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ABSTRACT OF THE THESIS 

ENHANCING ALGAL BIOMASS AND LIPID PRODUCTION THROUGH 

BACTERIAL AND FUNGAL CO-CULTURE 

by 

Erwin David Berthold 

Florida International University, 2016 

Miami, Florida 

Professor Kateel G. Shetty, Co-Major Professor  

Professor Miroslav Gantar, Co-Major Professor  

This thesis investigates the effects of co-culturing microorganisms including 37 yeast, 38 

bacteria, nine diazotrophic cyanobacteria, and three fungi on biomass and lipid 

production in fresh- and saltwater algae. Algal lipid content was measured using Nile 

Red method and gravimetric techniques. Among the algal strains tested, freshwater 

Coelastrum sp. 46-4, and saltwater Cricosphaera sp. 146-2-9, showed enhanced 

biomass yield and lipid content in response to co-culture with bacteria, cyanobacteria, 

and fungi.  While co-culture with yeast caused inhibition of algal productivity, no 

difference in algal productivity was observed between nitrogen-free diazotrophic 

cyanobacterial co-culture and nitrogen-replete monoalgal culture. Results indicated that 

extracellular compounds from the freshwater bacteria Pseudomonas stutzeri and marine 

fungus Fusarium sp. significantly account for stimulation of lipid accumulation within 

algal cells, while co-cultivation with live microorganism cells stimulated biomass 

production in algae.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Rationale for improving algae biofuel outputs   
 

Procurement and combustion of fossil fuel engenders environmental 

degradation with climate change and is projected to perpetually increase 

atmospheric carbon concentrations (IPCC 2014). The increase in atmospheric 

anthropogenic carbon, pressure on the fossil fuel supply, and growing demand 

for energy have altogether invigorated interest in biologically-derived renewable 

fuel resources. One such renewable biofuel is microalgae biomass. Biofuels 

generated from microalgae are relatively novel; first generation biofuels were 

derived from sources including starch, sugar and vegetable oil derived from 

plants. Utilizing crops for fuel production is unfavorable since it competes with 

and diverts food crops from the global food market and results in the loss of 

terrestrial biodiversity (Koh et al. 2011). Although second generation biodiesel is 

an improvement, using non-food crops such as wood and organic waste 

feedstock in practice is problematic because of the high cost of material and low 

energy yield of feedstock. The modern third generation biofuels benefit from 

oleaginous (lipid or oil-producing) microorganisms favorable for efficient biofuel 

production.  

Using oil-producing algae has advantages over traditional plants and crop 

residues. Algae are a superior biofuel feedstock as they have high growth rates, 



	 2	

are competent in unusable water and land (deserts, wastewater, salt water), and 

can produce of a wide range of fuels and co-products (diesel, jet fuel, 

hydrocarbons, biogas, ethanol, feed, fertilizer, nutraceuticals and 

pharmaceuticals, etc) (Hannon et al. 2010). The production of biofuels from algae 

however faces productivity issues that impede scalability. A central issue 

governing algal monoculture success is lipid accumulation usually occurs in 

nutrient depleted conditions. Stress conditions that induce lipid storage in algae, 

however, inhibit biomass productivity. Moreover, the sustainability and economic 

cogency of microalgae biofuel production is often questioned in terms of fertilizer 

requirements (Peccia et al 2013). Fertilizer application represents a significant 

cost to cultivation and indirect greenhouse gas inputs (Dawson and Hilton 2011). 

In order for a feasible and sustainable microalgae biofuel production, 

manipulations of conditions that allow for both rapid lipid and cell growth rate 

during cultivation are desired (Chisti Y., 2013).  

In using algae for biofuel production, one technological aspect has been 

persistently neglected; that is the effect of accompanying microorganisms on 

algae growth and lipid accumulation. Integrating co-cultures of microorganisms is 

becoming a realistic choice for achieving goals of reducing the expenditures 

associated with cultivation and large-scale production of biofuels. And in using 

co-cultures of algae and distinct microorganisms, such as nitrogen-fixing 

cyanobacteria, the use of nitrogenous fertilizer is avoided generating a 

sustainable algae cultivation system (Mimouni et al. 2012). Improving the 
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production of biofuel from algae facilitates the integration of sustainable fuels into 

the fuel market and helps displace fossil fuel use.  

 

1.2 Biofuels  
 

Biofuel is any biologically derived biomass that is converted to produce 

fuel molecules. Biodiesel, a specific biofuel, is of interest as it can be used 

directly or blended in the current fuel and automobile infrastructure without 

modifications such as those required with ethanol or electricity-based 

technologies. Biodiesel is composed of fatty acid methyl esters (FAMEs). The 

FAMEs are extracted from triacylglyceride lipid bodies by means of 

transesterification. The transesterification process is the most common method of 

producing biodiesel and involves reacting an alcohol with an acid or base 

catalyst. The alcohol, usually methanol, reacts with the fatty acids chains in 

forming methyl esters by removing the glycerol backbone of the triacylglycerides  

(TAGs) (Figure 1). The glycerol waste has many applications including 

sustainable bioconversion into hydrogen for energy (Sarma et al. 2012).  

 

 

Figure 1 The process of transesterification in manufacturing biodiesel   
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1.3 Biofuel Generations 
 

 
Initial attempts at identifying proper sustainable feedstock for the 

production of biofuels originated in the use of crop plants high in oils. Crops such 

as soybean, palm, and rapeseed were a few suggested as feedstock in procuring 

biodiesel. Using crop vegetable oils has displayed great influence in our fuel 

infrastructure and legislature (U.S. EPA 2010; 2011); nearly 40% of the U.S. total 

corn supply has been used for bioethanol production with mandatory mixing 

requirements into standard fuel (USDA 2015). Using food crops for fuel, 

however, is unfavorable as it competes with and diverts food crops from the 

global food market. Use of the total corn feedstock has increased exponentially 

over the last decades in response to demands for different applications (USDA 

2015; CRS 2013), which consequently resulted in undesired price inflations 

(Martin 2010). Crops are also notably water, land, and fertilizer intensive and the 

application of land crops towards mass scale production of fuels may not be 

sustainable and environmentally sound (CRS 2013). Palms cultivated for biofuels 

have already resulted in massive land conversions and subsequent biodiversity 

loss (Koh et al. 2011). Much effort has been made to reduce the use crops for 

fuel production including establishing regulations that cap the amount of food 

crops allowed in fuel production (U.S. EPA 2011). In order to overcome the 

abundant limitations of first generation biofuels, second generation biofuels was 

developed.  
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Second generation biofuels involves the conversion of lignocellulosic 

feedstock and non-edible agricultural waste into useful fuel. Second generation 

biofuels was developed in order to support the sustainable use of non-crop 

feedstock, divert pressures from food crops, and supplement the renewable 

biofuel mandates (U.S. EPA 2011). In using feedstock rich in lignocellulose, the 

process of enzymatic hydrolysis can be applied in order to produce ethanol 

suitable for fuel assimilation. In this platform, non-food crops such as switch 

grass, Jathropa, and crop residues (husks, stems, leaves) are favored as 

procurement of these is sustainable. Although second generation biodiesel is an 

improvement, using non-food crops such as wood and waste feedstock also 

prove problematic because of the high cost of the enzymatic hydrolysis process, 

material availability, and low energy yield of feedstock (Carriquiry et al. 2011). 

                 The modern third generation biofuel benefits from oleaginous, lipid or 

oil producing, microorganisms. The microorganisms often cultivated for fuel 

purposes include algae. Microalgae have great potential in producing sustainable 

fuels for several reasons but primarily because microalgae are efficient at 

generating large amounts of oil per cell (Becker 1994). In comparison to first and 

second generations biofuels, microalgae generate up to 40-70% of their biomass 

in oil, while corn and soy can only provide up to 20% in oil (Sheehan et al. 1998). 

Microalgae are also capable of exponential growth cycles, generating biomass 

and lipids at faster rates than traditional first and second-generation feedstock. 

             Microalgae are widely distributed, ranging from marine, to freshwater, to 

saline or brackish water allowing for widespread applications (Schenk 2012). 
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Even more remarkable, cultivation of microalgae requires marginal or arable land 

including deserts and abandoned land and wastewater from sewage effluent 

(Borowitzka and Moheimani 2010; Maity et al., 2014). Once harvested, 

microalgae biomass provides multiple fuel types ranging from ethanol and diesel 

to hydrogen and jet fuel.  Lastly, implementing microalgae fuels into current 

energy practices does not jeopardize the food supply nor does it require a 

conversion of the current fuel infrastructure. Current vehicle technologies can be 

used with biodiesel from microalgae, while ethanol and hydrogen fuels require 

conversion of the establishment to newer capable technologies. Since oil 

procurement from algae biomass is a promising platform for sustainable fuel 

production much interest has been invested into optimizing algae strains and the 

overall process.  

1.4 Algae 
 

1.4.1 Algae- definition 
 

Algae are defined as protists, in the Kingdom Protista, that undergo 

chlroroxygenic photosynthesis, capable of using chlorophyll a and photons from 

sunlight in generating oxygen. The informal classification ‘algae’ is a Non-

Taxonomic term for Groups of Organisms (NTGOs) used to describe diverse 

eukaryotic groups of species in different taxonomic branches including, but not 

limited, to Archaeplastida (red and green algae), Cyanobacteria, and Chromista 

(Diatoms, brown and golden algae, Dinoflagellates) (Bolton 2016). Algae are 

ubiquitous organism commonly found in aqueous environments of varying salinity 
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(freshwater, brackish, saline) either attached to substrate and bottom dwelling 

(benthic) or occurring in the water column (planktonic). Algae, whether aquatic or 

terrestrial, may occur in assemblages such as periphyton or in symbiotic 

relationships such as coral reefs and lichen (Trexler et al. 2015; Davies et al. 

2016; Rikkinen J., 2015). More recently, algae are becoming a notorious 

consequence of pollution, where toxic harmful algal blooms emerge with 

detrimental effects to water quality and the health of ecosystems and humans 

alike (Anderson et al. 2002; Brooks et al. 2016; Trochine et al. 2014).  

Algae occur in unicellular and multicellular forms varying in size and 

degree of complexity. Microalgae are generally of sizes ranging from 1-50 μm 

while macroalgae can reach several meters in length. Microalgae exist in various 

forms that have evolved independently among taxa including motile, colonial, 

coccoid, capsoid, and filamentous. The eukaryotic cell of individual alga is 

surrounded by a cell wall and may be composed of polysaccharides, proteins, 

silica, glycoproteins, and sugars depending on the species (Domozych et al. 

2012; Okuda 2002). The cell wall encloses a powerhouse that manufactures and 

stores the lipids crucial to the algae biofuel process.  

1.4.2 Algae biofuel process 
 
The algae biomass-to-biodiesel process can be artificially summarized into 

a linear process involving the 1) isolation and identification of a proper algae 

strain, 2) optimized cultivation of that algae in the proper platform, 3) harvesting 

and processing of biomass, 4) extraction of the desired oils, and 5) conversion 
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and purification of oils into useful products (Figure 2) (Brennan and Owende 

2010; Mata 2010).  

 

 
Figure 2 Schematic overview of the algae-based biofuel process 

 
 

The success of biofuel technologies relies on the selected algal strain and 

its inherent suitability as a feedstock in facilitating the overall process. There are 

a multitude of algal characteristics that are preferred for mass cultivation as they 

directly determine the economic viability and success of algae biodiesel 

production including lipid profile, productivity, wide environmental adaptations, 

tolerance to cultivation practices, and ultimately the cell size and morphology of 

the algal cell (Griffiths and Harrison 2009; Barnard et al 2010).  

A fundamental algal characteristic for biodiesel production is the 

appropriateness of the extracted lipids in relation to quality and quantity. In order 

to meet biodiesel standards, the chain length and degree of saturation of the 

triacylglycerides must be suitable to the fuel type as they influence the fuel 

quality (Islam et al. 2015). Generally, longer chain lengths and highly saturated 

fatty acids are preferred in the biofuels industry. In contrast, though 

polyunsaturated fatty acids (PUFAs) may be used as fuel enhancers, they are 

more commonly used as nutraceutical and pharmaceutical products (Nguyen et 

al. 2015; Bernstein 2014). There are present trends on the fatty acid (FA) 
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distribution within different algal species that can be used as chemotaxonomic 

markers to define algae taxa (Lang et al. 2011). Research suggests that 

Chlorophyta is geared towards formation of saturated and monounsaturated 

compounds with traces of polyunsaturated C16:0 and C18:0 fatty acids, while 

Chromalveolates such as Haptophytes (coccolithophores), Stramenopiles 

(diatoms), and Alveolates (Dinoflagellates) are generally higher in PUFAs.  

Choosing an algal species with the proper lipid profile is necessary for a 

successful biofuel technology and having the desired FAs in high abundance is 

just as imperative.   

The proportion of the total algae lipids is also important as it must be 

composed mainly of triacylglycerides, since other FAs and lipids such as 

phospholipids and glycolipids may be extracted as well. In quantifying lipid 

content and determining if an algal strain is suitable for mass production, lipid 

productivity, the product of biomass productivity (g L-1 day-1) and lipid content (% 

dry biomass), is the ideal indicator of algae success (Griffiths and Harrison 

2009). Lipid productivity reports algae oil produced volumetrically over time as a 

function of biomass and represents a fine balance between how well a cell grows 

and its lipid content. Since increasing the oil content of a cell during starvation is 

not ideal for growth, the overall oil productivity is drastically reduced. High growth 

rates in conjunction with high lipid content are therefore required to increase yield 

per unit area and reduce the processing costs per unit of biomass, respectively 

(Adams et al. 2013; Griffiths and Harrison 2009; Hu et al. 2008).  
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Since there are many desirable characteristics for large-scale algae 

cultivation, it is unlikely that a given strain will be superior in all; including high 

productivity with appropriate lipid quantity and quality. It is essential to select the 

species relevant to the method of cultivation and desired product, so choosing 

algal species with exceptional biomass and lipid productivities from the local 

environment in which it is cultivated is preferred. Choosing algal species capable 

of growth in local marginal lands requires adaptations to wide environmental 

conditions or even extreme environments. A robust alga allows for a facilitated 

process in wastewaters, changing seasons, and ambient weather with reduced 

contamination and predation during cultivation.  

In cultivation, the available resources and the chosen culture system 

markedly impacts species choice. In general, algae require a carbon source for 

photosynthesis and depending on the sources available, the algae in question 

must assume a specific metabolism pertinent to its application whether it is 

photoautotrophic, heterotrophic, mixotrophic, or photoheterotrophic (Mata 2010). 

Cultivation of algae apart from autotrophic systems requires the addition of 

organic carbon that can result in increased costs and contamination risks (Chen 

et al. 2011).   

Choosing between an open versus close cultivation system also 

determines the algae species able to grow reliably in a proposed scheme. In an 

open cultivation system, manmade outdoor ponds or circular raceways are used 

where algae growth is dependent on natural sunlight and fertilizer, reducing the 

capital and operating costs (Lee 2001). Though the costs are low, open 
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cultivation is restricted to algae that are adapted to competing microorganisms 

and fluctuating medium salinities and light regimes. In closed cultivation systems, 

alternatively, a specific medium is used within a sealed photobioreactor that 

provides artificial light to algae. Photobioreactors may be ideal by providing 

control over temperature and light irradiance that allows for better success with 

monocultures, but equipment sterilization is intractable and the energy required 

in maintaining algae in a closed culture adds to the overall cost of the process.  

The next step of the biofuel process is also highly reliant on the algal 

strain selected. Harvesting of algal cells, or water removal, adds a momentous 

cost to the process and requires algae species that facilitate harvesting. 

Harvesting can be done in several ways including centrifugation, flocculation, 

filtration, and sedimentation (Chen et al. 2011). Harvesting algal species with 

larger cell sizes and high specific gravity tend to be favored as they are easier 

and cheaper to harvest and do not require specialized equipment.  Morphology of 

the algae is also critical as natural autoflocculation or aggregation of cells such 

as colonial or filamentous morphology significantly reduces the energy and 

equipment required in harvesting and downstream processing (Borowitzka 1997).  

Once the algae biomass is harvested and dried the next step of the 

process involves extraction of the total lipids.  In order to extract lipids from algae 

biomass, several solvents are often used including ethanol, methanol, and 

hexane with additional assistance from mechanical methods of cell rupture. The 

techniques of sonication, microwave-assisted extraction, and bead mills are often 
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applied in order to the release of intracellular components and facilitate extraction 

of lipids for downstream purification.  

Once the lipids from algae have been extracted, the triacylglycerides must 

be transesterified into fatty acid alkyl esters in the presence of a catalyst (Figure 

1). More recently, the development of supercritical fluid extraction has eliminated 

the need for catalysts (Warabi et al. 2004). And to date, the separate steps of 

extraction and transesterification, a two-stage process, have been modified into a 

single direct transesterification step where the lipids are transesterified from wet 

biomass (Johnson and Wen 2009; Cao et al. 2013). Eliminating the need to dry 

the biomass further facilitates the downstream lipid processing and reduces the 

costs associated with algae biofuels (Haas and Wagner 2011).  Besides 

improving the technologies that facilitate the economical production of fuels from 

algae, there is considerable interest in developing cultivation schemes that 

induce superior lipid productivity states within algal strains.  

 

1.5 Improving algae lipid content  
 

In the advent of using algae in the production of biofuels, much effort has 

been employed to increase the lipid content within algae and simultaneously 

reduce fertilizer use. It has been repeatedly demonstrated that applying nutrient 

deficient conditions, such as the absence of nitrogen and silicon, typically results 

in increases in the lipid content of algae. This burst in lipid increase, conversely, 

often results in decreases in biomass in marine and freshwater species of algae 
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across different taxa (Chen et al. 2012; Converti et al. 2009; Li et al. 2008; 

Rodolfi et al. 2008).  

 

1.5.1 Cultivation stress and genetic manipulations 
 

When cultivating algae for biofuel purposes, high lipid productivities are 

desired for a feasible process (Griffiths and Harrison 2009). Optimization of 

conditions suitable for both high lipid content and biomass may be contradictory 

as both rely on opposite culture conditions; algae flourish in nutrient replete 

conditions while lipid storage occurs in nutrient depleted environments. Other 

factors that affect lipid accumulation such as salts, temperature, light intensity, 

and growth phase have also been considered as stress factors in optimizing lipid 

content but not concurrently with biomass (Hu et al. 2008; Markou and Nerantzis 

2013).  

 A closer look into salt concentration stress in marine media has shown 

dramatic improvements in lipid content within various algae especially Dunaliella, 

with unfortunate cutbacks on cell concentration (Salama et al. 2013; Takagi et al. 

2006). Temperature and light regimes, though algae may have optimums, can be 

used to accelerate lipid production when amplified (Xin et al.  2011). At times, the 

alterations in temperature and light intensity may have implications on the useful 

types of lipids produced (Chen et al. 2012). Lipid chain lengths with saturation 

levels and the resultant ratio of PUFA and saturated fatty acid can be 

dramatically altered in response to different stressors (Xin et al. 2011). Applying 
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stress especially nitrogen stress has definite biomass-tradeoffs and the response 

to this is species-specific (Adams et al. 2013).  

To avoid losses in biomass when stress in applied, the method of two-

stage algae cultivation was proposed. This technique takes advantage of an 

initial nutrient-supplemented medium to encourage growth and a subsequent 

cultivation with limited nutrients or stress factors applied to stimulate lipid 

accretion (Su et al 2010). As these attempts to circumvent biomass loss with lipid 

gain seem reliable in the lab, however, this technique poses significant 

operational costs since an additional harvesting step is necessary.  

 Where species do not meet the requirements nor rely on cultivation 

manipulations, genetic engineering can be another method of optimizing algal 

strain characteristics. A central player in the regulation of lipid synthesis, acetyl-

CoA carboxylase (ACCase) has been the focus of much investigation on its 

enhancement and application in microalgae biofuels. ACCase is the enzyme 

responsible for the committed formation of malonyl CoA, a precursor to fatty acid 

formation. In studies where overexpression of ACCase genes was employed in 

diatoms, an overall increase in ACCase activity is observed, without much 

influence on lipid yield (Dunahay et al. 1996; Sheenan et al. 1998).  Suggested 

routes to increase lipid synthesis in microalgae are to overexpress genes in 

pathways associated directly or indirectly with ACCase and lipid synthesis. 

Targeting TAG assembly genes for overexpression is a promising method for 

heightened lipid synthesis (Vigeolas et al. 2007). The continued exploration of 

algal genomes with the improved genetic manipulation toolkits will continue to 
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bring about advances in algal metabolic pathways. Genetic engineering, 

however, is currently restricted to a few algal species and the impeding 

legislature and environmental risks associated with genetically modified 

organisms prevent a more expansive application of these algae (Beer et al. 2009; 

Mata 2010; Sharma et al. 2012).  

 

1.5.2 Co-Culturing of algae with microorganisms  
 
 

Microalgae are abundant in the environment and coexist with a myriad of 

microorganisms. Symbiotic relationships between algae and other 

microorganisms play key roles in natural ecosystems and are increasingly 

becoming of interest to industrial microbiology. The microbial industry is taking 

advantage of symbiotic relationship by applying them towards the fermented food 

and water treatment sectors (Silva-Benavides and Torzillo 2012). Application of 

co-cultures or mixtures of microorganisms have also been suggested in the 

facilitation of algae biofuels. In this scheme, several different microorganisms 

have been used as a platform in order to stimulate algal cell growth or production 

of oils including yeast, fungi, bacteria, and cyanobacteria. The details pertaining 

to the mechanism that facilitates these microbial relationships, however, remain 

poorly understood.  

 
i. Co-culturing of algae with yeast 
 

Yeast are unicellular fungi that utilize oxygen in order to process 

carbohydrates into alcohols and carbon dioxide. As algae require carbon dioxide 
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and in turn produce oxygen, the advantageous pairing of yeast and algae is 

already widely applied in the algae aquaculture research sector (Cai et al. 2007). 

Pairings of algae such as and Chlorella, Scenedesmus, and Spirulina and yeast 

have demonstrated increases in biomass and lipid production over monocultures 

(Xue et al. 2010; Wang et al. 2016). Continued efforts to reduce the cost of the 

process have been made by using wastewater from industrial refineries or crude 

glycerol from the biofuel process to cultivate algae co-cultures (Papone et al. 

2012; Kitcha and Cheirsilp 2014). In attempts to improve the lipid yield from 

algae, researchers have proposed the use of oleaginous yeasts such as 

Rhodotorula glutinis and Trichosporonoides in conjunction with algae (Yen et al 

2015).  Although lipid and biomass increases have been established, the 

mechanism by which this occurs still requires elucidation. Co-cultivation of yeast 

and algae has revealed a rise in algal extracellular polymeric substances (EPS), 

photosynthetic activity, and dissolved oxygen (DO) and authors have suggested 

these to explain the heightened relationship between the microorganisms (Wang 

et al. 2016). The dependency or effect of the microorganisms on EPS or DO, 

though, have not been clarified.   

 
ii. Co-culturing of algae with bacteria 
 

Phytoplankton and heterotrophic bacteria are among the most abundant 

microorganisms in aquatic environments (Cole 1982). In both fresh and marine 

systems, there exists a positive correlation between photosynthesis and 

microbial activity (Hobbie and Rublee 1977) and this relationship may be a result 
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of dissolved organic carbon (DOC) released by senescent algal cells (Bell 1983); 

as the peak of microbial activity usually occurs at the end of algal blooms (Jones 

1972). In the presence of bacteria, algae DOC reach a steady state, whereas in 

axenic culture the levels persistently increase (Wiebe and Smith 1977). 

Heterotrophic bacteria can also be associated with living algae cells (Jones 

1972); the phycosphere of algae represents a habitat specialized for some 

bacteria as bacterial populations isolated from water samples dramatically differ 

from attached populations (Sapp 2007).  In the phycosphere, EPS from algae 

constitutes an organic matter base for bacterial decomposition. Recognized plant 

phycosphere symbionts such as Rhizobium have already shown growth-

promoting effects on algae (Kim et al. 2014).  

Conversely, bacteria may also stimulate the growth of algae through 

mutualism and commensalism (Watanabe et al. 2005). With decomposition, 

bacteria remineralization can account for much of the assimilated organic 

compounds, especially phosphorus and nitrogen, in phytoplankton (Axler et al. 

1981; Tai et al. 2009).  Additionally, where algae demonstrate vitamin 

auxotrophy, such as cobalamin, thiamine, and biotin requirements (vitamin B12, 

B1, B7, respectively), bacteria are able to supplement these through 

decomposition in co-culture (Croft et al. 2005; 2006).  

Attempts in stimulating biomass of algae with symbiotic or mutualistic 

bacteria include bacteria-algae consortiums and co-cultures (Kim et al. 2014, Kim 

et al. 2015). Artificially constructed algae consortiums with growth-promoting, 

attached bacteria have indicated significant stimulation in biomass (Cho et al. 
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2015; Higgins and VanderGheynst 2014) with implications on cell morphology 

and lipid content (de-Bashan et al. 2002). The suggested mechanism for the 

stimulation in algae growth is an exchange between algal and bacterial cells of 

DOC for bacteria-synthesized dissolved inorganic carbon (DIC) and sugars. 

Screening of growth-promoting bacteria on Dunaliella reveals again that algae 

organic matter recycling by bacteria constitutes a major source of mineralized 

compounds such as nitrogen (Le Chevanton et al. 2013). To further elucidate the 

nature of bacteria-algae relationships, the effects of a bacterial-cell free filtrate 

was tested on algae culture and found that bacterial exudates accounted for 

much of the observed growth increase in the algae (Park et al. 2008). Though it 

is understood that bacteria synthesize organic substances that may stimulate 

algal growth, it remains unclear whether these exudates can stimulate lipid 

production as well.  

 
iii. Co-culturing of algae with fungi 
 

In using fungi alongside algae in cultivation, research has indicated 

positive growth correlations. Like most microorganisms, fungi have been 

especially advantageous in co-culture with algae in treatment of wastewater 

(Zhou et al. 2012). In optimizing the co-cultivation of microalgae and fungi, like 

yeast, the use of oleaginous filamentous fungi has also been proposed (Xie et al. 

2013). Co-cultures of cyanobacteria, algae and fungi have established 

synergistic effects on biomass and EPS production (Angelis et al. 2012). 

Although positive growth is demonstrated, there is a disproportionate focus 
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concerned over using filamentous fungi to facilitate the harvesting of algae cells 

and disregard the lipid content of algae (Zhang and Hu 2012; Gultom and Hu 

2013; Wrede et al 2014). And when lipid content is considered in a co-cultivation 

scheme of algae and fungi, the only explanations for the stimulation in biomass 

and lipid increase is an improved uptake of glucose from the medium and an 

induced fungal cellulase activity for the consumption of algal cell debris (Xie et al. 

2013).  

 
iv. Co-culturing of algae with cyanobacteria  
 

Cyanobacteria are considered an attractive biofuel feedstock as they are 

photosynthetic and can process endogenous nitrogen in varying forms including 

ammonium and nitrite (Nozzi et al. 2013). Furthermore, cyanobacteria such as 

Synechococcus can be applied in the production of ethanol fuels to supplement 

gasoline (Gao et al. 2012). Cyanobacteria can also be applied in the biodiesel 

sector when they can concentrate enough fats within the biomass (Karatay and 

Dönmez 2011). In using this innate nitrogen-producing ability, heterocystous 

cyanobacteria such as Anabaena have been proposed in order to overcome the 

nitrogen demand in algae and crop cultivation (Borowitzka and Moheimani 2013). 

Diazotrophic cyanobacteria are also known to excrete B vitamins that could play 

a role in supplementation of B-vitamin auxotrophs (Bonnet et al. 2010). In co-

culturing attempts to reduce nitrogen application, the oleaginous diatom Nitzchia 

was cultivated with diazotrophic Nodularia with increase in biomass (Lambert 

2013). Though diazotrophic cyanobacteria are a potential platform for biofuel 
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production, research has failed to indicate if algae biomass and lipid 

accumulation can both be stimulated in co-culture with algae.  

 

1.6 Research Significance   
 

In using algae for production of biofuels it has become essential to choose 

indigenous algae capable of 1) adapting to local climactic and culturing 

conditions, 2) producing high lipid yields, and 3) fast cell growth. Cultivation 

schemes that allow for both high biomass and lipid accumulation are of 

paramount importance for the economic viability of algal biofuel production. 

Although altered cultivation factors focused on temperature and nutrients have 

indicated positive lipid stimulation, biomass is frequently negatively affected. 

Besides physical manipulations, genetic manipulations of algae, although 

promising, require transformations with exogenous genetic material and strict 

cultivation parameters with impending costs (Sharma et al. 2012). In using co-

cultures to stimulate production of algae, we now understand that bacteria, yeast, 

fungi, and cyanobacteria may stimulate algae biomass, but the stimulation of lipid 

accretion and the mechanisms in which biomass and lipid content of algae are 

stimulated in response to these microorganisms remain largely obscure.  

Consequently, my thesis proposes the use of co-cultures of oleaginous, 

indigenous South Florida, fresh- and saltwater algae with yeast, bacteria, 

diazotrophic cyanobacteria, and fungi in order to stimulate the production of both 

biomass and lipids in algae. And in investigating this relationship, the cell-free 
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exudates of the microorganisms will be screened in order to possibly elucidate 

additional mechanisms by which microorganisms trigger increased biomass and 

lipid productivity of the algal cell in co-culture.  
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CHAPTER 2 
 

MATERIALS AND METHODS 
 

2.1 Microorganisms  
 

2.1.1 Green algae  
 

Eight freshwater green microalgae strains (Oocystis sp. 108-5; Chlorella 

sp. 5-1; Chlorococcum sp. 103-6, 108-4; Coelastrum sp. 46-4; Dactylococcus sp. 

64-12; Selenastrum sp. 64-10; Stigeoclonium sp. 64-8) previously indicated to be 

oleaginous were used in this work (Narendar 2010). In addition, two strains, 

Chlorella sp. 155-1, Botryococcus sp. 157-1, were procured from the Department 

of Energy and the University of Texas at Austin, respectively, and used as 

reference strains. The remaining freshwater and marine strains were isolated 

from the South Florida region. Sample sites are shown in Figure 2.1.  
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Figure 3 Map of the South Florida region indicating sampling sites 

 
 

2.1.2 N2-fixing cyanobacteria 
 

Nine strains of N2-fixing cyanobacteria were obtained from Dr. Miroslav 

Gantar’s culture collection: Calothrix sp. 38-3, 69-4, 113-9; Nostoc sp. 41-1, 47-

2-1, 47-3, 113-10; Tolypothrix sp. 30-1-4, 33-4.  The cultures were maintained on 

BG11 or on medium without the combined nitrogen BG11 (-N). Cyanobacteria 

are pictured in below in figure 4.  



	 24	

 
Figure 4 Diazotrophic cyanobacteria used in this research: a) b) Tolypothrix sp. 
30-1-4, 33-4, c) Nostoc sp. 47-2-1, d) e) Calothrix sp. 69-4, 113-9, f) Nostoc sp. 
113-10. 1000X magnification; scale bar indicates 10μm  

 

2.1.3 Isolation and purification of algae  
 

Ten freshwater and five saline surface water samples from across the 

South Florida region were gathered from freshwater canals, lakes, coastline and 

estuaries as shown in figure 3. Fresh and saline water samples were filtered 
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separately through a glass microfiber filter (Whatman GF-C 1.2 μm) and then 

transferred onto either a BG-11 (pH 7) and BG-11 Marine (pH 8) medium plate 

and incubated at 25°C under continuous illumination of 40 μmol photons m-2 s-1 

for 2 weeks. Colonies that formed were re-streaked and transferred into 2ml of 

sterile medium.  

For screening purposes, all microalgae isolates used in this research were 

rendered axenic by methods of atomized cell spraying and use of antibiotics. 

One ml of each culture was pipetted into 1.5ml eppendorf tube, centrifuged, and 

washed with sterile medium three times. Cell suspensions were aseptically 

sprayed onto BG-11 (Marine where appropriate) agar plates amended with 

antibiotic mix of azithromycin, cycloserin, kanamycin, and streptomycin at 100 μg 

ml-1 and incubated at 25°C under continuous light (40 μmol photons m-2 s-1) for 2 

weeks (Su et al. 2007).  Absence of contamination was verified by plating treated 

microalgae cultures onto Nutrient Agar (Difco, USA) and incubating in dark at 

25°C for 1 week.  

 

2.1.4 Isolation of yeast, fungi, and bacteria 
 

Yeast cultures were isolated either from the 10 freshwater samples 

procured from the sites located in the South Florida region or from xenic 

microalgae strains from the culture collection. Acquiring yeasts from microalgae 

cultures involved plating and streaking 100μL of xenic microalgae culture onto 

YPD (Yeast, Peptone, Dextrose) plates and incubating at 25°C for 2 weeks. 
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Freshwater samples from the South Florida region were processed for yeast by 

filtration through a Whatman 0.2μm filter and incubated onto YPD plate in the 

dark at 25°C for 1 week. Distinct yeast colonies were re-streaked, separated, and 

maintained on YPD slants.  

Marine fungi were isolated from the five South Florida saline samples. 

Water samples were filtered through GC 0.45μm microfiber filters and transferred 

to GPY (1g Glucose; 0.5g Peptone; 0.1g Yeast extract; 15g Agar; 1L seawater) 

plates and incubated in the dark at 25°C for 1 week (Kossuga et al. 2012).  

Individual filamentous formations were re-streaked, isolated and transferred into 

tubes with sterile Marine GPY medium.  Where needed, filamentous fungi that 

were contaminated with yeast were plated and submerged in sterile deionized 

water in order to release spores. Spore suspension was then pipetted into a 15ml 

Falcon tube and centrifuged at 2000g for 10 minutes, and washed three times 

with first dilute bleach (50%) and then sterile deionized water. Spores were then 

plated onto GPY plates and axenic cultures were separated.   

Bacteria were isolated from the freshwater microalgae isolated and the 

xenic microalgae from the Dr. Miroslav Gantar’s culture collection. A total of 40 

freshwater bacteria were used in this research and maintained on Nutrient Agar 

and grown in Nutrient broth for propagation (Difco, USA).  
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2.1.5 Identification of microorganisms  
 

2.1.5.1 Identification of algae Isolates 
 

Genus-level taxonomic identification was based on morphology and was 

carried out using microalgae identification guides (Bellinger 2010; Werh 2003). 

Microscopic visualization and recording of algal isolates was performed using an 

Olympus BX51 microscope equipped with an Olympus DP70 camera and DP 

controller software, and were processed using Olympus DP manager software.  

 

2.1.5.2 Identification of bacterial and fungal Isolates 
 

The fungal and bacterial isolates that indicated improved biomass and 

lipid productivity within the designated microalgae were selected for identification 

using Biolog FF and GEN III micro plates (Biolog, Hayward, CA), respectively.  

For each isolate, 100-μl of the cell suspension was inoculated into each well of 

the Biolog Microplate according to manufacturer’s protocol. Plates were 

incubated at 26°C for fungi and 33°C for bacteria for 24hrs and read in the 

GENIII MicroStation™ system semi-automated reader and the results were 

interpreted with the Biolog MicroLog™ 3 Software (Version 6.1) database and 

software (Biolog, Hayward, CA). Results that indicated similarity and Dis values 

of 0.5 and 2 and above were accepted as positive identifications.  
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2.2 Screening of Microalgae 
 

2.2.1 Growth and Biomass Productivity of Freshwater Microalgae 
 

Microalgae seed cultures were maintained in 75 ml of BG11 medium in 

125 ml flasks with agitation at 120 rpm. Flasks were kept in an orbital shaker 

incubator (Lab-Line) at 150 rpm and 25°C under continuous light (50 μmol 

photons m-2 s-1). Twenty-two exponential-phase microalgae were inoculated into 

35 ml of BG 11 medium in 50ml flasks (0.1 OD600) with three replicates each. 

Flasks were incubated with continuous lighting of 80 μmol photons m-2 s-1 at 

25°C on a shaker at 120 rpm.  Growth was monitored spectrophotometrically as 

absorbance at 600nm every 5th day for 30 days. Biomass productivity, based on 

units of grams per liter per day (g l-1 day-1), was assessed gravimetrically by 

filtering a 1 ml aliquot from each of the three replicates through a Whatman GF-C 

(1.2 μm) glass microfiber filter every 5 days for 30 days. Filter disks were dried in 

the oven to constant weight (50°C).  

 

2.2.2 Lipid productivity of Freshwater Microalgae 
 

Lipid content of the 22 strains of microalgae is determined by 

homogenizing a 1 ml aliquot of each replicate and diluting to 0.1 (OD600) for 

staining with Nile Red based on previous methods (Chen et al. 2009).  1 ml of the 

cell suspension is pipetted into an eppendorf tube, DMSO (99.1% Sigma, USA) 

is added at 20% final concentration and vortexed.  100μl of the cell suspension is 

pipetted into a 96-well plate for autofluorescence and absorbance 

determinations. To the remaining 1100 μl of the cell suspension, 1 μl of Nile Red 
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solution (1 mg/25 ml (w/v) acetone) was added for a final staining concentration ± 

1μgml-1 and vortexed. After incubation, each tube is vortexed and 100 μl of cell 

suspension is then transferred into a 96-well plate. Absorbance and fluorescence 

readings were carried out using a plate reader (Biotek; Synergy HT) and 

accompanying Gen5 software (2.0). Excitation and emission wavelengths of 

530nm and 575 nm were used as standards for neutral lipids. Relative 

fluorescence intensity of Nile red was calculated after subtraction of microalgae 

autofluorescence and the fluorescence of Nile red in medium (Lee et al. 1998). 

The fluorescence values are then normalized by dividing with the absorbance 

values (OD600). To translate the amount of fluorescence present in 100μl of cell 

suspension into lipid content, a standard curve using the biofuel lipid standard 

Triolein was used.  

Triolein lipid standard curves are constructed based on the modified 

methods of Priscu et al, (1990). A 1.001g aliquot of pure Triolein (99.9%, Sigma 

Aldrich, USA) is dissolved into an equal volume of chloroform and then diluted 

into 100ml of ethanol to create a primary stock solution. Diluting appropriate 

amounts of the primary stock solution into ethanol created intermediate stocks of 

0.1, 0.2, 0.5, 1.0, and 2.0 mg ml-1 solutions. 100μl of each intermediate stocks 

solution is than pipetted into 10ml of deionized water to create working standards 

with concentrations of 1.0, 2.0, 5.0, 10.0, and 20.0 μg ml-1. A 1ml aliquot of each 

working standard is then transferred into a 1.5ml eppendorf tube and 10μL of Nile 

Red is added for a final staining concentration of 1 μg ml-1.  After a 10 min dark 

incubation, 100μL of each sample is transferred to a 96-well plate and 
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procedures follow as previously described. The blank includes chloroform, 

ethanol, deionized water, and Nile Red. Vortexing for 1 minute before pipetting is 

vital to keep a uniform distribution of lipid micelles within the solution. A standard 

curve was constructed with a R2=0.99399 (y=4.4836e0.8335x).  Fluorescence 

values are then transformed into lipid quantities. Lipid productivity of each strain 

is then calculated using units of mg l-1 day -1.  

 

 
Figure 5 Triolein lipid standard curve used to quantify lipid concentration within 
algal cell culture  

 

2.2.3 Biomass and Lipid Productivity of Marine Microalgae  
 

To determine marine microalgae with high lipid and biomass productivity, 

individual axenic strains are inoculated in triplicates into 30ml of BG-11 Marine 

medium in 50ml flasks incubated on a shaker (130 rpm) at 25°C, under 

continuous fluorescent lighting (80 µmol photons m2 s1). Biomass productivity is 

assessed gravimetrically by filtering a 1 ml aliquot from each three replicate 
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through a Whatman GF-C (1.2 μm) glass microfiber filter every 5 days for 30 

days. Filter disks are dried in the oven to constant weight (50°C). Lipid 

productivity is then assessed using the Nile Red method as previously described 

(section 2.2.2).  

 

2.3 Screening for high biomass and lipid production in co-cultures  
 
 

2.3.1 Growth and lipid content of freshwater microalgae and yeast 
 

Prior to co-culturing experiments, yeast strains are inoculated into 3ml 

sterile YPD broth (pH 6.2) in 15ml autoclaveable/centrifugable Falcon tubes, 

covered with foil, and placed on a shaker at 150rpm at 25°C for 1 week. 

Exponential phase microalgae cultures are inoculated into 24-well plates with 

0.02 OD600 in triplicates. Falcon tubes with yeast are centrifuged at 2000g 

(Beckman Coulter GRP) for 15 minutes, supernatant removed, and pellets are 

washed with sterile BG-11 medium.  Yeast pellets are then diluted with medium 

until OD600 reaches 0.05. A 100-μl aliquot of the individual yeast solution is 

pipetted into 24-well plates containing the algal culture. Plates are incubated 

under continuous lighting of 50 μmol photons m-2 s-1 at 25°C for two weeks. 

Growth and lipid content are assessed by sampling a 1ml aliquot for OD600 and 

Nile Red fluorescence, respectively, for two weeks. 
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2.3.2 Growth and lipid content of freshwater microalgae with bacteria  
 

Thirty-nine bacterial isolates are inoculated into 3ml sterile Nutrient Broth 

in 15ml autoclaveable/centrifugable Falcon tube (pH 6.8), covered with foil, and 

placed on a shaker at 150 rpm at 25°C for 1 week. Falcon tubes with bacteria are 

then centrifuged at 2000 g (Beckman Coulter GRP) for 15 minutes, supernatant 

removed, and pellets are washed with sterile BG-11 medium.  Bacteria pellets 

are then diluted with BG-11 medium until OD600 reaches 0.02. Exponential phase 

of Coelastrum sp. 46-4 cultures inoculated into 24-well plates with 0.02 OD600 in 

triplicates. A 100-μl aliquot of individual bacterial solution is pipetted into the 24-

well plate containing the algae. Plates were incubated under continuous lighting 

of 50 μmol photons m-2 s-1 at 25°C for two weeks. Growth and lipid content are 

assessed by sampling a 1ml aliquot for OD600 and Nile Red fluorescence, 

respectively, for two weeks. 

 

2.3.3 Growth and lipid content of freshwater microalgae and N2-fixing 
cyanobacteria 
 

Nine strains of cyanobacteria were co-cultured with one oleaginous strain 

of green microalga (Coelastrum sp. 46-4). Combinations of microalgae with 

individual cyanobacterium were grown in the presence (N+) and the absence (N-) 

of sodium nitrate (NaNO3). Cultures were inoculated in triplicates in 150 ml flasks 

and incubated on a shaker (130 rpm) at 25-27°C, under continuous fluorescent 

lighting (80 µmol photons m2 s1). Biomass and lipid productivity were determined 
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by measuring absorbance at 600nm and by staining cells with Nile Red and 

quantifying the fluorescence at 530/575 nm, respectively. Biomass and lipid 

content were measured every 5th day for 15 days.  

 

2.3.4 Growth and lipid content of marine microalgae and fungi  
 

Fungal strains are inoculated into 3ml sterile GPY Marine broth (pH 8.0) in 

15ml autoclaveable/centrifugable Falcon tubes and placed on a shaker at 

150rpm at 25°C for 1 week in the dark. Exponential phase microalgae cultures 

are inoculated into 30 ml BG-11 Marine medium in 50ml flasks with 0.02 OD600 in 

triplicates. Falcon tubes with fungi were centrifuged at 2000g (Beckman Coulter 

GRP) for 15 minutes, supernatant removed, and pellets are washed with sterile 

medium three times.  Fungal pellets are then aseptically homogenized with a 

hand-held homogenizer and then diluted with BG-11 Marine medium until OD600 

reached 0.05. A 100-μl aliquot of the fungal solution is pipetted into the flasks 

containing the algal cultures. Flasks are then incubated under continuous lighting 

of 50 μmol photons m2 s-1 at 25°C and shaken (125 rpm) for two weeks. Growth 

and lipid content are assessed by measuring the biomass and Nile Red 

fluorescence, respectively, every 5th day for 25 days.  

 

2.4 Biomass and lipid productivity of co-cultures  
 

One freshwater algal (Coelastrum sp. 46-4) strain that demonstrated 

superior lipid productivities with accompanying microorganism was selected for 
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further lipid quantifications. All combinations of microalgae with bacteria, fungi, 

and cyanobacteria are first evaluated on a small scale and then on a greater 

scale to accumulate biomass for lipid gravimetric analysis. The marine alga 

Cricosphaera sp. 146-2-9 was selected and screened with 3 different strains of 

marine fungi.  

 

2.4.1 Co-cultivation vs. bacterial and fungal-cell free filtrate 
 

In order to determine whether accompanying microorganisms affect the 

growth and/or lipid accumulation in algal cultures the following experiment was 

performed. The accompanying microorganisms (bacteria and fungi) were grown 

in 75 ml of the respective mediums: Nutrient broth and marine GPY and 

incubated in the dark, on a shaker (130 rpm) at 25°C for one week. Cultures are 

then harvested by centrifuging in sterile 50ml glass centrifuge tubes and 

centrifuged at 2000g. Cell pellets are then washed three times with BG-11 for 

bacteria, and BG-11 marine for fungi and diluted until OD600 reaches 0.05. 

Supernatants are then sequentially filtered first through a Whatman GF-C 1.2 

μm, then a 0.45 μm syringe filter, and finally a 0.2 μm syringe filter. Microalga 

(freshwater and marine) is then inoculated in quadruplets with initial OD600 0.02 

into 30ml of appropriate medium, (1) alone, (2) medium composed of 1:1 (v/v) 

BG-11 (marine) and filtered supernatant, (3) medium composed of 1:1 (v/v) BG-

11 (marine) and sterile microorganism broth (NB, BG-11 Marine GPY), and (4) 

medium inoculated with 100 μl of microorganism diluted pellet. Flasks are then 
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incubated on a shaker (130 rpm) at 25°C, under continuous fluorescent lighting 

(80 µmol photons m2 s1).  Biomass and lipid productivities are assessed as 

previously described (section 2.2.2) every 5th day for 20 days. 

2.4.2 Gravimetric analysis of lipid content 
 

In order to estimate lipid content in the biomass by gravimetric method, 

the accompanying microorganisms (bacteria and fungi) were grown in 2- 1.5 L of 

respective medium (nutrient broth and GPY) and incubated in the dark at 25°C 

for 1 week. Microbial cultures are harvested by centrifuging first in sterile 50ml 

glass centrifuge tubes at 2000g (Beckman Coulter GRP). Cell pellets are then 

washed three times with BG-11 for bacteria, and BG-11 marine for fungi and 

diluted until OD600 reaches 0.05.  Supernatants are then pooled and transferred 

into Nalgene centrifuge bottles and centrifuged for 30 min at 4000g (Beckman 

Coulter, Avanti J-20 XP). Supernatants are then sequentially vacuum-filtered, 

first through a Whatman GF-C 1.2 μm, GF-B 1.0 μm, then finally a Corning 0.22 

μm bottle-top vacuum filter. Freshwater microalgae is then inoculated in 

duplicates with initial OD600 0.02 into 2-3 L of appropriate medium: (1) BG11, (2) 

medium composed of 1:1 (v/v) BG-11 and microbial cell-free supernatant, (3) 

BG-11 inoculated with 1 ml of microorganism diluted pellet mixture, and 4) 

medium composed of 1:1 (v/v) BG-11 and nutrient broth. The nutrient broth and 

BG-11 were substituted with GPY and BG-11 marine for the saltwater algae. 

Then the cultures were incubated under continuous lighting of 50 μmol photons 

m-2 s-1 at 25°C and aerated with sterile air.  
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Co-cultures with cyanobacteria involve inoculating microalgae alone and 

in combinations with individual cyanobacterium in 3 liters of BG-11 medium with 

and without NaNO3. Cultures are incubated at 25°C under continuous fluorescent 

lighting (80 µmol photons m2 s1) aerated with sterile air.   

All large-scale co-culture experiments are harvested on day 15 by 

centrifugation at 3000g (Beckman Coulter, Avanti J-20 XP). Biomass is then 

transferred into pre-weighted 50ml Falcon tubes, and freeze-dried for further 

productivity analysis.  

Once the dry biomass of co-cultures was obtained, lipids were extracted 

as follows: 0.250g of freeze-dried microalgae biomass was placed in a glass 

centrifuge tube and 22.5ml of chloroform: methanol  (2:1 v/v) was added and 

placed on a rotary shaker for 20hrs in order to extract neutral lipids. Tubes were 

sonicated for 10 minutes in order to facilitate cell rupture. After incubation, 

distilled water was then added to a final volume of chloroform: methanol: water 

mixture 2:1:1 for phase separation. Glass tubes were centrifuged at 2000g for 15 

minutes to separate the organic and aqueous phase. The aqueous phase is 

discarded and the organic phase is transferred to a pre-weighted glass petri dish.  

The biomass is extracted two more times and the pooled organic phases are 

collected onto the petri dish. Samples are then air dried in a fume hood under 

sterile air. Data are the means of three separate replicate extractions (D’Oca et 

al. 2011). 
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2.4.3 Transesterification of Lipids 
 

To yield fatty acid methyl esters (FAMEs), lipid extracts from co-culture 

experiments were transesterified using modified techniques adopted from (D’oca 

et al. 2011). Entire lipid extract of each sample from section 2.4.2 was placed in a 

glass vial and mixed with 10% sulfuric acid and chloroform/methanol (30:1). The 

reaction was carried out under constant stirring at 60C for 4 hours. Once cooled 

to room temperature, reaction mixture was transferred to glass centrifuge vials, 

and centrifuged for 30 min. Aqueous phase was discarded and the organic phase 

was transferred to a pre-weighted glass vial.  

 

2.5 Statistical Analysis  
 

Statistical analysis was carried out using SPSS software (version 22.0). A 

one-way repeated measures ANOVA was used to determine any differences 

between the treatment means of the small-scale experiments involving 

freshwater and marine algae in co-culture with bacteria, cyanobacteria, and 

fungi, respectively over the two-week period. The ANOVA was used to test for 

any differences in the mean biomass and lipid accumulations of monocultures, 

co-cultures, and cultures inoculated in sterile microorganism medium and 

microorganism cell-free filtrate. Tukey post-hoc analysis was used to determine 

where the significant differences occurred in the mono- versus co-cultures.  
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CHAPTER 3 
 

 RESULTS 
 

3.1 Isolation and identification of microorganisms 
 

3.1.1 Freshwater and marine algae  
 

From the 10 South Florida freshwater samples (Figure 3), a total of 14 

microalgae species were isolated, cultivated, and screened for biomass and lipid 

productivity along with the remaining strains from the culture collection for this 

research (Figure 6). The microalgae strains represented 11 genera within 

Chlorophyceae (Table 1).  

 

Table 1 Chlorophyceae algae used in this research 

 
Origin (CC- Culture Collection, FL-species isolated for this research) 
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Figure 6 Freshwater algae used in this research; a) b) Coelastrum sp. 5-1, 46-4, 
c) Stigeoclonium sp. 64-8, d) Selenastrum sp. 64-10, e) Dictyococcus sp. 64-12, 
f) Chlorococcum sp. 103-6, g) Oocystis sp. 108-5, h) i) Chlorococcum sp. 142-5-
2, 143-1, j) Coelastrum sp. 143-5, k) Scenedesmus sp. 143-4, l) Chlorococcum 
sp. 143-6, m) Coelastrum sp. 108-4, n) o) Scenedesmus sp. 145-2, 145-3, p) 
Dictyochloropsis sp. 145-7, q) Oocystis sp. 148-1-1, r) Scenedesmus sp. 148-5-
2, s) Chlorella sp. 150-1-1, t) Characium sp. 152-3, u) Chlorella sp. 155-1.  
1000X magnification; Scale bar indicates 10μm 

 
 

From the five saline water samples in Figure 3, nine marine algae strains 

were isolated and used in this research (Figure 7). The marine algae represent 

three different classes including Chlorophyceae, Eustigmaphyceae, and 

Prymnesiophyceae (Table 2).  

 

Table 2 Isolated marine algae (BG11 marine) 
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Figure 7 Marine algae isolated for this research; a) Tetraselmis sp. 146-2-1, b) 
Chlorococcum sp. 146-2-6, c) Vischeria sp. 146-2-8, d) Cricosphaera sp. 146-2-
9, e) Chlamidomonas sp. 146-2-10, f) Chrysotila sp. 146-2-11, g) Eustigmatos 
sp. 146-2-14, h) Chlorella sp. 146-2-15, i) Vischeria sp. 146-2-16. 1000X 
magnification; Scale bar indicates 10μm  

 

3.1.2 Bacteria, Yeast, and Fungi 
 

A total of 38 yeast, 37 bacteria, and 3 fungal species were isolated from 

both the freshwater samples and xenic microalgae from the culture collection, 

and the saline samples, respectively. The bacterial isolate 21-9-3-2 and fungal 

isolate 146-2-F3 were both selected for stimulation of the biomass and lipid 

productivity of Coelastrum sp. 46-4 and Cricosphaera sp. 146-2-9, respectively. 
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Biolog database similarity index revealed a positive identification for bacterial 

isolate 21-9-3-2 as Pseudomonas stutzeri, a motile, gram negative, denitrifying 

bacteria with a probability of 57.2% (Lalucat et al. 2006). Fungal isolate 146-2-F3 

was identified as Fusarium sp., a filamentous fungi belonging to the Ascomycota 

phylum of Fungi.  

 

3.2 Freshwater algae biomass and lipid productivity  
 

The results from the studies involving screening of 22 strains of green 

algae showed wide variation among strains in biomass and lipid accumulation 

capabilities (Table 3). The average biomass content for all 22 algal strains 

cultivated for 20 days was 0.27 g L-1 while the average biomass productivity was 

0.025 mg L-1 day-1. The highest biomass accumulation or all strains occurred on 

day 20. The control strains Botryococcus sp. 157-1 and Chlorella sp. 155-1 were 

observed to have very similar biomass accumulation throughout the experiment. 

Over the 20-day culturing period, the control strains did not produce biomass 

above 0.37 g L-1. On day 20, the highest biomass accumulation was observed in 

strains Coelastrum sp. 46-4, Dictyococcus sp. 64-12, and Chlorococcum sp. 142-

5-2 with resulting biomass of 0.83, 0.57, and 0.57 gL-1, respectively. Over the 20-

day cultivation, the highest average biomass productivity occurred with 

Coelastrum sp. 46-4 with 0.026 g L-1 day-1. The next highest biomass 

productivities were observed in Chlorococcum sp. 142-5-2 and sp. 143-1 with 

0.019 and 0.018 g L-1 day-1, respectively.  
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Table 3 Biomass and lipid percentages of 22 Chlorophyceae green algae  

 
Mean of three replicates per algae strain. Biomass is presented in g L-1 dry 
weight. Lipid concentration is presented as a % yield of dry biomass and based 
on Nile Red fluorescence converted by means of Triolein standard curve 
 
 

In terms of lipid percentages, the highest lipid accumulation was observed 

between day 5 and 15 for all 22 algae strains. The mean lipid content found in all 

22 Chlorophyta algae, over the 20-day cultivation, was 16.3% of the dry biomass. 

On day 15 of cultivation, the highest lipid accumulation was observed in 

Scenedesmus sp. 143-4, Selenastrum sp. 64-10, and Chlorella sp. 5-1 with 82, 
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79, and 69% respectively. Alternatively, the biomass concentrations for these 

strains were relatively low, 0.2, 0.17, and 0.1 g L-1, respectively. The average 

lipid productivity for all 22 stains of algae was 2.22 mg L-1 day-1. The highest lipid 

productivity was observed in Coelastrum sp. 46-4 with 5.49 mg L-1 day-1. 

Coelastrum sp. 46-4 resulted with the overall highest biomass and lipid 

concentrations and was selected for screening in co-cultures with 

microorganisms.  

 

3.3 Marine algae biomass and lipid productivity  
 

Screening of nine marine algal strains isolated from South Florida for 

biomass and lipid productivity resulted in drastic differences among species 

(Figure 8,9,10). The mean values for the biomass and lipid concentrations for all 

nine strains cultivated over 20 days are 2.17 g L-1 and 2.9% of dry biomass.  The 

highest biomass accumulation for all strains was observed on day 20 of 

cultivation (Figure 8). On day 20, biomass of Cricosphaera sp. 146-2-9 was the 

highest observed biomass followed by Vischeria sp. 146-2-8 and sp. 146-2-16 

with biomass of 3.67, 3.63, and 3.33 g L-1, respectively. The algae with the 

highest average biomass concentrations throughout the experiment were 

Chlamidomonas sp.146-2-10, Vischeria sp. 146-2-16, and Cricosphaera sp. 146-

2-9 with 2.46, 2.37, and 2.33 g L-1 respectively (Figure 9).  
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Figure 8 The biomass content (g L-1) of nine marine algae over twenty days. Data 
represents the mean of three replicates  

 

In terms of lipid accumulation, the highest average lipid concentration for 

all nine strains was observed during day 5 and 15 of cultivation with 3.9% and 

3.2%, respectively. On day 5 of cultivation, Tetraselmis sp. 146-2-1 had the 

highest lipid concentration (8%), followed by Chlorococcum 146-2-6 (5%), and 

then Chrysotila sp. 146-2-11 (4%). On day 15, the highest lipid concentration was 

observed in Vischeria sp. 146-2-16, Tetraselmis sp. 146-2-1, and 

Chlamidomonas sp.146-2-10 with up to 5% lipids. The algae with the highest 

average lipid concentrations after 20 days were Tetraselmis sp. 146-2-1 (5.0%), 

Cricosphaera sp. 146-2-9 (3.5%), and Vischeria sp. 146-2-16 (3.4%) (Figure 9).  
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Figure 9 Average biomass (g L-1 dry weight) and lipid content (% of dry biomass) 
of nine marine algae over 20 days of cultivation. Data represents the mean of 
three replicates over days 5, 10, 15, and 20 

  

When biomass and lipid concentration are taken into account together, 

however, the panel of lipid producers changes. The highest average lipid 

productivities for all nine strains are observed on day 5 and 10. On day 10, 

Chlorella sp. 146-2-15, Cricosphaera sp. 146-2-9, and Vischeria sp.146-2-16 had 

the highest lipid productivities with 15.62, 14.54, and 12.85 mg L-1 day-1, 

respectively (Figure 10). Over the 20-day cultivation, the three algae with the 

highest average lipid productivities were Cricosphaera sp. 146-2-9, Chlorella sp. 

146-2-15, and Tetraselmis sp. 146-2-1 with 11.15, 9.34, and 8.71 mg L-1 day-1.  
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Figure 10 Lipid productivities (mg L-1 day-1) of nine marine algae strains over 
twenty days. Data represents the mean of three replicates  

 
Since Cricosphaera sp. 146-2-9 resulted with the highest average lipid 

productivity throughout the cultivation, this alga strain was chosen for further 

analysis in co-culture with marine fungi.  

 
 

3.3 Screening co-culture experiments 
 
 

3.3.1 Coelastrum sp. 46-4 and yeast, bacteria, and N2-fixing Cyanobacteria co-
cultures  
 
i. Yeast 

A total of 37 strains of freshwater yeast were screened with one 

oleaginous algae strain, Coelastrum sp. 46-4. After one week of incubation, all 

yeast strains were observed to inhibit algae biomass production. In turn, during 

the first week, algae lipid content was increased up to 10% with a few 

accompanying yeast (Table 4). The second week of co-culture with yeast 

resulted in few strains of yeast stimulating biomass increase of Coelastrum sp. 
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46-4. Alternatively, on the second week of cultivation, all yeast strains inhibited 

lipid accumulation in the alga. After two weeks of cultivation with yeast, the green 

alga responded mainly with an increase in biomass only, up to 39% with yeast 

strain id# 159-1-3. As there were no positive correlation in both biomass and lipid 

accumulation in Coelastrum sp. 46-4 co-cultured with yeast, no further co-

cultivation experiments were carried out.    
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Table 4 Percent difference over monocultures in the biomass and lipid content of 
Coelastrum sp. 46-4 with 37 yeast strains over two weeks 

 
Data represents the mean of three replicates.  
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ii. Bacteria  

A total of 39 strains of freshwater bacteria were screened with Coelastrum 

sp. 46-4. After the first week of culturing, most bacteria increased lipid content 

within the green alga in co-culture (Table 5). Alternatively, only four bacteria 

increased the biomass of Coelastrum sp. Only one bacterial isolate, sp. 2-4-2, 

stimulated an increase in both biomass and lipid accumulation by 0.42% and 1% 

respectively. During the second week of co-culturing, fourteen of the bacterial 

isolates stimulated up to an 8% increase in lipid content within Coelastrum sp. 

46-4 in comparison with the alga grown alone. Eleven bacterial strains stimulated 

up to a 46% increase in the biomass concentration of the algae.  In terms of 

stimulating both biomass and lipid content of Coelastrum sp. 46-4 in co-culture, 

one bacterial strain sp. 21-9-3-2 had a positive effect of about 26 and 10% over 

the algae monoculture, respectively. The bacterial strain with id# 21-9-3-2 was 

chosen for further identification and analysis for co-culture experiments with 

Coelastrum sp. 46-4.  
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Table 5 Percent difference over monocultures in the biomass content of Coelastrum 
sp. 46-4 with 38 bacterial strains over two weeks 

 
 

Data represents the mean of three replicates  
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iii. Cyanobacteria  

A total of nine N2-fixing cyanobacteria were screened with Coelastrum sp. 

46-4 to determine increases in biomass and lipid productivity in co-culture over 

fifteen days (Figure 11). After five days of cultivation, higher cell densities are 

observed in co-cultures of Coelastrum with Tolypothrix sp. 30-1-4, Calothrix sp. 

38-3; 69-4, and Nostoc sp. 47-3; 113-10 over the monoculture. Higher lipid 

concentrations, though, are observed within co-cultures with Tolypothrix sp. 33-4, 

Nostoc sp. 41-1, 47-2-1, 113-10, and Calothrix sp. 113-9. On the tenth day of 

cultivation, higher biomass is observed in co-cultures with Calothrix sp. 38-3, 69-

4, and Nostoc sp. 47-3, 47-2-1, 113-10. Heightened lipid concentrations are 

found within 7 of the 9 co-cultures including Tolypothrix sp. 30-1-4, 33-4, 

Calothrix sp. 38-3, 69-4, 113-9, and Nostoc sp. 47-3, 47-2-1, 69-4, 113-9.  
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Figure 11 Optical density (a; 600nm) and lipid concentration (b; μg ml-1) of the 
control Coelastrum sp. 46-4 grown in nitrogen-supplemented N+ medium and co-
cultured with nine diazotrophic cyanobacteria in nitrogen deficient medium (N-) 
over 5, 10, and 15 days. Data represents the mean of three replicates   

 
 

On the last day of cultivation, heightened biomass was observed in Nostoc 

sp. 47-3, 47-2-1, 113-10 and Calothrix sp. 69-4. Lipid concentrations in co-

cultures were higher than the control in eight of the nine cyanobacteria strains 

(Figure 11, b). When considering consistent increases in both biomass and lipid 
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content in co-cultures, only Nostoc sp. 47-2-1 was able to stimulate Coelastrum 

as such (Figure 11 a, b). As a result, Nostoc sp. 47-2-1 was chosen for further 

analysis in co-culture with Coelastrum sp. 46-4.  

 
 

3.3.2 Co-culture of Cricosphaera sp. 146-2-9 with fungi  
 
 

One marine algae strain, Cricosphaera sp. 146-2-9, was screened with 3 

fungal species (146-2-F1, F3, F15) to determine increases in biomass and lipid 

productivities. The first week of cultivation resulted with no significant differences 

in the biomass and lipid content of the monocultures and co-cultures with fungi 

(data not shown). Results from the second week of cultivation indicated a 29% 

increase in the biomass concentration in Cricosphaera sp. co-cultured with 

fungus 146-2-F3 with a total of 1.775 g L-1 in comparison to the control with 1.375 

g L-1 (Figure 12). The highest lipid accumulation, in terms of percentage of dried 

biomass, occurred in the control with 3.6%, followed by F1 with 3.2%, F15 with 

2.9%, and F3 with 2.7%.  
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Figure 12 Biomass (g L-1 dry weight) and lipid concentration (mg g-1 dry biomass) 
of Cricosphaera sp. 146-2-9 (control- C) co-cultured with three fungal species 
(F1, 3,15) on week 2. Data represents the mean of four replicates  

 

Despite the disparity in lipid percentages between the monoculture and 

co-cultures of this alga with fungus, when taking biomass and lipid content into 

account, namely lipid productivity, results vary. The highest lipid productivity was 

observed in the co-culture of the algae and F3 with 5.63 mg L-1 day-1, a 13.5% 

increase over the control. The lowest lipid productivity was observed in the co-

culture with F1 with 4.14 mg L-1 day-1, while that of F15 was 4.99 mg L-1 day-1 

and the control yielded 4.87 mg L-1 day-1.  Bright field and Nile red fluorescent 

microscopy of the treatments on the second week of cultivation reveals 

intensified Nile red fluorescence in the co-cultures of Cricosphaera sp. 146-2-9 

and the fungus 146-2-F3 in comparison the control and the co-cultures with F1 

and F15 fungal species (Figure 13).  
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Figure 13 Bright field view (left) and Nile red fluorescence (right) of Cricosphaera 
sp. 146-2-9 alone in medium (a) and co-cultured with three fungal species 146-2- 
F1, F3, F15 (b, c, d; respectively). 1000X magnification; scale bars indicate 10μm 

 
 
 

3.4 Co-culture of Coelastrum sp. 46-4 vs. bacterial-cell free filtrate 
 

When the green alga Coelastrum sp. was co-cultured with Pseudomonas 

stutzeri and inoculated in nutrient broth and bacterial-cell free filtrate, different 



	 57	

results were obtained compared to the preliminary screening (section 3.3.1). 

During the first week of cultivation, a significant 79 and 37.5% increase in 

biomass was observed in treatments with the bacterial cell-free filtrate (BS) and 

the nutrient broth (NB), (p-value= .002, .033; respectively; α=0.05, Figure 14a). 

During the first week of cultivation, the biomass of the control was 0.2 g L-1 while 

that of BS and NB were 0.35 and 0.275 g L-1 respectively. There was no 

significant difference between the control and the algae co-cultured with the 

bacteria cells (M). No significant differences in lipid content was observed in all 

three treatments BS, M, and NB during the first week of cultivation.  

The second week of co-cultivation demonstrated significant increases in 

the biomass content of both BS and NB treatments by 57.1 and 135.7% over the 

control (Figure 14b) (p-value= .035, .000; respectively; α=0.05). The control 

accumulated 0.35 g L-1 while that of BS and NB were 0.55 and 0.825 g L-1, 

respectively. There was no significant difference between the control and the co-

culture with bacterial cells 0.325 g L-1. From figure 13, it is apparent that the lipid 

content, in terms of percentage of dry biomass, has no significant differences 

between the control, the BS, NB and M treatments. When lipid productivity, mg L-

1 day-1, is taken into account however, there is a significant increase in the BS 

treatment in contrast to the control, M, and NB. The average lipid productivity of 

BS was 4.5 mg L-1 day-1, while that of the control, M, and NB were 3.8, 3.67, and 

3.67 mg L-1 day-1, respectively.  
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Figure 14 Biomass (g L-1 dry weight) and lipid concentration (g g-1 dry biomass) 
during the first (a) and second week (b) of cultivation of Coelastrum sp. 46-4 
monoculture (-C) and co-culture with Pseudomonas stuzeri (- M), inoculated in 
bacterial cell-free filtrate (BS) and in nutrient broth (-NB). Data represents the 
mean of four replicates. (*) Indicates significant differences from the control 
(α=0.05) 

 
 

Bright field and Nile red fluorescent microscopy of the treatments on the 

second week of cultivation reveals a heightened lipid fluorescence from most of 

the cells cultivated in the bacteria-cell free filtrate and some from the M 
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treatment, while the C and NB treatments showed little lipid fluorescence and 

mostly red chlorophyll autofluorescence (Figure 15).  
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Figure 15 Bright field view (left) and Nile red fluorescence (right) of Coelastrum 
sp. 46-4 alone in medium (a), co-cultured with Pseudomonas stutzeri (b), in 
nutrient broth (c), and inoculated in bacteria cell-free filtrate (d). 1000X 
magnification; scale bars indicate 10μm 
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3.5 Co-culture of Coelastrum sp. 46-4 and Nostoc sp. 47-2-1 
 

During the first week of cultivation, the highest biomass was observed in 

the co-cultures of Coelastrum sp. and Nostoc sp. 47-2-1 with 0.250 g L-1 while 

the control had a yield of 0.125 g L-1. The mean biomass of the co-culture was 

significantly higher than the monoculture with a 100% difference (p-value= .017; 

α=0.05). The lipid content for both treatments resulted with 47% for the control in 

N+ medium and 18% for the co-culture with diazotrophic cyanobacteria in N- 

medium (Figure 16a). The second week of cultivation had similar results, with the 

highest biomass observed in the co-culture with 0.325 g L-1 while the control 

yielded 0.3 g L-1 (Figure 16b). Lipid yields resulted with 27% within the control 

and 20% for the co-culture. However, there were no significant differences 

between the mean biomass and lipid content, or productivities of the 

monocultures and co-cultures. Taking lipid productivity into account, the control 

in N+ consistently had higher lipid productivities than the co-culture with 8.4 and 

5.9 mg L-1 day-1 over the two-week cultivation whereas the co-culture resulted 

with 6.6 and 4.6 mg L-1 day-1.  
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Figure 16 Biomass (g L-1 dry weight) and lipid concentration (mg g-1 dry biomass) 
during the first (a) and second week (b) of cultivation of Coelastrum sp. 46-4 in 
monocultures (-C) and co-cultured with Nostoc sp. 47-2-1 (-M). Data represents 
the mean of four replicates. (*) Indicates significant differences (α=0.05) 

 
 
 

Bright field and Nile red fluorescent microscopy of the co-cultures of 

Coelastrum sp. 46-4 and diazotrophic Nostoc sp. 47-2-1 on the second week of 
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cultivation reveals no significant difference in the lipid fluorescence from the cells 

cultivated in the either monoculture or co-culture (Figure 17).  

 

 
Figure 17 Bright field view (left) and Nile red fluorescence (right) of Coelastrum 
sp. 46-4 alone in medium (a), co-cultured with Nostoc sp. 47-2-1 (b). 1000X 
magnification; scale bars indicate 10μm 
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3.6 Co-culture of Cricosphaera sp. 146-2-9 vs. fungal cell-free filtrate 
 

The first week of cultivation indicated no significant difference between the 

biomass concentrations of the co-culture of Cricosphaera sp. with Fusarium sp., 

GPY, and FS treatments versus the monoculture C (Figure 18a). The co-culture 

had a biomass yield of 1.626 g L-1 while C had 1.4 g L-1, and the cultures 

treatments FS had 1.125 g and GPY with 1.05 g L-1. The highest lipid content 

was observed in the FS treatment with almost 6% and the remaining treatments 

below 5%. The lipid content within the FS treatment was significantly higher than 

the control with a 70.99% difference (p-value= .004; α=0.05).  

During the second week of cultivation, however, there was no significant 

difference between the biomass content C and the treatments M and GPY 

(Figure 18b). The highest biomass was observed in the GPY treatment with 

1.675 g L-1. The co-cultures had a biomass yield of 1.4 g L-1, the control with 1.3 

g L-1, and the FS treatment with 0.875 g L-1. In terms of lipid content, the highest 

mean lipid accumulation occurred within the FS treatment with 8.5%, while the 

remaining treatments did not result with lipid contents above 3.6%. The lipid 

content within the FS treatment was significantly higher than the monoculture by 

120.67% (p-value= .000; α=0.05). 

In terms of lipid productivity, the FS treatment consistently achieved the 

highest productivities consistently throughout the experiment. The FS treatment 

had a productivity of 9.2 mg L-1 day-1 on the first, and 4.8 mg L-1 day-1 and 
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second week of cultivation, whereas the remaining treatments did not exceed 6.7 

mg L-1 day-1.  

 
Figure 18 Biomass (g L-1 dry weight) and lipid concentration (g g-1 dry biomass) 
during the first (a) and second week (b) of cultivation of Cricosphaera sp. 146-2-9 
monoculture (-C) and co-culture with Fusarium sp.146-2-F3 (- M), inoculated in 
fungal cell-free filtrate (FS) and in marine GPY (-GPY). Data represents the 
mean of four replicates. (*) Indicates significant differences from the control 
(α=0.05)  

 
 
Bright field and Nile red fluorescent microscopy of the treatments on the 

second week of cultivation shows a heightened lipid fluorescence from most of 

the cells cultivated in the fungal-cell free filtrate, whereas the control showed little 
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lipid fluorescence (Figure 18). The algae cells co-cultured with the fungal cells 

revealed a higher lipid concentrations in comparison to the control. The lipid 

bodies within individual algal cells in the FS treatment showed very large singular 

lipid bodies in contrast to the smaller multiple lipid bodies accumulated within the 

cells of the GPY treatment.  
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Figure 19 Bright field view (left) and Nile red fluorescence (right) of Cricosphaera 
sp. 146-2-9 alone in medium (a), co-cultured with Fusarium sp. 146-2-F3 (b), in 
GPY (c), and inoculated in fungal cell-free filtrate (d). 1000X magnification; scale 
bars indicate 10μm 
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3.7 Gravimetric lipid analysis of Coelastrum sp. 46-4 and Cricosphaera sp. 146-
2-9 in mono- and co-cultures and microorganism-cell free filtrate  
 
 

3.7.1 Co-cultures of Coelastrum sp. 46-4 with Pseudomonas stutzeri   
 

The biomass of monocultures of Coelastrum, co-cultures with 

Pseudomonas stutzeri, inoculated in NB and bacterial-cell free filtrate was 

harvested on the second week of cultivation and the total neutral lipid content 

was extracted, quantified and then transesterified; results are shown in Figure 

20. The highest biomass yield occurred in the NB treatment and co-culture with 

bacterial cells having biomass yields of 0.360 and 0.266 gL-1, respectively. The 

control resulted with a biomass of 0.187 gL-1 while that of the BS treatment 

yielded 0.155 gL-1. Gravimetric lipid analysis shows that the highest lipid content 

was found in the BS treatment with 35.01%, while the control has a yield of 

18.96%, followed by NB with 21.52%, and the co-culture with 17.08%. Of the lipid 

extracted from the biomass, after transesterification, the C had a FAME yield of 

16.21%, the BS treatment with 29.73%, M with 16.57%, and lastly NB with 

10.59%.  
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Figure 20 The biomass (g L-1 dry weight), total lipid and FAME content (% yield of 
dry biomass) of Coelastrum sp. 46-4 in monoculture (-C), co-cultured with 
Pseudomonas stutzeri  (-M), and inoculated in bacterial cell-free filtrate (-BS) and 
nutrient broth (-NB) 

 
 

3.7.2 Co-cultures of Coelastrum with Nostoc sp. 47-2-1 
 

At the end of a two-week cultivation, the biomass of Coelastrum 

monocultures and co-cultures with Nostoc sp. 47-2-1 was harvested, dried, and 

extracted for total neutral lipid content.  The biomass content of Coelastrum sp. 

46-4 grown in N+ resulted with 0.409 g L-1 while that of the co-culture was 0.122 

g L-1. Gravimetric lipid analysis indicates that the highest lipid content was found 

in the co-culture with 22.24% while the monoculture had a 15.24% lipid content.  
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Figure 21 The biomass (g L-1 dry weight), total lipid and FAME content (% yield of 
dry biomass) of Coelastrum sp. 46-4 in monoculture (-C) and co-cultured with 
Nostoc sp. 47-2-1 (-M)  

 
 

Gravimetric FAME analysis of Coelastrum sp. 46-4 in monoculture and co-

culture with Nostoc sp. 47-2-1 indicates 9.54 and 17.58% of the total lipids within 

the biomass are methyl esters, respectively.  

 
 

3.7.3 Co-culture of Cricosphaera sp. 146-2-9 with Fusarium sp. 146-2-F3  
 
 

After two weeks of cultivation, the biomass of Cricosphaera sp. 

monocultures and co-cultures with Fusarium sp. 146-2-F3, inoculated in GPY 

and fungal-cell free filtrate was harvested and the total neutral lipid was 

quantified and subsequently transesterified. The highest biomass concentration 

was observed in the co-cultures of Cricosphaera sp. and the fungus with a yield 

of 0.541 g L-1. The monoculture of Cricosphaera sp. had a biomass yield of 0.539 

g L-1, while the treatment inoculated in fungal-cell free filtrate and GPY had a 

biomass of 0.211 gL-1 and 0.130 g L-1, respectively. The highest lipid content 
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occurred in the FS and GPY treatments with 35.01 and 21.25% respectively. The 

co-cultures treatment M yielded 16.08% while the monoculture C yielded 11.2%.  

 

 
Figure 22 The biomass (g L-1 dry weight), total lipid and FAME content (% yield of 
dry biomass) of Cricosphaera sp. 146-2-9 in monoculture (-C), co-cultured with 
Fusarium sp. 146-2-F3  (-M), and inoculated in fungal cell-free filtrate (-FS) and 
marine GPY (-GPY) 

 
 

Gravimetric FAME analysis indicates that 8.89% of Cricosphaera sp. total 

lipids within the biomass has the capability of undergoing transesterification. The 

highest ester yield was found in the FS and GPY treatments with 30.23% and 

20.67% FAME content respectively. The co-cultures with Fusarium sp. 146-3-F3 

had an ester yield of 13.99% after transesterification.  
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CHAPTER 4 
 

DISCUSSION 
 
 

4.1 Using South Florida algae for biofuels  
 
 

Choosing algal species with characteristics including simultaneous high 

biomass and lipid content is fundamental to using algae as a feedstock for 

biofuel. (Griffiths and Harrison 2009). Besides superior lipid productivity, the algal 

species applied should be native and adapted to the regional temporal variations 

to succeed in cultivation. When screening Florida freshwater Chlorophyta 

microalgae, the average lipid content of the 20 different strains (excluding 

reference strains) throughout the twenty-day cultivation was found to be 16.3% of 

the dry biomass. The average lipid content within the algae isolated from South 

Florida in comparison to the data collected by Griffiths and Harrison (2009) on 

the lipid content of about 25 species of algae from multiple literature resources, 

the average lipid content for Chlorophyta calculated was 23%, a figure not far 

from results presented here. In terms of lipid productivity, the average lipid 

productivity observed from the 22 different algal strains was 3.73 mg L-1 day-1 

(n=21). This average lipid productivity is very low compared to the reported 

average of 50 mg L-1 day-1 for 55 species of algae but comparable to those found 

by others with values between 2.6-38.7 mg L-1 day-1 (Hempel et al. 2012). The 

average lipid productivity is considerably low as a result of low biomass 

production. The average biomass productivity for all freshwater algae isolated 
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and used in this research was 0.025 g L-1 day-1, which was low compared to the 

average reported biomass values of 0.05-0.5 g L-1 day-1 for some 35 strains 

(Hempel et al. 2012) and 0.03-0.59 g L-1 day-1 for others (Griffiths and Harrison 

2009). The average biomass content reported in this work is low for algae in 

closed cultivation possibly because of slowed growth in axenic culture or reduced 

growth after the application of antibiotics (Cho et al. 2015; Watanabe 2005). 

Screening of South Florida saltwater algae revealed that the average 

biomass and lipid productivities were 0.190 g L-1 day-1 and 6.49 mg L-1 day-1, 

respectively. The moderate growth rates observed in these marine species in 

comparison to the freshwater species might be a result of a slightly lower 

doubling time in marine species. The marine algae overall lipid content for all 

nine strains used in this research is 2.9%, a figure drastically lower that what is 

reported for marine or saltwater algal species; Griffiths and Harrison report an 

overall 24% lipid content for marine species under nutrient-replete conditions. 

This reduced lipid production within these species could reflect a natural lipid 

productivity within the isolated species, or issues with growth in axenic culture, or 

high concentration of salts within the medium. The marine algae species used in 

this research were isolated from the coastline of Florida near estuaries and bays 

(Figure 3), where salinity fluctuates as a function of distance from the coast and 

temporal oscillations, and drives different populations of algae (Nodine and 

Gaiser 2004). These changing salinity states could provide varying optimal 

conditions for the algae, whereas laboratory conditions combined with BG11 
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Marine with constant high salinity (3.5%) might have negative effects on cell lipid 

production.  

From the 22 freshwater and nine marine algae strains used in this 

research, freshwater Coelastrum sp. 46-4 and saltwater Cricosphaera sp. 146-2-

9 were both selected on account of higher productivities in biomass and lipids. 

Coelastrum sp. 46-4 resulted with biomass and lipid productivities of 0.026 g L-1 

day-1 and 5.49 mg L-1 day-1. Cricosphaera sp. 146-2-9 resulted with an average to 

good biomass productivity of 0.20 g L-1 day-1 with lipid productivity and 11.15 mg 

L-1. These two algal species were selected for co-culture experiments with 

varying microorganisms including yeast, bacteria, diazotrophic cyanobacteria, 

and fungi to stimulate both biomass and lipid production simultaneously.  

 

4.2 Screening of co-cultures of algae and microorganisms  
 

When screening freshwater Coelastrum sp. 46-4 with 37 yeast, 39 

bacteria, and nine diazotrophic cyanobacteria, positive correlations was observed 

between bacteria and cyanobacteria only. The yeast co-cultured with Coelastrum 

sp. 46-4 inhibited or stimulated either biomass or lipid content, but never the two 

concurrently (Table 4). Increases in algae biomass in combination with yeast 

cells can be explained in part by generation of yeast CO2, since the interchange 

of gases is known to stimulate mixed cultures (Wang et al. 2016). With the 

proliferation of the algae cells, though, widespread reduced lipid contents were 

observed, as algae do not generally store lipids under desirable conditions. 

Alternatively, areas where yeast repressed algal biomass, small increases in lipid 
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content were observed. The inhibition of algae growth could have been a result 

of yeast overgrowth and resultant CO2 concentration, since it is understood that 

high concentration of the aqueous gas impedes algae photosynthesis (Lee and 

Tay 1991; Cai et al. 2007). Yeast extracellular compounds could have also 

accounted for either stimulation or inhibition of algae cell and lipid growth. 

Several organic acids produced by yeasts, including pyruvic and acetic acids, 

can be recycled by algae with resultant cell and lipid proliferation (Xue et al. 

2010). Organic compounds produced by yeast in combination with yeast 

overgrowth may alternatively have impeded algae growth, and could provide an 

explanation for the observed widespread growth and lipid inhibition with 

Coelastrum sp. 46-4 (Table 4).  

Screening the alga Coelastrum sp. 46-4 with 39 strains of bacteria 

revealed only one bacterial strain, # 29-1-3-2 capable of stimulating both 

biomass and lipid content within the algae (Figure 5). First and second week of 

co-culturing of bacteria and this alga species indicated varied effects among 

bacterial strains where a greater portion of the bacteria tested reduced the 

growth of Coelastrum sp. 46-4 in co-culture, results that are consistent with 

screening for growth-promoting bacteria with algae (Le Chevanton et al. 2013). 

The demonstrated reduced growth in the algae may be caused by the lack of 

production of bacterial growth-promoting compounds or inhibition by cellular 

exudates (Fukami et al 1997; Park et al. 2008). Bacteria sp. 29-1-3-2 was 

capable of stimulating both the biomass and lipid content within the algal cell by 

25.8% and 9.9%, respectively (Table 5). Biolog identification identified the 
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bacterium as Pseudomonas stutzeri, a gram-negative bacterium. This bacterium 

was selected for further analysis of its extracellular compounds on the growth 

and lipid accumulation within Coelastrum sp. 46-4.  

Pairing of Coelastrum sp. 46-4 with nine strains of N2-fixing cyanobacteria 

in nitrogen-deficient medium indicated that the biomass and lipid content of green 

algae could be simultaneously stimulated in contrast to the control cultured in 

nitrogen-replete medium (Figure 11). Although most of the cyanobacteria 

stimulated the growth and lipid content of the algae later in cultivation, only 

Nostoc sp. 47-2-1 was able to stimulate both biomass and lipid content of 

Coelastrum sp. over the entire experimental period. When Nostoc sp. 47-2-1 was 

inoculated again in co-culture with Coelastrum sp. 46-4 with more replicates, only 

a significantly higher biomass concentration was observed in the co-culture 

during the first week while there were no significant differences found between 

mono- and co-cultures at the end of cultivation (Figure 16). Nile red lipid 

fluorescence showed no significantly higher fluorescence from the co-culture in 

contrast to the monoculture (Figure 17). Pairing of Coelastrum sp. 46-4 with 

Nostoc sp. 47-2-1 demonstrates that algae can be cultivated in co-culture with 

diazotrohpic organisms with similar biomass and lipid yields without the use of 

nitrogen. Eliminating nitrogen application by introduction of nitrogen-

supplementing cyanobacteria into culture can drastically reduce the capital cost 

of algae production and provide a sustainable practice (Borowitzka and 

Moheimani 2013).  
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Co-culturing of the marine algae Cricosphaera sp. 146-2-9 with three 

strains of fungi indicated one strain to stimulate the simultaneous increase of 

growth and lipid productivity, fungus 146-2-F3 which was identified as Fusarium 

sp. (Figure 12). Co-cultures of Fusarium sp. and Cricosphaera sp. 146-2-9 had 

an overall increase of 29% in biomass and 13.5% in lipid productivity. Although a 

lowered lipid content was found within the co-cultures, the Nile Red fluorescence 

intensity of Fusarium sp. and Cricosphaera sp. 146-2-9 demonstrated multiple 

regions of intensified fluorescence near fungal hyphae (Figure 13). It is 

suspected that fungi-algae interaction and formations, or pellets, are the result of 

differential cellular surface charges of either microorganism. In co-culture the 

positively charged mycelia cells attract negatively charged algae to facilitate 

interactions (Zhou et al. 2013). With closer contact, possible heightened cellular 

communications occur that lead to stimulated lipid concentrations in the marine 

algae. A closer look at the effects of Fusarium exudates on Cricosphaera further 

elucidated the biomass and lipid stimulations in co-culture.  

 

4.3 Effect of microorganisms on algae 
 

In determining the effect of the bacterium Pseudomonas stutzeri and its 

extracellular compounds on the growth and lipid accumulation within the 

freshwater Coelastrum sp. 46-4, in addition to co-cultures (M), the algae was 

inoculated in bacteria cell-free medium (BS) and in nutrient broth (NB). The algae 

cultured in BS were consistently significantly higher in biomass and lipid 

productivity (Figure 14). Although the biomass of axenic Coelastrum sp. 46-4 
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inoculated in NB was also significantly higher, signifying a mixotrophic alga, little 

lipid fluorescence was observed from the cells (Figure 15). Various cavities in 

place of lipid bodies were observed in the algal cells cultured in NB. This 

proposes that the productivity increase in the BS treatment does not depend on 

the contents of the nutrient broth medium but the contents of bacterial EPS. 

These results are the first to indicate that bacterial exudates can account for the 

simultaneously stimulation of biomass and lipid production in algae (Park et al. 

2008). There were no significant differences in biomass and lipid content of the 

co-culture in contrast to the initial results from the preliminary screening (section 

3.3.1). In order to verify these present results, gravimetric analysis was applied to 

accurately measure biomass and lipid content of the algae in the varying 

treatments.  

 In elucidating the effects of Fusarium sp. on marine Cricosphaera sp. 146-

2-9, the algae was inoculated in fungal cell-free filtrate, marine GPY medium, and 

co-cultured (M) with live cells as well. Results indicate consistent significantly 

heightened lipid content within the algae cells cultured in FS as apposed to the 

monocultures with up to a 120.7% difference (Figure 18). The algae cells 

cultured in GPY, although showed improved biomass concentrations, did not 

develop lipid contents higher than the monoculture or FS treatment. Results 

indicate that Cricosphaera sp. 146-2-9 may be mixotrophic, but the GPY cannot 

account for the heightened lipid concentrations found within the algae cultured in 

fungal exudates. Overwhelmingly high lipid fluorescence was observed from 

these cells cultured in FS further indicating improved lipid yields (Figure 19). 
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Though the co-culture of Fusarium sp. and Cricosphaera sp. 146-2-9 did not 

indicate significant improved biomass yields but moderate, the lipid content yield 

is striking enough to consider the effects of fungal exudates in stimulating algal 

cells in production platforms.  

 

4.4 Gravimetric analysis of biomass and lipid content  
 

A closer look at the dried weight and lipid yield of Coelastrum sp. 46-4 in 

various treatments (BS, M, and NB), revealed a 42.25% biomass increase of the 

co-culture in contrast to the control (Figure 20).  These gravimetric results 

coincide with the preliminary screening results (section 3.3.1) but not necessarily 

section 3.4. These results suggest that different cultivation parameters are going 

to have substantial effects on co-cultures of microorganism. Since higher 

biomass is observed in the co-cultures in larger culture schemes, it can be 

proposed that without the effects of shaking and introduction of air bubbling, 

there was an amplified relationship between the bacterium and the algae. Since 

Pseudomonas stutzeri is motile, shaking could have impeded the suspension of 

the bacterium while bubbling did not (Lalucat et al. 2006). It is already indicated 

that presence of mutualistic Pseudomonas sp. live cells has drastic effects on 

algae growth rates (Guo and Tong 2014) and bacterial contact is necessary in 

order to promote growth (Do Nascimento et al. 2013). Besides biomass, the 

highest lipid content was observed in the BS treatment with about 35% of dry 

biomass, and about 30.7% of those lipids were FAMEs suitable for use in 
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biodiesel. This is the first indication that bacterial exudates account for lipid 

increases in algal cells. The exudates of other Pseudomonas sp. have indicated 

positive growth correlation in the green algae Chlorella sp. and that bacterial 

glycoproteins could play a significant role (Riquelme et al. 1988) or bacteria may 

provide algae with necessary vitamins for growth  (Kazamia et al. 2012). It is also 

proposed that the reduction of O2 by bacteria through consumption, relieving 

algae of oxygen damage, could in part cause a rise in algal growth as well 

(Mouget et al. 1995).  In either case, the presence of Pseudomonas stutzeri cells 

in co-culture with Coelastrum sp. 46-4 stimulated the biomass of the algae and 

the bacterial exudate accounted for the observed intensified lipid content.  

Gravimetric biomass and lipid analysis of co-cultures of Coelastrum sp. 

46-4 with diazotrophic Nostoc sp. 47-2-1 shows a 70% decrease in the biomass 

of the co-culture but a 46.7% increase in lipid content (Figure 21). These results 

were drastically different from the co-culture experiments in section 3.5. The 

large difference in biomass concentration of the co-culture in relation to the 

monoculture is most likely caused by differences in cultivation parameters. It has 

already been shown that agitation speed during cultivation can have significant 

effects on the relationship between microorganisms in co-culture (Cheirsilp et al. 

2011). Agitation speed during culturing may increase the mass transfer of 

compounds between the microorganisms in co-culture, and without the added 

agitation, air bubbling was not adequate enough to keep cyanobacterial cells in 

suspension to facilitate the growth and communication between algae cells. 

Results suggest that cultivation of algae without the supplemented nitrogen is 
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therefore achievable by co-culturing with N2-fixing cyanobacteria contingent on 

adequate culture agitation.  

 When the marine algae Cricosphaera sp. 146-2-9 was cultured in varying 

treatments (FS, M, and GPY) similar results were obtained from preliminary 

screening and small-scale experiments. Higher biomass and lipid concentrations 

were observed in the co-culture of Fusarium sp. and this alga than in 

monoculture (Figure 22). These results suggest that Fusarium sp. in co-culture 

with Cricosphaera sp. 146-2-9 can be used to simultaneously amplify biomass 

and lipid content. The highest lipid content occurred in the FS treatment. The FS 

treatment had a 35% lipid content of dried biomass, a high majority of which was 

comprised of FAMEs. Such high lipid content in FS treatment suggests that 

fungal extracellular compounds can generate high intracellular lipid 

concentrations within algae suitable for biodiesel (Figure 22). Since the biomass 

of this alga was not necessarily productive in GPY, the added compounds could 

have stunted the growth of the algae and masking the ability of the fungal 

supernatant to stimulate biomass as well. These results for the first time 

elucidate how fungal presence and extracellular compounds can promote 

increased biomass and lipid productivity in algal cells.   

 

4.5 Conclusions and future prospects  
 

Isolation, screening and evaluation of South Florida fresh- and saltwater 

algae resulted in identification of a green alga, Coelastrum sp. 46-4 and a golden 

brown haptophyte, Cricosphaera sp. 146-2-9 with moderate biomass and lipid 
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production capabilities. Screening of these two algal species with co-cultures of 

yeast, bacteria, diazotrophic cyanobacteria, and fungi showed that these 

microorganisms could have either Inhibitory or stimulatory effects on algae. 

Yeasts had an overall inhibitory effect on both biomass and lipid yield in algae. 

Conversely, cyanobacteria, heterotrophic bacteria, and fungi showed promising 

results in promoting algae productivity. When co-culturing diazotrophic 

cyanobacteria with algae in nitrogen deficient medium, productivity were 

comparable to monocultures in nitrogen-supplemented medium but were 

dependent on the agitation speed of the culture. Heterotrophic bacteria 

Pseudomonas stutzeri and fungus Fusarium sp. were both associated with 

simultaneous enhanced biomass and lipid productivity in co-culture with 

Coelastrum sp. 46-4 and Cricosphaera sp. 146-2-9, respectively, through both 

the presence of microbial cells and the production of extracellular compounds. 

Understanding the relationship between these microorganisms and their effects 

on promoting algae growth and lipid metabolism can be applied to strains used in 

the lab or in mass cultivation, since a large number of these alga are usually 

xenic in culture (Lang et al. 2011).  

Positive correlations results observed in cultures with cell-free bacterial or 

fungal exudates strongly supports the possibility that extracellular compounds 

play a significant role in stimulating algae growth and lipid metabolism. Increased 

lipid content in selected algae in response to co-culture is an impetus for future 

work geared towards identifying the lipid profiles of those algal strains to 

determine their full biodiesel potential.  And since cell-free microbial exudates 
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were found to enhance algae productivity, characterization of the compound/s 

responsible and elucidating the mechanism involved should be priorities for 

future research. 
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