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ABSTRACT OF THE THESIS 

POWER COMPARISON OF SOME GOODNESS-OF-FIT TESTS 

by 

Tianyi Liu 

Florida International University, 2016 

Miami, Florida 

Zhenmin Chen, Major Professor 

There are some existing commonly used goodness-of-fit tests, such as the 

Kolmogorov-Smirnov test, the Cramer-Von Mises test, and the Anderson-Darling test. 

In addition, a new goodness-of-fit test named G test was proposed by Chen and Ye 

(2009). The purpose of this thesis is to compare the performance of some goodness-of-

fit tests by comparing their power.  

A goodness-of-fit test is usually used when judging whether or not the 

underlying population distribution differs from a specific distribution. This research 

focus on testing whether the underlying population distribution is an exponential 

distribution.  

To conduct statistical simulation, SAS/IML is used in this research. Some 

alternative distributions such as the triangle distribution, V-shaped triangle distribution 

are used. By applying Monte Carlo simulation, it can be concluded that the performance 

of the Kolmogorov-Smirnov test is better than the G test in many cases, while the G 

test performs well in some cases. 
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CHAPTER I  INTRODUCTION 

1.1 Introduction 

The goodness-of-fit test is usually used when judging whether or not the 

underlying population distribution, from which a sample is drawn, differs from a 

specific distribution. The method can be used for testing any specified distributions. In 

the present thesis, the problem of testing whether a population distribution is an 

exponential distribution is discussed. Goodness-of-fit tests typically summarize the 

difference between observed values and expected values in the given model. Various 

test methods have been published in the literature. There are some commonly use 

goodness-of-fit tests including the Chi-squared test (Pearson, 1900), the Kolmogorov-

Smirnov test (Kolmogorov, 1933 and Smirnov, 1939), the Cramer-Von Mises test 

(Cramer and von Mises, 1928), and the Anderson-Darling test (Anderson and Darling, 

1952). 

To determine which test should be applied while testing for different 

distributions, power comparison plays an important role. It has been shown that none 

of the existing statistical tests can be considered the “best” test. In the recent years, 

some new statistical tests have been developed to raise the power of goodness-of-fit 

test. Chen and Ye (2009) proposed a new method for testing whether the population 

distribution is a uniform distribution. The proposed test is originally for testing 

uniformity. However, by applying the well-known probability integral transformation, 

the proposed test can be used to test for any specified distribution. 
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The current research will discuss the performance of some existing goodness-

of-fit tests when they are used to check whether or not the underlying probability 

distribution is an exponential distribution. Monte Carlo simulation will be used to 

compare the power of those given tests. 

The Chi-square test, also known as the Pearson’s Chi-square test is a well-

known nonparametric goodness-of-fit test. Chi-square test is widely used in many cases 

due to the central limit theorem. However, when the sample size is small, the 

performance of Chi-square test is not satisfactory. 

The Kolmogorov-Smirnov (K-S) test is the most popular nonparametric 

goodness-of-fit test. The test was proposed by Kolmogorov and Smirnov (1933 and 

1939). The K-S test statistic D measures the distance between the empirical distribution 

function (EDF) using the observed data and the hypothesized distribution function F(x). 

The test statistic of the K-S test can be written as *sup | ( ) ( ) |n n
x

D F x F x  . Past research 

showed that K-S test may be preferred over the Chi-square test if the sample size is 

small. 

The Cramer-von Mises test is an alternative of K-S test. The test was 

developed by Harald Cramer and Richard Edler von Mises (1928-1930). The test has 

been shown to be more powerful compared to the K-S test for some alternative 

hypotheses. The original test statistic, W2, is defined as 
* 2 *[ ( ) ( )] ( )nn F x F x dF x





 , 

where Fn is a given EDF of the observed data and F* is a CDF of the hypothesized 

distribution. 
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Anderson and Darling (1952) further adapted the Cramer-von Mises test, and 

introduced a new test statistic A2, calculated by 
* 2

*

* * 2

[ ( ) ( )]
( )

( ) ( ( ))

nF x F x
n dF x

F x F x







 . It has 

been shown that the Anderson-Darling test can be more powerful than K-S test under 

some situations. For instance, when testing the normality of the observed data, 

Anderson-Darling test provides one of the most powerful statistic for detecting a normal 

distribution adequacy.  

1.2 Basic Ideas 

The test proposed by Chen and Ye uses a different method to test uniformity. 

A power study has shown that this test can provide quite decent power for testing 

uniformity. As mentioned above, the test can be used for testing any specified 

distribution after the probability integral transformation is used. In the present research, 

the exponential case is considered. 

Let X1, X2,…,Xn be observations of a random sample from a population 

distribution with support set [0,1]. Suppose X(1), X(2),…,X(n) are the corresponding 

order statistics. The hypotheses will be: 

H0: The population distribution is uniform distribution on [0,1]. 

H1: The population distribution is not uniform distribution on [0,1]. 

The test statistic is defined as  

              

1
2

( ) ( 1 )

1
1 2

1
( 1) ( )

1
( , ,..., ) .

n

i i

i
n

n X X
n

G X X X
n







  





         (1) 

Here X(0)=0 and X(n+1)=1. It can be shown that the value of G(X1,X2,…,Xn) is always 
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between 0 and 1. It can also be shown that 
( ) ( 1)

1
( )

1
i iE X X

n
 


for i=1,2,…,n+1. 

When H0 is true, the value of G(X1,X2,…,Xn) should be small. On the other hand, if the 

value of G(X1,X2,…,Xn) is too large, it could be an indication that H0 should be rejected. 

For any given 0<α<1, define Gα such that P(G(X1,X2,…,Xn)< Gα)=α. Then H0 will be 

rejected at α level of significance if G(X1,X2,…,Xn)>G1-α.  

To use this G statistic to test whether the underlying distribution is an 

exponential distribution, the well-known probability integral transformation needs to 

be used. 

Let F(x) be the CDF of exponential distribution, then   

         
0, 0

( )
1 , 0.x

x
F x

e x


 

 
                     (2) 

Let ( ) 1 XY F X e    . Then Y has a U[0,1] distribution on [0,1]. The G statistic is 

originally proposed for testing whether the data are from a uniform distribution. Using 

the above transformation, the G test can now be used to test whether the population 

distribution is an exponential distribution.   

Here the test is valid only when the parameter λ is known. However, the 

parameter λ in the exponential distribution is usually unknown. The Lilliefor’s method 

will be introduced to solve this problem. The basic idea is to estimate the parameter by 

calculating the sample mean. For the exponential distribution, 
1ˆ
x

  . 

Assume X is from an exponential distribution with parameter λ. Then the 

CDF will be: 

                     ( ) 1 xF x e  (x>0). 
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Let 1 XY e   . Then Y is uniformly distributed on [0,1]. This is because 

                         

ln(1 )
( )

( ) ( )

(1 )

( 1 )

ln(1 )
( )

1

1 (1 )

(0 1).

X

X

y

F y P Y y

P e y

P e y

y
P X

e

y

y y















 

 

  

  


  

 

  

   

 

This is the CDF of the uniform distribution on [0,1]. The above proof shows that the 

parameter λ has no contribution to F(y). That means no matter what value of λ is 

selected, the distribution after transformation is still a uniform distribution. The value 

of λ can be arbitrarily selected at the beginning of the statistical simulation. The 

selection of the initial value of λ will not change the distribution of the test statistic 

defined in (1). 
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CHAPTER II  METHODOLOGY 

In the current research, the power of two goodness-of-fit tests, G test and 

Kolmogorov-Smirnov test, will be compared when they are used to test whether the 

underlying distribution is an exponential distribution. The following are done in the 

present research: 1) Find the critical values of the two test statistics for different 

sample sizes; 2) Various alternative distributions are used to compare the power of 

these two tests. The power of the G test is compared to the power of Kolmogorov-

Smirnov test in this study. The details related to power will be mentioned in Chapter 

III.  

2.1 Finding Critical Values 

2.1.1 G Test 

The following are the steps for finding critical values: 

(a) Generate a pseudo random sample u1, u2,…,un from the uniform distribution on 

[0,1]; 

(b) Choose a value of λ arbitrarily, say λ=1. Calculate
ln(1 )

( 1,2,..., )i
i

u
x i n




    ; 

(c) Compute the sample mean x . Then the estimate of λ is 
1ˆ
x

  ; 

(d) Calculate 
ˆ

1 ( 1,2,..., )ix

iy e i n


    ; 

(e) Sort y1, y2,…,yn to find the corresponding order statistic y(1), y(2),…,y(n), and 

define y(0)=0, y(n+1)=1; 

(f) Calculate G(y1,y2,…,yn) using equation (1); 

(g) Repeat (a)-(f) k times (k=10,000,000); 
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(h) Sort all the values of G and find the 90th, 95th, 99th, 99.5th and 99.9th quantiles. For 

given 0<α<1, the critical values of the G test are listed in Table 1.  

The decision rule will be to reject the null hypothesis at α level of 

significance if the test statistic is greater than G1-α.  

2.1.2 Kolmogorov-Smirnov Test 

Let X1, X2,…,Xn be observations of a random sample from a population 

distribution with a distribution function F(x), and Fn
*(x) be the corresponding 

empirical distribution function. Then the Kolmogorov-Smirnov test statistic is: 

       *s u p | ( ) ( ) | m a x ( , )n n n n
x

D F x F x D D     

where *sup[ ( ) ( )]n n
x

D F x F x    and *sup[ ( ) ( )]n n
x

D F x F x   . 

Let X(1), X(2),…,X(n) be the corresponding order statistic. Define (0) ( 1), nX X    . 

Then *( )n

i
F x

n
 for ( ) ( 1)i iX x X    (i=0,1,…,n). 

( ) ( 1)

( ) ( 1)

0

0

( )
0

( )
1

max sup ( )

max inf ( )

max ( )

max max ( ) ,0 .

i i

i i

n
i n X x X

X x Xi n

i
i n

i
i n

i
D F x

n

i
F x

n

i
F X

n

i
F X

n







   

  

 

 

 
  

 

 
  

 

 
  

 

  
    

  

                                           (3) 

( )
1

1
max max ( ) ,0 .n i

i n

i
D F X

n



 

   
    

  
                                    (4) 

The procedure for finding critical values of the Kolmogorov-Smirnov test is 

as follows: 

(a) Generate a pseudo random sample u1, u2,…,un from the uniform distribution on 
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[0,1]; 

(b) Choose a value of λ arbitrarily, say λ=1. Calculate
ln(1 )

( 1,2,..., )i
i

u
x i n




    ; 

(c) Compute the sample mean x . Then the estimate of λ is 
1ˆ
x

  ; 

(d) Calculate ˆ
i iy x  (i=1,2,…,n); 

(e) Sort all the y1, y2,…,yn to find the corresponding order statistic y(1), y(2),…,y(n); 

(f) Calculate nD and nD
using equations (3) and (4), and find out the bigger one of 

nD and
nD which is the test statistic

nD ; 

(g) Repeat (a)-(f) k times (k=10,000,000); 

(h) Sort all the values of nD  and find the 95th quantiles. For given 0<α<1, the critical 

values of the K-S test needed in power study are listed in Table 2. The decision 

rule will be to reject the null hypothesis at α level of significance if the test 

statistic is greater than D1-α.  

2.2 Decision Rules 

The hypotheses are: 

H0: The population distribution is an exponential distribution. 

H1: The population distribution is not an exponential distribution. 

2.1.3 G Test 

The procedure for finding power of the G test statistic is as follows: 

(a) Generate a pseudo random sample u1, u2,…,un from the uniform distribution on 

[0,1]; 

 



9 

 

(b) For a particular alternative distribution, convert u1, u2,…,un to a sample x1,x2…,xn 

from that alternative distribution (Details will be discussed in Chapter III); 

(c) Compute the sample mean x . Then the estimate of λ is 
1ˆ
x

  ; 

(d) Calculate 
ˆ

1 ( 1,2,..., )ix

iy e i n


    ; 

(e) Sort y1, y2,…,yn to find the corresponding order statistic y(1), y(2),…,y(n), and 

define y(0)=0, y(n+1)=1; 

(f) Calculate G(y1,y2,…,yn) using equation (1). If G(y1,y2,…,yn) is greater than the 

corresponding critical value in Table 1 (here only α=0.05 is used), reject H0. Then 

record rejection count; 

(g) Repeat (a)-(f) k times (k=1,000,000). Iterate rejection count k times; 

(h) Compute the power which is rejection count/k; 

(i) Repeat procedure (a)-(h) for different sample sizes. 

2.1.4 Kolmogorov-Smirnov Test 

The followings are the steps for finding power of the Kolmogorov-Smirnov 

test statistic: 

(a) Generate a pseudo random sample u1, u2,…,un from the uniform distribution on 

[0,1]; 

(b) For a particular alternative distribution, convert u1, u2,…,un to a sample x1,x2…,xn 

from that alternative distribution (Details will be discussed in Chapter III); 

(c) Compute the sample mean x . Then the estimate of λ is 
1ˆ
x

  ; 

(d) Calculate ˆ
i iy x  (i=1,2,…,n); 

(e) Sort y1, y2,…,yn to find the corresponding order statistic y(1), y(2),…,y(n); 
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(f) Calculate
nD and

nD using equation (3) and (4), and find out the bigger one which 

is the test statistic
nD . If 

nD  is greater than the corresponding critical value in 

Table 2, reject H0. Then record rejection count;; 

(g) Repeat (a)-(f) k times (k=1,000,000). Iterate rejection count k times; 

(h) Compute the power which is rejection count/k; 

(i) Repeat procedure (a)-(h) for different sample sizes. 

Using the procedures above including the procedure in 2.2.1, the power of 

G test and K-S test for testing different alternative distributions with different sample 

sizes can be found.  
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CHAPTER III  POWER COMPARISON 

The power of a hypothesis test is the probability of rejecting the null 

hypothesis correctly when the alternative hypothesis is true. A test with a high power 

(high rejection rate) is considered to be a good test method. The ideal power of a test 

is 1, that is, always reject the null hypothesis when the null hypothesis is not true. In 

particular, the power of the test statistics discussed in this research is to reject the 

exponential hypothesis when population distribution is not exponential. When the 

power is closed to 1, the test can be considered to be a good test. 

In the present study, the power is estimated using the rate of rejection. The 

same test procedure will be repeated k times to test k sets of pseudo random samples 

from specified alternative distribution. The rejection rate among these k repetitions 

will be the power of this goodness-of-fit test. In this research, various alternative 

distributions such as triangle distribution, V-shaped triangle distribution will be used 

to conduct Monte Carlo simulation. The value of k is set to be 1,000,000 to guarantee 

the accuracy of power comparison. 

The sample size n is also an influential factor to the power. The power will 

increase when n becomes large. In this study, n=5, 10, 20, 30, 40, 50 will be used. 

Significance level α will be set as 0.05.  

3.1 Selected Alternative Distributions 

3.1.1 Triangle Alternative Distribution 

The probability density function of the triangle distribution is 
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2
,0

2(1 )
, 1( )

1

0, elsewhere;

x
x h

h

x
h xf x

h


 




  



 

 

and the cumulative distribution function is: 

2

2

0, 0

1
,0

( )
(1 )

1 , 1
1

1, 1.

x

x x h
h

F x
x

h x
h

x



  


 
   

 




 

Let U=F(X). According to the probability integral transformation, U has a uniform 

distribution on [0, 1]. This is because when 0≤X<h,    

2

2

( ) ( )

1
( )

( )

( )

1

);

F u P U u

P X u
h

P X hu

P X hu

hu
h

u u h

 

 

 

 



   

 

and when h≤X<1, 

2

2

2

( ) ( )

(1 )
(1 )

1

((1 ) (1 )(1 )

(1 (1 )(1 ))

( 1 (1 )(1 ))

(1 1 (1 )(1 ))
1

1

1 (1 )

1).

F u P U u

X
P u

h

P X u h

P X u h

P X u h

u h

h

u

u h u
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Above is the cdf of the uniform distribution on [0, 1]. 

In this study, a pseudo random sample from uniform distribution is generated first. 

Then the inverse function of U 

,0

1 (1 )(1 ), 1
i

hU U h
X

U h h U

  
 

    

 

has a triangle distribution with parameter h (i=1,2,…,n).SAS/iml can be used to 

perform the calculation after applying the transformation. 

Here h is a constant between 0 and 1. The selected values are h=0.25, 0.5, 

and 0.75 in this power study. 

Alternative distribution 1 

Select h=0.25. This is a left-skewed triangle distribution. Figure 1 shows 

that the power is increasing along with the sample size becomes large. The K-S test 

performs better than G test in all cases. When sample size n is large enough (n=50), 

the power curve of these two tests merges together and the power is very close to 1.  

Alternative distribution 2 

Select h=0.5. This is a symmetric triangle distribution. Comparing to 

alternative distribution 1, the result is showed similarly in Figure 2. The power 

increases with n increases, and the K-S test still performs better than the G test. When 

the sample size increases to 20, the power of K-S test is approximate 1. However, the 

power of G test approaches to 1 when n=40. Two curves are merging faster than the 

previous case. 
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Alternative distribution 3 

Select h=0.75. This is a right-skewed triangle distribution. It can be found in 

Figure 3, that the K-S test is more powerful than the G test when n<30. After n 

reaches 30, these two tests perform almost same.  

3.1.2 V-shaped Triangle Distribution 

The probability density function of the V-shaped triangle distribution is: 

2
2 ,0

2(1 )
2 , 1( )

1

0, elsewhere;

x
x h

h

x
h xf x

h


  




   



 

 

and the cumulative distribution function is: 

2

2

0, 0

1
2 ,0

( )
( )

, 1
1

1, 1.

x

x x x h
h

F x
x h

h h x
h

x



   


 
   

 




 

In 3.1.1 a transformation is used. Similarly, let U=F(X). According to the probability 

integral transformation, U has a uniform distribution on [0, 1]. This is because when 

0≤X<h, 

2

2

2 2

( ) ( )

1
(2 )

( 2 0)

(( ( ))( ( )) 0)

F u P U u

P X x u
h

P X hX hu

P X h h hu X h h hu

 

  

   

       

 

Since 0≤X<h, then 2( ) 0,X h h hu     
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2

2

2 2

( ) ( ( ) 0)

( )

2 2 2 2

).

F u P X h h hu

P X h h hu

h h hu h u h hu

u u h

    

   

      

   

 

When h≤X<1, 

2

2

( ) ( )

( )
( )

1

( 2 0)

(( ( ( 1)( )))( ( ( 1)( ))) 0)

F u P U u

X h
P h u

h

P X hX h u hu

P X h h h u X h h h u

 


  



     

         

 

Since h≤X<1, then ( ( 1)( ) 0,X h h h u      

( ) ( ( ( 1)( ))) 0)

( ( 1)( ))

( 1)( )

1

1).

F u P X h h h u

P X h h h u

h h u
h

h

h h u u h u

     

    

 
 



      

 

Above is the cdf of the uniform distribution on [0, 1]. 

In this study, a pseudo random sample from uniform distribution is generated. Then 

2 ,0

( 1)( ), 1
i

h h hU U h
X

h h h U h U

    
 

    

 

has a V-shaped triangle distribution (i=1,2,…,n).  

Here h is a constant between 0 and 1. Select h=0.25, 0.5, and 0.75 in this 

power study. 

Alternative distribution 4 

Select h=0.25. This is a left-skewed V-shaped triangle distribution. Figure 4 

shows that the K-S test performs better than the G test when n≤30. The powers of 

both tests are similar, and approach to 1 when sample size is greater than 30. 
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Alternative distribution 5 

Select h=0.5. This is a symmetric V-shaped triangle distribution. In Figure 

5, it can be easily found that the G test is better than the K-S test in all cases. As the 

sample size increases, the powers of both tests are increasing dramatically. The 

powers approach to 1 when n=50. 

Alternative distribution 6 

Select h=0.75. This is a right-skewed V-shaped triangle distribution. When 

n=5, K-S test performs slightly better than G test. Figure 6 shows that the G test 

performs much better than K-S test when n>10. The power of G test increases faster 

than the K-S test does. However, compare to the previous 2 cases, the powers of both 

of the tests are low. 

3.2 Summary of the Results 

Based on the above power analysis, it can be found that: 

(a) For all the triangle alternative distributions, including h=0.25, 0.5, 0.75, the K-S 

test performs better than the G test.  

(b) For the left-skewed V-shaped triangle alternative distribution, the K-S test is better 

than the G test. However, for the symmetric and right-skewed V-shaped triangle 

alternative distribution, the G test performs better than the K-S test inversely, 

especially for the right-skewed case.  

(c) For all the left-skewed alternative distributions, the K-S test performs better than 

the G test. 
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CHAPTER IV  CONCLUSION AND DISCUSSION 

The goodness-of-fit test is widely used when checking whether the 

underlying population distribution differs from a specified distribution. In this research, 

exponential distribution is considered as a specific case. The concept of the goodness-

of-fit test is to compute the difference between observed values and expected value in 

the given model. There are various commonly used goodness-of-fit tests such as the 

Chi-square test, the Kolmogorov-Smirnov test, the Cramer-Von Mises test, and the 

Anderson-Darling test. In addition, there is also an alternative G test statistic was 

proposed by Chen and Ye (2009). It was proposed for testing uniformity originally. 

However, the probability integral transformation makes it possible to use this test to test 

for any distribution.  

Power study is the core section of this research. The power of G test and 

Kolmogorov-Smirnov test are compared by using the Monte Carlo simulation. Some 

alternative distributions such as triangle distribution and V-shaped triangle distribution 

are used to compare the power of these two tests. The result shows that Kolmogorov-

Smirnov test performs better than G test when the alternative distribution has a triangle 

distribution. For the left-skewed V-shaped triangle alternative distribution, the K-S test 

is better than G test. However, for the symmetric and right-skewed V-shaped triangle 

alternative distribution, G test performs better than K-S test. 
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Table 1   Critical Values of G Test Statistic 

 

n G0.900 G0.950 G0.975 G0.990 G0.995 G0.999 

5 0.223 0.273 0.323 0.392 0.443 0.557 

6 0.193 0.234 0.277 0.334 0.379 0.481 

7 0.170 0.205 0.241 0.290 0.329 0.420 

8 0.151 0.182 0.213 0.256 0.290 0.371 

9 0.137 0.163 0.191 0.229 0.258 0.331 

10 0.124 0.148 0.172 0.206 0.233 0.298 

11 0.114 0.135 0.157 0.187 0.211 0.269 

12 0.105 0.124 0.144 0.171 0.193 0.246 

13 0.097 0.115 0.133 0.157 0.177 0.225 

14 0.091 0.106 0.123 0.145 0.164 0.208 

15 0.085 0.099 0.114 0.135 0.151 0.192 

16 0.080 0.093 0.107 0.126 0.141 0.179 

17 0.075 0.088 0.100 0.118 0.132 0.167 

18 0.071 0.083 0.094 0.111 0.124 0.156 

19 0.067 0.078 0.089 0.104 0.116 0.146 

20 0.064 0.074 0.084 0.098 0.110 0.138 

21 0.061 0.070 0.080 0.093 0.104 0.130 

22 0.058 0.067 0.076 0.088 0.098 0.123 

23 0.056 0.064 0.072 0.084 0.093 0.116 

24 0.053 0.061 0.069 0.080 0.089 0.111 

25 0.051 0.059 0.066 0.076 0.085 0.105 

26 0.049 0.056 0.063 0.073 0.081 0.100 

27 0.047 0.054 0.061 0.070 0.077 0.096 

28 0.046 0.052 0.058 0.067 0.074 0.092 

29 0.044 0.050 0.056 0.064 0.071 0.088 

30 0.043 0.048 0.054 0.062 0.068 0.084 

31 0.041 0.047 0.052 0.060 0.066 0.081 

32 0.040 0.045 0.050 0.058 0.063 0.078 

33 0.039 0.044 0.049 0.055 0.061 0.075 

34 0.037 0.042 0.047 0.054 0.059 0.072 

35 0.036 0.041 0.045 0.052 0.057 0.070 

36 0.035 0.040 0.044 0.050 0.055 0.067 

37 0.034 0.038 0.043 0.049 0.053 0.065 

38 0.033 0.037 0.041 0.047 0.052 0.063 

39 0.032 0.036 0.040 0.046 0.050 0.061 

40 0.032 0.035 0.039 0.044 0.048 0.059 

41 0.031 0.034 0.038 0.043 0.047 0.057 

42 0.030 0.034 0.037 0.042 0.046 0.055 

43 0.029 0.033 0.036 0.041 0.044 0.054 

44 0.029 0.032 0.035 0.040 0.043 0.052 

45 0.028 0.031 0.034 0.039 0.042 0.051 

46 0.027 0.030 0.033 0.038 0.041 0.049 

47 0.027 0.030 0.033 0.037 0.040 0.048 

48 0.026 0.029 0.032 0.036 0.039 0.047 

49 0.026 0.028 0.031 0.035 0.038 0.045 

50 0.025 0.028 0.030 0.034 0.037 0.044 
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Table 2   Critical Values of K-S Test Statistic 

 

n D0.95 

5 0.442 

10 0.324 

20 0.235 

30 0.193 

40 0.168 

50 0.151 

 

Table 3    Power Comparison: Triangle (h=0.25) 

n G-TEST K-S TEST   

5 0.0205 0.2491   

10 0.1276 0.5190   

20 0.4102 0.8620   

30 0.6777 0.9743   

40 0.8623 0.9962   

50 0.9440 0.9995   

 

Table 4    Power Comparison: Triangle (h=0.5) 

n G-TEST K-S TEST   

5 0.0615 0.4131   

10 0.3034 0.7626   

20 0.7326 0.9803   

30 0.9443 0.9992   

40 0.9939 1   

50 0.9995 1   

 

Table 5    Power Comparison: Triangle (h=0.75) 

n G-TEST K-S TEST   

5 0.1047 0.4764   

10 0.4174 0.8289   

20 0.8838 0.9921   

30 0.9930 0.9998   

40 0.9999 1   

50 1.0000 1   
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Table 6    Power Comparison: V-shaped Triangle (h=0.25) 

n G-TEST K-S TEST   

5 0.2368 0.2916   

10 0.5067 0.5396   

20 0.8487 0.8816   

30 0.9777 0.9813   

40 0.9983 0.9980   

50 0.9999 0.9998   

 

Table 7    Power Comparison: V-shaped Triangle (h=0.5) 

n G-TEST K-S TEST   

5 0.1325 0.1151   

10 0.2313 0.1976   

20 0.4999 0.4533   

30 0.7533 0.6983   

40 0.9088 0.8610   

50 0.9679 0.9451   

 

Table 8    Power Comparison: V-shaped Triangle (h=0.75) 

n G-TEST K-S TEST   

5 0.0478 0.0549   

10 0.0669 0.0565   

20 0.1255 0.0765   

30 0.2239 0.1069   

40 0.3632 0.1470   

50 0.4847 0.1967   
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Figure 1 Alternative Distribution 1: Triangle (h=0.25)  

 

 

 
Figure 2 Alternative Distribution 2: Triangle (h=0.5)  

 

 

Figure 3 Alternative Distribution 3: Triangle (h=0.75) 
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Figure 4 Alternative Distribution 4: V-shaped Triangle (h=0.25) 

 

 

Figure 5 Alternative Distribution 5: V-shaped Triangle (h=0.5) 

 

 

Figure 6 Alternative Distribution 6: V-shaped Triangle (h=0.75) 
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