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está dedicado a ustedes.

iv



v 	

ABSTRACT OF THE  DISSERTATION 
	

THE  BEAM-HELICITY ASYMMETRY FOR  γp → pπ+ π−   AND γp → pK + K − 
	

AND A PARTIAL WAVE  ANALYSIS FOR  EXCITED HYPERONS 
	

by 
	

Rafael A. Badui-Cruz 
	

Florida  International University,  2016 
	

Miami, Florida 
	

Professor  Lei Guo, Co-Major  Professor 
	

Professor  Brian A. Raue,  Co-Major  Professor 
	
	

The first-time  measurement of the angular  dependence  of the beam-helicity  asymme- 

try for γp → pK + K −  is shown and compared to γp → pπ+ π− . The data obtained  were from 

the  CLAS g12 experiment at  Jefferson Lab.  The  experiment utilized  a beam of circularly 

polarized photons  with energies between 1.1 and 5.4 GeV incident on an unpolarized  liquid 

hydrogen  target, which produced  an unprecedented number  of strange  hadrons  in photo- 

production.  The  production mechanism  for strange  hadrons  is not  well understood. The 

beam-helicity  asymmetry is a polarization observable that provides information  on interfer- 

ing production mechanisms  in the reaction.  It is shown that the asymmetry is sensitive to 

several kinematic  variables  that are key in modeling the  reaction  dynamics.   Furthermore, 

the comparison  of the beam-helicity asymmetry between the kaon and pion channels serves 

as a platform  for the  investigation of flavor dependence.   A partial wave analysis  on the 

pK −  system is also performed  in a search for missing hyperon  excitations. 
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CHAPTER 1

Introduction

It has become common knowledge that atoms are the basic building blocks of matter.

Atoms are composed of a positively charged nucleus with electrons orbiting it. The nucleus

itself is made up of protons and neutrons, which are then used to classify atoms by element

and isotope. An element is distinguished by the number of protons inside the nucleus and an

isotope by the number of neutrons. The hydrogen atom is the simplest element consisting of

one proton in its nucleus. If the electromagnetic force were the only force present within the

nucleus and since two like charges repel, it would be impossible for a nucleus consisting of

two or more protons to exist. Consequently, elements beyond hydrogen would not be able to

exist. However, the most abundant helium atom contains two protons in its stable nucleus

along with two neutrons. It can be deduced that there is another force interacting within

the nucleus that keeps the nucleus together and involves the neutrons. These interactions

between the protons and neutrons must overcome the electric repulsion at short distances

and, as this force is not observed at larger distances, its strength must weaken at large

distances. This force is known as the strong force.

Shortly after the discovery of the neutron, Heisenberg provided remarkable insight

into the strong force by postulating that since protons and neutrons have almost identical

masses, they are really two flavors of the same particle called the nucleon, and that there

must be some process that transforms one into the other [1]. Mathematically, protons and

neutrons are the basis states for the two-dimensional irreducible representation of SU(2)

known as isospin 1/2. The process that transforms one into the other was discovered to be

the exchange of pions. The picture that Heisenberg provided, however, was incomplete.

Several particles, more massive than protons and neutrons, but always decaying

into either a proton or neutron, were later discovered. Some of the particles decayed in

∼ 10−23 seconds and were considered to be excited nucleon states. In contrast, a massive

particle that decayed into a nucleon and a pion in ∼ 10−10 seconds was also discovered.

This particle was called the Λ. In addition to its peculiar lifetime, the Λ was produced
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copiously and always in association with a kaon, a particle resembling a more massive

pion. This observation led to Pais’s theory of associated production [2]. Pais explained

that particles that are produced in pairs (associated production) are produced through a

different process than their decays. In the case of the Λ, it was produced through the strong

interaction and decayed through the weak interaction. This phenomenon was considered

to be strange, which led to the eventual name of the quantum number and quark flavor.

While Heisenberg’s theory was incomplete, it established an important role of symmetry

and representation theory in particle physics.

Following Heisenberg and Pais, Gell-Mann and Zweig postulated the existence of

quarks coming in three flavors1, with exchanges in color being mediated by gluons [3]. An

important observation (or lack of) is that individual quarks have not been observed. This

led to an important property of the interactions between quarks known as confinement.

Confinement means a lone quark will not be observed as the force between two quarks will

get stronger as they get further apart. When the two quarks are pulled sufficiently far

apart, the large binding energy will be sufficient for a quark-antiquark pair to form from

the vacuum and bind with the original two in a process called hadronization. With the

discovery of the ∆++, a particle composed of three identical up-flavored quarks, the color

charge of quarks was discovered. The color charge of a quark is necessary to reconcile the

fact that three identical fermions are in a completely symmetric state, which is forbidden

by Fermi statistics. Along with color, confinement implies that all observed states must be

invariant under a SU(3) action. Ceding to the typical analogy in the theory of visual colors,

labeling the three color charges red, green, blue, their anticolors cyan (antired), magenta

(antigreen), yellow (antiblue), confinement amounts to a bound state being colorless (white

or black). Particles composed of quarks and gluons in a bound state are known as hadrons.

Baryons are a subcategory of hadrons that are composed of three quarks in a red-blue-

green color combination (white states) while mesons are hadrons composed of a quark and

an antiquark pair in a color-anticolor combination (black states). The theory consequently

developed is known as quantum chromodynamics (QCD).

1Currently, six flavors of quarks are known and are split into three generations. cf. Table 1.1
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The three flavors of quarks generalized the concept of isospin, which is carried by

the up- and down-flavored quarks. With the third quark, Gell-Mann and Zweig, along

with Nakano and Nishijima [4], postulated the existence of a new quantum number, known

as strangeness (denoted by S), and its relationship with the charge, isospin, and baryon

number. The Λ was classified as a baryon with strangeness S = −1. Using this model,

Gell-Mann was able to categorize the known particles of his time, consolidate competing

theories, and predict the Ω− baryon, which was observed several years after his prediction.

Table 1.1 shows a table of the known quarks. The up, down, and strange quarks are consid-

ered to be light quarks while the other three are heavy. Figure 1.1 shows the light baryon

octet and decuplet organized using Gell-Mann’s formalism. Quantum chromodynamics is

the fundamental theory of the strong interactions. Along with confinement it exhibits an-

other unique property known as asymptotic freedom. Contrary to confinement, asymptotic

freedom means that at high energies, quarks and gluons are weakly interacting. Asymptotic

freedom was theorized by Wilczek, Gross, and Politzer [5, 6]. Unlike asymptotic freedom,

it is currently unknown how to prove confinement within the framework of QCD, which

makes the connection between QCD and nuclear physics a murky area, yet abundant with

discovery opportunities.

Quark Charge Strangeness Charmness Bottomness Topness

up 2/3 0 0 0 0

down −1/3 0 0 0 0

charm 2/3 0 1 0 0

strange −1/3 −1 0 0 0

top 2/3 0 0 0 1

bottom −1/3 0 0 −1 0

Table 1.1: Table of quarks. Source: [7]
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S = 0

S = −1

S = −2

(a) Light Baryon Octet

S = 0

S = −1

S = −2

S = −3

(b) Light Baryon Decuplet

Figure 1.1: Light Baryon Octet and Decuplet. The strangeness quantum number is shown
on the right. Source: [8]

One of the main difficulties of QCD is that it is a non-abelian gauge theory, with

symmetry group SU(3), which makes the theory difficult to solve analytically. Consequently,

many approximation schemes have been developed to aid our understanding at different

energy regimes. Perturbative QCD takes advantage of the asymptotic freedom of quarks

at high energies and expands on the small coupling constant in this regime. While this

approach has been highly successful at high energies where the quarks and gluons can be

taken to be approximately free, it is of no use at lower energies where confinement causes

quarks to hadronize.

Another way of studying QCD is through effective field theories. Effective field theo-

ries consider only the main contributions for a given energy range while suppressing higher

and lower energy effects, which makes calculations at the relevant energies easier. One of

the most successful models is the constituent quark model (CQM). The CQM is an effective

field theory that considers only the valence quark degrees of freedom inside a hadron. These

quarks attain an effective mass and nonpointlike structure. Although the effective masses
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of the quarks may differ greatly from their true values, the CQM makes specific predictions

on hadron excitations and their masses as shown in Fig. 1.2 and Table 1.22.

Figure 1.2: CQM predictions for S = 0 states matched with experimentally observed
resonances. Left hand side: N -states. Right hand side: ∆-states. Columns labeled “exp”
are experimentally observed masses. Three- and four-star states are indicated by full lines,
two-star states by dashed lines, one-star states by dotted lines. Columns labeled “QM” are
CQM predictions. Dashed lines are unobserved states. The lines in between the columns
are the states’ assignment to their observed and predicted masses. The dashed lines under
the “QM” columns are unobserved states. Note: assignment to CQM values are tentative.
Source: [7]

As demonstrated by Fig. 1.2, there are a number of nucleon states that are predicted

by the CQM that have not been observed, a problem commonly known as the missing baryon

2The Particle Data Group (PDG) is an international collaboration that compiles and evaluates measure-
ments related to particle physics and related areas. The PDG classifies baryon resonances according to a
star rating based on existing evidence. The ratings range from one star to four stars. Four stars: existence is
certain. Three stars: existence is likely to certain, but further confirmation is desirable. Two stars: evidence
of existence is only fair. One star: evidence of existence is poor [7].
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problem. Reference [9] proposes that discovering unobserved S = 0 baryons by analyzing

the S = −1 sector is possible as some excited nucleons have strong decay modes into Λs

and Σs. Comparing Tables 1.2 and 1.3, there are many unobserved but predicted baryons

with S = −1 and masses greater than 2.0 GeV as well. As shown in Fig. 1.3, S = −1 and

S = −2 states are narrower than S = 0 states. This potentially makes the experimental

discovery of these states easier. As producing baryons is more difficult the more strangeness

it contains and widths get larger as the mass increases, searching for S = −1 states is a

good compromise for experiments: S = −1 states are narrower than the S = 0 ones and

yield more statistics than the S = −2 states.

Mass (GeV)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

 (
G

e
V

)
Γ

0

0.1

0.2

0.3

0.4

0.5

0.6

S= 0 I=0

S= 0 I=1

S=­1 I=0

S=­1 I=1

S=­2

Figure 1.3: Comparison of resonance widths and masses for S = 0 (red & magenta), S = −1
(blue & cyan), and S = −2 (black) states with at least three-star PDG rating.

These resonances could be missing because either they have not yet been discovered

or do not exist. A possible reason for the excess states according to the CQM is that there

are too many degrees of freedom. An alternative model to the CQM with fewer degrees of
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State JP Predicted Mass (MeV)

Λ 1
2

−
2015, 2095, 2160, 2195, 2235, 2280

Σ 1
2

−
2110, 2155, 2165, 2205, 2260, 2275

Λ 3
2

−
2030, 2110, 2185, 2230, 2290

Σ 3
2

−
2120, 2185, 2200, 2215, 2265, 2290

Λ 5
2

−
2180, 2225, 2240, 2295

Σ 5
2

−
2205, 2250, 2270, 2280

Λ 7
2

−
2150, 2230

Σ 7
2

−
2245

Λ 1
2

+
2010, 2105, 2120,2195, 2270

Σ 1
2

+
2005, 2030, 2105, 2240

Λ 3
2

+
2050, 2080, 2120, 2160

Σ 3
2

+
2010, 2030, 2045, 2085, 2115, 2155

Λ 5
2

+
2035, 2115, 2180

Σ 5
2

+
2030, 2095, 2110, 2130

Λ 7
2

+
2120

Σ 7
2

+
2060, 2125

Table 1.2: List of strange baryon states with masses greater than 2.0 GeV as predicted
in [10]. Table 1.3 shows the observed states.
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Λ States JP Star Rating Σ States JP Star Rating

Λ(2000) * Σ(2000) 1/2− *

Λ(2020) 7/2+ * ΣΣΣ(2030) 7/2+ ****

Λ(2050) 3/2− * Σ(2070) 5/2+ *

ΛΛΛ(2100) 7/2− **** Σ(2080) 3/2+ **

ΛΛΛ(2110) 5/2+ *** Σ(2100) 7/2− *

Λ(2325) 3/2− * ΣΣΣ(2250) ***

ΛΛΛ(2350) 9/2+ *** Σ(2455) **

Λ(2585) ** Σ(2620) **

Σ(3000) *

Σ(3170) *

Table 1.3: Experimentally observed baryon resonances with S = −1 and masses greater
than 2.0 GeV. Three- or four-star states are in bold. Table 1.2 shows the predicted S = −1
states from CQM. Source: [7]
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freedom is the diquark model [11]. Because of the reduced degrees of freedom, fewer states

are allowed. Like the CQM, the diquark model also treats a baryon as having three valence

quarks, but only two of them are strongly coupled. References [12–14] make predictions

of the excitation spectra for S = 0 and S = −1 states with masses less than 2.0 GeV.

Compared to experimental values, their predictions are accurate but, like the CQM, also

have missing states, albeit fewer.

While effective field theories have been highly successful at explaining hadronic phe-

nomena, they have an inherent difficulty as demonstrated by the CQM and diquark models:

the identification of the relevant and irrelevant degrees of freedom as the number of excited

states predicted follow from the number of effective degrees of freedom. As such, the com-

parison of the experimentally determined excitation spectrum to model predictions provides

constraints on what the relevant degrees of freedom are, which is crucial to the understand-

ing of QCD [11]. Figure 1.4 contains a schematic showing the cooperation between theory

models and experimental observables.

Figure 1.4: Schematic representation of the relation between experimental observables,
QCD, and reaction models. Source: [11]

Another way of approaching QCD is through Lattice QCD (LQCD). Lattice QCD

is a nonperturbative, first-principles approach that approximates space-time as a lattice.

The continuum limit is then observed as the lattice spacing goes to zero; it is a way of
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regularizing QCD. Lattice QCD also makes baryon excitation calculations, shown in Fig. 1.5

[15]. Even with this alternative approach, the missing baryon problem still prevails as there

are an excess number of predicted states. Exacerbating the problem, Fig. 1.5 shows overlap

between the states, which makes it difficult to isolate them. Furthermore, by approximating

physics on a lattice, Poincaré symmetry3 is lost and cannot be recovered in a straightforward

way, even in the continuum limit. Conservation of angular momentum is lost as a result.

Even with these drawbacks, LQCD remains as a leading theoretical tool to study QCD from

first principles at energies where confinement dominates.

(a) LQCD Λ predictions (b) LQCD Σ predictions

Figure 1.5: LQCD S = −1 predictions. Pion mass was taken to be 391 MeV. Different
colors indicate different flavor representations (SU(3)F ). Blue is the flavor octet, yellow is
the flavor singlet, beige is the flavor decuplet. mΩ = 1672 MeV is the mass of the ground
state Ω. The height of the box indicates the width of the state. Source: [15]

The primary experimental technique used to identify states is through spectroscopy.

Spectroscopy is the study of the interactions between matter and radiation. Originally,

spectroscopy was used to determine the structure of atoms. In an atomic spectroscopy

experiment, the electrons of an atom are excited to higher energy states by absorption of a

photon. When the electron transitions to a lower energy state, it emits a photon with energy

3The group of Minkowski isometries, R1,3 o SO(1, 3), composed of translations, rotations, and boosts.
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equal to the amount the electron lost. The photon’s energy is uniquely determined from

its wavelength. The wavelength is recorded and the experiment is repeated. The results of

atomic spectroscopy led to the development of quantum electrodynamics (QED) [16], one of

the most successful theories made. With the advances in engineering and low-temperature

physics came the ability to probe deeper within the atom, into the nucleus, and eventually

into nucleons by utilizing higher energy probes. With higher energies, particles are more

abundant and diverse, usually leading to surprising phenomena not observed previously,

e.g. the Λ hyperon discovery. Similar to atomic spectroscopy, hadron spectroscopy excites

the nucleon to understand its structure. The radiation emitted from these excited particles

is typically the emission of mesons.

While high energy probes can be obtained naturally by cosmic rays, they are uncon-

trollable. Instead, they are produced at accelerator facilities, which allow for control of

the energies produced and at a higher rate of production. The data analyzed in this work

were obtained from the g12 experiment using the CEBAF4 Large Acceptance Spectrometer

(CLAS) at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). A notable

feature of the CLAS detector is its large acceptance optimized for the simultaneous detec-

tion of multiple particles. It is roughly spherical, surrounding the target, and can measure

the momenta and angles of the particles produced with almost 4π sr coverage. The g12

experiment utilized a circularly polarized photon beam incident on a liquid hydrogen target

(Chapter 2) and produced an unprecedented number of strange-particle final states, which

makes it favorable for the study of hyperon resonances. Excited hyperon states typically

decay to a proton and a negative kaon and are produced in association with a positive kaon.

The reaction studied to investigate these states was γp → pK+K− following the reaction

chain of producing an excited hyperon Y ∗ through γp→ Y ∗K+ → pK+K−.

The lifetimes of these excited states are brief (∼ 10−24 s), yielding widths of sev-

eral hundred MeV, which overlap one another in the mass spectrum. Isolating them is a

difficult task by simply “bump hunting” or using cross section measurements alone. Ex-

tracting properties, such as their spin and parity quantum numbers, is even more difficult

4Continuous Electron Beam Accelerator Facility

11



given cross sections and angular distributions alone. Furthermore, the background pro-

cess, γp → pX → pK+K−, producing an intermediate meson yields the same final state

and contaminates the hyperon signal. Polarization observables, however, are sensitive to

the interference of competing hadronic processes and will aid in probing the production

mechanisms of these resonances. The modeling of the photoproduction of two pseudoscalar

mesons involves eight independent complex amplitudes, meaning there are 16 independent

quantities. Cross section measurements only constrain the sum of the squares of these

amplitudes [17]. Polarization observables are necessary to constrain the other variables.

The polarization observable measured in this work is the beam-helicity asymmetry,

I�. This observable, emerging from the beam’s circular polarization, can serve as one of the

independent quantities in the reaction model. Its sensitivity to key kinematic variables is

also investigated (Chapter 4). I� is also measured for γp→ pπ+π− to investigate its flavor

dependence. One of the key differences between γp → pK+K− and γp → pπ+π−is the

well-established ∆++ resonance coming from pπ+. The strange counterpart, pK+, would be

an exotic baryon made of five valence quarks. Searches for this exotic state have concluded

that it does not exist [18]. Because of this, it is expected that I� be different for both

reactions and its modeling easier for γp→ pK+K−.

While polarization observables are essential to a complete reaction model, ultimately

the goal of interest is in extracting unobserved resonances, if any. To identify these res-

onances, their spin, mass, and width must be measured. Due to the overlapping nature

of the resonances, a partial wave analysis (PWA) can be applied following the formalism

in references [19–21]. Concisely, a PWA models the reactions with linear combinations of

orthogonal states, each with a certain quantum number that yield an expected angular

intensity. That model is fit to the data and the relative contribution for each wave given in

the model is obtained.

In a scattering experiment, the operator that relates the collision between the reaction

inducers (denoted |in〉) and the asymptotic outgoing states (denoted |out〉) is the S-matrix.

The S-matrix models the interactions of the incoming states that produce the out states.

The elements of the S-matrix are called the scattering amplitudes. The physical constraints
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of causality, crossing symmetry, and unitarity translate to constraints on the S-matrix

elements. Briefly, causality requires that the scattering amplitudes be analytic functions

of the center-of-mass energy (W ) and momentum transfers (tγ→pi where p is a final-state

product of the reaction, i ranges from 1 to N − 1, and N is the number of final state

particles). Poles in the amplitudes as a function of the energy signify the existence of

a resonance. A cut along the real part of W corresponds to the energies for which the

process is allowed. References [22, 23] contain detailed information on properties of the

S-matrix and their consequences. Given a reaction model, the amplitudes can be obtained

from specifying the angular distributions of the outgoing states. In this work, a PWA is

applied to the pK− mass spectrum for the reaction γp → pK+K−. For this particular

case, the angular distribution of the final state proton in the rest frame of the pK− system

is measured and the scattering amplitudes are obtained by fitting to the reaction model

described in Chapter 5.
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CHAPTER 2

The g12 Experiment

The experiment from which this work obtained its data is known as g12 and was con-

ducted at Jefferson Lab, located in Newport News, VA. Jefferson Lab currently houses four

experimental halls (labeled A, B, C, and D) and the Continuous Electron Beam Accelerator

Facility (CEBAF) (Section 2.1). The g12 experiment was a photoproduction experiment

utilizing the CEBAF Large Acceptance Spectrometer (CLAS), which was housed in Hall

B. The CLAS detector was a large acceptance spectrometer optimized for the detection

of multi-particle final states (Section 2.3). The g12 experiment collected approximately

126 TB of photoproduction data in 44 days of beam time in 2008. The center-of-mass

energy for the experiment ranged from 1.77 GeV < W < 3.33 GeV with a luminosity of

68 pb−1.

2.1 CEBAF

CEBAF is composed of two linear accelerators (LINACs) connected by two semicir-

cular arcs in which a magnetic field guides the electrons through. It utilizes a gallium

arsenide photocathode laser to produce a highly polarized electron beam [24] that creates

pulses of electron bunches that get injected into a LINAC. Each LINAC is composed of

superconducting radiofrequency (SRF) resonant cavities (Fig. 2.2) in which a RF standing

wave is established in each cavity that accelerates the electron bunch through the LINAC.

The electron bunches take up to five laps around the accelerator attaining an energy of

5.714 GeV. The beam is then delivered to the experimental halls every 2.004 ns with an

energy spread of ∆Ee
Ee
≤ 10−4 [25]. Upon entering the experimental halls, its polarization

can be measured through a Møller polarimeter. The current delivered into Hall B for the

g12 experiment ranged between 5 and 90 nA for quality control with production runs at

65 nA.
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A B C

Figure 2.1: Aerial view of CEBAF prior
to the construction of Hall D. Red-dashed
lines show electron beam path. Source: [24]

(a) CEBAF cavity pair. Source: [24]

(b) CEBAF cavity diagram. Source: [26]

Figure 2.2: Accelerator cavity.
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2.2 The Tagger

Hall B experiments can utilize either an electron beam or photon beam. The g12

experiment, specifically, utilized a photon beam. The electron beam from CEBAF is used

to produce a photon beam by passing the electron beam through a radiator. As high energy

electrons pass through the radiator, it interacts with nuclei and decelerates. This interac-

tion, known as bremsstrahlung, causes the electron to lose energy, emitting a photon with

energy equal to its loss. The g12 experiment used a gold foil as its radiator with a thickness

of 10−4 radiation lengths1 [27]. In addition, the electrons transfer their polarization to the

photons following

Pγ =
Eγ(Ee +

Ee−Eγ
3 )

E2
e + (Ee − Eγ)2 − 2

3Ee(Ee − Eγ)
Pe. (2.1)

Equation 2.1 relates the measured polarization of the electron beam to the transferred

polarization of the photon [28]. After the electrons pass through the radiator, they are bent

away from the beam line by a magnet and into an array of scintillators as shown in Fig. 2.3.

This magnet-scintillator system is called the tagger. As the photons are electrically neutral,

they continue along the beam line towards the target. As a result, the beam is composed

of only photons (Fig. 2.3b).

The tagger is composed of two layers of scintillators known as the E- and T-planes.

The E-plane measures the momentum of the recoiled electrons based on the location of

where the electrons were detected. The energy of the outgoing photons is then determined

by conservation of energy,

Eγ = Ee CEBAF − Ee tagged. (2.2)

The tagger system tagged photons of energies between 20% and 95% of the incident electron

energy corresponding to photon energies between 1.142 and 5.428 GeV with a resolution

∆Eγ
Eγ
≤ 10−3 [25]. The T-planes provided timing measurements of the recoiling electrons

with a resolution of 110 ps. These timing measurements provide a way of deducing a

coincidence between the tagged photon and the electron bunch that caused it (Section 3.1).

1Mean distance over which a high-energy electron loses all but 1/e of its energy due to bremsstrahlung.
It is a characteristic of the material the electron is interacting with.
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(a) The tagger with opened service panel (b) Geometry of tagging system

Figure 2.3: The Hall B photon tagger. Source: [29]

2.3 The CLAS Detector

The CLAS detector [30] is an onion-shaped detector centered around the beam line

comprised of many subsystems (Fig. 2.4). A key feature of this detector, as stated in its

name, is its large acceptance, which allows detection of multiple final-state particles. It is

divided, azimuthally about the beam line, into six sectors by superconducting coils that

produce a toroidal magnetic field. The geometry of CLAS was designed for optimal use

at beam energies up to 4 GeV. The location of the center of the target that optimizes

the performance of CLAS at these energies is called the nominal CLAS center. As the

g12 experiment utilized higher energies, charged tracks follow straighter paths through the

detector. This makes it more likely for particles to traverse through the forward hole of the

detector reserved for the beam’s outlet. Consequently, the target was moved upstream 90 cm

to decrease the number of particles that would otherwise miss the detector (Section 2.4).

2.3.1 The Start Counter

The inner-most detector of CLAS is the start counter (ST). The ST [25] is divided into

six sectors with each sector composed of four scintillator paddles. The ST obtains timing

information for each track that it detects. The timing information can then be used to

associate hits on the ST with the TAGR. Armed with this information, the ST can be used

to select the appropriate RF time, which has the best timing resolution at approximately
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(a) The CLAS detector (b) Schematic of the CLAS detector

Figure 2.4: The CLAS detector. The start counter is not shown. Source: [31]

15 ps. Correspondingly, the ST is used to determine an accurate measurement of a physics

event’s start time. In addition, the ST can be used in a variety of trigger configurations

because of its segmentation (Section 2.5). The timing resolution of the start counter is

approximately 350 ps.

(a) The start counter (b) Cross section of the start counter

Figure 2.5: The start counter. Source: [25]

2.3.2 The Torus

The toroidal magnetic field is generated by six nonferrous superconducting coils

(Fig. 2.6), separating CLAS into its six sectors. The coils are located between the re-
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gion 1 and region 3 drift chambers (Section 2.3.3). At the maximum design current of

3860 A [30], the maximum magnetic field strength the coils can provide is 25 kG. The g12

experiment utilized a magnetic field strength of 20 kG. The magnetic field direction was

primarily in the azimuthal direction so that charged particles are only bent in the polar

angle with respect to the beam. The field was oriented so that positively charged particles

were bent away from the beam line (outbenders) while negatively charged particles were

bent towards it (inbenders). This reduces the detector acceptance of negatively charged

particles due to CLAS’s forward hole reserved for the beam’s outlet. The momentum of

a charged particle can be determined by its trajectory’s curvature and the magnetic field

strength from

p⊥ = qrB. (2.3)

Figure 2.6: The superconducting coils. Source: [32]

2.3.3 Drift Chambers

Following the CLAS detector’s design, the drift chambers (DC) [30, 33–35] are divided

into six sectors surrounding the target (Section 2.3.3). It is further separated radially into

three different regions referred to as regions one, two, and three. All regions of the drift

chambers contain two layers of wires known as superlayers as shown in Fig. 2.7b. One layer

is axial to the magnetic field and the other is tilted by 6° with respect to the first. This
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setup provides the azimuthal angle information of a track. The region two DC is situated

between the superconducting coils (Section 2.3.2). As a result, it is exposed to a strong

magnetic field and most of a charged particle’s curvature occurs here. Region one and three

DC are outside of the coils and are exposed to a weak magnetic field. A schematic showing

the magnetic field strength within the DC is shown in Fig. 2.7c.

A drift chamber cell consists of six field wires forming the vertices of a hexagon and

one sense wire at the center of the hexagon (Fig. 2.7d). The cells are immersed in a 90%

argon, 10% carbon-dioxide gas mixture. The field wires are run at high negative voltage

while the sense wires are run at a moderate positive voltage. When a charged particle

passes through the gas, the gas is ionized. Due to the potential difference of the wires, the

resulting ionized electrons are accelerated toward nearest sense wires, creating a signal that

is recorded. The trail of ionized electrons left behind by the charged particle allows for

the reconstruction of its path and measurement of its radius of curvature in the magnetic

field (Section 2.3.2). Combined with knowledge of the magnetic field, the momentum of the

charged particle is then determined by Eq. 2.3.

2.3.4 Cherenkov Counter

The Cherenkov counter (CC) [38] is located outside of the region 3 drift chambers

(Section 2.3.3) and covers angles between 8° − 45° with respect to the beam line and

nominal CLAS center. The detector was filled with a C4F10 gas with an index of refraction

of 1.00153 [30]. Cherenkov radiation occurs when a charged particle moves faster than the

speed of light in a medium given by v = c
n where n is the index of refraction. Electrons and

positrons, being several orders of magnitude lighter than pions, propagate faster than light

in the gas with this index of refraction while pions up to 2.5 GeV/c do not. Consequently,

the Cherenkov radiation can be used to distinguish the leptons from pions. The photons

emitted as Cherenkov radiation are reflected into an array of photomultiplier tubes by

carefully designed mirrors as shown in Fig. 2.8. The CC was not used in this analysis.
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(a) Cross sectional view of CLAS along
beam line. Source: [30]

(b) Location of drift chambers relative to the the
beam line. Source: [36]

(c) Magnetic field strength within the drift
chambers. Source: [37]

(d) Schematic of particle moving through drift
chambers. Source: [37]

Figure 2.7: The drift chambers system.

(a) Schematic of Cherenkov counter mirrors
(b) Schematic of Cherenkov detector

Figure 2.8: The Cherenkov detector system. Source: [38]
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2.3.5 Time-of-Flight System

The time-of-flight (TOF) system [39] covers angles between 8° and 142° with respect

to the beam line and nominal CLAS center. They are positioned outside the Cherenkov

counters but before the calorimeters (Section 2.3.6) as shown in Section 2.3.3. As stated

in its name, the time-of-flight system is used to measure the time charged particles take to

traverse the CLAS detector. It is used to determine particle velocities, which when combined

with the momentum information from the drift chambers, can be used to determine particle

masses following

v =
Path length

TOF
, (2.4)

βTOF =
v

c
, (2.5)

mTOF = p

√
1− β2

TOF

βTOF
. (2.6)

The timing resolution for the TOF was measured to be 150− 200 ps. As the typical flight

time for particles is ∼ 30 ns, the TOF system can provide precise timing information for a

given track.

Each sector of the TOF system contains 57 scintillating paddles, which are further

divided into four panels. Scintillator paddles labeled 1− 23 made up panel 1 and were the

most forward with respect to the beam. They were positioned 8° − 45° with respect to the

beam line and nominal CLAS center. Paddles 24− 34 made panel 2, paddles 35− 45 made

panel 3, and paddles 46 − 57 made panel 4. Several of the scintillator paddles were either

inefficient, had bad timing resolutions, or were not calibrated properly. The identification

of these paddles is discussed in Section 3.4.

2.3.6 Electromagnetic Calorimeter

The most forward subsystem of the CLAS detector is the electromagnetic calorimeter

(EC) [40, 41]. The EC has an angular coverage of 8° − 45° with respect to the beam line

and nominal CLAS center (Section 2.3.3). The EC consists of alternating layers of lead and
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Figure 2.9: TOF paddles for one sector. Source: [39]

scintillators and is divided into an inner (closest to the target) and outer stack, where the

energy deposited in each stack is recorded independently. Every successive layer of scintil-

lators is rotated 120° with respect to the previous forming what are called the U, V, and W

planes. This geometric configuration makes it suitable for position measurements.

The main functions of the EC are detection and energy measurement of electrons,

photons, and neutrons. The detection of electrons allows the study of key leptonic modes,

such as ω → e+e−, while the detection of photons allows the study of reactions involving

π0 or η. Electrons/positrons and pions are distinguished in the EC by the characteristic

of the energy deposited in the calorimeter. Electrons and positrons deposit most of their

energy in the inner stack while pions deposit their energy almost uniformly throughout

due to differences in their hadronic cross sections. Final state particles were identified as

photons by the EC if no charged tracks were associated with an energy deposited in the EC

and the velocity was greater than 0.9c. Likewise, particles with a velocity of less than 0.9c

were considered to be neutrons. The EC was not used in this analysis.
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Figure 2.10: Exploded view of one of the six EC modules. Source: [40]

2.4 The Target

The g12 experiment used an unpolarized liquid hydrogen target that was roughly

cylindrically shaped with a radius of 2 cm and 40 cm in length. The target cell, shown

in Fig. 2.11, was designed to hold several other materials such as deuterium and helium.

As mentioned in Section 2.3, the target was located 90 cm upstream from nominal CLAS

center. This increased the detector acceptance for small-angle tracks with respect to the

beam line while decreasing it for large-angle tracks.

Figure 2.11: The target cell. Source: [31]
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2.5 Data Acquisition and Triggering

Each subsystem of the CLAS detector transmits a signal to a discriminator that

determines which subsystem it came from. The signals are then digitized by analog-to-

digital converters (ADC) and time-to-digital converters (TDC). ADC values report the

voltage of the signal while TDC values report the time at which the signal arrives. In order

to filter out unwanted noise, certain combinations of signals from the different subsystems

in coincidence of within 100 ns [37] are required in order for it to be labeled a physics

event. The trigger system collects the signals from all subsystems and determines which

ones should be recorded based on a trigger configuration. When a signal passes the trigger

configuration, the event is processed and written to magnetic tape. The g12 experiment

used a field-programmable gate array (FPGA) as the trigger supervisor. This allowed for

several different trigger configurations to be used and adjusted throughout the experiment.

The g12 experiment was divided into runs, which were categorized as production,

diagnostic, calibration, or single-prong. The runs for g12 were labeled by numbers from

56363 − 57317. A full list of successfully reconstructed runs with the current used can

be found in references [27, 37]. Of these runs, the diagnostic runs mostly tested the data

acquisition system and were not recorded. In addition, runs in which there were hardware

failures, had less than 1 million events, or corrupt data were not recorded. The calibration

runs consisted of normalization, zero-field, and empty target data. The normalization runs

were used to calibrate the tagger for the measurement of the total photon flux and to

check for consistency between the left and right TDC’s of the tagger. The zero-field runs

had the torus magnet turned off so all tracks traveled in straight lines. This was to make

reconstruction (Section 2.6) of the tracks through the drift chambers easier. The empty

target runs were used to determine the effects of the target walls on the production data.

Production and single-prong runs were the main physics runs and consisted of 97% of the

data. The differences between the production and single-prong runs were the current used

(Table 2.2) and the trigger configuration. Production runs utilized a 65 nA current while

single-prong runs utilized 24 nA.
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The g12 triggering system consisted of two levels. The level-1 (L1) trigger system

used signals from TAGR (Section 2.2), ST (Section 2.3.1), CC (Section 2.3.4), TOF (Sec-

tion 2.3.5), and EC (Section 2.3.6). Figure 2.12 shows the L1 trigger logic for one CLAS

sector. A hit in any of the four paddles in the ST and a hit in any of the 57 TOF paddles

of the same sector constituted a ST × TOF hit. A ST × TOF hit is called a prong and is a

track of a particle in a possible physics event. Analyses involving photons in the final state

required signals from the EC and analyses involving leptons required both a CC and an EC

hit. A hit in the tagger corresponded to a Master-Or (MOR) hit. There were two MOR

triggers, MORA and MORB corresponding to different tagged photon energies. During the

production runs, MORA was triggered for photon energies between 4.4 and 5.4 GeV while

MORB was triggered with photon energies between 3.6 and 4.4 GeV. During the single-

sector runs, only the MORA trigger was used and was triggered at photon energies between

3.0 and 5.4 GeV. For this work, in order for a physics event to be considered, there must

have been a coincidence of a MOR trigger along with two prongs in two different sectors

for production runs. For single-sector runs, only a MOR trigger with a single prong was

required. After the L1 trigger is satisfied, the L2 trigger was typically employed using mea-

surements from the DC (Section 2.3.3) to make coarse tracking reconstruction and to verify

the L1 trigger. A more detailed explanation on the trigger configurations and efficiencies

can be found in references [27, 37]. After the trigger is completely satisfied, the event is

recorded and saved to magnetic tape.
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Figure 2.12: Trigger logic for one CLAS sector. The ST × TOF signal is a coincidence
between any of the four start counter TDC signals with any of the 57 TOF TDC signals.
ECP and ECE are the photon and electron EC thresholds, respectively. For electrons,
energy must be deposited in the EC with coincidence with the CC (EC × CC). For photons,
only within the EC (ECP). Source: [37]

2.6 Event Reconstruction

The process of converting the raw data from ADC and TDC values of the detector

subsystems into a suitable format for physics analyses is known as cooking and is docu-

mented in reference [37]. The toroidal magnetic field allows the event reconstruction to be

done by each sector independently. The reconstruction process utilized hit-based and time-

based tracking algorithms. The first step in the reconstruction is the hit-based tracking

algorithm, which identifies the activated sense wires in the DC in each superlayer. It then

creates track segments for each region of the DC. Tracks that aligned to physically allow-

able curves through each of the superlayers of the DC were selected as track candidates.

The next step in the reconstruction is the time-based tracking algorithm. The time-based

tracking algorithm uses the timing information of the TOF to correct for drift times inside

the DC, which are then converted to drift distances. The track segments through each of

the superlayers is corrected for and a new track is formed, improving the spatial resolution
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the path. Given a DC track, the radius of curvature of the track can be determined from

the length of the chord and sagitta by

r =
s

2
+
l2

2s
(2.7)

and is demonstrated in Figs. 2.7d and 2.13. From Eq. 2.3, the momentum of the particle

can be determined from the radius of curvature the track makes. The mass of the particle

creating the track is determined by Eqs. 2.4 to 2.6. The particle is preliminarily identi-

fied based on its measured mass as shown by Table 2.1. Refined particle identification is

discussed in Chapter 3. The run conditions for g12 are summarized in Table 2.2.

Figure 2.13: Charged particle track in DC. Particle’s momentum can be determined given
the chord length and sagitta. Source: [37]

Particle Condition

π± q = ±e and mTOF < 0.3 GeV

K± q = ±e and 0.35 < mTOF < 0.65 GeV

p q = +e and 0.8 < mTOF < 1.2 GeV

d q = 0 and 1.5 < mTOF < 2.2 GeV

Table 2.1: Initial particle identification.
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Electron Beam Energy 5.714 GeV

Electron Beam Current 60 - 65 nA (production) & 24 nA (single-prong)

Photon Beam Polarization Circular

Radiator Material Au

Radiator Thickness 10−4 RL

Tagged Photon Beam Energy 1.142− 5.425 GeV

Target Material `H2

Target Length 40 cm

Target Diameter 4 cm

Target Position -90 cm from CLAS center

Target Polarization None

Table 2.2: Running conditions for g12.
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CHAPTER 3

Event Selection and Corrections

A dominant decay mode of many excited hyperons is Y ∗ → pK−. The reaction chain

studied in this work that contains the production of an excited hyperon is γp→ Y ∗K+ →

pK−K+. The nonstrange reaction, γp → pπ+π−, was also of interest for comparison

purposes and to investigate flavor dependence of the beam-helicity asymmetry (Chapter 4).

The g12 experiment collected ≈ 26 billion events consisting of ≈ 126 TB of data. Much

of the data recorded by the g12 experiment were from background, noise, or reactions that

were not of interest for this work. From the 26 billion events, the events consisting of a

p, K+, and K− needed to be extracted for the analysis of the γp → pK+K− reaction.

Similarly, events consisting of a p, π+, and π− also needed to be identified for γp→ pπ+π−.

For both reactions, all three final-state particles were required to be detected, and for there

to be no missing energy or momentum. The particles in the final state of the reactions

were initially identified according to Table 2.1 and events that falsely satisfied Table 2.1

were minimized following the procedures described in this chapter. Finally, the data were

corrected to mitigate effects from the imperfect detectors and other effects not measured

by the detectors.

3.1 Vertex Position and Timing

For a given event, the reconstructed vertex position is the best estimate for the location

where the reaction was initialized. It is defined by the distance of closest approach to

the beam line. For the aforementioned reactions, the reconstructed vertex position of the

reaction was required to lie completely inside the cylinder containing the target. The target

cylinder has a radius of 2 cm and length of 40 cm (Section 2.4).

The location of the reconstructed target center was first investigated. This was done

by analyzing the measured x, y, and z components of the events’ vertices. The event vertex

position was estimated by the point of closest approach between the three final-state tracks

and the beam. It was assumed that any interaction among the final-state particles was brief
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enough to have a common vertex, i.e. no detached vertices. The x and y vertex components

were fitted to a Gaussian around their means to estimate the central position. The central

(x, y) position of the reconstructed vertex position was measured to be (−1.8,−0.9) mm

from the z axis. The adjusted vertex position of the events was then given by

xadjusted = xmeasured − (−0.18) cm

yadjusted = ymeasured − (−0.09) cm.

(3.1)

Events whose reconstructed vertex position was a distance greater than 2 cm from the line

L = {(x, y, z) ⊂ R3 | x = −0.18 cm, y = −0.09 cm}, were removed from the analysis. The

z component of the vertex was as expected in the range -110 − -70 cm1. Figure 3.1 shows

the vertex distribution and the selected region.
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Figure 3.1: Reconstructed vertex distributions

Second, the vertex times were investigated. As a photon is incident on the target

every 2.004 ns, every event must be consistent with the incident photon that produced the

reaction. The vertex time is the timing measurement corresponding to when the reaction

was initialized. As the start counter (Section 2.3.1) is the closest detector to the target and,

1Recall that the target was moved 90 cm upstream from nominal center (Section 2.4)
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as part of the trigger configuration (Section 2.5) was required to have a coincidence with

the tagger (Section 2.2), it was used to select the CEBAF radio-frequency signal (RF) time

that initiated the reaction. The closest RF time to the coincidence of the start counter and

tagger was selected. The RF time serves as the most precise timing measurement available

with a resolution of approximately 15 ps. The RF-corrected tagger time is given by the RF

time plus the it takes a photon to reach the center of the target. The vertex time as given

by the RF-tagger-ST combination is

tvtx(RF) = tpho + tprop, (3.2)

where tpho is the RF-corrected tagger time and tprop the propagation time from the event

vertex to the center of the target. After a reconstructed track is given a preliminary particle

type following Table 2.1, its β is adjusted to match its assumed PDG mass [7] given by

βadj =
p√

p2 +m2
PDG

, (3.3)

where p is the momentum as measured by the drift chambers (Section 2.3.3 and Eqs. 2.3

and 2.7). The vertex time can also be measured with the TOF system (Section 2.3.5) using

βadj. The vertex time as measured by the TOF is given by

tvtx(TOF) = tTOF −
lTOF

cβadj
, (3.4)

where tTOF is the time the particle took to reach the TOF system, lTOF is the length of

its track as determined by the time-based tracking (Section 2.6), and cβadj is its adjusted

velocity. The term lTOF
cβadj

is the expected TOF of the particle assuming the identification in

Table 2.1 is correct. The vertex times as measured by the RF and TOF were required to

be within 1 ns of each other. Figures 3.2a and 3.2a show βTOF versus p before and after

applying the timing cuts. The extraneous, out-of-time bands in Fig. 3.2a are removed as a

result. Figures 3.2c and 3.2d show the effects of the timing cuts on the difference between
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the measured TOF and expected TOF,

TOFmeasured − TOFexpected =
lTOF

c

(
1

βmeasured
− 1

βadj

)
. (3.5)

The extraneous bands are also removed from Fig. 3.2c.
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Figure 3.2: Effects of timing cuts.
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3.2 Multiple Photons

As mentioned in Section 2.1, CEBAF delivers electron bunches into Hall B every

2.004 ns, which generates tagger hits at the same interval. The production current of 65 nA

can result in multiple photons being read by the tagger for the same event. As the corre-

sponding photons coincide within 2.004 ns from each other, they cannot be differentiated

using the timing information alone. In the case where multiple photons were tagged for an

event, several algorithms to select the correct photon for the event were considered: choose

a photon at random, choose the more energetic photon, or eliminate events with multiple

tagged photons. For this analysis, events with multiple tagged photons were removed. Fig-

ure 3.3 shows the distribution of number of tagged photons within the 2.004 ns window for

all events.
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Figure 3.3: Distribution of number of tagged photons within the 2.004 ns window.
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3.3 Fiducial Region

Geometric fiducial cuts are used to exclude events in regions where detector accep-

tance changes rapidly and difficult to model. In particular, the fiducial cuts remove events

whose tracks pass through the boundaries of each sector where the coils of the torus magnet

are located, as shown in Fig. 3.4. The fiducial cuts for g12 were derived in reference [42].

g12’s loose fiducial cuts were applied to γp→ pK+K− for the partial wave analysis (Chap-

ter 5). They were not used for the beam-helicity asymmetry analysis as acceptance effects

were considered to be negligible for that analysis. Fiducial cuts allow for more accurate

measurements of acceptance effects and corrections, which are applied in Section 5.4.
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Figure 3.4: Effects of fiducial cuts.

3.4 TOF Knockouts

TOF paddles were removed from the analysis if they were considered to be inefficient.

A paddle’s efficiency was estimated through its relative occupancy with respect to its coun-

terparts in the other sectors using the raw data; for paddle with ID = x in sector = y,

its occupancy was compared to the other five paddles with ID = x. Out of the five, the
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Sector 1: 6, 25, 26, 35, 40, 41, 50, 56

Sector 2: 2, 8, 18, 25, 27, 34, 35, 41, 44, 50, 54, 56

Sector 3: 1, 11, 18, 32, 35, 40, 41, 56

Sector 4: 8, 19, 41, 48

Sector 5: 48

Sector 6: 1, 5, 24, 33, 56

Table 3.1: Recommended list of paddles to knockout.

paddles with largest and smallest occupancies were removed. The average occupancy of the

remaining three was recorded. The efficiency of paddle x in sector y was defined to be its

occupancy divided by the average of the remaining three, as given by

Eff(Paddle x, Sector y) = 100%× Number of hits in paddle x of sector y

Average hits of remaining three paddles
. (3.6)

A paddle was deemed inefficient if its efficiency was below three standard deviations from

the mean efficiency. Figure 3.5 shows the relative occupancy of all paddles.

The timing resolution of each paddle was also studied as a function of run number

to determine stability throughout the experiment. The data analyzed were for the γp →

pπ+π− reaction. For the pions in this reaction, the difference between the measured TOF

and expected TOF was measured for a given run and paddle and fit to a Gaussian. The

resolution of that paddle for that run was estimated by the standard deviation of the

Gaussian fit. This procedure was conducted for all paddles and runs. Figure 3.6 shows an

example of a good and bad paddle resolution. The paddles removed due to low occupancy

remove 3.06% of events per track while the paddles removed due to resolution remove 5.75%

of events per track. Figure 3.7 shows the effects of the TOF knockouts. Table 3.1 shows

the list of TOF paddles that were removed. Like the fiducial cuts, TOF knockouts were

only applied to the γp→ pK+K− reaction for the partial wave analysis.
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Figure 3.5: Relative occupancy of all paddles. Paddles with relative occupancy less than
the dash line shown were removed from the analysis.
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Figure 3.6: Examples of bad and good TOF paddle resolution stability.
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Figure 3.7: Effects of the TOF knockouts.

3.5 Energy Loss

As a particle propagates through the CLAS detector, it deposits energy through the

target material and walls, beam pipe, etc. The energy that is lost is corrected for using the

CLAS ELOSS software [43]. The relative size of this correction is ∆E
E ∼ 10−3. Figure 3.8

shows the energy loss corrections as a function of particle momentum.

3.6 Beam Energy Correction

It was noticed that missing masses were systematically smaller than expected for g12

and depended on the run number [27]. It was concluded in the study that the energy loss

corrections were not causing nor correcting the discrepancies. Instead, it was concluded

that magnetic hysteresis from the tagger magnet was responsible for the effect. Magnetic

hysteresis is the phenomenon that several distinct magnetic field strengths are possible

for a given current. Hysteresis occurs in ferromagnetic material, in which the relationship

between the magnetic induction ~B and the magnetic field ~H is nonlinear [44]. The effect

on the incident electron influences the tagged photon in turn. The correction for this effect

was derived in reference [27] and its relative size is
∆Eγ
Eγ
∼ 10−3.
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Figure 3.8: Energy loss corrections.
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3.7 Momentum Corrections

The magnetic field map was calculated based upon several approximations for the

areas within the CLAS detector. Consequently, the exact field map is not known and

may have discrepancies with the actual magnetic field. This leads to inaccuracies in the

reconstructed momenta of the particles which are corrected following the procedure in ref-

erence [45]. The relative size of this correction is ∆p
p ∼ 10−3. Figures 3.9 and 3.10 shows

the missing mass plots before and after all corrections are applied. The corrections yield a

narrower distribution around zero missing mass and momentum.

) 2 (GeV 2Miss M

50− 40− 30− 20− 10− 0 10 20 30 40 50

3−
10×

 2
E

v
e
n
ts

 /
 0

.0
0
1
 G

e
V

410

5
10

6
10

With correctionsNo Corrections

With Corrections

(a) Missing mass squared for
γp→ pπ+π−

) 2 (GeV 2Miss M

50− 40− 30− 20− 10− 0 10 20 30 40 50

3−
10×

2
E

v
e
n
ts

 /
 0

.0
0
1
 G

e
V

3
10

410

5
10

6
10

No Corrections

With Corrections

(b) Missing mass squared for
γp→ pK+K−

Figure 3.9: Effects of all corrections applied on the missing mass squared.
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Figure 3.10: Effects of all corrections applied on the missing momentum.

3.8 Kinematic Fitting

The final tool employed in the data cleaning process is kinematic fitting. Kinematic

fitting takes as input the momentum resolution of each track in a given event and a hypoth-

esis of what particle is responsible for each track. In addition, the constraints of energy and

momentum conservation were imposed. Define y0 as the measured energy (or equivalently,

the momentum) of the photon beam and yi (i > 0) as the measured four-vector momentum

of the ith particle in the final state. The fitted photon energy and four-vector momenta of

the ith final-state particle are encoded similarly and denoted as η0 and ηi, respectively. Let

y = (y0|y1|...|yN )

η = (η0|η1|...|ηN ),

(3.7)

where (v|w) means to augment the vector v with the vector w, i.e., create a new, larger

vector with components of v followed by the components of w. Since y0 has only one

component and yi has four for each final-state particle, y has 4N + 1 components where N

is the number of particles in the final state. The notation yi will refer to the ith component
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of y after augmentation while yi will refer to the four-vector momentum of the ith particle

in the final state. This notation is used similarly for η. Given these quantities, the fitter

minimizes χ2 given by

χ2(η; y) = (y − η)TV −1(y − η), (3.8)

subject to constraints

(0, 0, η0, η0) + (0, 0, 0,mp) =
N∑
i=1

ηi (Energy-momentum conservation) (3.9)

‖ηi‖Mink. = mhyp for i = 1, ..., N (Particle hypotheses). (3.10)

Here, V is the covariance error matrix obtained from the track information and the super-

script T denotes the transpose. The fitter returns the minimized χ2 value and confidence

level for each event, where the confidence level is given by

CL =

∫ ∞
χ2

f(x;n)dx. (3.11)

Here, f(x;n) is the probability density function for the χ2 distribution with n degrees of

freedom and n = 3(N − 1). Under the conditions that the fit hypotheses are true and the

uncertainties were estimated correctly, the confidence level distribution will follow a uniform

distribution. For this analysis, the events were required to have a confidence level greater

than 5%, where its distribution approaches uniform as shown in Fig. 3.11. The output four-

vectors are the best estimates to what the measured four-vectors should be given perfect

detectors. The formalism for kinematic fitting is further elaborated in references [46–48].
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Figure 3.11: Confidence level distributions.

3.9 Summary

The event selection and corrections applied result in extraneous events being removed.

The relative sizes of the corrections applied were in the order ∼ 10−3. In addition, the

background is significantly suppressed. Figure 3.12 shows the effects of all corrections

and exclusivity cuts on the TOF β versus momentum. The solid curves and dashed curves

represent the theoretical value given a correct identification following Table 2.1. Figure 3.13

show consistency: the missing mass off two particles approximate the mass of the third

detected particle. Figure 3.14 show the invariant mass plots after all cuts and corrections

are applied. Table 3.2 summarizes the number of events remaining after each cut.
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Figure 3.12: TOF β versus momentum after all cuts and corrections applied.

Cut Events After Cut

Kaon Channel Pion Channel1

Initial Skim 28815866 123809904

Vertex Position 12640961 51431587

Vertex Timing 2807313 45160908

Multiple Photons 2091078 38795528

Missing Momentum 677773 9377275

Confidence Level 400728 7175157

Table 3.2: Summary of data reduction.
1 ≈ 15% of dataset
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Figure 3.13: Missing mass consistency plots after all cuts and corrections applied.
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Figure 3.14: Invariant mass plots after all cuts and corrections applied.

46



CHAPTER 4

Beam-Helicity Asymmetry

As mentioned in Chapter 1, one of the main problems in nuclear physics is the under-

standing of the nucleon’s structure. The constituent quark model (CQM) is a QCD-inspired

model that attempts to describe the spectra of hadrons. The properties of the excited states

reflect the structure and the relevant degrees of freedom within them. However, many of

the excited states predicted by the CQM have not been confirmed experimentally. The dif-

ficulty in determining the relevant degrees of freedom is further exacerbated by the complex

underlying production mechanisms.

The understanding of the production mechanisms of hadrons currently relies on an

effective Lagrangian approach. The parameters of these models are either taken to be free

or are constrained by experimental data. Polarization observables are sensitive probes of

hadronic processes and are essential to constrain the parameters of these models. They

are also needed in the interpretation of a given reaction in terms of the various resonances

that contribute; cross section measurements along with polarization observables are used

to extract amplitudes for each contributing process, which are interpreted as arising from

a number of resonant and nonresonant contributions [17].

Polarization observables arise from the different spin orientations from the incident

beam, target, or recoil particle in a reaction. They give rise to asymmetries in the cross

section in certain kinematic regions, which can be measured. Reference [17] contains the

general reaction model for three-body final states with the definitions of each polarization

observable arising from the different spin orientation combinations of the reaction. Po-

larization observables are notoriously difficult to model, as demonstrated by discrepancies

between model predictions and experimental observations for double pion production [49,

50]. One reason for these discrepancies is the neglect of certain resonance contributions in

the models. For example, reference [51] notes deficiencies in theoretical models that neglect

the ρ contribution in the second resonance region. Including the ρ improved the agree-

ment between these models and experimental results. However, neglecting or considering
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certain contributions is an oversimplification of the problem. Reference [50] studies the

beam-helicity asymmetry for γp→ pπ+π− and shows that even at low energies, where few

resonances contribute, experimental data disagree with model predictions. This is possibly

due to the various non-resonant interactions that can occur between the final state particles.

In addition, the photoproduction of two pseudoscalar mesons off a nucleon target

involves eight complex amplitudes, all of which are functions of five kinematic variables [17]

and cannot be obtained from cross section measurements alone. In order to get a complete

model of the reaction, 15 independent measurements are needed to obtain the contributing

amplitudes and their phases [52]. In addition, models like the ones in references [53–55],

whose cross section predictions are accurate, fail at modeling polarization observables. This

is due to a lack of understanding of the interactions involved so a better understanding of

the reaction models is needed. One of the main theoretical difficulties in the modeling

of reactions is that several subprocesses may contribute that, although small, interfere in

nontrivial ways and have noticeable effects that can be measured. A better understanding

of the reaction models along with polarization and cross section measurements may help in

extracting and separating the individual contributing processes.

The lack of understanding of these reaction models has motivated many recent ex-

periments and theory developments. A polarization observable that has recently drawn

attention is the beam-helicity asymmetry. The beam-helicity asymmetry, I�, arising from

a circularly polarized photon beam, can be chosen to be an independent quantity yielding

to a component of the eight complex amplitudes mentioned. This particular observable

has previously been studied for double pion photoproduction in references [49, 50, 52, 56]

up to center-of-mass energy W < 2.3 GeV. The region with W > 2.3 GeV was previously

unexplored, but beam-helicity asymmetry measurements in this region are shown in this

chapter. In addition, the first-time measurement for I� in the photoproduction of two

charged kaons is also shown. Whereas the photoproduction of pions has been the subject of

intense theoretical and experimental work, the kaon channel has until recently been largely

neglected when compared to its nonstrange counterpart. The modeling of the kaon reac-

tion also has a possible advantage over the pion reaction: because of the lack of evidence
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for experimentally confirmed pK+ resonances [18], there are fewer interfering production

mechanisms for the kaon channel, and thus fewer expected parameters. This may prove

fruitful for theorists working on reaction models as it is expected that the reduced number

of final state interactions for the kaon channel will make it easier to analyze. However,

the availability of kaon reaction models is limited. Currently, the only reaction model to

consider two kaon production is in reference [57].

As shown in Fig. 4.1, many of the missing resonances lie in the > 2.0 GeV region.

However, these massive resonances are typically short-lived yielding broad, overlapping sig-

nals. Extracting these resonances from cross section measurements alone is an unrealistic

approach. Also, while invariant mass distributions convey important information on the

reaction mechanisms, they are not the most sensitive of observables and do not provide a

complete test of the quark models provided. This work explores the beam-helicity asym-

metry for the photoproduction of two charged kaons, which had not been measured before.

This work also explores the sensitivity of I� to W up to 3.3 GeV for both the γp→ pπ+π−

and γp→ pK+K− reactions. In addition, I� for γp→ pK+K− is studied as a function of

several kinematic variables that are key in modeling the reaction dynamics. These variables

include the momentum transfers from the photon to the K+ and the K+K− system, and

invariant masses of the K+K−, pK−, and pK+ systems.
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Figure 4.1: Comparison of number of predicted and observed states as a function of res-
onance mass. Dotted line is the number of predicted states. Solid line is the number of
observed states. Source: [11]

4.1 Preliminaries

In a given kinematic bin, τ , the beam-helicity asymmetry is defined as

I�(τ) =
σ+(τ)− σ−(τ)

σ+(τ) + σ−(τ)
, (4.1)

where σ is the total cross section, the superscripts ± refer to an event in which the pho-

ton was in a ± helicity state, and Pγ is the polarization of the photon. The asymmetry

arises from the different spin orientations of the photon beam and interference of different

production processes. It is measured experimentally as

I�exp(τ) =

Y +(τ)
α+ − Y −(τ)

α−

N+(τ)
α+ + N−(τ)

α−

. (4.2)

50



The factors α± take into account the primary electron beam charge asymmetry between

the two helicity states and are given by

α± =
1

2
(1± āc), where (4.3)

āc =
N+
π −N−π

N+
π +N−π

= 0.0028± 0.0008. (4.4)

The beam charge asymmetry was measured by analyzing the reactions γp → pπ0 and

γp→ nπ+ and is discussed in Section 4.2. The photon polarization is transferred from the

electron beam according to the Maximon-Olsen equation [28]:

Pγ =
Eγ(Ee +

Ee−Eγ
3 )

E2
e + (Ee − Eγ)2 − 2

3Ee(Ee − Eγ)
Pe, (4.5)

where Eγ and Ee are the photon and electron beam energies, respectively, and Pe is the

electron beam polarization. Its graph is shown in Fig. 4.2. The electron beam polarization

was measured using a Møller polarimeter several times over the course of the experiment

and its measurements are shown in Table 4.1. The yields Y ±(τ) are the sums of the

polarization-weighted events:

Y ±(τ) =

N±(τ)∑
i=1

1

P±γ,i
, (4.6)

where ± superscripts denotes a ± helicity state for an event, P±γ,i is the photon polarization

for the ith event in τ , and N±(τ) denotes the number of events in τ coming from a ± helicity

state.

The beam-helicity asymmetry can be studied as a function of many variables. In

this study, the beam-helicity asymmetry’s angular dependence on center-of-mass energy,

invariant masses, and momentum transfers is studied. The angle of interest is defined as the

azimuthal angle using the following configurations: given a five-body system in the center-

of-mass frame (net momentum is zero), there are three different plane-angle configurations

that can be chosen. The configurations are defined in the following way:

51



eE
γE0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
P

γ
P

0

0.2

0.4

0.6

0.8

1

Figure 4.2: Maximon-Olsen equation. Pe is the polarization of the incident electron beam,
Pγ is the polarization of the outgoing photon beam, Ee is the energy of the incident electron
beam, and Eγ is the energy of the outgoing photon beam.

• Meson-Meson Plane Configuration: The meson-meson configuration (Sec-

tion 4.3) is defined so that the z axis is parallel to the meson-meson system, ŷ = γ̂× ẑ,

and x̂ = ŷ × ẑ, as shown in Fig. 4.3a.

• Neutral Baryon Plane Configuration: The neutral baryon configuration (Sec-

tion 4.4) is defined so that the z axis is parallel to the proton-negative meson system

with ŷ and x̂ defined as above, as shown in Fig. 4.3b

• Positive Baryon Plane Configuration: The positive baryon configuration (Sec-

tion 4.5) is defined so that the z axis is parallel to the proton-positive meson system

with ŷ and x̂ defined as above, as shown in Fig. 4.3c

Since the beam-helicity asymmetry is sensitive to interfering production mechanisms and

the angle between two predefined planes, it must also depend on the different plane and

angle definitions. The differing features in the beam-helicity asymmetry with respect to

the different plane definitions may be due to production mechanisms interfering differently.

Studying the beam-helicity asymmetry with different plane definitions can then be used to
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probe the contribution of different production mechanisms. The beam-helicity asymmetry

for each configuration is shown in Sections 4.3 to 4.5.

pγ

φ

z

x

X+

X−

p′

(a) Meson-meson configuration

pγ

φ

z

x

p′

X−

X+

(b) Neutral baryon configuration

pγ

φ

z

x

X+

p′

X−

(c) Positive baryon configuration

Figure 4.3: Plane-angle configurations.
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Run Range Møller Readout (Pe)

56355− 56475 (81.221± 1.48)%

56476− 56643 (67.166± 1.21)%

56644− 56732 (59.294± 1.47)%

56733− 56743 (62.071± 1.46)%

56744− 56849 (62.780± 1.25)%

56850− 56929 (46.490± 1.47)%

56930− 57028 (45.450± 1.45)%

57029− 57177 (68.741± 1.38)%

57178− 57249 (70.504± 1.46)%

57250− 57282 (75.691± 1.46)%

57283− 57316 (68.535± 1.44)%

Table 4.1: The degree of longitudinal electron polarization (Pe) for each Møller run. The
uncertainties shown are statistical uncertainties. The systematic uncertainty is estimated
to be a relative 5%.

54



4.2 Beam Charge Asymmetry

The incident electron beam from CEBAF was longitudinally polarized and transferred

its polarization to the photon beam. The relation between the electron and photon polar-

ization is given by Eq. 4.5. For the g12 experiment, the electron-beam helicity was flipped

at a rate of 30 Hz. Certain instrumental asymmetries may propagate into the beam-helicity

asymmetry results and must be corrected.

The beam-charge asymmetry, shown in Eqs. 4.3 and 4.4, was measured by analyzing

the reactions γp → pπ0 and γp → nπ+ obtained from g12’s single sector runs. As the

beam-helicity asymmetry for two-body parity conserving reactions is identically zero, the

asymmetry measured from these reactions is purely instrumental. As the neutral particles

were not required to be detected, they were reconstructed from missing mass and momentum

using kinematic fitting. The beam-charge asymmetry was then defined by Eq. 4.4 where

N±π is the total number of pions detected from a ± beam-helicity state. The beam-charge

asymmetry was measured to be 0.0028 with statistical uncertainty 0.0008 (cf. Section 4.6).

4.3 Meson-Meson Plane Configuration

Figure 4.4 shows the angular dependence of the beam-helicity asymmetry for two

charged kaon and two charged pion photoproduction in the meson-meson plane configuration

shown in Fig. 4.3a. In this coordinate system, the azimuthal angle φ measures the angle

between the planes defined by the two-meson system and the production plane. Due to

the sinusoidal nature of the asymmetry, fitting the asymmetry to a truncated Fourier sine

series,

I�(φ; τ) =
3∑

n=1

cn(τ) sin(nφ), (4.7)

is beneficial to study its dependence on other kinematic variables, say τ , by analyzing the

behavior of the coefficients, cn(τ). This fit is applied to both the pion and kaon asymmetries,

and is shown in Fig. 4.4. The Fourier series was determined to be truncated after three
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coefficients after several significance tests, such as hypothesis testing, resulted that the other

coefficients were statistically consistent with zero for the fits shown in Fig. 4.4.

The pion and kaon channels have two significant differences: First, the kaon asym-

metry is dominated by sin(φ) while the pion channel is dominated by sin(2φ). Second,

the overall amplitude for the kaon asymmetry is significantly larger than the pion asym-

metry. This suggests different production mechanisms between the strange and nonstrange

channels. The results shown in Fig. 4.4 are binned only in φ and summed over all other

kinematics.
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Figure 4.4: The angular dependence in the meson-meson configuration of the beam-helicity
asymmetry for double-charged-pion and kaon photoproduction summed over Eγ > 1.1 GeV,
momentum transfers, and invariant masses.

The angular dependence of the beam-helicity asymmetry was measured while binning

with respect to several kinematic variables, and fitted to a third order Fourier sine series.

One kinematic variable of importance is the overall center-of-mass energy, W . Figure 4.5

shows the dependence of the Fourier coefficients as a function of W . The fits for the kaon
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reaction shows that it is sin(φ) dominated (|c1| > |c2|, |c3|) while the fits for the pion reaction

shows sin(2φ) dominance (|c2| > |c1|, |c3|) for most of the energy range.
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(a) Pion I� Fourier coefficients as function of W
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(b) Kaon I� Fourier coefficients as function of W

Figure 4.5: Fourier coefficients as function of center-of-mass energy in the meson-meson
configuration, summed over invariant masses and momentum transfers.

I� for the kaon reaction was also measured as a function of the K+K−, pK−, and

pK+ invariant masses as shown in Fig. 4.6. A feature of these data is that the dominant

term c1 of the asymmetry diminishes as the invariant mass of K+K− increases, whereas it

increases as the invariant mass of either pK− or pK+ increases. In addition, as a function of

M(K+K−), I� has a local maximum at M(K+K−) ≈ 1.1 GeV. A similar behavior occurs

as a function of M(pK+): a local maximum occurs at M(pK+) ≈ 1.5 GeV.

Another feature of the asymmetry is its behavior with respect to the momentum

transfers to the K+ and K+K− systems as shown in Fig. 4.7. The asymmetry as a function

of tγ→K+ shows a smoothly increasing dominant term c1 reaching a maximum, followed

by a smooth decrease towards zero at large momentum transfers. The asymmetry is also

shown to be dominated by the sin(φ) term throughout the tγ→K+ range. The asymmetry

as function of tγ→K+K− shows a more complicated behavior, with the coefficients achieving
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Figure 4.6: Fourier coefficients as function of invariant masses, summed over Eγ > 1.1 GeV
and momentum tranfers.
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a local maximum or minimum at different tγ→K+K− . However, it maintains roughly the

same behavior as a function of tγ→K+ : the coefficients reach a local maximum/minimum

and then vanish at large momentum transfers.
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Figure 4.7: Fourier coefficients as function of momentum transfer.

4.4 Neutral Baryon Configuration

Figure 4.8 shows the angular dependence of the kaon asymmetry along with its fit

to Eq. 4.7 when the z axis is chosen to be parallel to the pK− system, designated the

neutral baryon configuration and shown in Fig. 4.3b. In this configuration, the asymmetry

is also dominated by the sin(φ) term. The Fourier coefficients as a function of W , shown in

Fig. 4.9, show that main contribution is coming from the sin(φ) term, which increases as the

energy increases. The sin(2φ) and sin(3φ) contributions are roughly constant throughout

the energy range.

As a function of the invariant masses (Fig. 4.11), the asymmetry in this plane-angle

configuration shows roughly the same behavior as in the meson-meson configuration, but
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Figure 4.8: The angular dependence in the
neutral baryon configuration of the beam-
helicity asymmetry for double-charged-kaon
photoproduction summed over Eγ > 1.1
GeV, cos(θcm), and invariant masses.
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Figure 4.9: Fourier coefficients as function
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60



with an overall multiplicative factor of −1: As a function of M(K+K−) the dominant

term, c1 reaches a local minimum at M(K+K−) ≈ 1.1 GeV followed by a trend towards

zero as M(K+K−) increases. As functions of the pK− or pK+ invariant masses, the c1

term increases in magnitude as the invariant masses increase.

Finally, as a function of momentum transfers (Fig. 4.10), the asymmetry in this con-

figuration demonstrates qualitatively the same behavior as the meson-meson configuration.

As a function of tγ→K+ , the overall amplitude increases as the momentum transfer increases

until it reaches a maximum and decreases to zero at large momentum transfers. As a func-

tion of tγ→K+K− , the asymmetry follows a more complicated behavior. An interesting

feature of the asymmetry as a function tγ→K+K− is that its coefficients appear to change

their overall signs at large −tγ→K+K− .
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Figure 4.10: Fourier coefficients as function of momentum transfer.
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Figure 4.11: Fourier coefficients as function of invariant masses.
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4.5 Positive Baryon Configuration

The other possible configuration is with the z axis is parallel to the pK+ system

and shown in Fig. 4.3b.Figure 4.12 shows the asymmetry in this configuration. Like the

other two plane-angle configurations, it dominated by the sin(φ) term. However, unlike

the other two configurations, the asymmetry in this configuration has a significant sin(2φ)

contribution as shown by decomposing into its Fourier coefficients. Figure 4.13 shows a

large sin(2φ) contribution, which gets larger as W increases. The sin(3φ) term also has a

region in W for which it contributes significantly.
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Figure 4.12: The angular dependence in the
neutral baryon configuration of the beam-
helicity asymmetry for double-charged-kaon
photoproduction summed over Eγ > 1.1
GeV, cos(θcm), and invariant masses.
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Figure 4.13: Fourier coefficients as function
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As a function of the invariant masses (Fig. 4.15), the asymmetry appears to follow

the same qualitative pattern as the other two configurations: the asymmetry decreases in

magnitude as the invariant mass of K+K− increases. It also increases as the pK− and pK+
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invariant masses increase as shown in Fig. 4.15. A point of interest is once again the local

minimum at M(K+K−) ≈ 1.1 GeV that is seen in the neutral baryon and meson-meson

configurations1.
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Figure 4.14: Fourier coefficients as function of momentum transfer.

Finally, the asymmetry’s coefficients as a function of tγ→K+ and tγ→K+K− is shown

for this plane-angle configuration in Fig. 4.14. As a function of tγ→K+ , the asymmetry’s c1

coefficient decreases until it reaches a local minimum and appears to vanish at large momen-

tum transfers. Unlike the previous two configurations, the positive baryon configuration for

kaons shows a significant sin(2φ) contribution throughout a large kinematic region. As a

function of tγ→K+K− , a significant sin(2φ) contribution is also shown. At large tγ→K+ and

tγ→K+K− , the asymmetry’s magnitude appears to decrease to zero.

1Local maximum in the meson-meson configuration
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Figure 4.15: Fourier coefficients as function of invariant masses.
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4.6 Statistical Uncertainties

The error bars shown in Figs. 4.4, 4.8 and 4.12 are the statistical uncertainties, pri-

marily from “counting.” The error bars shown for the Fourier coefficients shown in Figs. 4.5

to 4.7, 4.9 to 4.11 and 4.13 to 4.15 are parameter uncertainties from performing a least

chi-squared fit to Eq. 4.7.

Let τ be a given kinematic bin. The beam-helicity asymmetry in τ is measured follow-

ing Eq. 4.2. Note that for every event in τ , an event can only contribute ±1 depending on its

helicity state before being weighted by the photon polarization. Consider the Bernoulli-type

distribution

Z ∼

f(−1) = q

f(1) = p,
(4.8)

where p, q > 0 and p+ q = 1. Define the random variable S

S(p; q) =
1

N

N∑
i=1

Zi
Pi
, (4.9)

where the Pi are given. Denote E(S) to be the expectation value of S:

E(S) = E

(
1

N

N∑
i=1

Zi
Pi

)
. (4.10)

Using the linearity property of E, it follows that

E(S) =
1

N
E

(
N∑
i=1

Zi
Pi

)
. (4.11)

The expectation value of the sum can be computed: since Zi can only attain values ±1, the

expectation value of the sum is the difference between the expected number of times a value

of +1 is drawn and the expected number of times a value of −1 is drawn, and weighted by
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1/Pi for the ith instance, i.e.

E(S) =
1

N

E(#Zi=1)∑
i+=1

1

Pi+
−

E(#Zi=−1)∑
i−=1

1

Pi−

 . (4.12)

The expected number of times a value of +1 is drawn is Np. Likewise, the expected number

of times a value of −1 is drawn is Nq. Hence,

E(S) =
1

N

 Np∑
i+=1

1

Pi+
−

Nq∑
i−=1

1

Pi−

 . (4.13)

The variance of S, denoted Var(S), is also computed. To start, the variance of S is given

by

Var(S) = Var

(
1

N

N∑
i=1

Zi
Pi

)
. (4.14)

Following the property of variances under linear transformations,

Var(S) =
1

N2
Var

(
N∑
i=1

Zi
Pi

)
, (4.15)

=
1

N2

N∑
i=1

1

P 2
i

Var(Zi). (4.16)

The variance of the Bernoulli-type random variable Z is given by 4pq. Hence,

Var(S) =
4pq

N2

N∑
i=1

1

P 2
i

. (4.17)

Using p and q to represent the proportion of events in a +1 and −1 helicity state, respec-

tively, p and q are then estimated by

p =
N+

α+

N+

α+ + N−

α−

≡ N̄+

N̄
, (4.18)

q =
N−

α−

N+

α+ + N−

α−

≡ N̄−

N̄
, (4.19)
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where α± are the factors obtained from Eq. 4.3. Hence,

E(Ŝ) =
1

N̄

 1

α+

N+∑
i+=1

1

Pi+
− 1

α−

N−∑
i−=1

1

Pi−

 , (4.20)

=
1

N̄

(
Y +

α+
− Y −

α−

)
, (4.21)

where Y ± are as given in Eq. 4.6. This shows that S(p, q) with p, q given by Eqs. 4.18

and 4.19 is analogous with Eq. 4.2. The variance for this quantity is then given by

Var(Ŝ) =
4N̄+N̄−

N̄4

N̄∑
i=1

1

P 2
i

, (4.22)

=
4N̄+N̄−

N̄3

〈
1

P 2

〉
, (4.23)

where
〈

1
P 2

〉
denotes the average value of the squares of the photon polarization over all

events in τ . It then follows that the standard error on S (and by analogy, I�) in τ is given

by

σstat(I
�) =

2
√
N̄+N̄−

N̄ 3/2

〈
1

P 2

〉1/2

. (4.24)

As Eq. 4.4 is also an instance of Eq. 4.9 with Pi = 1 the uncertainty on the beam-charge

asymmetry is given by

σstat(ac) =
2
√
N+
π N

−
π

N
3/2
π

. (4.25)

4.7 Systematic Uncertainties

Systematic uncertainties arise from possible biases introduced by the methods used

to analyze the data. The systematic uncertainty on the beam-helicity asymmetry from an

arbitrary source of uncertainty is estimated by

δsys =

√√√√√√√√√
∑
i

(
I�nom(φi)− I�alt(φi)

δI�nom(φi)

)2

∑
i

(
1

δI�nom(φi)

)2 , (4.26)
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where the sum ranges over all φ bins, I�nom is the nominal value, I�alt is the asymmetry of a

slight variation of the source, and δI�nom(φi) is the statistical uncertainty of the nominal I�

at the ith φ bin. The sources of systematic uncertainty considered were the vertex position

cuts, timing cuts, multiple photon cut, confidence level cut, cos(θ) cut, and number of bins.

Each one of these cuts were varied slightly.

The nominal vertex position and timing cuts used were discussed in Section 3.1. The

alternate cuts considered were to expand and contract the nominal cuts by 10%. That is,

the radial cut was changed from r < 2.0 cm to r < 2.2 cm and r < 1.8 cm. The longitudinal

cut was changed from |z − 90| < 20 cm to |z − 90| < 22 cm and |z − 90| < 18 cm. The

timing cuts were changed from |∆t| < 1.0 ns to |∆t| < 1.1 ns and |∆t| < 0.9 ns.

The multiple photon cut was discussed in Section 3.2. The alternate used was without

a multiple photon cut.

The nominal confidence level cut from kinematic fitting used was 5% and is discussed

in Section 3.8. The alternate cuts used were passing a 0% confidence level cut (no confidence

level cut) and a 10% confidence level cut.

The nominal cos(θxixj ) used was | cos(θxixj )| < 0.99. The alternate cuts used were

| cos(θxixj )| < 1.0 (no cos(θxixj ) cut) and | cos(θxixj )| < 0.98.

As Eq. 4.26 is not well defined for different numbers of bins, a jackknife approach was

taken. That is, if the nominal number of φ bins selected is n and the alternate number of

bins is m, then |n−m| bins were removed from the sample with the larger number of bins.

All possible combinations of removing |n −m| bins were considered and averaged. In this

study, the nominal number of bins considered was 16 and alternates of 15 and 17 bins were

considered. The total systematic uncertainty was taken by adding the uncertainties from

the different sources in quadrature as shown by

δsys,tot =

√∑
src

δ2
sys,src. (4.27)
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Tables 4.2 to 4.5 summarize the systematic uncertainties from these sources for each con-

figuration. Compared to I�rms,

I�rms =

√√√√√√√√√
∑
i

(
I�(φi)

δI�(φi)

)2

∑
i

(
1

δI�(φi)

)2 , (4.28)

the relative systematic uncertainty throughout the study is ≈ 10%, i.e.,

δsys,tot

I�rms
≈ 0.1. (4.29)

Source δI�

Vertex Position 1.57× 10−3

Timing Cuts 1.89× 10−3

Multiple Photon 2.92× 10−3

Confidence Level 3.06× 10−3

cos(θπ+π−) 6.09× 10−4

Number of Bins 7.35× 10−3

Total Systematic 8.85× 10−3

Table 4.2: Systematic uncertainties for pion
I� in the meson-meson configuration.

Source δI�

Vertex Position 2.19× 10−3

Timing Cuts 3.82× 10−3

Multiple Photon 7.10× 10−3

Confidence Level 7.94× 10−3

cos(θK+K−) 2.18× 10−3

Number of Bins 1.06× 10−2

Total Systematic 1.58× 10−2

Table 4.3: Systematic uncertainties for kaon
I� in the meson-meson configuration.
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Source δI�

Vertex Position 2.73× 10−3

Timing Cuts 2.49× 10−3

Multiple Photon 6.75× 10−3

Confidence Level 6.36× 10−3

cos(θpK−) 3.46× 10−3

Number of Bins 9.07× 10−3

Total Systematic 1.39× 10−2

Table 4.4: Systematic uncertainties for kaon
I� in the neutral baryon configuration.

Source δI�

Vertex Position 1.53× 10−3

Timing Cuts 3.07× 10−3

Multiple Photon 8.51× 10−3

Confidence Level 8.13× 10−3

cos(θpK+) 1.84× 10−3

Number of Bins 1.19× 10−2

Total Systematic 1.71× 10−2

Table 4.5: Systematic uncertainties for kaon
I� in the positive baryon configuration.

4.8 Conclusions

The angular dependence of the beam-helicity asymmetry for two charged kaons in

photoproduction was shown for the first time. It was also compared to the beam-helicity

asymmetry for two charged pions in photoproduction, which was also a first-time mea-

surement for energies W > 2.3 GeV. The asymmetry was also studied as functions of key

kinematic variables: W , invariant masses, and momentum transfers. It was also studied

with respect to various different plane and angle definitions. The most obvious property

shown is the odd symmetry with respect to φ, i.e., I�(−φ) = −I�(φ). This is due to parity

conservation in the reaction. As a consequence of this symmetry, I� was fitted to a Fourier

sine series (Eq. 4.7) and its coefficients were studied with respect to the aforementioned

kinematic variables.

Figures 4.4, 4.8 and 4.12 show the angular dependence of the beam-helicity asymmetry

in the three different configurations, summed over all other kinematics. In the meson-meson

and neutral baryon configuration, the kaon asymmetry is dominated almost exclusively by
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the sin(φ) term. This changes for the kaon asymmetry in the positive baryon configuration

in which the sin(2φ) has a larger contribution. The differing features in the asymmetry

with respect to the different plane definitions may be due to production mechanisms inter-

fering differently. If this is so, studying the beam-helicity asymmetry with different plane

definitions may be used to probe the contributions of different production mechanisms.

The asymmetry also shows certain similarities between the different configurations:

(1) the magnitude of the asymmetry decreases as the invariant mass of the K+K− system

increases and has a local maximum at M(K+K−) ≈ 1.1 GeV; (2) the magnitude of the

asymmetry increases with the invariant mass of the pK−; (3a) the magnitude of the asym-

metry increases as the invariant mass of pK+ increases though to a lesser extent than as a

function of M(pK−); (3b) the magnitude of the asymmetry as a function of M(pK+) has a

local maximum at M(pK+) ≈ 1.5 GeV; (4) the magnitude of the asymmetry as a function

of tγ→K+ reaches a maximum at ≈ 1.3 GeV2 and appears to vanish at large momentum

transfer.

Perhaps the most striking feature of the asymmetry is the apparent agreement of c1

among the three different plane-angle configurations, up to a sign. This observation can be

summarized by the relation

cnb1 (τ) ≈ cpb1 (τ) ≈ −cmm1 (τ), (4.30)

where cx1(τ) is the leading Fourier coefficient for a given kinematic bin τ in the configuration

labeled by the superscript x. The notation cnbj refers to the jth Fourier coefficient obtained

in the neutral baryon plane configuration and follows similarly for the other configurations.

This property for c1 does not occur for the other coefficients and was also observed for

double-pion production in reference [52]. Figures 4.16 to 4.18 show a comparison of the

Fourier coefficients for the different configurations.

In order to fully make sense of the results shown, a better theoretical understanding of

the reactions is needed. While the pion reactions have been studied extensively at energies

W < 2.3 GeV and the model in reference [58] describes those reactions well, kaon reaction
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models remain sparse. Further studies to expand on these results could be done by using a

different target. For instance, a deuterium target allows for the comparison for quasi-free

protons and neutrons in the reaction. Also, since a helium-4 target has no spin or isospin,

it would be an ideal target to measure the asymmetry coming purely from the photon’s

polarization as opposed to averaging out over all target’s spin configurations [59].
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Figure 4.16: Comparison of c1 for the three different configurations.
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Figure 4.17: Comparison of c2 for the three different configurations.
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Figure 4.18: Comparison of c3 for the three different configurations.
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CHAPTER 5

Partial Wave Analysis

Partial wave analysis (PWA) is a tool used to extract information about the interme-

diate states of a scattering process in terms of the measured quantities of the initial and

final states. The final state particles are observed in a certain angular distribution, which is

the culmination of the decays of all intermediate resonances. The PWA takes as input the

four-vector momentum of the final states and outputs the amplitudes of waves with angular

quantum numbers contributed by the intermediate states in a reaction.

The amplitudes are obtained by fitting to a reaction model, which is discussed in

Section 5.2. The amplitudes are taken to be the parameters of a reaction model and are

obtained by the maximization of the likelihood function. The derivation of the likelihood

function is discussed in Section 5.3. As the likelihood function depends on the measured

angular distribution of particles in the final state, the amplitudes themselves depend on

the detector acceptance. In order to accurately obtain the amplitudes of the intermediate

states, the detector acceptance effects must be corrected for. Acceptance corrections and

simulation procedures are discussed in Section 5.4.

5.1 Preliminaries

The PWA model (Section 5.2) relies on the canonical and helicity descriptions of states

and the transformations between them. The helicity formalism for the scattering of rela-

tivistic particles with spin is based on the work in reference [60]. Consider a single massive

particle with momentum p and total angular momentum J. Its state in the canonical basis

is given by |jm; pθφ〉, or |jm; p 〉 for short, where j is the angular momentum quantum

number and m is the angular momentum along the z axis. This state can be obtained by

boosting from its rest frame state along p, i.e.

|jm; p 〉 = L(p)|jm; 0 〉, (5.1)
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where

L(p) = R(φ, θ, 0)Lz(p)R
−1(φ, θ, 0)1 (5.2)

and R(α, β, γ) is the Euler parametrization of rotations in R3. The operation given by L(p)

first sets p to be along the z axis, applies a boost along the z axis with momentum p, then

rotates the system back to its original coordinate system.

The helicity of the particle, λ, is defined to be the component of the particle’s spin

along its direction of motion, i.e.

λ = J · p̂. (5.3)

In the helicity basis, the z direction is taken to be along the particle’s direction of motion.

In this basis, since ẑ = p̂,

λ = J · ẑ = m. (5.4)

The particle’s state can then be given as |jλ; p 〉. Obtaining this state by boosting from its

rest frame,

|jλ; p 〉 = R(φ, θ, 0)Lz(p)|jλ; 0 〉. (5.5)

The difference between the canonical and helicity bases is that the canonical basis takes a

predefined, arbitrary z axis whereas the helicity basis defines its z axis based on the particle’s

momentum. The transformation between the two bases can be obtained by inserting an

identity operator, R−1(φ, θ, 0)R(φ, θ, 0), into Eq. 5.5, giving

|jλ; p 〉 = R(φ, θ, 0)Lz(p)R
−1(φ, θ, 0)R(φ, θ, 0)|jλ; 0 〉. (5.6)

1L(p) is really a unitary representation of the Lorentz group acting on the Hilbert space of one-particle
states. The same applies for the rotations R(α, β, γ).
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Inserting another identity operator on the space of states with angular momentum j given

by
∑

m′ |jm′; 0 〉〈jm′; 0 |, it follows that

|jλ; p 〉 =
∑
m′

R(φ, θ, 0)Lz(p)R
−1(φ, θ, 0)|jm′; 0 〉〈jm′; 0 |R(φ, θ, 0)|jλ; 0 〉, (5.7)

=
∑
m′

Dj
m′λ(φ, θ, 0)|jm′; p 〉, (5.8)

where

Dj
mλ(α, β, γ) ≡ 〈jm|R(α, β, γ)|jλ〉 (5.9)

are the Wigner D matrices. Explicit expressions of the Wigner D matrices can be found

in references [61, 62]. Essential properties and identities of the Wigner D matrices with

their derivations can also be found there. The relevant formulae for this work are shown in

appendix 6.

Consider a system of two massive particles with helicities λ1 and λ2 and total angular

momentum j. Let p be the momentum of particle 1 in the two-particle rest frame so that

particle 2 has momentum −p. The two-particle state can be described in the helicity basis

by |jλ; p λ1λ2〉 where λ = λ1 − λ2. From Eq. 5.8, the two-particle state can be expressed

in the canonical basis as

|jλ; p λ1λ2〉 =
∑
m′

Dj
m′λ(φ, θ, 0)|jm; p λ1λ2〉, (5.10)

which can be inverted using identity Eq. 6 to obtain

|jm; p λ1λ2〉 =
2j + 1

4π

∫
S2

dΩDj∗
mλ(φ, θ, 0)|jλ; p 〉. (5.11)
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On the other hand, the state |jλ; p 〉 is obtained from boosting the two particles from their

respective rest frames and rotating to the desired angle, i.e.,

|jλ; p 〉 = R(φ, θ, 0)Lz(p)|s1λ1; 0 〉R(φ, θ, 0)L−z(p)|s2λ2; 0 〉, (5.12)

= |s1λ1; p 〉|s2λ2;−p 〉, (5.13)

=
∑
m1m2

Ds1
m1λ1

(φ, θ, 0)Ds2
m2−λ2

(φ, θ, 0)|s1m1; p λ1〉|s2m2;−p λ2〉, (5.14)

where si is the spin quantum number of the ith particle. Substituting Eq. 5.14 into Eq. 5.11,

|jm; p λ1λ2〉 =
2j + 1

4π

∑
m1m2

∫
S2

dΩDj∗
mλ(φ, θ, 0)Ds1

m1λ1
(φ, θ, 0)Ds2

m2−λ2
(φ, θ, 0)

× |s1m1; p λ1〉|s2m2;−p λ2〉.

(5.15)

Applying Eqs. 8 and 9, it follows that

|jm; p λ1λ2〉 =
∑
ls

(
2l + 1

2j + 1

)1/2

(l0sλ|jλ)(s1λ1s2 − λ2|sλ)|jmls〉. (5.16)

5.2 The Model

The formalism on which this PWA is based follows from the work in references [19–21].

Consider the reaction γp → Y ∗K+ → (pK−)K+, where an excited hyperon is produced

and then decays. Starting from Fermi’s Golden Rule, the differential cross section is given

by

dσ

dtdsdM
∝

∑
ext. spins

∫
|M|2dΩ, (5.17)

where

t = (γ −K+)2, (5.18)

s = (γ + ptarget)
2, (5.19)

M =
√

(pscat +K−)2. (5.20)
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The quantity M is the Lorentz-invariant transition amplitude and dΩ is a differential area

element of the unit sphere in the Gottfried-Jackson frame2 of the Y ∗. The intensity is

defined as

I =
∑

ext. spins

|M|2, (5.21)

where the sum is over all external spin states. Writing M in terms of the measurable

incoming and outgoing states,

M = 〈out|T̂ |in〉, (5.22)

where T̂ is the transition operator, Eq. 5.21 becomes

I =
∑

ext. spins

〈out|T̂ |in〉〈out|T̂ |in〉∗, (5.23)

=
∑

ext. spins

〈out|T̂ |in〉〈in|T̂ †|out〉. (5.24)

The transition operator can be decomposed into a part that produces a resonance and then

decays it. That is,

T̂ = T̂decayT̂production. (5.25)

The intensity can then be expressed as

I =
∑

ext. spins

〈out|T̂dT̂p|in〉〈in|T̂ †p T̂
†
d |out〉. (5.26)

Figure 5.1 shows a schematic of the transition operator and its composition in relation to

the reaction γp→ pK+K− producing an intermediate hyperon resonance.

2The Gottfried-Jackson frame is defined to be the frame in which the produced resonance, Y ∗, is at rest
with the z axis defined to be parallel to the beam. The y axis is chosen to be parallel to γ × pY ∗ in the
center-of-mass frame. Boosting to the rest frame of the Y ∗ does not change this vector as it is perpendicular
to the boost. The x axis is chosen to form a right-handed coordinate system.
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T̂

γ

p p′

K−

K+

(a) Transition operator between in and out
states

T̂p

γ

p p′

K−

K+

Y ∗
T̂d

(b) Decomposition of transition operator into pro-
duction and decay operators

Figure 5.1: Schematic representation of the transition operator.

Given a set of orthogonal states |X〉 with
∑

X |X〉〈X| = I, Eq. 5.26 can be expanded

in terms of these states. That is,

I =
∑

ext. spins

∑
X,X′

〈out|T̂d|X〉〈X|T̂p|in〉〈in|T̂ †p |X ′〉〈X ′|T̂
†
d |out〉 (5.27)

The orthogonal states |X〉 are called partial waves. Each of these states can, in turn, be

described by a set of quantum numbers. The term 〈out|T̂d|X〉 is called the decay amplitude

for the wave X while 〈X|T̂p|in〉 is the production amplitude for the wave X.

5.2.1 Decay Amplitudes

As mentioned previously, dΩ is a differential area element of the unit sphere in the

Gottfried-Jackson frame. The Gottfried-Jackson frame is the frame in which the produced

resonance is at rest and the z axis is chosen to be parallel to the beam. Since the produced

resonance is at rest in this frame, the decay products scatter antiparallel to one another.

Hence, the angles for one of the decay products is sufficient to describe the angular distri-

bution of the decay. Let θ be the angle with respect to the z axis and φ be the azimuthal

angle of one of the decay products. Writing the “out” state in the helicity basis and labeling

the partial waves by their quantum numbers, the decay amplitude becomes

〈out|T̂d|X〉 =
∑
j′λ′1λ

′
2

cj
′

λ′1λ
′
2
〈j′λ′; p λ′1λ

′
2|T̂d|jm〉, (5.28)
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where λ′ = λ′1 − λ′2. Applying Eq. 5.10,

〈out|T̂d|X〉 =
∑

j′m′λ′1λ
′
2

cj
′

λ′1λ
′
2
Dj′∗
m′λ′(φ, θ, 0)〈j′m′; p λ′1λ

′
2|T̂d|jm〉. (5.29)

Since T̂d preserves j and m, the sums over j′ and m′ can be eliminated, as the only contribu-

tion will be when j′ = j and m′ = m. Inserting the identity operator
∑

l′s′ |jml′s′〉〈jml′s′|

to consider the outgoing angular momentum contributions,

〈out|T̂d|X〉 =
∑

λ′1λ
′
2l
′s′

cj
λ′1λ
′
2
Dj∗
mλ′(φ, θ, 0)〈jm; p λ′1λ

′
2|jml′s′〉〈jml′s′|T̂d|jm〉. (5.30)

The term 〈jmls|T̂d|jm〉 is known as the transition amplitude and will be labeled as ajmls .

Applying Eq. 5.16,

〈out|T̂d|X〉 =
∑

λ′1λ
′
2l
′s′

cj
λ′1λ
′
2

(
2l′ + 1

2j + 1

)1/2

Dj∗
mλ′(φ, θ, 0)(l0sλ|jλ)(s1λ1s2 − λ2|sλ)ajmls . (5.31)

The cj
λ′1λ
′
2

are fixed by normalization. From Eq. 6, it follows that

cj
λ′1λ
′
2

=

(
2j + 1

4π

)1/2

. (5.32)

Finally, the decay amplitude can be written as

〈out|T̂d|X〉 =
∑

λ′1λ
′
2l
′s′

(
2l′ + 1

4π

)1/2

Dj∗
mλ′(φ, θ, 0)(l0sλ|jλ)(s1λ1s2 − λ2|sλ)ajmls . (5.33)

5.2.2 Reflectivity Basis

As the strong interactions conserve parity, this imposes a constraint on the pK− decay.

However, the helicity states defined in Section 5.1 are not eigenstates of the parity operator

and do not satisfy this constraint. The basis that demonstrates this symmetry is known as

the reflectivity basis.
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The parity operator, Π̂, is the operator that takes r to −r. Consequently, it does not

change the total angular momentum but p → −p. It then follows that λ → −λ under a

parity transformation. Consider a state with spin j and momentum p in the helicity basis.

Then,

Π̂|jλ; p〉 = P |j − λ;−p〉, (5.34)

= P R(0, π, 0)|jλ; p〉. (5.35)

Since Π̂2 = I, it follows that P = ±1. Introducing the operator

Π̂y = Π̂R(0, π, 0), (5.36)

it follows that |jλ; p〉 is an eigenstate of Π̂y. This operator is called the reflectivity operator.

Physically, it is a reflection through the production plane. Applying the reflectivity operator

on the canonical states,

Π̂y|jm〉 = Π̂R(0, π, 0)|jm〉, (5.37)

and inserting the identity operator
∑

m′ |jm′〉〈jm′|, it follows that

Π̂y|jm〉 =
∑
m′

Π̂|jm′〉〈jm′|R(0, π, 0)|jm〉, (5.38)

=
∑
m′

Pm′ |jm′〉djm−m′(−π). (5.39)

Using the identity in Eq. 11,

Π̂y|jm〉 = P (−1)j−m|j −m〉. (5.40)
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This suggests that states of the form c1|jm〉 + c2|j −m〉 are eigenstates of the reflectivity

operator. Solving the eigenvalue problem,

Π̂y

[
c1|jm〉+ c2|j −m〉

]
= ε
[
c1|jm〉+ c2|j −m〉

]
, (5.41)

Π̂y

[
c1|jm〉+ c2|j −m〉

]
= P

[
c1(−1)j−m|j −m〉+ c2(−1)j+m|jm〉

]
. (5.42)

Hence, εc1 = c2(−1)j+m

εc2 = c1(−1)j−m
(5.43)

If ε = 0, then c1 = c2 = 0, which would yield the trivial solution. Also, if either c1 or c2 = 0,

then that too will yield the trivial solution. It then follows that

ε = (−1)j (5.44)

The eigenvalue, ε, is called the reflectivity. The constant is obtained by normalization and

is given by 
c1 = 1√

2
if m > 0

c1 = 1
2 if m = 0

c1 = 0 if m < 0.

(5.45)

The eigenstates of the reflectivity operator in terms of the canonical basis states are ex-

pressed as

|εjm〉 ≡
[
|jm〉+

P

ε
(−1)j−m|j −m〉

]
Θ(m), (5.46)

where Θ(m) is the normalization constant from Eq. 5.45. The inverse of Eq. 5.46 is given

by

|jm〉 =
∑
ε

|εjm〉Θ(m) + ε∗P (−1)j+m|εjm〉Θ(−m). (5.47)

Expressing the production and decay amplitude in the reflectivity basis, the intensity func-

tion is expressed as

I(θ, φ; V) =
∑
εε′
bb′

AεbVεbρεε′V
∗
ε′b′A

∗
b′ (5.48)
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where b is the set of quantum numbers {λp, λK− , j,m, l, s}, Aεb is the decay amplitude from

Eq. 5.33 without the transition amplitude term, in the reflectivity basis, and Vεbρεε′V
∗
ε′b′

is the production amplitude with the transition amplitude absorbed into the Vεb. The

information needed for A and ρ is obtained from the data. The V terms are unknown and

are estimated using the maximum likelihood estimation method described in Section 5.3.

5.3 Extended Likelihood Function

The maximum likelihood method is a method of parameter estimation for a given

model with a set of parameters and set of observations. Let a be the parameters for a class

of probability distributions and let x be a set of independent measurements. From Bayes’

theorem,

p(a|x) ∝ p(x|a)p(a). (5.49)

The likelihood function is defined to be

L(a; x) ≡ p(x|a). (5.50)

Relaxing the condition that L be normalized yields the extended likelihood function,

L(a,N ; x) ≡ p̃(N ;N )p(x|a), (5.51)

where N is the expected number of events to be observed in phase space and p̃(N ;N )

is the probability distribution for the number of events observed. p̃(N ;N ) is assumed to

follow a Poisson distribution. Using the fact that the observed events were independent,

the likelihood function becomes

L(a,N ; x, N) =
NN

N !
e−N

N∏
i=1

p(xi|a). (5.52)

Using the intensity function given in Eq. 5.48 as the assumed probability distribution for

the hyperon decay angular distribution and V as the parameters for the model, it follows
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that

L(V,N ;N) =
NN

N !
e−N

N∏
i=1

I(θi, φi; V)

N
, (5.53)

=
e−N

N !

N∏
i=1

I(θi, φi; V), (5.54)

where N is the number of measurements. Reference [63] asserts that the parameter estima-

tion by maximizing the likelihood function is at least asymptotically unbiased and efficient.

That is, if aN is the parameter estimate for a with N measurements obtained by maximizing

L, then

lim
N→∞

E(aN ) = a

and

(5.55)

lim
N→∞

MVB

Var(aN )
= 1, (5.56)

where MVB is the minimum variance bound as given in reference [64]. The minimum

variance bound is the smallest variance an estimator can have for a deterministic parameter.

An estimator being efficient means that it attains this minimum variance and is a desired

property.

The measured values can be taken to be either the proton orK− angle in the Gottfried-

Jackson frame, which determine the parameters. To make the computation more efficient,

the logarithm of the likelihood function is maximized instead. As the logarithm function is

monotonically increasing, maximization of the likelihood and log-likelihood yield the same

result. Equivalently, maximizing the log-likelihood is the same as minimizing the negative.

The minimization of the negative log-likelihood function is done using MINUIT [65, 66].

5.4 Acceptance Corrections and Normalization

As measurements of physical observables depend on the apparatus used, the effects

the apparatus has on these observables should be corrected for. One such effect is the
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detector acceptance. Every detector component has a certain efficiency in detecting particles

passing through it. As every component is made up of many subcomponents, this efficiency

is not expected to be uniform. For example, the TOF paddles detection efficiency and

timing resolution was studied in Section 3.4. Consequently, several events corresponding to

particles passing through an inefficient detector had a high probability of not being detected

and then ignored in the analysis. Furthermore, even the most reliable detector components

are not perfect.

The acceptance is the probability that the CLAS detector will detect and reconstruct

an event. The acceptance is a function principally of momentum, charge, and scattering

angle. In order to estimate the acceptance, γp → pK+K− events were generated pseudo-

randomly using a program called genr8. genr8 takes as input the t slope of the reaction

(obtained from pwa:eq:tslope), the mass of either an intermediate baryon or meson reso-

nance, and its width under the assumption that the pK− came from a Y ∗ that was produced

diffractively. For this study, events were generated to approximate the beam energy distri-

bution and the reaction’s t slope within that energy range. To obtain the input parameters

for genr8, the data were binned into 77 equal-sized Eγ bins. The t slope for each bin is

obtained from the assumption that

dσ

dt
∝ e−bt, (5.57)

where dσ
dt is the differential cross section with respect to t and b is the t slope. The generation

of events was an iterative process and the parameters were obtained as follows: the t slope

for the generated events for the j + 1 iteration in bin τ was computed as

Ngen
j+1(τ) =

(
Ndata(τ)

N rec
j (τ)

Ngen
j (τ)

)(
N rec, total
j

Ndata, total

)
, and (5.58)

bgen
j+1(τ) =

bdata(τ)

brec
j (τ)

bgen
j (τ). (5.59)

For each bin, the events were generated with an intermediate hyperon decaying into a

proton and K− having a large width so that the M(pK−) distribution in a given Eγ bin
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is approximately uniform. After generation, the events were then converted by gamp2part

to a suitable format to be read by the next program called gsim. gsim is a GEANT3-based

simulation program used to simulate the detector response of the generated events. For

each generated event, it sets ADC and TDC values for each detector hit. gpp (gsim post-

processor) smears the simulated signals and simulates the response of the DC wires. The

simulated events are then passed into a1c to be reconstructed. Finally, the reconstructed

events are analyzed identically to how the real data were analyzed. The acceptance for a

given bin, τ , is then defined to be

η(τ) =
N rec(τ)

Ngen(τ)
, (5.60)

where N rec(τ) is the number of reconstructed events and Ngen(τ) is the number of generated

events in τ . The value, N , in Eq. 5.54 is readily obtained from

N (τ) =

∫
τ

dτ ′I(τ ′)η(τ ′), (5.61)

≈ 1

Ngen

Ngen∑
i=1

I(τi)η(τi), (5.62)

where η(τi) = 1 if the ith generated event was accepted

η(τi) = 0 if the ith generated event was not accepted.

5.5 Performing the Fit

The software framework used to perform the partial wave analysis was the pyPWA

framework developed by the group in references [67, 68]. The software takes as input

the experimental, generated Monte-Carlo, and reconstructed Monte-Carlo events in gamp

format [69]. It also takes as input a collection of waves to be included in the minimization

of the negative log-likelihood function as keyfiles [69]. Figures 5.2 and 5.3 show an example

of a gamp-formatted event and a keyfile, respectively. The keyfile shown is for a J = 3
2 P

3GEometry ANd Tracking
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wave with reflectivity ε = +1. While the keyfile also takes the parity quantum number into

consideration, in the decay of an excited hyperon into a proton and K−, the parity of the

hyperon is ambiguous as the decay amplitudes are invariant under parity transformations.

This ambiguity is known as the Minami ambiguity [70, 71]. As baryons are not their own

antiparticle, they do not have a C parity quantum number.

4

1 0 0 0 3.23718 3.23718

14 1 -0.123115 0.0300784 0.493506 1.06388

11 1 0.181896 -0.214886 2.42518 2.49141

12 -1 -0.0587807 0.184807 0.317884 0.619553

Figure 5.2: Example of a gamp-formatted event.
The first number at the top is the number of
particles in the event. The subsequent rows con-
tain the particle ID followed by the four-vector
information of that particle.

channel=t;

mode=binary;

.707 * (

J=3 P=-1 M=3 {
p+[1]

K-[1]

l=2

}
+

J=3 P=-1 M=-3 {
p+[1]

K-[1]

l=2

});

Figure 5.3: Example of a keyfile.
The wave shown is for a J = M = 3/2
P -wave with reflectivity ε = +1.
Note the angular momentum quan-
tum numbers are doubled in the key-
file.

5.5.1 Additional Cuts for PWA

While many hyperons are produced through the process γp → Y ∗K+ → pK−K+,

there is a background process leading to the same final state: γp → pX → pK+K−,

the production of a meson resonance, X. The φ(1020) can be clearly seen in the K+K−

invariant mass shown in Fig. 5.4. As this resonance is fairly narrow, the vast majority of

these events can be removed quite easily. Removing all events with K+K− invariant mass
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less than 1.1 GeV removes the φ(1020) peak. This cut is shown in Fig. 5.4. However, wider

and more massive mesonic resonances can still contribute and cannot be removed simply

by making a mass cut. Instead, these mesonic contributions were suppressed by selecting

events with small momentum transfers from the photon to the K+. Given a kinematic bin,

τ , a small momentum transfer is defined to be a standard deviation from t′ where

t′ = t− tmin (5.63)

and

|tmin| = m2
Y ∗ − 2EγEY ∗ + 2Eγ |pY ∗ |. (5.64)

A standard deviation is determined by the reciprocal of the t slope: σ = 1
b , where σ here

denotes the standard deviation. The t slope was obtained for each pK− mass bin by fitting

the t′ distribution to the function Ae−bt
′
, where A and b are constants to be determined

by the fit. As the t slope was obtained independently for each M(pK−), the momentum

transfer cut consequently depended on M(pK−). Figure 5.5 shows an example of this fit

for |M(pK−)− 1520| < 5 MeV, which is the bin with the most events.

In addition to this small t cut, a Van Hove [72] sector cut was utilized as well. Fig-

ure 5.6 shows the Van Hove plot for γp→ pK+K−. The Van Hove plot considers the final

state particles’ longitudinal momentum, i.e., the component of the momentum along the

direction of the beam, in the overall rest frame. As the net momentum is zero, the net lon-

gitudinal momentum of the final state particles is also zero. Accordingly, two of the three

final state particles’ longitudinal momenta must have the same sign. The Van Hove plot

utilizes this property by showing which two particles have the same longitudinal momentum

direction and whether it is along the direction of the beam or against it. This splits the plot

into six sectors. The sectors of the Van Hove plot are labeled with the following convention:

the sector directly above the traditional positive x axis is Sector I. The subsequent sectors

in the counterclockwise direction are labeled Sectors II, III, etc. Figure 5.6 shows the sectors

of the Van Hove plot with labels for which particles have longitudinal components along or
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10

2
10

Sector I:

γ̂ ·K− > 0

γ̂ · p > 0

γ̂ ·K+ < 0

Sector II:

γ̂ ·K− > 0

γ̂ · p < 0

γ̂ ·K+ < 0Sector III:

γ̂ ·K− > 0

γ̂ · p < 0

γ̂ ·K+ > 0

Sector IV:

γ̂ ·K− < 0

γ̂ · p < 0

γ̂ ·K+ > 0 Sector V:

γ̂ ·K− < 0

γ̂ · p > 0

γ̂ ·K+ > 0

Sector VI:

γ̂ ·K− < 0

γ̂ · p > 0

γ̂ ·K+ < 0

Figure 5.6: Van Hove plot for γp→ pK+K−.

against the beam. The Van Hove sector cut used was

(γ̂ · p ) (γ̂ ·K−) > 0, (5.65)

corresponding to events where the scattered proton and K− have the same longitudinal

direction. This is given by Sectors I and IV in Fig. 5.6. Figure 5.7 shows the effects of the

Van Hove sector cut on the invariant mass spectrum of the pK− and K+K− systems. With

this cut, the signal-to-background for the Λ(1520) is significantly enhanced, but also reduces

the signal in the higher mass regions. At the same time, the invariant mass spectrum of

the K+K− is slightly smeared but meson resonances still appear to be contributing. As

these cuts do not completely remove the background meson production, a noninteracting

background term was added to the intensity function in an attempt to absorb any remaining
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Figure 5.7: Effects of Van Hove sector cut on M(pK−) and M(K+K−). Plots are normal-
ized so that the sum over all bins is 1.

nonbaryonic contributions. The intensity function with this added term is

I(θ, φ; V, B) =
∑
εε′
bb′

AεbVεbρεε′V
∗
ε′b′A

∗
b′ +B2. (5.66)

5.5.2 Wave Selection

In theory, an infinite set of waves are required to form a complete basis. However,

with finite statistics, only a finite set of waves can be chosen, and consequently, the series in

Eq. 5.66 is truncated. Many fits with various combinations of waves were conducted: first,

waves with J up to 11/2 were included. Many of these waves, particularly those with large J ,

had negligible contribution. In addition, as more waves were included, more computation

time is required for a fit and it was less likely a successful fit would be obtained. The mass

region with 1.47 GeV < M(pK−) < 1.60 GeV was binned into 10 MeV mass bins. The set

of waves used for this region were all the J = 1/2 waves and J = 3/2 P waves. The mass
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region with 1.60 GeV < M(pK−) < 1.95 GeV was also binned into 10 MeV mass bins.

The set of waves used for this region included all the J = 1/2, J = 3/2, and J = 5/2 D waves.

Finally, the mass region with 1.95 GeV < M(pK−) < 2.19 GeV was binned into 15 MeV

bins and included the same set of waves in the previous region. For all three regions, the

flat, isotropic background term was included. Table 5.1 shows the waves that were used in

each mass region.

5.5.3 Partial Wave Yields

After the maximization of the likelihood function and the parameters V and N from

Eq. 5.54 are obtained, the yields for each wave were also obtained. The value N is the

acceptance-corrected total yield obtained from Eq. 5.62. To obtain the yield from a partic-

ular wave, first define

Ψε,ε′

b,b′ =
1

Ngen

Ngen∑
i=1

Aεbρεε′A
∗
ε′b′ . (5.67)

Ψ is called the raw normalization integral. Substituting this quantity into Eq. 5.62, it

follows that

N =
∑
εε′
bb′

VεbV
∗
ε′b′Ψ

ε,ε′

b,b′ +B2. (5.68)

The yield for a partial wave with quantum numbers b and reflectivity ε is defined to be

Nεb = VεbV
∗
εbΨ

ε,ε
b,b, (5.69)

= |Vεb|2Ψε,ε
b,b. (5.70)

5.5.4 Statistical Uncertainties

After the likelihood function is maximized and the parameters are obtained, MINUIT

also produces a covariance matrix consisting of the covariances between the real and imagi-

nary components of V. This covariance matrix is used to propagate to the uncertainties in

the yields given by Eqs. 5.68 and 5.70. For simplicity, consolidate all the wave numbers b

and ε into one index, α. Then rewrite Vα as vα,R+ ivα,I , where vα,R denotes the real part of
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Wave (J,M, ε, L) M(pK−) Region

(1/2, 1/2,+1, S) 1.47− 2.19 GeV

(1/2, 1/2,−1, S)

(1/2, 1/2,+1, P )

(1/2, 1/2,−1, P )

(3/2, 1/2,+1, P )

(3/2, 1/2,−1, P )

(3/2, 3/2,+1, P )

(3/2, 3/2,−1, P )

(3/2, 1/2,+1, D) 1.60− 2.19 GeV

(3/2, 1/2,−1, D)

(3/2, 3/2,+1, D)

(3/2, 3/2,−1, D)

(5/2, 1/2,+1, D)

(5/2, 1/2,−1, D)

(5/2, 3/2,+1, D)

(5/2, 3/2,−1, D)

Background 1.47− 2.19 GeV

Table 5.1: List of waves used in PWA.
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Vα and vα,I denotes its imaginary part. It follows that Eqs. 5.68 and 5.70 can be rewritten

as

N =
n∑
α,α′

(vα,R + ivα,I)(vα′,R − ivα′,I)Ψα,α′ , (5.71)

Nα = (v2
α,R + v2

α,I)Ψα,α, (5.72)

respectively, where n is the total number of partial waves used in the fit. The uncertainty

for Nα in Eq. 5.72 is given by

σ2
stat(Nα) =

(
∂Nα
∂vα,R

)2

σ2
stat(vα,R) +

(
∂Nα
∂vα,I

)2

σ2
stat(vα,I)

+ 2
∂Nα
∂vα,R

∂Nα
∂vα,I

σstat(vα,R, vα,I),

(5.73)

= 4Ψα,α(v2
α,R σ2

stat(vα,R) + v2
α,I σ

2
stat(vα,I)

+ 2vα,Rvα,Iσstat(vα,R, vα,I)).

(5.74)

The uncertainty for N in Eq. 5.71 is more complicated. Taking the partial derivatives with

respect to vβ,R of N in Eq. 5.71 yields

∂N
∂vβ,R

=
∑
α,α′

[
(vα′,R − ivα′,I)Ψα,α′

∂

∂vβ,R
(vα,R + ivα,I)

+ (vα,R + ivα,I)Ψα,α′
∂

∂vβ,R
(vα′,R − ivα′,I)

]
.

(5.75)

Since

∂

∂vβ,R
(vα,R + ivα,I) =

∂vα,R
∂vβ,R

= δαβ, (5.76)

where δ is the Kronecker delta, it follows that

∂N
∂vβ,R

=
∑
α,α′

[
(vα′,R − ivα′,I)Ψα,α′δαβ + (vα,R + ivα,I)Ψα,α′δα′β

]
, (5.77)

=
∑
α′

(vα′,R − ivα′,I)Ψβ,α′ +
∑
α

(vα,R + ivα,I)Ψα,β. (5.78)
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Also, since ρ in Eq. 5.67 is symmetric with respect to exchanges in the primed and unprimed

indices, it follows that Ψ also has this property. Utilizing this property and relabeling

indices, it follows that

∂N
∂vβ,R

=
∑
α

2vα,RΨα,β. (5.79)

Following a similar computation,

∂N
∂vβ,I

=
∑
α

2vα,IΨα,β. (5.80)

Defining

J =

[
∂N
∂v1,R

∂N
∂v1,I

. . .
∂N
∂vn,R

∂N
∂vn,I

]
, (5.81)

the uncertainty in N is given by

σ2
stat(N ) = J C J T , (5.82)

where C is the covariance matrix given by MINUIT.

5.6 Fit Results

Many fits were conducted to try to obtain the best wave combination. However, the

fitting procedure is computationally expensive and not every combination can be tried. The

results shown are for the procedures described in Sections 5.4 and 5.5, though many other

combinations were attempted (c.f. Section 5.8). Figures 5.8 to 5.11 show the acceptance

corrected yields for each wave used in the fit as a function of the pK− invariant mass.

Figures 5.12 and 5.13 show the total acceptance corrected yield (N ) and the background

yield, respectively.
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Figure 5.8: J = 1/2 waves acceptance corrected yields.
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Figure 5.9: J = 3/2 P waves acceptance corrected yields.
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Figure 5.10: J = 3/2 D waves acceptance corrected yields.
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Figure 5.11: J = 5/2 D waves acceptance corrected yields.
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Figure 5.12: N acceptance corrected yield.
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Figure 5.13: Background wave acceptance corrected yield.
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5.7 Fit Quality

After the amplitudes were attained, the generated events were weighted according to

the intensity using the fitted parameters. The distributions generated after weighting are

the fit-predicted distributions and these were compared to the actual data. As shown in

Fig. 5.14, the fits for the 1.47 < M(pK−) < 1.6 GeV region were in acceptable agreement.

However, the fits in the mass region with M(pK−) > 1.6 GeV were not successful. Many fits

were conducted in order to obtain an acceptable fit in this region. Different combinations

of waves, binning schemes, and event selections were attempted, but no method yielded a

successful fit in that region. This was most likely due to meson contributions still being

significant, contrary to the model’s assumption that only hyperons are produced in the

reaction.
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5.8 Conclusions

As shown in Sections 5.6 and 5.7, the best fit results were in the Λ(1520) region,

where there are the most statistics. Not surprisingly, the dominant wave in that region

is the J = 3/2, which is in agreement with previous measurements [7]. A result of this

fit is that among the Mj quantum numbers, the Mj = 3/2 wave contributions dominate

over the Mj = 1/2 wave. This can perhaps provide information on the exchange particle

that produces the Λ(1520). However, this should be taken with some degree of skepticism.

One of the possible negative effects of a partial wave fit is that the solution is not unique:

different combinations of waves can yield the same result. In addition, while performing

the fits, it was found that the results depend heavily on the choice of waves included. This

is not surprising as removing one wave is equivalent to setting its amplitude to 0. If this

wave were significant in one fit, another wave (or waves) must take its place.

Many different combinations of waves and simulation schemes were attempted for this

work. Fits using waves with J up to 11/2 were attempted. Also, an isotropic simulation

(t slope is 0) was attempted. In addition, the t′ cut was varied and the smallest value

attempted was half a standard deviation. However, with this cut, only 16% of the data

remain and most of the signal in the higher mass regions was lost. While the Van Hove

sector cut improved the signal for the Λ(1520), it also removed signal in the higher mass

regions. The results for each combination in the M(pK−) > 1.6 GeV region were the same

however: the fits did not accurately describe the data.

Furthermore, the model used had a key simplifying assumption: it only assumes

the production of an excited hyperon. In reality, the production of a meson decaying

into K+K− is a significant background. This background was suppressed by applying the

small momentum transfer and Van Hove sector cuts, but at the cost of losing signal in the

M(pK−) > 1.6 GeV region. Even so, the background persisted even after the cuts. The

fit quality in the M(pK−) > 1.6 GeV region is poor and may be due to the inadequate

model used. An improvement of the model would be to consider the production of both

the mesons and baryons in the reaction. A model such as the one described has been the
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topic of recent theoretical work in, for example, reference [73]. This information is also of

importance for those studying meson spectroscopy. As shown in Fig. 3.14d, there are a lot

of baryon contributions that would be difficult to remove, in analogy to trying to remove

the meson contributions. With a complete model that considers both meson and baryon

contributions, a full partial wave fit can be conducted.
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CHAPTER 6

Conclusion

The photoproduction of mesons is perpetually being used for the investigation of

intermediate resonant states. This is fundamental in the understanding of the non-

perturbative region of QCD. This work focused on the reactions γp → pK+K− and

γp→ pπ+π− utilizing the g12 data set collected with the CLAS detector that is housed in

Hall B at Jefferson Lab.

For γp → pK+K−, a partial wave analysis was performed for the pK− system as a

function of M(pK−) in an exploratory search for excited hyperons. The model used, its

formalism, and the fit procedures were described in Chapter 5. The results of the PWA

concluded that the fit was acceptable in the region containing the Λ(1520). However, for

the mass region M(pK−) > 1.6 GeV, the fits were not successful. This was most likely due

to meson contributions not being suppressed enough and a model that does not adequately

describe hyperon production in the presence of background mesonic contributions. Going

forward, a reaction model that considers both possible processes is needed. By analogy,

this should also hold true for meson spectroscopy in γp → pX,X → K+K−. Although

the PWA attempt for the high mass Y ∗ did not yield reliable results, it demonstrated the

necessity of understanding and modeling of the background process in this type of PWA.

When both meson and hyperon processes contribute, it is clear that the amplitudes of both

processes is needed and both channels should be fit simultaneously.

In addition, for both of the reactions, a measurement of the polarization observable

I� was presented. The measurement of I� was conducted for the first time for γp →

pK+K− and for γp → pπ+π− in the W > 2.3 GeV region. Polarization observables,

such as I�, are necessary to constrain the parameters of the reaction models and achieve

a better understanding of the reaction mechanisms. Several features of the asymmetry

were described in Chapter 4. Perhaps the most striking feature of the asymmetry was the

apparent agreement (up to a sign) of the leading coefficient of a Fourier sine fit among

three different plane and angle definitions. Also, a comparison of the asymmetry for γp→
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pπ+π− and γp→ pK+K− was conducted. It was concluded that the asymmetry for γp→

pπ+π− as a function of the angle φ defined in Chapter 4 is dominated by sin(2φ), whereas

for γp → pK+K−it is dominated by sin(φ) when it is decomposed into its Fourier sine

series. The two-pion results at W > 2.3 GeV will also become important in extracting

the properties of intermediate nucleon resonances [58]. In order to fully make sense of the

physics behind these results, a better theoretical understanding of the reactions is needed.

These results generated a lot of interest from the theoretical community and will certainly

aid in the development of theoretical models for double kaon photoproduction.
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Wigner D and d Matrices

These are relevant formulas involving Wigner D and d matrices that are used in the

formalism of the PWA (Chapter 5) obtained from references [7, 19–21, 61, 62, 74]. The

notation for the Clebsch-Gordan coefficients used is

(j1m1j2m2|jm),

where

|j1m1〉|j2m2〉 =
∑
j

(j1m1j2m2|jm)|jm〉, (1)

|jm〉 =
∑
m1m2

(j1m1j2m2|jm)|j1m1〉|j2m2〉,

with m1 +m2 = m.

(2)

A table of Clebsch-Gordan coefficients can be found in reference [7].
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Dj
ms(α, β, γ) ≡ 〈jm|R(α, β, γ)|js〉 (3)

Dj
ms(α, β, γ) = e−imαdjms(β)e−isγ (4)∫

S3

dΩ Dj∗
ms(α, β, γ)Dj′

m′s′(α, β, γ) =
8π2

2j + 1
δjj′δmm′δss′ (5)∫

S2

dΩ Dj∗
ms(α, β, 0)Dj′

m′s(α, β, 0) =
4π

2j + 1
δjj′δmm′ (6)∫ π

0
dβ sinβ djms(β)dj

′
ms(β) =

2

2j + 1
δjj′ (7)

Dj1
m1s1(α, β, γ)Dj2

m2s2(α, β, γ) =∑
j3

(j1m1j2m2|j3m1 +m2)(j1s1j2s2|j3s1 + s2)Dj3
m1+m2s1+s2(α, β, γ)

(8)

Dj1
m1s1(α, β, γ)Dj3∗

m3s3(α, β, γ) =∑
j2

(
2j2 + 1

2j3 + 1

)
(j1m1j2m1 −m3|j3m3)(j1s1j2s1 − s3|j3s3)Dj2∗

m1−m3s1−s3(α, β, γ)
(9)

Dl
m0(α, β, 0) =

√
4π

2l + 1
Y l∗
m (β, α) (10)

djmm′(π) = (−1)j−mδm−m′ (11)
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Beam-Helicity Asymmetry Data Tables

φ (rad) I� σstat(I
�)

-2.905 0.0399141 0.00549746
-2.53302 0.128643 0.00328471
-2.15023 0.0628638 0.00269081
-1.76423 -0.00914769 0.00243327
-1.38458 -0.0955621 0.0025775
-1.01194 -0.129561 0.00351956
-0.632692 -0.0703597 0.00634946
-0.197412 0.00659814 0.00946058
0.195121 0.000547486 0.00965746
0.633444 0.0251967 0.00633783
1.01227 0.124833 0.00351233
1.38455 0.0793987 0.00256984
1.76414 -0.00123999 0.00241866
2.15006 -0.0906038 0.00267398
2.53318 -0.130086 0.00328837
2.90405 -0.0792164 0.00553264

Table A1: Pion Data Points for Fig. 4.4.

φ (rad) I� σstat(I
�)

-2.93746 -0.0118352 0.0151409
-2.5179 0.0140214 0.00887212
-2.155 -0.169374 0.00684003
-1.77571 -0.26273 0.00701817
-1.38766 -0.253313 0.00831093
-1.00229 -0.144872 0.0106896
-0.623236 -0.0469769 0.0164551
-0.19884 0.018303 0.0226071
0.198136 -0.0390006 0.0232467
0.623999 0.0592048 0.0172081
1.00209 0.158464 0.0109512
1.38947 0.253 0.00847152
1.774 0.241614 0.00717302
2.15523 0.184004 0.00697577
2.51961 -0.00780698 0.00886164
2.93583 -0.0465425 0.0149465

Table A2: Kaon Data Points for Fig. 4.4.

W (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

1.7805 -0.053003 0.0366963 0.00830303 0.0370443 -0.0320014 0.0370228
1.82321 -0.00172469 0.0109846 0.0267856 0.0110888 -0.0310717 0.0111137

Continued on next page
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Continued from previous page

1.87398 0.0449405 0.0253239 0.0542271 0.0255514 -0.010869 0.0256339
1.9198 0.0448022 0.0169042 0.0706845 0.0170297 -0.0264768 0.0170885
1.96882 0.0446212 0.0127732 0.127895 0.012861 -0.0284799 0.012921
2.01652 0.0522394 0.0224078 0.133546 0.0225719 -0.0623813 0.0226923
2.06453 0.0382675 0.00497087 0.179577 0.00573854 -0.0417519 0.00592728
2.11405 0.0322943 0.00524324 0.176191 0.00605304 -0.0483717 0.00629119
2.16102 0.0336572 0.00529454 0.146512 0.00611457 -0.0538234 0.00636285
2.20914 0.0233448 0.00574616 0.151922 0.0066282 -0.0367166 0.00690874
2.25657 0.011507 0.00593462 0.11115 0.00684211 -0.0577347 0.00712524
2.30609 0.0021907 0.00625522 0.112953 0.00720955 -0.0573683 0.00750009
2.35527 -0.00272769 0.006617 0.082577 0.00761469 -0.0616457 0.00791919
2.40354 -0.0165154 0.00776896 0.0839484 0.0089529 -0.0845576 0.009231
2.45241 -0.0278888 0.0073879 0.0864257 0.00848382 -0.0532507 0.00875764
2.50044 -0.0149099 0.00734358 0.0810425 0.00843828 -0.0374129 0.00864856
2.54104 -0.0397746 0.00912905 0.0889266 0.0104693 -0.0618859 0.0107107
2.6069 -0.0345995 0.013678 0.0907428 0.015731 -0.0811243 0.016022
2.64604 -0.0343632 0.0101079 0.0515605 0.0115729 -0.0534663 0.0117207
2.69475 -0.0145134 0.0107049 0.0858956 0.0122626 -0.0495159 0.012365
2.74394 -0.00713492 0.010485 0.0734345 0.0119958 -0.0448202 0.0120332
2.79001 0.0303981 0.00958747 0.0975896 0.0109588 -0.0347238 0.0110006
2.83915 0.0235629 0.0106982 0.0923843 0.0122126 -0.0337375 0.0122018
2.88654 0.0234419 0.011103 0.0353271 0.0126523 -0.0472993 0.0127509
2.93601 0.0369615 0.0121123 0.0828468 0.0138424 -0.0250327 0.0137468
2.9843 0.0389724 0.0136316 0.0276759 0.0155243 -0.0588736 0.0154153
3.03583 0.0192387 0.0158643 0.0379267 0.018064 0.0128096 0.0180433
3.08067 0.057979 0.0152839 0.0209742 0.0174312 -0.0691353 0.0173912
3.12984 0.0704504 0.0176237 0.0299129 0.0200234 -0.0656594 0.0200416
3.17773 0.077053 0.0194075 -0.0148145 0.0220555 -0.0584359 0.0217725
3.2271 0.122339 0.0209053 0.0349276 0.0237418 -0.038877 0.0233688
3.2749 0.057025 0.0241202 -0.0571087 0.0272635 -0.0391977 0.0273305

Table A3: Data Points for Fig. 4.5a.

W (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

2.1335 0.304683 0.0417645 0.173721 0.0477987 0.0350634 0.0441816
2.19142 0.173421 0.0337312 0.0529572 0.0383793 -0.135053 0.0371558
2.25031 0.131643 0.0276692 0.0728267 0.0313312 -0.0398813 0.0315137
2.31162 0.150341 0.0229804 0.0694745 0.025877 -0.0943244 0.0266029
2.37024 0.133858 0.0197214 0.077208 0.0221815 -0.0544982 0.0229384
2.43254 0.108163 0.0172455 0.109749 0.019523 -0.0980525 0.0200075
2.49085 0.122129 0.0140691 0.0428448 0.0158984 -0.0967163 0.0165745
2.53882 0.131952 0.0165569 0.0720078 0.0187667 -0.118512 0.0195411
2.61844 0.170484 0.017356 0.0282977 0.0196374 -0.119788 0.0204168
2.6694 0.204479 0.0142474 0.0461814 0.0160806 -0.13633 0.0168348
2.72929 0.211162 0.01326 0.0259386 0.0149556 -0.0707303 0.015477
2.78868 0.189461 0.0106932 -0.0237354 0.012006 -0.0978814 0.0123404
2.85006 0.212568 0.0107591 -0.0229689 0.012031 -0.0791294 0.0123729
2.90906 0.201487 0.0108994 -0.0230122 0.012165 -0.0654844 0.0124343
2.96893 0.219153 0.0114012 -0.0696873 0.0127245 -0.0859753 0.0130402
3.03089 0.226797 0.0125707 -0.12836 0.0140031 -0.112136 0.0142188
3.08872 0.239911 0.0122535 -0.110226 0.0136709 -0.0998197 0.0139266
3.14968 0.304466 0.0135042 -0.0737566 0.0150554 -0.0841553 0.0152874
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3.20945 0.282349 0.0145097 -0.127427 0.0162028 -0.105117 0.0164644
3.26755 0.293117 0.0161955 -0.0944868 0.0181414 -0.0552052 0.0183787

Table A4: Data Points for Fig. 4.5b.

M(K+K−) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.993495 -0.00313223 0.0407732 -0.0953019 0.042363 -0.135838 0.0386297
1.02389 0.236022 0.0164587 -0.0678719 0.018314 -0.0376849 0.0168312
1.08009 0.397844 0.0201434 0.130166 0.0229722 -0.00706929 0.0225908
1.13285 0.335383 0.0189769 0.119612 0.0217495 -0.0696385 0.0212021
1.18473 0.27919 0.0175098 0.11675 0.0201104 -0.0238489 0.0195562
1.237 0.226257 0.0159181 0.0030644 0.0183126 -0.116975 0.0177743
1.28886 0.241177 0.01352 -0.0264492 0.0154795 -0.0792888 0.015173
1.33952 0.224895 0.0127013 0.00272025 0.0145225 -0.0801001 0.0146045
1.3918 0.220481 0.0123858 -0.0170178 0.0140549 -0.0790517 0.0146204
1.44389 0.207021 0.0123851 0.00807184 0.0139303 -0.0641417 0.0146535
1.49626 0.124274 0.0119465 -0.0201139 0.0133375 -0.12074 0.0141025
1.54755 0.138145 0.0119703 0.00920219 0.0132544 -0.107444 0.0140615
1.59972 0.152682 0.0124689 -0.0325488 0.0136736 -0.0911127 0.0145112
1.65165 0.133114 0.0129883 -0.0401993 0.0141839 -0.0664507 0.0151873
1.70313 0.108172 0.013781 -0.0630891 0.0148712 -0.0477777 0.0161601
1.75493 0.0993941 0.0153435 -0.0290659 0.0165058 -0.0141447 0.0178283
1.80675 0.0606142 0.0180789 0.0829734 0.0191592 -0.0442613 0.0209726
1.85857 -0.0205097 0.0210402 0.0878503 0.0221899 -0.1143 0.024153
1.91073 -0.0132811 0.0241731 0.0722949 0.0253412 -0.107585 0.0273742
1.96237 0.0331891 0.0280715 0.074893 0.0295484 -0.178094 0.0322108
2.01464 0.0809452 0.0323634 0.0137441 0.0343546 -0.262702 0.0369016
2.06574 0.111449 0.0404713 0.263467 0.0431942 -0.147425 0.0447615
2.11911 0.213415 0.0502053 0.0443096 0.0515617 -0.308454 0.0557667
2.1693 -0.0301787 0.0672098 0.0467826 0.0705045 -0.21276 0.074807
2.22003 0.128162 0.094412 -0.114164 0.0989451 -0.367228 0.10833

Table A5: Data Points for Fig. 4.6a.

M(pK−) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

1.44051 0.103514 0.0721041 0.0368708 0.0756546 -0.143954 0.0745331
1.47564 0.00768151 0.0262979 0.114968 0.0292099 0.0370268 0.0309166
1.51966 0.0852753 0.0102767 0.133096 0.0115147 -0.0796605 0.0122502
1.5676 0.102576 0.0149968 0.0158495 0.0166836 -0.132067 0.018181
1.61645 0.0784109 0.0145573 0.0287417 0.0159242 -0.116506 0.0174546
1.66503 0.11836 0.0128356 0.0293172 0.0140617 -0.0905326 0.0153581
1.71177 0.181917 0.0120891 0.108429 0.0134007 -0.0745159 0.014182
1.76064 0.108211 0.0115797 0.0672736 0.0130262 -0.0440805 0.0133381
1.80835 0.113203 0.0103138 0.0629987 0.0116788 -0.0994217 0.011746
1.85434 0.147995 0.0118864 -0.0444449 0.0134501 -0.167167 0.013519
1.90285 0.266376 0.0135919 -0.0476223 0.0152951 -0.130833 0.0154751
1.95166 0.311682 0.0150958 -0.14534 0.0170443 -0.14165 0.0173191
1.99988 0.324506 0.0155068 -0.148786 0.0176099 -0.102589 0.0176479
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2.04758 0.343979 0.0161923 -0.143057 0.0184017 -0.127915 0.018332
2.09526 0.372881 0.0171716 -0.105077 0.0194669 -0.0527759 0.0192764
2.14305 0.367046 0.0191592 -0.158988 0.0218266 -0.0215855 0.0208604
2.19132 0.454404 0.0213479 -0.141583 0.0241702 -0.0370387 0.0234149
2.23918 0.428682 0.0235815 -0.0986076 0.0268787 -0.0451404 0.0255344
2.28708 0.492244 0.0276057 -0.128699 0.0314574 -0.079326 0.0294607
2.33505 0.499102 0.031448 -0.139651 0.0355831 -0.0782798 0.0331397
2.38346 0.405522 0.0358143 -0.346067 0.0402409 -0.155003 0.0369607
2.43108 0.602077 0.041699 -0.110465 0.047302 0.0588995 0.0448141
2.47792 0.521262 0.0540676 -0.188934 0.0616334 -0.0887515 0.0552792
2.52622 0.59246 0.0586979 -0.058735 0.0647263 0.0857722 0.062696
2.5744 0.49133 0.0853182 0.0352232 0.0977562 0.0349774 0.0915506

Table A6: Data Points for Fig. 4.6b.

M(pK+) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

1.44068 0.0529904 0.0877234 -0.187684 0.0938252 -0.0299811 0.0922394
1.47582 0.185083 0.0283502 0.0786347 0.0314127 0.0333106 0.0318412
1.52174 0.234197 0.019363 0.117862 0.021767 -0.0473678 0.021737
1.56894 0.128629 0.016238 0.00585167 0.0183141 -0.126623 0.0181462
1.61632 0.160769 0.0147948 -0.0372823 0.0166454 -0.10741 0.016918
1.66422 0.162873 0.013849 0.0488221 0.0155996 -0.0630241 0.0160354
1.71225 0.17355 0.0128778 0.0213203 0.0144729 -0.123523 0.0149727
1.75984 0.166936 0.0124145 -0.00719592 0.0139328 -0.135697 0.0144825
1.80771 0.210439 0.0123106 0.0178589 0.0138192 -0.129971 0.0143763
1.85575 0.211257 0.0122969 0.0175361 0.01381 -0.0900179 0.0143352
1.90359 0.201474 0.0126345 0.00708297 0.0141376 -0.114926 0.014704
1.95178 0.225737 0.0129452 0.00205714 0.0145273 -0.0820595 0.0149223
1.99937 0.21367 0.0132931 -0.0458206 0.0149045 -0.0809346 0.0153075
2.04739 0.204155 0.0135853 -0.0606264 0.0152406 -0.0545555 0.0156697
2.09557 0.216917 0.0143554 -0.0535616 0.0161341 -0.0895496 0.0164481
2.14349 0.179029 0.0151138 -0.0545572 0.0170599 -0.0551485 0.0173766
2.19133 0.194913 0.0162759 -0.0294233 0.0183269 -0.074146 0.0187556
2.23921 0.176521 0.0179999 -0.0280808 0.020206 -0.0730928 0.0205842
2.28704 0.194661 0.0197134 -0.0738765 0.022169 -0.0580349 0.0227128
2.33504 0.246585 0.0229277 -0.0764071 0.0257992 -0.00274081 0.0261224
2.383 0.228719 0.0261246 -0.00322405 0.0293833 -0.0228369 0.0294155
2.43103 0.30649 0.0306612 -0.0212093 0.0347289 0.0110734 0.0344281
2.47823 0.268392 0.0371335 -0.0410901 0.0417326 -0.0578377 0.0432012
2.52551 0.352224 0.0450495 -0.0150458 0.0512864 -0.0469609 0.0511798
2.57447 0.410503 0.0625825 -0.0814262 0.0706031 0.114156 0.0692821

Table A7: Data Points for Fig. 4.6c.

−tγ→K+K− (GeV)2 c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.208489 0.146762 0.0132051 -0.0154266 0.0142824 0.00688461 0.0150011
0.341423 0.131743 0.00950452 -0.00839036 0.010609 -0.0139708 0.0110076
0.497906 0.109592 0.0101982 0.0624243 0.0115691 -0.0301166 0.0118134
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0.658106 0.135711 0.0111495 0.09607 0.0127421 -0.102892 0.0129456
0.817854 0.213849 0.0118212 0.105252 0.0135593 -0.149668 0.0136682
0.978718 0.238819 0.0119763 0.0748508 0.0136495 -0.196259 0.013905
1.13867 0.245014 0.0126163 0.00302493 0.0143023 -0.195412 0.0144975
1.29693 0.298336 0.0133111 0.0247016 0.014949 -0.201337 0.0151913
1.45784 0.300963 0.0143197 -0.0641307 0.0159169 -0.159875 0.0161371
1.61696 0.294682 0.0159252 -0.099656 0.0175795 -0.131378 0.0176779
1.77688 0.330456 0.0172712 -0.131039 0.0188801 -0.069862 0.0191729
1.93643 0.317116 0.0190354 -0.138166 0.0207081 -0.0242717 0.0212398
2.09656 0.323671 0.0206974 -0.128598 0.0223285 0.0185012 0.0235858
2.25638 0.198068 0.0237121 -0.234687 0.0254508 0.0166261 0.0268594
2.41649 0.203606 0.0261364 -0.239732 0.0276835 -0.00168794 0.0296736
2.57588 0.156684 0.0290534 -0.218096 0.0313827 0.0808142 0.0336254
2.73683 0.0617276 0.0326089 -0.144353 0.0352948 -0.039982 0.0377543
2.89718 0.0191718 0.0360364 -0.218884 0.0389267 -0.00769374 0.0422569
3.05874 -0.038551 0.041331 -0.160724 0.0449711 -0.0924482 0.0486363
3.21517 -0.0822544 0.0461218 -0.209314 0.0502798 -0.0178489 0.0555284
3.37928 -0.114257 0.051 -0.103485 0.0563176 -0.221239 0.0590235
3.53525 -0.107053 0.0566033 -0.0931968 0.0620525 -0.151485 0.0679019
3.69913 -0.0885922 0.0622739 0.139312 0.0691881 -0.0594696 0.0745721
3.85547 -0.0606241 0.0672771 -0.221668 0.0725611 -0.0359962 0.0802449
4.0214 -0.16526 0.0761286 -0.295557 0.0850294 -0.110422 0.0901838

Table A8: Data Points for Fig. 4.7a.

−tγ→K+ (GeV)2 c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.488619 0.138796 0.0208963 0.114267 0.0234184 -0.027849 0.0159592
0.643362 0.158597 0.0138556 -0.00890431 0.0158176 -0.00486254 0.0127638
0.79951 0.230669 0.0112723 -0.0299224 0.0127175 -0.0486087 0.0118823
0.957809 0.274512 0.0108741 -0.0490856 0.0121852 -0.0595733 0.0123823
1.11584 0.332984 0.0114264 -0.041876 0.0127485 -0.0685579 0.0137268
1.27516 0.338181 0.0129262 -0.0453426 0.0144127 -0.0958505 0.0158853
1.43473 0.292652 0.0149385 -0.0671557 0.0167101 -0.0934682 0.0184081
1.59493 0.24233 0.0177588 0.00727888 0.0199229 -0.0894014 0.021728
1.75548 0.140853 0.0212846 -0.0319264 0.0238518 -0.122568 0.0256689
1.91938 0.118604 0.0243327 -0.00283479 0.027419 0.0122465 0.028281
2.07787 -0.000491832 0.0274203 0.0301768 0.0307576 -0.0302618 0.031315
2.23635 0.0252694 0.0308322 0.0446396 0.0345904 -0.00689238 0.0344888
2.40068 0.0732663 0.0350897 0.0814829 0.0393009 0.00682288 0.037862
2.55707 0.101408 0.0375723 0.01453 0.0418241 -0.0413891 0.0398447
2.71719 0.0882978 0.0415754 0.0154432 0.0460492 0.0448518 0.043795
2.87829 -0.0192501 0.0490822 0.0681121 0.0544937 0.018164 0.0492655
3.03662 0.256462 0.0510954 -0.0743478 0.0562191 -0.0546445 0.0519874
3.1979 0.0925215 0.0547268 -0.0371469 0.0595547 0.0240124 0.0561424
3.35541 0.0025618 0.0620833 0.173156 0.0680309 -0.0674297 0.0608911
3.51897 -0.0239993 0.0669333 0.0901597 0.0740769 -0.0428655 0.068118
3.67862 0.123441 0.0692082 -0.0555199 0.0757902 0.15117 0.071995
3.83825 0.251592 0.0715084 -0.2724 0.0755379 0.160244 0.0716008
3.99831 0.144664 0.100064 -0.275805 0.11087 0.127776 0.0981338
4.15837 -0.15375 0.102562 -0.0501502 0.111311 0.116402 0.0982805
4.31899 0.366783 0.113346 -0.406919 0.13077 0.10607 0.123591

Table A9: Data Points for Fig. 4.7b.
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φ (rad) I� σstat(I
�)

-2.94536 -0.046866 0.0230102
-2.51537 0.0168797 0.0161016
-2.14222 0.0711579 0.0105274
-1.75809 0.171811 0.0087046
-1.37011 0.236847 0.00787604
-0.983422 0.212959 0.00754649
-0.604252 0.154042 0.00854066
-0.21737 0.056629 0.0107009
0.222059 -0.0515227 0.0101272
0.602788 -0.146177 0.00846349
0.984341 -0.222828 0.00739433
1.36992 -0.242008 0.00771868
1.75813 -0.191107 0.00856316
2.14079 -0.0546141 0.0105836
2.51714 -0.0381842 0.0159583
2.94662 0.0026795 0.0227606

Table A10: Data Points for Fig. 4.8.

W (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

2.13332 -0.173791 0.032778 -0.0908573 0.0366321 0.0476796 0.0409505
2.19104 -0.160182 0.0273813 -0.0821406 0.0307983 0.0277748 0.0338361
2.25026 -0.0833264 0.0237883 -0.058831 0.0268218 0.0405591 0.0287388
2.31138 -0.121243 0.0206031 -0.082649 0.0230875 0.0213117 0.0247051
2.37034 -0.0970004 0.0183313 -0.0951546 0.020391 0.0158424 0.021613
2.43256 -0.0644231 0.0160584 -0.0631851 0.0178036 0.0211165 0.0189662
2.49081 -0.10117 0.0134242 -0.0691903 0.014913 0.0587723 0.0156268
2.53886 -0.0871964 0.0158649 -0.125232 0.017688 0.0353108 0.0185476
2.61835 -0.160953 0.0168461 -0.0757897 0.0187311 0.0260497 0.0194569
2.66926 -0.193061 0.0140803 -0.0770313 0.0156544 0.0299512 0.0161997
2.72916 -0.194963 0.0132035 -0.0861508 0.0147489 0.0473801 0.0149623
2.78854 -0.199538 0.0107235 -0.0543908 0.0119073 0.0403228 0.0120956
2.84995 -0.216041 0.0110109 -0.0686655 0.0123221 0.0110639 0.0121621
2.90877 -0.199221 0.0113139 -0.0734648 0.0126904 0.0295253 0.0123245
2.96891 -0.251056 0.0118577 -0.0541383 0.0133432 0.0252375 0.0129081
3.03076 -0.271544 0.0132352 -0.0716323 0.0149634 0.0835096 0.01441
3.08848 -0.288657 0.0131862 -0.0469154 0.0148656 0.037823 0.0140251
3.14962 -0.335873 0.0145997 -0.0753155 0.0164248 0.0238627 0.0157634
3.20942 -0.337699 0.0158679 -0.0648856 0.0180028 0.0591054 0.016972
3.26768 -0.333794 0.0178091 -0.0587308 0.0201508 -0.0178215 0.0188259

Table A11: Data Points for Fig. 4.9.

M(K+K−) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.994734 0.0714684 0.0442488 0.122437 0.0500809 0.180676 0.0453874
1.02385 -0.244577 0.0157292 0.0703473 0.018326 0.0307839 0.0174838
1.08101 -0.315025 0.0178759 -0.0275667 0.0198905 0.0725471 0.0227777

Continued on next page

124



Continued from previous page

1.13306 -0.240679 0.0154493 -0.115557 0.0171509 0.126722 0.0195028
1.18483 -0.188187 0.0142301 -0.128938 0.015783 0.115702 0.0175681
1.23707 -0.209904 0.0128988 -0.142072 0.0142434 0.0550039 0.0155804
1.28847 -0.23718 0.0116755 -0.111782 0.012878 0.00660516 0.0137283
1.3393 -0.206366 0.0118169 -0.114973 0.0130552 0.020197 0.0134562
1.3916 -0.2037 0.0127446 -0.115666 0.0141072 -0.0143501 0.0140242
1.44379 -0.207105 0.0133572 -0.0659429 0.0150322 0.000989716 0.0144013
1.4961 -0.135086 0.0130906 -0.0664615 0.0147371 0.0468924 0.0140981
1.54736 -0.122293 0.0131621 -0.0834331 0.014985 0.0215897 0.0142325
1.59959 -0.136882 0.0138177 -0.0905607 0.015787 0.0160402 0.0148322
1.65145 -0.114761 0.0145294 -0.10441 0.0167384 0.0256141 0.0154029
1.70297 -0.0779735 0.0158367 -0.104214 0.0182585 0.0160928 0.0169592
1.75481 -0.0524973 0.017556 -0.0917542 0.0200981 -0.000590234 0.0187903
1.80681 -0.0124688 0.020016 -0.014765 0.0229242 0.0185632 0.0218883
1.85862 0.0833888 0.022829 -0.0268269 0.0262083 0.0367607 0.0256137
1.91056 0.0490103 0.0258116 0.0379574 0.0294477 0.0688521 0.0285115
1.96229 -0.00511379 0.029144 0.0905281 0.0334571 -0.0299662 0.0336208
2.01495 -0.0321192 0.035005 -0.00394887 0.0405113 -0.0798108 0.0393415
2.06596 0.0375398 0.0432417 -0.109345 0.0495397 -0.00162458 0.0485457
2.11854 -0.0650438 0.0534164 -0.128913 0.0616928 -0.0493627 0.0594956
2.16899 0.124064 0.0679718 -0.131074 0.0796449 -0.140167 0.0782123
2.21932 0.011451 0.092996 -0.147799 0.104704 0.179583 0.106105

Table A12: Data Points for Fig. 4.11a.

M(pK−) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

1.4397 -0.0804 0.0651127 -0.093692 0.0652399 0.011113 0.0645597
1.47562 0.0284343 0.0250727 -0.100445 0.0276214 -0.0672262 0.0289859
1.51937 -0.0185535 0.00986005 -0.16989 0.0112137 -0.00438776 0.0116317
1.56756 -0.113058 0.0151797 -0.0436379 0.0173729 0.0431224 0.0175613
1.61658 -0.071842 0.0151513 -0.0320228 0.0172199 0.0236773 0.0171932
1.66507 -0.0902278 0.0133334 -0.136857 0.0150705 0.0236242 0.0152318
1.7119 -0.144527 0.0122623 -0.0443419 0.0136893 0.0408968 0.0138764
1.76091 -0.0946784 0.0113049 0.0598325 0.0125313 0.00609321 0.0128336
1.80816 -0.108901 0.00983462 0.0418363 0.0109697 0.0302603 0.0112772
1.85428 -0.164655 0.0114001 -0.0479499 0.0126901 0.0664385 0.0128777
1.90279 -0.293914 0.0134855 -0.0316544 0.0148916 -0.00931956 0.0151754
1.95174 -0.361431 0.0153308 -0.112986 0.0171063 0.040979 0.0168363
1.99994 -0.405866 0.0157806 -0.0751328 0.0176607 0.0695088 0.0169006
2.04752 -0.460841 0.0163893 -0.0140295 0.0185372 0.144586 0.0175277
2.09534 -0.455991 0.0173387 -0.0285825 0.0195086 0.126735 0.018486
2.14305 -0.469174 0.0191645 -0.0442944 0.0215382 0.0811701 0.0202091
2.19129 -0.480686 0.0218031 -0.17243 0.0244244 0.11217 0.0226699
2.23884 -0.465528 0.0258745 -0.142505 0.0292097 0.100254 0.0267528
2.28679 -0.537467 0.0296279 -0.215597 0.032817 0.137388 0.0291827
2.33467 -0.4507 0.0360687 -0.328778 0.0402614 0.139903 0.0351854
2.38351 -0.575401 0.0432309 -0.130906 0.0475175 0.0349739 0.0410379
2.43062 -0.598335 0.053843 -0.182899 0.0586167 0.00639465 0.0503029
2.47834 -0.707414 0.0673847 0.0208086 0.0723948 -0.101914 0.0623611
2.52671 -0.528256 0.084292 -0.159368 0.0913814 -0.0840025 0.0780815
2.57409 -0.424433 0.122673 -0.3166 0.136105 0.233606 0.111256

Table A13: Data Points for Fig. 4.11b.
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M(pK+) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

1.44169 -0.063719 0.100817 -0.182259 0.10982 -0.0902982 0.112549
1.47618 -0.154838 0.0285033 -0.00913932 0.0319506 0.0194965 0.0327118
1.52211 -0.159516 0.0180161 -0.153336 0.0203099 -0.00606533 0.0212847
1.56912 -0.0995315 0.0150321 -0.134291 0.016943 0.0761067 0.0175715
1.61645 -0.149367 0.0140533 -0.116625 0.0157208 -0.00190352 0.0163469
1.66432 -0.125229 0.0135616 -0.107966 0.0151632 0.0292778 0.015569
1.71208 -0.141945 0.0130464 -0.122786 0.0145933 0.051319 0.0146531
1.75988 -0.161663 0.0126659 -0.0740919 0.0142255 0.0393444 0.0143302
1.80775 -0.192794 0.0126178 -0.095203 0.014171 0.0668368 0.0141622
1.85567 -0.196636 0.012699 -0.07817 0.014292 0.0174345 0.0140941
1.90362 -0.197974 0.0130903 -0.06094 0.0147592 0.0479585 0.0144457
1.95184 -0.228782 0.0132606 -0.0624854 0.01497 0.0251212 0.0145628
1.99958 -0.238039 0.013484 -0.0412336 0.015245 0.0393838 0.0147819
2.04761 -0.243327 0.0138284 -0.00803802 0.015594 0.0364916 0.0151379
2.09563 -0.246485 0.0142147 -0.0644306 0.0159028 0.0460143 0.0157266
2.14333 -0.200445 0.014992 -0.0578639 0.0167179 0.0457293 0.0166155
2.19126 -0.220161 0.0161224 -0.0168388 0.0179604 0.0504345 0.0178002
2.23914 -0.197287 0.0178489 -0.0278451 0.019938 -0.0202528 0.0198739
2.28691 -0.22257 0.0196343 -0.0554422 0.021748 0.0266961 0.0216883
2.33488 -0.27948 0.0222112 -0.0144204 0.024498 -0.0298177 0.0247762
2.38274 -0.225485 0.0252027 -0.0478992 0.0276621 -0.0822374 0.0282037
2.43098 -0.309124 0.0288902 -0.0184706 0.0317915 -0.0253158 0.0334049
2.4786 -0.299831 0.0355418 -0.0824041 0.039707 -0.0625214 0.0419305
2.52546 -0.332431 0.0442839 -0.148191 0.0488418 0.0122495 0.0512633
2.57411 -0.443115 0.0579647 0.0197497 0.0635367 -0.199555 0.0663907

Table A14: Data Points for Fig. 4.11c.

−tγ→K+K− (GeV)2 c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.112549 1.91356 1.03882 -1.79459 0.968318 0.422039 0.315545
0.366227 -0.0397572 0.0478246 -0.121949 0.0533386 0.00340076 0.0278737
0.506534 -0.0673742 0.0210729 -0.00077348 0.0242381 -0.0975207 0.0167567
0.660837 -0.0737254 0.0147422 -0.0900256 0.0169297 -0.0217469 0.0147496
0.818018 -0.138497 0.0123445 -0.145067 0.0137116 -0.00560625 0.0144013
0.978145 -0.187133 0.0119759 -0.168687 0.0130924 -0.0165107 0.0149813
1.1385 -0.205547 0.0124781 -0.20881 0.0136536 0.0116991 0.0159523
1.29686 -0.235739 0.0133009 -0.267969 0.014631 0.0801528 0.0170829
1.45712 -0.288711 0.0146482 -0.179342 0.0162223 0.064444 0.0186532
1.61677 -0.285029 0.0167228 -0.107103 0.0186542 0.118643 0.0208886
1.77694 -0.354575 0.019156 -0.12654 0.0216577 0.108414 0.0230418
1.93633 -0.336182 0.022435 -0.0680313 0.025635 0.146721 0.0260017
2.09653 -0.297017 0.0265309 0.0336148 0.0303296 0.157678 0.0295322
2.25605 -0.223828 0.0317275 0.0546998 0.0365446 0.0600541 0.0337186
2.41542 -0.13678 0.03588 0.173388 0.0411132 0.166524 0.0377881
2.57581 -0.0170028 0.0428959 0.291487 0.0492451 0.127397 0.0439027
2.73714 0.0839596 0.0502599 0.233927 0.0571894 0.173378 0.0491511
2.89854 0.131179 0.0519984 0.271357 0.0591294 0.187162 0.0530869
3.0635 0.252526 0.0616124 0.346126 0.071269 0.171436 0.0631309
3.2152 0.16248 0.0692342 0.113068 0.0789442 0.0318883 0.0692361
3.38046 0.110035 0.0728034 0.00901776 0.0829674 -0.142905 0.07048
3.53682 0.176635 0.0864407 0.0886421 0.0996458 0.221807 0.081942
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3.69801 0.1247 0.0910328 0.0252769 0.103486 0.170052 0.0878949
3.85679 0.15163 0.0975794 0.149851 0.113367 -0.0382132 0.101338
4.01937 0.20076 0.1054 0.0918695 0.117027 -0.0964455 0.10267

Table A15: Data Points for Fig. 4.10a.

−tγ→K+ (GeV)2 c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.483961 -0.0210999 0.00926596 0.0172577 0.0103906 -0.0443142 0.0105178
0.640366 -0.159541 0.00856004 -0.0289412 0.0096147 0.0343112 0.00961337
0.797425 -0.240781 0.00897732 -0.0966893 0.010159 0.0683074 0.0100267
0.956626 -0.315758 0.0100508 -0.092908 0.0113799 0.11532 0.0110132
1.11549 -0.385623 0.0114412 -0.115876 0.0128873 0.108821 0.012493
1.27581 -0.413399 0.0134424 -0.107907 0.015147 0.117431 0.0146434
1.43546 -0.341539 0.0154896 -0.140306 0.0172912 0.0762306 0.0168977
1.59591 -0.270302 0.0178936 -0.173881 0.0198263 0.0513212 0.0197101
1.75627 -0.161962 0.0202434 -0.121461 0.0225758 -0.000912182 0.0226875
1.91878 -0.0960217 0.0222713 -0.111958 0.0245893 0.000315787 0.0248599
2.07791 0.000807737 0.0240003 -0.110739 0.0262563 -0.0060071 0.0271208
2.23697 -0.0298589 0.0257869 -0.0547436 0.0279845 -0.0461827 0.0291132
2.39931 -0.092296 0.0275052 -0.108185 0.0301933 -0.00792 0.0323352
2.55853 -0.100518 0.0287882 -0.0759331 0.0314916 -0.0178409 0.0338014
2.71732 -0.0758975 0.0313661 -0.0990138 0.0342702 -0.0666466 0.03757
2.87683 -0.0159974 0.0340745 -0.133512 0.0378944 -0.0191898 0.0412827
3.03678 -0.206105 0.0364204 -0.0246809 0.0400865 -0.0692592 0.0444496
3.19789 -0.0229865 0.0396761 -0.173585 0.0440348 0.0867193 0.0481135
3.35628 -0.0964615 0.0431695 -0.210655 0.0478391 -0.0346393 0.0538059
3.51907 -0.0476021 0.0467988 -0.16354 0.0521546 -0.0273303 0.0587636
3.67808 -0.126758 0.0526788 -0.0928521 0.0589787 -0.111451 0.0656298
3.83531 -0.0701525 0.0555733 0.129644 0.0626499 -0.0643557 0.0672652
3.99816 0.167074 0.0633581 0.16851 0.071259 0.254422 0.0779046
4.15897 0.126113 0.0712661 -0.00115688 0.0810496 -0.044392 0.085528
4.31955 -0.0497181 0.081739 0.144789 0.0908052 -0.139001 0.10474

Table A16: Data Points for Fig. 4.10b.

φ (rad) I� σstat(I
�)

-2.91608 0.060312 0.00868513
-2.54637 0.0926191 0.00655846
-2.16908 0.262277 0.00687661
-1.78571 0.276479 0.00898659
-1.39151 0.170198 0.0119302
-0.996912 0.00934449 0.0150932
-0.624245 -0.0447849 0.0213438
-0.208159 -0.0673789 0.0341775
0.206368 -0.0574193 0.0348914
0.626452 0.040166 0.021455
0.995444 -0.0257776 0.01481
1.39061 -0.127554 0.0117534
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1.78571 -0.288414 0.00867712
2.16998 -0.276787 0.00673848
2.54639 -0.0901412 0.00656679
2.91534 -0.0544345 0.00836543

Table A17: Data Points for Fig. 4.12.

W (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

2.13333 -0.276297 0.0378904 -0.123437 0.0436916 -0.066823 0.0403319
2.19081 -0.156853 0.0327627 0.0374236 0.0374073 -0.0356639 0.0344389
2.25027 -0.101219 0.0284383 -0.00438089 0.0323145 -0.0119467 0.0297821
2.31131 -0.0983163 0.0243462 0.103824 0.0273759 0.0261894 0.0255795
2.37007 -0.0651771 0.0214114 0.103282 0.0238642 0.0477314 0.0224293
2.43258 -0.0964859 0.019145 0.0133848 0.0212637 0.079726 0.019767
2.49072 -0.0902232 0.016017 0.105216 0.0179072 0.141495 0.0164912
2.53882 -0.081466 0.0193208 0.122441 0.0217125 0.120999 0.0194619
2.61841 -0.134481 0.0203926 0.132438 0.02286 0.13145 0.0206334
2.66936 -0.209043 0.0171302 0.104086 0.0190411 0.172615 0.0170136
2.72914 -0.204056 0.0164511 0.105876 0.0183995 0.129417 0.0161271
2.78841 -0.193768 0.0135726 0.119962 0.0150617 0.118576 0.0130531
2.84987 -0.176431 0.0141783 0.16704 0.0156315 0.0977969 0.0133345
2.90898 -0.179031 0.0148422 0.170974 0.0162097 0.1392 0.0137041
2.96883 -0.191817 0.0158306 0.194987 0.0172483 0.110747 0.0143753
3.03056 -0.22032 0.0177998 0.202199 0.0194 0.113145 0.0162263
3.08846 -0.252732 0.0175262 0.182239 0.0189308 0.119388 0.0159169
3.14971 -0.277313 0.0195593 0.199448 0.0211243 0.0524716 0.0177996
3.20969 -0.275395 0.0217913 0.21131 0.023454 0.0792082 0.0193369
3.2675 -0.249348 0.0246619 0.17577 0.0266999 0.00809605 0.0218077

Table A18: Data Points for Fig. 4.13.

M(K+K−) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.994698 0.0988123 0.048472 0.190868 0.0498269 0.176627 0.04487
1.02414 -0.222582 0.0177231 0.118433 0.0193472 0.0649063 0.0173743
1.08025 -0.412962 0.0212358 -0.0853199 0.0241587 0.0550701 0.0220039
1.13296 -0.315517 0.020065 0.0203945 0.0229323 0.0826399 0.0201841
1.18458 -0.23069 0.0191495 0.0510965 0.0216607 0.0611696 0.0186544
1.23709 -0.173115 0.0181591 0.181995 0.0203315 0.102972 0.0170767
1.28877 -0.157937 0.0161413 0.239113 0.017719 0.0985236 0.0150513
1.33946 -0.137563 0.0156602 0.261636 0.0169828 0.129639 0.0146955
1.39171 -0.145258 0.0159531 0.216167 0.0172476 0.0640865 0.0151534
1.44383 -0.174173 0.0164807 0.166827 0.0180817 0.105942 0.0155599
1.49604 -0.154385 0.016127 0.136242 0.0177668 0.194782 0.0151801
1.5473 -0.126103 0.0166015 0.131321 0.0183271 0.133793 0.0156072
1.59962 -0.117062 0.0174572 0.130843 0.0190894 0.073387 0.0163465
1.65171 -0.123379 0.0180923 0.0866523 0.0199929 0.0592254 0.0170189
1.70323 -0.0639139 0.0189906 0.0991561 0.0212193 0.00965761 0.0181391
1.75477 -0.0426654 0.0201624 0.0762895 0.0222364 -0.0198055 0.0196927
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1.8067 -0.0634041 0.0227865 -0.0714118 0.0253661 -0.0134834 0.0229536
1.85875 0.0417307 0.0259253 -0.0213339 0.0291977 0.053566 0.0263933
1.91055 0.0210822 0.0296562 -0.0155579 0.0330429 0.0989385 0.0296441
1.96229 -0.0744323 0.0326447 -0.157409 0.0367271 0.052795 0.0343051
2.01499 -0.113951 0.0383464 -0.175802 0.0434198 -0.11007 0.0405483
2.06595 -0.016216 0.0461523 -0.0392022 0.0509575 0.0657403 0.0491103
2.1186 -0.0725329 0.056868 0.0914875 0.0629945 0.0100891 0.0594562
2.16947 -0.00447073 0.0698696 -0.208234 0.0785402 -0.305387 0.075262
2.21978 -0.0367354 0.0950245 0.00565622 0.104171 0.0493063 0.103226

Table A19: Data Points for Fig. 4.15a.

M(pK−) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

1.44229 0.00135215 0.0981267 0.0619599 0.104785 0.263957 0.0976638
1.47617 0.0664353 0.0270645 0.043891 0.029772 -0.0321577 0.0295162
1.51901 0.0123612 0.012653 0.0757372 0.0142139 -0.072707 0.0124384
1.56756 -0.124786 0.0193085 0.0379583 0.0214897 0.0369894 0.0189928
1.61639 -0.0794842 0.0192738 0.0441728 0.0212481 0.0580381 0.0188497
1.66534 -0.0493158 0.0162941 0.141285 0.0179688 0.040459 0.0163563
1.71187 -0.200116 0.015141 -0.012787 0.0166995 0.0876011 0.0149909
1.76065 -0.114403 0.0144659 0.0319205 0.0160926 0.156013 0.0140688
1.80801 -0.131306 0.0130523 0.0505381 0.0146453 0.159978 0.0124969
1.85423 -0.133216 0.015515 0.180702 0.0173794 0.171606 0.0145582
1.90306 -0.261215 0.0177678 0.144743 0.0197232 0.106374 0.0166943
1.95172 -0.278921 0.0196381 0.272161 0.0219641 0.112748 0.0185836
1.9998 -0.326572 0.0204292 0.239818 0.0226834 0.149888 0.0189779
2.04758 -0.354805 0.0213735 0.285984 0.0237602 0.218487 0.0196732
2.09516 -0.366367 0.0222288 0.221275 0.02447 0.134299 0.0206425
2.14308 -0.340489 0.0247843 0.269621 0.0271326 0.113269 0.0224183
2.1912 -0.435067 0.027087 0.272212 0.0293766 0.12495 0.0245967
2.23929 -0.429265 0.0287946 0.205413 0.0309586 0.0773404 0.0272022
2.28713 -0.468096 0.0337005 0.302642 0.0366355 0.180515 0.0307297
2.33483 -0.466991 0.0387552 0.294738 0.0419098 0.130789 0.0349594
2.38365 -0.376551 0.0433397 0.393859 0.0464522 0.0711475 0.0397859
2.43112 -0.522032 0.0504538 0.247446 0.0557277 0.0102513 0.0483683
2.47833 -0.486369 0.0657607 0.262862 0.0709172 -0.0663625 0.0600987
2.52638 -0.610988 0.0652215 0.0475466 0.0697935 -0.206594 0.0653684

Table A20: Data Points for Fig. 4.15b.

M(pK+) (GeV) c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

1.44033 -0.0540838 0.0834681 0.203111 0.0890178 -0.000474474 0.0865014
1.47575 -0.178061 0.0281114 -0.0452807 0.0310839 -0.0186648 0.0312125
1.52174 -0.198614 0.0195612 -0.0164084 0.0220408 -0.0326576 0.021166
1.5689 -0.110884 0.0168537 0.0760975 0.0189464 0.0506255 0.0178235
1.61617 -0.128733 0.0161185 0.111361 0.018138 0.0428818 0.0167905
1.66426 -0.123345 0.0155923 0.0887478 0.0175679 0.0874276 0.0161429
1.71214 -0.122799 0.0150574 0.154655 0.0169353 0.122994 0.0153872
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1.75969 -0.162667 0.0148976 0.110402 0.0167706 0.153182 0.015081
1.80759 -0.1883 0.0151175 0.139552 0.0169886 0.158287 0.0150876
1.85552 -0.186932 0.0154222 0.143188 0.0171025 0.138401 0.0151709
1.90341 -0.215048 0.0165488 0.107571 0.0182537 0.144329 0.0156933
1.95162 -0.203323 0.0174434 0.173197 0.0192368 0.143904 0.0162395
1.9993 -0.217214 0.01865 0.146448 0.0204668 0.128999 0.0168144
2.04728 -0.195308 0.0197423 0.169549 0.0214449 0.121405 0.0174204
2.09553 -0.153992 0.0213531 0.237763 0.0232521 0.113501 0.0187838
2.14299 -0.126946 0.0230607 0.195039 0.0247591 0.0945772 0.0198493
2.19129 -0.142764 0.0252255 0.196646 0.0266525 0.0889826 0.0214031
2.23886 -0.0920265 0.0287987 0.189301 0.0300363 0.0378122 0.0241679
2.28707 -0.115906 0.0320603 0.186728 0.0330345 0.0222153 0.0266887
2.33437 -0.167606 0.0384094 0.172737 0.0404001 0.0037625 0.0318803
2.38225 -0.120364 0.0432909 0.0678113 0.0444222 -0.143166 0.0363204
2.4317 -0.238725 0.05003 0.107758 0.0517731 -0.0514778 0.042506
2.47818 -0.0555327 0.0614915 0.226739 0.0643458 -0.130528 0.052804
2.52586 -0.129344 0.0793911 0.338346 0.0797487 0.0543927 0.0647783
2.57466 -0.238882 0.100045 0.186879 0.0920721 -0.184554 0.07957

Table A21: Data Points for Fig. 4.15c.

−tγ→K+K− (GeV)2 c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.0706861 1.47533 0.442231 -0.0971415 0.307762 -0.793863 0.139874
0.2591 -1.57601 0.611086 -1.43613 0.574102 -0.577912 0.192812
0.517035 -0.018555 0.076034 0.156779 0.0792182 0.0958701 0.0367017
0.668868 -0.101568 0.034697 0.0892141 0.0380989 0.116738 0.0224924
0.822299 -0.0861943 0.0211613 0.179996 0.023936 0.141201 0.017687
0.980261 -0.142073 0.0170878 0.142715 0.0193268 0.137031 0.0164494
1.1394 -0.173291 0.0159836 0.133478 0.0179385 0.0645784 0.0165274
1.29737 -0.202122 0.0155767 0.15879 0.0174381 0.0401101 0.0168859
1.45828 -0.223507 0.0155852 0.191364 0.0174029 0.0452474 0.0174379
1.61756 -0.249671 0.0162243 0.194691 0.0180906 0.0143883 0.0186307
1.77707 -0.295118 0.0170375 0.261544 0.0190225 0.0154706 0.0199296
1.93715 -0.319408 0.0181935 0.182677 0.0203716 0.0209688 0.0217336
2.09663 -0.33566 0.0194327 0.20674 0.0216304 -0.0111566 0.0237143
2.25626 -0.264119 0.0220731 0.260063 0.0245088 0.0291873 0.0267463
2.41651 -0.295868 0.0246168 0.248822 0.0270974 -0.0416488 0.0299494
2.57541 -0.262809 0.0283834 0.242445 0.0310349 -0.0601902 0.0344083
2.73706 -0.136309 0.0339285 0.15218 0.0371802 0.0561719 0.03984
2.89625 -0.125446 0.0404779 0.160149 0.0443129 0.0710508 0.0454918
3.05846 -0.00837449 0.048108 0.0237453 0.0520957 0.122146 0.0536711
3.2162 0.00599677 0.0617288 0.0676592 0.0672147 0.110279 0.0625858
3.37657 0.255194 0.0710028 -0.291611 0.0768046 0.281297 0.0720764
3.53306 0.129554 0.0816978 -0.0360767 0.088405 0.0842794 0.0776437
3.70101 0.0969659 0.0875748 0.00417046 0.0903624 0.0633697 0.0845487
3.8554 0.207411 0.113086 -0.261385 0.117855 0.216731 0.100849
3.76915 0.045445 0.153063 0.00637958 0.178472 0.300721 0.13973

Table A22: Data Points for Fig. 4.14a.
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−tγ→K+ (GeV)2 c1 σstat(c1) c2 σstat(c2) c3 σstat(c3)

0.49547 0.28433 0.0585914 0.184116 0.0624478 -0.0446188 0.0303098
0.648221 0.0973076 0.0282316 0.270661 0.0319757 0.0132045 0.0188668
0.802995 -0.124627 0.0182284 0.205732 0.0208933 0.030162 0.0149145
0.95898 -0.251617 0.015629 0.160775 0.0176395 0.0714335 0.0140769
1.11676 -0.309856 0.0154251 0.189184 0.0173424 0.148064 0.0146237
1.27671 -0.345274 0.016365 0.145831 0.0185376 0.190649 0.0162259
1.43611 -0.285412 0.0174201 0.171259 0.01972 0.175564 0.0179277
1.59616 -0.228209 0.0189642 0.18136 0.0216598 0.165495 0.0204013
1.75673 -0.129158 0.0201962 0.206359 0.0231405 0.164408 0.0223538
1.91928 -0.0971327 0.02148 0.112079 0.0244562 0.10258 0.0245511
2.07709 -0.0108745 0.023035 0.112747 0.0260528 0.108022 0.0266008
2.23668 -0.0434146 0.0249148 0.0796889 0.0277461 0.0401945 0.0285552
2.39922 -0.128737 0.0270155 0.0690933 0.0300781 0.0339674 0.0314236
2.55844 -0.125764 0.0288341 0.0491639 0.0320783 -0.00676459 0.0333901
2.71726 -0.124145 0.0336302 0.0851674 0.0372811 -0.029443 0.0374037
2.87654 -0.0708425 0.0367648 0.0977297 0.0410458 0.047067 0.0400135
3.03625 -0.254647 0.0402342 0.0959877 0.0443214 -0.0514927 0.0443018
3.19859 -0.118766 0.0460935 0.0901625 0.050829 0.130225 0.0480998
3.35559 -0.190476 0.0490882 0.155081 0.0545357 0.129586 0.053647
3.51851 -0.085222 0.0600388 0.0629213 0.0664514 0.159687 0.0604618
3.67706 -0.197467 0.0698714 0.134973 0.0769202 0.0362505 0.0698934
3.83186 -0.0306248 0.078536 -0.0231074 0.0866182 -0.0480207 0.0760237
3.99912 0.0122343 0.0884553 0.0241726 0.097479 0.0637003 0.0871737
4.16004 0.183701 0.0883843 -0.0654679 0.0932977 0.0688181 0.0891457
4.322 -0.00432009 0.117562 -0.0630483 0.133225 0.185121 0.113607

Table A23: Data Points for Fig. 4.14b.
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