, 78. 

The early and mid-2000’s found these projectiles being revisited for the goal of 

utilizing some of these sources in order to do high spatial resolution molecular ion 

mapping, and their subsequent introduction into the instrument market11. Designs were 

optimized to reduce the probe size, as well as maximizing generation of cluster species, 

source brightness and simplifying/automating operation. Companies like IONTOF 

(Germany) and IONOPTIKA (United Kingdom) played an important role in the 

popularization of cluster SIMS sources, as they made these sources commercially viable. 

SF5
+ and Au LMIS were the first type of cluster probes redeveloped for imaging purposes 

to be utilized as a sputter/analysis dual-beam approach and introduced to the research 

community79. Original work for imaging applications compared Au+ and Au3
+ projectiles, 

utilizing an innovative design from IONOPTIKA, to produce high, stable source 

brightness and the potential for submicron lateral resolution79,80. Au3
+ (591 m/z) was 

found to generate molecular ion yield by an order of 60 when compared to Au+ for the 

purpose of chemical mapping while enhancing generation and retention of molecular ion 

species, and reducing unwanted depth penetration81. Shortly after, IONTOF introduced 

the Bi-Mn LMIS, with an equally promising lateral resolution and source brightness as 

the Au-LMIS82. However, this LMIS is capable of generating polyatomic projectiles such 

as Bi3
+ and Bi3

+2 more efficiently than Au-Ge or Au-Si sources82-83. Owing to its larger 
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size, Bi3
+ (627 m/z) generated even greater SI yields and had a characteristically higher 

sputtering and ionization efficiency which has placed it as one of the best commercially 

available beams for static SIMS molecular surface characterization and imaging84. These 

projectiles are able to generate molecular ions in masses of excess of 1 kDa, opening the 

door for lipidomics and metabolomics of biological targets at the nanoscale83.  

Around this time, an improved version for generation of C60
+ projectiles was 

introduced by IONOPTIKA in conjunction with Vickerman85. The C60
+ source, based on 

electron-impact ionization of gas-phase fullerene showed increased brightness, stability 

for extended operation, and facilitated focusing for its usage in chemical mapping and 

localization. From this development, C60
+ has proven itself to be efficient in both static 

and dynamic SIMS applications, particularly for biological applications86,87. C60
+ is 

capable of acting as “hybrid” beam where it can be used to sputter and/or analyze sample 

layers when doing any form of 3D profiling86,88.Until recently, the effective spatial 

resolution of C60
+ is unsuitable for nanoscale observations in static SIMS analyses, with 

most commercial versions threading in the 1-10 μm range. A very comprehensive review 

from Winograd shows the advances of this source in the context of nanoscale analysis, 

showing that new versions can obtain spatial resolutions of ~200 nm when operated in 

DC mode15.  
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Figure 4. IONTOF 20 kV C60 Primary Ion Column. Reproduced with permission of 

IONTOF GmbH (Munster, Germany). 

It must be highlighted that the choice of mass analyzer has been found to also 

have very important implications in the operation of these instruments. Most 

conventional molecular application-oriented SIMS instrumentation utilize time of flight 

(TOF) analyzers, yet these lack the resolving power required to perform exact chemical 

identification of molecular ions from complex organic substrates, such as biological 

surfaces11. Previous work has shown that the integration of a C60
+ cluster source from 

IONOPTIKA in conjunction with an ultra-high resolution mass analyzer such as a FT-

ICR MS can greatly expand the capabilities of exact chemical identification of generated 

molecular ions89,90.  This instrument has also been compared to a commercial state-of-
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the-art instrument (TOF-SIMS5), and has significantly more effective at resolving and 

subsequently identifying a variety of lipid species91. 

1.6 Massive Clusters and Charged Nanodroplets 

In the early 90’s, Mahoney and coworkers investigated the application of non-

volatile, charged droplets generated via vacuum electrospray as SIMS projectiles92. These 

involved the usage of glycerol doped with electrolytes such as ammonium acetate, in 

order to generate massive, multi-charge projectiles for the generation of molecular ion 

species. Massive Cluster Impacts (MCI) were found to generate little to no fragmentation, 

due to the low energy/nucleon (0.6 eV/n)93. This allows MCI to generate significant 

molecular ion signals in excess of 2kDa  corresponding to intact peptides94. This 

projectile however was abandoned shortly after due to inherent difficulties in producing 

consistent results, due to variables such as voltages, flow rate, emitter material and 

dimensions, and ionization polarity. It was recently revived by Williams and coworkers, 

where they combined this source with a high resolution secondary in microscope, 

obtaining spatial resolution below 10 µm while generating intact peptide SI’s94,95. 

Additional work in utilizing large charged droplets at hypervelocities was also 

explored by other groups96. A platform similar to the ORION system, known as the 

Multiply Charged Macromolecular Accelerator (MUMMA), was developed in the mid 

90’s to evaluate the feasibility of electrosprayed macromolecules as PI beam sources96. 

Work with this instrument focused in measuring yields based on event-by-event photon 

measurement per projectile impact, in conjunction with surface modifications from these 

impacts. This was driven by the results of the work at IPNO, with an interest on whether 
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utilizing multiply charged species such as proteins and other biomolecules could provide 

further significant enhancements of molecular ion yields while reducing unwanted over-

penetration or deposition96,97. Projectiles used in this work included bovine insulin (5.3 

kDa), hen-egg lysozyme (14.3 kDa) and apo-myoglobin (16.9 kDa), containing varying 

number of charges to evaluate the effects of acceleration96, 98. PIs were chosen based on a 

quadrupole mounted on the ion optics column to allow surface impact with a specific 

charge state prior to pre-impact acceleration. Conclusions from this work showed that the 

yield enhancements were noted as a function of increasing velocity, yet they were 

significantly lower than expected97-98. Effects of impacts on a variety surfaces displayed 

non-reproducible modifications, with varying degrees of surface and depth damage. 

Sometime later, during the rise in popularity of cluster sources in commercial 

SIMS instrumentation, Boneau and Della-Negra from IPNO performed an expanded 

study into the full projectile distribution generated by Au-LMIS’s99. Taking an existent 

Au-LMIS design, the extraction apertures (lens) were modified to generate geometry 

favoring charged nanodroplet generation. The characterization studies involved profiling 

the entire distribution, with a particular interest in larger projectiles (n/q> 30), where they 

found Au100(n)
q(n) clusters. These projectiles in particular have a ratio of n/q= 100~120, 

with the q= 4,5 accounting for 45-50% of the distribution, making them the most 

commonly generated projectile for this specific distribution99. These projectiles were also 

found to induce very little surface damage, having a damage cross section substantially 

lower than that of Au+-Au9
+ (Figure 5) while maintaining continuous molecular ion 

signal compared smaller projectiles99. Early work with this type of projectile utilizing an 

orthogonal time of flight detector proved that it could generate intact molecular ion 
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species for masses up to 1.8 kDa, but suffered heavily in terms of focusing with a spot 

size of 7 mm99. Interest in this type of source was resurrected by the Schweikert group, 

where the goal was to pulse hypervelocity (~140 kV) individual projectiles for impact as 

opposed to using a pulsed beam. Using this approach, the spatial resolution is limited by 

the perturbed volume from where the SI’s are generated100,101,102. Analyses of model 

biological systems was performed with this instrument, generating intact lipids beyond 

1,000 m/z while retaining spatial resolution in the order of tens of nanometers103. The SI 

yields increased by 3 orders of magnitude, when compared to Au3
+ and C60

+ PI sources as 

well as a greater number of molecular ion species detected overall101.  

 

 

Figure 5. Comparison of negative ion mode spectra for high-energy Au3
+,Au9

+, and 

Au400
+4 projectiles on a native rat brain section. Note the significant increase in 

overall SI yield (intensity) and greater molecular ion intensity and variety, and 

generation of intact molecular lipids (~900 m/z region) when employing Au400
+4. 
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Reprinted with permission from FFL et al (2012). Copyright 2012 American 

Chemical Society. 

A relative newcomer in the world of cluster SIMS, argon gas cluster sources date 

back to mid 2000’s, developed by the Matsuo and co104. In their early work, they outlined 

the performance of varying size Ar clusters with respect to the bombardment effects such 

as sputtering yields, total perturbed area, impact energetics and focusing potential104-105. 

Gas clusters ion beams are generated by pushing a highly pressured gas through a 

desorbing nozzle, where neutral gas clusters are formed. These clusters interact with 

electrons generated by an orthogonally-positioned electron source, where the ionization 

of these clusters takes place. The ionized projectiles then accelerated by extracting optics 

up to tens of thousands of kilovolts, and mass-filtered in a 90° magnet sector with a field 

of generally ~1 T104. By altering the entrance angle of the ion with respect to the magnet, 

the geometry changes, allowing generally only significantly large projectiles through the 

magnetic filter. Modern commercial designs like that from IONTOF (presented in Figure 

6) utilize compact Wien Filter designs in order to reduce instrumental footprint. From this 
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point the argon clusters are focused and subsequently pulsed for surface rastering.

 

Figure 6. Schematic of an IONTOF Argon Gas Cluster Primary Ion Column (Ar-

GCIB). Reproduced with permission of IONTOF GmbH (Munster, Germany).  

The sputtering capabilities of these projectiles have been proven to be directly 

related to the initial kinetic energy and cluster size. It was also demonstrated that Ar1000
+ 

clusters were the most capable in terms of sputtering, with ion intensities and 

corresponding sputtering yields falling off beyond this cluster size104. Ar-GCIB has 

become the industry’s workhorse in terms of molecular analysis where retention of 

deeper structure and acquisition of surface data106,107,108. As mentioned in the 

introduction, dual-beam instrumentation has gradually become the standard in SIMS 

instrumentation, with the GCIB quickly rising to be the go-to sputter beam for organic 

applications109,110. This beam can also act as an analysis beam at the microscale, having 

been used to study plenty of organic materials as well as inorganics thanks to its 
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excellence in delivering excellent ionization yields in its own merit. Current research 

involving this source type involves generation of clusters well over 1000 constituents 

(Ar1000
+) in order to remove intact molecular ions while sputtering, to improve the 

qualities of molecular depth profiling and 3D imaging111. Work has shown that within the 

GCIB distribution, larger clusters such as Ar4000
+ lend themselves to be powerful analysis 

beams with significant SI yields, with capabilities exceeding C60
+111. Ongoing work from 

various groups has shown promise in doping these large projectiles through interactions 

with reactive reagents such as HCl to increase SI yields112. These projectile doping efforts 

in combination well as surface modifications using reactive gas exposure to have shown 

to greatly enhance protonated ion yields113.  

In 2006 Hiraoka and coworkers demonstrated the applicability of electrospray 

droplet impact ionization as a potential mechanism for massive cluster SIMS utilizing 

charged water droplets114. The initial version of this source employs 1M Acetic acid 

solution which are first generated in atmospheric conditions, and then introduced to 

vacuum conditions through a series of differential pumping apertures, and post-

accelerated to the target plate with ~10 kV114. Like the MCI projectiles, these clusters 

have a vast amount of charges along with a significant mass component i.e. [H+(H2O)n] , 

with the average projectile being [100H+(H2O)90000]
+100 or roughly 5x104 m/z115. The 

ionization mechanism depends on the initial projectile generation energy, involves a 

combination of charge transfer via a solvation process or supersonic impact collision 

cascade115. This research has also been exploring different mixtures such as 1-

propanol/water, which has shown promise in ionization of intact peptides116. These 

projectiles have been utilized to interrogate biological targets such as intact lipids and 
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proteins117. They also have shown feasibility in depth profiling contexts, restricted 

primarily by the focusing potential of the ion column118. Notwithstanding, water clusters 

have also been generated utilizing GCIB-type designs. Work from the Vickerman lab has 

shown that water clusters could be generated in a nature similar to argon clusters by 

employing water vapor instead of argon gas119. H2O GCIB has been compared to C60
+ 

and Ar2000
+, providing enhanced intact molecular ion yields in comparison to both of 

these projectiles120. 

In 2009, Fujiwara and coworkers performed preliminary work in evaluating the 

feasibility of ionic liquids as PI sources for SIMS121. They subsequently examined the 

effect of extractor electrode arrangements, vacuum interfacing, and solution temperature 

and solution flow rate on the current generated by these sources121. Their work concluded 

that ionic liquids are feasible PI sources, and continued to work on the subject ever since 

with a focus on generation of massive charged droplets for cluster SIMS. Current 

progress displays formation of drops with an m/z from 1.5x105 to 2x106 122,123. The 

pitfalls to this novel type of source is the gradual buildup of anion-cation layers when 

operating in a purely DC regime124,125. These layers accumulate due to electrochemical 

reactions at the interface area of the capillary tip, where a ‘sandwich’ of varying polarity 

ions form a solid residue, obstructing the flow of the capillary and reducing overall 

current output124-125. Unrelated work has proved that this rapid degradation of the 

capillary when spraying ionic liquids could be avoided by switching the polarity of the 

output at a rate of ~1 Hz126. Fujiwara, however has not reported this type of particular 

degradation. Notwithstanding, in this early work the acceleration energy was generally a 

total of +/- 1 kV, only generating ~20 nA of current121.More recently, Fujiwara’s group 
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has been able to generate ~100 nA+ ion streams utilizing a DC power source where a 30 

μm stainless steel capillary is charged to generate the Taylor cone for the 

electrospray127,128. They report no degradation at low flow rates and low ionization 

voltage, yet this generally implies low source brightness and a preferential formation of 

smaller droplets129. They also have utilized the ionic liquids as matrix-coating materials 

(enhances ionization and yields) to match the projectile types129. 
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Figure 7. Timeline of the crucial developments in Secondary Ion Mass Spectrometry with an emphasis  

on the advancement of projectiles and operation modes.
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2 DEVELOPMENT OF A MULTI-SOURCE PRIMARY ION COLUMN 

2.1 Introduction 

 The effectiveness of a focused ion beam is not limited only by source-specific 

features, but by the ion optics employed in the probe10. The optics contained within the 

column dictate the minimal possible spot size, or beam focus diameter. Optics also are 

employed to pulse, controlling the current/dose rate at which the sample is bombarded 

with, a critical feature in SIMS10. Electromagnetic filters can also be employed to 

characterize the overall constituents of a PI source, and ensuring only one particular type 

of projectile irradiates the sample surface10. The overall focusing potential of a PI column 

relies on the capability of ion optics effectively correcting and reducing the aberrations 

that the PI beam is subject to11. The different types of sources mentioned in the 

introductory section have differing aberration effects and initial kinetic energies based on 

the PI generation mechanism11, 56. This warrants a discussion of the components, their 

purpose, and the problems they seek to tackle in developing a high spatial resolution PI 

column for surface bombardment with cluster PIs. 

2.1.1. Ion Optics and Electrostatic Lens 

 

  The main aberrations that affect focused ion beams are chromatic and spherical 

(geometric) aberrations130,131. Chromatic aberration is the kinetic energy spread between 

the ions, making the effective reduction of the beam-cross section difficult due to greater 

spread in ion energies when exposed to electrostatic or electromagnetic forces. 

The chromatic aberration can be defined according to the focal length by the expression 

 𝑑𝑐 = 𝐾𝑐𝑟𝑎∆𝑉/𝑉0 (2.1) 
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where Kc is a dimensionless factor with values n= 1-5 for einzel lenses, and ΔV/V0=δ 

being the relative kinetic energy spread of the particles130-131. Spherical aberrations 

revolve more around the geometry, or inherent spatial distribution of the generated ions 

and throughout their drift time. Severe spherical aberrations make focusing very difficult 

since the focusing optics possess a window of acceptance corresponding to the entrance 

angle of the incident ion, defined as ra and ra/2
130-131. These acceptance angles are 

themselves defined by the roundness and diameter of the aperture. The point in space at 

which the beam has the smallest cross-section is defined as the “circle of least confusion” 

and occurs generally at the end of the focal length, or the focal point. This minimum of 

the cross-section, or the place in space where the beam has the smallest beam diameter, is 

defined as the spherical aberration. This value can be obtained by the expression  

 𝑑𝑐 = 𝐾𝑎𝑟𝑎
3/𝐷2 (2.2) 

where Kc is a unitless lens-specific constant value ranging n= 2-10 depending on the 

operational mode of the lens. The maximum distance ra is defined by the roundness of the 

aperture, and D is a cm-scale scaling parameter.  With these considerations, the core goal 

in developing a primary column is the implementation of optics which are capable of 

reducing these aberrations, thus allowing greater control over the beam cross-section at a 

desired focal length and the energy distribution of the ions130-131. Immersion lens, 

generally described as an axially symmetric array of 2 or more electrodes, are popular in 

this area because of their ability to reduce the overall cross section of the ion beam 

following an area of maximum dispersion or a disk of “most confusion”130-131,132. The 

“focal strength” of an immersion lens, measured as the ratio of the intra-lens field 

penetration to the focal length (D/f) is what dictates the refractive power of the lens, and 
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subsequently the effective focal length130, 132. Intra-lens field penetration itself is defined 

by the ratio of the internal diameter (D) of the electrodes and the distance between these 

electrodes (A).   The implementation of an array of these lenses in tandem permits 

“zooming” of an image or ion beam, allowing for the reduction of millimeter cross-

section beams down to the microscale and even nanoscale133. 

 

Figure 8. Scheme for a simple, symmetrical 3 electrode aperture lens. Relations 

between features dimensions demonstrated as a function of the aperture size, D. 

Einzel lenses are the most common type of immersion lens, consisting of an array 

of three electrodes where V1=V3=0. The middle electrode (V2) is the main determinant of 

the refractive index, making it the main electrode, and where the refractive effect is the 

same for incoming or outgoing beams in a field-free space. An important aspect of the 

symmetrical construction of these lenses is that the overall kinetic energy of the ions is 

not affected, but rather is homogenized, reducing chromatic aberrations (eV1=eV3)
130, 132.  

Construction practices vary on the focal length, geometrical arrangement constraints, and 

electronics arrangement within the PI column130, 132. 



 
 

38 
 

  

 

Figure 9. Scheme for a deacceleration-acceleration aperture einzel lens (V1=V3=0). 

Note the varying aperture sizes and their respective ratios, as these influence focal 

length and focal strength (D/f). 

The most common einzel lens construction can be operated as a three discrete 

element system, where V2 is comparable in magnitude to the source voltage. Such an 

arrangement generates a deaccelerating-accelerating effect with a significant amount of 

refractive power for attenuating chromatic and spherical aberrations. These types of 

lenses generally are limited to short focal lengths, but are very easy to implement and can 

be operated in tandem to achieve serial focusing130, 132,133.  
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2.1.2. Primary Ion Filter: Wien Filter 

Once a desirable level of focusing is achieved, the major concern becomes the 

ability of characterizing the generated projectiles, as well as filtering the PI beam. It has 

long been reported that most cluster projectile PI columns require a discrimination filter, 

allowing for only one specific m/z projectile to impact the target surface11. Most of these 

instruments tend to be equipped with electromagnetic filters, such as sector-type 

discriminators and Lorentz-force driven mass filters. For the sake of keeping aberrations 

to a minimum, linear-type separators, such as Wien Filters have become the research and 

industry standard for PI beam constituent separation134. The Wien filter is an ion velocity 

filter, used to eliminate all undesired projectiles. The trajectory of the ion upon entering 

the Wien filter is based on the aggregates of the electrostatic and magnetic forces 

perpendicular to each other, creating a net Lorentz force also influenced by coulombic 

force, leading to a  net force based on the expression131, 134 : 

 𝐹𝑛𝑒𝑡 = 𝐹𝐸 + 𝐹𝐿 = (𝑞�⃗� ) + (𝑞𝑣𝑖𝑜𝑛𝑥�⃗� ) (2.3) 

The filtering effect, as mentioned above, is dependent in the net velocity of the 

ion and with respect to the net aggregation of forces in the filter. Transmitted ions 

corresponding to a certain mass to charge ratio where the net force is zero131, 134. 

 0 = (𝑞�⃗� ) + (𝑞𝑣𝑖𝑜𝑛𝑥�⃗� ) (2.4) 

 
𝑣0 = (

�⃗� 

�⃗� 
) 

(2.5) 
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Based on the prior equation, a substitution for vion can be used to alter the 

equation in order to calculate the voltage needed for projectile permissibility 

 

𝑣𝑖𝑜𝑛 = √
2𝐾𝑒
𝑚𝑖𝑜𝑛

 

(2.6) 

By substituting the superimposition of forces by the velocity the resultant 

expression becomes131, 134  

 

√
2𝐾𝑒
𝑚𝑖𝑜𝑛

= (
�⃗� 

�⃗� 
) 

(2.7) 

From here, expansion of the force expressions for the coulombic force, E, allows 

for the correlation of a specific voltage with respect to a fixed magnetic field, B. Other 

variables of importance are the distance between the electrostatic plates, d and the 

incoming energy, Ke, of the PI as well as its mass (mion). In order to determine the voltage 

for transmission, the electrical force E, is changed to its constituents131, 134 

 
𝐸 =

𝑉

𝑑
 

(2.8) 

Considerations have to be taken for the the plates being equipotential but of 

opposite polarity, V±  

 

𝑉 = 𝐵𝑑√
2𝐾𝑒
𝑚𝑖𝑜𝑛

 

(2.9) 
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2𝑉± = 𝐵𝑑√
2𝐾𝑒
𝑚𝑖𝑜𝑛

 

 

(2.10) 

By rearranging the expression to account for these differing potentials, the final 

expression for determining the transmission voltage becomes 

 

𝑉± = 𝐵𝑑√
𝐾𝑒
2𝑚𝑖𝑜𝑛

 

(2.11) 

2.1.3. Collimation and Electrostatic Deflectors: Pulsing 

 Other additional elements in PI columns generally revolve around beam collimation, 

pulsing, and deflection in order to ensure pure concentricity throughout the arrangement 

of optics. In optics, sometimes mechanical collimation, or “trimming” of a beam is 

required in order to reduce the proliferation of aberrations, by ensuring that only ions 

within a specific trajectory are transmitted135. This generally reduces the brightness of a 

source, with the goal of increasing the resolution of the image object, in this particular 

case by reducing the beam diameter of the incident PI beam.  Collimation is widely 

utilized in high-spatial resolution PI columns as the trajectories of ions are increasingly 

erratic depending in the kinetic energy distribution of ions at the source point. However, 

if the spatial trajectory distribution of the PI beam is too severe and the brightness of the 

source is low, collimation may prevent the passage of a stable beam of desired 

projectiles135. An important factor that was mentioned in the introduction of this thesis is 

the importance of the pulsing of a PI beam in order to mass select projectiles and control 
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PI beam dosage. As described in Chapter 1, electrostatic deflection plates are a highly 

effective approach to select ions and control bombardment. By programming two of these 

to work in tandem by coordinated start-stop signaling, specific PIs can be mass-selected 

based on their time of flight135. In essence, this equips a PI column with an internal TOF 

mass spectrometer as a means of selecting particular projectiles. In controlling the rate 

pulses are applied, the amount of ions that impact the surface can be controlled. Time of 

flight (t) can be calculated from initial kinetic energy input (Ke). With this initial energy 

input, ions will travel through the flight path distance (d) with a velocity corresponding to 

their mass (m). The derivation for time of flight is described below131: 

 
𝐾𝑒 =

1

2
𝑚𝑣2 

(2.12) 

Which can be arranged to resolve for the velocity of the ion 

 𝑣 = √2𝐾𝑒/𝑚 (2.13) 

However we also know that velocity is displacement over time 

 
𝑣 =

𝑑

𝑡
 

(2.14) 

By combining these two definitions of velocity, an expression that allows us to 

solve for the mass based on energy and flight time over a fixed distance is obtained. 

These variables are condensed as the factor A since they’re fixed (length of the tube and 

initial potential pulse). 
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𝑚 = (

2𝐸

𝑑2
) 𝑡2; 𝐴 = (

2𝐸

𝑑2
) 

(2.15) 

Replacing the expanded expression with A yields: 

 𝑚 = 𝑎𝑡2 (2.16) 

However, given that TOF analyzers are not continuous in nature and have a pulse 

down-time, this must be substracted from the total time to provide a corrected time (tc), 

substracting the pulse down time from the measured time (tm). 

 𝑡𝑐 = (𝑡𝑚 − 𝑡𝑜)
2 (2.17) 

Combining these two expressions yields a final expression for which mass can be 

calculated based on the corrected time of flight. 

 

 𝑚 = 𝐴(𝑡𝑚 − 𝑡𝑜)
2 (2.18) 

This information can then be set to control the frequency of the pulsing for the PI 

beam. It must be noted that this also affects the overall duty cycle of the instrument, as 

mass selecting projectiles which are less abundant within their particular distributions has 

been noted to increase analysis times. 
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2.2 Methodology 

 

Developing instrumentation involves consisting of planning and preliminary 

design. This is then followed by the deployment of theoretical tools to explore the 

performance of the proposed design, in a cost-effective and highly accurate form. Upon 

the satisfaction of given criteria for the instrument, such as specific beam diameter for a 

PI probe, one can then commence the processes of fabrication. However, there may 

always be discrepancies between the simulations and experimental performance of the 

instrument, so this process can also be used to perform “reverse-engineering” in order to 

test defects in the preliminary design. 

 The development of this PI column for SIMS followed this process, with the main 

challenge being the design of optics capable of reducing PI probe diameters to 10 µm or 

less for microscale analysis. This type of beam diameter, as aforementioned, is analogous 

to the spatial resolution capabilities of the PI column. Additionally, a Wien filter is 

employed to characterize the specific PIs found within the probe, as specific ion impact. 

A set of collimating apertures were also added to eliminate ions with erratic trajectories, 

varying in size. Two sets of deflection plates are placed to ensure PI beam alignment. 

Additionally, it is important to experimentally determine whether it is better to pulse the 

probe immediately following separation inside the Wien Filter or shortly after the final 

focusing optics. This is crucial in static SIMS operation as the placement of the pulsing 

affects the overall spatial resolution. 
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2.2.1 Design (Solidworks/CAD) and Fabrication 

The design stage employs computer assisted design (CAD) software, such as 

Solidworks 2013 (Dassault Systemse; Velizy-Villacoublay France). Components are 

designed individually, around a common housing structure to generate an assembly. 

Assemblies are then united to create an overall structure. This overall structure is set to 

certain specific machining standards for precision purposes. Taking advantage of modern 

advances in machining, components designed by CAD software can be fabricated based 

on the spatial parameters and features present on the part. Meaning, a part can go directly 

from a virtual design to a physical piece with little difficulty. Tools such as CNC mills 

and 3D printers allow for the fast prototyping of parts if no theoretical tools are present to 

address performance testing. CAD software also allows for the seamless transfer of the 

3D structure of a part or assembly to be transferable to theoretical tools such as 

simulation programs. Even though these programs come with integrated design tools, it is 

very difficult to capture the nuances of very elaborate component designs. 

2.2.2. SIMION Simulations for Value Optimization 

Upon finalizing the design stage for the development of the PI column, it is 

possible to evaluate the effectiveness of the ion optics with dynamic ion simulations. 

Features such as geometrical arrangement, PI generation conditions, and optimal 

operation value such as voltages and magnetic fields can be optimized this way136,137. In 

evaluating ion optics, very few tools have become as indispensable as the ion dynamics 

simulation software SIMION. SIMION allows for the visualization of ion behavior when 

exposed to electrostatic and electromagnetic forces generated from physical arrays137. 
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Ions are given initial generation features such as kinetic energy, spatial distribution 

arrangements, directional vectors, mass to charge ratios, and charge related ion repulsion.  

The first step in evaluating the effectiveness of the components is to import the 

physical objects such as electrodes, with their spatial arrangement remaining as true as 

possible to the original design. This can be achieved by utilizing the physical array 

drawing tool in SIMION or by converting the Solidworks assembly into an ASCII format 

via tessellation of object layers as triangles. This generates what is known as a Standard 

Tessellation Language file, or a .STL, which can be transferred into SIMION work with 

electrostatic/magnetic properties. Once all components from the design have been 

transferred and geometrically arranged, simulations can be performed. SIMION permits 

the user to record a variety of different information regarding kinetic energy, trajectory, 

spatial distribution, and electromagnetic forces experienced by the ions137. These can be 

recorded at the start, during the drift time, at a specific location in space, or as a function 

of each ion time-specific step at a given rate. It’s contributions to MS development 

throughout the years are significant138,139,137.  
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2.3 Results and Discussion 

2.3.1 Solidworks (CAD) designs of Primary Ion Column Components 

 The PI components were optimized based on theoretical ion dynamic simulations, 

expected performance and floor-plan considerations. Some of these considerations 

involve the prevention of electrostatic discharging, and the retention of high-vacuum (10-

6 torr ≥). The source and einzel lens housing was the first component to be drafted. It was 

designed to be equipped with 6 in Con-Flat (CF600) flange mountings present for the PI 

source mounting stage on the front, and pre-filter einzel lens (Figure 10) in the rear, 

leading to the Wien Filter (Figure 11). Additionally, there are mountings for a quartz 

CF600 side viewport (not pictured), a turbo-molecular vacuum pump, and a CF600 

flange with SHV feedthroughs. 

 

Figure 10. 3D cutaway view of the design for the pre-filter einzel lens with potential 

values and key structural features highlighted. 
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Figure 11. 3D cutaway view of the design for the Wien Filter with key components 

highlighted. 

The source stage is based on the criteria of X/Y control over the source positioning at 

submillimeter resolution. The stage picked for this was a Thermionics EC-XY B275C 

capable of supporting 2.75 in Con-Flat (CF275) flange-mounted sources. Stage resolution 

is important when precisely aligning concentric to the other optics, as any drift in this 

area will lead to odd ion entrance angles and unwanted surface charging effects.  Ease of 

reproducibility when aligning is also critical when changing out sources due to wear. 

Projected plans for this mounting involved the usage of any LMIS as well as other PI 

sources. Pre-filter einzel lens are located at ~90 mm from the source mounting, where 

three 86 mm3 outer diameter rounded slit electrodes are connected by insulating 

standoffs. The aperture configuration matches that which was presented earlier for 
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deaccel-accel lens (D1=D3<D2), where D1 and D3 are 3 mm2 and D2 is 12 mm, a ratio of 

D=0.25G.  

The einzel lens is attached to the exit part of the housing, linking the source chamber 

to the Wien Filter. This is designed in such a manner that the projected focal point is at 

the collimation slits, beyond the Wien Filter. Design of the Wien filter was based on the 

original IPNO design, with the only difference being the ability to modify the electrodes 

rather than a permanent weldment99. The housing is meant to support electrical inputs, as 

well as structurally support the solenoids, their housing and the ferromagnetic steel 

required to create the magnetic field. The electrodes in the filter have a length of 123.6 

mm and a spacing of 12.5 mm, respectively. The mounting for the solenoids 

(electromagnet) was designed to be made with Teflon, and with the electromagnet cores 

made with roughly 60 turns of 16-gauge copper wire on each core.  

Following the Wien Filter chamber, comes the diagnostic chamber where there is a 

set of optics for evaluating PI beam performance.  There is a set of XY electrostatic 

deflectors for ensuring beam alignment prior to collimation and as a potential pulsing site 

(Figure 13). These have dimensions of 25.4 mm2, with 6.2 mm spacing between. At a 

distance of roughly 90mm from the plates, there is a modular collimator array, with sizes 

spanning from 2 mm, 1 mm, 500 µm, and 200 µm (Figure 14). The appropriate 

collimator size can be selected by an X-axis CF275 rotary motion feedthrough which is 

controlled externally (MDC Vacuum). This chamber is also equipped with six CF 2.75 

mounting slots, 2 axially positioned and 4 laterally positioned, respectively. 
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Figure 12. 3D cutaway view of the design for the primary ion column with key components for beam modification 

highlighted. 

 



 
 

51 
 

 

Figure 13. 3D view of the first set of electrostatic deflection plates for beam pulsing 

and alignment with key components highlighted. 

  

 

Figure 14.  3D cutaway view of the XY-controllable beam collimation array with key 

components highlighted. 
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At the exit of the chamber, there is a mount for a CF600 to CF275 modifier, 

where a nipple extension can be placed. In such an extension, it was found beneficial to 

place a set of post-filter einzel lens to focus the centered, collimated, single-projectile PI 

beam prior to sample ionization (Figure 15). These lens were made to have identical 

apertures (D=0.25G), yet the outer diameter of the electrodes is 25.5 mm to fit inside the 

nipple extension. The electrodes are mounted on insulating poles, separated by insulators 

with roughly 11 mm of spacing and with the second electrode shielded by an insulating 

enclosure in order to avoid discharging. In addition to the lens, a secondary set of XY 

deflector plates with dimensions of 20 mm x 10 mm is located at the exit in order to 

ensure beam concentricity prior to impact and as a potential pulsing site. The overall 

length of the structure is ~55 mm, allowing it to fit within a CF275 nipple flange. Other 

important features that bear mentioning involve the placement of a CF275 vacuum gate 

valve at the exit of the PI column. From here the instrument can be interfaced to a variety 

of chambers for surface modification studies and for MS analysis (e.g., TOF or FT-ICR 

MS). 

Vacuum components 

 Aside from the main electrostatic and electromagnetic components, other important 

considerations involve the usage of vacuum equipment, as a PI column requires pressure 

on the order of >10-6 torr to be effective. This is achieved by deploying an array of 

roughing pumps and two turbo molecular pumps located at the source and mid-focal 

distance, respectively. A combination of two pirani gauges (10-2 torr) and two Bayard-

Alpert gauges (<10-6 torr) is used to measure the effectiveness of the vacuum.  
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Figure 15. 3D view of the post-filter einzel lens and secondary set of electrostatic deflection plates with key components 

highlighted.
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2.3.2. SIMION Array of Primary Ion Column Components  

The simulation of the PI column optics was performed in a series of steps. First, 

the Solidworks designs for the lenses, filter and collimating optics were transferred to a 

.STL file format. These were all scaled in a rating of 0.1 pixels/mm, such that the 

resolution and realism of the simulated electrostatic/electromagnetic fields was highly 

accurate. The Laplace transforms SIMION employs in predicting ion trajectory/dynamics 

is influenced by this scaling factor, so the accuracy of spatially relevant information is 

affected. Thus, depending on the size and number of features in the ion optics work 

bench (IOB), a certain resolution is required in order to confidently propose theoretical 

values or results drawn from simulations. Having made STL files with such a scaling 

factor, these were then modified into Physical Array (.pa#) files, which account for the 

physical shape of the electrode/magnet. The arrangement of the different physical arrays 

was done with respect to the dimensions and spacing of componenets inside the PI gun 

from Solidworks. 

Arrays with field-overlaps are also “woven”, or that having certain common 

electrodes allows for the unison of different physical arrays as one unit. This affects 

simulation accuracy, with fields being improperly simulated, producing in null results. 

Upon completion of arranging the .pa# files, simulations can take place by defining the SI 

properties. For the purpose of these simulations, three beams corresponding to Au+, Au3
+, 

and Au400
+4 were used. The general goal was to perform a qualitative evaluation of each 

component and their performance. The collection of operational values will vary from 

source to source, depending on the initial PI kinetic energy and spatial distribution. 
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The first einzel lens displayed the intended performance, with focusing of the 

beam becoming evident with increasing voltage as a product of a 

deacceleration/acceleration mechanism inherent to the geometry (Figure 16).

 

Figure 16. Simulation view of the pre filter-einzel lens performance with optic 

geometry features highlighted. 

 Peformance was tested in the 12.5-16 kV range, providing an increasingly narrower 

focal length with higher voltages without full coverage of the PI column (~60%). This 

indicated that the design of a second lens, placed at a distance of 150% of the focal length 

(1.5 “D/f”), at a scaled sizing of 0.5G (1:2), could allow the elongation of the focal point 

for the full length (1173.2 mm) of the column. This lens also further reduces the cross 

section at the disk of least confusion, with a beam diameter (spot size) of 10 µm or less 

being a reasonable expectation.  
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The following aspect was to evaluate the performance of the Wien Filter. The 

magnet coils were set up to generate a magnetic field strength of B= 0.175 T, and the 

electrodes were set to V= 15 V (±7.496V), based on the expression derived above. This 

magnetic field value is based on theoretical calculations for such a design. 

 

Figure 17. 3D view of Wien Filter performance simulation for selection of massive 

gold clusters with components highlighted. 

  

𝑉𝐴𝑢100+ ±= 𝐵(𝑇)𝑑(𝑚)√
𝐾(𝐽)

2𝑚(𝑎𝑚𝑢)
 

 

(2.12) 

 

= (0.175𝑇, 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙)(0.0123𝑚)√
3.204353𝑥10−15𝐽

2 ∗ (196966.569𝑎𝑚𝑢)
 

(2.13) 

 𝑉𝐴𝑢100+ ±= 15𝑉 (𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) (2.14) 

 

 The Wien Filter response as a function of the plate deflection volatges permitted the 

separation of the Au cluster ions (Figure 17). Collimating slits were added, with the 
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standard 200 µm ID aperture selected. Following collimation, the beam advances to the 

second electrostatic lens and XY deflectors. The 2nd lens were use to prolong the focal 

length of the beam to any desired point in the remaining length of the PI source with an 

operational range of 3.5-8 kV (Figure 18). Like the first lens, the operational trade off 

involving focal length and beam diameter are dependant on the PI source inherent spatial 

distribution properties.  A potential energy surface array simulation (Figure 19) was also 

performed with all the componenets to evaluate the electrostatic fields and  forces. 

 

Figure 18. 3D view of post-filter einzel lens and electrostatic plates 

(deflection/pulsing) simulation performance with components highlighted.
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Figure 19. 2D XY and 3D simulation of the potential energy lines and surfaces for primary ion column components. 
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2.3.3. Finalized Assembly of the Primary Ion Column and Further Modifications 

The manufacturing and fabrication of the components was custom-built in Florida 

International University - Physics Department and the Texas A & M University 

Chemistry Department Machine Shops. The raw materials (e.g., steels, aluminum, 

insulating materials, wiring and wieldable connectors) were purchased from McMaster 

Carr (U.S.). Specialized high voltage, motion control, vacuum feedthroughs and flanges 

were purchased from Kurt Lesker (Jefferson Hills, PA) and MDC Vacuum (Hayward, 

CA).  

Initial fabrication consisted in the housing chambers for the source and pre-filter 

einzel lens, the Wien Filter and the diagnostic chambers. The housing was fabricated 

from a .316” ground steel block (McMaster Carr). Following this, the electrodes and 

apertures for the lens were fabricated from .316” ground steel along with the insulating 

PEEK (Poly Ether Ketone) spacers (McMaster Carr). The middle electrode is biased from 

Mastsusada AU-20 kV high voltage supply via a CF600 SHV tri-feedthrough flange 

(MDC Vacuum.) The SHV cables for high voltage feeding were fabricated in-house from 

cabling and connectors provided by Matsusada (San Jose, CA). The main housing 

structure was made of a 6000 class-high corrosion resistance aluminum-magnesium alloy 

(McMaster Carr). Features on the housing are two CF600 flange mounting for bridging 

the source and diagnostic chambers, along with the feedthrough apertures for welding the 

BNC connectors to bias the electrodes. The mounting for the copper solenoids and Teflon 

housing used in generating the magnetic field extrude from the main structure. The 

solenoids consist of roughly ~65 spins of 16 gauge 95% Cu (w/wt%) copper wire 

(McMaster Carr). These Teflon shields are mounted within 430F ferromagnetic steel 
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blocks, where the fields are generated (McMaster Carr). These are connected to a TDK-

Lambda current generator via MOLEX feedthroughs.  

Assembly of the outer parts of the Wien Filter took place afterwards, with the 

solenoid housing, magnets, and solenoids being installed. The BNC feedthroughs 

connectors to bias the electrodes and MOLEX connectors utilized to supply current for 

the solenoids were soldered in-house. Lastly, the electrode rails were fabricated from 

high purity copper (>95%, McMaster Carr). Two different types were made, electrodes 

with a focusing rectangular geometry and conventional flat electrodes. This was done in 

order to compare the performance both theoretically (SIMION) and experimentally. 

Work on the diagnostic chamber began by the fabrication and assembly of the first set of 

XY deflector plates at the entrance of the diagnostic chamber. Housing for this 

component was custom-ordered, fabricated made from.316 stainless steel (Kurt Lesker). 

The diagnostic chamber collimator array and XY controllable mounting for 

collimating aperture size selection were fabricated and assembled afterwards. CF275 

mountable XY controllers for adjusting the collimator selection were purchased from 

MDC. The last set of fabricated components were those for the post-filter einzel lens and 

2nd deflector set consisting of the PEEK mounting rods, electrodes, 2nd set of XY 

deflector plates, and PEEK spacers. The electrodes were made from .316 stainless steel 

and mounted on PEEK supports, separated by ribbed PEEK spacers, and with the second 

electrode shielded by a PEEK enclosure (McMaster Carr). A 20 kV Matsusada DC power 

supply feeds to the second electrode, yet this lens system is intended to operate at 

significant lower voltages compared to its larger counterpart. The extractor plates are 
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constructed from .316 stainless steel as well, with PEEK spacers separating the lens, and 

the two sets of plates (McMaster Carr). 

Vacuum system and Upgrades. 

The high vacuum of the PI column is achieved using two Edwards EXT 255HP 

turmobolecular vacuum pumps. The turbo controllers were built at the Florida 

International University Physics Department Electronics Shop. Rough pumping is 

performed with two Edwards RV 12 HP oil-sealed two stage rotary vane pumps 

connected to each turbomolecular pumps. Vacuum pressures are controlled using 

Edwards brand Pirani Gauges and Bayard Alpert (hot filament) gauges in the source 

chamber and diagnostic chamber, respectively.  

 

Figure 20. SIMION analysis for comparing beam cross-sections based on Wien 

Filter electrodes’ geometry. 
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The gauges are connected to an Edwards pressure readout interface, where different 

gauges can be monitored. During experimental testing, several upgrades were performed 

to improve the column operation. For example, the original stage (Thermionics EC-XY 

B275C) was switched for a new Thermionics FB XYZ-B6T CF600 high precision stage 

(0.0001’’) for more robust and precise motion controllers. The Wien Filter design uses 

flat electrodes, with SIMION simulations demonstrating the elimination of the beam axial 

spread (Figure 20). The arrangement of the turbomolecular vacuum pumps was modified 

to increase life time and column stability.
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Figure 21. Side view of initial and final primary ion column design with key differences and features highlighted.



 
 

64 
 

2.4 Conclusions 

 The design of a multi-source PI column was completed employing a combination of 

computer assisted design tools and theoretical ion dynamic simulations. The design goals 

consisted of building a sturdy, robust array of focusing optics to provide a variable degree 

of beam focusing parameters for both static and dynamic SIMS applications. A 

combination of two defocusing-focusing einzel lens were designed and theoretically 

elucidated to generate a beam with the potential of reducing the cross-section of ion 

beams down to 10 µm or less, allowing this PI column to probe nanoscale objects. Lens 

design allows for a shift in focusing strength and length in order to effectively maximize 

PI transmission for a dynamic SIMS type analyses with such column. 

 A Wien filter was also designed and theoretically described to separate and transmit 

only ions of a desired m/z. The Wien filter permits an experimental assessment of 

projectile distributions for both known and novel PI sources. In combination with 

simulations, exact values for consistent projectile transmission can be obtained and 

applied to experimental settings to determine the m/z of unknown projectiles in novel 

sources. A set of beam collimators was designed to reduce the beam diameter and reduce 

the effect of charge-repulsion diffraction and occurrence of geometrical aberrations. This 

PI column was also equipped with a set of two XY electrostatic plates for both beamline 

alignment, beam pulsation and TOF measurements for projectile characterization, in-

tandem or independent of the Wien filter operation. 
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3 EVALUATION OF THE AU-LMIS AND INCORPORATION TO THE COLUMN 

3.1 Introduction 

 Following the completion of the PI column, in this section, we describe the 

integration of AuNP-LMIS to the column. As discussed in the introduction, massive gold 

nanoparticles (Au400
+4) projectiles have shown advantages over other type of projectiles. 

Preliminary designs for this type of source date to the early 1990’s, where the first 

polyatomic cluster projectiles were studied to evaluate the benefits in employing these as 

opposed to monoatomic projectiles69 Dr. Serge Della-Negra, along with Dr. Emile 

Schewikert participated in most of the ground work for the early stages of Au-LMIS 

development for SIMS applications73,74. Early work at the Institute of Nuclear Physics 

(Orsay, France) aimed to characterize the distribution of ions generated from gallium and 

gold LMISs. Upon steady generation of cluster projectiles, SI yields and enhancement 

factors were calculated on a variety of targets, particularly metallic, semiconductor and 

organic targets (see Figure 22)73. 

 

 

Figure 2273. Schematic of primary ion column for the characterization of Au cluster 

projectiles utilizing time of flight measurements. Reprinted with permission from 

M. Benguerba. Copyright 1991 Elsevier B.V. 
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 Experiments showed that the Au-LMIS is capable of generating a distribution of 

clusters Aun
q+, where n= 1-7 and q= 1, 2. It was noted that the prevalence of these cluster 

constituents decreases with size (Figure 23). Upon characterizing the beam, specific 

projectile sizes were chosen to evaluate the ionization yield enhancements compared to 

monoatomic projectiles and between varying Au cluster sizes76. 

 

Figure 2373. Results from the Au projectile TOF characterization experiments 

highlighting different cluster sizes (n=1-7). Larger projectiles have greater times of 

flight. Reprinted with permission from M. Benguerba. Copyright 1991 Elsevier B.V. 

An important parameter in these experiments was variability in initial PI energy, 

where the source voltage was changed, thus influencing the energy per mass unit, or 

energy/nucleon. SI yield enhancements were measured based on the comparison of 

desorption and ionization yields of individual gold cluster impacts as opposed to the 

individual constituents of that projectile. This was done in a fashion akin to the CsI-

polyatomic beam experiments74, where yields from polyatomic species were compared 

against their individual constituents per constituent unit in an event-by-event mode This 

work concluded that ionization enhancements were significant, with very clear evidence 

of a non-linear enhancement trend between monoatomic and cluster projectiles. 
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 Evidence of this comes from the ionization yield enhancement observed on a 

phenylalanine target shown (Figure 24), where the molecular ion yield increased by a 

factor of 30 between Au+ and Au3
+ impacts73. The rate of change in yields remains linear 

with respect to energy, yet experiences a gradual increase for each additional constituent. 

Another prevalent trend was that the ratio of molecular ions to fragments yielded a 

preferential generation of fragments. Results show that favored molecular ion generation 

was increased with larger projectile size76. Previous work also involved the usage of the 

ORION High Energy Particle Injector at IPNO in order to study the different mechanistic 

aspects of cluster bombardment at MeV70. 

 

Figure 2473. Comparison of secondary ion yields between gold projectiles n=1-5, 

q=1-2 as a function of projectile kinetic energy. Reprinted with permission from M. 

Benguerba. Copyright 1991 Elsevier B.V. 
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  In 2004, Dr. Serge Della-Negra and coworkers profile the distribution of PI species 

generated from an Au-LMIS using a system analogous to that presented in Figure 22. 

Briefly, the system consisted of a source, a set of focusing electrostatic lens, a Wien 

Filter, as well as a High Energy Ion Injector (ORION Injector) for MeV ion impacts 

employed in the initial source experimentation. In other theoretical and experimental 

work it was found than an emitter angle of (90˚) led to the preferential generation of 

larger charged species as opposed to emitters with more acute angles (i.e. 60˚)99.  

Molecular Dynamics simulations indicate that the point-source for projectile generation 

allows for droplets to “pinch” off, rather than the traditional generation of a steady-stream 

of smaller charged species (M+q) species. This geometry comes with a trade off in that a 

wider conical angular distribution occurs as opposed to emitters with sharper angles, 

leading to a more challenge focusing of the beam. The sizes and charges of the projectiles 

were measured employing ion mass selection (Wien Filter) in conjunction with 

multiplicity and TOF event-by event calculations99. The Wien Filter served as a PI filter 

for separating ions based on their velocity, however unable to separate ion with the same 

m/z.  Mass-selected incident projectiles would impact a Formwar foil, providing a start 

signal and secondary electrons for energy measurements to a Multi-Channel Collector 

Plate (MCP) and oscilloscope to verify the projectiles would not disintegrate in flight.  

Aun
q+ fragments generated after collisions would have their flight time, from the foil to a 

set of multianode detectors, measured along with their energy losses (dE). These were 

measured from the velocity of the incident impact, post-collision fragments and 

secondary electrons to generate an overall distribution of exact n/q based on the Wien-

Filter mass selection window. Other particular variables of interest were the overall 
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extraction current, its influence on the generation of cluster projectiles, and its relation to 

source lifetime, as greater source brightness requires a faster expenditure of the source 

material (>95% Au: 5%> Si eutectic).

 

Figure 2599. Measured distributions of cluster sizes (n) as a function of the amount 

of charges (q). Note that the heavier the cluster the more charges are available. 

Reprinted with permission from Della-Negra. Copyright 2004 Elsevier B.V. 

Results, shown in Figure 25 showed a wide distribution of charged species with 

sizes spanning n=1 to n=1000 with charges as far as q= +9. A particular region of interest 

is found at Wien electrode voltages VWien<20 V, where large species containing n= 27, 

n= 40, and n= 120 constituents generated with consistency, with some room for variance 

around these distributions. A region of projectiles of interest is found around n=120, 

where projectiles can thus be characterized as massive, consisting of liquid nanoparticles 

with many constituents. For this projectile size, the charge distribution (q) is 4.8, with 5. 

This work concluded that Massive Gold Nanoparticles (Au100
+q) can be generated 

steadily and employed for SIMS applications were the generation of molecular ion 

species was the primary goal. 

Further work by Dr. Emile Schweikert’s group utilized the event-by-event method 

with single C60
+ and massive gold cluster impacts to perform nanoscale chemical 

q 1 2 3 4 5 6 7 8 9 qmean

n/q

Low Charge 5 98.7 1.3 1.01

7 94 6 1.06

9 96.6 3.4 1.03

27 24.6 18.8 19.2 15.5 13.8 8.1 3

40 1 11 36 44 7 3.4

120 3.1 7.4 16 20.9 18 13.4 10.3 6 4.7 4.8

High Charge 9 23 74 3 1.8

27 4.1 13.3 26 34.8 16.6 6 3.6

40 2 4.5 12 25 31 19.5 6 4.6
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mapping as a function of projectile size in the PEGASE platform101, 102. The PEGASE 

platform is a bi-direction TOF-SIMS equipped with a 100-150 kV PI accelerator 

developed at the IPNO equipped with an electron emission microscope (Figure 26). This 

allowed for an acquisition of MSI data in a format comprised of ion density plots, as well 

as electron emission co-location for nanoscale mapping of these individual impacts102. 

With a beam fluence of 1.0x109 ions/cm2, each impact interrogates an unperturbed area of 

the surface, making the spatial resolution of the probe equivalent to the volume of 

emission by projectile impact, which through AFM observations was found to be about 

10nm for massive gold cluster impacts140.  

Secondary electron localization relies on a fast frame-recording CMOS camera, from 

which the electron-based surface mapping is performed. Operation of this instrument 

requires a highly synchronized set of electronics, starting with the detection of individual 

PI impacts on the target. From there, a weak magnetic prism deflects electrons into a set 

of aberration reduction optics, followed by a set of magnifying ion optics. The secondary 

electrons impact the custom-made position-sensitive detector (PSD) which has an 

aluminized phosphorous, with an emission decay time of 100 µs. Impact and subsequent 

photon emission acts as the start signal for CMOS camera to collect an image of the 

electron location based on the fluorescence from the phosphorous screen. Upon 

synchronized triggering of the PSD and the camera within a certain coincidence time 

window, a start signal is provided to the TOF buncher to pulse the SIs into the TOF 

analyzer. A time-to-digital converter controls the overall intervals between start and stop 

signals based on the number of discrete camera shots per secondary electron impact and 

subsequent image detection process. This event-by-event approach thus allows for the 
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collection of an individual mass spectrum corresponding to each individual projectile 

impact103. While having the ability of resolving discrete impacts at a distance of less than 

100 nm, the mass resolution of this instrument is  ~4000 (M/M) allows for identification 

of small molecules from the surface of interest100. 

 

Figure 26101. Schematic for the ion and electron optics on the PEGASE instrument 

demonstrating sequence of signaling for single-impact detection. Reprinted with 

permission from FFL et al (2012). Copyright 2012 American Chemical Society. 

3.2 Methodology for Source Incorporation and Testing 

3.2.1. Design Adaption and Fabrication 

The Au-LMIS was based on general schemes for modern LMISs, where a 

micrometric tungsten emitter has a metal eutectic filled reservoir, and this is located at a 

distance of 0.5-2 mm from a set of extraction optics56. The metal is melted by the usage 

of a current on the filament, and the liquid metal then creeps towards the edge of the 

emitter due to the large electrostatic repulsion generated by the high ionization voltage. 

This leads to the formation of an electrified interface (Taylor cone), from where PIs are 

extracted into the PI column.  
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The emitter consists of a set of three filament supports, where the two lateral 

elements hold the reservoir filament and the central holds the emission filament140. The 

feed through for these three supports comes from the rear part of the source, where 

electrical connections are made (Figure 27). In order to avoid discharging, a significant 

concern for source stability, the feedthroughs are insulated and structurally supported 

with an insulating ceramic (Macor) base. The extractor array consists of a set of 

concentric, cone-shaped electrodes in order to promote electrostatic field homogeneity, 

ensuing the generation of a uniform Taylor cone.  

 

Figure 27. 3D cross-section view of Au-LMIS structure, with the insert highlighting 

a top view perspective of a prepared emitter utilized in characterization 

experiments. 

The extraction apertures are friction-fitting rather than welded on, as these become 

sputtered during source operation causing asymmetry in the aperture. By replacing them 

upon evident wear (aperture asymmetry), angular distribution irregularities can be 

avoided. Beyond the structural features, something else to be taken into account is the 

potentials at which the source was operated and how to supply these potentials. The 

source potential is to be held at 20 kV, while the extractor is to be operated at 13 kV. A 
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current supply is also required in order to melt the Au-Si eutectic within the reservoir in 

order for the gold to be able to creep towards the end of the emitter. These electronics 

require specialized, insulating housing. The housing was fabricated from Telfon and 

Plexiglass, and is shown in Figure 28 with the enclosed electronics inside. 

 

Figure 28. Specialized electronics for powering the 20 kV LMIS inside the primary 

ion column with components and connections highlighted. 

 

Figure 29. Electronics wiring diagram for the LMIS. 
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 A 120 V to 240 V AC isolation transformer powers the filament current supply, and 

the extractor supply while providing a bias from the external power supply (Figure 29). 

The power supplies selected are Matsusada AU series modular (+/-) 20 kV/10 mA power 

supplies and the power supply for the current feed is a Matsusada RG5T DC. Holes on 

the front face of the housing permit manipulation of potentials, and emergency shut down 

of individual supplies. The supplies are controlled manually using a high-density 

insulating nylon rod. Given the thickness of the tungsten filaments utilized to make these 

sources, currents employed generally are less than 5A. Prior work with the Au-Si eutectic 

that is utilized in this source gives its melting range to be 240-250 Cº at sea-level in a 

vacuum (>1.0x10-5 torr, Sigma Aldrich Filaments). Currents of 2.4-2.6 A are utilized to 

melt the gold eutectic without structurally compromising the emitter filament. The 

filament preparation and fabrication procedures is found in Appendix 1. Generally, a 

spacing of 5 mm or less is desired between the emitter and the extraction aperture. The 

spacing value is of importance experimentally, based on the voltage to be utilized on the 

emitter, in order to avoid discharging and sustain beam stability. The acceptance angle in 

our current source design is that of 25 mrad above and below the axial line at 0.5 mm 

spacing. 

Mounting for the LMIS was modified from a 25 mm thick silicide-type ceramic rod 

attached to a circular disk where the connectors from the feedthroughs would directly 

feed the source to 50 mm .316 steel rod mounted on a CF600” flange, along with a pivot 

point added so that the source could be removed without the need of undoing connections 

(Figure 30). The connectors were also modified from direct contact (screw-in) for push-

pin based connectors (pressure/contact based). This was done in order to reduce problems 
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related to discharging from the fixed connectors onto adjacent conductive sites and to 

facilitate source switching without having to undo connections.  

 

Figure 30. Comparison of early and current LMIS structure, mounting systems, and 

feedthrough. 

3.2.2. SIMION Simulation of Ion Trajectories 

The simulation of gold cluster trajectories was performed employing a set of PI 

conditions comparable to those in operation of normal LMIS (Figure 31). The Au100(q)
(q)+ 

projectiles had their mass based around a mean of 400 constituents with a deviation of up 

to ±10 consituents (1970 FWHM) to account for minor variance in projectile generation. 

A fix charge value of q= 4 was given because the main projectiles of interest are 

Au400(q)
(4), for which q= 4.  Initial ion position takes account the radius of the Taylor cone 

formed, and the acceptance angle limitations of the extractor. Thus, ions are generated 
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around a θ=25 mrad angular distribution and with an initial gaussian distribution conical 

spread angle of ±30°.  

Ions were given a fixed kinetic energy of 0.1 eV upon generation. Other features 

like charge weighing factor were left intact as these projectiles have such high velocities 

that repulsion energies become negligible. 

 

Figure 31. Primary ion generation and trajectory conditions for simulation. 

The main input for kinetic energy comes from the filament, which is charged to 20 kV, 

granting all ions with a initial kinetic energy of 20 qkeV. Extraction optics were set to 13 

kV, and placed at 2.5 mm from the filament to create an overall extraction potential of 7 

kV. The source physical array was overlapped with that of the pre-filter einzel lens. The 

theoretical performance for ion beam extraction, subsequent acceleration, and focusing is 

illustrated in Figure 32. 
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Figure 32. XY simulation view of the Au-LMIS and pre-filter einzel lens illustrating 

the trajectory of the primary ions upon generation and subsequent emission. 

Figure 33 displays the overall ion optics workbench created for these simulations. 

Potential values for the components can be optimized in order to achieve two different 

types of criteria: i) a high current and ii) a high focus. In the high current there is minimal 

PI loss, yet a beam diameter in the hundreds of micrometers is obtained. This constriction 

in beam diameter can be overcome by employing an event-by-event mode if high spatial 

resolution is desired. The other criteria is the ability of reducing the beam cross section to 

>10 µm, allowing for the usage of massive gold clusters as a pulsable, nanodomain 

analysis static SIMS probe.  
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Figure 33. 3D view for ion optics simulation workbench for the theoretical evaluation of optics performance with 

components labeled.
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3.2.3. Characterization of Gold Projectiles 

The characterization of gold projectiles from the Au-LMIS was performed in 

similar fashion to previous versions of the LMIS employing a Wien filter99-100. A fixed 

current of 2 A is expected to generate a magnetic field of roughly 0.175 T. A projectile 

profile is obtained by sweeping the voltages across the Wien filter electrodes, starting 

from a max voltage of 200 V, with fixed 1 V gradual stepwise decreases down to 0V. As 

the voltages are varied, the values for transmission of specific projectiles can be 

determined. This information can also be used to determine the effective mass resolution 

(separation) of the Wien Filter. 

 Current measurements of the beam constituents is performed on a faraday cup 

located 50 mm downstream from the collimator array, at the end of the PI column. 

However, feedthroughs are also arranged in a manner where current measurements can 

be performed on the collimator array by varying the aperture size. These measurements 

are mostly for evaluating beam stability and projectile-specific currents. Preliminary 

beam diameter measurements are performed utilizing a photoluminescent phosphorous 

plate, providing a light-emission based ability of measuring the emission volume. In 

combination with an optical feedthrough and a USB-based microscope camera, beam 

diameter and focusing conditions can be followed. 
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3.3 Results and Discussion 

3.3.1. SIMION Theoretical Value Predictions 

The simulations for the generation of a high current-low focusing beam and a low 

current-high focus beam (>10 µm) were completed by variations of the focusing optics 

potentials (Figure 35). Au400
+4 projectiles had their energies calculated throughout flight, 

with the mean kinetic energy of the projectiles at the focal point having a mean value of 

~78.5 keV. This indicates a small energy spread from the original acceleration (80 keV). 

 

Figure 34. Au400+4 Beam cross-section profiles for low current-high focus 

(microprobe) and a high current-low focus (sputter) operational modes at a focal 

distance of 1173.6 mm, the exit of the primary ion column. 

 Theoretical values for the generation of an Au-NP high-current sputter beam 

involved a pre-filter einzel lens voltage of 14 kV, with the collimator set to 200 µm, and a 

post-filter einzel lens voltage of 6 kV. These settings produced near 100% transmission 

effectiveness of Au-NPs, at the expense of low focusing. Figure 34 shows the beam 

cross-section profile at the focal point at the end of the PI column, where the spot size is 

~500 µm. This type of high fluence can be beneficial with the intent of operating the 
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beam for dynamic SIMS application (sputter), or if looking into an event-by-event 

operation mode, which requires relatively high abundance of a particular projectile. 

Theoretical values were also found for the generation of an Au-NP low-current, highly 

focused beam for static SIMS applications. Pre-filter lens were set to 14.7 kV, shortening 

the focal point albeit achieving a greater reduction of aberrations around the axis of the 

beam. Post-filter lens were set to 5.5 kV, further focusing the transmitted ions for the 

remaining length of the ion optics workbench. The Wien filter potential for transmission 

of Au400
+4 projectiles was kept at 15 V, as this theoretically calculated value induced no 

deflection or diffraction to the beam and its trajectory. The overall settings for these 

simulations are illustrated in Figure 35. 
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Figure 35. Simulations with optimized potential values for obtaining A) a high current sputter beam for dynamic SIMS 

applications and B) A low current, highly focused beam for nanoscale static SIMS. 
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3.3.2. Experimental Validation 

The source was set to a voltage of 20 kV, with the extractor voltage set to 13 kV, 

producing an extraction potential of 7 kV. Filament current was increased stepwise every 

10min starting at 1A and finishing at 2.6 A, were the Au-Si eutectic had fully melted. 

Given a shortened focal length was desired for these experiments, the pre-filter einzel 

lens were given a potential value of 15.1kV. Wien filter voltages were swept, while 

retaining fixed magnetic field of B=0.168 T (2 A on solenoids). The collimators were set 

to an aperture sizing of 500 µm.  Measurements performed on the collimator surface as 

opposed to the Faraday cup at the end of column due to spacing constraints and 

discharging from the post-filter lens. Planning for overcoming these hurdles for future 

source characterization experiments has already taken place. 

Starting from the lowest voltages, Au+ projectiles were transmitted using 

electrode voltages from 178 V to 140 V, with a maxima at 158 V for a current of 440 nA. 

Second projectile detected was the Au-Si+ projectiles, a common feature of utilizing Au-

Si eutectic for an LMIS. This was followed by the transmission of Au2
+ projectiles using 

electrode voltages from 126 V to 104 V, with a maxima at 116 V for a current of 58.54 

nA. The third projectile transmitted was Au3
+, with electrode voltages from 100V to 80 

V, with a maxima at 92 V for a current of 35.65 nA.  The fourth projectile transmitted 

was Au5
+ using electrode voltages from 72 V to 60 V, with a maxima at 68 V for a 

current of 35.65 nA. Lastly, detection of the target projectiles (Au400
+4) was achieved 

with electrode voltages of 14.5V, with a current of 3.57 nA.  These results fall in relative 

good agreement with the simulation values (V=14.79 V). Results are shown in Figure 36. 
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Figure 36. Results from Au-LMIS projectile characterization employing the Wien 

Filter with an emphasis of detection of massive gold clusters (Au400
+4). 

Evaluation of the beam diameter showed, however a significant departure from 

simulation expectations.  Figure 37 shows the results from an emission volume profiling 

experiment utilizing a phosphorous screen. Grids in the target sample are 1 mm2, 

externally grounded to prevent rapid space charging. Lens were biased with respect to the 

simulation for obtaining the best possible beam diameter (L1=14,750 V, L2=5,500 V) 

while the Wien Filter utilized the experimentally determined values. After correcting for 

side-emissions due to source wear, an experimental beam diameter of 750 µm-1 mm was 

measured.  
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Figure 37. Camera view of bombarded phosphorous screen for beam diameter 

profiling.  Focusing for the experiment above produced an Au400
+4 beam with a 

diameter of ~1 mm. 

3.4 Conclusions 

 An Au-NP Liquid Metal Ion Gun Source platform was created for the generation of 

massive gold cluster projectiles for surface analysis. The first step consisted of computer 

assisted design work for a LMIS Source, mounting/stage system, and electronics. 

Secondly, theoretical simulation combining the LMIS design and the PI column 

components for performance assessment was created. This simulation was utilized to 

accomplish a variety of tasks, including calculation of electric potential values for 

different operational conditions. Additionally, ion trajectories and energies are obtained 

as a function of flight distance and electrostatic fields. Thirdly, theoretical value 

predictions for the Wien filter’s magnetic and electric fields for the transmission of key 



 
 

86 
 

projectiles, including Au400
+4, were made. Equipment for the fabrication and operation of 

the AuNP-LMIS sources were made, including vacuum emitter infusing chamber and 

specialized electronics for filament etching. Machining and fabrication of the source 

design and mounting system took place, with several modifications undertaken over time. 

Electronics for the operation of a 20 kV LMIS were assembled. The Au-LMIS was 

attached to the PI column for experimental work and tested for stability. Beam 

characterization experiments were performed using the Wien Filter on the PI column, and 

a distribution of projectiles matching prior theoretical work was measured. The relative 

abundance of massive gold clusters was measured, with the recorded current and 

observed stability being satisfactory for their usage as a probe for the characterization of 

surfaces. 
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4 INTEGRATION OF THE PRIMARY ION COLUMN WITH AN FT-ICR MS. 

 
4.1 Introduction 

 

Early in its inception, Secondary Ion Mass Spectrometry (SIMS) was limited to 

elemental and small molecule analysis11, 19. Given only harsh, atomic probes were 

available, SIMS found itself with no usage in applications other than inorganic surfaces. 

However, this changed with pioneering work in the past 20 years, with projectile 

improvements opening the door for analysis of organic and biological surfaces analysis to 

become commonplace 68, 78. In the growing biological SIMS community, the general 

consensus is that the development of novel polyatomic and cluster probes has greatly 

enhanced the applicability of this technique to the study of cells for biomarker 

identification and localization3, 11, 15, 19. These advances place SIMS in par with other 

surface analysis techniques (e.g., MALDI and DESI), with the advantage of exceptional 

spatial resolution and 3D chemical imaging capabilities9,3, 15. Cluster projectiles like 

Au3
+, Bi3

+, and C60
+, and massive projectiles like Au400

+4, glycerol clusters, and Ar1500
+ 

have provided enhanced secondary molecular ion yields, less fragmented species, and 

subsequently enhancing the effective mass range74-75, 105,94,141 . However, instrumentation 

limitations for these applications are not only limited to the ion probe, but also the mass 

analyzer. Most instrumentation for molecular SIMS analyses utilizes TOF or sector mass 

spectrometers, thanks to the compatibility with high vacuum, availability of position-

sensitive multi-channel plates (MCP) for imaging, and wide dynamic mass range11, 131. 

Notwithstanding, the limitations in terms of mass resolving power (m/Δm50%), measured 

mass accuracy, and lack of MS/MS capabilities make the accurate identification of 

molecular ions from biological samples a challenging endeavor15. In addition, the 
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operation conditions for TOF-SIMS instruments may require a pulsed PI beam in 

conjunction with a pulsed extractor11,142. Such operation conditions impose a trade-off 

between mass resolution, mass range and spatial resolution, related on the pulse widths 

on the PI column and the SI extraction optics11. 

In recent years, different instruments have been develop both in the research and 

commercial communities to meet these needs. The Winograd lab integrated an Ionoptika 

C60 PI column to an AB Sciex Q-Star MALDI-QqQ-o-TOF for analysis of biological 

targets, in particular for lipidomic studies and comparisons of performance with 

MALDI143. Such an instrument is capable of MS/MS and MRM, operates at a mass 

resolution of mass resolving power 10,000-15,000 at a m/z of 400144. Issues regarding 

pressure gradients reduced the effective beam focusing, as well as transmission issues for 

SI transmission made MS/MS experiments problematic. IONOPTIKA, in collaboration 

with the Vickerman lab, released the J105 Chemical Imager145. This instrument generally 

employs a DC (dynamic) C60
+ beam, as opposed to conventional pulsed PI beam 

operation. By decoupling the PI beam operation from the mass analyzer, SIs can be 

subjected to MS/MS processes without affecting the PI source. Secondary ions are 

extraction through a series of lens and into a cooling cell prior to entering an electrostatic 

sector were transmitted ions have a narrow energy distribution. Here, ions arrive at a 

time-dependent buncher where ions retain their time focus and are then ejected 

simultaneously with a high-voltage pulse, followed by a collisional cell for MS/MS. 

Precursor/fragment ions are time-selected using an internal TOF gate prior to entrance to 

the main double-reflectron TOF (TOF-TOF)87. This instrument has been used for 

biological applications, with a spatial resolution of ~200 nm (3D imaging)146, a mass 



 
 

89 
 

resolution of ~10,000 and 2D/3D chemical imaging capabilities146,87. As of the time of 

this Thesis writing (Spring-Summer 2016), a powerful new option is being introduced 

into the commercial market147. Physical Electronics has recently completed the testing of 

a MS/MS (TOF-TOF-SIMS) instrument, capable of analyzing/imaging targeted father 

(M1) and daughter ions (M2) simultaneously147. Based on the patent description, this is 

done by extracting a packet of mass-selected SIs per PI pulse into a separate reflectron 

TOF, equipped with a high energy collisional cell for fragmentation prior to transmission. 

This ensures that meta-stable ions are not acting as isobaric/unresolvable interferences 

with respect to the target analyte ions (US Patent No. 20150090874 A1). 

These instruments, while capable of providing MS/MS capability, and formidable 

mass accuracy, still lack the ability of properly resolving all species detected. These 

instruments also suffer from SI transmission issues when operating in MS/MS mode, 

requiring the beam to be continuously operated at a heavy dosage (>1014 ions/cm2) to 

obtain significant signal15, 143, 145. This causes a rapid sputtering of the sample, requiring 

the usage of large cluster projectiles in order to avoid interlaying mixing. Nanometer 

resolution LMIG-based cluster sources like Bi3
+ are essentially barred from being utilized 

in this mode due to the potential for rapid damage accumulation otherwise unseen with 

C60
+ or larger projectiles11. Thin-layer samples such as novel organic materials (OLED’s) 

are incompatible with this mode of operation due to rapid sample depletion3. In order to 

overcome such challenges, the coupling of a cluster PI column source with an ultra-high 

resolution/sensitivity mass spectrometer such as an FT-ICR MS was explored89. Smith 

and cowokers at Pacific Northwestern Laboratory (PNNL) initially coupled an Ionoptika 

C60
+ source to a Bruker Daltonics SolariX 9T FT-ICR MS89. Being that SIMS is a high 
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vacuum technique, this makes it incompatible with the stock electrodynamic 

extraction/focusing funnel of the SolariX. Custom housing for differential pumping and 

an RF octopole/quadrupole guide were added for the placement of the target plate and the 

transmission of SIs into the further parts of the instrument. Initial publications with this 

instrument operated the C60
+ source in a DC mode, where the SIs were continuously 

transmitted by the quadrupole ion guide into the first RF multipole of the SolariX, which 

is followed by a collision cell for MS/MS prior to FT-ICR MS analysis. Analysis of PEG 

(10000) and choleresterol on mice brain were accomplished with a minimal mass 

resolution of 100,000 (m/Δm50%), sub-ppm mass accuracy, and a spatial resolution of 

~100 µm89-90. MS/MS of the cholesterol from the mouse brain showed even higher 

resolution (385,000), with clear identification of the generated fragments with respect to 

the parent ion. Last reported work with this instrument was performed by our research 

group , where it was utilized in combination with a dual-source TOFSIMS5 (IONTOF, 

Munster, Germany) instrument91. That is, a dual-instrument combination, where D. 

Discoideum cells were imaged with both instruments to evaluate inter-cell messaging 

mechanisms and to compare the performance in terms of spatial resolution and mass 

resolution of the FTICR-SIMS versus a commercial TOF-SIMS. The TOFSIMS5, while 

being capable of achieving high spatial resolution with a Bi3
+ probe (<1.5 µm), lacked the 

mass resolving power to properly characterize the chemical complexity of these cells and 

their messaging mechanism. The  power of the FT-ICR MS instrument in combination 

with a 120 m2 C60
+ beam in DC allowed for the identification of over 293 lipids, within 

a set criteria out of 2,595 peaks with a mean mass resolving power of >150,000 
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(m/Δm50% at 150 to 450 m/z) and a mass accuracy of 5 ppm or lower91. The superior mass 

resolving power is demonstrated in Figure 37. 

 

Figure 38. Reproduced with permission from DeBord, FFL, et al91. A),B), and C) 

show sub-micron spatial resolution imaging capabilities of the TOFSIMS5 , yet the 

lack of resolving power makes chemical identification challenging at the selected m/z 

(m/z 277).  D) and E) show the significant mass resolving power of the C60
+ FT-ICR 

MS instrument, with 5 characteristic peaks assigned within the 277 m/z mass 

window. 
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Having highlighted the power of FT-ICR MS for biological SIMS applications, we 

detail the plans for the coupling of an in-house custom-made PI column with a Bruker 

Daltonics SolariX 7T FT-ICR MS (Billerica, MA). A combination of ion dynamics 

simulations (SIMION 8.0), computer assisted design (CAD), and prototype component 

testing was employed to develop the interface between the PI column and the FT-ICR 

MS. Overall instrument assembly strives to direct the focused PI beam towards the 

SolariX housing (albeit some minor modifications), without the need for any extruding SI 

transfer optics. The currently proposed prototype involves the usage of a 90° electrostatic 

sector for PI beam energy filtering and beam deflection towards the target plate134. The 

AuNP-LMIS (Au100(n)
+qn) PI column can be utilized in DC and pulsed mode for SIMS 

analysis of organic surfaces. Au-NPs have been proven to be excellent as a PI thanks to 

their ability of generating intact molecular ions in large amounts and only having a 

damage-cross section of ~10 nm101. 

Having an electrostatic sector allows to further reduce chromatic aberrations by 

filtering ions with abnormal kinetic energies99. This is followed by a lens-extractor 

(Figure 15) for PI focusing. Rather than a direct annexation of the column to the FT-ICR 

MS housing, an orthogonal configuration is preferred to prevent beam distortion due to 

the SolariX 7 T magnet. Plans for extraction optics currently involve high-vacuum 

friendly, 8-element DC lens system for ion extration/focusing and subsequent injection 

the SolariX’s first quadrupole130. In addition to developing the above described interface, 

a vacuum electrospray source for the preliminary evaluation of the new ion optic 

components was designed. As discussed in Chapter 1, several groups have been 

evaluating vacuum electrospray as a source for PI beams124, 127. Glycerol and ionic 
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liquids, polar and ionic in nature, have been proven to be suitable sources of ion beams 

with a suitable brightness. Here, we utilize an ionic liquid electrospray in vacuum to 

simulate the transmission efficiency of the lens utilizing the theoretically determined 

voltage values. This standalone test bench approach is intended to deliver faster turn-

around times in evaluating theoretical performance with experimentally optimized values.  

The lens system is also equipped with optical components such as a laser lens, a 

camera feedthroughs, and an LED for target visualization. These features allow us to not 

only have a powerful massive cluster SIMS instrument, but also take advantage of the 

SolariX’s imaging and MS capabilities. This renders us with an ultra-high mass 

resolution (>100,000 m/Δm50% at 400 m/z) and high-spatial resolution analytical tool 

(<10 m), effectively capable of employing any cluster/massive cluster ion source 

compatible with the PI column’s mounting system. 

4.2 Methodology for Interface Development and Testing 

 

As highlighted in the previous chapters, a combination of SIMION simulations and 

CAD software (Solidworks) was utilized to design and simulate the proposed optic 

components. Design primarily revolved around two main objectives, the delivery of the 

PI beam at the best possible spatial resolution while maintaining a significant ion count to 

the target at an incidence angle of ~45° with respect to the target. The second objective 

was the development of a robust system of optics for extraction and transmission of the 

SIs into the optics of the FT-ICR MS. These optics are to replace the two-stage 

electrodynamic funnel and should be able to extract ions on both negative and positive 

modes with high efficiency. Upon theoretical determination of optimized values 

fabrication, assembly, and preliminary experiments testing were 
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4.2.1 Design of the Interfacing Sector and Extraction Optics 

 A 90° electrostatic sector was designed to be placed after a gate valve, following the 

2nd einzel lens (Figure 39). The sector consists of two curved, 83.82 and 103.63 mm 

radius sections, respectively. The sections have a thickness of 9.52 mm and a spacing of 

10.2 mm between them. This results in a mid-sector spacing of ~93.5 mm 

 

Figure 39. 3D view of design for electrostatic sector to deflect the PI beam towards 

the FT-ICR MS. 

 The electrostatic sector allows for energy-focusing of the PI beam, reducing 

chromatic aberrations. However, this is dependent on the energy spread of the incoming 

ion beam, as this will affect the current at the target. The chamber housing the sector has 

two CF275 flange mounts for MHV feedthroughs to bias the sector. At a distance of 55 

mm from the sector, there is a third set of deflector plates, along with two grounding 
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spacers for beam deflection. Since these deflector plates are incident to the target plate, 

they can be utilized for beam rastering (Figure 40). 

 

Figure 40. 3D view of primary ion beam rastering deflector plates with mounts for 

lens addition. 

It must be noted that this system will be expanded to contain einzel lens similar to 

those presented in Figure 18. The plates are 25.54 mm x 17.46 mm x 1.14 mm (L/W/H), 

with 1.48 mm spacing between plates, and 12.95 mm space between plate pairs. The 

deflector flange is placed at the entrance of another in-house made chamber to give way 

for the incoming beam at a 45° incidence angle. The chamber goes on top of the housing 

for the SolariX’s ion funnel, replacing the stock roofing for this part of the instrument. 

The PI beam enters a final set of cylindrical lens of equal diameter, consisting of three 

electrodes with an outer diameter (O.D.) of 12.7 mm, an inner diameter (I.D.) of 10.9 

mm, and ~6.35 mm spacing. The first and second electrodes have lengths of 12.7 mm and 

38.16 mm, respectively.  The third and final electrode is a cylinder electrode built on the 

SI extraction block, with a length of 12.7 mm with an internal diameter of 10.9 mm. This 
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geometry corresponds to an inner diameter/spacing ratio of 0.5 (D/f), correspondent to 

the lens strength with a focal length of ~50 mm. 

 

Figure 41. 3D view of secondary ion extraction lens system. Additional functionality 

features are highlighted. 

From here the PI beam will impact the target plate, which is located 1-5 mm 

from a suppressor/extractor plate spot-welded onto the SI extraction block.  

 

The suppressor/extractor plate is made of thin .316 stainless steel sheet metal plate and 

has a central pinhole of 2.38 mm for SI transmission and four other equidistant 2.38 mm 

apertures for an optical (camera) feedthrough, laser transmission, and for the illumination 

from the LED to reach the target plate. 
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 SI extraction starts with ions entering the extraction block through the central 

pinhole, and leaving through a dense electrode with a length of 12.7 mm and an inner 

diameter of 10.92 mm (cylinder electrodes built on the block are all symmetrical for field 

homogeneity). This SI transmission lens system consists of an additional 6 electrodes, all 

with the same thickness of 1.78 mm (12.7 mm O.D. and 10.92 mm I.D.), albeit of 

asymmetrical length and spacing. The first electrode, of 12.7 mm length/12.7 O.D./10.92 

I.D. is positioned 1.59 mm away from the extraction block and the second electrode. The 

second electrode, positioned 3.17 mm from the third electrode has a length of 143.59 mm 

and is intended to act as the main SI focusing section. The third electrode is of 12.7 mm 

in length, and spaced 3.17 mm from both the second and fourth electrodes. The fourth 

electrode is 50.8 mm, and spaced 3.17 mm from the third and firth electrodes. The final 

two electrodes, the 5th and 6th, are of 12.7 mm length and similar spacing, with the 

intention of operating as optional focusing elements. 

Structural features involve a central, cylinder-like support made of Delrin similar 

to that of Bruker’s stock ion funnel for fitting purposes. Support of the extraction block 

and other features is achieved by spacers and framing made of PEEK to prevent 

discharging. The first quadrupole inside of the SolariX has also been modeled, yet this 

component along with other features has been omitted from this thesis due to a 

confidentiality agreement. 
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4.2.2 Development of a Total Simulation Involving Primary Ion Column, Interfacing 

Optics and Secondary Ion Extraction Optics 

 Development of the complete simulation started by first importing the interfacing 

optics with respect to their geometrical arrangement from the Solidworks design files. 

The sector and the lens were imported by converting the design files into stereolitography 

(.STL) files with a tolerance of ±0.01% which were then imported into SIMION to output 

electrostatic physical arrays (.PA files). The PI column electrodes were rendered with a 

scaling of 0.1 mm/gu (mm/pixel) to produce a electrostatic field 10 times more refined 

than the baseline. Secondary ion optics were rendered with a scaling of 0.25 mm/gu 

(mm/pixel), to produce a feature and subsequently electrostatic field resolution 4 times 

over the baseline. The physical arrays were then positioned with respect to the design 

drawing to accurately elucidate SI trajectories. 

 An individual simulation was created in for the evaluation of the SI extraction lens 

performance for transmitting ions into the first quadrupole of the SolariX FT-ICR MS, 

and transmission into the subsequent optics. The dimensions were provided by Bruker 

and a physical array (.PA#) was made with this information (Figure 42). This simulation 

aimed primarily at observing the effects of SI trajectories through the lens and RF-

quadrupole guide. Figure 43 shows the total simulation created to evaluate overall 

performance of the instrument.  

 The PI column was tuned to achieve high current for DC operation and spatial 

focusing with the ultimate goal being a beam diameter of <10 µm and a transmission 

effective to hundreds of pA. Having measured >3 nA currents at the end of the column 

during the experimental phase, a transmission greater than 20% from the column into the 
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target plate will translate to hundreds of picoamperes, enough to obtain a fluence of 

1.0x1014 ions/cm2 for dynamic SIMS experiments. However, if there the energy-filtering 

effects of the electrostatic sector may significantly influence transmission towards the 

target plate. A wide energy spreads on the incoming ion will result in a lateral spread of 

our beam from the sector to the target plate, incurring undesired trajectories to some of 

the projectiles with the risk of being lost in flight. This stresses the importance of 

properly retuning our electrostatic lens, as improper tuning will result on a significant 

energy spread in the Au400
+4 beam, increased beam lateral spread and subsequent 

projectile loss. 

 

Figure 42. 3D isometric view of the simulation for evaluating secondary ion 

extraction lens performance and subsequent transmission into the SolariX’s first 

component (Q1).
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Figure 43. SIMION isometric view of total simulation with components labeled.
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Primary Ion Column Optimization 

 The distance of ion generation was chosen to reflect the spacing of nanodroplet 

formation in the Taylor cone with respect to the emitter. A wider mass and charge 

distribution of ±2 standard deviations was given to account for the different varieties of 

Au100(q)
(q)+ projectiles99. Ions were given a more focused angle distribution, however with 

a kinetic energy spread of 0.1 eV±0.05 eV99. These differences are better illustrated in 

Table 2. Under these conditions a recalculation of the voltages are required to achieve the 

best spatial resolution. PI column simulations first aimed to achieve the best focusing and 

PI transmission from the emitter from to the first lens (~900 mm effective distance). This 

was done by evaluating beam diameter and PI transmission as a function of voltage 

starting at 13 kV and finishing at 16 kV. Wien Filter values will be those acquired during 

experimentation. The original calculations inferred a fixed magnetic field (B) with a 

strength of 0.175 T at 2 A on the electromagnet, with an ion kinetic energy of ~20 keV 

assuming a singly charged projectile, and a fixed electrode distance of 0.0123 m. 

Preliminary experimental data with the Wien Filter for transmission of Au100q
q+ at a 

current of 2 A on the electromagnets occurred at a voltage of ±14.5 V on the deflector 

plates, as opposed to the expected 15 V. With this information we determined actual 

magnetic field by solving for expression (2.15). 

 14.5𝑉 = 𝑉𝐴𝑢4004+  (𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)

= 𝐵 ∗ (0.0123𝑚) ∗ √
3.204353𝑥10−15𝐽

2 ∗ (196966.569𝑎𝑚𝑢)
 

   (4.1) 

 𝐵±= 0.1684𝑇 (𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)  
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 Solving for the magnetic field gives us a field of 0.1684 T, which corresponds to the 

lower electrode voltages than those expected. From here we focus on the optimization of 

the second lens, third lens, and electrostatic sector. 

The second lens was optimized for transmission into the sector and onto the third lens 

while retaining or further reducing the beam diameter. Voltages utilized ranged from 3.75 

kV to 7.5 kV utilizing 500 V steps, 

 The electrostatic sector will not require thorough optimization, as it was designed to 

transmit ions within an energy window centered around 15-20 k(q)eV. Utilizing the 

radius dependent equation (4.2) for an electrostatic sector with a known predetermined 

radius (r, 93.5 mm or 0.935 m) and energy (E=~17.5 kqeV ± 2keqV), a voltage range can 

be calculated. 

 
𝑟 =

2±𝑉𝑆𝑒𝑐𝑡𝑜𝑟
𝐸𝑖𝑜𝑛

 
(4.2) 

 
0.0935𝑚𝑚 =

2±𝑉𝑆𝑒𝑐𝑡𝑜𝑟
17500

 
(4.3) 

 𝑉𝑆𝑒𝑐𝑡𝑜𝑟 = ±1600 − 1610𝑉  

 Within this specified voltage range, PI transmission should be possible, with minor 

optimization required. The fourth and final component of the optimization was lens 3, 

which was optimized in similar fashion to lens 2. The optimization of the second and 

third lens is of importance, as these effectively determine the spatial resolution at the 

target. All these conditions are summarized in Table 3. 
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Secondary Ion Extraction Cartridge 

 For the SI lens evaluation, ion emission initial conditions were modeled for an 

unfocused beam with ~500 m offset emission (assuming a focused, high fluence beam) 

and a subsequent 30 ° half-angle conical distribution for SI trajectories (see Table 4). SIs 

with internal kinetic energy of 0.01 eV and a charge value of 1 (q= 1) were used. Ions 

were given an overall mass range of 150-1100 m/z, divided into three distributions 

detailed in Table 4. Parameters of interest were SI transmission efficiency and kinetic 

energy spread. The first quadrupole inside the SolariX was modeled to operate as an ion 

guide with a fixed frequency of 880 kHz, no DC voltages on the poles, and employing the 

RF amplitude as an SI low mass cut-off tool. Simulations were performed utilizing a 

target plate-extractor distance of 5 mm, although the values for the extractor are valid 

regardless of the distance. The target plate can be biased accordingly to propel SIs 

towards the extractor.  
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Table 2. Comparison of primary ion generation conditions between initial simulations and final simulations. 

Source 
Voltage 

Primary Lens 
Voltages 

Second Lens 
Voltages Sector Voltage 

Third Lens 
Voltages SI Extraction Block 

20,000V 
13000-16000V 
(250V steps) 

3750-7500V 
(500V Steps) 

±1600-1610V, modified based on 
Transmission 

3750-7500V 
(500V Steps) 

±2100V depending 
on + or - mode 

Table 3. Workflow for the optimization of the primary ion column and interface optics. Voltages are swept stepwise within 

the established range to maximize a) primary ion transmission as a function of b) primary ion focus. 

 

Table 4. Simulation parameters for evaluating secondary ion extraction lens performance 10,000 projectiles of three 

different m/z ranges (150-300m/z, 250-750 m/z, 400-1000 m/z ) for 30,000 in total were flown in a simulation accounting for 

Coulombic repulsion and an initial energy of 0.1Ev ±0.05Ev to accurately represent cluster-projectile generated secondary 

ion trajectories.

# of Ions Mass (amu) Charge Source Position(X/Y/Z) Velocity Format (Direction + Kinetic Energy) Color

225±75 X= -307.1 (Single Point) Blue

500±250 Y= 20.5-20mm (~500um2 Volume) Red

700±300 Z= -21.25-21.75 (~500um2 Volume) Green

90 Cone Distribution/0.1eV ±0.05eV Initial Kinetic Energy Distribution110000

Table X. Secondary Ion Generation Properties for Evaluation and Optimization of SI Extraction Lens Performance

Old 

# of Ions Mass (amu) Charge (q+) Ion Generation Position(X/Y/Z) 
Velocity Format 

(Direction Spread) 
Initial 

Energy 

1000  per 
simulation 

78786.628±1970 
(Gaussian) 

4 
 ±25mrad circle distribution from 

point of emission from emitter 
70° Azimuth/Elevation 

Circle Spread  
0.1eV 

New 
10000 per 
simulation 

78786.629±1970 
(Gaussian) 

4±2 
(Gaussian) 

Single Point Emission, 10 µm away 
from the emitter 

90 ° Cone Spread (w/ 
respect to axis) 

0.1±0.05eV 
(Gaussian) 
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4.2.3 Experimental Evaluation of Optics 

Following the theoretical determination of optimal voltage values for the lens a 

test bench was designed. The components utilized in this test bench are shown in Figure 

44. The goal of the test bench is to measure the current of ions transmitted through the 

lens as a function of the voltage values on each of the electrodes. In order to apply the 

electrode voltage, a resistor chain was fabricated. Calculation of the required resistor 

values to obtain the desired voltage on each electrode is defined as follows: 

𝑉(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝐿1
𝐼∗𝑅1=∆𝑉1
→      𝑉𝐿2

𝐼∗𝑅2=∆𝑉2
→      𝑉𝐿3

𝐼∗𝑅3=∆𝑉3
→      𝑉𝐿4

𝐼∗𝑅4=∆𝑉4
→      𝑉𝐿5

𝐼∗𝑅5=∆𝑉5
→      𝑉𝐿6

𝐼∗𝑅6=∆6
→     𝑉𝐿7 = 0 

For which the total summed resistor values should yield a net voltage of 0 at the last 

electrode defined as 

𝑉𝐹𝑖𝑛𝑎𝑙 = 0 = 𝐼𝑅𝑡𝑜𝑡𝑎𝑙 =∑𝑅1 + 𝑅2 + 𝑅3…𝑅𝑁 ; 𝑁 = 6 , I = 1mA 

expanding this expression for the calculation of resistor values based on voltage 

differences amongst electrodes with a fixed current, yields 

𝑉𝐹𝑖𝑛𝑎𝑙 = 0 = 𝐼𝑅𝑡𝑜𝑡𝑎𝑙 

=∑(𝑅1 =
∆𝑉1
𝐼
) + (𝑅2 =

∆𝑉2
𝐼
) + (𝑅3 =

∆𝑉3
𝐼
) + (𝑅4 =

∆𝑉4
𝐼
) + (𝑅5 =

∆𝑉5
𝐼
) + (𝑅6 =

∆𝑉6
𝐼
) 

After obtaining the theoretical voltages from simulations, these can be input into 

the above expression to calculate the values for the individual resistors.  
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Figure 44. Design for standalone secondary ion extraction lens test bench with 

components highlighted and labeled. Insert show the specialized electronics utilized 

to generate a stable ionic liquid beam and the assembled secondary ion extraction 

lens. 

4.3 Results 

 Results for this work have been divided into two steps following the design of the 

interfacing optics and related components. The initial step is the theoretical evaluation 

and optimization of instrumental parameters to assess performance. This consisted of 

accessing the best PI column conditions to transmit an Au400
+4 beam with the best 

fluence/beam diameter ratio. The next step was to evaluate the performance of the SI 

extraction lens individually to assess SI transmission into the SolariX, output energy, and 

subsequent transmission into the first quadrupole of the FT-ICR-MS optics. The 

following step was the fabrication and assembly of the interface component parts, as well 
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as the vacuum electrospray source for individual interface optic evaluation. This was 

finally followed by stand-alone performance evaluation of simulated transmission of 

secondary ions on the extraction lens cartridge as a function of voltage.

4.3.1 Theoretical Optimization of Primary Ion Column with Interfacing Optics and 

Secondary Ion Extraction Optics 

 

 Initial simulation results with the first lens displayed a uniform distribution of 

focusing as a function of transmission. Utilizing the initial conditions stated in Table 2-4, 

the best voltage was found to be 14 kV. Results are shown in Figure 45, where ion beam 

diameter and transmission was measured as the entrance of the second lens, or a distance 

of 920 mm from the source. Operating the first lens at 14 kV gave a transmission of 

~30% with a beam diameter of roughly ~1 mm. This corresponds more properly to the 

experimentally observed beam behavior described in Chapter 3. While lower voltages 

offer greater fluences, these exhibit an axial spread making them unsuitable for 

maximizing spatial resolution. It must be highlighted that the Wien Filter was operated on 

the experimentally derived conditions, with a magnetic field (B) of 0.168 T and electrode 

voltages of ±14.5 V. This, combined with the wider mass and charge distributions 

account for the low % transmission, as a large amount of the beam is lost within the Wien 

Filter or 200 m collimator from filter-induced trajectory deflection. Having determined 

the first lens value, the focus turns to the evaluation of lens 2 and 3. As mentioned, the 

sector was operated at a range of 1600-1610 V during simulations to ensure no severe 

deflection of the beam occurs during transit through the sector or upon exit. 
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Figure 45. Results from the profiling of primary ion beam focus and transmission 

after velocity-selection and collimation. 

 After evaluating lens 2 and 3, it was found operation is best when given equal 

potentials. All other simulation results are omitted as the results are mostly unsatisfactory 

(beam diameters in excess of 500 µm). This may be due to the fact they have the same 

geometry, thus achieving the best focal distance when operated in equivalent fashion. 

Simulations to assess the best beam diameter were then performed utilizing symmetrical 

voltages for ion beams on negative and positive ion modes. Polarity-specific performance 

was assessed by the voltages on the SI extraction unit +2.1 kV for negative mode and -2.1 

kV for positive mode, respectively. Figure 46 and Figure 47 illustrate the results of the 

negative and positive ion mode beam profiles, respectively. 



 
 

109 
 

 

Figure 46. Results from the Negative Ion Mode Beam Profiling. 

 By sweeping the voltages as stated in Table 3 an optical voltage for positive and 

negative ion modes was found. Utilizing a voltage of 4 kV in lens 2 and lens 3 produced 

the best compromise between focusing and cluster ion transmission, with an effective 

transmission of 20-30% and a beam diameter of ~40-60 µm in negative and positive 

modes. While there is another focusing point noted at ~6250 V with a greater fluence, 

this produced a greater variance in beam diameter with associated losses. With these 

conditions, we can then expect a stable massive gold cluster DC beam with a routine 

spatial resolution of 50 µm. Something to note is that while these results do not indicate 

sub-micron spatial resolution in DC mode, this does not mean that the resolution is 

restricted to this number when utilizing the probe in a lower fluence, pulsed static SIMS 

regime. It may also be possible that the energy, mass and direction distributions may be 

too harsh (assuming worst case scenario), and better performance can be achieved 
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experimentally. In addition, the Au-LMIS is not only limited to massive gold clusters, 

and perhaps sub-micron spatial resolution for dynamic SIMS could be achieved if 

utilizing other projectiles like Au5
+ or Au9

+. These are not generated as part of a 

distribution like massive gold projectiles, and should present less of a challenge to focus 

while still providing enhanced yields when compared to Bi3
+ and C60

+. 

 

Figure 47. Results of the Positive Ion Mode Beam Profiling. 

 Evaluation of the SI lens began with simulations for the transmission of low m/z ions 

(150-300 m/z). Emission parameters are those highlighted in Table 4 for low m/z ions, 

with the exception of SI energies. These were accounted to have an initial energy spread 

based on a normal distribution with the limits being 0.02 eV-0.08 eV. From these 

simulations, theoretical DC voltage values for optimal lens performance are with a target 

plate bias of +50 V, >90% transmission was achieved over 100 simulations with -2.1 kV 

on the extraction block/first electrode, -500 V on the second electrode, -450 V on the 
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third electrode, -250 V on the fourth electrode, -150 V on the fifth electrode, -30 V on the 

sixth electrode, and 0V on the last electrode. A SIMION program was written to operate 

the quadrupole as a RF-only ion guide instead its usual mass-selective operation, at an 

amplitude (Vpp) of ±135 V.  

 Injection energy, or the energy which the SIs are transferred into the quadrupole is of 

high importance as highly energetic ions will be lost. Specifications state the injection 

energy window for the SolariX is between 5-20 eV, with ~10 eV being an ideal injection 

energy. Mean injection energy for the ions in this simulation was roughly ~15 eV, at the 

higher end of acceptable energy range for this quadrupole. The goal of this instrument 

however, is to look at large and intact molecular ions, thus transmission of heavier 

species is of interest. Further simulations were performed over a broader mass keeping 

the same voltage values, only slightly changing the RF on the quadrupole to act as a low-

mass filter. Figure 48 shows an XY view of the final simulation consisting of three 

packets of 10,000 ions with varied mass distributions were flown simultaneously 

accounting for coulombic repulsion in flight (defined as 1x10-12 A, accounting for space-

charging during flight). Mass distributions are highlighted accounting for an expanse of 

150-1100 m/z singly charged ions. As stated in the methods, the target plate is positioned 

5 mm away in these simulations, yet similar performance should be attainable at closer 

distances to further improve SI extraction efficiency.  The ideal target plate potential to 

ensure max ion transmission can be simulated or experimentally determined as well.
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Figure 48. Simulation of optimized voltage performance for transmitting ions of varying mass into the first quadrupole of 

the SolariX, followed by the collisional cell (Q2). Ions of mass ranges 150-300 m/z, 250-750 m/z, and 400-1100 m/z. Three 

packets of 10,000 ions were flown simultaneously accounting for coulombic repulsion.
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Figure 49. Evaluation of secondary ion transmission based on m/z utilizing 

simulation derived values. Black data points accounting for energy, m/z, and X-

displacement (transmission), while red data points account for displacement account 

for mass and displacement alone. 

The SI behavior and subsequent fate (transmitted or lost) as a function of energy 

and m/z is presented in Figure 49. Each data point represents an ion, with transmitted ions 

reaching the exit of the quadrupole. A clear trend shows that lighter ions were more 

difficult to transmit, generally acquiring more energy than the heavier species simulated. 

Transmissions averages for low, mid, and high mass ranges were 93%, 97%, and 98%, 

respectively. Best possible results achieved were 98% transmission (29,803/30,000) with 

a mean kinetic energy of 14.6V prior to transfer into the collisional cell (Q2). Overall, 

simulation results show that the secondary extraction lens voltages are capable of 

transferring ions with no mass discrimination effects. Figure 50 shows a snapshot of the 

total simulation.
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Figure 50. 3D view of the completed simulation with all optimized voltages highlighted. Simulation displays the trajectory 

of the focused primary ion beam and the transmission of the generated secondary ions into the FT-ICR MS Q1.
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4.3.2 Construction of the Interfacing Optics and Final Instrument Assembly 

The manufacturing and fabrication of the components was custom-built at Florida 

International University - Physics Department and the Texas A & M University 

Chemistry Department Machine Shops. The raw materials (e.g., steels, aluminum, 

insulating materials, wiring and wieldable connectors) were purchased from McMaster 

Carr (U.S.). Specialized high voltage, motion control, vacuum feedthroughs and flanges 

were purchased from Kurt Lesker (Jefferson Hills, PA) and MDC Vacuum (Hayward, 

CA).  

Fabrication consisted of the electrostatic sector, housing, lens and extractor, 

modified housing for the FT-ICR MS and the Secondary Ion Lens Extraction Cartridge. 

The electrostatic sector and its housing (both bottom section and top lid) are fabricated 

from .316” ground steel (McMaster Carr). The entrance/exit slits were fabricated from 

sheet metal (~0.5 mm thickness), and vacuum seal was achieved by adding a custom 

ordered Teflon rectangle O-ring for vacuum sealing (MDC Vacuum). Spacers to float the 

sector were made of PEEK. CF275 SHV feedthrough flanges to bias the sector segments 

were purchased from Kurt Lesker. The third einzel lens-extractor combination was 

fabricated from .316” ground steel (lens electrodes and deflector plates), a modified blank 

CF275 flange, and spacers made from PEEK. Both electrostatic sector and third einzel 

lens unit are powered by Matsuda ±AU-20 kV power supplies. The top of the housing 

that connects the incoming sector-bent beam into the extraction lens cartridge was 

fabricated of .316” stainless steel. Dimensions, materials and components in the first-

housing chamber will not be discussed due to a confidentiality agreement with Bruker 

regarding this information. The SI extraction lens block, cylinder electrodes, and 
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supporting structures (horseshoe, support rods) were made from .316” stainless steel. 

Insulating spacers and lens support bars were made from PEEK and the central mounting 

ring was made from Teflon, all purchased from McMaster Carr. Holder for the MALDI 

window, LED, and camera feedthroughs were made from nylon purchased from 

McMasterr Carr. The LED was mounted on a small circuit board and soldered onto place. 

The SI extraction lens system is powered by a Glassman HV EL -3 kV / 15 mA power 

supply. Final assembly and testing was completed by 2015. 

Vacuum Components 

 In order to bring the source chamber to the desired pressure (>10-7 torr) and avoid 

pressure differentials, an extra roughing pump and a turbomolecular pump were added at 

the source chamber. An Edwards EXT 255HP turbomolecular pump was added on the 

back part of the custom made housing, connected to an Edwards RV 12 HP Oil-sealed 

two stage rotary vane pump. These were connected to a pressure readout unit via a Pirani 

gauge. High-vacuum pressure readout is achieved utilizing the SolariX’s onboard sensors 

and readout system. 
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Figure 51. Side view of the completed AuNP-FT-ICR MS assembly with main components highlighted.
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4.3.3 Experimental Evaluation of Secondary Ion Extraction Lens

4.3.3.1 Construction of Step-Down Resistor Chain for SI Lens 

 Inputting the voltage values from the simulations displayed on Figure 48 into the 

expression sequence yields the potential differences between the electrodes required 

−2100𝑉
𝐼∗𝑅1=1600𝑉
→        − 500𝑉

𝐼∗𝑅2=50𝑉
→      − 450𝑉

𝐼∗𝑅3=200𝑉
→       − 250𝑉

𝐼∗𝑅4=100𝑉
→       

− 150𝑉
𝐼∗𝑅5=120𝑉
→       − 30𝑉

𝐼∗𝑅6=30𝑉
→      0 

Knowing that the current is 1mA across the entire circuit and the required voltage 

differences amongst the electrodes, the resistor values were calculated based on: 

𝑅𝑡𝑜𝑡𝑎𝑙 =∑
1600𝑉

0.001𝐴
+

50𝑉

0.001𝐴
+
200𝑉

0.001𝐴
+
100𝑉

0.001𝐴
+
120𝑉

0.001𝐴
+

30𝑉

0.001𝐴

= 1.6MΩ+ 50kΩ + 200kΩ + 100kΩ + 120kΩ + 30kΩ 

With the resistor values known, the experimental arrangement for resistors to achieve the 

desired voltages is defined as:  

−2100𝑉
1.6MΩ
→    −500𝑉

50kΩ
→   − 450𝑉

200kΩ
→    − 250𝑉

100kΩ
→    − 150𝑉

120kΩ
→    − 30𝑉

30kΩ
→   0  

Resistors were purchased from DigiKey (Thief River Falls, MN) and Mouser (Mansfield, 

TX) to achieve voltages as close as possible to those from the simulations. These were 

connected in-series on a connector block outside of the vacuum envinronment. Having 

the ability of manipulating the resistors outside the vacuum environment allows for 

replacement in case of any performance issues without having to break vacuum 

conditions inside the experiment, minimizing down-time. Having assembled the lens and 

the electronics for their operation, the focus shifted towards the experimental validation 

of these values. 
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4.3.3.2 Development of a Vacuum Electrospray Source for Standalone Ion Optics Testing 

 The initial prototype of this source was originally designed utilizing Solidworks 

(Figure 52). While there are multiple applications, its purpose in this Thesis is to act as an 

ion source to experimentally validate the theoretically optimized voltages for the SI 

extraction lens. A blank CF2.75 flange purchased from Kurt Lesker, had a hole of ~10 

mm bored in the center, and a .316 stainless steel nanocapillary threaded insert was 

welded in place. The net aperture diameter for capillary inserts is roughly ~50 m, 

suitable for fused silica/Kapton coated nanoelectrospray capillaries (nESI). Three 0.25 in 

deep 8-32 threaded holes were tapped onto the vacuum side of the flange, allowing for 

three 8-32 nylon or PEEK threaded posts to act as supports for mounting optics. For the 

earliest prototype iteration, ~2.4 in nylon columns were cut. One spacer and one extractor 

made of .316 stainless steel sheet metal were placed on the column, with the spacer 

utilized for holding an insulated sleeve. The sleeveing was added to avoid motion of the 

emitter, results in unstable emission and capillary damage. Capillary fabrication 

procedures are listed in Appendix 2. The ionic liquid tributylmethylammonium chloride 

(C13H30N-Cl) was purchased from Sigma-Aldrich (St. Louis MO) and 1 g was mixed 

with 1 mL of 90% H20/10% Methanol to generate a concentrated 10M solution.  A 

specialized alternating polarity high-voltage power supply was fabricated as well in-

house with components from DigiKey and Mauser (Figure 53). The power supply was 

made in order to prevent the occurrence of emitter fouling associated with ionic liquids 

beams124. 
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Figure 52. Design, fabrication and assembly of the vacuum electrospray source. A) 

Design for prototype source consists of a modified CF 2.75 in flange  

B). Photograph of assembled prototype flange. Total internal length is ~2.2 in. C) 

Photograph of a freshly etched polyamide/fused silica nanoelectrospray capillary. 

 

Figure 53. Electronics wiring diagram for alternating polarity HV power supply. 
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4.3.3.3 Assembly of the Test Bench and SI Lens Profiling  

 As mentioned, design planning for the experimental bench was completed with the 

intention of housing the source and the lens. Figure 54 shows the assembled test bench 

with all the power supplies and components to generate the vacuum ionic liquid beam. 

 

Figure 54. View of the assembled test bench with all relevant components labeled 

(with the exception of the 255HP Turbomolecular Pump). S.I. lens not pictured as 

these are located within the testing chamber. 

In the test bench, the ion source was placed at a distance of ~10 mm from the 

extractor to avoid discharging. Voltage values at the connectors are labeled in the Figure 

54, with the corresponding resistance between each of the electrodes (labeled by color). 

Main difference in the experimental testing is that, as opposed to the simulations, the 6th 

lens is grounded along with the 7th. This lens was rendered inactive due to discharging 

onto the housing during initial testing.
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Figure 55. Solidworks cutaway view of test bench configuration for the evaluation of SI extraction lens transmission 

(A/sec).
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 Results from the experimental test bench evaluation of the lens performance with the 

above voltages is displayed in Figure 56. Voltages were swept in increments of 500 V, 

with current measurements taken every 5 seconds for a duration of 10 minutes, producing 

120 current measurements. As formulated by the simulations, the designed resistor chain 

provided a significant amount of ion transmission, even at a small target (6 mm) at a 

distance of 70 mm, roughly the distance to halfway through Q1. These results validate the 

constructed resistor chain for the lens to produce voltages which guarantee SI 

transmission into the first quadrupole of the SolariX and beyond. 

 

 

 
Figure 56. Experimental Ion Transmission Evaluation of the Secondary Ion 

Extraction Lens as a function of extractor block voltage. Note that max transmission 

is achieved with the theorized simulation value. 
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4.4 Conclusion 

 The present work shows the advances of theoretical modeling in combination with 

experimental evaluation for the coupling of a AuNP-LMIS (Au400
+4) equipped PI column, 

to a Bruker Daltonics SolariX FT-ICR MS. Interfacing optics to annex the PI column and 

SI extraction optics were designed, theoretically evaluated, and experimentally tested. A 

new design for an electrostatic interface between the PI column and the FT-ICR-MS has 

been proposed and evaluated. Preliminary simulations of the optimized PI gun and 

interfacing optics showed that a DC beam consisting of a wide distribution of massive 

gold clusters can be mass-filtered and focused to a beam diameter of ~50 µm. Secondary 

ion transmission can be achieved with over ~95% efficacy with a narrow energy profile 

for secondary ions. Transmission of medium to large molecular ions was routinely 

achieved utilizing fixed settings with a low-mass cut off inherent to the FT-ICR MS. A 

vacuum electrospray system was designed in order to examine the performance of ion 

optics in a standalone environment, and shows promise as a source for cluster projectiles 

as well. An experimental test bench was built to assess the performance of the SI 

extraction lens, with positives results for ion transmission obtained with simulation-

derived values. Based on the combination of theoretical and experimental data, we 

anticipate that this platform will be capable of routinely characterizing surfaces using a 

Au400
+4 DC beam with a mass resolution of over 400k at 400 m/z. 
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Appendices 

 

APPENDIX A 

LIQUID METAL ION SOURCE FABRICATION 

Read through this entire procedure before attempting to fabricate this source. 

Etching Solution Preparation: 

1. Clean all glassware to be used in preparation thoroughly. If the glassware is not clean, 

the etching solution will be yellow in color (the solution will be less efficient for etching). 

2. Prepare an aqueous solution of 35% w/w NaOH in a plastic bottle. Write the date 

prepared on the container (NaOH should be made fresh every 3 months). 

3. Mix in a clean and dry beaker: 

-10mL of 35% NaOH solution 

-50mL of Glycerol 

-50mL of distilled water 

Stir thoroughly. Prepare the etching solution fresh on the same day as the source 

preparation. Etching solution rapidly loses etching efficiency as it ages. 

Needle Preparation: 

1. Cut a section of tungsten wire (0.200 mm dia.) 5-10 cm long. Clean withautomotive 

grade sandpaper (600-grit). This mechanical removal of the oxide layer needs to be done 

the same day as assembling and dipping the source, so do not prepare needles in bulk and 

store. 

2. Place wire in pin vise and center. Pull the wire with your fingers from the base of the 

pin vise all the way to the end of the wire in continuous smooth motions. Repeat until the 

wire is straight. 
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3. Cut the wire to a length of 3 cm. 

4. Etch the needle using the following procedures: 

a. Place the needle pin vise into the Teflon needle brace, and place the needle brace 

into the Teflon block. 

b. Be sure the level of the etching solution is parallel to the base of the platform and 

perfectly normal to the needle. Use the course adjustment on the platform to bring 

the solution to the needle. Use the fine adjustment (x-y positioner) on the stand to 

make the final positional adjustments. 

c. The end of the wire can be split or ragged as a result of cutting. This portion must 

be removed before etching the needle. Attach the electrical connections. Insert about 

1 mm of the needle into the etching solution and turn on the AC voltage to a high 

setting (~40 V). Remove the needle from the solution every ~2min to check the 

progress of the etching. Continue until the needle is flat on the bottom. At times, this 

step can result in a needle being formed—if this happens, skip step 4d. 

d. With the voltage off, immerse the needle tip into the etching solution and use the 

fine adjustment to pull the needle out just enough to maintain the meniscus. Use the 

fine adjustment on the positioner to ensure that the length of the needle tip 

submerged is enough to form the proper half-angle. This should be done while 

looking through the microscope for better accuracy. Apply a low voltage (~5-10 V) 

to form the cone at the tip of the needle. Remove the needle from the solution every 
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~5 min to check the progress of the etching. Continue until the needle cone has a half 

angle of ~ 49.5 °. The tolerance for cone angle is between 90-100°. 

e. After the cone has formed, turn AC voltage off and immerse the needle 15 mm 

into the solution. Increase the voltage until very fine bubbles form on the surface of 

the needle and rise to the surface of the etching solution ~5-10 V. Remove the oxide 

layer by etching for ~ 6 min. 

f. Rinse the needle with distilled water to remove excess etching solution. Use the 

needle on the same day as preparation—do not store. 

Spring Reservoir Preparation: 

1. Cut a ~20 cm piece of tungsten wire (0.200 mm dia.). Clean with automotive grade 

sandpaper. Bend wire in various directions with your hand while cleaning to “break‟ the 

memory of the wire. Reservoirs should be made on the day of source production so the 

mechanical removal of oxide layers using sandpaper is not lost. 

2. Clean wire form with ethanol to ensure no contamination of the wire. Place center of 

wire on form and begin to wrap around the form with jerky motions toward previous turn. 

Be sure to use equal force at top and bottoms of turns. 

3. Make 9-10 tight turns to form the spring reservoir (no less than 9). There should be 

little to no space between the individual turns. If equal force was used in production, a 

good reservoir should be a barrel, parallel with the base. 

4. Cut spring ends to the proper length using the spring jig as a measuring tool Do not 

bend or crease the legs, they should be straight or just gently curved. 
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5. Insert the spring legs into the source assembly and tighten screws gently. 

6. Do not over-tighten as that can cause undue stress on the spring—use tweezers to hold 

the spring legs to keep them from twisting. If the spring is not parallel to the base (i.e. not 

horizontal) use the spring form to bring it into position. 

7. Remove Teflon block from etching stand and attach the trident to split the electrical 

connections for etching the reservoir. 

8. Turn spring assembly 90° so that it is perpendicular to the outlet of the tube connecting 

the two glass chambers (and thus the electrical field). 

9. Immerse spring into the etching solution and be sure to remove any air bubble caught 

in center of spring. Attach the electrical connections and apply the same low voltage (~5-

10 V) to achieve small, rising bubbles and etch for 5 min. Remove any air bubbles that 

form in the center of spring during etching. Rinse spring with distilled water to remove 

excess etching solution. 

Inserting Needle into Spring Assembly: 

1. Accurately measure 20 mm from the tip of the needle and cut off excess. 

2. Insert needle into the source assembly and using tweezers position into the middle of 

the spring reservoir (between spring turn 4 and 5). 

3. The reservoir should be centered in the side view of the spring, and must be in a 

vertical position above the spring at a right angle to the top of the spring. Use millimeter 

paper to adjust the height of the needle to 1.3 mm above the top of the spring. In the case 

that sparking occurs with sources, adjust the needle height above the reservoir to ~1.7 
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mm (do not exceed 2 mm or source will not emit). 1.3-1.5 mm is ideal for large Au 

cluster emission. 

4. Tighten the screw of the needle holder gently. Do not cause tension that forces the 

needle to one side or the other. If this occurs, the needle can move during heating. 

5. Dip the entire assembly into etching solution, attach the trident and apply the 

same low voltage (~5-10 V) to achieve small, rising bubbles and etch for 5 minutes.        

Note: Be sure to remove any air bubbles that form in the center of the 

reservoir. The time of etching is not critical, the color and finish is what is 

important. When all of the oxide layer has been removed, the color of the 

tungsten after rinsing with water should be dark grey and matte (not shiny) in 

finish. 

Inserting Source Assembly into Vacuum: 

1. Attach the source assembly to the vertical translator and attach wires to feedthrough 

Cover the insulator with a thin Teflon cover to protecting it from tungsten evaporation.  

Be sure to check connectivity before pumping. 

2. Obtain a pellet of the Au/Si eutectic (97% Au / 3% Si, Academy Precision Metals). 

Clean it by using a file to remove surface contaminants, use 600-grit followed by 1000-

grit automotive sandpaper to smooth surface, finally use green abrasive pad to polish. 

Sonicate in ethanol for 5 min then dry with nitrogen. Place the pellet in the tantalum boat 

in the vacuum chamber. Fresh pellet dimensions are a cylinder of 3/8” height, ~17 g. 

When the mass of the pellet is ≤ 11 g, another piece of gold should be added. 
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3. Clean the chamber and boat with ethanol and place source assembly lid onto vacuum 

chamber. Evacuate to at least 3x10-6 Torr. 

4. Heat the eutectic by ramping the temperature of the tantalum boat (monitored 

with the thermocouple) at a rate of 10°C/min. For the variant power supply, 

this generally equates to 1 increment/min. The eutectic will melt at a temperature of  

~363° C. This constitutes ~395 mV across the tantalum boat. 

5. The color of the eutectic will change from yellow to grey just before melting. Check by 

gently nudging the chamber—you will see ripples in the eutectic if it has melted; 

maintain the minimum temperature for complete liquidity. The needle and spring must be 

free of any contaminants before immersing into the eutectic.  

To do this: 

a. Apply ~7-8 W between the needle and one leg of the spring for ~ 2 min. 7-8 W 

should produce a red-orange color on the filament, avoid yellow or white—this 

means the filament is too hot. Check the location of the needle before, during, and 

after heating to assure the needle does not move when the reservoir springs expand 

(~10%). 

b. Apply the same power to the needle and the other leg of the spring for ~2 min. 

c. Apply ~5 W of power between the two spring legs (not the needle). The spring 

will glow a light red color. Lower the needle and spring assembly slowly into the 

eutectic until the top of the spring is immersed completely. Turn off the power and 

begin to raise slowly but at a constant rate (do not use jerky motions). 
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d. At times the reservoir will not fill the first time, but it should now be “wetted” 

enough to fill the subsequent times. If the spring is not filled on the first attempt, 

repeat steps 5a-c, dipping the reservoir completely after each step. This makes a total 

of 4 dippings. Continue dipping until reservoir is filled. 

6. Before breaking vacuum, examine the needle and reservoir with the microscope. A 

meniscus should be present between the needle and top of the reservoir. The reservoir 

should be filled with eutectic. 

7. Cool the eutectic in the tantalum boat by directly turning the voltage on the boat to 

zero directly. Wait until the eutectic reaches room temperature before breaking vacuum 

and removing the source assembly. 

8. It is helpful to take a picture of each source and write down its dimensions, and any 

other parameters of interest into the source notebook, in order to track any abnormalities 

in emission and lifetime. 

Inserting Gold Source Assembly onto Mounting System: 

1. Attach the first extractor and center the needle in the center of the hole using the 4 set 

screws located at the base. Rotate the extractor and bring the tip of the needle in the plane 

of the bottom of the extractor cap, using the microscope to view. Tighten in place with 

the locking washer. 

2. Attach brass collar and brass lockring. Attach the second extractor shield and use the 

microscope to make the final adjustments to the x-y position of the needle. The needle 

should be centered within the two diaphragms. Tighten the set screws of the extractor. 
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3. Install the source onto the assembly flange and connect the high voltage cables to the 

filament (x2) and the floating voltage cable to the base of the source. Check for proper 

connectivity before attaching set-up to the instrument. 
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APPENDIX B 

 

ELECTROSPRAY NANOCAPILLARY FABRICATION AND VACUUM 

ELECTROSPRAY SOURCE DRAWINGS 

Preparing Capillaries for Polyamide Coating Removal. 

1. Uncap NanoStrip (KMG Chemicals) and turn on Hot Plate to 100C (4-5 on 

settings) to heat up nanostrip solution (30 mins-1 hour). 

2. Cleave the desired capillary length utilizing a ceramic cutter (5 inches is generally 

fine for a vacuum EDI source). 

3. Fill the capillary with water utilizing a microsyringe and a syringe pump (ensure 

that water is flowing out to discard clogged capillaries!). 

Stripping the Polyamide Coating from the Capillary. 

4. Set flow rate to .1µL/min and check flow afterwards. 

5. Check temperature of NanoStrip and if at 100C, dip capillary 1-1.5 cm and leave 

in heated solution until no polyamide is left on the capillary (emitter looks totally 

clear). Ensure tips are perpendicular to the solution with no vibration or rattling. 

a. Make sure to take note of the time it takes for the NanoStrip to remove the 

polyamide! Good solutions of NanoStrip should not take longer than 10-

15 mins to remove polyamide. 

b. If the stripping process takes longer than 30 min, neutralize the Nanostrip 

with ~1g of NaOH before rinsing with water. 

6. Rinse tips in water for 5-10 mins to remove residual NanoStrip. 
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Etching the Fused Silica to Create a Fine Emitter. 

7. Obtain fresh 49% HF (Sigma Aldrich) and place in a 50mL PTFE beaker. 

a. Make sure its PTFE not glass! HF will etch glassware! 

8. Set water flow rate .1µL/min to prevent internal etching of the capillary. 

9. Immerse the nanocapillary (20µm ID/159µm OD) for a duration of 30-45 mins. 

a. Make sure to check back periodically as etching times vary depending on 

the freshness of the HF! 

10. Upon effective etching, rinse capillary for 5-10 min. 

11. Check under magnifying glass or microscope for any defects to the shape of the 

tip. 
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