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ABSTRACT OF THE THESIS 

SIMPLE MODELS FOR UNDERDAMPED SLUG TESTS IN HIGH PERMEABILITY 

AQUIFERS  

by 

Maria E. Marquez 

Florida International University, 2016 

Miami, Florida 

Professor Michael C. Sukop, Major Professor 

 Accurate hydraulic conductivity values are necessary for understanding 

groundwater flow. Methods for estimating hydraulic conductivity show limitations 

because measured values vary several orders of magnitude in high permeability aquifers. 

Slug tests, while cost and time efficient, result in values lower than expected. It is 

proposed that underdamped behavior of water in a well is similar to mass on a damped 

spring; hence, models constructed to simulate behavior independent of aquifer effects 

might replicate some tests. The Poiseuille and Darcy-Weisbach models, and extensions of 

these models considering entry/exit effects, are applied to an aquifer-free laboratory test, 

and real wells. Aquifer-free laboratory tests are modeled well using both Poiseuille and 

Darcy-Weisbach models with entry/exit effects. The Poiseuille model for wells does not 

agree with observed data, possibly because of high Reynolds numbers. The Darcy-

Weisbach model does agree with well data significantly better, although the friction 

factor relies on a single Reynolds number. 
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NOTATIONS 

damping coefficient         c 

damping ratio          ζ 

density           ρ 

diameter of pipe or well        d 

displacement from the equilibrium water level     𝑤𝑤 

dynamic viscosity         µ 

effective length of the water column in the pipe     𝐿𝐿 

Friction factor             fD   

gravitational acceleration        g  

Hooke’s Law constant        kH 

hydraulic conductivity        K  

kinematic viscosity          ν  

minor head loss         h 

minor losses coefficient        k 

Pressure loss                 ∆P 

radius of pipe or well                  r  

Reynolds number                     Re  

spring natural frequency        ω  
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velocity          u  
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1 INTRODUCTION 

  An aquifer system’s hydraulic conductivity provides essential information 

necessary for understanding the flow of groundwater. Accurate representation of an 

aquifer’s hydraulic conductivity values is essential in the development of reliable models 

used to determine groundwater behavior.  

  Methods for estimating the hydraulic conductivity vary, and include aquifer tests, 

Lattice Boltzmann model cores, specialized laboratory cores, and slug tests. Slug tests are 

both cost and time efficient. Estimating hydraulic conductivity in an aquifer system 

through slug tests is a fast and simple technique. It requires inducing a change in the 

elevation of the water level in a monitoring well, often by inserting or withdrawing a slug 

into or from the well, then measuring the change in water level with time as it 

equilibrates again. These well response tests were initially developed by Hvorslev (1951). 

The data are compiled and fitted curves are used to estimate the hydraulic conductivity. 

  Well response tests in highly permeable aquifers behave similarly to a mass in a 

viscous medium attached to a damped spring, where the water level oscillates around the 

equilibrium, and is characterized as an underdamped oscillator (Cooper et al 1967, van 

der Kamp 1976).  

 Van der Kamp (1976) noted that his own theory of the underdamped case must 

assume “exponentially damped cyclic fluctuation”, so the well response test analysis may 

not be reliable for other damped fluctuations. Building off van der Kamp’s work and the 

work of Shinohara and Ramey (1979) based on Laplace transforms, Kipp (1985) solved 

for a more complete solution for various cases, including the underdamped case, while 
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Butler (2000) developed type curves to analyze the hydraulic conductivity in highly 

permeable aquifers.  

1.1 Biscayne Aquifer 

 The Biscayne Aquifer in Florida is a significant and prolific aquifer system 

(Figure 1). An eastward-thickening wedge of limestone, up to 240 feet thick along 

Biscayne Bay. Composed principally of Miami Limestone and the Fort Thompson 

Formation/Tertiary Quaternary Shelly Unit, the Biscayne Aquifer serves Miami and Fort 

Lauderdale metropolitan areas as the primary source of drinking water. 

 

Figure 1. Map depicting areal extent of Biscayne Aquifer in South Florida from USGS 
http://maps.waterdata.usgs.gov/mapper/index.html 
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 In this study area, the Fort Thompson Formation is characterized largely by 

medium to very thick beds of limestone, aranaceous limestone, and some beds of skeletal 

quartz sandstone, along with minor quartz sand. (Wacker et al. 2014) The uniqueness of 

this aquifer is a result of its high permeability. Its karst is characterized by thick and 

laterally extensive zones of vug-to-vug connecting porosity created by burrowing shrimp 

in a shallow water marine environment (Figure 2). The vugs are commonly 2 centimeters 

in diameter and the porosity is frequently 50% or more. Recognizing that there is no 

single value for the hydraulic conductivity of the Biscayne Aquifer, the widespread 

existence of the extreme permeability, large diameter touching-vug facies has repeatedly 

been observed and its relevance to the overall hydraulic conductivity of the aquifer has 

been demonstrated (Sukop and Cunningham, 2014).  

 

Figure 2. Sample of Miami Limestone touching-vug facies. Note ~2-cm scale of many vugs. (Photo by Mike Wacker, 
USGS) 
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1.2 Slug Tests 

 A slug test is an aquifer characterization method used to estimate transmissivity 

and hydraulic conductivity of a geologic unit. Transmissivity is a measure of the amount 

of water that can be transmitted through a unit width of the aquifer under a hydraulic 

gradient of one (Schwartz and Zhang, 2003).  Transmissivity is used to calculate 

hydraulic conductivity when the aquifer thickness is known.  

 Advantages of slug tests include cost efficiency, quick test time, and the lack of 

contamination spread risk as there is not any water to dispose from the test (Weight and 

Wittman, 1999). Slug tests are performed by suddenly inducing a change in the water 

level in a well (van der Kamp, 1976). The slug, a known volume of water or a solid 

volume, is suddenly injected or removed from the well. The resulting displacement of the 

water level is measured as a function of time as it returns to the equilibrium water level. 

Hvorslev (1951) originally used the straight-line method to estimate the hydraulic 

conductivity of the aquifer based on the ratio of drawdown. There are two conditions that 

can lead to oscillation; either the aquifer transmissivity is very high or the oscillating 

mass is large (generally due to a long water column). Aquifers with high permeability 

often result in underdamped slug tests with oscillatory behavior, while overdamped slug 

tests generally result in aquifers with lower permeability.  

1.3 Prior Studies 

 Studies of the Biscayne Aquifer have frequently been unable to determine the 

value of transmissivity. Maximum hydraulic conductivity (K) values in the Biscayne 

Aquifer obtained from five methods, including detailed Lattice Boltzmann Modeling 
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(LBM) at pore scale, laboratory measurements at core scale, borehole-scale LBM 

measurements, borehole-scale slug testing, and aquifer test meta-analysis are reviewed in 

Table 1. There are 5 orders of magnitude variations in the maximum hydraulic 

conductivity values obtained from these different techniques. Some of this is a result of 

real variations in the specific aquifer materials tested, but there is great disagreement of 

the hydraulic conductivity values among the conventional methods that leaves the true 

values undetermined. The exceptionally low core K values are readily explained by limits 

of the methods applied to create that data set. The Lattice Boltzmann and specialized 

laboratory methods consistently give K > 10 m s-1 and aquifer tests are generally 

inconclusive (Fish and Stewart, 1991) but indicate K > 0.1 m s-1. These results raise 

concerns as to why slug tests results are consistently lower than results from aquifer tests 

and Lattice Boltzmann simulations.  

Table 1. Maximum Biscayne Aquifer hydraulic conductivities for different test methods. 

Measurement K (m s-1) 

Standard laboratory cores (Cunningham et al., 2006) <0.0005 

3-D printed laboratory core with viscous fluid and LBM (Garcia, 
2013) 

15 

LBM ‘Cores’ (Sukop et al., 2013; Cunningham et al., 2009) 50 

17-m scale LBM from borehole images (Sukop and Cunningham, 
2014)  

50 

Underdamped slug tests (Wacker at al., 2014) 0.03 

Aquifer tests (Fish and Stewart, 1991) >0.1 
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 Some would argue that high permeability aquifers, which are characterized by 

large connected pores, conduits of various sizes, and potentially large-aperture fractures, 

fall outside the realm of applicability of traditional Darcy Law-based models. However, 

Darcy-based models are widely used in many critical applications such as assessing 

seawater intrusion and water supply in South Florida and most other areas. Only recently 

have extensions to these models incorporating non-linear effects been developed (e.g., 

Mayaud et al., 2014; Shoemaker et al., 2007 and 2008) and applications of the extensions 

are in their infancy (e.g., Gallegos et al., 2013; Reimann et al., 2011).  

1.4 Preliminary Research 

1.4.1 FIU Nature Preserve Slug Tests 

 In 2013, I performed a preliminary study of slug tests using uncased wells in the 

Biscayne Aquifer at Florida International University’s Nature Preserve. A replicated 

series of slug tests were conducted on three adjacent unscreened wells of varying depths. 

A 1.25 inch, 2 inch, and 3 inch diameter pipe were used. Each of the pipes was 

submerged into the wells with a cap in place at the top. Once the water level stabilized, a 

perturbation was imposed by rapidly removing the cap from the top of the pipe. Water 

then flowed into the submerged pipe and reduced the water level in the well. Oscillations 

in the water level in the wells were monitored with a data logger, and the data were 

analyzed using the methods of Butler and Garnett (2000). Figure 3 shows a typical fit of 
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the data to a type curve of Butler et al., (2003). Though the fits are not perfect, the 

hydraulic conductivity of the aquifer was initially considered effectively determined. 

 

Figure 3. Typical slug test type-curve result for FIU Nature Preserve study. 80ft depth, 8 inch diameter well, with slug 
generated by 3 inch pipe. 

 Hydraulic conductivity values yielded mostly consistent results when analyzed 

using Butler type curves (Table 2). These hydraulic conductivity values are much lower 

in comparison to aquifer test values, Lattice Boltzmann model “cores” and specialized 

laboratory cores in Table 1. The slug test hydraulic conductivity values represent what 

literature often indicates as hydraulic conductivities comparable to those of well-sorted 

sand, rather than limestone (Freeze and Cherry, 1979). Consistent with observations from 

Butler (1998), these discrepancies in the hydraulic conductivity values further support 

reassessment of conventional slug test analysis methods and their reliability and possible 

limitations for accurately determining a highly permeable aquifer’s hydraulic 

conductivity. 
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Table 2. Hydraulic conductivities based on slug tests in the Nature Preserve in the Biscayne aquifer 

Hydraulic conductivity 

(m/s) 
80 ft. Well 40 ft. Well 20 ft. Well 

3 in Pipe 
0.013 +/- 

0.0003 
0.012 +/-0.0007 0.016 +/-0.0003 

2 in Pipe 
0.014 +/- 

0.0001 
0.015 +/-0.0004 0.016 0.0001 m/s 

1.25 in Pipe 0.014 +/-0.0004 
0.015 +/- 

0.0002 

0.0048 +/- 

0.00007 

   

 A second set of slug tests were conducted using slugs constructed of pipes of 

different diameters capped on both ends and filled with water. Both slug insertion and 

slug removal tests were carried out. Oscillatory responses to the slugs were observed and 

recorded. However, despite the large volume of some of the slugs (0.026 m3), it was not 

possible to impose an equivalent water level perturbation on these wells due to the wells 

being open across the water table and most likely also due to the very high hydraulic 

conductivity: inserting or removing the slugs from these particular wells appears to be 

like dropping them into a swimming pool and the aquifer is effectively transparent. 

1.4.2 Underdamped Slug Test Results from the literature 

 A review of hydraulic conductivities of oscillatory slug tests results from the 

literature is compiled in Table 3. These are maximum reported values. The Nature 

Preserve well results are on the high end and consistent with the recent results of Wacker 

et al., (2014). The highest reported values are all relatively low comparable to the 
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hydraulic conductivity of a well-sorted sand -- considerably lower than might be 

anticipated for many systems exhibiting oscillatory responses. Weight and Wittman 

(1999) concluded that “Slug tests tend to underestimate the hydraulic properties of 

aquifers”.  

 Black (2010) proposed that a practical upper limit for slug tests was 5 × 10-1 m s-1, 

though this argument is based on short test duration and the time needed to initiate a test. 

However, in the very high transmissivity cases of interest in this study, oscillation can 

persist for a long time.   

Table 3. Literature maximum hydraulic conductivities from underdamped slug tests. 

Source Hydraulic 
Conductivity K (m s-1) 

DiFrenna, 2005 0.00044 

Audouin and Bodin, 2007 0.0006 

Brauchler et al., 2010 0.0013 

McElwee, 2002 0.0015 

Ostendorf et al., 2005 0.0017 

Zurbuchen et al., 2002 0.0024 

Zemansky and McElwee, 2005 0.003 

Kungui et al., 2000 0.01 

Nature Preserve Slug tests, 2013 0.01 

van der Kamp, 1976 0.02 

Biscayne Aquifer results (Wacker at al 2014) 0.035 
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2 AIMS/OBJECTIVES OF RESEARCH 

 Existing analysis methods for underdamped slug tests appear to be inadequate to 

capture the true hydraulic conductivity of highly permeable materials. Re-examining 

oscillatory slug tests and developing an end-member numerical model to assess if the 

observations obtained from slug test measurements are representative of the hydraulic 

conductivity of a porous medium, rather than simply dependent on the flow in a pipe such 

as a well casing, will expose potential problems with the existing analyses, improve upon 

current aquifer testing methods, and allow for accurate hydraulic conductivity values to 

be measured. The hypothesis tested in this study is that water in a pipe, such as a well 

casing, behaves as a mass on a damped spring and its behavior can be predicted by a 

model independent of aquifer effects. Development of new models, and collection and 

analysis of laboratory and field measurements are used to test this hypothesis.  

 The development of a model using a Poiseuille damping parameter and a model 

using a Darcy-Weisbach damping parameter, and hybrids of these that incorporate 

entry/exit effects will allow for a thorough comparison that evaluates the conditions of 

aquifers and end-member lab experiments simulating an aquifer-free medium. The 

approach should give insight into current model deficiencies for highly permeable 

aquifers and eventually yield an approach more suitable for determining true hydraulic 

conductivities.   

3 MODELS 

 To determine if the slug test method gives results that correspond to true 

hydraulic conductivity values of highly permeable aquifers, models were developed to 
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consider effects of water flowing through a well system without a porous medium. Such 

models can serve as a way to determine if aquifer effects are being measured at all in 

cases of highly permeable aquifers. Models were constructed based on simple force 

balance equations to predict the behavior of water as a mass on a damped spring in a 

pipe. To understand the validity of current slug test methods, the models were designed to 

be applied to real wells and to an aquifer-free laboratory tank.  

In the following sections, the classical mass damped spring model is briefly 

reviewed and its connections with the new pipe model are explained.  

3.1 Classical Damped Spring Model 

In developing an appropriate numerical model for the oscillatory, underdamped 

case that represents highly permeable aquifer conditions, the classical mass damped 

spring model force balance equation begins with: 

springdampingtotal FFF −−= . (1) 
 

The total force is the product of the mass and acceleration and is given by  

2

2

dt
wdmFtotal = , (2) 

where m is the mass, w is the displacement, and t is the time. The damping force is often 

proportional to velocity and can be written as 

,
dt
dwcFdamping = , (3) 

where c is a damping coefficient. Finally, the spring force is proportional to the 

displacement according to Hooke’s Law  
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wkF Hspring = , (4) 
where kH is the Hooke’s Law constant. Inserting these expressions into Equation (1) leads 

to the full expression for the damped spring model: 

wk
dt
dwc

dt
wdm H−−=2

2 . (5) 

The natural frequency ω0 is  

m
kH=0ω , (6) 

Which is an angular frequency expressed as radians per second. Hence, to convert it to 

the period  

m
k

Period
H

π2
=

. 
(7) 

 The damping ratio ζ is given by 

Hmk
c

2
=ζ , (8) 

which is the parameter that determines if the mass spring damper-system is overdamped 

(ζ > 1), critically damped (ζ = 1), or underdamped (0 < ζ < 1). Overdamped and critically 

damped systems evolve monotonically towards their equilibrium positions while 

underdamped systems oscillate and are the primary interest in this thesis. 

3.2 Relating Classical Model to Pipe Model 

For development of the pipe models, assumptions include that the change in water 

level as a result of displacement (w) within the column of the pipe is much smaller than 

the overall water column length (L) in the pipe, and therefore negligible in the context of 

the water column length. Hence the mass of moving water is assumed constant. In the 

results section, a model is tested that considers the fully variable column length in order 
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to relax this assumption. In addition, previous work on slug tests has made use of an 

effective column length (Le) that is computed as 𝐿𝐿 𝑏𝑏
2
  where b is the aquifer thickness (eg. 

van der Kamp, 1976). 

The force of the spring for the pipe submerged in water is constructed using 

Hooke’s law where the weight of the displaced water is the force 

gwrspringF ρπ 2= . (9) 
As shown in Figure 4, w is the displacement of the water level from its static equilibrium 

position and r is the radius of the pipe. The density is denoted by ρ and g is the 

gravitational acceleration. This equation indicates that the spring constant is gr ρπ 2 . 

 

Figure 4. Definition diagram for L, r, and w variables 
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For the pipe model, the mass is Lr ρπ 2  and based on Equation (6) the natural 

frequency is 
m
kH=0ω or 

Lr
gr
ρπ
ρπω 2

2

0 = , (10) 

 

which simplifies to  

L
g

=0ω . (11) 

A check of the period can determine if the model is appropriate. As before, the 

natural frequency is inverted and multiplied by 2π to obtain the period: 

L
g

Period π2
= . 

(12) 

 

 Similarly, the damping ratio 
Hmk

c
2

=ζ  can be expressed in terms of the pipe 

parameters once a damping model is selected. In the following sections, Poiseuille-based 

and Darcy-Weisbach-based damping models. 

3.3 Poiseuille Model 

 The following assumptions apply when using Poiseuille’s Law: the fluid in the 

cylindrical pipe is Newtonian, incompressible, and the flow in the pipe is laminar and 

there is no acceleration of fluid in the pipe.  
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The damping force is considered using Poiseuille’s law, where the average 

velocity across the cross-section of the pipe is given by  

µ8

2r
L
P

avgu ∆
= . (13) 

 

∆P is the pressure drop over the length of pipe L, r is the pipe radius, and µ is the 

dynamic viscosity. Replacing uavg with the time derivative of the water level displacement 

from equilibrium, replacing μ with the product of the density ρ and the kinematic 

viscosity ν, and re-arranging to solve for ∆P gives  

dt
dw

r
LP 2

8νρ
=∆ . (14) 

 

areaPressureForce ×= , and the damping force is given by  

dt
dwLrPFdamping πνρπ 82 =∆= . (15) 

 

 The total force is from Newton’s second law, maFtotal = , where the mass m of 

the water column in the pipe is ρπr2 L and the acceleration a is the second derivative of 

the water level displacement 2

2

dt
wd

. 

 Inserting the Poiseuille equation for the laminar pipe flow damping force and 

expanding the individual force terms in Equation (1) results in the following model: 
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wrg
dt
dwL

dt
wdLr 2
2

2
2 8 ρππνρρπ −−= , (16) 

 

which reduces to: 

w
L
g

dt
dw

rdt
wd

−−= 22

2 8
ρ
µ

. (17) 

 

3.4 Darcy-Weisbach Model 

 The Reynolds number represents the ratio of inertial forces to viscous forces and 

therefore characterizes flow as laminar, transitional, or turbulent. The Reynolds number 

is obtained from 

ν
ud

=Re , (18) 

 

where u is velocity, d is a characteristic length (pipe diameter for pipe flows), and ν is the 

kinematic viscosity. 

 In using Poiseuille’s law in the first model, flow is limited to the laminar regime. 

To account for test conditions with higher Reynold’s numbers, the Darcy-Weisbach 

approach to damping force provides a friction factor coefficient for use in place of the 

Poiseuille damping parameter. The Darcy-Weisbach model constructed thus expresses 

flows in the turbulent regime with a Reynolds number higher than 2000. It replaces the 

Poiseuille pressure drop term (14) as 
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2

2u
d
L

DfP ρ
=∆ , (19) 

 

where the friction factor (fD) term is based on the calculated Reynolds number and the 

corresponding value on the Moody diagram (Figure 5). From the parameters derived 

from the force balance equation, the following equation comprises our numerical model 

in the Darcy-Weisbach case: 

w
L
g

dt
dw

dt
dw

rDf
dt

wd
−−=

4
1

2

2
. (20) 

 

 

Figure 5. Moody Diagram. Friction factor as a function of the Reynolds number. (Matos and Valerio, 2009.) 
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3.5 Entry/Exit Losses Models 

 The Poiseuille model and the Darcy-Weisbach model are further developed in this 

section to consider the effects of kinetic energy loss, particularly for the end-member 

aquifer-free laboratory conditions where the pipe is submerged in a tank as seen in Figure 

6.  

 
Figure 6. Aquifer-free end member laboratory experiment displaying entry/exit head loss 

 To account for these entry/exit losses, the model includes what are referred to in 

the literature as ‘minor’ losses, derived from the kinetic energy of the fluid, as an 

additional model term derived from the equation for minor head loss where 

g
kuh
2

2

=∆  (21) 
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is the minor head loss. The minor loss coefficient 1=k  because the flow velocity drops 

to zero when the flow exits the pipe into the tank and has to accelerate from zero to enter 

the pipe. Incorporating hgP ∆=∆ ρ  gives 
dt
dw

dt
dwP

2
ρ

=∆ and, because 

areapressureForce ×= , entry/exit terms 
dt
dw

dt
dwrF exitentry 2

2
/

ρπ= ., which then reduces 

to the following for the Poiseuille case (22, 23) and the Darcy-Weisbach case (24): 

dt
dw

dt
dwrwrg

dt
dwL

dt
wdLr

2
8

2
2

2

2
2 ρπρππνρρπ −−−=  (22) 

 

dt
dw

dt
dw

L
w

L
g

dt
dw

rdt
wd

2
18

22

2

−−−=
ν

 (23) 

 

dt
dw

dt
dw

L
w

L
g

dt
dw

dt
dw

r
f

dt
wd D

2
1

42

2

−−−= . (24) 

Note that in the Darcy-Weisbach case, this can be viewed as simply an additional 

coefficient preceding the velocity product term. 
 

4 METHODS 

4.1 Aquifer-free Laboratory Experimental Design 

 To apply the models to an aquifer-free end-member, a laboratory experiment was 

designed to produce a slug test in an open medium. The set up consisted of a partially-
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submerged pipe in a 1.375 m × 0.705 m × 0.91 m tank of water. For the experiments, 

pipe sizes, submergence depths, and maximum displacements were varied. The two pipes 

used in the experiments were 108 cm in length and 0.02 m in diameter, and 112 cm in 

length and 0.047 m in diameter. The submergence depths were varied between 30 cm to 

40 cm. The maximum displacement was varied between 5.4 cm to 6.5 cm. Details 

regarding the submergence depths of the pipe, the maximum displacements of the water 

level in the pipe, and the sizes of pipe used for each test are available in Table 4. A slug 

was induced with a vacuum hose at the open end of the top of the pipe as shown in Figure 

7 and depicted in Figure 8.  

 

Figure 7. Laboratory aquifer-free tank and submerged pipe 
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Figure 8. Laboratory experiment tank with pipe and slug 

 The water level changes were recorded with a digital single-lens reflex camera 

using the full HD video function with a frame rate of 24p, and a ruler in the tank was 

used to visually determine maximum displacement values over time from still frames 

using VideoPad editor (Figure 9). Food coloring and rubber bands on the pipe were 

sometimes used for visual aid. 

 

Figure 9. Still images from videos of tests 
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 To determine the Reynolds number in the laboratory experiment, the still frame 

images depicting the last two water level displacements just before the water level passed 

the static water level were selected and a finite difference of their positions was used to a 

calculate a velocity representing the maximum velocity. The calculated velocity was then 

used in Equation (18) to determine the Reynolds number, from which the friction factor 

fD term was determined using the Moody Diagram (Figure 5). The results of each 

Reynolds number calculation can be seen in Table 4. 

4.2 Snapper Creek Wells 

 Well data and slug test results were obtained from United States Geological 

Survey’s (USGS) report, Geologic and Hydrologic Frameworks of the Biscayne Aquifer 

in Central Miami-Dade County, Florida (Wacker et al. 2014). The report’s assessment 

site was the Snapper Creek Well Field (SCWF) (Figure 10). From the USGS SCWF 

reported results, wells with high hydraulic conductivity value, oscillatory response, and 

large effective length of water in the well pipe relative to the initial slug induced were 

identified and selected for model application. A summary of the periods of the 

oscillations for the wells was compiled (Appendix A). Time and displacement were 

adjusted for each well test to represent an oscillation that passed through zero, and from 

the data points nearest the crossing of the time axis, maximum velocity was calculated as 

a finite difference. For each test, the Reynolds number was calculated using the raw data 

points from the USGS report. The time and depth for two consecutive data points 

representing the water level as it passed through the static water level after the initial 

induction of the slug were used to calculate the maximum velocity as a finite difference. 



23 
 

The velocity determined was then used in Equation (18) to determine the Reynolds 

number for each test (see Table 4), and the necessary parameters for each model were 

calculated for use in Mathematica.  The data from the selected wells were then analyzed 

to compute the parameters necessary to run each model, which are shown in Appendix B. 

 

Figure 10. Aerial photograph of Snapper Creek Well Field showing location of wells used in this study 

5 RESULTS  

5.1 Aquifer-free Laboratory Data 

5.1.1 Poiseuille with Entry/Exit Losses Model 

 Figure 11 and Figure 12 show data from two different sized pipes in the aquifer-

free test tank depicted above, along with the results of the Poiseuille model both with and 

without entry/exit effects described above. While the Poiseuille model without entry/exit 

effects predicts significantly less damping of the water level oscillation in the larger pipe, 

the data and the model with entry/exit effects are similar for both pipes. Despite some 
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differences in the timing of the peaks that may be related to data collection and analysis, 

the Poiseuille model with entry/exit effects does a good job of capturing the decay of the 

oscillations in both cases, as seen in the agreement of the data observed and the 

entry/exits effects curve (Figure 11 and Figure 12). These results are similar to all of the 

aquifer-free test cases as shown in detail in Appendix C.
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Table 4. Summary of Test values 

Test # L (m) Le 
(m) 

max 
displacement 

(m) 

g/L 
(1/s2) 

g/Le 
(1/s2) 

Reported hydraulic 
conductivity in 

ft2/d from USGS 
report 

Radius of pipe 
(m) 

Re Expected 
flow type 

Well 
Tests 

         

G3878 21.2 22.31 0.995 0.462 0.4398 8000 0.0508 58,852 turbulent 
G3902 19.0 20.15 0.942 0.516 0.4869 9000 0.0508 59,441 turbulent 
G3907 18.1 19.87 1.004 0.542 0.4937 2000 0.0508 51,034 turbulent 
G3911 16.8 17.22 0.723 0.585 0.5697 9000 0.0508 39,976 turbulent 
G3915 1.30 2.835 0.083 7.57 3.46 10000 0.0508 20,178 turbulent 
Lab 
Tank 

         

7713 0.3  0.054 32.7  n/a 0.010 3,000 transitional 
7717 0.3  0.063 32.7  n/a 0.0239 2,500 transitional 
7725 0.3  0.058 32.7  n/a 0.0239 10,494 turbulent 
7727 0.35  0.061 28.0  n/a 0.0239 11,448 turbulent 
7732 0.4  0.057 24.5  n/a 0.0239 6,678 turbulent 
7735 0.3  0.059 32.7  n/a 0.010 4,000 turbulent 
7740 0.35  0.065 28.0  n/a 0.010 5,200 turbulent 
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Figure 11. Aquifer-free 0.01 m pipe laboratory data and Poiseuille model (test 7713) without entry/exit losses (blue 
line) and with entry/exit losses (red line) 

 

Figure 12. Aquifer-free 0.024 m pipe laboratory data and Poiseuille model (test 7717) without entry/exit losses (blue 
line) and with entry/exit losses (red line)  
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5.1.2 Darcy-Weisbach entry/exit losses Model 

 Figure 13 and Figure 14 show the Darcy-Weisbach model with and without 

entry/exit effects for the same data as above. The results are similar to those of the 

Poiseuille model above: the model with the entry/exit effects captures the essence of the 

aquifer-free data without parameter adjustment. Any difference between the large and 

small pipe is far less prominent than in the case using the Poiseuille model. 

 

Figure 13. Aquifer-free 0.01 m pipe laboratory data and Darcy-Weisbach model (test 7713) without entry/exit losses 
(blue line) and with entry/exit losses (red line) 
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Figure 14. Aquifer-free 0.024 m pipe laboratory data and Darcy-Weisbach model (test 7717) without entry/exit losses 
(blue line) and with entry/exit losses (red line) 

 

5.2 Snapper Creek Wells 

5.2.1 Poiseuille Model 

 Figure 15 shows the observed peaks of the oscillations for well G3902 along with 

two Poiseuille-based models, and is typical for all of the comparable analyses for each of 

the USGS wells considered, as shown in detail in Appendix C. The Poiseuille model 

which uses standard water viscosity does not display the same degree of damping that the 

data indicate, which is not surprising because, based on the high Reynolds number, the 

flow conditions in the wells are turbulent, while the Poiseuille equation applies to laminar 

flow conditions.  Therefore, the viscosity in the model was adjusted to obtain a better fit 

and the effective column length (Le) was used to adjust the timing of the peaks. Table 5 

shows the normal and adjusted kinematic viscosities, as well as the ratio between the two 

for each of the analyzed wells. 
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Figure 15. Poiseuille Model USGS Well G3902. Blue dots show observed peak displacement (in meters) as a function 
of time (seconds). Red line shows Poiseuille based model with standard water viscosity. Blue line shows model with 
adjusted viscosity for improved fit. 

 

Table 5. Comparison of normal and adjusted kinematic viscosities for Poiseuille model applied to wells 

Well 

number 

Kinematic 

viscosity 

(m2/s) 

Adjusted kinematic 

viscosity (m2/s) 

Ratio of adjusted to 

normal viscosity 

G3878 1E-06 1.9E-05 19 

G3902 1E-06 2.1E-05 21 

G3907 1E-06 5.8E-05 58 

G3911 1E-06 5.8E-05 58 

G3915 1E-06 1.8E-04 180 
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5.2.2 Darcy-Weisbach Model 

 Figure 16 shows the data for well G3902 with the Darcy-Weisbach numerical 

model applied and, as in the case of the Poiseuille model results for the wells, these 

results are typical for most of the analyses of similar data, shown in detail in Appendix C. 

The fit of the unadjusted model (red line) is substantially better than that of the 

unadjusted Poiseuille model above. The better fit of the Darcy-Weisbach model is also 

evident by the ratios of the adjusted to unadjusted friction factors (fD), seen in Table 6, 

which are much smaller than the viscosity ratios in Table 5 for the Poiseuille model. 

Consequently, the Darcy-Weisbach model appears to be superior despite the fact that it is 

based on a single fD value that corresponds to a single constant velocity through the 

Reynolds number.   

 

Figure 16. Darcy Weisbach Model USGS Well G3902. Blue dots show observed peak displacement (in meters) as a 
function of time (seconds). Red line shows maximum-velocity-based Reynolds number model. Blue line shows model 
with adjusted friction factor for improved fit. 
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Table 6. Comparison of normal and adjusted friction factor for Darcy Weisbach model applied to wells 

Well 

number 
fD Adjusted fD 

Ratio of adjusted to 

normal fD 

G3878 0.020 0.038 1.9 

G3902 0.020 0.035 1.7 

G3907 0.021 0.13 6.3 

G3911 0.022 0.15 6.7 

G3915 0.026 1.3 51 

 

6 DISCUSSION  

 In general, the peak timing of the proposed models fit the well data better than the 

laboratory data. Some experimentation with the model parameters suggested that an 

initial velocity other than zero might improve the fits of the peak timing. However, the 

required initial velocities are not considered physically realistic for the actual laboratory 

experiments. 

 Invalidation of the assumption L>>w was considered as a possible source of the 

observed discrepancy in peak timing. However, solution of the full equation including 

L+w for the particular experimental data (Figure 17) collected suggests that the impact of 

including L+w in the equation is very small.  

The entry/exit effects included in the models used to simulate the aquifer-free data 

appear to dominate the solutions because they work well with either the Poiseuille or 
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Darcy-Weisbach models. No parameter adjustments are required to achieve relatively 

good agreement with the observations when these effects are included. Experiments with 

a range of pipe sizes, maximum displacements, and water column lengths all produced 

similar results.  

 

Figure 17. Comparison of Darcy-Weisbach Model with L vs. L+w as seen in test 7740. 

 Reynolds numbers were calculated and resulted in values greater than 2000 in all 

laboratory experiments and well data, which signifies that the flow regime exceeds 

laminar conditions, and the values fall into the transitional and turbulent flow regimes. 

The Poiseuille model assumes laminar conditions, therefore it cannot be expected to 

effectively model the underdamped oscillations. The inability of the Poiseuille model to 

model the underdamped oscillations for the well can also be seen by the large viscosity 

adjustments necessary to achieve reasonable descriptions of the data for the wells (and 

for the aquifer-free case without entry/exit effects included in Appendix C). 
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 The Darcy-Weisbach model is more effective at describing the data with less 

extensive parameter adjustments. The differences between the large viscosity ratios in 

Table 5 and the significantly smaller friction factor ratios in Table 6 illustrate the benefit 

of using the Darcy-Weisbach model. However, the Darcy-Weisbach model is based on a 

constant friction factor which comes from a constant Reynolds number and flow velocity. 

The rapid oscillations observed in the experiments and the USGS well data are not 

consistent with the empirical approach underlying the Moody diagram and the concept of 

the friction factor. The standard Poiseuille and Darcy-Weisbach approaches are widely 

applied to pipe flow problems, but are likely inadequate for the underdamped oscillations 

observed in these well tests and laboratory experiments. There are no comparable 

standard approaches for the oscillating flow problem. 

7 CONCLUSIONS 

 Current analyses of slug tests conducted in extremely permeable materials may be 

underestimating the actual hydraulic conductivity. This presents potential problems for 

regions and engineering works that may rely on models founded on good estimates of the 

hydraulic conductivity to predict groundwater behavior. 

 Several new simple models for the aquifer-free description of underdamped 

oscillations in pipes were developed and tested against laboratory and field data. These 

include a Poiseuille equation-based model, a Darcy-Weisbach-based model, and 

extensions of these models incorporating entry/exit effects.  

 Both the Poiseuille and Darcy-Weisbach models incorporating entry/exit effects 

are effective at capturing the behavior of an aquifer-free experimental condition. Possibly 
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as a result of the relatively high Reynolds numbers observed in the well flows, the Darcy-

Weisbach model was more effective at describing the observations from wells than the 

Poiseuille model. The Darcy-Weisbach model does not provide a satisfying description of 

the oscillating flows however, because it is based on a single constant velocity. Although 

no standard approaches appear to be available for such oscillating flows, future work will 

need to assess this issue more thoroughly.    
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APPENDIX A. Selected Snapper Creek wells period analysis 

 

Well Expected 
period (s) 

 Time 
(s) 

Period 
(s) 

Average 
period 

(s) 
      

G3902 9.01 test 1 10.896  9.122167 
   20.001 9.105  
   29.001 9  
   38.001 9  
   47.201 9.2  
      
  test 2 9.59   
   19.251 9.661  
   28.001 8.75  
   37.251 9.25  
   46.251 9  
      
  test 3 20.251   
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Well Expected 
period (s) 

 Time 
(s) 

Period 
(s) 

Average 
period 

(s) 
   29.501 9.25  
   38.251 8.75  
   47.496 9.245  
   56.751 9.255  
      

g3878 9.48 test 1 13.5  9.579083 
   23.001 9.501  
   32.501 9.5  
   42 9.499  
   51.75 9.75  
      
  test 2 8.301   
   18 9.699  
   27.5 9.5  
   37 9.5  
   46.75 9.75  
      
  test 3 13   
   22.501 9.501  
   32.25 9.749  
   41.5 9.25  
   51.25 9.75  
      

G3911 8.33 test 1 16.25  8.560083 
   24.751 8.501  
   33.251 8.5  
   42.001 8.75  
   50.501 8.5  
      
  test 2 11.116   
   19.751 8.635  
   28.251 8.5  
   37.251 9  
   45.251 8  
      
  test 3 5.602   
   14.013 8.411  
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Well Expected 
period (s) 

 Time 
(s) 

Period 
(s) 

Average 
period 

(s) 
   22.751 8.738  
   31.115 8.361  
   39.94 8.825  
      

G3915 3.38 test 1 2.344  2.398417 
   4.708 2.364  
   7 2.292  
   9.5 2.5  
   12 2.5  
      
  test 2 2.177   
   4.501 2.324  
   6.751 2.25  
   9.329 2.578  
   11.802 2.473  
      
  test 3 5   
   7.597 2.597  
   9.802 2.205  
   12.25 2.448  
   14.5 2.25  
      

G3882 9.94 test 1 13.251  11.04167 
   24.001 10.75  
   36.001 12  
      
  test 2 9.251   
   20.751 11.5  
   31.251 10.5  
      
  test 3 11.251   
   21.75 10.499  
   32.751 11.001  
      

G3880 2.88 test 1 20  10.36742 
   30.25 10.25  
   40.747 10.497  
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Well Expected 
period (s) 

 Time 
(s) 

Period 
(s) 

Average 
period 

(s) 
   51.269 10.522  
   61.501 10.232  
      
  test 2 22.75   
   33.5 10.75  
   43.5 10  
   54.25 10.75  
   64.251 10.001  
      
  test 3 27   
   37.251 10.251  
   47.806 10.555  
   58.284 10.478  
   68.407 10.123  
      

G3910 9.08 test 1 6.811  9.041 
   15.906 9.095  
   24.845 8.939  
   33.75 8.905  
   43 9.25  
      
  test 2 17.202   
   26.001 8.799  
   34.751 8.75  
   43.927 9.176  
   53.001 9.074  
      
  test 3 10.996   
   20.32 9.324  
   29.25 8.93  
   38.25 9  
   47.5 9.25  
      

G3914 8.06 test 1 2.863  8.06 
   11 8.137  
   18.751 7.751  
   26.75 7.999  
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Well Expected 
period (s) 

 Time 
(s) 

Period 
(s) 

Average 
period 

(s) 
   35 8.25  
      
  test 2 2.835   
   11.001 8.166  
   19.001 8  
   27.001 8  
   35.251 8.25  
      
  test 3 3.084   
   11.251 8.167  
   19.251 8  
   27.501 8.25  
   35.251 7.75  
      

G3917 6.65 test 1 7.001  6.6025 
   13.501 6.5  
   20.001 6.5  
   26.501 6.5  
   33.251 6.75  
      
  test 2 4.021   
   10.751 6.73  
   17.251 6.5  
   23.751 6.5  
   30.501 6.75  
      
  test 3 4.5   
   11 6.5  
   17.75 6.75  
   24.5 6.75  
   31 6.5  
      

G3918 3.32 test 1 10  2.643417 
   12.5 2.5  
   15.251 2.751  
   18.001 2.75  
   20.501 2.5  
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Well Expected 
period (s) 

 Time 
(s) 

Period 
(s) 

Average 
period 

(s) 
      
  test 2 3.751   
   6.501 2.75  
   9.001 2.5  
   11.501 2.5  
   14.501 3  
      
  test 3 3.531   
   6.001 2.47  
   8.751 2.75  
   11.501 2.75  
   14.001 2.5  
      

G3904 8.85 test 1 5.908  8.841167 
   14.75 8.842  
   23.5 8.75  
   32.501 9.001  
   41.501 9  
      
  test 2 11.5   
   20.25 8.75  
   29.25 9  
   38.001 8.751  
   46.75 8.749  
      
  test 3 11   
   19.751 8.751  
   28.5 8.749  
   37.25 8.75  
   46.251 9.001  
      

G3905 5.83 test 1 9.583  6.294889 
   16.001 6.418  
   22.251 6.25  
   29.251 7  
      
  test 2 9.85   
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Well Expected 
period (s) 

 Time 
(s) 

Period 
(s) 

Average 
period 

(s) 
   16 6.15  
   22.001 6.001  
   28.5 6.499  
      
  test 3 4.664   
   11 6.336  
   17.25 6.25  
   23 5.75  
      

G3906 2.69 test 1 13.44  2.730083 
   15.96 2.52  
   18.96 3  
   21.3 2.34  
   23.88 2.58  
      
  test 2 14.22   
   16.921 2.701  
   20.101 3.18  
   22.561 2.46  
   25.321 2.76  
      
  test 3 12.66   
   15.06 2.4  
   17.88 2.82  
   21.3 3.42  
   23.88 2.58  
      

G3907 8.95 test 1 9.501  8.979167 
   18.501 9  
   27.501 9  
   36.501 9  
   45.251 8.75  
      
  test 2 9.751   
   18.751 9  
   28.001 9.25  
   36.751 8.75  
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Well Expected 
period (s) 

 Time 
(s) 

Period 
(s) 

Average 
period 

(s) 
   45.751 9  
      
  test 3 8.5   
   17.25 8.75  
   26.25 9  
   35.5 9.25  
   44.5 9  
      

G3908 7.58 test 1 8.251  7.90625 
   16.251 8  
   23.751 7.5  
      
  test 2 7.75   
   15.75 8  
   23.75 8  
   31 7.25  
      
  test 3 9.001   
   17.001 8  
   25.001 8  
   33.501 8.5  
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APPENDIX B. Summary of selected Snapper Creek well parameters 

Well 

Number 

Velocity 

(m/s) 

Friction 

factor (fD) 

fD/4r g/L 

(s2) 

Poiseuille damping term 

8ν/r2 

      

G3878 0.58 0.02 0.1 0.462 0.0031 

G3902 0.59 0.02 0.1 0.516 0.0031 

G3907 0.5 0.021 0.1 0.542 0.0031 

G3911 0.4 0.022 0.11 0.585 0.0031 

G3915 0.2 0.026 0.13 7.57 0.0031 
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APPENDIX C. Models 

Test 7713 Models

 



49 
 



50 
 



51 
 



52 
 



53 
 



54 
 



55 
 



56 
 



57 
 



58 
 



59 
 

 

 

 



60 
 

Test 7717 Models
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Test 7725 Models
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Test 7727 Models
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Test 7732 Models
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Test 7740 Models 
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Test G3878 Models
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Test G3902 Models
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Test G3907 Models
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Test G3911 Models
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Test G3915 Models
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