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ABSTRACT OF THE DISSERTATION 

CONFORMATIONAL DYNAMICS AND STABILITY ASSOCIATED WITH 

MAGNESIUM OR CALCIUM BINDING TO DREAM IN THE REGULATION OF 

INTERACTIONS BETWEEN DREAM AND DNA OR PRESENILINS 

by 

Khoa Ngoc Pham 

Florida International University, 2016 

Miami, Florida 

Professor Jaroslava Miksovska, Major Professor 

Downstream regulatory element antagonist modulator (DREAM) is involved in 

various interactions with targets both inside and outside of the nucleus. In the cytoplasm, 

DREAM interacts with the C-terminal fragments of presenilins to facilitate the production 

of β-amyloid plaques in Alzheimer’s disease. In the nucleus, Ca2+ free DREAM directly 

binds to specific downstream regulatory elements of prodynorphin/c-fos gene to repress 

the gene transcription in pain modulation. These interactions are regulated by Ca2+ and/or 

Mg2+ association at the EF-hands in DREAM. Therefore, understanding the 

conformational dynamics and stability associated with Ca2+ and/or Mg2+ binding to 

DREAM is crucial for elucidating the mechanisms of interactions of DREAM with DNA 

or presenilins. The critical barrier for envisioning the mechanisms of these interactions lies 

in the lack of NMR/crystal structures of Apo and Mg2+DREAM.  

Using a combination of fluorescence spectroscopy, circular dichroism, isothermal 

titration calorimetry, photothermal spectroscopy, and computational approaches, I showed 

that Mg2+ association at the EF-hand 2 structurally stabilizes the N-terminal alpha-helices 
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1, 2, and 5, facilitating the interaction with DNA. Binding of Ca2+ at the EF-hand 3 induces 

significant structural changes in DREAM, mediated by several hydrophobic residues in 

both the N- and C-domains. These findings illustrate the critical role of EF-hand 3 for Ca2+ 

signal transduction from the C- to N-terminus in DREAM. The Ca2+ association at the EF-

hand 4 stabilizes the C-terminus by forming a cluster consisting of several hydrophobic 

residues in C-terminal domain. I also demonstrated that association of presenilin-1 

carboxyl peptide with DREAM is Ca2+ dependent and the complex is stabilized by aromatic 

residues F462 and F465 from presenilin-1 and F252 from DREAM. Stabilization is also 

provided by residues R200 and R207 in the loop connecting 7 and 8 in DREAM and 

the residues D450 and D458 in presenilin-1.  

These findings provide a structural basis for the development of new drugs for chronic 

pain and Alzheimer’s disease treatments. 
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1. INTRODUCTION 

1.1 Calcium and intracellular Ca2+ signaling network  

Calcium plays an important role in many biological processes. In the solid form, 

calcium has a structurally supportive function (Bronner et al., 1992; Vogel et al., 2002). 

Soluble calcium ions (Ca2+) act as an intracellular signaling ion that interacts with calcium 

binding proteins to mediate numerous physiological functions, including fertilization, 

contraction, metabolism, cell cycle progression, signal transduction, replication, gene 

expression, and electrochemical responses (Carafoli et al.,  2007; Gifford et al., 2007;  

Berridge et al., 1997). In the cytoplasm, intracellular Ca2+ concentration at the resting level 

is about 100 nM, while the extracellular Ca2+ concentration is about 2 mM, creating a 

gradient between the intracellular and extracellular Ca2+ concentrations (Vogel et al., 1994; 

Clapham, 2007). Such low cytoplasmic Ca2+ concentration is well maintained by ATP-

dependent Ca2+ pumps, which pump Ca2+ out of the cell or into specialized organelles such 

as the sarcoplasmic reticulum in muscle cells. Intracellular Ca2+ mediates its effects and 

signaling by association to numerous proteins including membrane binding proteins and 

cytoplasmic proteins. Subsequently, the Ca2+ signal is transduced into biological functions 

by triggering different intracellular pathways (Carafoli, 2007; Clapham, 2007).  

The regulation of a single Ca2+ ion in numerous cellular processes remarkably 

highlights its versatility in cellular functions (Carafoli et al., 2001; Berridge, 2001). The 

versatility of Ca2+ signaling has been attributed to its speed, amplitude, and wide range of 

spatial and temporal signals (Berridge, 2001). Each cell type has distinctive components to 

create various Ca2+ signaling systems with different spatial and temporal dynamics 

(Berridge et al., 2003). A common Ca2+ signaling network consists of four functional 
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components with the Ca2+ transients being controlled by the ON/OFF reactions outlined in 

Figure 1.1 (Berridge, 1997; Berridge, 2001; Berridge et al., 2003).  

 

 

Figure 1.1: Scheme illustrating a common intracellular Ca2+ signaling network. Adapted 

from (Berridge et al., 2000). 

 

The Ca2+ signaling network is initiated by the entry of Ca2+ into the cell. During the 

ON mechanism, the stimulus depolarizes a cell membrane causing a large electrochemical 

gradient across the cell membrane to activate various Ca2+ entry channels, such as voltage-

operated channels (VOCs), which allow Ca2+ entry from extracellular medium (Berridge 

et al., 2003). In addition, Ca2+ can also be released into the cytoplasm from internal storage 

held within the membranes of the endoplasmic reticulum (ER) and the sarcoplasmic 

reticulum (SR). The process is tightly controlled by various channels such as inositol 1,4,5-

triphosphate receptor (InsP3R) and ryanodine receptor (RYR) (Berridge, 2001). The Ca2+ 

that flows into the cytoplasm during the ON mechanism does not remain free (Gifford et 

al., 2007).  Instead, most of the cytoplasmic Ca2+ is bound to calcium buffer proteins, while 

only a small portion of free Ca2+ binds to calcium effectors such as calmodulin (CaM), 

troponin, and neuronal Ca2+ sensor proteins in the brain. These Ca2+ effectors activate 
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various Ca2+ sensitive processes that translate Ca2+ signals into cellular responses by 

triggering many different signaling pathways (Berridge, 2001). Finally, when the Ca2+ 

signal has carried out its functions, it is rapidly removed from the cytoplasm by various 

pumps and exchangers via the OFF mechanism (Berridge, 2001; Berridge et al., 2003).  

1.2 Intracellular calcium binding proteins 

Intracellular Ca2+ binding proteins (CaBPs) are classified into two classes 

depending on their functions: Ca2+ buffer proteins and Ca2+ sensor proteins (Gifford et al., 

2007). Ca2+ buffer proteins such as calbindin and parvalbumin, which are found in many 

cell types of various organs, bind Ca2+ with high affinity but do not undergo any significant 

conformational changes (Skelton et al., 1994; Ikura, 1996). The main function of Ca2+ 

buffer proteins is to modulate the Ca2+ signals as they load Ca2+ during the ON mechanism 

and unload Ca2+ during the OFF mechanism (Gifford et al., 2007). Another important 

function of Ca2+ buffers is to control Ca2+ signals transmitted throughout the cell as they 

limit both the amplitude and duration of Ca2+ signal (Braunewell et al., 1999). In contrast, 

Ca2+ sensor proteins bind to Ca2+ and undergo significant conformational changes, which 

allows them to interact with diverse proteins and biomacromolecules to regulate various 

Ca2+ sensitive processes (Braunewell et al., 1999; Burgoyne et al., 2001). Subsequently, 

Ca2+ sensor proteins frequently serve as effector or modulator proteins to transduce Ca2+ 

signals into appropriate physiological responses (Braunewell et al., 1999). Calcium binding 

proteins have been shown to be involved in several aspects of Ca2+ regulation in many cell 

types including neurons (Burgoyne et al., 2001). Since the objectives of this dissertation 

are focused on the Ca2+ signal transduction and target interactions of the downstream 

regulatory element antagonist modulator (DREAM) protein, which is a particular member 
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of neuronal Ca2+ sensor (NCS) proteins, general aspects of NCS proteins, including their 

structure-function relationships, will be briefly discussed in the next section. 

1.3 Neuronal calcium sensor (NCS) proteins and the biological functions of Ca2+ 

binding to NCS proteins 

The NCS protein family constitutes the largest class of intracellular calcium binding 

proteins found in many organisms ranging from yeast to humans. These NCS proteins are 

characterized by their remarkable ability to bind and release Ca2+ over physiological ranges 

of intracellular Ca2+ concentrations and to undergo conformational changes (Braunewell et 

al., 1999; Burgoyne et al., 2001). Subsequently, these effectors interact with and regulate 

various activities of the targeted proteins. All NCS proteins contain four calcium binding 

helix-loop-helix motifs (namely EF-hands) (Burgoyne et al., 2001). The conserved 

sequence CPxG (x is any residue) in the Ca2+ binding loop of the first EF-hand prevents 

EF-hand 1 from binding to Ca2+ or Mg2+, an abundant intracellular divalent cation with 

very similar chemical properties to Ca2+ (Romani and Scarpa, 1992; Gifford et al., 2007). 

On the other hand, EF-hands 2, 3, and 4 are able to bind Ca2+ with micromolar or 

submicromolar affinity (Braunewell et al., 1999; Burgoyne et al., 2001; Ames et al., 2012; 

Burgoyne et al., 2015). The NCS proteins are primarily expressed in photoreceptor cells 

and neurons. They control almost all aspects of neuronal functions including regulation of 

neurotransmission, short-term synaptic plasticity, regulation of Ca2+ channel, neuronal 

growth, learning (neuronal calcium sensor protein 1), anti-apoptosis (hippocalcin protein), 

guanylyl cyclase activation and recycling (neurocalcin-δ, visinin-like proteins 1 and 2), 

light adaptation (recoverin), regulation of retinal guanylyl cyclase (guanylate cyclase-

activating proteins 1, 2, and 3), regulation of Kv4.3 and Kv1.5 potassium channels 
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(potassium channel interacting proteins (KChIP) 1, 2, 3, and 4), regulation of presenilin 

processing (KChIP 3 and 4), and repression of gene transcription (KChIP 3) (Pongs et al., 

1993; Burgoyne et al., 2001; Burgoyne et al., 2004; Burgoyne et al., 2007).  

The functions of NCS proteins are diverse as they control numerous neuronal events in 

Ca2+ signaling pathways. The diversity has been attributed to distinct types of Ca2+ signals 

that differ in magnitude, duration, and localization (Burgoyne et al., 2001; Burgoyne et al., 

2007). As a consequence of these actions of various NCS proteins, the Ca2+ signal is 

transduced into specific changes in cellular function. In addition, these distinct outcomes 

of the Ca2+ signal directly depend on the ability of Ca2+ sensing of different proteins in the 

NCS family, the localization of NCS proteins relative to the Ca2+ signal, and interactions 

of NCS proteins with specific targeted proteins (Burgoyne, 2007).  

The ability of Ca2+ sensing, commonly known as Ca2+ binding affinity, varies in 

different proteins of the NCS family. The adjustment to Ca2+ affinity of individual proteins 

depends on the variation in the sequence of each EF-hand (Burgoyne, 2007). All members 

of the NCS family possess four canonical EF-hands, each of which is composed of a nine-

residue entering α-helix, a nine-residue Ca2+ binding loop, and an eleven-residue exiting 

α-helix. The entering helix is oriented almost at a right angle to the exiting helix when Ca2+ 

is bound (Figure 1.2) (Gifford et al., 2007).   

Most frequently, the Ca2+ ion is coordinated by seven ligands that are provided by 

oxygen atoms in the side chain of residues in the EF-hand Ca2+ binding loop (namely EF-

hand loop) and in the peptide backbone. In some proteins, the oxygen atom is provided by 

a water molecule stabilized by a hydrogen bond to one residue in the loop (Figure 1.2) 

(Gifford et al., 2007). 



7 
 

 

Figure 1.2: A single EF-hand 2 of recoverin (PDB code: 4YI8). The EF-hand consists of 

an entering α-helix, a Ca2+ binding loop, and an exiting α-helix. The Ca2+ atom (green 

sphere) is coordinated by a canonical Ca2+ binding loop illustrating the pentagonal 

bipyramidal coordination of the Ca2+ ion (purple lines) and the hydrogen bonding found in 

the loop (black lines). The side chain oxygen atoms are in red and the coordinating oxygen 

atoms from water are shown as red spheres.   

 

 Amino acid residues that bind to Ca2+ typically contain an oxygen atom in the side 

chain, such as asparagine, glutamine, aspartic acid, and glutamic acid (Falke et al., 1994; 

Gifford et al., 2007). Indeed, Ca2+ ligands are more frequently provided by the side chain 

of an aspartic acid residue, which reflects the preference of the EF-hand loop for ligands 

of the less bulky side chain (McPhalen et al., 1991; Gifford et al., 2007). The geometry of 

a canonical EF-hand is a pentagonal bipyramid, in which five of the seven Ca2+ ligands are 

provided by side chains of amino acid residues in the Ca2+ binding loop, and the other two 

ligands are supplied by the side chain of a glutamic acid residue located at the twelfth 

position of the Ca2+ binding loop (Figure 1.3) (Gifford et al., 2007) . 
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Figure 1.3: The sequence of a canonical Ca2+ binding loop. The Ca2+ ligands are indicated 

by their positions in the loop. The ninth Ca2+ ligand (-X coordinate) is typically provided 

by a water molecule. Adapted from reference (Gifford et al., 2007). 

 

In addition, the residues in the Ca2+ binding loop are aligned on the pentagonal 

bipyramid axes in a manner that the oxygen atoms in the side chain of residues at positions 

3, 5, 7, and 12 align along the vertices +Y, +Z, -Y, and –Z of the planar pentagon, 

respectively. Oxygen atoms in the side chain of residues at positions 1 and 9 chelate with 

+X and –X axes respectively on the axial position, which is perpendicular to the Y/Z plane 

as shown in Figure 1.2 (Strynadka et al., 1989; Gifford et al., 2007).  

The four EF-hands in NCS proteins always occur in pairs, which form two discrete 

domains: one is at the N-terminus, and the other is at the C-terminus (Figure 1.4) (Burgoyne 

et al., 2001). The pairing of EF-hands in NCS and other EF-hand proteins often displays 

the positive cooperativity for Ca2+ binding, which minimizes the required Ca2+ signal to 

reach protein saturation, regulating their target proteins (Gifford et al., 2007). 
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Figure 1.4: N-terminal domain of recoverin contains a pair of EF-hands (PDB code: 4YI8, 

residues: 1-94). Alpha helices, denoted by α, 1 to 5 are respectively labeled. EF-hand 1 is 

composed of α2 and α3; likewise EF-hand 2 contains α4 and α5. Ca2+ is shown as a green 

sphere. 

 

As previously mentioned, the diverse functions of NCS proteins in neuronal Ca2+ 

signaling pathways are related to the differences of structural properties of NCS proteins 

such as the number of bound Ca2+ in the proteins and Ca2+ binding affinity (Burgoyne et 

al., 2001; Burgoyne,  2007). The molecular details of the NCS proteins’ structures have 

been extensively reviewed in literatures (Braunewell et al., 1999; Burgoyne et al., 2001; 

Burgoyne et al., 2004; Burgoyne, 2007; Haynes et al., 2008; McCue et al., 2010; Burgoyne 

et al., 2012;  Ames et al., 2012; Burgoyne et al., 2015). Here, I highlight the differences in 

the structure among proteins in the NCS family to exemplify the structure-function 

relationship of these proteins in Ca2+ signal pathways.  

According to Burgoyne et al., NCS proteins are classified into five classes on the 

basis of their available sequences in the human genome (Figure 1.5) (Burgoyne et al., 

2001). In this context, class A contains only a single gene of frequenin protein, which is 
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also known as neuronal Ca2+ sensor protein 1 (NCS 1). In contrast, class B is comprised of 

three members of visinin-like proteins (VILIP 1, 2, and 3), hippocalcin, and neurocalcin-δ 

protein. Class C is the second smallest class in the NCS family and contains a single 

recoverin protein. Class D is composed of guanylate cyclase activating proteins (GCAPs) 

1, 2, and 3. Class E is comprised of four potassium channel interacting proteins (KChIPs) 

1, 2, 3, and 4 (Burgoyne et al., 2001). 

 

Figure 1.5: Representation of phylogenetic relationships in NCS proteins. Adapted from 

(Burgoyne et al., 2001). 

 

Structurally, all members of the NCS family are small proteins containing between 

190 and 270 amino acid residues, which are arranged into eight to twelve α-helices. Amino 

acid sequences of NCS proteins are highly similar, particularly in the regions comprised of 

Ca2+ binding loops (Figure 1.6). In addition, the structures of NCS proteins are 

heterogeneous in Ca2+ free forms, but become more compact when Ca2+ is bound 

(Burgoyne et al., 2001). 
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Figure 1.6: Sequence alignment of NCS proteins from classes A to E. Conserved residues are represented by a star, whereas asterisks 

indicate identical residues, colons indicate very similar residues, and periods are for weakly similar residues.  
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1.3.1 Class A: Neuronal calcium sensor 1 

Neuronal calcium sensor 1 (NCS 1) is the unique protein in class A. In NCS 1 

protein, EF-hands 2, 3, and 4 can bind to two (Pongs et al., 1993) or three Ca2+ ions with 

high affinity (Ames et al., 2000; Bourne et al., 2001; Heidarsson et al., 2012). NCS 1 

protein also possesses a myristoyl group located at the N-terminal domain (Figure 1.7). 

 

Figure 1.7: Top: Schematic diagram of EF-hands in NCS1 protein. Bottom left: structure 

of myristoylated ApoNCS1 (PDB code: 2L2E). Bottom right: structure of three Ca2+ bound 

at EF-hands 2, 3, and 4 of non-myristoylated NCS-1 (PDB code: 2LCP). The EF-hands 1, 

2, 3, and 4 of NCS1 are colored in cyan, green, yellow, and red, respectively. The Ca2+ ions 

are the yellow spheres and the myristoyl group is colored in pink. 

 

In most NCS proteins, extrusion of the myristoyl group allows the proteins to 

interact with the lipid bilayer membrane when Ca2+ is bound at EF-hands (Dason et al., 

2012). In contrast, exposure of the myristoyl group in NCS 1 protein is independent of Ca2+ 

binding (O'Callaghan et al., 2002). However, when Ca2+ is bound, NCS 1 associates more 

strongly with the lipid bilayer membrane (Handley et al., 2010). The three dimensional 

structure of myristoylated ApoNCS 1 reveals that the myristoyl group is sequestered inside 
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a cavity formed by EF-hand 3 and 4 in the C-terminal domain. In addition, these EF-hands 

and the fatty acyl chain are oriented in a parallel fashion, in which the myristoyl moiety is 

surrounded by hydrophobic residues from EF-hands (Ames et al., 2000; Ames et al., 2012). 

On the other hand, binding of Ca2+ at EF-hands 2, 3, and 4 in the non-myristoylated NCS 

1 (Figure 1.7, left) enhances the association of NCS 1 with membranes to some degrees. 

Therefore, the enhancement of membrane binding observed in Ca2+ bound NCS 1 cannot 

be attributed solely to the N-myristoyl moiety. However, Ca2+ induced conformational 

changes increase NCS 1 protein’s tendency to interact with a hydrophobic surface by 

means independent of the N-myristoyl group.(Ames et al., 2000). 

1.3.2 Class B: visinin-like proteins, hippocalcin, and neurocalcin 

Class B of NCS proteins is comprised of three members of visinin-like proteins 

(VILIP) 1, 2, and 3, hippocalcin, and neurocalcin-δ protein. The proteins in class B are 

expressed primarily in the brain, but they are also found in peripheral organs (Braunewell 

et al., 2009).  

 

Figure 1.8: The crystal structure of Ca2+ bound non-myristoylated neurocalcin (PDB: 1BJF 

(Vijay-Kumar, 1999)). The EF-hands 1-4 are labeled accordingly as EF-1, EF-2, EF-3, and 

EF-4. The Ca2+ ion (yellow sphere) is bound at EF-2, EF-3, and EF-4. The EF-1 is disabled 

from binding of Ca2+/Mg2+ due to a Cys-Pro sequence in its Ca2+ binding loop. 
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The biological functions of proteins in class B have not been well established 

because these proteins display differences in their Ca2+ affinities, membrane binding 

kinetics, and interactions with intracellular targets (Braunewell et al., 2009). It was 

proposed that VILIP-1 interacts with GCAPs (Spilker et al., 2002) and hippocalcin 

interacts with neuronal apoptosis inhibitor proteins (Lindholm et al., 2002). The 3D 

structure was resolved for neurocalcin and this protein exhibits similar fold as observed for 

other NCS proteins (Figure 1.8) (Vijay-Kumar, 1999). 

1.3.3 Class C: Recoverin  

The single protein in class C is recoverin. Among NCS members, recoverin was 

the first protein to be discovered (Dizhoor et al., 1991). It is expressed in photoreceptor 

cells, where it performs the main physiological function in regulation of light sensitivity 

by regulating rhodopsin kinase in a Ca2+ dependent manner (Calvert et al., 1995; Chen et 

al., 1995; Makino et al., 2004). The NMR structures of ApoRecoverin (Tanaka et al., 1995), 

Ca2+ bound at EF-hand 3 (Ames et al., 2002), and Ca2+ bound at both EF-hands 2 and 3 

(Ames et al., 1997) were determined and are shown in Figure 1.9. Four EF-hands in 

recoverin are organized into N- and C-terminal domains, connected together by a U-shape 

linker (Ames et al., 2012). Unlike NCS1, the myristoyl group in ApoRecoverin is 

sequestered inside the hydrophobic cavity formed by EF-hands 1 and 2 at the N-terminus 

(Tanaka et al., 1995). When Ca2+ ion is bound at EF-hand 3, the myristoyl group remains 

located inside the hydrophobic cavity, but the carbonyl end of the myristoyl group is 

displaced away from EF-hand 3 and becomes somewhat solvent exposed (Ames et al., 

2012). When Ca2+ is bound at both EF-hands 2 and 3, the myristoyl group is completely 

forced out of the hydrophobic cavity and interacts with the lipid bilayer membrane. This 
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enables recoverin to translocate from the cytosol to the disc membrane (Ames et al., 2012). 

Moreover, the similar structures of myristoylated and non-myristoylated Ca2+ bound 

recoverin suggest that the extrusion of the myristoyl group in recoverin does not depend 

on the interior protein structure as shown in Figure 1.9 (Ames et al., 2012). 

 

 

 

Figure: 1.9: Top: Schematic diagram of EF-hands in recoverin. Bottom: (a) structure of 

myristoylated ApoRecoverin (PDB code: 1IKU), (b) 1 Ca2+ ion bound at EF-3 (PDB code: 

1OMR), and (c) Ca2+ ion is bound at EF-hands 2 and 3 (PDB code: 1JSA). The structure 

of two Ca2+ bound non-myristoylated recoverin is shown in light blue in (c) (PDB code: 

4YI8). EF-hands 1, 2, 3, and 4 in recoverin are colored in cyan, green, yellow, and red, 

respectively. The Ca2+ ions (yellow spheres) are bound at EF-hand 2 and 3. The myristoyl 

group is shown as pink spheres and the N-terminal eight-residue-flexible loop is 

highlighted in yellow. 
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1.3.4 Class D:  Guanylyl cyclase activating proteins  

Proteins in class D are guanylyl cyclase activating proteins (GCAPs) which are 

expressed in photoreceptor cells. Their main function is to activate retinal guanylyl cyclase 

(RetGC) at low cytosolic Ca2+ concentration upon light activation and to inhibit the RetGC 

at high Ca2+ level in the dark (Dizhoor et al., 1994). Unlike recoverin, Ca2+ binding to 

GCAPs induces small conformational changes and thus does not force the myristoyl group 

out to the solvent exterior (Lim et al., 2014). In addition, EF-hands 2 and 3 in GCAPs can 

bind both Mg2+ and Ca2+ ions, whereas EF-hand 4 only binds to Ca2+ (Peshenko et al., 

2006). Structures and molecular mechanisms of Mg2+ and/or Ca2+ binding to GCAP 1 have 

been well established, yet information about GCAPs 2 and 3 remains unclear. Therefore, 

GCAP 1 protein will be used as a model to depict the structure-function relationship of the 

GCAP class. Biophysical characterization of GCAP 1 shows that ApoGCAP 1 exhibits a 

flexible and unstructured molten-globule-like protein which does not bind and activate 

RetGC (Peshenko et al., 2004; Lim et al., 2009).  

Binding of Mg2+ to GCAP 1 at EF-hands 2 (Figure 1.10, bottom left) stabilizes the 

protein tertiary structure which allows the protein to interact with and activate RetGC. 

Binding of Ca2+ to GCAP 1 at EF-hands 2, 3, and 4 (Figure 1.10 bottom right) induces a 

distinct conformation that inhibits RetGC (Dizhoor et al., 1994; Peshenko et al., 2004; 

Peshenko et al., 2006; Lim et al., 2009; Lim et al., 2014).  
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Figure 1.10: Top: Schematic diagram of EF-hands in GCAPs. Bottom: (left) structure of 

Mg2+bound at EF-hand 2 of myristoylated GCAP 1 mutant V77E (Mg2+ is not shown, PDB 

code: 2NA0) and (right) structure of Ca2+ bound at EF-hands 2, 3, and 4 in GCAP 1 (PDB 

code: 2R2I). EF-hands 1 to 4 are highlighted in cyan, green, yellow, and red, respectively. 

The Ca2+ ions are shown as yellow spheres.  

 

1.3.5 Class E: Potassium channel interacting proteins 

The proteins in class E are comprised of potassium channel interacting proteins 

(KChIP) 1-4. The KChIPs share a high sequence similarity over the four EF-hands with 

about 40% identity, whereas the N-terminal sequence is considerably diverse (Burgoyne, 

2004). Alternative splicing of the four human KChIP genes generates different protein 

variants with diverse N-terminal domains. Some of the isoforms have myristoylation or 

palmitoylation sites that assist membrane association and localization (Figure 1.11). 

However, the topology for KChIP isoforms remains unknown (Burgoyne, 2004). The four 

KChIP proteins and additional splice variants are expressed in neuronal cells and KChIP2 

is also expressed in cardiac myocytes (An et al., 2000; Morohashi et al., 2002; Holmqvist 

et al., 2002). The expression patterns of KChIPs have considerable importance for 
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understanding diverse functions of KChIP proteins in modulation of different aspects of 

neuronal regulation.  

 

Figure 1.11: KChIPs and splice variants in class E. Some KChIP isoforms have 

myristoylation or palmitoylation sites, assisting membrane association and localization. 

The GenBank accession number for human KChIP1 isoforms 1.1, 1.2, 1.3 DQ148478, 

DQ148477, and DQ148476. The GenBank accession number for human KChIP2 isoforms 

2.1, 2.2, 2.3, 2.4, and 2.5 are NM-01491, DQ148480, DQ148481, DQ148482, and 

DQ148483. The GenBank accession number for human KChIP3 isoforms 3.1 and 3.2 are 

DQ148485 and DQ148486. The GenBank accession number for human KChIP4 isoforms 

are DQ148487, DQ148488, DQ148491, DQ148489, DQ148490, and DQ148492, 

respectively. Adapted from (Burgoyne, 2007). 

The crystallographic study revealed that KChIP1 interacts with the N-terminal of 

Kv4.3 results in an octomeric structure of four primary Kv4 subunits and four KChIP 

subunits forming heteromultimeric Kv channels. The crystal structure reveals that a 



19 
 

monomer of KChIP1 interacts with two T1 domains of Kv4.3 (Pioletti et al., 2006). The 

first binding site is through hydrophobic interaction between the N-terminus of Kv4.3 and 

the hydrophobic cavity on the KChIP1 surface, being exposed upon Ca2+ association to 

KChIP1 (Pioletti et al., 2006). The second binding site is through the helix 2 in KChIP1 

and the residues in the loop of T1 domain (Pioletti et al., 2006). The interaction between 

KChIP1 and Kv4 channel is Ca2+ independent, however, binding of Ca2+ to KChIP1 

promotes the channel activity (An et al., 2000; Pioletti et al., 2006). 

1.3.5.1 KChIP3/DREAM/calsenilin  

Among proteins in class E, KChIP3 is also known as calsenilin or downstream 

regulatory element antagonist modulator (DREAM) protein according to their identical 

gene sequence (Buxbaum et al., 1998; Carrion et al., 1999; An et al., 2000). Because of 

that, herein DREAM is used to avoid using different names for the same protein. 

The DREAM protein has been shown to be a multifunctional neuronal calcium 

sensor protein that is expressed in the central nervous system, thyroid glands, immune 

system and testis (Carrion et al., 1999). The physiological functions of DREAM are 

involved in various interactions with the targeted DNA and proteins both in and outside of 

the nucleus. In the cytoplasm, KChIP3 interacts with Kv4.3 potassium channels to 

modulate A-type potassium currents (An et al., 2000). KChIP3 also interacts with the C-

terminal fragments of presenilins to facilitate the activity of gamma-secretase and increase 

the production of β-amyloid plaques in Alzheimer’s disease (Buxbaum et al., 1998). In the 

nucleus, Ca2+ free KChIP3 directly binds to specific downstream regulatory elements of 

the prodynorphin and c-fos genes to repress the transcription of these genes. The DREAM 

protein also interacts with a silencer sequence in the 3’ untranslated region of the apoptotic 
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gene hrk and represses the expression of the downstream reporter genes in a Ca2+ dependent 

manner (Sanz et al., 2001).  In addition, at low level intracellular Ca2+ concentration, the 

two leucine‐charged residue‐rich domains (LCDs) in DREAM interact with the two LCDs 

located in the kinase‐inducible domain and in the leucine zipper domain of αCREM, 

resulting in the loss of DREAM binding to DRE sites and derepression (Ledo et al., 2002).  

1.3.5.2 Structural insight from DREAM 

The DREAM protein contains 256 amino acid residues (~ 29 kDa) (Carrion et al., 

1999; Craig, et al., 2002), which constitute four EF-hands and a non-conserved N-terminal 

region (residues 1 - 64) as shown in Figure 1.12 (Buxbaum et al., 1998; Carrion et al., 1999; 

An et al., 2000). The N-terminal extension region contains a greater number of 

hydrophobic residues that cause inclusion body formation and aggregation during protein 

folding (Fink, 1998, Osawa et al., 2001). However, deletion of this region (residues 1-64) 

does not inhibit binding of DNA or dimerization in DREAM (Osawa et al., 2001; Osawa 

et al., 2005; Lusin et al., 2008).  Furthermore, the truncated construct of DREAM (residues 

65-265) also fully activates the Kv4 channels (An et al., 2000).  

Structural characterization of DREAM reveals that EF-hand 1 does not bind Ca2+ 

or Mg2+ because of the conserved sequence CPxG (Figure 1.12) in the first Ca2+ binding 

loop similar to that obtained in the crystal structure of recoverin (Flaherty et al., 1993), 

KChIP1 (Zhou et al., 2004; Scannevin et al., 2004), frequenin (Bourne et al., 2001), and 

neurocalcin (Vijay-Kumar et al., 1999). Substitution of the glutamic acid residue by an 

aspartic acid residue at the twelfth position in the Ca2+ binding loop of EF-hand 2 causes 

this site to selectively bind to Mg2+ with a high affinity (Kd ~ 13 μM) (da Silva et al., 1995, 

Craig et al., 2002, Osawa et al., 2005). On the other hand, EF-hands 3 and 4 exclusively 
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bind to Ca2+ with a relatively high affinity (Kd ~ 1 µM) due to the conserved glutamic acid 

residue at the twelfth position in the Ca2+ binding loop of EF-hands 3 and 4 (Figure 1.12) 

(Osawa et al., 2001).  

 

Figure 1.12: The amino acid sequence of mouse DREAM (Gene code: Q9QXT8). The Ca2+ 

and/or Mg2+ binding loops of EF-hands 1, 2, 3, and 4 are underlined. The negatively 

charged amino acids involved in Ca2+/Mg2+coordination are shown in red. The conserved 

sequence CPxG (in brown) in the first EF-hand eliminates binding of Ca2+/Mg2+ at this 

site. The flexible loop connecting α7 from EF-hands 3 and α8 from EF-hand 4 is shown in 

light green and underlined, while the positively residues R200 and R207 in the loop are 

shown in blue. The leucine residues (155LxxLL159, and L251) at Ca2+DREAM dimeric 

interface are highlighted in purple. 

 

The three-dimensional NMR structure of Ca2+ bound DREAM (residues 76 - 256, 

PDB entry: 2JUL (Lusin et al., 2008)) as shown in Figure 1.13 reveals that DREAM 

consists of 10 α-helices, evenly distributed into the N- and C-terminal domains. The N-

terminal domain comprises EF-hand 1 (α2 and α3, residues 90 - 120) and EF-hand 2 (α4 

and α5, residues 128 - 159). The C-terminal domain consists of EF-hand 3 (α6 and α7, 

residues 163 - 198) and EF-hand 4 (α8 and α9, residues 184 - 240) (Figure 1.13) (Lusin et 

al., 2008). 
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Figure 1.13: Three dimensional cartoon structure of Ca2+DREAM (PBS: 2JUL, residues 

76 – 256) (Lusin et al., 2008). The structure DREAM consists of 10 α-helices (43% 

secondary structure content) connected by random coils, turns, and a few beta sheets (2%). 

From left to right, the positively charged residues postulated to facilitate DNA binding 

(K87, K90, K91, R98, K101, R160) are shown in licorice. The EF-hands 1, 2, 3, and 4 are 

shown in cyan, green, yellow, and orange, respectively. The N-terminal α-helix (α1) and 

the C-terminal alpha helix (α10) are labeled in blue and red, respectively. The single 

intrinsic tryptophan residue (W169) is shown in yellow licorice. The long flexible loop 

connecting α7 and α8 is shown in blue. The Ca2+ ion (yellow sphere) is bound to EF-hands 

3 and 4. 

 

The two domains in Ca2+DREAM are linked together through the central 

hydrophobic cluster comprising of residues Y130, F133,  and A137 from α4 and residues 

W160, L173, I190, and M197  from α6 and α7 of DREAM (Figure 1.14).  
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Figure 1.14: The central hydrophobic cluster (shown in stick) connecting the N- and the C-

terminal domains of DREAM (PDB: 2JUL) (Lusin et al., 2008). 

 

Moreover, another hydrophobic cluster was also determined at the C-terminal 

domain of Ca2+DREAM, comprising of residues M246, M249, F252, and I256 from α10 

(in red), residues L167, A170, M191, and L194 from EF-hand 3 (in yellow) and residues 

F218, and M222 from EF-hand 4 (in orange) of DREAM (Figure 1.15). The hydrophobic 

clusters in DREAM structure were shown to be essential for DREAM interactions with the 

T1 domain of KV4.3 channels as well as with small hydrophobic molecules as arachidonic 

acid and NS5806. (Gonzalez and Miksovska, 2014; Gonzalez, Pham et al., 2014) 
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Figure 1.15: The C-terminal hydrophobic cluster (as shown in stick) of DREAM (Lusin 

et al., 2008). 

 

1.3.5.3 The Ca2+ and Mg2+ binding properties in DREAM 

The binding affinity for Mg2+ and Ca2+ in DREAM has been studied intensively. 

Craig et al. demonstrated that one Ca2+ binds to the first EF-hand in DREAM with a high 

affinity (Kd ~ 0.6 µM) and another Ca2+ binds to the second EF-hand with a lower affinity, 

with a Kd ranging from 1 to 10 µM,  relative to that of the first EF-hand (Craig et al., 2002). 

Osawa et al. showed that the first Ca2+ ion binds to EF-hand 3 and the second Ca2+ ion 

subsequently binds to EF- hand 4 in DREAM (Osawa et al., 2005). On the other hand, EF-

hand 2 in DREAM selectively binds to Mg2+ with a high affinity (Kd ~ 13 μM) (Osawa et 

al., 2005; Lusin et al., 2008). Binding of Ca2+ has been shown to induce the dimeric 

formation of DREAM. However, our current knowledge of the mechanism of Ca2+ induced 
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dimeric formation is limited. The proposed structure of the DREAM dimer was determined 

according to the directed mutational studies by Lusin et al. 2008 as well as the crystal 

structure of KChIP1 (Zhou et al., 2004). By using size-exclusion chromatography and 

pulsed-field gradient diffusion studies, Osawa et al. 2005 showed that the association of 

Ca2+ stabilizes a dimeric DREAM. Lusin et al. 2008 derived a model for dimeric DREAM 

in the Ca2+ bound form using the dimeric X-ray structure of KChIP1 (Zhou et al., 2004). 

In this model, the residues L155, L158, and L159 (155LxxLL159, x: any amino acid 

residue) on the N-terminal domain of the first DREAM molecule interact with residue L251 

on the C-terminal domain of the second DREAM molecule and these two DREAM 

monomers are oriented in the head-to-tail orientation (Lusin et al., 2008).  Lusin et al. 2008 

also speculated that residues in the C-terminal domain of the first DREAM molecule cover 

the positively charged residues K90, K91, R98, and K101 in α2 of the second DREAM 

molecule, subsequently eliminating the interaction of DREAM with DNA. In general, 

binding of Ca2+ to DREAM induces significant conformational changes. However, the 

proposed model structure of DREAM dimer has never been verified in experimental 

studies. In addition, significantly less is known about the impact of Mg2+ and/or Ca2+ on 

DREAM conformational dynamics as well as the role of conformational dynamics in 

DREAM upon interaction with target proteins or DNA.  
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2. OBJECTIVES 

Understanding the conformational dynamics and stability associated with Ca2+ and/or 

Mg2+ binding to DREAM is crucial for delineating the structure-dynamics-function 

relationship of DREAM, as well as for elucidating the mechanisms of interaction of 

DREAM with DNA or presenilins. The critical barrier for envisioning the molecular 

mechanism of the interaction between DREAM and its interacting partners lies in the lack 

of NMR/crystal structures of the Apo and Mg2+DREAM. The primary goal of this project 

was to delineate the structure-dynamics-function relationship of DREAM upon binding 

with Ca2+ and/or Mg2+ in modulation of the interaction with presenilin 1 and DNA. To 

accomplish this goal, I employed a combination of fluorescence spectroscopy, circular 

dichroism, isothermal titration calorimetry, molecular dynamics simulation, and 

computational docking to investigate the impact of Mg2+ and/or Ca2+ on the conformational 

dynamics of DREAM, the functional roles of individual EF-hands in DREAM, and the 

binding interface between DREAM and DNA as well as between DREAM and presenilin 

1.  

Here, I hypothesize that the structural changes associated with Ca2+ binding to EF- 

hands 3 and 4 are propagated from the C-terminal domain into the N-terminal domain 

leading to the dissociation of the DREAM-DNA complex. In addition, I propose that there 

is a high affinity binding site for DNA that is formed by the interfacing of residues from 

DREAM with nucleotides at the target DRE site in prodynorphin gene for DREAM. 

Finally, I speculate that residues in the hydrophobic cavity at the C-terminal domain and 

residues in the long flexible loop connecting α7 and α8 in DREAM interface with residues 

from the C-terminal fragment of presenilin 1.  Findings from this project will provide 
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insight into the molecular interaction of DREAM with presenilins and DNA at the amino 

acid residue level. These findings also provide insight into the roles of individual EF-hands 

in DREAM in regulating DREAM conformational transition under physiological 

conditions, which can be used as a model to uncover the functional properties of EF-hands 

in other neuronal calcium sensor proteins and to characterize the effects of Mg2+ on various 

Ca2+ signaling pathways in cells. These results are also important to understand the role of 

DREAM under physiological and pathological conditions and may provide a structure 

based design of a novel drug compounds to treat Alzheimer’s disease and chronic pain. To 

accomplish the research goals, the following objectives were carried out. 

2.1 Objective 1 

Characterize the structural changes associated with Mg2+/Ca2+ binding to DREAM 

wild-type (residues 65 – 256), DREAM C-terminal domain (namely DREAM-C, residues 

161 – 256), and DREAM EF-hand mutants (inactive EF-hand 2: D150  N, inactive EF-

hand 3: E186  Q, and inactive EF-hand 4: E234 Q) 

Previous studies have shown that Ca2+ binds to ApoDREAM tetramer promoting 

DREAM dimerization, whereas the Mg2+ binds to DREAM leading to an equilibrium 

between tetramer and monomer of the protein. However, the detailed mechanism of 

Ca2+/Mg2+ induced structural/dynamic changes remains unknown. To characterize the 

conformational dynamics associated with Ca2+/Mg2+ binding to DREAM protein, I took 

advantage of the single intrinsic tryptophan residue (W169) located in the central 

hydrophobic pocket between EF-hand 2 and 3 to monitor conformational changes in 

DREAM, DREAM-C, and DREAM EF-hand mutants (namely DREAM-D150N, 

DREAM-E186Q, and DREAM-E234Q for DREAM mutants with an inactive EF-hand 2, 
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3, or 4, respectively) using fluorescence steady-state and time-resolved spectroscopy. In 

addition, DREAM stability in the Apo and Ca2+ and/or Mg2+ bound forms were probed in 

unfolding studies. The outcomes of this part in the project are described in chapter 4 

(published in Pham et al., 2015), chapter 5, and partially in chapter 7.  

2.2 Objective 2 

Characterize the molecular mechanism between DREAM and presenilin 1 as well as 

the binding interface of the DREAM-presenilin 1 C-terminal fragment complex. 

Previous studies demonstrated that DREAM interacts with the C-terminal fragment of 

presenilins 1 and 2 leading to the formation of Aβ plaques in Alzheimer’s disease. 

However, insight into the molecular mechanism of the interaction between DREAM and 

presenilins as well as the impact of Mg2+ and/or Ca2+ on the complex formation remain 

unknown. The binding between DREAM and presenilin 1 C-terminal fragment (PS1-CTF) 

was probed by determining the binding constant between DREAM and peptides 

constituting the PS1-CTF using steady-state and time-resolved fluorescence spectroscopy. 

Subsequently, the oligomerization of the complex was characterized using time-resolved 

polarization.  The residues at DREAM-presenilin binding interface were identified using 

computational approaches. The results of this part in the project are described in chapter 6 

(published in Pham and Miksovska, 2016). 

2.3 Objective 3 

Determine the functional roles of individual EF-hands in DREAM as well as elucidate 

molecular mechanism of interaction between DREAM and DNA.  

Previous studies revealed that ApoDREAM tetramer binds to the DRE sequence of 

prodynorphin gene (namely DNA), whereas association of Ca2+ at either EF-hand 3 or 4 in 
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DREAM promotes DREAM dimerization and dissociates the DREAM-DNA complex. 

However, in the absence of ApoDREAM structure, the mechanism of interaction between 

DREAM and DNA remains unclear. To accomplish this goal, I employed isothermal 

titration calorimetry (ITC) to determine thermodynamic parameters for DREAM and 

DREAM mutants binding to 25-oligomer DNA. Furthermore, the interaction of DREAM 

and DNA was also probed using time-resolved anisotropy to monitor oligomeric states of 

the complex upon Mg2+ and Ca2+ association. Previously, according to the structure of 

DREAM monomer, it was proposed that basic and positively charged residues K90, K91, 

Q94, R98, and K101 in α2 of DREAM form hydrogen bonds and electrostatic interactions 

with DNA (Lusin et al., 2008). The binding interface of the ApoDREAM-DNA complex 

as well as the conformational dynamics of ApoDREAM upon DNA association were also 

examined using computational approaches. The results of this part in the project are 

described in chapter 7. 

2.4 Objective 4 

 Characterize the kinetics and thermodynamics associated with CO binding or 

releasing from horse heart myoglobin (Mb) and microperoxidase-11 (MP-11) encapsulated 

in sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles: A model system to 

study myristoylated and palmitoylated NCS proteins in their lipid membrane association 

state. 

DREAM and most NCS proteins possess either a myristoylation or a palmitoylation 

site at their N-terminus (Burgoyne, 2007), which serves as an element for membrane 

targeting and anchoring of proteins (Valentine et al., 2010). Understanding membrane 

association, controlled by Ca2+ triggered exposure of the myristoylation/palmitoylation, is 
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crucial to delineate protein-protein interactions mediating signal transduction at the 

membrane (Valentine et al., 2010). However, characterizations of the conformational 

dynamics of DREAM and other NCS proteins at Ca2+ saturated state are often frustrated 

due to the poor solubility of these proteins (Tanaka et al., 1995; Ames et al., 1997; 

Valentine et al., 2010). One of the common approaches to obtain a highly soluble and well-

behaved protein is to delete the myristoylation/palmitoylation region containing 

hydrophobic residues as done in DREAM (the most common form of purified DREAM 

protein is the construct containing residues 65 – 256). However, this approach prevents our 

understanding of the role of the myristoylation/palmitoylation site in the DREAM 

interactions with targeted proteins. The long term goal of this project is to investigate the 

conformational dynamics of DREAM full length construct (residues 1 - 256) in its 

membrane-anchored state and the interaction of presenilins with DREAM full length 

encapsulated in reverse micelles. The most critical and difficult stage of this project is to 

develop a reverse micelle encapsulation model to investigate the impacts of aqueous 

solvation and confinement on the structure, stability, and dynamics of full length DREAM. 

Therefore, at the beginning stage of this project, I investigated the conformational 

dynamics of myoglobin (Mb) and microperoxidase-11 (MP-11) proteins in the restricted 

environment of reverse micelles. Photoacoustic calorimetry (PAC) and transient absorption 

(TA) were used to characterize the kinetics and thermodynamics associated with carbon 

monoxide (CO) binding or releasing from the heme pocket of horse heart Mb and MP-11. 

The Mb and MP-11 proteins were chosen as model proteins for this study because the 

mechanism of CO binding or releasing from the heme group of these proteins is well 

understood. In addition, these proteins are highly soluble and stable in buffer solution.   
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Therefore, the characterization of conformational dynamics of Mb and MP-11 

encapsulated in reverse micelles is a good model system to study Ca2+ triggered exposure 

of palmitoylation in DREAM encapsulated in reverse micelles upon photolysis of caged 

Ca2+ compound. The results of this part are described in chapter 8 (partially published in 

reference (Larsen et al., 2011)). 
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3. MATERIALS AND METHODS 

3.1 Materials 

The plasmids encoding for constructs of mouse DREAM wild-type (DREAM, 

residues 65 - 256), DREAM-C terminal domain (DREAM-C, residues 161 - 256), 

DREAM-EF hand mutants: DREAM-D150N, DREAM-E186Q, and DREAM-E234Q 

(where the EF-hands 2, 3, and 4 in DREAM are inactivated by site-direct mutations D150 

 N, E186  Q, and E234  Q, respectively), DREAM-KChIP1, and DREAM-NCS1  

chimera (where DREAM construct fused with KChIP1 or NCS1 flexible loop) with T7 

promoter and six His tagged on the carboxyl terminus were purchased from GeneCopoeia 

(Rockville, MD, USA). The DNA sequence ‘5-

CAGGGGCCTCCTTGACTCCGGCTTC-3’ and its complement sequence corresponding 

to downstream regulatory elements (DRE) of human prodynorphin gene (namely DNA) 

were also purchased from GeneCopoeia. The synthetic peptides derived for HLβ 

(residues 355PESRAAVQELSSSIL369) and HL9 (residues 

445FYFATDYLVQPFMDQLAFHQFYI467) of human presenilin 1 C-terminal fragment 

(herein named HLβ and HL9) with FITC covalently attached to their amino-terminus 

were purchased from ProImmune (Sarasota, FL, USA). Dithiothreitol (DTT), acrylamide, 

1.0 M solution of magnesium chloride, and 1,8-ANS were purchased from Sigma-

Aldrich. Guanidine hydrochloride (GuHCl), and 0.1 M solution of calcium chloride were 

purchased from Fisher Scientific.  The hydrophobic fluorescent probes 2,6-ANS and nile 

red were purchased from Invitrogen and used without further purification. Nickel 

nitrilotriacetic acid (Ni-NTA) super flow resin was purchased from Qiagen and 

diethylaminoethyl Sepharose fast flow resin (DEAE) was purchased from GE Healthcare. 
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All other reagents were purchased from Fisher Scientific and Sigma-Aldrich at analytical 

grade and used without further purification. 

3.2 Methods 

3.2.1 DREAM protein expression 

The expression vectors of DREAM, DREAM-C, DREAM-D150N, DREAM-

E186Q, DREAM-E234Q, DREAM-KChIP1, and DREAM-NCS1 were transformed into 

Escherichia coli strain BL21 (Stratagene) by using the heat shock technique for protein 

expression.  

3.2.2 DREAM protein isolation and purification 

Recombinant DREAM protein isolation and purification were carried out using the 

method described previously (Osawa et al. 2001; Osawa et al., 2005; Lusin et al., 2008). A 

single colony of transformed DREAM cells was suspended in 50 mL of Luria-Bertani 

medium supplemented with 100 mg L-1 of ampicillin and grown overnight at 37 °C  and 

250 RPM in a vigorous shaker (MaxQ 400) for a starter culture. Subsequently, 5 mL of 

starter culture were transferred into 1 L of Terrific Broth medium supplemented with 100 

mg L-1 ampicillin. Cells were incubated at 37 °C and 250 rpm until the optical density at 

600 nm (OD600) reached between 0.8 to 1.0, then the protein expression was induced by 

adding 700 µM isopropyl 1-thio-β-D-galactopyranoside (IPTG) to the cell culture. The 

cells were further incubated at 25 °C for 16 h before harvesting by centrifugation at 4 °C 

and 10,000 rpm for 10 min (Allegra 64R, Beckman Coulter).  

After harvesting, one gram of DREAM wet cells was homogenized in 5 mL of lysis 

buffer containing 20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 1 mM -mercaptoethanol, 20% 

glycerol, 1mM phenylmethyl sulfonyl fluoride (PMSF), 0.2% Tween 20, 20 g/mL DNase 
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I, 5 g/mL lysozyme, and 5 mM MgCl2. The suspension was then sonicated with a sonic 

dismembrator (model 100, Fisher Scientific) for 30 intervals of 20 seconds with 2 min of 

resting on ice between each interval. The membrane debris and unbroken cells were 

removed by high spin centrifugation at 4 °C and 10,000 rpm for 1 h (Allegra 64R, Beckman 

Coulter).  

The supernatant was collected and loaded into a Ni-NTA super flow column (Qiagen) 

equilibrated with buffer A containing 20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 1 mM -

mercaptoethanol, and 20% glycerol. The column was consecutively washed with buffer A 

containing 5, 10, 20, 30, and 40 mM imidazole until absorbance at 280 nm (A280nm) was 

less than 0.03 to remove impurities. DREAM protein was eluted with buffer A containing 

250 mM imidazole. Purified DREAM protein was dialyzed overnight in 2 liters of buffer 

B comprised of 20 mM Tris-HCl, pH 7.4, 1 mM EDTA, and 1 mM DTT to remove 

imidazole and NaCl. The DREAM protein was then applied onto a DEAE column 

equilibrated with buffer B at 4 °C. The DEAE column was sequentially washed with buffer 

B containing 20, 40, 60, and 80 mM NaCl until A280 nm was below 0.02. Finally, DREAM 

protein was eluted with 300 mM NaCl in buffer B. The purity of protein was assessed using 

SDS-PAGE electrophoresis.  

3.2.3 Protein purity assay  

3.2.3.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Purity of DREAM protein was verified using one-dimensional gel electrophoresis. In 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) method, the 

negatively charged sodium dodecyl sulfate (SDS) coasted protein migrates in response to 

an electrical field created by the negative cathode attached to the upper buffer chamber and 



35 
 

the positive anode attached to the lower buffer chamber through pores formed by 

polyacrylamide in the presence of sodium dodecyl sulfate (Gallagher, 2006). The standard 

continuous SDS-PAGE, in which Tris-tricine was used for both gel and electrode solution, 

was used in this experiment.  Electrophoresis gels containing 4 - 20 % Tris - Glycine 

gradient were purchased from Lonza (PAGErTM Gold Precast Gels). The electrophoresis 

running buffer and treatment buffer were prepared according to the chemical compositions 

in Tables 3.1 and Table 3.2, respectively.  The samples were prepared by mixing protein 

solution (about 3 mg/ml) with treatment buffer. The samples were then boiled for 10 min 

in a water bath. Subsequently, 10 µL of the protein mixed with treatment buffer was loaded 

into each well of the electrophoresis gel. Electrophoresis was carried out at a constant 

voltage (120 V) with varying current using a power supply (Model FB300, Fisher 

Scientific) until the protein samples reached the bottom. The gel was removed and stained 

in the Coomassie blue solution containing 0.1% Coomassie blue dye, 50% methanol, and 

10% acetic acid overnight. The gel was then de-stained in a solution containing 50% 

methanol, 10% acetic acid, and 40% water for about 3 hours.  

Table 3.1: Chemical components for electrophoresis running buffer 

 

 

 

 

 

 

Chemical components Concentration 

Tris-HCl buffer (pH 8.3) 0.025 M 

Glycine 0.192 M 

SDS 0.1% 
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Table 3.2: Chemical components for sample treatment buffer 

 

 

 

 

3.2.4 DREAM protein concentration determination 

3.2.4.1 Bicinchoninic acid assay (BCA)  

Bicinchoninic acid forms a purple complex with Cu1+ in an alkaline solution, which 

has a strong absorbance at 562 nm (Smith et al., 1985). Since amino acid residues such as 

tryptophan, tyrosine, and cysteine reduce Cu2+  to Cu1+ at 37 ºC (Wiechelman et al., 1988), 

the concentration of  proteins can be determined by monitoring the color produced in the 

reaction of bicinchoninic acid with Cu1+ (Smith et al., 1985). In this assay, the procedure 

was followed as described in the BCA protein assay reagent kit (Pierce Biotechnology, 

Rockford, IL). The standard curve was generated by measuring maximum absorption at 

562 nm for bovine serum albumin standard protein with concentrations varying from 25 

μg/ml to 2,000 μg/ml. DREAM protein concentration was then calculated from the 

calibration curve of BSA. Consequently, the extinction coefficient of DREAM protein at 

280 nm was determined (Table 3.3).  

 Table 3.3: DREAM protein extinction coefficient at 280 nm 

Chemical components Concentration 

Tris-HCl buffer (pH 6.8) 0.125 M 

SDS 4% 

Glycerol 20% 

Bromophenol blue 0.02% 

DTT 0.2 M 

Protein ε280nm (M-1 cm-1) 

DREAM,  DREAM-D150N, DREAM-E186Q, 

DREAM-E234Q, and DREAM-KChIP1 

 

19,000 
 

DREAM-C 11,000 
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3.2.4.2 Ultraviolet-Visible (UV-Vis) spectroscopy assay 

Since aromatic amino acid residues such as phenylalanine, tyrosine, and tryptophan 

in protein absorb light with an absorbance maxima ranging from 260 nm to 280 nm, protein 

concentration can be quickly determined using the Beer-Lambert law (equation 3.1) when 

the protein extinction coefficient is known. 

Cl
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

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In this expression,  A is absorption, I0 and I are light intensity before and after transmitted 

through a sample, which has concentration, C, in unit of M; path length, l, in unit of cm; 

and the molar extinction coefficient, ε, in unit of  M-1cm-1. 

3.2.5 Fluorescence spectroscopy 

Fluorescence spectroscopy has been widely used in many applications in 

biochemistry and biophysics research. The advantage of this technique is its high 

sensitivity, which allows the detection of signals at low concentration ranging from nM to 

μM (Boens et al., 2007; Lakowicz, 2010). 

3.2.5.1 The light absorption and emission of fluorophores 

The process of light absorption and emission of fluorophores are often described 

by a simple electronic state diagram, known as Jablonski diagram, as shown in Figure 3.1 

(Lakowicz, 2006; Periasamy and Clegg, 2010).  

After light is absorbed at a particular wavelength, fluorophores in an illuminated 

volume of the sample undergo an instantaneous electronic transition from the singlet 

ground state (S0) into the singlet of the first (S1) or second (S2) state. The transition time of 
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the light absorption process is too short (10-15 s) for significant displacement of the nuclei, 

a phenomenon known as the Frank-Codon principle (Lakowicz, 2006). At room 

temperature, since the thermal energy is not adequate to populate higher vibrational levels, 

light absorption typically occurs from the lowest vibrational level of the ground state.  

 

Figure 3.1 The Perrin-Jablonski diagram. The arrows represent the transition of a quantum 

change. The transitions begin at the lowest vibrational levels of each electronic state (S0, 

S1, and S2) for both absorption (blue arrows) and de-excitation (green arrows). The 

transition from the excited state to the ground state always happens from the first lowest 

level of S1. The non-emissive de-excitation transitions are internal conversion (ic), 

intersystem crossing (isc), excited state reaction, quenching, photolysis, and FRET. The 

excited molecule passes from the singlet (S1) to the triplet (T1) state via isc. The emission 

from T1 is phosphorescence (red arrow). The other de-excitation transitions from T1 are 

similar to that of the S1. Adapted from (Lakowicz 2006; Periasamy and Clegg 2010). 
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 In general, fluorophores are usually excited to some higher vibrational levels (v1, 

v2, or v3); however, they quickly relax to the lowest vibrational level (vo) of each electronic 

state via the thermal relaxation pathway. In addition, the excited fluorophores in the S2 

state also quickly relax to the v0 of S1 state in less than 10-14 s via an internal conversion 

(IC) and vibrational relaxation pathways (Figure 3.1). Therefore, the transition from the 

excited state to the ground state of fluorophores always occurs from the v0 level of S1 state. 

When promoted to the v0 level of S1 state, fluorophores undergo fast vibration relaxation 

before returning to the singlet ground state through either radiative pathway (emission of a 

photon, kr) or non-radiative pathways including vibrational relaxation, and internal 

conversion (kic). With a very low probability, the excited fluorophores can pass to the triplet 

state (T1) via the intersystem crossing process (kisc); however, transition from T1 to S0 state 

is forbidden (Figure 3.1). In the presence of quenching molecules, the excited fluorophores 

may also be dynamically or statically quenched by surrounding quenchers (kq) (Lakowicz, 

2006).  

3.2.5.2 Characteristics of fluorescence emission 

3.2.5.2.1 Fluorescence emission spectra 

The interesting process of de-excitation transitions is the emission of photons. The 

emission spectrum is represented by a plot of fluorescence intensity as a function of 

emission wavelength. One important characteristics of the emissive process is that 

fluorescence emission occurs at lower energies (or longer wavelengths) relative to its 

absorption energy, known as the Stokes shift phenomenon. In addition, the same emission 

spectrum is observed irrespective of its excitation wavelengths, also known as Kasha’s 

rule. However, the shape and maxima of an emission spectrum also depend upon molecular 
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relaxation of the solvent and energy transfer to quenchers surrounding the fluorophore’s 

environment (Lakowicz, 2006).   

3.2.5.2.2 Fluorescence quantum yield 

The quantum yield () of fluorophores provides information about the efficiency 

of the fluorescence process. Fluorescence quantum yield can be defined by the fraction of 

rate constants of the radiative emission of a photon (kr) over the total rate constants of both 

radiative and non-radiative processes, including internal conversion (kic) and intersystem 

crossing (kisc) as shown in equation 3.2 (Lakowicz, 2006). 
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3.2.5.2.2.1 Quantum yield measurements 

Fluorescence quantum yield can be calculated by using either an absolute or a 

relative method (Wurth et al., 2013). Quantum yield experiments performed in this 

dissertation project were determined using the relative method described by Williams et al. 

(Williams et al., 1983). The method involves the use of a well characterized standard 

sample with known quantum yield (ST) and the quantum yield of testing sample (x) is 

calculated by equation 3.3. 
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In this expression, Grad is the gradient from the plot of integrated fluorescence intensity 

versus absorbance, and η is the refractive index of the solvent. Subscript X and ST denote 

the testing and standard samples, respectively. 
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3.2.5.2.3 Fluorescence lifetime 

Fluorescence lifetime is defined as the average time that the fluorophore resides in 

its electronic excited state following excitation (Lakowicz, 2006). Thus, fluorescence 

lifetime () of a fluorophore is the reciprocal of the sum of radiative and non-radiative rate 

constants as shown in equation 3.4. 

iscisr kkk 


1
        (3.4) 

Fluorescence lifetime is important for biophysical studies because lifetime of a 

fluorophore provides useful molecular information about structural fluctuation and 

conformational heterogeneity as a result of structural perturbations near the fluorophore in 

the investigating system (Valeur, 2002; Lakowicz, 2006; Periasamy, 2010). Fluorescence 

lifetime measurements can be performed by either time-domain (TD) or frequency-domain 

(FD), also known as phase-modulation approach. In the TD approach, the fluorophore is 

excited with a short laser pulse and fluorescence emission intensity is recorded as a 

function of time. On the other hand, in the FD approach, when a fluorophore is excited 

with a modulated sinusoidally light source at high frequencies, the lifetime of the 

fluorophore causes the emission to be delayed in time, called phase shift (), and a decrease 

in the peak-to-peak height, also known as modulation, with respect to that of modulated 

excitation (Figure 3.2) (Gratton et al. 1984; Lakowicz, 2006; Ross and Jameson 2008). The 

phase shift is measured from the zero-crossing times of the modulated components, 

whereas modulation (M) is the ratio of signal amplitude (AC) at modulation frequency, , 

to the average signal (DC) (Figure 3.2) (Gratton et al., 1984; Ross and Jameson, 2008, 

Lakowicz, 2006). Since throughout my dissertation project fluorescence lifetime 
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measurements were performed with a FD fluorimeter, a brief discussion about the theory 

and data analysis of FD fluorescence lifetimes is introduced to give insight into the 

significance of fluorescence lifetimes of the studies in this project. 

 

Figure 3.2: Relative phase shift () and modulation of the excitation (subscript E) and 

emission light (subscript F) in FD fluorescence spectroscopy. AC and DC indicate the 

amplitude and offset of the respective waves. Adapted from (Ross and Jameson, 2008). 

 

3.2.5.2.3.1 Basic principles of frequency-domain lifetime 

measurements 

For a sample containing n fluorophores, each of which has the same probability of 

emitting in a given period of time, the excitation intensity and the fluorescence emission 

intensity are described by  equations 3.5 and 3.6, respectively (Ross and Jameson, 2008). 

 )sin(1)( 0 tMEtE E        (3.5) 

 )sin(1)( 0   tMFtF F       (3.6) 

In these expressions, E(t) and E0 are the excitation intensities, F(t) and F0 are the 

fluorescence emission intensities at time t and time zero, respectively, ϕ is the phase shift 
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between the excitation and emission, and  is the angular modulation frequency equal to 

2 of the linear frequency f (in radian/s). The modulation of excitation (ME) and the 

modulation of emission (MF) are described by equations 3.7, 3.8, and 3.9. 
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In these expressions, AC and DC are signal amplitude and the average signal at modulation 

frequency, , respectively. The subscripts E and F indicate excitation and fluorescence 

emission, respectively. M is the relative modulation of the emission and excitation 

modulations. 

The characteristic phase lifetime () and modulation lifetime (M) at any single 

modulation frequency can be calculated by using equations 3.10 and 3.11 (Ross and 

Jameson 2008). 
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These phases and modulation lifetimes are equal ( = M) only if the intensity decay 

is a single exponential. However, most samples of interest display more than one lifetime, 

which cannot be resolved by using equations 3.10 and 3.11. In this case, the lifetimes ( 

and M)  measured at a particular frequency are the result of the weighting various 

components in the emission (Lakowicz, 2006). In addition, the phase lifetime is shorter 

than the modulation lifetime ( < M), and both  and M decrease at higher modulation 

frequencies (Lakowicz, 2006).  

For a multi-exponential decay system, the phase and modulation values have to be 

measured in a wide range of modulation frequencies using a variable-frequency instrument. 

Alternatively, the phase and modulation values can be expressed in the waveforms of sine 

(S) and cosine (G) functions as shown in equations 3.12 and 3.13 (Ross and Jameson, 

2008): 
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The parameters i and Mi are described in equations 3.14 and 3.15, respectively. Parameter 

fi is the fractional intensity of the ith components (fi = 1).  
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The functions S and G are sine and cosine transforms of the impulse response 

function according to equations 3.14 and 3.15 (Ross and Jameson, 2008). These 

expressions can be used for any intensity decay law such as Gaussian distribution or 

discrete distribution and can also be transformed numerically into expressions 3.16 and 

3.17 (Lakowicz, 2006). 
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In these above expressions, αi corresponds to the pre-exponential decay factor, i  represents 

the individual lifetimes, and i ii  is proportional to the steady-state intensity. The 

relationship between αi and fi in equations 3.16 and 3.17 is given by expression 3.18, 

assuming that the quantum yield of emitting species are proportional to their lifetimes 

(Lakowicz, 2006; Ross and Jameson, 2008). 
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In the least-square analysis, the parameters αi and i  are varied to yield the best fit 

between the measured data and calculated values justified by a minimum value for the 

reduced chi-squared value (χ2) in  3.19 (Lakowicz, 2006). 
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In this expression,  and M correspond to the phase and modulation values, respectively, 

the subscripts c and m indicate the calculated and measured values, and δ and δM are the 

standard deviations of each phase and modulation measurement, respectively. The value ν 

is the number of degrees of freedom, which is equal to twice the number of frequencies 

minus the number of variable parameters. The best fit between the calculated values and 

the experimental values are typically characterized by a χ2 value close to 1 (Lakowicz, 

2006). In the frequency-domain approach, Fluorescence lifetime data are often described 

in terms of the contributions of various components to the emission or fractional intensities, 

fi, which correspond to the contribution of the ith component to the photocurrent. On the 

other hand, the pre-exponential, αi, is usually reported in the time-domain approach (Ross 

and Jameson, 2008).  

3.2.5.2.4 Fluorescence quenching 

Fluorescence quenching provides useful information on the accessibility of the 

fluorophore to the solvent. The accessible process depends not only on the structure of the 

molecules surrounding the fluorophore, but also on the fluorophore charged environment 

(Jameson, 2014). The quenching process can occur via dynamic quenching (also known as 

collisional quenching), static quenching, or simultaneous dynamic and static quenching 

(Jameson, 2014). 
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3.2.5.2.4.1 Collisional quenching 

Collisional quenching occurs when the excited fluorophore comes in contact with 

an atom or molecule that can facilitate the non-radiative transitions to the ground state 

(Valeur, 2002). Thus, fluorescence quantum yield and fluorescence lifetime of a single 

exponential system in the presence of quenchers are given by equations 3.20 and 3.21 

(Valeur, 2002). 
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In these expressions, kq is the rate of quenching, [Q] is the quencher concentration, and 0 

and  are lifetimes in the absence and presence of quenchers, respectively. Other 

parameters have the same meaning as described previously.  

Since quantum yield is proportional to fluorescence emission intensity, the combination 

of equations 3.20 and 3.21 gives the Stern-Volmer equation (Valeur, 2002). 
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
     (3.22) 

In this expression, I0 and I are steady-state fluorescence intensities in the absence and 

presence of quencher Q, respectively. The Stern-Volmer constant Ksv is equal to kq0. Thus, 

the bimolecular quenching constant (kq) can be calculated from Ksv and determined from 

the plot of I0/I against the quencher concentration [Q] when the excited-state lifetime in the 

absence of quencher (0) is known (Valeur, 2002).  
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3.2.5.2.4.2 Static quenching 

 Static quenching occurs when a fluorophore interacts with a quencher to form a 

non-fluorescent complex in the ground state. Upon light absorption, the complex rapidly 

returns to the ground state without emission of a photon. Thus, the steady-state 

fluorescence intensity decreases upon addition of Q, but lifetime of the fluorophore is 

unaffected (Lakowicz, 2006; Valeur, 2002). The static quenching can be described by 

equation 3.23. 

][10 QK
I

I
sv       (3.23) 

The linear dependence of I0/I in the expression for static quenching (equation 3.23) is 

identical to that of dynamic quenching in equation 3.22, except that the quenching constant 

(Ksv) is the association constant. 

3.2.5.5 Fluorescence anisotropy 

Fluorescence anisotropy measurement provides useful information on molecular 

mobility, size, shape, and flexibility of molecules, fluidity of a medium, and other 

parameters (Valeur, 2002). 

3.2.5.5.1. Basic principles and theory of fluorescence anisotropy 

In a homogenous solution, fluorophores are randomly oriented in the ground state. 

When these fluorophores are excited with vertically polarized light, whose electric vector 

has transition moments oriented along the z-axis (Figure 3.3), the intensity of emission can 

be measured through a polarizer. If the emission polarizer is oriented parallel (||) to the z-

axis, the observed intensity is called I||. Likewise, if the polarizer is perpendicular () to z-



49 
 

axis, the observed intensity is called I.  The anisotropy (r) is calculated from these I|| and 

I intensity components by using equation 3.24 (Lakowicz, 2006). 
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II

II
r

2||

||
       (3.24) 

Since the intensity difference between parallel and perpendicular components (  II|| ) is 

normalized by the total intensity (  II 2|| ), anisotropy is independent of the fluorophore 

concentration (Lakowicz, 2006).  

 
 

Figure 3.3: Schematic diagram for measurement of fluorescence anisotropy. Adapted from 

(Lakowicz, 2006).  

 

Upon excitation by polarized light, a fluorophore, whose dipole is oriented with 

angles  and  respectively relative to the z-axis and y-axis as shown in Figure 3.4, creates 

the electric field (E), described by equation 3.25.  
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In this expression, k is a constant, r is the distance from the fluorophore, and 


 is the unit 

vector along the  coordinate. 

The intensity of emission of that fluorophore is proportional to the square of the 

electric field, described by equation 3.26 (Lakowicz, 2006). 
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where 


r  is a unit vector in the direction of propagation. 

 

Figure 3.4: Schematic diagram illustrating emission intensities for a single fluorophore in 

a coordinate system. Adapted from (Lakowicz, 2006). 

 

Since the electric field points in the same direction as the emission transition 

moment, the projection of the field onto the z-axis is proportional to cos and the intensity 

is proportional to cos2. Likewise, the field along the x-axis is proportional to sinsin and 
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the intensity is proportional to sin2sin2. Hence, I|| and I components can be expressed 

by equations 3.27 and 3.28 (Lakowicz, 2006). 

 2

|| cos),( I        (3.27) 

 22 sinsin),( I        (3.28) 

Because all the excited fluorophores at angle  from the y-axis are symmetrically 

distributed around the z-axis, the population of excited fluorophores is oriented with values 

of  from 0 to 2 with equal probability. The average value of sin2 is given by equation 

3.29. 
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Therefore, equation 3.28 can be written as equation 3.30. 

 2sin
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Assuming that the probability of a collection of fluorophores, oriented at an angle between 

 and  + d relative to z-axis, is f(), then, I|| and I can be rewritten by equations 3.31 and 

3.32. 
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where k is an instrumental constant.  

Using sin2 = 1 – cos2, equation 3.32 can be rewritten by equation 3.33. 
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In this expression, the anisotropy is determined by the average value of cos2, where  is 

the angle of the emission dipole relative to the z-axis (Lakowicz, 2006). 

3.2.5.5.2 Steady-state anisotropy 

The steady-state anisotropy can be calculated from an average of the anisotropy 

decay r(t) over the intensity decay I(t) by using  equation 3.34 (Lakowicz, 2006). 
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For a single-exponential intensity decay with lifetime,, the steady-state anisotropy is given 

by equation 3.35. 




1

0rr         (3.35) 

In this expression, r0 is the limiting anisotropy and  is the angle of the emission dipole 

relative to the z-axis. 

3.2.5.5.3 Frequency-domain anisotropy decay 

Frequency-domain (FD) anisotropy decay is also known as the dynamic 

polarization method (Jameson, 2014). Anisotropy decay provides information on rotational 

modalities of a fluorophore as a function of time. Thus, it allows us to investigate the 

dynamics of the system such as size, shape, and flexibility (Lakowicz, 2006; Ross and 

Jameson, 2008).  
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3.2.5.5.3.1 Theory of FD anisotropy decay 

 

In FD anisotropy decay, a fluorophore is illuminated with vertically polarized, 

modulated light, and the parallel and perpendicular emission intensities are observed 

through a rotatable polarizer. The observable quantities for the anisotropy decay 

measurements are the phase shift (Δ) between perpendicular () and parallel (||) 

emission components at the modulation frequency () and the ratio of the modulated 

amplitudes of the parallel (M||) and perpendicular (M) components of emission (Figure 

3.5) (Lakowicz, 2002). 

The changes of Δ and  are because of the rotation of the excited fluorophore 

during the excited state lifetime, which changes the orientation of the emission dipole of 

the fluorophore (Ross and Jameson, 2008). The relation between the observed Δ and  

with respect to rotational parameters of fluorophores in a single rotating spherical system 

is displayed in equations 3.36 and 3.37 (Weber, 1977; Ross and Jameson, 2008). 
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In these expressions, r0 is the limiting anisotropy, which is observed in the absence of 

rotation, k is the radiative rate constant (1/) of the fluorophore, and R is the rotational 
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diffusion coefficient, which is equal to twice the reciprocal of the rotational relaxation time 

(), where  is equal three times the rotational correlation time (Ross and Jameson, 2008).  

 

Figure 3.5: Schematic diagram for measurement of anisotropy decays with frequency-

domain. Adapted from (Lakowicz, 2002). 

 

3.2.5.5.3.2 Data analysis of anisotropy decay 

In FD anisotropy decay approach, the phase shift (Δc) and modulation ratio (c) 

are measured using equations 3.38 and 3.39. 
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In these expressions, parameters D and N are expressions for the sine and cosine transforms 

of the individual polarized decays as shown in equations 3.40 and  3.41  (Weber, 1977; 

Lakowicz, 2006). 
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where k indicates the perpendicular and parallel orientations. 

Thus, anisotropy decay parameters can be obtained by minimizing the squared deviations 

between measured and calculated values using equation 3.42. 
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where δΔ and δ are the uncertainties in the differential phase and modulation ratio, 

respectively (Joseph R. Lakowicz 2006). 

3.2.5.5.3.3 Anisotropy decay fitting models 

Anisotropy decay models are varied since the size, shape, and flexibility of the 

fluorophore, and its local environment can affect anisotropy decays of the investigated 

system. A spherical molecule displays a single rotational correlation time. However, the 

anisotropy decay for a non-spherical fluorophore is more complicated because there are 

different rotational rates around each axis (Lakowicz, 2006). Several anisotropy decay 

models routinely used for data analysis throughout my dissertation project are described 
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below. For the first case of a spherical system, the decay of anisotropy with time, I(t), is 

given by  3.43 (Jameson, 2014). 
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In the case of a mixture of large and small particles, anisotropy decay reflects the 

sum of exponential components as displayed in equation 3.44a (Jameson, 2014). 
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In the case of a local rotation of a probe attached to a spherical particle, the decay 

anisotropy is given by equation 3.44b (Jameson, 2014). 
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In these expressions, r1 and r2 are anisotropy amplitudes, 1 and 2 are respectively the 

rotational correlation time of fast (local) motion and slow (global) motion of a mixed 

system. 

The experimentally determined rotational correlation times can be compared to 

expected values (calc) for a spherical protein calculated by using the Stokes-Einstein 

equation 3.45 (Lakowicz, 2006).  

RT

V
calc


          (3.45) 

where η is the viscosity of water (η = 1.02 cP) (Korson et al., 1969), V is the hydrodynamic 

molecular volume, R is the ideal gas constant, and T is the temperature (20° C). 
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3.2.5.6 Fluorescence stopped-flow kinetics 

3.2.5.6.1 Basic principles of fluorescence stopped-flow kinetics 

Fluorescence stopped-flow kinetics is a useful method that directly measures the 

kinetics of a bi-molecular reaction. Kinetics parameters provide reaction rates, which can 

be used to investigate mechanisms and binding constants (Gibson, 1969; Hargrove, 2005). 

In this method, small volumes of protein and ligand, such as a short peptide, are rapidly 

driven from syringes A and B through valves A and B into an observation mixer chamber 

as shown in Figure 3.6.  

 

Figure 3.6: Schematic diagram of a stopped-flow mixer. Reaction A and B are driven into 

the mixer through valves A and B. The previous content of the tube and cuvette are flushed 

out the stopping syringe via valve S that is open during flow. When the plunger of the 

stopping syringe hits the block, the valve S is closed and the contents of the cuvette can be 

probed during reaction mixture. Adapted from (Hargrove, 2005).  
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The resultant reaction volume displaces the content of an observation cuvette and 

thus fills it with freshly mixed reagents. As long as the stopping syringe is filled with old 

reaction solution, the plunger hits a block causing the flow to be stopped instantaneously 

(Figure 3.6). The time during which the solution enters the observation cuvette is known 

as the dead time of a stopped-flow system, which is less than 8 ms for a fast kinetic stopped-

flow system, model SFA-20 (TgK Scientific). 

3.2.5.6.2 Fluorescence stop-flow kinetics measurements and data 

analysis 

The kinetics measurements were performed with a ChronosFD spectrofluorometer 

(ISS, Champaign, IL) coupled to a SFA-20 rapid stopped-flow apparatus (TgK Scientific, 

Bradford-on-Avon, UK). Kinetics data were analyzed using single and double exponential 

decay models (Origin 8 software, OriginLab Corp. Northampton, MA). 

3.2.5.7 Fluorophores 

 Fluorophores are classified into intrinsic and extrinsic probes. The intrinsic 

fluorophores are natural aromatic amino acid residues in proteins including tryptophan, 

tyrosine, and phenylalanine. On the other hand, extrinsic fluorophores are fluorescence 

emissive compounds such as FITC, DNS-Cl, ethidium bromide (EtBr), or ANS. Since 

many proteins and DNA of interest are nonfluorescent, extrinsic fluorophores are 

frequently labeled on the proteins or DNA to create a fluorescent system. The fluorophores, 

routinely used in this project, are listed in Table 3.4. 
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 Table 3.4: List of extinction coefficients (nm), emission maximum wavelength (Em.max)  

of fluorophores used. 

 

3.2.6 Circular dichroism spectroscopy  

Circular dichroism (CD) is an excellent method to evaluate the secondary structure, 

folding, and binding properties of proteins because CD measurements can be performed 

with low concentration of protein (< 20 µg/ml) in a physiological buffer within a few hours 

(Greenfield, 2006). The principle, applications, and analysis of CD data have been 

intensively described by Greenfield (Greenfield, 2004; Greenfield, 2004; Greenfield, 2006; 

Greenfield, 2006; Greenfield, 2006; Greenfield, 2015). Therefore, the basic principles of 

CD spectroscopy and its applications in evaluating the secondary structure of the DREAM 

protein as well as protein stability will be concisely highlighted in the next sections.  

3.2.6.1 Basic principles of circular dichroism 

A beam of light consists of electric and magnetic fields which oscillate in all planes 

perpendicular to the propagating direction. Linearly polarized light, generated by passing 

the light through a prism, has an electric field (E) that vibrates sinusoidally in a single plane 

Chemical 
nm 

(M-1cm-1) 
Solvent References Manufactures 

1,8-ANS 
7,800 

(ɛ372nm) 
Methanol Diwu et al., 1997 Sigma 

2,6-ANS 
27,000 

(ɛ319nm) 
Methanol Diwu et al., 1997 Molecular Probes 

Nile red 
19,600 

(ɛ552nm) 
DMSO Castro et al., 2005 Molecular Probes 

Fluorescein 

isothyocyanate (FITC) 

75,000 

(ɛ493nm) 
Water Jobbágy et al., 1973 Molecular Probes 

Ethidium bromide 

(EtBr) 

5,680 

(ɛ478nm) 
Water Garbett et al. 2004 Thermal Fisher 
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(Kuball, 1999). If linearly polarized light passes through a birefringent material, the electric 

field will be separated into two components of equal magnitude.  

Superposition of these two sinusoidal waves with a phase-shift equal to a quarter 

of its wavelength (λ/4) creates circular polarized waves, whose electric field rotates 

circularly about their propagating direction while the vector retains constant magnitude 

(Figure 3.7) (Berova et al., 2000). If observed from the front, the circularly polarized light 

can be seen as the result of two vectors of equal length: one rotating clockwise (right 

handed, ER) and the other rotating counter-clockwise (left handed, EL) as shown in Figure 

3.7 (Greenfield, 2006). 

 

Figure 3.7: Scheme representing linearly polarized light that is converted using a linear 

polarizer and the circularly polarized light that is created using a quarter-wave (/4) plate. 

Adapted from (Berova et al., 2000). 

 

If the circular polarized light passes through an isotropic environment (achiral 

samples), it will not experience any difference as shown in Figure 3.8A. However, when 

circular polarized light passes through chiral samples such as amino acids (except glycine), 

the EL and ER components are absorbed differently, resulting in an elliptical polarization 

as shown in Figure 3.8B (Kelly et al., 2005).  
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The unequal absorption (ΔA) of the EL and ER components of circular polarized 

light by chiral samples is known as CD. The CD instrument measures the difference in 

absorbance (ΔA) between EL and ER components of circular polarized light (AL - AR) 

described in equation 3.46 (Berova et al., 2000; Kelly et al., 2005). 

ClClAAA RLRL   )(    (3.46) 

In this expression, parameters L and R are extinction coefficients of the sample for EL and 

ER components, respectively. C is concentration of the sample, and l  is the path length of 

the optical cell. 

 

Figure 3.8: A: when circularly polarized light passes through achiral samples, its EL and 

ER components of are constant.  B: when circularly polarized light passes through chiral 

samples, EL (blue) and ER (green) components are absorbed in distinctly, resulting in 

elliptical polarized light (red). Adapted from (Kelly et al., 2005). 

  

The unit of CD is reported in degrees of ellipticity (), whose tangent is the ratio of 

the minor (b) to the major (a) axis of ellipse as shown in Figure 3.8B, as a function of 

wavelength (Berova et al., 2000).  
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 A 98.32       (3.47) 

The molar ellipticity ([]) in deg cm2
 dmol-1 is converted using equation 3.48 

(Berova et al., 2000). 
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In measurements of proteins or peptides, the molar concentration unit is calculated 

using mean residue weight (MRW), which is the molar weight of the protein divided by 

the number of amino acid residues per molecule. Thus, the residue ellipticity ([]MR) can 

be reported in the unit of degrees cm2 dmol-1 by equation 3.49, where C is concentration 

expressed in mg ml-1 (Berova et al., 2000). 

 
 

lC

MRW
MR






10


      (3.49) 

3.2.6.2. Information from CD studies of proteins 

Analysis of a CD spectrum in the far and near UV regions provides information 

about the proteins’ secondary and tertiary structures. Chromophores of interest in proteins 

widely absorb circularly polarized light ranging from 190 nm to 650 nm (Berova et al., 

2000).  

Information on the secondary structure of a protein can be characterized using a far 

UV CD spectrum (between 190 nm and 250 nm). For instance, α-helical structure shows a 

strong peak centered at 192 nm according to perpendicular  transition and 

intensively negative peaks centered at 208 nm and 222 nm according to parallel 

transition and n transition, respectively (Figure 3.9). On the other hand, β-sheet 



63 
 

displays a positive peak at 196 nm according to n  transition and a negative peak at 

218 nm according to  transition. The random coil shows a positive peak at 212 nm 

and 195 nm according to the transitions of  , and n , respectively (Figure 3.9) 

(Berova et al., 2000). 

 

Figure 3.9: Far UV CD spectra associated with various types of secondary structure of 

proteins. Adapted from (Berova et al., 2000). 

 

  Aromatic side chains of phenylalanine, tyrosine, tryptophan, and disulphide bonds 

absorb circular polarized light near the UV region ranging from 260 nm to 320 nm. A near 

UV CD spectrum reflects the micro environment of aromatic amino acid side chains such 

as the types of aromatic amino acids present, their mobility, the nature of their environment, 

and their spatial disposition in the protein (Kelly et al., 2005). For instance, tryptophan 

shows a fine peak between 290 nm and 305 nm, while tyrosine displays a broad peak 

between 275 nm and 282 nm and a shoulder at 285 nm. Phenylalanine shows a sharp band 

between 255 nm and 270 nm (Figure 3.10), whereas a disulphile bond has a weak and 
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broad peak centered at 260 nm (Kelly et al., 2005). However, the actual shape and 

magnitude of the near UV CD spectrum of a protein containing aromatic side chains 

depends on the nature of their environment as previously mentioned (Kelly et al., 2005).  

 

Figure 3.10: Near UV CD spectrum for various aromatic side chains of proteins. Adapted 

from (Kelly, Jess et al. 2005). 

 

Furthermore, cofactors such as heme and flavin only display a strong CD signal 

when associated with protein partners. Thus, the CD signals in the appropriate spectral 

region are excellent probes for cofactor association (Kelly et al., 2005). For instance, a CD 

spectrum of hemeproteins shows a strong peak centered around 410 nm with other bands 

in range from 350 to 650 nm depending on spin state and coordination of the heme iron 

(Kelly et al., 2005).  

3.2.6.3 CD measurements of DREAM protein 

The CD measurements of DREAM protein were performed on a JASCO J-810 CD 

spectropolarimeter (JASCO Inc. Easton, MD). A sample containing 40 µM of purified 

DREAM protein was placed in a quartz cuvette with 0.1 cm path length. The far UV CD 
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spectra were collected at 20 nm/min scan rate from 190 to 260 nm with 1 nm band width, 

8 seconds response time, 1 nm data pitch, and 5 accumulations. The baseline was acquired 

in the same way with buffer solution and the CD spectra of protein were corrected by 

subtracting from the baseline. All the CD spectra were recorded at 16 °C.   

3.2.6.4 Sample preparation for CD measurements 

To investigate Mg2+ and/or Ca2+ induced conformational changes in DREAM 

protein, Ca2+ and Ca2+Mg2+ bound DREAM samples were prepared by adding CaCl2 or 

MgCl2 solutions to protein samples to a final concentration of 1 mM Ca2+ or 5 mM Mg2+. 

Apo and Mg2+DREAM and DREAM-C samples were prepared by adding 1 mM EDTA 

and 1mM EGTA with 5 mM MgCl2 to protein solutions, respectively. To minimize the 

difference on CD spectra of Apo, Mg2+, Ca2+, and Ca2+Mg2+ bound forms due to the 

mismatch of protein concentration, four samples with identical protein concentration (40 

µM) were prepared from an initial stock protein which was split into individual sample and 

EDTA, EGTA, Mg2+, or Ca2+ was added in equal volumes.  

Table 3.5:  Volumes and concentrations of protein and chemicals used to prepare CD 

samples of Apo, Mg2+,Ca2+, and Ca2+Mg2+  bound DREAM with identical concentration 

of DREAM protein 

 

DREAM 

Samples 

Vol. of 

500 µM 

DREAM 

(µL) 

Vol. of 

0.1 M 

EDTA 

(µL) 

Vol. of 

0.1 M 

EGTA 

(µL) 

Vol. of 

0.5 M 

MgCl2 

(µL) 

Vol. of 

0.1 M 

CaCl2 

(µL) 

Vol. of 

CD buffer 

(µL) 

Apo 32 4    364 

Mg2+ 32  4 4  360 

Ca2+ 32    4 364 

Ca2+Mg2+ 32   4 4 360 
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The buffer used for CD experiments contains 20 mM Tris-HCl pH 7.4, 1 mM DTT, and 10 

mM LDAO freshly prepared in decalcified water. The concentrations and volumes of stock 

DREAM protein, EDTA, EGTA, CaCl2, MgCl2, and CD buffer are listed in Table 3.5.  

3.2.7 Isothermal titration calorimetry (ITC) 

3.2.7.1 Principle of ITC  

The technical details and the principle of isothermal titration calorimetry have been 

described elsewhere (McKinnon et al., 1984; Jelesarov and Bosshard 1999; Velazquez-

Campoy et al., 2004; Privalov and Ebrary, 2012). Briefly, consider the simplest binding 

reaction between a macromolecule (M) which has a single binding site for the ligand (L). 

The association constant (Ka) is defined as: 

 
   LM

ML
Ka


        (3.50) 

In this expression, [ML], [M], and [L] are the corresponding concentrations.  

The thermodynamic relationship between the association constant Ka and Gibbs 

energy of association ΔG can be expressed in terms of enthalpy (ΔH) and entropy (ΔS) 

change in the process displayed by equation 3.51. 

STHKRTG a  ln      (3.51) 

In this expression, R is the gas constant (1.9872 cal K-1 mol-1) and T is the absolute 

temperature (in Kelvin).  

Isothermal Titration Calorimetry is the only method that directly determines all the 

thermodynamics parameters n (binding stoichiometry), Ka, and ΔH associated with binding 

reaction in a single experiment. In addition, by performing the same experiment at several 
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temperatures and constant pressure, the heat capacity, C, can be obtained from the slope of 

enthalpy versus temperature plot.  

Thermodynamic experiments were performed with VP-ITC MicroCalorimeter 

(MicroCal LLC, Northampton MA). ITC measures heat released or absorbed by the 

binding reaction of liquid samples. The VP-ITC instrument contains two identical coin 

shaped reference and sample cells which are accessible from the top and enclosed in an 

adiabatic outer shield as shown in Figure 3.11 (Ladbury and Chowdhry, 1996; Ladbury, 

2004).  

The reference cell is loaded with water or buffer and the sample cell is filled with 

macromolecule solution (DREAM protein or DNA). These two cells are in contact with 

the thermal reservoir and initially the temperature in both cells is maintained constant by 

an electronic power source. Any change in temperature (ΔT) between the reference and the 

sample cells results from either more or less heat being added to the sample cell which is 

balanced by the power feedback mechanism.  During operation, the precise amounts of 

reactants (ligand) are titrated into the sample cell via the rotating microsyringe. 

An injection of ligand (DREAM) into the macromolecule (DNA) sample results in 

the release (exothermic) or absorption (endothermic) of heat within the sample cell which 

causes a respectively negative or positive change in the power difference (DP) between 

reference and sample cells. Since DP has units of power (Js-1), the time integral of the peak 

of each injection gives thermal energy (ΔH) (Ladbury and Chowdhry, 1996; Ladbury, 

2004). The ITC data are then analyzed using fitting models in Origin 7 software to calculate 

binding stoichiometry (n), Ka, ΔH, and ΔS (MicroCal, LLC, Northampton, USA). 
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Figure 3.11: Schematic representation of an ITC instrument. The sample cell and the 

reference cell are kept at the same temperature. The reference cell is always kept at the 

experimental temperature. The ligand component of the interaction is placed in the syringe 

and the other in the cell. Upon the first titration (injection), the change in heat associated 

with binding (endothermic or exothermic) results in a change in temperature in the sample 

cell. A change in power (heat/s) is required to return the cells to identical temperatures (T) 

(ΔT = 0). This change in power is recorded during injections. The binding isotherm and 

the integrated thermogram are shown in the top right. Adapted from (Ladbury and 

Chowdhry, 1996; Ladbury, 2004).  

 

 3.2.7.2 ITC data analysis 

The heat released or absorbed (q) associated with each change of state after each 

injection is measured. The heat, qi, is proportional to the increment in the concentration of 

the complex [ML] (the parameters [ML], M, and L were defined previously in equation 

3.50) in the calorimetric cell after each injection, i, as shown in equation 3.52. 

    1 iiai MLMLHVq       (3.52) 
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In this expression, ΔHa is the enthalpy of binding and V is the calorimetric cell volume. 

Equation 3.52 is used for a single titration (injection). However, an actual ITC experiment 

is done with series of injections. Thus, equation 3.53a is used.  
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The isothermal parameters n, Ka, and ΔHa are directly obtained from the fitting 

curve of an isotherm using equation 3.53b because the total concentration of ligand ([L]) 

and the ratio of total ligand relative to the total protein concentration ([M]) are known 

(Figure 3.12). 
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TaTTaTT
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   (3.53b) 

  

Figure 3.12: A schematic diagram illustrating isothermal parameters being generated 

from an isotherm fitting curve. 
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 3.3 Methods used in chapter 4 

3.3.1 Steady-state fluorescence measurements 

Steady-state emission spectra were measured using a PC1 fluorimeter (ISS, 

Champaign, IL). For steady-state emission measurements, 40 µM DREAM in 20 mM Tris 

buffer pH 7.4, 1 mM DTT and 10 mM N,N-dimethyldodecylamine N-oxide (LDAO) was 

placed in a 0.2 x 1.0 cm quartz cell and emission spectra were recorded using 295 nm 

excitation. The spectra were corrected for the inner filter effect and the quantum yield for 

W169 emission was calculated using equation 3.3 in section 3.2.5.2.2.1, and the quantum 

yield of tryptophan ( = 0.13) as a standard (Lakowicz, 2006). 

3.3.2 Fluorescence quenching 

Quenching studies were performed by measuring W169 fluorescence emission 

intensity in the range from 300 nm to 450 nm using an excitation wavelength of 295 nm, 

after addition of small aliquots of freshly prepared 10 M acrylamide solution following 5 

min incubation. The decrease in the emission intensity at 340 nm and 335 nm for the Ca2+ 

free and Ca2+ bound form of DREAM, respectively, was corrected for the inner filter effect. 

The data were analyzed using the Stern-Volmer equation (equation 3.22 in section 

3.2.5.2.4.1). Before determination of the Stern-Volmer constant, the emission spectra were 

corrected for an inner filter effect as described above (Stegemeyer, 1969; Puchalski et al., 

1991).   

3.3.3 Fluorescence lifetime measurements 

The fluorescence lifetime measurements were performed on a ChronoFD 

fluorimeter (ISS, Illinois-Champaign). The output of a 280 nm light emitting diode was 

frequency modulated in the range between 5 to 250 MHz. The emission was collected 



71 
 

through a 320 nm long pass filter (Andover Inc.) and detected using a photomultiplier tube 

(PMT) (R928, Hamamatsu).  The fluorescence decay data were analyzed using a 

combination of a single Gaussian distribution and a single discrete component according 

to equations 3.54 and 3.55 (Togashi et al., 2010).  
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In these expressions, a1 and a2 represent the amplitude of each term in equation 3.54 and 

1 is the mean decay time of the Gaussian distribution with a width of distribution, w1, 

whereas 2 is the lifetime of the discrete single exponential term. The data analysis was 

performed using the Globals for Spectroscopy Software (Laboratory of Fluorescence 

Dynamics, University of California, Irvine, USA). The reference compound used in 

lifetime measurements was 2,5-diphenyloxazole (PPO) in ethanol ( = 1.40 ns) (Boens et 

al., 2007).  

The average lifetimes <> in were calculated using equations 3.56 and 3.57.  
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In these expressions, 1 and 2 are fluorescence lifetime components corresponding to the 

normalized pre-exponential decay α1 and α2 calculated from the exponential decay 

fraction (fi) using equation 3.57, respectively.  

3.3.4 DREAM stability studies  

Guanidine hydrochloride (GuHCl) induced protein unfolding was monitored by 

measuring the CD spectra as a function of increasing GuHCl concentration. Samples for 

CD measurements were prepared by solubilizing 40 μM DREAM in 20 mM Tris-HCl, 1 

mM DTT, 10 mM LDAO, pH 7.4, and incubated in the presence of GuHCl for 30 min prior 

to CD measurements. The CD spectra were recorded using a Jasco J-810 CD-spectrometer 

at 16 C. DREAM unfolding traces were analyzed as a two-step process involving an 

intermediate state described by expression 3.58. 

N  I U            (3.58) 

In this expression, N corresponds to the native state, I to the partially unfolded intermediate 

state, and U to the unfolded state.  

The unfolding curves were fit using the following equation (Santoro and Bolen, 

1988; Hung et al., 2003).  
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  (3.59) 

In this equation,  Y(GuHCl) is the CD signal at 220 nm, ΔG is the standard free energy for 

the unfolding, m is the dependence of the free energy on the denaturant concentration, T is 

the temperature (T = 289 K), [D] is the concentration of GuHCl, and R is the ideal gas 
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constant, R = 8.314 J K-1 mol-1. The parameters YN, YI, and YU represent the CD signal at 

220 nm CD signal for each molecular species at zero GuHCl concentration. 

 3.3.5 Molecular dynamics simulations 

The molecular dynamics (MD) simulations in this chapter were performed in 

collaboration with Dr. Prem Chapagain in the Department of Physics, Florida International 

University. The time series MD trajectories were obtained from explicit solvent, all-atom 

simulations using the molecular dynamics simulation package NAMD (Phillips et al., 

2005) with the CHARMM27 force field (Brooks et al., 1983). The initial NMR structure 

of the DREAM protein was obtained from the Protein Data Bank (PBS code: 2JUL (Lusin 

et al., 2008)).  The protein was solvated using the VMD package (Humphrey et al., 1996) 

with a box cutoff set to 10 Å. This resulted in a simulation box of dimensions 

81.5×68.6×58.1 Å. The solvated system was electrically neutralized by adding 12 Na+ ions 

randomly in the bulk water using the VMD autoionize plugin. The particle mesh Ewald 

method (van Dijk et al., 2006) was used to treat long-range interactions with a 12 Å 

nonbonding cutoff. Energy minimization (50000 steps) was performed using the conjugate 

gradient and line search algorithm. The system was then heated for 90 ps with a linear 

gradient of 20 K/6 ps from 20 to 300 K. At 300 K, the system was equilibrated for 910 ps 

with a 2 fs integration time step in the NVT (constant number, volume, and temperature) 

ensemble. Langevin dynamics was used to maintain the temperature at 300 K. The 

production run was 67 ns using NVT dynamics with 2 fs time steps. The same procedure 

was used to setup another system of a DREAM protein without calcium ions to simulate 

the Apo state of the protein. An additional 270 ns simulation was conducted for calcium 
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bound DREAM using AMBER03 force fields with a 10 Å PME cut off and 1.25 fs 

integration time, all other parameters being identical. 

3.4 Methods used in chapter 5 

3.4.1 Fluorescence steady-state measurements 

Samples for fluorescence measurements were prepared by diluting DREAM-C in 

20 mM Tris-HCl, pH 7.4, and 1 mM DTT. Appropriate volume of 1 mM EDTA, 5 mM 

Mg2+, 1 mM EGTA, or 1 mM Ca2+, was added into 40 µM DREAM-C samples to prepare 

Apo, Mg2+, Ca2+, or Ca2+Mg2+ bound protein.  

Steady-state emission spectra of W169 and acrylamide quenching measurements 

were carried out similar to that performed with DREAM wild-type (sections 3.2.3).  

Emission spectra of 1, 8-ANS and nile red in the presence of DREAM-C were 

measured using 370 nm and 470 nm excitation, respectively. The concentration of 1, 8-

ANS (ε372nm = 7,800 M-1cm-1) (Diwu et al., 1997) and nile red (ε552nm = 19,600 M-1cm-1 in 

DMSO) (Castro et al., 2005) were determined spectrophotometrically. Equilibrium 

dissociation constants for 1,8-ANS or nile red were obtained by titrating concentrated 

protein into 1,8-ANS or nile red solution, while keeping the concentration of the 

fluorescence probe constant. Dissociation constants were recovered by nonlinear fit of the 

titration curves using a non-cooperative single binding site Hill equation as described in 

reference (Hawe et al., 2011). 

3.4.2 Fluorescence lifetime measurements 

Frequency-domain fluorescence lifetime and anisotropy decay measurements were 

performed using a ChronosFD spectrofluorometer (ISS, Champaign, IL). The frequency 

modulated output of a 280 nm laser diode was used as excitation light in Trp lifetime 
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measurements and the emission was collected through a 320 nm long pass filter. 2,5-

diphenyloxazole (PPO) in ethanol ( = 1.40 ns) was used as a lifetime reference (Boens et 

al., 2007). The lifetime of 1,8-ANS and nile red were determined using a frequency 

modulated 370 nm and 470 nm laser diode as an excitation source, respectively, and 

emission was collected using 400 - 600 nm and 550 - 700 nm band pass filters, respectively. 

The fluorescence lifetime of 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) in ethanol ( 

= 1.35 ns) (Boens et al., 2007) and rhodamine B in water ( = 1.7 ns) (Boens et al, 2007)  

were employed as lifetime references for 1,8-ANS and nile red, respectively. Multiple 

lifetime data from at least three different protein preparations were simultaneously fit using 

the global analysis approach with the lifetime parameters set as linked variables (Global 

WE software, Laboratory of Fluorescence Dynamics).  

The time-resolved anisotropy measurements of 1, 8-ANS:DREAM-C complexes 

were performed as described previously(Gonzalez and Miksovska, 2014). A double 

associative decay model was used to determine the rotational correlation times. The 2 

parameter and residuals were used as criterion for goodness of fit for all the models used. 

3.4.3 DREAM-C stability measurements 

Guanidine hydrochloride (GuHCl) stock solution was prepared by dissolving 

GuHCl in 20 mM Tris-HCl, pH 7.4, and 1 mM DTT buffer to obtain a final concentration 

of GuHCl of 8.0 M. Thirty eight samples for each form of Apo, Mg2+, Ca2+, or Ca2+/Mg2+ 

bound DREAM-C at a constant protein concentration (40 µM) and various GuHCl 

concentrations (0.2 - 7.4 M) were prepared for unfolding measurements. To ensure that an 

unfolding equilibrium was reached, samples were incubated at 20 oC for 30 min prior to 

each measurement. 
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Far UV-CD spectra were recorded on JASCO J-810 CD spectropolarimeter 

(JASCO Inc. Easton, MD) from 260 to 200 nm using 0.1 cm path length quartz cell. Protein 

unfolding curves were obtained by monitoring changes in ellipticity at 220 nm as a function 

of GuHCl concentrations. Unfolding curves were analyzed using two-state unfolding 

model N ↔ U (Santoro and Bolen, 1988; Hung et al., 2001). 
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In this expression, the observed CD signal (Yobs) is expressed in terms of the signal of the 

native state (YN) and unfolded state (YU). ΔGU represents the unfolding free energy change, 

mU describes the free energy dependences on the denaturant concentration ([D]), R is the 

universal gas constant (1.987 cal mol-1 K-1), and T is the temperature.  

The fraction of the native state was determined from the unfolding equilibrium 

constant using equations 3.61 and 3.62. 
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3.4.4 Isothermal Titration Calorimetry (ITC) measurements 

Thermodynamic parameters for Ca2+
 and Mg2+ binding to DREAM-C were 

determined using a VP-ITC titration calorimeter (Microcal Inc. Northampton, MA). ITC 

buffer (20 mM Tris-HCl, pH 7.6, 0.5 mM DTT, and 150 mM NaCl) was prepared using 

decalcified water and filtered through Chelex-100 resin (Bio-Rad). The protein stock 

solution was dialyzed against ITC buffer overnight. To minimize artifacts from 
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mismatched buffers, 1.2 mM CaCl2 and 5 mM Mg Cl2 solutions were prepared by diluting 

0.1 M CaCl2 standard solution and 1.0 M MgCl2 solution in the final ITC buffer, 

respectively. All buffer solutions were stored in plastic bottles previously boiled in 

decalcified water. The cell sample and injection syringe were extensively cleaned with 

decalcified water and then with ITC buffer. The reaction cell was loaded with 70 µM 

DREAM-C solution (1.40 mL) and the concentration of Ca2+ or Mg2+ in syringe (297 µL) 

was 1.2 mM or 5.0 mM, respectively. For Ca2+ binding to DREAM-C in presence of Mg2+, 

1.2 mM solution of Ca2+ was titrated into 70 µM DREAM-C that was pre-saturated with 5 

mM Mg2+. Twenty eight aliquots (10 µL each) of Ca2+ or Mg2+ solutions were titrated into 

protein solution with 2 min intervals between injections. Parallel experiments were carried 

out for titration of Ca2+ or Mg2+ solution into the dialysate buffer as a control for heats of 

dilutions of ligand. The temperature was kept at 25 oC and the stirring speed was kept at 

307 rpm. ITC data were analyzed using Origin 7 ITC data analysis software (OriginLab 

Corp. Northampton, MA). The data obtained for Ca2+ binding to DREAM-C and 

Mg2+DREAM-C were analyzed using a two binding sites model as described previously 

(Jelesarov and Bosshard, 1999; Martinez et al., 2013). 

3.5 Methods used in chapter 6 

3.5.1 Sample preparation 

Fluorescence samples were prepared from stock protein diluted in a buffer 

containing 20 mM Tris-HCl, pH 7.4, and 1 mM DTT. Presenilin 1 C-terminal fragment 

(PS1-CTF) peptides were freshly solubilized in the same buffer and stored at 4 ºC. The 

peptide concentration was determined spectrophotometrically using extinction coefficient 
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of fluorescein isothyocyanate (FITC), ε493nm = 75,000 M-1 cm-1. Absorption spectra were 

measured using a single beam spectrophotometer (Cary-50, Varian).  

3.5.2 Fluorescence steady-state measurements 

Fluorescence steady-state anisotropy measurements were performed on a 

ChronosFD spectrofluorometer (ISS Inc., Champaign, IL). The samples were excited at 

470 nm and the emission was collected using 500-700 nm band pass filters (Andover corp. 

Salem, NH).  Titrations of HLβ and HL9 into DREAM were conducted in a 2 mm x 10 

mm quartz cuvette with excitation along the short path-length. Equilibrium dissociation 

constants (Kd) were determined by a non-linear fit of the change in fluorescence anisotropy 

using equation 1 (Leon et al., 2009). 
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where ∆A is change in fluorescence anisotropy, Kd is dissociation constant, n is the number 

of binding sites, Pt is the total DREAM protein concentration, Lt is total PS1 peptide 

concentration, and F is the fluorescence anisotropy scaling factor.  

For PS1 peptide displacement studies, the NS5806 drug compound (Calloe et al., 

2009) was titrated into Ca2+DREAM and PS1-HL9 complex. The dissociation constant of 

NS5806 for Ca2+DREAM was recovered using a single binding site displacement equation 

3.64 (Epps et al., 1995; Chuang et al., 2008; Gonzalez et al., 2014). 
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In this expression, ΔAnisotropy is change in fluorescence steady-state anisotropy. 

Parameters α and β are proportionality constants, Ki is the dissociation constant of PS1-

HL9 and Ca2+DREAM (measured separately, mentioned in previous sections), It is the total 

concentration of NS5806 and Kd is its dissociation constant. 

3.5.3 Fluorescence time-resolved anisotropy measurements 

Anisotropy decay was measured using a 470 nm laser diode, and the emission was 

collected through 500-700 nm band pass filters (Andover corp. Salem, NH). Anisotropy 

data were analyzed using a double-exponential decay model (VINCI software, ISS Inc., 

Champaign, IL) described by equation 3.44 or 3.45 in section 3.2.5.3, assuming a spherical 

shape of DREAM-peptide complex (Jameson, 2014).  

3.5.4 Fluorescence stop-flow kinetics 

The kinetics of DREAM binding to HL9 were measured with a ChronosFD 

spectrofluorometer coupled to a SFA-20 rapid stopped-flow apparatus (TgK Scientific, 

Bradford-on-Avon, UK). The cell was illuminated with 295 nm excitation and fluorescence 

emission at 520 nm due to fluorescence resonance energy transfer (FRET) from the single 

tryptophan residue (W169) in DREAM (donor) to FITC (acceptor) labeled on HL9 was 

monitored. In control experiments, the buffer (20 mM Tris-HCl, pH 7.4, 1 mM CaCl2, and 

1 mM DTT) was used instead of Ca2+DREAM protein. Kinetics data were analyzed using 

single and double exponential decay models (Origin 8 software, OriginLab Corp. 

Northampton, MA). 

3.5.5 Computational protein-protein docking study 

The NMR structures of Ca2+ bound DREAM (PDB: 2JUL, molecule 1) and PS1-

CTF (PDB: 2KR6, molecule 1) were used as receptor and ligand inputs, respectively. The 
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inter-protein complex of DREAM and PS1-CTF was performed on the ClusPro 2.0 protein-

protein docking server (Kozakov et al., 2006; Kozakov et al. 2013; Comeau et al, 2004; 

Comeau et al., 2004). In the first step, ClusPro 2.0 program uses PIPER, a fast Fourier 

transform based docking program, to calculate a pairwise interaction potential as part of its 

scoring as shown in equation 3.65. 

pairelecrepattr EwEwEwEE 321        (3.65) 

where  Eattr and Erep are the attractive and repulsive forces contributing to the van der Waals 

interaction energy (Evdw), whereas Eelec and Epair are electrostatic and desolvation energies, 

respectively. The coefficients w1, w2, and w3 are the weights of the corresponding energetic 

terms (Kozakov et al., 2006; Kozakov et al., 2013). After performing PIPER docking, the 

best 1,000 energy structures were clustered for ranging by using pairwise root mean square 

deviation (RMSD) as the distance measured (Comeau et al., 2004). The biophysical 

meaning of clustering is to isolate energy basins of highly populated energy areas (Kozakov 

et al., 2013). Finally, the output clusters are displayed in scoring schemes namely balanced, 

electrostatic-favored, hydrophobic favored, and van der Waals and electrostatics 

complexes. There are several available protein-protein docking programs such as ZDOCK 

(Pierce et al., 2014), RosettaDock (Lyskov et al., 2008), and HADDOCK (de Vries et al., 

2010). However, ClusPro 2.0 was chosen for performing Ca2+DREAM and PS1 docking 

as it uses the PIPER algorithm to rapidly evaluate protein-protein interactions. In addition, 

since experimental results showed that interactions between Ca2+DREAM and PS1-HL9 

are driven by not only electrostatic interactions but also hydrophobic interactions, various 

post-docking processing methods available in ClusPro 2.0 score the resultant complexes of 

Ca2+DREAM-PS1-CTF in a manner that can be comparable with experimental data. The 
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predicted Ca2+DREAM-PS1-CTF structure was analyzed using the YASARA Structure 

program version 13.1.25 (Krieger et al., 2002) and the academic version of PyMOL 1.7.4 

software (Schrodinger, 2015). 

3.6 Methods used in chapter 7 

3.6.1 Tryptophan steady-state emission measurements 

The fluorescence emission of tryptophan (W169) in DREAM-EF hand mutants 

D150N, E186Q, and E234Q was measured as described for DREAM wild-type in chapter 

4 (section 3.3.1). 

3.6.2 Tryptophan fluorescence lifetime measurements  

The frequency-domain fluorescence lifetime measurements of W169 in DREAM-

EF hand mutants D150N, E186Q, and E234Q and fluorescence data analysis were carried 

out as described for DREAM wild-type in chapter 4 (section 3.3.3).  

3.6.3 Fluorescence anisotropy decay measurements 

Oligomeric states of the DREAM-DNA complex were resolved by fluorescence 

anisotropy decay measurements. Ethidium bromide was (EtBr) used as a fluorescence 

probe since its fluorescence emission and lifetime significantly increase in the presence of 

double stranded DNA (Garbett et al., 2004; Lakowicz, 2006).  Time-resolved anisotropy 

was measured using a 470 nm laser diode and the emission was collected through 500 -700 

nm band pass filters (Andover corp. Salem, NH). Anisotropy decay data were analyzed 

using equations 3.44 and 3.45 as described previously in section 3.2.5.3 for a mixed system 

of free DNA and the DNA bound DREAM complex, assuming a spherical shape for both 

systems. (VINCI software, ISS Inc., Champaign, IL) (Jameson, 2014).  
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3.6.4 Circular dichroism measurements of DREAM mutants 

Circular dichroism (CD) measurements of DREAM EF-hand mutants were 

performed with a Jasco J-815 CD spectropolarimeter. All CD spectra of DREAM mutants 

were measured at 40 μM protein concentration through a 1 mm path in 20 mM Tris-HCl 

buffer, pH 7.4, 1 mM DTT, and 10 mM LDAO. All measurements were conducted at 16 

°C, and each CD spectrum represents an average of 5 scans. 

3.6.5 Thermodynamics of DREAM and DNA complex 

Isothermal titration calorimetry (ITC) was employed to measure the 

thermodynamic interactions between DREAM/DREAM mutants and DNA. These 

measurements were performed using a VP-ITC MicroCalorimeter (MicroCal LLC, 

Northampton MA). The ITC buffer (20 mM Tris-HCl, 0.5 mM DTT, and 10 mM LDAO, 

pH 7.4) was prepared using decalcified water filtered through a Chelex-100 resin (Bio-

Rad) column.  Purified DREAM and DREAM EF-hand mutants were dialyzed overnight 

against the ITC buffer, and the DNA sample was prepared in the ITC buffer (20 mM Tris-

HCl, 0.5 mM DTT, and 10 mM LDAO, pH 7.4) in order to minimize artifacts due to 

mismatched buffers. The cell sample and injection syringe were extensively cleaned with 

decalcified water and then with the ITC buffer. The reaction cell was filled with 15 µM 

dsDNA solution (1.40 mL), and the injection syringe was loaded with 500-550 μM 

DREAM protein solution (297 µL). For measurements of Mg2+DREAM and Ca2+DREAM 

binding to DNA,  both DREAM and DNA samples were prepared in the presence of 100 

μM Mg2+ and 1 mM Ca2+, respectively. Twenty nine aliquots (with injection volume set to 

4 µL for the first injection, and 10 µL for the following injections) of DREAM were titrated 

into DNA solution with 2 min intervals between injections. The temperature was kept at 
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25 oC and the stirring speed was set at 307 rpm. Parallel experiments were carried out for 

titration of DREAM into the dialysate buffer as a control for the heats of dilution. ITC data 

were analyzed using the Origin 7 software package provided by the manufacturer 

(OriginLab Corp. Northampton, MA). The first titration point from each ITC experiment 

was deleted when fitting to binding models due to possible diffusive mixing of protein near 

the tip of the syringe. The data obtained for DREAM and DREAM EF-hand mutants 

binding to DNA were analyzed using a two binding sites model, except for the analysis of 

Ca2+DREAM binding to DNA which was fitted using a sequential binding sites model 

(Jelesarov and Bosshard, 1999; Martinez et al., 2013).  

3.6.6 Molecular dynamics simulations and modeling of DREAM and 

DREAM mutants 

Since 3D structures of both Apo and Mg2+DREAM are not available, the MD 

simulation structure of ApoDREAM was constructed from the NMR structure of 

Ca2+DREAM (PDB: 2JUL, molecule #1 (Lusin et al., 2008)) by deleting the two Ca2+ 

atoms. In addition, the structure of Mg2+DREAM was also constructed from the NMR 

structure of Ca2+DREAM (PDB: 2JUL, molecule #1  (Lusin et al., 2008)) with the Mg2+ 

binding coordination at EF-hand 2 (residues 139 - 150) being replaced by the Mg2+ binding 

coordination (residues 116 - 127) from the NMR structure of Mg2+ bound calcium-and-

integrin-binding protein 1 (Mg2+CIB1, PDB entry: 2L4I) (Huang et al., 2011). The other 

mismatched residues within the Mg2+ binding loop of Mg2+CIB1 were also replaced with 

the corresponding residues from the Mg2+ binding loop of DREAM. The coordinative 

binding of Mg2+ in the structure of Mg2+CIB1 was chosen because the critical residues at 

positions 1, 3, 5, and 12 in the EF-hand Mg2+ binding loop of CIB1 (DxDxDxxxxxxD; x 
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is any amino acid) are close in homology to that of DREAM EF-hand 2 (DxDxNxxxxxxD; 

x is any amino acid). In addition, I observed that the geometry of the Mg2+ binding loop in 

CIB1 is very close to that of DREAM protein. Moreover, the structures of DREAM EF-

hand mutants (D150  N, E186  Q, and E234  Q) were constructed using the plugin 

mutagenesis feature in the CHARMM-GUI web server (Jo et al., 2008) using the NMR 

structure of Ca2+DREAM (PDB: 2JUL, molecule #1  (Lusin et al., 2008)) as the initial 

structure. The CHARMM-GUI web server was utilized to prepare the initial coordination 

files for MD simulations (Jo et al., 2008).  The DREAM models were solvated using TIP3P 

waters, in a rectangular box with 10 Å distance between edges of a biomolecule and those 

of the solvation box. The system was neutralized with 0.15 M NaCl (59 Na+ ions and 39 

Cl- ions), and the initial configuration of ions was determined through short Monte Carlo 

(MC) simulation (2000 steps) using a primitive model (Jo et al., 2008). The simulations 

were performed under periodic boundary conditions (PBC) and with the Particle-Mesh 

Ewald (PME) method (van Dijk et al., 2006) with a 12 Å nonbonding cutoff (Jo et al., 

2008). Energy minimization (50000 steps) was performed using the SHAKE algorithm, 

while the system was set at a temperature of 303.15 K and a 2 fs time step in NVT (constant 

volume and temperature) (Jo et al., 2008). The production run was 100 ns using NPT 

(constant pressure and temperature) dynamics with 2 fs time steps (Jo et al., 2008). All the 

bond lengths involving hydrogen atoms were fixed for both energy minimization and 

production runs. Simulations were carried out using the NAMD (Phillips et al., 2005) 

simulation software and the CHARMM27 force field with CMAP corrections (Mackerell, 

2004; Bjelkmar et al., 2010). All simulations of ApoDREAM, ApoDREAM-D150N, 

Mg2+DREAM, Ca2+DREAM, Ca2+DREAM-E186Q, and Ca2+DREAM-E234Q were 
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performed on an Intel i7-4770 and GTX-TITAN black super-clocked (1072 MHz) system 

using NAMD 2.11 (NVIDIA CUDA acceleration) (Phillips et al., 2005). Trajectory files 

were saved every 20 ps. The frames of all simulations of Apo and Ca2+DREAM were then 

compared with that obtained for Apo and Ca2+DREAM from our previous studies in 

chapter 4 (Pham et al., 2015) to verify accuracy of the simulations.  

3.6.7 Analysis of MD simulations 

Calculations of root mean square deviations (RMSD) and root mean squared 

fluctuations (RMSF) of DREAM protein were performed using VMD 1.9.2 software 

(Humphrey et al., 1996). The RMSD was calculated for the alpha carbons (Cα) of the whole 

protein (residues 76 to 256) using the equilibrated structure of the corresponding DREAM 

as the frame of reference. The RMSF were calculated using an average trajectory 

simulation of all alpha carbons of DREAM protein between 20 and 100 ns simulation time 

(to skip the relaxation period at the beginning of the simulation time (0 - 20 ns)). 

Conformational dynamics of DREAM and DREAM mutants were analyzed using dynamic 

network analysis of 100 ns simulation trajectory. The dynamical network analysis was 

performed using the VMD plugin Network Setup feature (Sethi et al., 2009). In dynamic 

network analysis, each node represents the alpha carbon of an amino acid, and the edges 

connecting non-neighboring alpha carbons represent atoms which interacted over 75 % of 

the time within 4.5 Å. The thickness of the edges represents the degree of correlation 

between the nodes. These networks were then classified into communities of dynamically 

coupled residues by using the Girvan-Newman algorithm (Girvan and Newman, 2002). 

Within a given community, the amino acids are more correlated to each other than to the 

amino acids in the neighboring communities. The connections between communities 
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represent dynamic hubs, which reflects the dynamic fluctuations from the most propagated 

community to the rest. 

3.6.8 Computational docking of DREAM and DNA interaction 

The initial structure of ApoDREAM protein was obtained from 100 ns MD 

simulation of ApoDREAM. The standard B-DNA conformation of the DRE sequence (5’-

GAAGCCGGAGTCAAGGAGGCCCCTG-3’) of prodynorphin gene was built using a 

3D-DART (3DNA-Driven DNA analysis and rebuilding tools) modelling server (van Dijk 

and Bonvin, 2009).  There are several available programs including 3D-DART that convert 

the sequence of DNA into a 3D structure using regular nucleotide building blocks (Dixit 

and  Beveridge, 2006; Lu and Olson, 2003; van Dijk and Bonvin, 2009). The high accuracy 

of these programs was discussed elsewhere (van Dijk and Bonvin, 2009). In this study, 3D-

DART program was chosen because the server not only returns the 3D-structural models 

of the double stranded DNA, but it also allows us to generate the DNA restraint file for 

DREAM and DNA docking input used in the HADDOCK (High Ambiguity-Driven 

DOCKing) program (van Dijk and Bonvin 2009; de Vries et al., 2010; Wassenaar et al., 

2012). The ambiguous interaction restraints (AIR), including the active residues and 

nucleotides in DREAM and DNA located at the predicted interaction interface, were 

determined based on experimental results previously published (Carrion et al. 1999; Ledo 

et al., 2000; Lusin et al., 2008). The HADDOCK 2.2 web server was used to build models 

for ApoDREAM-DNA complexes from the unbound structures of ApoDREAM and 

double stranded DNA (Wassenaar et al., 2012; de Vries et al., 2010). The HADDOCK 

docking program was run with default settings. Residues K87, K90, K91, R98, K101, 

R160, and K166 in the ApoDREAM protein and nucleotides G10, T11, C12, A13, T38, 
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G39, A40, and C41 in the double stranded DNA were designated as active restraints to 

drive the docking. Passive residues and nucleotides, defined as the solvent accessible 

neighbors of active residues, were automatically determined by the HADDOCK program 

(Wassenaar et al., 2012; de Vries et al., 2010).  Initially, 1000 complexes of the 

ApoDREAM and DNA were generated by performing rigid-body docking and the lowest 

rigid body score (R.B. score), calculated using equation 3.66, was selected (van Dijk and 

Bonvin, 2009). 

AIRDsolvBSAvdWElecscoreBR 0.1*0.1*05.00.1*0.1..    (3.66) 

In this expression, the parameters Elec, vdW, BSA, Dsolv, and AIR are intermolecular 

electrostatic, van der Waals, buried surface are, desolvation, and AIR energies, 

respectively. Following rigid-body docking, 200 complexes with best rigid-body scores 

were selected for further refinement using the semi-flexible docking, in which side chains 

and the backbone of the protein at the predicted interface and the entire DNA were allowed 

to move (van Dijk and  Bonvin 2009). Finally, water refinement of the ApoDREAM-DNA 

complex was performed with 100 MD heating steps at 100, 200, and 300 K followed by 

sampling steps at 300 K and 500 MD cooling steps at 300, 200, and 100 K in a water box 

(van Dijk and Bonvin, 2009). The final HADDOCK score (H.D. score) was recalculated 

using equation 3.67 (van Dijk and Bonvin, 2009). 

AIRDsolvvdWElcscoreDH *0.1*0.1*0.1*0.1..    (3.67) 

The parameters Elc, vdW, Dsolv, and AIR were defined previously in equation 3.66. 
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3.7 Materials and methods used in chapter 8 

3.7.1 Materials 

Chemicals such as urea, Tris buffer and proteins including horse heart myoglobin 

(Mb) and microperoxidase 11 (MP-11) were purchased from Sigma-Aldrich Chemical Co 

(St. Louis, MO). Bis (2-ethylhexyl) sulfosuccinate sodium salt (AOT) and sodium 

dithionite were purchased from Fluka Chemical Corp (Milwaukee, WI). ACS grade 

heptane (C7H16) was purchased from Fisher Scientific (New Jersey 07410). Argon (Ar) and 

carbon monoxide (CO) gases are in pressure bottles and purchased at purities at 99.97%.  

3.7.2 Sample preparation 

A solution of 0.1 M AOT reverse micelles was prepared by adding AOT to the 

mixture of heptane and varying amounts of water. The AOT mixture was stirred until the 

solution became transparent. The AOT sample was placed into a 1 x 1 cm quartz cuvette, 

sealed with a rubber septum cap and purged with Ar gas for 20 min. Next, the desired 

volume of a stock solution of horse heart Fe2+Mb or Fe2+MP-11 in 100 mM Tris buffer, pH 

7.0, was anaerobically injected into the AOT reverse micelle solution to achieve a final 

value of wo = 40 in a total solution volume of 3 mL.  The sample was then flushed with CO 

for at least 5 min and allowed to equilibrate for an additional 20 min.  Complete formation 

of CO-Mb or CO-MP-11 was optically determined.  

3.7.3 Absorption measurements  

The UV/Vis absorption spectra were measured using a spectrophotometer 

(Varian/Carry 400, Varian Instruments, Walnut Creek, CA) from 350 to 700 nm using 1 

nm steps, 0.5 s/step and an auto adjusted baseline. The UV/Vis spectra provide 
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verifications for the formation of the deoxy form (ferrous heme iron) and CO ligated 

formation by visual inspection absorbance at the Soret band. 

3.7.4 Transient absorption 

 The ligand (CO) dynamic rebinding kinetics was studied by employing a home-

built transient absorption instrument described in detail in (Miksovska et al., 2006, Larsen 

et al., 2011). Briefly, the photodissociation was trigged by a 532 nm, 7 ns width, and 1 Hz 

repetition pulse initiated by a double Nd:YAG laser pulse (Minilite II, Continuum). The 

probe beam generated from the 150-W Xe arc lamp (Thermo-Oriel) was passed through a 

monochromator, and guided through the sample housed in a 1.0 cm variable temperature 

controlled cell holder (Quantum Northwest). The emerging light was focused on the slit of 

the second monochromator (Micro HR, Jobin Yvon) and detected by a photomultiplier tube 

(PMT) connected to a high-gain amplifier. The photocurrent was converted into voltage 

and digitized by digital oscilloscope (Tektronix). Data were analyzed using OriginPro 8.0 

software (OriginLab Corpration). 

3.7.5 Photoacoustic calorimetry  

The experimental setup has been described previously (Larsen et al. 2011). Briefly, 

a 7 ns pulse from a frequency doubled Nd:YAG laser (532 nm, Continuum Minilite II 

Nd:YAG laser) is passed through a pin-hole and directed onto the face of a temperature 

regulated cell holder (Quantum Northwest, temperature controled to within 0.01oC) 

adapted for a 2MHz PZT piezoelectric transducer which is coupled to the face of the quartz 

sample cell via a thin layer of vacuum grease. The signal is amplified using a Panametrics 

model 5978 ultrasonic preamplifier and digitized by a Picoscope 3200 Oscilloscope 

running on a desktop PC. Deconvolution of the acoustic waves is performed with software 
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developed by Dr. Randy Larsen in the department of Chemistry, University of South 

Florida (LarsenWare2009V1). Acoustic simulation software is also available. The 

LarsenWare2009V1 can deconvolute both single exponential decay models as well as 

stretched exponential decays. 
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4. CALCIUM AND MAGNESIUM MODULATE CONFORMATIONAL 

DYNAMICS AND STABILITY OF DOWNSTREAM REGULATORY ELEMENT 

ANTAGONIST MODULATOR 

(The work described in this chapter was published in K., Pham, G., Dhulipala, W. G., 

Gonzalez, B. S., Gerstman, C., Regmi, P.P., Chapagain, J., Miksovska (2015), Protein 

Sci.,24(5):741-751) 

4.1 Background and significance 

  

The EF-hand motif Ca2+ binding proteins are involved in the regulation of 

numerous intracellular processes ranging from gene expression, cell division, cell growth, 

as well as apoptosis. All members of this family carry at least one pair of EF-hand calcium 

binding sites that bind calcium with equilibrium affinity constants ranging from 104 M in 

the case of S100 proteins, to 108 M as found for parvalbumin (Gifford et al., 2007). The 

protein affinity for Ca2+ is fine-tuned by the amino acid sequence of the EF-hand binding 

site, overall structure of the Ca2+ sensor, and interactions with other intracellular partners. 

Despite relatively high sequence similarities, EF-hand proteins exhibit large structural 

diversity in the Apo and Ca2+ bound forms that is essential for specific interactions with 

intracellular partners and functional diversity (Bhattacharya et al., 2004).  

Depending on the amino acid sequence, structural and functional properties, and 

the organization of the N- and C- terminal domains, the intracellular EF-hand proteins can 

be divided into three groups. The members of the first group that includes calmodulin and 

troponin C have two independent domains connected by a flexible -helical linker. 

Calcium association leads to a substantial reorganization of the C- and N-terminal domains 

and exposure of hydrophobic patches on the protein surface. In calmodulin, the highly 
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dynamic protein structure enables specific interactions with a large number of intracellular 

targets (Bhattacharya et al., 2004). The second group of EF-hand proteins includes dimeric 

S100 proteins. Unlike the calmodulin family, structural changes linked to Ca2+ binding to 

EF-hands in S100 proteins are relatively modest and result in exposure of a wider and 

flatter hydrophobic crevice on the protein surface that facilitates binding to intracellular 

partners (Chazin, 2011).   

The third group of EF-hand proteins consists of neuronal calcium sensors (NCS) 

that are predominantly expressed in neuronal tissue where they regulate numerous 

intracellular processes including vision transduction, potassium voltage channel kinetics, 

and DNA expression (Burgoyne and Weiss, 2001; Burgoyne, 2007; Ames and Lim, 2012). 

All members of NCS family carry four EF-hand binding sites, although only two or three 

EF-hands are active and bind bivalent ions with a high affinity (Ames and Lim, 2012). 

Some members of the NCS family undergo post-translational modifications such as fatty 

acid esterification at the N-terminus. The presence of the fatty acid modulates the range of 

Ca2+ triggered conformational switching and facilitates protein association to the 

membrane (Haynes and Burgoyne, 2008). The C- and N-terminal domains in NCS are each 

organized in a globular arrangement and are connected by a short U-shaped linker with a 

solvent-exposed hydrophobic groove stretching between the C- and N-terminal domains 

(Ames and Lim, 2012).  

The DREAM protein, also known as KChIP3 or calsenilin, belongs to the subfamily 

of NCS potassium channel interacting proteins (KChIP), which includes three additional 

members (KChIP1, KChIP2, and KChIP4) (An et al., 2000). All members share a 

conserved region of 180 residues along with highly variable N-termini of 35 to 100 residues 
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(Schwenk et al., 2008). In DREAM, EF-hand 1 has no function due to the conserved 

residues C104 and P105 on the first Ca2+ binding loop which prevent this site from binding 

to Ca2+ and/or Mg2+. On the other hand, the canonical EF-hand 3 and EF-hand 4 

functionally bind Ca2+ with a high affinity (Kd ~ 1 - 10 µM) and EF-hand 2 structurally 

binds Mg2+ (Kd ~ 14 µM) (Osawa et al., 2005). KChIP1, DREAM, and KChIP4 are 

predominantly expressed in the brain where they regulate gating properties of Kv4.3 

channels and the surface expression of the Kv4.3 complex (Jerng et al., 2004; Zhou et al., 

2004). Unlike other members of the KChIP subfamily, DREAM interacts with numerous 

intracellular partners including calmodulin (Ramachandran et al., 2012), DNA  (Carrion et 

al., 1999), presenilin (Buxbaum et al., 1998; Jo et al., 2003; Jo et al., 2005; Buxbaum, 

2004), and CREB/CREM transcription  factors (Ledo et al., 2000; Ledo et al., 2002).  

The role of Ca2+ in regulating DREAM functions and the structural basis of 

DREAM interactions with multiple partners are not fully understood. Although the solution 

structure of Ca2+ bound DREAM (residues 76 - 256) is known (Lusin et al., 2008) as well 

as  the solution structure of the C-terminal domain (residues 161 - 256) of Ca2+ bound 

DREAM (Yu et al., 2007), it remains unclear how the Ca2+/Mg2+ association to the EF-

hands alters the structural properties of DREAM. Considering the large number of 

DREAM interacting proteins, understanding the structural diversity could provide 

important insight into the relationship between the sequence, structure, and target diversity 

of DREAM and NCS proteins in general. Since the unique tryptophan (W169) positions 

between the N- and C-terminal hydrophobic clusters in DREAM (Figure 4.1) is ideal for 

monitoring conformational response to changes in Ca2+/Mg2+concentration, I have 

combined time-resolved fluorescence, CD spectroscopy, and molecular dynamics 
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simulations to probe the dynamics and structural diversity of DREAM under various 

conditions. The heterogeneous W169 emission decay indicates that DREAM adopts 

multiple conformations in the apo and Ca2+ bound forms. Ca2+ binding to EF-hands is 

associated with an increase in protein rigidity and a decrease of W169 solvent exposure. 

DREAM unfolds through a transition state that is populated at a GuHCl concentration 

around 4.5 – 5.0 M. The transition state is stabilized by Ca2+ binding to EF-hands 3 and 4 

in DREAM. The presence of Mg2+ stabilizes the native structure of Ca2+ bound DREAM 

with respect to the transition state. 

 

 

 

Figure 4.1: The aromatic clusters identified in DREAM C-terminus (grey solid surface) 

and N-terminus (blue solid surface). EF-hand 1 in DREAM is shown in cyan, EF-hand 2 

in green, EF-hand 3 in yellow, EF-hand 4 in orange, W169 in wireframe surface, and 

calcium ions shown as yellow spheres 
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4.2. Results 

4.2.1 Steady-state emission spectra 

The emission spectra of ApoDREAM and Mg2+DREAM are almost identical, and 

are broad with a maximum at 340 nm (Figure 4.2). Upon Ca2+ association to DREAM or 

Mg2+DREAM, I observed that the two spectra change in the same manner with a decrease 

in the emission intensity (-18% relative to that of Apo or Mg2+DREAM) along with a 

concomitant hypsochromic shift of 5 nm. Analogous Ca2+ triggered bathochromic shifts 

were reported previously, although the emission spectra presented here are approximately 

5 nm blue shifted compared to the published results (Osawa et al., 2001). The protein was 

purified and studied in the presence of LDAO since the previous study had shown that the 

addition of LDAO reduces protein aggregation and stabilizes ApoDREAM and 

Ca2+DREAM in its tetrameric and dimeric form, respectively (Osawa et al., 2001). I have 

observed that the presence of LDAO strongly affects the emission spectra of Ca2+ free and 

Ca2+ bound DREAM. For example, DREAM samples dialyzed against 20 mM Tris buffer, 

1 mM DTT, and 10 mM LDAO at pH 7.4 for 48 hours provided emission spectra with a 

max  of 340 nm and 335 nm for Apo and Ca2+DREAM, respectively, which are comparable 

to those reported by Osawa et al. (Osawa et al. 2001). On the other hand, emission spectra 

of DREAM samples prepared in the absence of LDAO are blue shifted with an emission 

maximum at ~ 330 nm for Ca2+DREAM and 335 nm for ApoDREAM suggesting that 

LDAO binding to DREAM increases the solvent exposure of the W169 side-chain. The 

fluorescence quantum yield was determined to be 0.105 ± 0.009 for Apo and Mg2+DREAM 

and 0.090 ± 0.011 in Ca2+ and Ca2+Mg2+DREAM. The bathochromic shift of the W169 

emission maximum suggest that Ca2+ association to DREAM leads to a conformational 
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transition upon which the W169 residue moves towards the hydrophobic core of the 

protein. 

 
 

Figure 4.2: Fluorescence emission spectra of Apo, Mg2+, Ca2+, and Ca2+Mg2+DREAM 

upon excitation at 295 nm. Note that the emission spectrum of ApoDREAM and 

Mg2+DREAM are almost identical, and likewise for Ca2+DREAM and Ca2+Mg2+DREAM. 

 

4.2.2 Fluorescence quenching 

Acrylamide, a polar, uncharged water-soluble molecule, was used in quenching 

studies to further probe the solvent accessibility of W169 in DREAM. The plot of the ratio 

of the DREAM fluorescence emission intensities in the absence and presence of the 

acrylamide quencher exhibits a linear dependence (Figure 4.3).  

The Stern-Volmer constants were determined using equation 3.22 in section 

3.2.5.2.4.1. The determined Ksv constants are  2.80 ± 0.01 M-1 for ApoDREAM, 2.03 ± 

0.10 M-1 for Ca2+DREAM, and 1.78 ± 0.01 M-1 for Ca2+Mg2+DREAM, confirming that the 

W169 side chain is less solvent accessible in the structure of Ca2+ bound DREAM. In the 

case of collisional quenching, the bimolecular quenching rate constant, kq = KSV/<>, 
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where <> is the lifetime in the absence of the quencher, provides a better estimate of the 

quenching efficiency.  

 
 

Figure 4.3: Stern-Volmer plot for acrylamide quenching of DREAM in the 

absence/presence of Ca2+ and Mg2+.  Error bar represents standard deviations of three 

independent measurements. 

 

Using the average value for the fluorescence lifetime (Table 4.2), the kq value was 

determined to be 6.2 x 108 M-1s-1 for ApoDREAM, 4.2 x 108 M-1s-1 for Ca2+DREAM, and 

3.7 x 108 M-1s-1 for Ca2+Mg2+DREAM (Table 4.1). Interestingly, Mg2+ association to 

DREAM results in a small but reproducible decrease in the Stern-Volmer constant and the 

bimolecular quenching constant, Ksv =  2.29 ± 0.06 M-1 and kq = 5.0 x 108 M-1s-1 (Table 

4.1),  indicating that Mg2+ binding to EF-hand 2 causes a minor structural reorganization 

that impacts the W169 solvent accessibility. These quenching constants are listed in Table 

4.1. Previously, I have shown that Mg2+ binding to DREAM leads to small changes in the 

fluorescence properties of 1,8-ANS DREAM complexes (Gonzalez et al., 2014), 

supporting the role of Mg2+ in stabilizing the tertiary structure of the DREAM protein.  
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Table 4.1: Stern-Volmer constant (Ksv) and bimolecular quenching constant (kq) of 

DREAM protein 

 

 

 

 

 

 

 

 

 

4.2.3. Fluorescence lifetime 

Since the tryptophan fluorescence lifetime is highly sensitive to small variations in 

the fluorophore environment, probing the lifetime of the single W169 residue in DREAM 

provides further insight into Mg2+/Ca2+ induced conformational changes, including 

alteration of local dynamics. The W169 lifetime was determined using phase modulation 

fluorescence spectroscopy. The phase shift and modulation ratio data were monitored in 

the frequency range from 5 MHz to 250 MHz and are presented in Figure 4.4.  

Fluorescence lifetime data were analyzed using a combination of discrete 

exponentials and various distribution models (Gaussian, Lorentzian or uniform). The best 

fits based on residuals and 2 values were obtained with a model composed of a discrete 

single exponential decay component and a continuous Gaussian distribution (Table 4.2). 

The discrete component exhibits a calcium independent lifetime of ~ 7.5 ns whereas the 

Gaussian distribution is centered at 3.5 ns and 1.7 ns for Ca2+ free and Ca2+ bound DREAM, 

respectively. The width of the distribution is w1 = 1.8 ns and 2.0 ns in the ApoDREAM 

and Mg2+DREAM, respectively, and narrows upon Ca2+ binding to w1 = 0.8 ns and 0.9 ns 

in Ca2+DREAM and Ca2+Mg2+DREAM, respectively (Figure 4.5). In addition, the 

Protein Ksv (M
-1) kq (x108 M-1s-1) 

ApoDREAM 2.80 6.2 

Mg2+DREAM 2.29 5.0 

Ca2+DREAM 2.03 4.2 

Ca2+Mg2+DREAM 1.78 3.7 
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fractional contribution of the 7.5 ns component is ~ 0.12 in the Apo and Mg2+ DREAM 

and increases to 0.20 in Ca2+ bound forms of DREAM. 

 
 

Figure 4.4: Frequency-domain intensity decay of 40 µM ApoDREAM (open squares), 

Mg2+DREAM (open circles), Ca2+DREAM (closed squares), and Mg2+Ca2+DREAM 

(closed circles). The solid lines represent the data fitting using a Gaussian distribution 

model and single exponential decay model. Note that the experimental data for 

ApoDREAM and Mg2+DREAM are nearly identical, and likewise for the data for 

Ca2+DREAM and Ca2+Mg2+DREAM. 

 

  
 

Figure 4.5: Fluorescence lifetime rotational distribution of Mg2+DREAM and 

Ca2+Mg2+DREAM using a continuous Gaussian distribution and a discrete single 

exponential decay component. To simplify, the lifetime rotational distribution curves of 

ApoDREAM and Ca2+DREAM are not shown. 
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Table 4.2: Emission decay parameters for DREAM using a continuous Gaussian 

distribution and a discrete component 

 

 

4.2.4. CD measurements  

The far-UV CD spectra of DREAM show the characteristic of alpha-helical 

proteins, with negative peaks at 222 nm and 208 nm (Figure 4.6). The magnitudes of the 

CD signals of ApoDREAM and Mg2+DREAM are identical. However, when Ca2+ is bound 

to Apo and Mg2+DREAM, magnitude of CD signal becomes more negative.  

These results suggest that binding of Ca2+ to DREAM increases the alpha-helical 

content of the protein. Analysis of the far-UV CD spectra of DREAM using K2D protein 

secondary prediction software shows that DREAM protein increases about 16% of its 

alpha-helical content in the Ca2+ bound form relative to that of Apo and Mg2+ forms. 

Protein 
1 

(ns) 

w1 

(ns) 
f1 1 

2 

(ns) 
f2 α2 

<> 

(ns) 
2 

ApoDREAM 3.6 2.0 0.77 0.88 7.5 0.23 0.12 4.5 1.7 

Mg2+DREAM 3.4 1.8 0.75 0.87 7.5 0.25 0.13 4.4 2.0 

Ca2+DREAM 1.8 0.8 0.44 0.78 7.4 0.56 0.22 4.8 1.7 

Ca2+Mg2+DREAM 1.8 0.9 0.48 0.80 7.6 0.52 0.20 4.8 1.0 

1 is the mean decay time of the Gaussian distribution with a width of distribution w1. 

2 is the lifetime of the discrete single exponential term. The average lifetime <> was 

calculated using equations 3.54 and 3.55 in Method section 3.2.10.3. Parameters α1 and 

α2 are normalized pre-exponential decay and f1 and f2 are exponential decay fractions. 
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Figure 4.6: CD spectra of Apo, Mg2+, Ca2+, and Ca2+Mg2+ DREAM in the far-UV region. 

The concentration of the protein was 40 μM in 10 mM Tris buffer (pH 7.4), 1 mM DTT, 

and 10 mM LDAO. Spectra were corrected for the baseline of the buffer. 

 

4.2.5 DREAM stability 

The impact of Ca2+/Mg2+ binding to EF-hands on the protein stability was 

characterized by monitoring the CD signal at 220 nm as a function of increasing GuHCl 

concentration as shown in Figure 4.7 (a). The unfolding curves, shown in Figure 4.7 (b), 

clearly indicate the presence of a partially folded intermediate at GuHCl concentrations 

between 4.0 and 5.0 M. The experimental data were analyzed using a three-state model 

according to equation 3.60 in section 3.2.3.4 and the recovered thermodynamic parameters 

(ΔG, m, and Cm) are summarized in Table 4.2. Ca2+ association to DREAM increases the 

stability of the native state compared to the unfolded state by ~ 4 kcal mol-1
, whereas the 

contribution of Mg2+ to DREAM stability is significantly smaller. Interestingly, Ca2+ 

binding to EF-hands increases the stability of the native state with respect to the partially 

unfolded intermediate state by ~ 2 kcal mol-1 in the presence of Mg2+, whereas the stability 
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of the intermediate state with respect to the unfolded state is increased in both Ca2+DREAM 

and Ca2+Mg2+DREAM by ~ 2 kcal mol-1. The shallow folding transition between the native 

and partially unfolded intermediate state points to a low energy barrier between the native 

and intermediate state for Apo, Mg2+, and Ca2+DREAM. The native state is more strongly 

stabilized with respect to the intermediate state in Ca2+Mg2+DREAM, as evident from the 

steep transition between the folded and partially folded intermediate state.  

 

 

 

Figure 4.7: (a): CD spectra of 40 µM ApoDREAM in the presence of 0, 1, 2, 3, 4, 5, 6, 7, 

and 7.4 M GuHCl. (b): Representative equilibrium unfolding traces of DREAM as 

determined by the CD signal change at 220 nm. Solid black lines are fitting curves of 

experimental data using equation 3.60 in section 3.2.10.4. The thermodynamic parameters 

are reported in Table 4.3.
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Table 4.3:  Thermodynamic parameters for GuHCl induced denaturation of DREAM in the absence/presence of Ca2+ and Mg2+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein 

GN I  

kcal mol-1
 

mNI 

kcal M-1 mol-1 

CNI 

M 

GIU 

kcal mol-1 

mIU 

kcal M-1 mol-1 

CIU 

M 

GNU 

kcal mol-1 

ApoDREAM 1.6  0.1 0.8  0.1 2.0 7.7  0.8 1.3  0.1 5.9 9.3  0.8 

Mg2+DREAM 1.7  0.2 0.8  0.1 2.1 8.4  0.9 1.4  0.2 6.0 10.1  0.9 

Ca2+DREAM 1.6  0.3 0.6  0.1 2.0 11.3  0.1 1.7  0.1 6.5 12.9  0.3 

Ca2+Mg2+DREAM 3.8  0.4 1.2  0.2 3.2 10.5  1.2 1.6  0.2 6.5 14.3 ± 1.3 

The thermodynamic parameters were calculated using equation 3.60 in section 3.2.10.4 where N, I, and U correspond to 

the native state, transition state, and unfolded state, respectively. ΔG is the standard free energy for the transition, m is the 

dependence of the free energy on the denaturant concentration, and CNI and CNU represent denaturant concentration of 

half unfold from native to transition state and from transition state to unfolded state, respectively. GNU represents the 

overall unfolding free energy from native to unfolded state. Errors were determined from standard deviations of at least 

three independent measurements. 
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4.2.6 Molecular dynamics studies 

Molecular dynamics simulations provide a complementary approach to monitor 

structural transitions in DREAM. Molecular dynamics simulations of Apo and Ca2+ bound 

DREAM were performed in collaboration with Dr. Prem Chapagain (Department of 

Physics, Florida International University). The root mean square fluctuation (RMSF) of C 

atoms can be used to probe fluctuations of individual residues with respect to the average 

structure in the Apo and Ca2+ bound form of DREAM. The RMSF profile for a 40 ns time 

window is shown in Figure 4.8. The overall profiles are similar for Apo and Ca2+ bound 

DREAM. Ca2+ association to EF-hands 3 and 4 reduces the fluctuations of the Ca2+ binding 

loop in EF-hand 3 (residues 174 to 183), and to a smaller extent reduces the fluctuations in 

the binding loop of EF-hand 4 (residues 222 to 231). The flexibility of the long loop 

connecting -helix 7 to -helix 8 (residues 198 to 211) remains high in the Ca2+ bound 

form of the protein, in agreement with NMR results that show increased structural 

deviations in this region (Lusin et al., 2008). Interestingly, the C- terminal loop (residues 

242 to 244) connecting -helix 9 and -helix10 in the C-terminal domain exhibits high 

flexibility in the Ca2+ bound structure. As expected, smaller changes in protein flexibility 

due to Ca2+ binding to DREAM are observed for the N-terminal domain of the protein.  
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Figure 4.8: Root-mean-square fluctuations (RMSF) of the C backbone in ApoDREAM 

and Ca2+DREAM. 

 

The superposition of MD simulation structures of ApoDREAM and Ca2+DREAM 

monomers (Figure 4.9) shows high structural similarity. Detailed inspection of these 

structures reveals that the N-terminal domain containing the non-functional EF-hand 1 and 

EF-hand 2 does not show significant structural differences between the Apo and Ca2+ 

bound forms apart from -helix 2, which moves away from -helix 5 in the Ca2+ bound 

protein. A larger structural reorganization is observed for the C-terminal domain and 

includes repositioning of the -helices within the individual EF-hand binding sites. 

Interestingly, the entering and exiting helices of the EF-hand 3 undergo a minor 

reorientation in the calcium bound state with respect to the Apostate, whereas Ca2+ 

association to EF-hand 4 is accompanied by the clear transition of the -helices from a 

perpendicular to a parallel orientation (Figure 4.9). Also, the C-terminal helix (-helix 10) 

moves away from -helix 6 in the Ca2+ bound protein.  
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Figure 4.9: Top panel: Overlaid MD simulations structures of ApoDREAM (in red) and 

Ca2+ bound DREAM (in yellow). Alpha-helices 1 – 10 in DREAM are labeled by α1 – α10, 

respectively. EF-hand 1 is composed of α2 and α3, EF-hand 2 composed of α4 and α5, EF-

hand 3 composed of α6 and α7, EF-hand 4 composed of α8 and α9. The position of the 

W169 residue is shown with sticks. Bottom panel: Ca2+ triggered reorganization of the EF-

hand 3 (left) and EF-hand 4 (right). 

 

4.3 Discussion 

Previous studies have demonstrated that Ca2+ association to EF-hands 3 and 4 in 

the C-terminal domain of DREAM leads to the dissociation of the ApoDREAM tetramer 

into  dimers,  which decreases DREAM affinity for intracellular partners (Osawa et al., 

2005), as well as DREAM monomer affinity for small hydrophobic molecules (Gonzalez 
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and Miksovska, 2014). However, the detailed molecular mechanism of how Ca2+ 

association to the C-terminal domain EF-hands modulates the conformation of the 

DREAM monomer and the impact of Ca2+/Mg2+ association on DREAM affinity for 

intracellular partners remains elusive. Tryptophan emission has been widely used as a 

sensitive probe of structural transitions in proteins including protein folding, Ca2+/Mg2+ 

association to proteins and protein-protein interactions. In the DREAM structure (residues 

65 to 256), the single W169 residue that is located at the interface between the N- and C-

terminal domains provides a unique tool for characterization of Ca2+/Mg2+ triggered 

conformational dynamics of DREAM. 

4.3.1 Impact of Ca2+ binding on conformational dynamics of DREAM 

Steady-state emission data of W169 indicate that Ca2+ association to EF-hand 3 and 

EF-hand 4 triggers the reorganization of the interface between EF-hand 2 and EF-hand 3 

with the W169 side chain being located in a less polar environment in the Ca2+ bound form. 

This is further supported by the emission quenching and fluorescence lifetime data. The 

smaller bimolecular quenching rate constant observed for Ca2+ and Ca2+Mg2+DREAM is 

consistent with a reduced solvent accessibility to the W169 residue due to tertiary structure 

alterations and/or decreased conformational flexibility in the Ca2+ bound form of DREAM.   

The decrease in the structural flexibility is supported by the W169 lifetime data (Figure 

4.4). The major fraction of the W169 emission decay can be described using a continuous 

Gaussian distribution model centered at 3.5 ns for Apo and Mg2+ DREAM and 1.7 ns for 

Ca2+DREAM and Ca2+Mg2+DREAM. The minor fraction (~ 10 % in ApoDREAM and 20 

% in Mg2+ and/or Ca2+ bound DREAM) exhibits a discrete single exponential decay with 

lifetime of ~ 7.5 ns. The full width at half maximum value of the lifetime distribution 
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parameter, w, was found to be 2.0 ns for Apo and Mg2+DREAM and ~ 0.9 ns for Ca2+ 

bound DREAM. The observed decrease in the w value suggests that Ca2+ binding to EF-

hands reduces the distribution of conformational microstates and/or modulates the 

dynamics of the inter-conversion between individual sub-states in DREAM (Alcala et al., 

1987; Bodis et al., 2013). Several mechanisms were proposed to explain the observed 

heterogeneity of the tryptophan lifetime in single tryptophan proteins including the 

presence of tryptophan side chain rotamers, quenching by water molecules, electron 

transfer to the peptide carbonyl group, excited state electron or proton transfer, and 

intersystem crossing (Szabo and Rayner, 1980; Moncrieffe et al., 2000; Ross and Jameson, 

2008).  Interestingly, an overlay of the 15 lowest energy structures of Ca2+ bound DREAM 

determined by NMR spectroscopy (Lusin et al., 2008) and the structure of the DREAM C-

terminal domain (residues 161-256) (Yu et al., 2007; Bodis et al., 2013) displays the 

presence of a single tryptophan rotamer (t rotamer) in the DREAM structure. However, as 

shown in Figure 4.9, a transition from the t to g+ rotamer of W169 side chain is observed 

during molecular dynamic simulations, which supports the idea that the bimodal 

distribution could arise from two rotameric orientations of W169 with the side chain of the 

g+ rotamer being more solvent exposed.   

Inspection of the DREAM and DREAM C-terminal domain structures (PDB entry 

2JUL and 2E6W, respectively) reveals four charged amino acid residues located within 6 

Å of the W169 indole ring that may serve as efficient quenchers for the t rotamer. Residues 

E165, K168, and N172 are located on the same -helix as W169, whereas E253 is found 

at the end of -helix 10 (Figure 4.10). 



109 
 

 

Figure 4.10: Top panel: charged and polar amino acid residues surrounding W169 in the 

structure of DREAM (PBD entry 2JUL, shown in blue) and C-terminal domain of DREAM 

(PBD entry 2E6W, shown in green). Bottom left panel: SASA of W169 in DREAM during 

270 ns of the MD trajectory. Bottom right panel: Partially buried (in blue) and solvent 

exposed (in green) orientation of W169 side chain in DREAM structure. 

 

In addition, the side chains of these residues are disordered in the NMR structures, 

which likely contribute to the observed heterogeneity of the W169 emission decay. In the 

absence of the NMR structure of ApoDREAM, it is difficult to pinpoint the origin of the 

slower W169 decay in Apo and Mg2+DREAM. However, I speculate that the re-positioning 

of -helix 10 upon Ca2+ binding brings the E253 side chain closer to the W169 indole ring 

resulting in more efficient W169 emission quenching. Indeed, -helix 10 was found to be 

flexible in the structure of KChIP1 as it moves away from -helix 8 in the KChIP1:Kv4 
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channel T1 domain complex (Wang et al., 2007). Also, the reorientation of -helix 10 was 

associated with increased affinity of Ca2+ bound DREAM for arachidonic acid and small 

hydrophobic molecules (Gonzalez and Miksovska, 2014). 

The second W169 decay component is characterized by an unusually long lifetime 

of ~ 7.5 ns. It is unlikely that the presence of the second lifetime reflects other 

oligomerization forms of DREAM (monomer/tetramer in the case of Ca2+ free DREAM 

and monomer/dimer in the case of Ca2+ bound protein) since two comparable lifetimes 

were found for the C-terminal DREAM construct (residues 161-256) in the Apo form 

which does not form a tetramer or dimer in solution. On the other hand, a similar lifetime 

of 7.3 ns was detected in the multi-tryptophan protein beta-glycosidase from Sulfolobus 

solfataricus, and was associated with a rigid cluster of eight tryptophan residues (Bismuto, 

Nucci et al. 1999). However, the NMR structure (Figure 4.9, top) and RMSF from MD 

simulations (Figure 4.8) are not consistent with the presence of a rigid hydrophobic cluster 

surrounding W169 in DREAM. On the other hand, a single tryptophan residue in the 

calcium binding protein annexin was reported to exhibit two distinct lifetimes of 2.0 ns and 

7.0 ns when annexin is associated to lipid vesicles (Follenius-Wund et al., 1997). The 7.0 

ns decay was associated with the tryptophan side chain located in a more polar 

environment, at the interface between the protein surface and the lipid membrane 

(Follenius-Wund et al., 1997).  

Thus, to further explore the dynamic behavior of the W169 side chain, a 250 ns 

molecular dynamics simulation was analyzed and the solvent accessible surface area 

(SASA) plot for W169 is shown in Figure 4.10. The W169 side chain samples three major 

conformations with distinct SASA values. The major and minor conformations are 
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characterized by SASA values of 376 Å2 and 370 Å2, respectively, and can be attributed to 

the partially buried W169 side-chain within the interface between the C- and N-terminal 

domains of DREAM. The additional conformation with a SASA of 385 Å2 corresponds to 

the solvent exposed indole ring (Figure 4.10).  The binding site for the LDAO molecule on 

the DREAM surface is not known. The detergent molecule may bind into the hydrophobic 

cleft between the N- and C-terminal domains in a similar way as a myristoyl group binds 

to ApoRecoverin protein. Thus, the interactions between the W169 indole ring and the 

polar head of the LDAO molecule bound to DREAM can contribute to a 7.5 ns W169 

decay and the red-shifted emission spectra of DREAM samples prepared in the presence 

of LDAO. Furthermore, Liao et al. (Liao et al., 2009) have shown that the C-terminal 

domain of KChIP1 is required for KChIP1 association to phospholipid vesicles and the 

formation of KChIP1 - phospholipid vesicle complexes alters the protein structure. Taking 

into account a high sequence and structural homology of the C-terminal domain among the 

members of the KChIP subfamily, it is likely that DREAM forms similar complexes with 

phospholipid vesicles. Indeed, one can speculate that the DREAM conformation that is 

characterized by the 7.5 ns Trp lifetime reflects the conformation of DREAM associated 

with lipid vesicles or membranes.  

4.3.2 DREAM stability increases in the presence of Ca2+/Mg2+ 

Association of Mg2+ and/or Ca2+ to DREAM EF-hands increases the stability of the 

protein, although to different extent. The unfolding data (Figure 4.7b) show that DREAM 

unfolds through a partially unfolded intermediate state that is populated at ~ 4.5 M GuHCl 

in the case of Apo and Mg2+ DREAM and at ~ 5.0 M GuHCl for Ca2+ and 

Ca2+Mg2+DREAM. Further increase in the GuHCl concentration promotes protein 
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destabilization towards the unfolded state. Unlike small, single domain proteins that fold 

with two-state kinetics without populating intermediate state, multi-domain proteins 

commonly exhibit unfolding intermediates. Furthermore, protein stability and folding is 

modified by the presence of higher order clusters of aromatic residues (Burley et al., 1985; 

Song et al., 2013). Such residues are usually highly conserved and their substitution often 

leads to the destabilization of protein structure. I have identified two aromatic hydrophobic 

cores in the DREAM structure (Figure 4.1) that i) are formed by residues conserved among 

NCS members, ii) have a relative solvent accessibility smaller than 10 % (Rost and Sander, 

1994), and iii) groups side chains that are within a distance of 4.5 Å of each other 

(Arunachalam and Gautham 2008). One hydrophobic core is formed by an aromatic 

tetramer of F171, Y174, F218, and F235 and is found at the C-terminal domain (Figure 

4.1). All these residues are in a helical structural motif. The cluster formation brings 

together -helices 6, 8, and 9, which may stabilize the C-terminal domain. The second 

hydrophobic core was found within the N-terminal domain and is a trimer of phenylalanine 

residues (F114, F135, and F138) that are found in -helices 3 and 4. Analogously to the C 

terminal domain, the interactions between these residues increase the stability of the N-

terminal domain. In addition, W169 from the C-terminal domain interacts with F138 from 

the N-terminal domain and such inter-domain interactions may contribute to DREAM 

stability.  

Considering that the Ca2+ association to EF-hand 3 and EF-hand 4 increases the 

stability of the partially unfolded intermediate with respect to the unfolded protein, I 

propose that -helices 6, 8, and 9 form a stable hydrophobic core that unfolds during the 

intermediate between the transition and unfolded states. The N-terminal domain that lacks 
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more extended hydrophobic core(s) may be less stable than the C-terminal domain and thus 

may be destabilized during the initial unfolding transition. This is further supported by the 

fact that the stability of the N-terminal domain is increased by the Mg2+ association to EF- 

hand 2, which is located in the N-terminal domain. Thus the unfolding data suggest that 

the N-terminal domain unfolds during the first transition whereas the C-terminal domain 

is destabilized at increased denaturant concentration. An analogous unfolding mechanism 

was reported previously for another member of the NCS family, neuronal calcium sensor 

1 (NCS-1) (Muralidhar et al., 2005; Aravind et al., 2008; Heidarsson et al. 2013). That 

study reported that the folding mechanism and protein stability of NCS-1 are altered by the 

presence of Ca2+ and Mg2+ ions as well as by the protein myristoylation at the N-terminus. 

Non-myristoylated NCS1 unfolds through a three step mechanism with an overall stability 

of GNU = 12.9 ± 0.7 kcal mol-1 for ApoNCS1, and GNU = 14.5 ± 1.6 kcal mol-1 for 

holo-NCS1. These values are comparable to those determined here for Apo and Ca2+ bound 

DREAM. These results indicate a similar folding mechanism for NCS1 and DREAM, and 

possibly other members of the NCS family. This is further supported by a kinetic study of 

folding mechanisms using optical tweezers (Heidarsson et al., 2013). The authors have 

reported that the folding of the C-terminal domain precedes the folding of the N-terminal 

domain, and that the C-terminal domain is stabilized by aromatic interactions between -

helices 6, 8, and 9. 

4.3.2 Summary 

  Despite the low impact of Mg2+ association with EF-hand 2 on the DREAM tertiary 

structure, the presence of Mg2+ stabilizes the native state with respect to a partially unfolded 

state. The W169 lifetime data indicates that DREAM can adopt an additional conformation 
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with a long W169 lifetime of 7.5 ns that may reflect conformations of DREAM populated 

in the presence of lipid membranes and vesicles. The results show that DREAM unfolding 

is a complex process that occurs through a partially unfolded, intermediate state. The Ca2+ 

association to EF-hand 3 and 4 stabilizes the partially unfolded state with respect to the 

unfolded state, whereas the association of Mg2+ increases the stability of the native state 

only in the presence of Ca2+. These results suggest that the intracellular fluctuations in Ca2+ 

and Mg2+ concentrations control the global conformation and stability of DREAM and 

likely regulate its interactions with intracellular partners.  
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5. CALCIUM AND MAGNESIUM BINDING TO THE C-TERMINAL DOMAIN 

MODULATES DREAM STRUCTURE, DYNAMICS, AND STABILITY 

(The results in this chapter were described in a manuscript that will be submitted by 

Pham, Gonzalez, and Miksovska) 

5.1 Background and significance 

Downstream regulatory element antagonist modulator (DREAM), also known as 

calsenilin or KChIP3, is a neuronal calcium sensor (NCS) involved in regulation of 

important neuronal processes including pain modulation, A-amyloid production, and 

potassium channel activity (Buxbaum et al., 1998; Carrion et al., 1999; An et al., 2000). 

The intracellular function of DREAM depends on its intracellular localization and 

interactions with target proteins. Ca2+ free DREAM forms a tetramer that binds to the 

downstream regulatory element (DRE) sequence of prodynorphin and c-fos genes to 

repress transcription of these genes. Upon binding to Ca2+, DREAM tetramer dissociates 

into a stable dimer with a decreased affinity toward DRE (Carrion et al., 1999; Ledo et al., 

2000; Osawa et al., 2001, Osawa et al., 2005). In the cytoplasm, DREAM interacts with 

the C terminal portion of Alzheimer’s disease associated proteins, presenilin 1 and 

presenilin 2, and elevates the formation of A-amyloid peptides (Buxbaum et al., 1998). 

In vivo studies have shown that DREAM overexpression is associated with an increased 

formation of Aβ-amyloid peptide and concomitant cell death (Jo et al. 2001; Jo et al., 2003; 

Jo et al., 2004).  In addition, the level of Aβ peptide was significantly reduced in the 

cerebellum and in the cortex of DREAM knock-out mice (Lilliehook et al., 2003). DREAM 

also interacts with A-type voltage-gated potassium channels (Kv4) and modulates both the 

kinetic properties and cell surface accumulation of Kv4 channels (An et al., 2000). 
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Recently, it has been proposed that Ca2+ DREAM forms a complex with calmodulin, 

whereas ApoDREAM binds to a regulatory subunit of calcineurin (Ramachandran et al., 

2012). The interactions with multiple neuronal proteins highlight a wide range of DREAM 

neuronal functions under physiological and pathological conditions.  

Unlike traditional EF-hand calcium sensors, such as calmodulin and troponin C, 

that carry four EF-hands with a high affinity for Ca2+, members of the NCS family carry 

only 2 or 3  functional EF-hands that bind Ca2+ with a high affinity. In DREAM, EF-hand 

1 does not bind to Mg2+ or Ca2+ ion due to the presence of conserved residues C104 and 

P105 on the first Ca2+ binding loop, which abolishes the affinity for Mg2+ and Ca2+ (Osawa 

et al., 2005; Lusin et al., 2008). The presence of Asp (D150) at the 12th position of the EF-

hand 2 binding loop promotes specific binding to Mg2+ with relatively high affinity (Kd = 

13 µM), whereas EF-hands 3 and 4 functionally bind to Ca2+ (Kd ~ 1-10 µM) (Osawa et 

al., 2005; Yu et al., 2007; Lusin et al., 2008). Association of Ca2+ with DREAM triggers 

protein dimerization that inhibits the interaction with DNA (Lusin et al., 2008). The 3-

dimensional structures of DREAM and DREAM-C reveal that the C-terminal α-helix 

(residues 243-254) and the residues from EF-hand 3 (L161, A170, M191, and L194) and 

EF-hand 4 (F218, M222, and C239) form a large hydrophobic cavity (Lusin et al., 2008) 

on at the C-terminal domain that provides a binding interface for the site 1 of the Kv4.3 

channels as well as for small hydrophobic molecules (Gonzalez and Miksovska 2014, 

Gonzalez et al., 2014). In addition, a hydrophobic cleft located between the flexible loop 

connecting EF-hand 3 and EF-hand 4 (residues 198 - 211) and the C-terminal α-helix was 

thought as a binding site for interaction with target proteins during calcium signaling (Yu 

et al., 2007).  
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However, the structure of Apo and Mg2+ bound DREAM are currently unknown 

that prevents us from a full understanding of conformational  transition associated with 

Ca2+ or Mg2+ binding to this neuronal regulator and the role of the Ca2+/Mg2+ in DREAM 

interactions with intracellular partners. Despite considerable efforts to understand the 

mechanism of Ca2+ signal transduction within DREAM protein, little information is known 

about the dynamics of Ca2+ induced conformational changes in the full length protein as 

well as in the  C-terminal domain. In addition, the impact of Ca2+ and/or Mg2+ association 

on DREAM-C (residues 161-256) structure and its stability has not been fully established.  

In this study I have characterized the conformational transition induced by Ca2+ or 

Mg2+ binding to DREAM-C by monitoring the fluorescence properties of an intrinsic 

tryptophan residue (W169). In addition, extrinsic fluorescent probes: 8-anilino-1-

naphthalenesulfonic acid ammonium salt (1,8-ANS) and 9-diethylamino-5H-

benzo[alpha]phenoxazine-5-one (nile red) were employed to monitor the hydrophobic 

properties on DREAM-C surface and the oligomerization state of DREAM-C as a function 

of Ca2+ or Mg2+. The thermodynamic parameters for Ca2+ or Mg2+ binding to DREAM-C 

were probed using isothermal titration calorimetry (ITC), and the effects of Ca2+/Mg2+ 

binding on DREAM-C stability were investigated in protein unfolding experiments. 

5.2 Results 

5.2.1 Thermodynamics of Ca2+ and/or Mg2+ binding to DREAM-C 

The isotherm for Ca2+ association to ApoDREAM-C is shown in Figure 5.1 and the 

thermodynamic parameters are summarized in Table 5.1.  
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Figure 5.1: Binding isotherm for Ca2+ association to DREAM-C in the absence of Mg2+. 

The top panel represents a raw power titration curve, the bottom panel shows integration 

data, and the solid line represents the two sets of sites fitting curve. 

Association of Ca2+ at EF-hands 3 and 4 of DREAM-C endothermically (ΔH1 = 5.5 

kcal mol-1 and ΔH2 = 1.1 kcal mol-1) with a sub-micromolar affinity (Kd1 = 0.3 ± 0.1 µM 

and Kd2 = 0.9 ± 0.2 µM), respectively. The positive enthalpy change is consistent with the 

high dehydration energy of the divalent Ca2+ ions upon binding to DREAM-C (Osawa et 

al., 2005). The binding isotherm for Ca2+ association to Mg2+DREAM-C resulted in 

approximately a two-fold larger equilibrium dissociation constant for one binding site  (Kd1 
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= 0.6 ± 0.1 µM and Kd2 = 1.0 ± 0.3 µM) with the Ca2+ binding to  one site being endothermic 

(ΔH1 = 9.4 ± 4.0 kcal mol-1) and to the other site  being exothermic (ΔH2 = -15.0 ± 1.4 kcal 

mol-1). The analysis of the binding isotherm for Mg2+ association to ApoDREAM reveals 

the presence of two binding sites, with one site being  a high affinity site (Kd1 = 180 ± 10 

M and ΔH1 = 1.5 ± 0.1 kcal mol-1) and another site with a milimolar affinity (Kd2 = 1.7 ± 

0.1 mM and ΔH2 = 3.5 ± 0.1 kcal mol-1). The endothermic Mg2+ association to 

ApoDREAM-C points out towards the absence of pronounced structural changes 

associated with Mg2+ binding to DREAM-C. 

Table 5.1: Thermodynamic parameters for Ca2+ and/or Mg2+ binding to DREAM-C 

 

5.2.2 Secondary structural changes induced by Mg2+ and/or Ca2+ binding 

Changes in the secondary structure of DREAM-C upon Ca2+ and/or Mg2+ biding 

were monitored by near-UV circular dichroism (Figure 5.2). A small, but reproducible 

decrease in the CD signal was observed at 220 nm upon addition of Mg2+ to ApoDREAM-

C, and an additional increase in the 220 nm signal was recorded upon Ca2+ binding to 

Mg2+DREAM, indicating that association of both divalent ions leads to an increase in the 

 

DREAM-C 
n1 

Kd1 

(µM) 

ΔH1 

(kcal/mol) 

ΔS1 

(cal/mol K) 

n2 

Kd2 

(µM) 

ΔH2 

(kcal/mol) 

ΔS2 

(cal/mol K) 

Ca2+ versus 

Apo 
0.9 ± 0.1 0.3 ± 0.1 5.5 ± 0.8 49 1.2 ± 0.1 0.9 ± 0.2 1.1 ± 0.7 31 

Ca2+ versus  

Mg2+ bound 
1.3 ± 0.2 0.6 ± 0.1 9.4 ± 4.0 60 0.7 ± 0.2 1.0 ± 0.3 -15.0 ± 1 -24 

Mg2+versus 

Apo 
1.0 180 ± 10 1.5 ± 0.1 22 0.97 

1.7x103 ± 

0.1x103 
3.5 ± 0.1 25 
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protein α-helical structure. The CD signal for the Ca2+DREAM-C in the absence of Mg2+ 

is identical to that measured in the presence of Mg2+, highlighting that Ca2+ association to 

Mg2+DREAM-C cancels out structural changes triggered by Mg2+ binding. The increase in 

the -helical structure upon Ca2+ binding to EF-hands is common among the calcium 

binding proteins and has been observed previously for other EF-hand proteins (Burgoyne 

and Weiss, 2001).  

 

Figure 5.2: The CD spectra of DREAM-C in the presence/absence of Ca2+ and/or Mg2+ 

5.2.3 Tertiary structural changes triggered by Mg2+ binding differ from those 

associated with Ca2+ binding  

The single tryptophan residue in DREAM-C (W169) provides an excellent probe 

to monitor changes in tertiary structure induced by the binding of Mg2+ and/or Ca2+ to 

DREAM-C. The W169 emission spectrum of ApoDREAM-C is  broad with a maximum 

at 349 nm (Figure 5.3) and the emission intensity of DREAM-C increases, without a 

concomitant shift in the maximum wavelength, upon addition of Mg2+, indicating that in 
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the W169 quenching is reduced in the Mg2+ bound form. The emission maximum at 349 

nm observed for Apo and Mg2+DREAM-C is similar to that of tryptophan in aqueous 

solution (~ 350 nm), pointing out that the W169 side chain is located near a polar 

environment. Addition of Ca2+ to Apo or Mg2+DREAM leads to a decrease in W169 

emission intensity and a concomitant hypsochromic shift to 344 nm due to the transfer of 

the W169 side chain into a less polar surrounding. Analogously, as observed in CD 

measurements, the identical emission spectra of the Ca2+ and Ca2+Mg2+ bound form of 

DREAM-C suggest that Ca2+ binding to EF-hands cancels the structural changes induced 

by Mg2+ association to DREAM.  

 
 

Figure 5.3: The fluorescence steady-state emission spectra of intrinsic W169 residue in 

DREAM-C. 

 

The W169 emission quenching by acrylamide was used to further investigate the 

solvent accessibility of W169 site chain in ligand free and ligand bound DREAM-C and 

thus reflects ligand induced alteration of the tertiary structure and/or and conformational 
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dynamics (Augusteyn et al., 1988). The Stern-Volmer plots are shown in Figure 5.4 and 

the Stern-Volmer constants are shown in Table 5.2.  

 

 

Figure 5.4: Stern-Volmer plot for acrylamide quenching of DREAM-C in the 

absence/presence of Ca2+ and Mg2+. 

 

Table 5.2: The Stern-Volmer constants (Ksv) for acrylamide quenching of DREAM-C  

 

Protein KSV (M-1) Protein KSV (M-1) 

ApoDREAM-C 10.4  0.1 Ca2+DREAM-C 5.1  0.1 

Mg2+DREAM-C 9.9  0.2 Ca2+Mg2+DREAM-C 5.7  0.1 

 

The increased KSV values for the ApoDREAM-C and Mg2+DREAM-C (Ksv = 10.4 

± 0.1 M-1 and 9.9 ± 0.2 M-1, respectively) suggest that the W169 indole ring is nearly fully 

exposed to the solvent, in agreement with the steady-state emission data. Association of 

Ca2+ to Apo or Mg2+ DREAM-C induces a conformational change that significantly 

reduces the solvent accessibility of the W169 residue as evident from the Ksv values of 5.1 

± 0.1 M-1
 and 5.7 ± 0.1 M-1, respectively. 
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The frequency-domain intensity decay data for DREAM-C are shown in Figure 5.5. 

The data were analyzed using a Gaussian-Discrete double decay model and the recovered 

parameters are shown in Table 5.3.  

 
 

Figure 5.5: Frequency-domain intensity decays for W169 in the presence/absence of Ca2+ 

and/or Mg2+. Phase delays are solid symbols, modulation ratios are empty symbols, and 

the solid lines represent the calculated fitting curves. 

 

The discrete component of the emission decay has a long lifetime of ~ 7.3 ns that 

is independent of the presence of Mg2+ or Ca2+. The continuous Gaussian distribution 

model has a center value of distribution of 3.0 ns for ApoDREAM and 3.5 ns for 

Mg2+DREAM-C, and decreases to 2.5 ns in the presence of Ca2+. The Gaussian distribution 

width decreases in the presence of Ca2+ from 1.6 ns as observed for ApoDREAM-C to 1.3 

ns determined, for Ca2+DREAM-C.  
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Table 5.3: Fluorescence decay parameters for DREAM-C intrinsic tryptophan residue. 

Data were analyzed using a Gaussian-discrete model 

 

5.2.3 Binding of Ca2+ and/or Mg2+ triggers distinct changes in hydrophobic 

surface of DREAM-C protein 

The structural transition induced by Ca2+ and/or Mg2+ binding to DREAM-C in 

terms of changes in the hydrophobic surface was probed using the hydrophobic 

fluorescence probes 1,8-ANS and nile red. The steady-state emission spectra demonstrate 

that both probes bind to DREAM. However, unlike 1,8-ANS emission, the emission of nile 

red is sensitive to the structural changes triggered by Mg2+ association to DREAM-C 

(Figure 5.6, panels A and B).  

Nile red in 20 mM Tris buffer exhibits weak emission intensity with a maximum at 

657 nm. In the presence of ApoDREAM-C, the emission intensity increases approximately 

2 times and the maximum shifts to 642 nm. A further increase in the emission intensity and 

concomitant bathochromic shift to 628 nm were observed for nile red: Mg2+DREAM-C 

complex. 

 

Protein 
1  

(ns) 

w1 

(ns) 
f1 

2  

(ns) 
f2 2 

ApoDREAM-C 3.0 1.6 0.52 7.4 0.48 0.9 

Mg2+DREAM-C  3.5 1.7 0.56 7.3 0.44 1.4 

Ca2+DREAM-C  2.5 1.3 0.49 7.2 0.51 1.3 

Ca2+Mg2+DREAM-C  2.5 1.3 0.49 7.2 0.51 1.4 

1 is the center of Gaussian distribution, f is fractional contribution, w is the Gaussian 

distribution width, and τ2 is lifetime of the discrete component. The   constant 

standard error of 0.2° for the phase angle and 0.004 for modulation were used for 

data analysis  



125 
 

 
 

Figure 5.6: Fluorescence steady-state emission spectra of nile red (A) and 1,8-ANS (B) 

binding to DREAM-C in the presence or absence of Ca2+ and/or Mg2+. 

 

In the presence of Ca2+DREAM and Ca2+Mg2+DREAM-C, the emission intensity 

of nile red increases approximately 5 times and exhibits a maximum at 616 nm. These data 

are consistent with Mg2+ and Ca2+ triggered structural changes that result in a more 

hydrophobic binding site for nile red.  The increase in the emission intensity of nile 

red:Mg2+DREAM-C and nile red:Ca2+DREAM-C complexes is consistent with the 

observed equilibrium dissociation constants (Table 5.4). Overall, the nile red binding to 

DREAM-C is relatively weak, (Kd = 122 ± 53 M) and increases in the presence of Mg2+ 

and Ca2+, Kd = 50 ± 5 M and 10 ± 1 M, respectively. 

Table 5.4: Fluorescence decay parameters for nile red:DREAM-C. The experimental data 

were analyzed using a discrete component and continuous Gaussian distribution model. 

 

DREAM-C Kd (μM) 1 (ns) f1 τ2 (ns) f2 w 2 

Apo 122 ± 53 0.23 0.17 3.4 ± 0.3 0.83 1.6 0.86 

Mg2+ 50 ± 5 0.23 0.09 4.1 ± 0.4 0.91 1.3 0.85 

Ca2+ 10 ± 1 0.23 0.05 3.5 ± 0.1 0.95 1.7 0.69 

Ca2+ Mg2+ 12 ± 2 0.23 0.06 3.4 ± 0.2 0.94 1.7 0.77 

The lifetime of the discrete component was set as a linked variable. Phase and modulation 

errors were set at ≤ 0.2⁰ and ≤ 0.002 respectively. 
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5.2.4 Contribution of Mg2+ and Ca2+ in the stability of DREAM-C 

In order to investigate the impact of Ca2+/Mg2+ on DREAM-C stability, GuHCl 

induced unfolding of DREAM-C was monitored using circular dichroism. The unfolding 

profiles (Figure 5.7) were then analyzed using equation 3.61 in section 3.2.4.3 for a two-

state unfolding model. The thermodynamic parameters are summarized in Table 5.5.  

 

Figure 5.7: GuHCl induced unfolding DREAM-C in the presence or absence of Ca2+ and/or 

Mg2+. Unfolding parameters were recovered using equation 3.61 in section 3.2.4.3 for a 

two-state unfolding model. 

 

The stability of Apo and Mg2+DREAM-C is low with ΔG ~ 0.3 kcal mol-1 

suggesting that the DREAM-C is partially destabilized under native like conditions. Both 

unfolding curves have a non-sigmoidal profile that can be associated with a non-

cooperative protein unfolding. On the other hand, the unfolding profiles of Ca2+DREAM-

C in the absence and presence of 5 mM Mg2+ has a midpoint at ~ 4 M GuHCl and are 

characterized with sigmoidal unfolding curves indicative of a cooperative unfolding 
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transition. In addition, a small increase in the -helical structure at sub-denaturant 

concentration (0 to 1 M) was observed for Ca2+ bound DREAM-C. Analogous increase in 

the negative ellipticity was reported for Ca2+ bound form of the non-myristoylated neuronal 

calcium sensor 1 and were associated with the binding of denaturant molecules and 

concomitant changes in dihedral angles. The Ca2+ association to EF-hands 3 and 4 increases 

the protein stability by ~ 3.0 kcal mol-1 compared to the Apo protein.  

Table 5.5: Thermodynamic parameters for DREAM-C unfolding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

On the basics of the Ca2+ and Mg2+ binding properties, the canonical EF- hand 

binding sites can be divided into two classes: regulatory sites and structural sites. The 

structural sites bind Mg2+ at the resting Ca2+ concentration and Mg2+ is replaced by Ca2+ in 

response to an intracellular increase in the Ca2+ concentration. On the other hand, the 

regulatory binding sites are Ca2+ specific with a moderate affinity for Ca2+. The Mg2+ 

association to EF-hands was shown to be physiologically important as it modulates the EF-

hand affinity for Ca2+, stabilizes protein structure, and in DREAM directly alters protein 

Protein 
GU 

(kcal mol-1) 

mU 

(kcal mol-1M-1) 

CU 

(M) 

ApoDREAM-C 0.35  0.01 0.30  0.01 1.2 

Mg2+DREAM-C 0.31  0.01 0.37  0.01 0.8 

Ca2+DREAM-C 3.45  0.17 0.87  0.04 4.0 

Ca2+Mg2+DREAM-C 3.60  0.17 0.94  0.04 3.8 

ΔGU, mU, and CU represent the unfolding free energy change describes, the free 

energy dependent on the denaturant concentration, and denaturant concentration 

of half unfold from native to unfolding state (subscript U). 
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function (Yamniuk et al. 2004; Wingard et al., 2005; Peshenko and Dizhoor 2006). The 

metal biding specificity of individual EF-hands cannot be determined based on the protein 

sequence, because the side chain of the 12th loop residue is dynamically rotated. EF-hand 

loop flexibility and electrostatic potential are likely to contribute to the observed specificity 

(Henzl et al., 1998).  

Both classes of EF-hand sites have been found among members of NCS family but 

the role of individual EF-hands varies among the NCS subfamilies. The EF-hand 1 is not 

functional among all members of this family, whereas the EF-hands 2, 3, and 4 can be 

classified either as a structural or regulatory binding sites (Osawa et al., 2005). Visinin-like 

protein 1 binds functionally to Mg2+ at EF-hand 3 in the absence of Ca2+, whereas upon 

increase in the Ca2+ concentration, the EF-hand 2 and EF-hand 3 binds Ca2+ cooperatively 

while EF- hand 4 is nonfunctional. In guanylyl cyclase activating protein-1, EF-hands 2, 

3, and 4 are occupied by either Mg2+ or Ca2+, with Mg2+ binding to EF-hands 2 and 3 being 

essential for activation of photoreceptor membrane guanylyl cyclase (Peshenko and  

Dizhoor 2006). On the other hand, EF-hands 2 and 3 in neuronal calcium sensor 1 function 

as the structural binding sites, whereas EF-hand 4 binds calcium specifically (Aravind et 

al., 2008).  

Among the members of the KChIP subclass, KChIP2, KChIP4 and DREAM bind 

selectively to Mg2+ at EF-hand 2 due to the substitution of Glu by Asp in the 12th position, 

whereas the EF-hand 2 is nonfunctional in KChIP1 due to the Thr substitution in the 

position of the 3rd and 5th ligand. In all KChIPs, EF-hand 3 and 4 are regulatory sites that 

specifically bind Ca2+. In DREAM, EF hand 3 and 4 bind Ca2+ cooperatively with a Kd 

value of 1 - 10 µM (Osawa et al., 2001; Osawa et al., 2005; Ames et al., 2006; Lusin et al., 
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2008). According to the results of NMR spectroscopy, it was proposed that Mg2+ 

association to EF-hand 2 stabilizes DREAM conformation and promotes DREAM 

association to the downstream regulatory element (DRE) sequence (Osawa et al., 2005). 

However, no significant changes in the protein secondary or tertiary structure takes place 

due to the Mg2+ association to EF-hand 2, as evident from the absence of W169 emission 

enhancement and/or increase in the α-helical contain upon Mg2+ association to 

ApoDREAM (Osawa et al., 2005; Lusin et al., 2008; Pham et al. 2015; Gonzalez et al., 

2016).  

The ITC data presented here clearly show that the truncated form of DREAM that 

lacks the EF-hand 2, binds to Mg2+ with a sub-micromolar affinity,  Kd1 = 180 ± 10 µM. 

The association of Mg2+ to ApoDREAM-C alters the affinity of C-terminal domain EF-

hands for Ca2+ as the overall equilibrium dissociation constant increases from 520 nM in 

the absence of Mg2+ to 770 nM in the presence of Mg2+, respectively. The modulation of 

the affinity of EF-hand binding sites for Ca2+ by Mg2+ was observed previously in 

calmodulin and troponin C and attributed to the reduction of the on rate for Ca2+ binding 

(Gifford et al., 2007).  

In addition, Mg2+ association alters DREAM-C secondary and tertiary structure, as 

evident from the increase in the α-helical structure, enhancement of W169 emission, and a 

hypsochromic shift of the emission spectra in the nile red:Mg2+DREAM-C complex 

compared to nile:red:ApoDREAM-C complex. The relatively modest increase in the - 

helical structure and the small enhancement of the nile red emission in Mg2+DREAM-C 

indicates that the structural changes triggered by Mg2+ association to EF-hand 3 or EF-

hand 4 are minor compared to the conformational changes triggered by the Ca2+ binding. 
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This is commonly observed in the EF-hand proteins as the absence of the structural 

transition due to Mg2+ association to EF-hands is commonly attributed to the six-fold 

coordination of Mg2+ compared to seven-fold ligation geometry for Ca2+ ions (Cates et al., 

1999). The Mg2+ association to the isolated C-terminal domain of DREAM (residues 154 

- 256) was reported previously by Craig et al (Craig et al., 2002) using micro-electrospray 

ionization spectrometry. The authors proposed that Mg2+ binds to EF-hand 3 or EF-hand 4 

in the C-terminal domain with an affinity that is comparable to the results reported in this 

study. 

Importantly, the structural changes induced by Mg2+ association to ApoDREAM-

C are reversed by addition of Ca2+ suggesting that DREAM-C can populate three distinct 

structures ApoDREAM-C, Mg2+DREAM-C and Ca2+DREAM-C.  Such reversal of Mg2+ 

induced structural changes have been reported for another member of NCS family, 

neuronal calcium sensor 1 (Jeromin et al., 2004). Indeed, Mg2+ binding to the Apo form of 

NCS-1 leads to a comparable increase in the tryptophan emission and the subsequent Ca2+ 

addition to Mg2+ bound NCS-1 resulted in the Trp emission properties that were identical 

to those of  Ca2+ bound NCS-1 as observed here for DREAM-C  (Jeromin et al., 2004). 

Unlike DREAM, NCS-1 binds Mg2+ ion at both EF-hands 2 and 3 and the Mg2+ ion is 

replaced by Ca2+ as increased intracellular Ca2+ concentration suggesting that both sites 

belongs to the structural sites. Considering a high sequence similarity between the C-

terminal domains of members of neuronal calcium sensor family, I hypothesize that the 

EF-hand 3 in DREAM-C binds Mg2+ ion with a high affinity. Since the EF-hand 3 is a 

regulatory site that does not bind Mg2+ in the full length DREAM, the results presented 

here suggest that the inter-domain interactions between the C- and N-terminal domains 
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modulate the metal binding properties of the EF-hand 3. The NMR structure of the 

DREAM protein reveals numerous contacts between the exiting -helix of EF-hand 2 and 

the residues from EF-hand 3, including a hydrogen bond between N136 and a carbonyl 

oxygen of D176 (+Y ligand in EF-hand 3) (previously described in chapter 1). The 

extensive inter-domain contacts include hydrophobic interactions between residues F133, 

L1733, I190, and W169 contribute to the overall stability of DREAM protein but may also 

modulate the Ca2+ binding properties of the EF-hand 3. Indeed, I speculate that in 

ApoDREAM-C, without contacts between EF-hand 2 and 3, allows an increase in 

flexibility of the EF-hand 3, which increases the affinity of the EF-hand 2 for Mg2+ in the 

absence of Ca2+.  

Summary 

 The ITC data determined for association of Ca2+ to ApoDREAM-C shows that the 

binding affinity for Ca2+ association to EF-hand 3 and 4 in DREAM-C is consistent with 

that determined previously for DREAM (residues 65 – 256) (Osawa et al., 2005). However, 

the association of Mg2+ to ApoDREAM-C alters the affinity of C-terminal domain EF-

hands for Ca2+ as the overall equilibrium dissociation constant increases from 520 nM in 

the absence of Mg2+ to 770 nM in the presence of Mg2+, respectively. I have also shown 

that association of Mg2+ alters the DREAM-C secondary and tertiary structure as evident 

from the increase in the α-helical structure. Importantly, the structural changes induced by 

Mg2+ association to ApoDREAM-C are reversed by addition of Ca2+ suggesting that 

DREAM-C can populate three distinct structures ApoDREAM-C, Mg2+DREAM-C and 

Ca2+DREAM-C. These results also suggest that the inter-domain interactions between the 
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C-terminal domain and N-terminal domain is modulated by the metal binding properties of 

the EF-hand 3 in DREAM. 
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6. MOLECULAR INSIGHTS INTO DREAM AND PRESENILIN 1 C-TERMINAL 

FRAGMENT INTERACTIONS 

(The work described in this chapter was published in K., Pham and J., Miksovska (2016), 

FEBS letters, 590(8):1114-1122) 

6.1 Background and significance 

Downstream regulatory element antagonist modulator (DREAM), also known as 

calsenilin or KChIP3, belongs to the neuronal calcium sensor (NCS) family (Burgoyne et 

al., 2004). DREAM carries four EF-hand Ca2+ binding motifs (EF-hand) of which EF-

hands 3 and 4 functionally bind to Ca2+ with high affinity (Kd ~ 1 – 10 µM), whereas EF-

hand 2 preferentially interacts with Mg2+ (Kd ~ 13 µM) and EF-hand 1 is inactive (Osawa 

et al., 2005). The NMR structure of Ca2+ bound mouse DREAM (PDB code: 2JUL, Figure 

6.1) reveals that its amino- and carboxy-terminal domains are arranged in tandem and 

stabilized by a cluster of hydrophobic residues  F114, F135, W169, F171, F218, and F235 

(Lusin et al., 2008). A dynamic loop connecting EF-hands 3 and 4 in DREAM was 

suggested to be involved in the binding and recognition of target proteins (Yu et al., 2007). 

Several physiological functions of DREAM have been reported including prodynorphin 

gene transcriptional repression (Carrion et al., 1999; Osawa et al., 2001), potassium 

channel activity modulation (An et al., 2000), and enhancement of calcineurin activation 

by binding to calmodulin (Ramachandran et al., 2012). Interactions between DREAM and 

the carboxy-terminal fragment (CTF) of presenilin (PS) 1 and PS2 were proposed to be 

involved in many biological functions including amyloid precursor protein processing, beta 

amyloid  peptide generation, neuronal apoptosis, calcium signaling in the endoplasmic 

recticulum, and regulation of N-cadherin processing  (Buxbaum et al., 1998;  Leissring et 
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al., 2000;  Jo et al., 2001; Lilliehook et al., 2002; Jo et al., 2004; Jo et al., 2005; Fedrizzi et 

al., 2008; Jang et al., 2011).  

PS1 is a catalyst component of the γ-secretase complex which mediates cleavage 

of amyloid precursor protein to produce Aβ peptides. In order to activate γ-secretase 

complex, PS1 undergoes endoproteolysis within the hydrophobic sequence T291-A299 

forming the amino-terminal fragment (NTF) and CTF (Podlisny et al., 1997; Li et al., 

2014). Initially, it was suggested that PS1 consists of 6 transmembrane helices at NTF and 

one to three transmembrane helices at CTF (Lehmann et al., 1997; Dewji and Singer, 1997; 

Nakai et al., 1999; Li and Greenwald, 1998; Spasic et al., 2006). The NMR structure of 

human PS1-CTF (PDB entry: 2KR6, Figure 6.1) reveals that PS1-CTF consists of a long 

unstructured loop (residues 300 – 354, not shown in Figure 6.1) and a soluble helix β (HLβ, 

residues 355 - 369) at the amino-terminus. The core of PS1-CTF contains two 

transmembrane helices HL7 (residues 384 - 398) and HL8 (residues 407 - 428). The 

carboxyl HL9 (residues 441- 462) is an intramembranous helix, which is divided into two 

perpendicular helices due to the presence of proline 455.  The last four residues (463 – 467) 

in PS1 are unstructured (Sobhanifar et al., 2010). NMR studies and molecular dynamic 

simulations of PS1-CTF incorporated in lipid environments demonstrated that residues in 

HL9 are exposed to the surrounding aqueous environment and experience greater dynamics 

(Sobhanifar et al., 2010). Recently, the cryo-electron microscopy structure of PS1 in human 

γ-secretase complex revealed that PS1 is comprised of nine helices, which are loosely 

organized and exhibit considerable flexibility (Bai et al., 2015).  

A thorough understanding of the molecular mechanism of DREAM and PS1 

interactions requires the identification of binding sites between DREAM and PS1-CTF as 
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well as characterization of the role of Ca2+ and/or Mg2+ on DREAM and PS1-CTF complex 

formation. In this report, binding interfaces between DREAM and PS1-CTF were 

identified by determining the binding affinity for DREAM, DREAM with non-functional 

EF hand 3 or 4, and chimeric forms of DREAM association to synthetic peptides derived 

from residues 445 - 467 (HL9) and residues 355 - 369 (HLβ) of PS1. The residues 

comprising HL9 were chosen because previous studies demonstrated that they interact with 

DREAM and a homologous protein KChIP4 in a yeast two-hybrid system (Buxbaum et al., 

1998; Morohashi et al., 2002). In addition, the residues composing HLβ are in the region 

(residues 263 - 407) previously shown to interact with catenin, but have not been tested 

with DREAM (Zhou et al., 1997; Buxbaum et al., 1998). Since transmembrane helices 7 

and 8 are composed of highly hydrophobic natural amino acid residues and were shown to 

be stably integrated in a lipid bilayer (Sobhanifar et al., 2010; Bai et al., 2015), these 

structural elements were not included in this study.  

6.2 Results 

6.2.1 Computational protein-protein docking of DREAM and PS1-CTF  

Docking complex of Ca2+DREAM:PS1-CTF, as shown in Figure 6.1, reveals that 

the assembly of Ca2+DREAM and PS1-CTF involves π-π interactions in which the 

aromatic ring of F252 in DREAM stacks against the aromatic rings of F462 and F465 from 

HL9. The complex is further stabilized by a cation-π interaction in which the planar 

guanidinium group of R200 interacts with the aromatic ring of F465 from HL9. Moreover, 

F462 and F465 from HL9 insert into a cavity formed by hydrophobic residues M191, I194, 
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M197, M198, M249, F252, V255, and I256 in α-helices 7 and 10 of DREAM (grey solid 

surface in Fig 6.1).  

 

Figure 6.1:  Left: Protein-protein docking complex of Ca2+DREAM (PDB: 2JUL, molecule 

1) and PS1-CTF (PDB: 2KR6, molecule 1). DREAM (residues 76 - 256) contains 10 α-

helices respectively labeled α1 - α10, and four EF-hands: EF-1, EF-2, EF-3, and EF-4. Two 

Ca2+ ions (yellow sphere) are bound at EF-3 and EF-4 loops in DREAM. PS1-CTF 

comprises two trans-membrane helices: HL7 and HL8, a solvent exposed helix HLβ, and 

an intramembranous HL9 which is divided into two perpendicular helices. Right: Detailed 

presentation of the binding interfaces between Ca2+DREAM and PS1-CTF. Amino acid 

residues from DREAM and PS1 are colored in green and red, respectively. Yellow dot 

lines represent for hydrogen bond interactions. 

 

The residue F465 in PS1 plays an important role not only for interaction with 

DREAM, but also for interaction with anterior pharynx defective-1 (APH1) in the γ-

secretase complex (Bai et al., 2015). Furthermore, assembly of DREAM and PS-CTF 
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involves formation of salt bridges between R207 in DREAM and D450 and D458 from 

HL9. An additional salt bridge is found between R217 in DREAM and residue D458 from 

HL9. In addition, hydrogen bond interactions are found between the side chains of four 

pairs of residues: D450-R207, D458-R217, Q459-R217, and H463-D209, where D450, 

D458, Q459, and H463 are residues from PS1 and R207, R209, and R217 are residues from 

DREAM (Figure 6.1). Additional hydrogen bond is found between the carbonyl oxygen of 

Y466 from PS1 and side chain of R200 from DREAM. This hydrogen bond likely stabilizes 

side chain of R200 in order to direct its guanidinium group to the aromatic ring of F465 

from PS1.  

6.2.2 Region of PS1-CTF in contact with DREAM 

In order to determine which regions of PS1-CTF are in contact with DREAM and 

investigate the impact of Mg2+/Ca2+ on DREAM and PS1-CTF complex formation, 

titrations of DREAM, DREAM with inactivated EF-hand 3 or 4, DREAM-C, and DREAM 

chimeric constructs into PS1 derived peptides were conducted in the presence of 1 mM 

Ca2+ and/or 5 mM Mg2+. The titration curve for DREAM binding to HL9 is shown in Figure 

6.2 and the dissociation constants are summarized in Table 6.1.  

Table 6.1: Dissociation constant (K
d
) of DREAM binding to HLβ and HL9 in PS1-CTF 

 

DREAM 
K

d
 (µM) 

HL9 HLβ 

Ca2+DREAM 0.6 ± 0.1 

No binding 
Ca2+/Mg2+DREAM 0.7 ± 0.1 

Mg2+DREAM 29 ± 2 

ApoDREAM 183 ± 12 

 



138 
 

 
 

Figure 6.2: Titration curves for DREAM binding to HL9 (a) and HLβ (b) of PS1-CTF. 

Solid lines correspond to the best fit using equation 3.63 in section 3.5.2. 

 

HL9 binds to Ca2+DREAM and Mg2+Ca2+DREAM with a similar Kd of 0.6 µM. In 

the absence of Ca2+, a weak interaction was determined for binding of HL9 to ApoDREAM 

(Kd = 183 ± 12 µM), whereas the Kd value for HL9 association with Mg2+DREAM was 

found to be 29 ± 2 µM. Unlike HL9, the HLβ does not form a complex with DREAM.   

6.2.3 HL9 associates with DREAM at the carboxy-terminal domain  

Since our titration data indicate that HL9 associates with DREAM in the presence 

of Ca2+ and the Ca2+ binding sites are located at DREAM carboxy-terminal domain, I tested 

whether DREAM-C provides a binding site for HL9. Titration data of HL9 binding to 

DREAM-C (Figure 6.3) demonstrate that HL9 binds to Ca2+DREAM-C with a Kd of 11 ± 

1 µM and a similar Kd was determined for association of HL9 with Ca2+Mg2+DREAM-C. 

On the other hand, a weaker affinity was obtained for HL9 binding to Mg2+DREAM-C (Kd 

~146 ± 12 µM) and no interaction was observed in the Apo form (Table 6.2).  
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Figure 6.3: Titration curves for DREAM-C binding to HL9 of PS1-CTF in the presence 

and absence of Ca2+. Solid lines correspond to the best fit using equation 3.63 in section 

3.5.2. 

 

Table 6.2: Dissociation constant (K
d
) of DREAM-C binding to HL9 in PS1-CTF 

 
 
 
 
 
 
 

 

6.2.4 Residues 200-207 in the DREAM flexible loop mediate HL9 association 

Bioinformatics analysis of the carboxy-terminal domain of presenilin-interacting 

proteins (DREAM and KChIP4) and a non-presenilin-interacting protein, such as NCS1 

(Braunewell, 2005) suggests that the basic amino acid residues 200RHTYPILR207 in the 

flexible loop connecting α7 and α8 (α7/α8 loop) of DREAM may play a role in regulating 

the association of HL9 (Figure 6.4).  

Protein K
d
 (µM) 

Ca2+DREAM-C 11 ± 1 

Ca2+/Mg2+DREAM-C   9 ± 1 

Mg2+DREAM-C 146 ± 12 

ApoDREAM-C No binding 
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Figure 6.4: Sequence alignment of 66 amino acid residues in the carboxyl-terminus of 

mouse DREAM with various members of KChIPs subfamily and NCS1 protein using 

Clustal Omega program. The conserved hydrophobic residues at the binding interface with 

HL9 are highlighted in green. The conserved basic residues at positions 200 and 207 in the 

flexible loop of various members in KChIP subfamily are highlighted in blue. The neutral 

residue and the acidic residue of NCS1 corresponding to positions 200 and 207 in flexible 

loop are highlighted in grey and red, respectively. Aromatic residues corresponding to π- 

π stacking interaction with PS1 are in orange. 

 

To test whether these residues functionally mediate interaction with HL9, titrations 

of DREAM fused with NCS1 flexible loop (residues 200NTVELPEE207) were conducted. 

The titration curve for HL9 binding to Ca2+DREAM-NCS1 (Figure 6.5a) demonstrates a 

lower affinity (Kd = 38 ± 4 µM) and a negligible interaction was, observed for binding of 

HL9 to ApoDREAM-NCS1. 

 
 

Figure 6.5: Titration curves for HL9 binding to Ca2+DREAM-NCS1 (a) and Ca2+DREAM-

KChIP1 (b). Solid lines correspond to the best fit using equation 3.63 in section 3.5.2. 

 

 Since residues in the 7/8 loop are conserved among various members of KChIP 

subfamily, I have also fused KChIP1 loop (200KYTYPVLK207) into 7/8 loop of 
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DREAM and determined dissociation constant for binding to HL9 (Figure 6.5b). 

Interestingly, the HL9 binds to DREAM-KChIP1 with a lower affinity compared to that of 

DREAM (Kd = 3.9 ± 0.7 µM). 

6.2.5 Binding of Ca2+ at EF-hand 3 functionally modulates the interaction of 

DREAM with HL9 

To investigate the mechanism by which Ca2+ binding to EF-hands 3 and 4 in 

DREAM mediates DREAM and HL9 interactions, binding of HL9 to DREAM-E234Q and 

DREAM-E186Q were studied. Titration data demonstrate that HL9 binds to DREAM-

E234Q in the presence of Ca2+ and Ca2+/Mg2+ with a Kd of 8 µM (Figure 6.6a), whereas a 

weaker binding (Kd = 32 µM) was observed for DREAM-E186Q mutant (Figure 6.6b).  

 

Figure 6.6: Titration curves for HL9 binding to Ca2+DREAM-E234Q (a) and 

Ca2+DREAM-E186Q (b). Solid lines correspond to the best fit using 3.63 in section 3.5.2. 

 

These results also show that weak interaction was determined for HL9 binding to 

Mg2+DREAM-E234Q and Mg2+DREAM-E186Q. In addition, the HL9 exhibits very weak 

interaction with the Apo form of these DREAM mutants (Table 6.3).  
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Table 6.3: Dissociation constant (Kd) for HL9 binding to DREAM EF-hand mutants 

 

 K
d
 (µM) 

DREAM-E234Q  

(active EF-hand 3 ) 

DREAM-E186Q 

(active EF-hand 4) 

Ca2+   8 ± 1 32 ± 1  

Ca2+Mg2+   7 ± 1 30 ± 2 

Mg2+ 68 ± 5 55 ± 2 

Apo 146 ± 14 149 ± 22 

 

6.2.6 Oligomerization states of DREAM in complex with HL9 

Since alternative oligomerization states of DREAM directly mediate the 

interactions with intracellular proteins and DNA and this process depends on Ca2+/Mg2+ 

occupancy at EF-hands (Osawa et al., 2001; Osawa et al., 2005; Lusin et al. 2008; Gonzalez 

and Miksovska, 2014), the oligomeric states of DREAM in complex with HL9 were 

characterized. The anisotropy decay traces for HL9 (circles) and Ca2+DREAM:HL9 

complex (squares) are shown in Figure 6.7a.  

The data were fit into a two rotational correlation-time model where the fast 

rotational correlation time (θ2) corresponds to the local rotation of FITC and the slow 

rotational correlation time (θ1) reflects global rotation of HL9 or DREAM bound HL9 

(Table 6.4). The values of local rotation of FITC probe in HL9 and in the complex of 

DREAM and HL9 are almost identical (θ2 ~1 ns), whereas the global rotation values 

increase from 2 ns in the case of HL9 in buffer solution to 12 ns and 20 ns when HL9 is 

bound to Mg2+DREAM and Ca2+DREAM/Ca2+Mg2+DREAM, respectively. With the 

known molecular weight of HL9 and DREAM, the values of θ1 for DREAM monomer 

binding to one HL9 and DREAM dimer binding to two HL9 are estimated to be 11.4 ns 
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and 22.7 ns, respectively, using a degree of hydration of 0.43 ml g-1 for a spherical protein 

at 20 °C (Weber, 1953; Fischer et al., 2004). The experimentally determined θ1 value for 

Mg2+DREAM and HL9 complex is 11.8 ns which matches well with the expected value of 

DREAM monomer bound to one HL9. However, the experimental θ1 value for HL9 in 

complex with Ca2+DREAM/Ca2+Mg2+DREAM was determined to be 20 ns, which is about 

2 ns faster than the expected correlation time of  a dimeric DREAM bound to two HL9. 

These results suggest that the structure of DREAM is more rigid when Ca2+ is bound to 

EF-hands 3 and 4.  

 

 

Figure 6.7: Panel (a) is time-resolved anisotropy of HL9 in buffer solution (circles) and 

HL9 bound Ca2+DREAM (square).  Differential phase angle and modulation ratio are 

shown as solid and empty symbols, respectively. Panel (b) is a Job plot curve represents a 

1:1 stoichiometry for molecular association of HL9 with Ca2+DREAM. 

 

Furthermore, the Job plot (Figure 6.7b) shows a maximum at HL9 mole fraction 

(XHL9) of 0.5, what is consistent with  a 1:1 stoichiometry for molecular association of 

HL9 with Ca2+DREAM  (Olson and Bühlmann, 2011; Furlong et al., 2013). These results 

further suggest that a dimeric DREAM binds to two HL9 in the presence of Ca2+ or 

Ca2+Mg2+. 
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Table 6.4: Time-resolved anisotropy parameters for DREAM and HL9 complex 

 

 

6.2.7 Kinetics of HL9 association with DREAM  

 

Binding of HL9 to DREAM leads to an increase in emission intensity at 520 nm 

due to the fluorescence resonance energy transfer (FRET) between W169 in DREAM  and 

FITC label on HL9 (inset in Figure 6.8).   

 

 

Figure 6.8: Titration curves for HL9 binding to Ca2+DREAM by monitoring FITC 

fluorescence emission change at 520 nm (inset figure). Solid lines correspond to the best 

fit using equation 3.63 in section 3.5.2. The dissociation constant was determined to be 0.6 

μM. 

 θ1 

(ns) 
r1

a 
θ2

a 

(ns) 
r2

a χ2 

HL9 in buffer 1.7 ± 0.2 0.12 0.4 0.24 0.6 

Mg2+DREAM:HL9 11.8 ± 2.0 0.05 0.8 0.26 0.7 

Ca2+DREAM:HL9 20.4 ± 0.8 0.25 0.8 0.14 0.3 

Ca2+Mg2+DREAM:HL9 19.3 ± 0.7 0.26 0.7 0.13 0.3 

a experimental error ≤ 4 %;  θ1 and  θ2 is a slow and fast rotational correlation 

times, respectively;  r1 and  r2 are fluorescence anisotropy amplitudes 

corresponding to  θ1 and  θ2, respectively. 
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By monitoring emission intensity change at 520 nm as a function of DREAM 

concentration, dissociation constant of HL9 association with Ca2+DREAM was determined 

to be 0.6 ± 0.1 µM (Figure 6.8). The determined Kd in this titration is comparable with the 

Kd previously obtained in steady-state anisotropy measurements. The results suggest an 

increase in the emission intensity of fluorescein probe can be used to probe kinetics of HL9 

interactions with DREAM.  

A representative kinetics trace for HL9 binding to Ca2+DREAM is shown in Figure 

6.9a. The dissociation rate constant (koff) of HL9 from ApoDREAM was determined by 

addition of EDTA to Ca2+DREAM:HL9 solution and a decrease of emission intensity at 

520 nm was monitored (Figure 6.9b). The equilibrium dissociation constant calculated 

from the ratio of the dissociation rate constant (koff = 1.0 s-1) to association rate constant 

(kon = 0.6 x 106 M-1s-1) is in excellent agreement with the Kd determined from titration 

experiments (Table 6.5). 

 

 
 

Figure 6.9: Kinetics trace for association of HL9 to Ca2+DREAM (a) and dissociation of 

HL9 from ApoDREAM (b) monitored by change in the fluorescence intensity at 520 nm. 

The solid line represents single exponential fitting curve. 
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Table 6.5: Kinetic parameters for HL9 association with Ca2+DREAM 

Activation energy (Ea)
(a) 15.9 ± 3.1 kcal mol-1 

Association rate constant (kon) 0.6 x 106 M-1s-1 

Dissociation rate constant (koff) 1.0 s-1 

(a) Ea and error were determined from the mean and standard 

deviations of three independent measurements, respectively. 

 

Our kinetics data showed that the rate constant for the formation of Ca2+DREAM-

HL9 complex is temperature and concentration dependent. The kinetics experiment was 

carried out at different temperatures, from 281 to 297 ºK, and at various Ca2+DREAM 

concentrations, from 1 to 7.5 µM. The apparent first order rate constants (kobs) for 

association of HL9 to each Ca2+DREAM concentration and at each temperature was 

recovered and analyzed by using the first order exponential decay model. The activation 

energy (Ea) was calculated from the slope (-Ea/R) of the Arrhenius plot (Figure 6.10).  

 

Figure 6.10: The Arrhenius plot of HL9 association with Ca2+DREAM. Ea and 

experimental error were determined from the mean and standard deviations of three 

independent measurements, respectively. 
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The activation barrier for HL9 association to Ca2+DREAM was found to be 15.9 ± 

3.1 kcal/mol (Table 6.5) suggesting for a large conformational change on the HL9 docking 

site on Ca2+DREAM protein upon the complex formation. The high activation energy can 

be attributed to the structural changes, which results in a decrease of flexibility of long loop 

connecting α7 in EF-hand 3 and α8 in EF-hand 4 of DREAM protein (Figure 6.1). 

To examine if the kinetics curves of HL9 association to Ca2+DREAM include any 

diffusional components, I performed kinetics experiment with increasing in Ca2+DREAM 

concentration (1 to 7.5 µM).  Apparent association rate constants (kobs) were plotted against 

varied Ca2+DREAM concentrations (Figure 6.11) showed that the association rate constant 

(kon) is 0.6 x 106 M-1s-1 and the dissociation rate constant (koff) is 1.0 s-1 (Table 6.5).  

 

Figure 6.11: Apparent association rate constants (kon(obs)) were plotted against 

Ca2+DREAM concentrations. The association rate constant (kon) and the dissociation rate 

constant (koff) were determined to be is about 0.6 x 106 M-1s-1 and 1.0 s-1, respectively. 

 

The association rate constant (0.6 x 106 M-1s-1) occurs within the range for 

bimolecular rate constants on the order of 106 M-1s-1, which is about three-order in 
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magnitude slower than the diffusion-limited association rate constant for a typical small 

spherical protein of 18Å radius (7 x 109 M-1s-1) (Northrup and Erickson, 1992). These 

results suggest that the association of HL9 with Ca2+DREAM excludes diffusional 

components.  

6.2.8 Residue F252 plays an important role in regulating the interaction of 

DREAM with presenilin 1 

To test whether residue F252 in DREAM plays a crucial role in regulating the 

interaction of DREAM with PS1-HL9, titrations of 20 μM DREAM with F252 replaced by 

A (herein named DREAM-F252A) into 0.5 μM of PS1-HL9 in the presence and absence 

of 1 mM Ca2+ were conducted (Figure 6.12).  

 
 

Figure 6.12: The bar plot represents titrations of 20 μM of Ca2+DREAM, ApoDREAM, 

Ca2+DREAM-F252A, and ApoDREAM-F252A into 0.5μM PS1-HL9. 

 

The results show that replacement of residue F252 in DREAM by alanine 

significantly reduces anisotropy changes observed for PS1-HL9 association to either Ca2+ 
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bound or free form of DREAM. These results confirm that F252 in DREAM plays an 

important role in regulating the interaction DREAM with PS-HL9.  

Furthermore, the computational docking data reveal that the Ca2+DREAM-PS1-

CTF complex is also stabilized by salt bridge interactions between residues R200 and R207 

from the loop connecting 7 and 8 in DREAM and the residues D450 and D458 from 

HL9 of  presenilin 1 (Figure 6.1). To test whether these salt bridge play an important role 

in modulating the interaction of DREAM with presenilin 1, titration of Ca2+DREAM into 

PS1-HL9 was conducted in buffer solution containing high concentration of salt (0.3 M 

NaCl) (Figure 6.13). The titration data show that binding of Ca2+DREAM to HL9 is salt 

independent with a Kd similar to that observed in the absence of salt (0.6 μM).  

 

 
 

Figure 6.13: Titration curves for HL9 binding to Ca2+DREAM in the presence of 0.3 M 

NaCl. The Solid line corresponds to the best fit using equation 3.63 in section 3.5.2. 
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6.2.9 Binding of PS1-CTF to DREAM inhibits the interaction of NS5806 drug 

compound with DREAM 

Previous studies in our laboratory demonstrated that binding of the drug compound 

NS5806 at the hydrophobic site on the C-terminus of DREAM increases the binding 

affinity between DREAM and the N-terminus of K+ channel Kv4.3 (Gonzalez, Pham et al., 

2014).  The dissociation constant of NS5806 for Ca2+DREAM was previously determined 

to be 2.5 μM (Gonzalez, Pham et al., 2014). Interestingly, the residues Y174, F218, and 

F252 in DREAM (Figure 6.1) are responsible not only for the NS5806 drug binding but 

also for interaction with the HL9 in presenilin 1. Therefore, I speculated that the determined 

DREAM–presenilin interface hot spots (Figure 6.1) are druggable pockets for NS5806 

compound that binds to DREAM and inhibits the interaction between DREAM and 

presenilin 1. 

 

Figure 6.14: Titration of NS5806 into the Ca2+DREAM-HL9 complex. The dissociation 

constant was determined by fitting the data using a single binding site displacement 

equation 3.64 in section 3.5.2.  
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To test that hypothesis, the titration of NS5806 into the Ca2+DREAM and HL9 

complex was conducted (Figure 6.14). Titration data show that binding affinity of NS5806 

to Ca2+DREAM significantly decreases (Kd = 97 μM) in the presence of PS1-HL9. The 

binding affinity of NS5806 for Ca2+DREAM in the presence of PS1-HL9 significantly 

decreases compared to that determined in the absence of PS1-HL9 suggesting that binding 

of PS1-HL9 to DREAM blocks the docking site of NS5806 drug compound for DREAM 

at the hydrophobic residues Y174, F218, and F252 in DREAM. 

6.3 Discussion  

Previous studies have shown that DREAM and KChIP4 bind to the CTF of PS1 

and PS2, however, the role of Ca2+/Mg2+ in regulating protein-protein interactions remains 

unclear. By using co-immunoprecipitation, Choi et al. have reported that the interaction of 

DREAM and PS2 is calcium independent (Choi, Zaidi et al. 2001),  whereas Jo et al. have 

reported that DREAM association with PS1-CTF stimulates the activity of γ-secretase and 

facilitates production of Aβ42 plaques in Alzheimer’s disease  in the presence of Ca2+ (Jo, 

Jang et al. 2005b). Titration data show that Ca2+DREAM binds to HL9 with high affinity 

(Kd = 0.6 µM), whereas negligible binding was observed in the Apo form (Kd = 183 µM). 

In addition, identical dissociation constants were determined for HL9 association HL9 with 

Ca2+DREAM and Ca2+Mg2+DREAM suggesting that Ca2+ but not Mg2+ functionally 

regulates interactions between DREAM and HL9. The titration data also demonstrate that 

DREAM does not interact with HLβ suggesting that the region in PS1 interfacing with 

DREAM comprises amino acid residues from HL9 (residues 445 - 467). These 

observations are consistent with previous studies demonstrating that the carboxy-terminal 
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region in PS1 (residues 425 - 467) binds to DREAM and the homologous protein KChIP4 

(Buxbaum, Choi et al. 1998, Morohashi, Hatano et al. 2002). 

These results are in agreement with the model structure of Ca2+DREAM:PS1-CTF 

determined by protein-protein docking. The assembly of Ca2+DREAM and PS1-CTF 

involves two interaction interfaces on DREAM protein. The first binding interface is 

formed by residues from the dynamic loop connecting α7 and α8 in DREAM, namely R207 

which forms salt bridges with D450 and D458 from PS1 and R200 in DREAM which is 

involved in cation- interactions with F465 in PS1. The second interface is provided by 

hydrophobic residues located in the cavity between α7 and α10 of the DREAM carboxy-

terminal domain (Figure 6.1), namely residues M191, I194, M197, M198, M249, F252, 

V255, and I256 in DREAM which forms an aromatic cluster with F462 and F465 from 

PS1. The location of the binding sites in DREAM carboxy-terminal domain is confirmed 

by titration data between HL9 and DREAM-C. HL9 binds to DREAM-C with a Kd that is 

10 times lower than that determined for the full length DREAM. Since the NMR structure 

of the isolated DREAM-C in the presence of Ca2+ is nearly identical to the structure of the 

Ca2+ bound carboxy-terminal domain of the full length protein, the observed decrease in 

the DREAM-C affinity for HL9 reflects a distinct organization of individual monomers 

within the DREAM-C dimer due to the lack of amino-terminal domain in DREAM-C 

compared to DREAM (Yu et al., 2007; Lusin et al., 2008).  

To understand the mechanism of how Ca2+ regulates DREAM and PS1-CTF 

interactions, the structure of Ca2+DREAM was superposed with the model structure of 

ApoDREAM (Pham et al., 2015) as shown in Figure 6.15. In the ApoDREAM structure, 

the aromatic ring of F252 rotates ~90 degrees preventing π-π stacking with aromatic rings 
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of F462 and F465 from PS1 and destabilizing the aromatic cluster between phenylalanine 

residues from DREAM and PS1-CTF. In addition, the guanidinium group of R200 points 

away from the center of aromatic ring of F465 in PS1, weakening the interactions between 

7/8 loop and PS1. Also in the Ca2+ bound DREAM, α10 moves away from α7, 

enhancing the accessibility of the hydrophobic cavity between α7 and α10 in Ca2+DREAM.  

A high activation energy observed for HL9 association with Ca2+DREAM, likely 

reflects a conformational changes in the DREAM carboxyl domain during HL9 binding. 

This structural rearrangement at the binding interfaces may include the repositioning of 

α10 away from α7 as well as a reduction in the flexibility of 7/8 loop of DREAM. 

Increased accessibility of the carboxyl cavity in the Ca2+ bound DREAM was previously 

observed using hydrophobic fluorescent probes and associated with the increased DREAM 

affinity for arachidonic acid and site one of KV channel (Gonzalez, Pham et al., 2014).  

 

Figure 6.15: Left: Superposed structures of Ca2+DREAM (PDB code: 2JUL, molecule 1, 

cyan) and molecular dynamics simulation structure of ApoDREAM (yellow). Alpha 

helices 1 – 10 in DREAM are labeled by α1 – α10, respectively.  The movement of α10 

away from α7 is indicated by black arrows. Right: aromatic ring of F252 in ApoDREAM 

rotates ~90 degrees with respect to aromatic ring of F252 in Ca2+ bound DREAM. The 

guanidinium group of R200 in ApoDREAM points 180 degrees away with respect to that 

of Ca2+DREAM. 
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The relevance of the flexible loop in DREAM to association of HL9 is further 

highlighted by titration of HL9 with Ca2+DREAM-NCS1 chimera construct. These results 

show that binding affinity for HL9 to Ca2+DREAM-NCS1 is decreased (Kd = 38 µM, ΔG 

= - 5.9 kcal mol-1) compared to that of DREAM (Kd = 0.6 µM, ΔG = - 8.3 kcal mol-1). The 

difference in binding affinity is expressed in terms of difference in the free energy (ΔΔG) 

of - 2.4 kcal mol-1 which is comparable to the formation energy of a salt bridge. The binding 

affinity of HL9 to Ca2+DREAM-KChIP1 chimera is only partially reduced (Kd = 3.9 µM, 

G = -7.2 kcal mol-1). Amino acid sequence alignment of mouse DREAM with various 

KChIP members and NCS1 protein shows that the hydrophobic residues in the DREAM 

carboxyl terminus are well conserved and thus selectivity for PS1/PS2 is modulated by 

residues located in the 7/8 loop (Figure 6.4). For instance, the substitution of basic 

residues R200 and R207 in DREAM by a neutral residue N200 and an acidic residue E207 

from NCS1 is likely responsible for reducing the binding affinity of DREAM-NCS1 

chimera and HL9. Also, a replacement of R200 in DREAM by K200 from KChIP1 may 

contribute to the lower binding affinity of DREAM-KChIP1 chimera and HL9 due to a 

weaker cation-pi interaction between Phe and Lys compared to that of Phe and Arg 

(Andrew et al., 2002). However, addition of 300 mM NaCl does not affect binding affinity 

of HL9 and Ca2+DREAM (Figure 6.13) suggesting that interactions between Ca2+DREAM 

and HL9 comprise predominantly van der Waals contacts among hydrophobic residues 

exemplified by interactions of F462 and F465 residues from HL9 with F252 in α10 in 

DREAM as well as the residues at the hydrophobic crevice near α10.  
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Moreover, binding of PS1-CTF to DREAM inhibits interaction of the NS5806 drug 

compound with DREAM. Furthermore, the highly conserved amino acid residues at the 

region of HL9 in both PS1 and PS2 suggest that DREAM may also interact with PS2 with 

similar binding interfaces as determined in the DREAM and PS1 complex. 

6.4 Summary 

The results presented here provide insight into the nature of binding interfaces 

between DREAM and HL9 peptide and demonstrate the role of Ca2+/Mg2+ in 

DREAM:HL9 complex formation. The hydrophobic cavity in the DREAM carboxy-

terminal domain provide the binding site for HL-9 from presenilin and the complex is 

stabilized through interactions between the dynamic loop between helix 7 and 8 in DREAM 

and HL9 residues. The identified DREAM-presenilin interface hot spots provide druggable 

pockets for structure-based development of a novel drug compound that binds to DREAM 

and inhibits the interaction of DREAM with presenilin as an efficient treatment of 

Alzheimer’s disease.  
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7. THE ROLE OF INDIVIDUAL EF-HANDS IN MODULATING DREAM 

CONFORMATIONAL DYNAMICS AND INTERACTION WITH DNA  

(The results in this chapter were described in a manuscript that will be submitted to the 

Biochemistry journal by Pham and Miksovska)  

7.1 Background and significance 

 

Downstream regulatory element antagonist modulator, also known as K+ channel 

interacting protein 3 (KChIP3) or calsenilin, is a neuronal calcium sensor (NCS) protein 

that acts as a transcriptional repressor of prodynorphin/c-fos gene to modulate pain 

signaling in the spinal cord (Buxbaum et al., 1998; Carrion et al., 1999; An et al., 2000; 

Cheng et al., 2002). Structurally, DREAM contains four EF-hand Ca2+ binding motifs, of 

which EF-hand 1 does not bind Ca2+/Mg2+ due to the presence of conserved residues C104 

and P105 on the first EF-hand (Flaherty et al., 1993). In addition, EF-hand 2 selectively 

binds Mg2+ with a high affinity (Kd ~ 13 µM), whereas EF-hands 3 and 4 exclusively bind 

to Ca2+ with a relatively high affinity (Kd ~ 1 µM) (Osawa et al., 2005). Functionally, 

interactions of DREAM with intracellular target proteins and DNA are either Ca2+ 

dependent or independent. These interactions are involved in numerous physiological 

functions, including prodynorphin/c-fos gene transcriptional repression (Carrion et al., 

1999; Osawa et al., 2001), potassium channel activity modulation (An et al., 2000), 

enhancement of calcineurin activation by binding to calmodulin (Ramachandran et al., 

2012), modulation of  presenilins enzymatic activity (Buxbaum et al., 1998; Buxbaum, 

2004, Pham and Miksovska 2016), neuronal apoptosis, and Ca2+ signaling in the 

endoplasmic recticulum (Buxbaum et al., 1998; Leissring et al., 2000; Jo et al., 2001; 
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Lilliehook et al., 2002; Jo et al., 2004; Jo et al., 2005; Fedrizzi et al., 2008; Jang et al., 

2011). The mechanism of pain processing by transcriptional repression of prodynorphin/c-

fos gene has gained much attention in recent decades (Carrion et al., 1999; Osawa et al., 

2001; Cheng et al., 2002, Costigan and Woolf, 2002; Osawa et al., 2005; Lusin et al, 2008). 

However, a detailed insight into the molecular mechanism of DREAM interaction with 

downstream regulatory elements (herein named DNA) of prodynorphin/c-fos gene, the 

functional role of individual EF-hands in regulating the DREAM conformational dynamics 

and oligomerization of the DREAM-DNA complex formation remain unclear. 

The critical barrier for envisioning the molecular mechanism of interaction between 

DREAM and DNA lies in unknown structures of the Apo and Mg2+DREAM. The primary 

goal of this study was to delineate the structure-dynamics-function relationship of DREAM 

in modulating the interaction with DNA. To accomplish this goal, the impact of Mg2+ 

and/or Ca2+ on the conformational dynamics of DREAM and functional EF-hands 2, 3, and 

4 were characterized in order to highlight the role of individual EF-hands. The interaction 

between DREAM and DNA in the Ca2+ and/or Mg2+ dependent was also identified by 

characterizing the association of DNA with DREAM and DREAM EF-hand mutants. The 

binding interface of the ApoDREAM-DNA complex, as well as the conformational 

dynamics of ApoDREAM upon DNA association, were also examined using 

computational approaches. Recently, advances in computational chemistry, including 

computational docking (Comeau et al. 2004; Comeau et al., 2004; van Dijk et al., 2006; de 

Vries et al., 2010; Lyskov and Gray, 2008; van Dijk and Bonvin, 2009),  molecular 

dynamics simulations (Brooks et al., 1983), and protein dynamical network analysis (Sethi 

et al., 2009), have opened the opportunity not only to visualize the binding interface 



158 
 

between DREAM and DNA, but also to observe the dynamic structures of DREAM in the 

Apo, Mg2+, and Ca2+ bound forms at the level of individual amino acid residue. In addition, 

distinct signaling pathways, propagated by Ca2+ and Mg2+ from their binding sites to the 

DNA binding interface. The results of computational studies were integrated with 

experimental information to elucidate the structure-function relationship of DREAM in 

modulating the interaction with DNA.  

I employed isothermal titration calorimetry (ITC) to investigate the association of 

DNA to DREAM and DREAM EF-hand mutants in terms of binding affinity (Kd), binding 

stoichiometry (n), and binding energy (ΔH). Additionally, the oligomeric states of 

DREAM in complex with DNA were characterized using fluorescence anisotropy decays. 

In parallel, the roles of individual EF-hands 2, 3, and 4 in DREAM were also investigated 

by analyzing fluorescence emission and lifetimes of the intrinsic tryptophan residue 

(W169) in DREAM EF-hand mutants. Lastly, the binding interfaces between ApoDREAM 

and DNA were determined using a combination of computational docking (de Vries et al., 

2010), molecular dynamics (MD) simulation (Phillips et al., 2005), and dynamical network 

analysis (Sethi et al., 2009; Alexander et al., 2010).  

7.2 Results 

7.2.1 Steady-state emission spectra of tryptophan. 

The single tryptophan residue (W169) in DREAM, located at the interface between 

the N- and C-terminal domains, is an ideal fluorescence probe for investigation of the 

protein conformational dynamics of DREAM EF-hand mutants upon binding to Ca2+ 

and/or Mg2+ (Pham et al., 2015). The approach enables us to elucidate the functional role 

of each EF-hands in DREAM. The emission spectra of DREAM EF-hand 2 mutant 
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(DREAM-D150N) are almost identical in the Apo and Mg2+ forms, with the emission 

maximum centered at 340 nm (Figure 7.1, left panel). Ca2+ association at EF-hands 3 and 

4  in DREAM-D150N mutant leads to a decrease in emission intensity along with 5 nm 

blue-shift of emission maximum in the Ca2+DREAM emission spectrum compared to that 

obtained in the Apo or Mg2+ form (Figure 7.1, left panel).  

 

 

 

Figure 7.1: Tryptophan (W169) emission spectra of Apo, Mg2+, Ca2+, and Ca2+Mg2+ bound 

DREAM-D150N (left panel) and DREAM-E186Q (right panel) upon excitation at 295 nm. 

Conditions: 40 µM DREAM in 20 mM Tris pH 7.4, 10 mM LDAO, and 1 mM DTT. 

 

These results suggest that Ca2+ association to DREAM-D150N propagates 

structural rearrangement, by which W169 residue becomes more buried in a hydrophobic 

environment in a similar way as observed previously for DREAM wild-type (DREAM-

WT) described in chapter 4 (Pham et al., 2015).  However, a small but reproducible 

deviation was observed in the emission spectra of DREAM-D150N relative to that of 

DREAM-WT. Upon Ca2+ association, emission intensity of Ca2+DREAM decreases about 

18% relative to that of ApoDREAM as previously described in section 4.2.1 (Pham et al., 

2015). On the other hand, the emission intensity of Ca2+DREAM-D150N decreases about 
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11% compared to that of ApoDREAM-D150N. These results suggest a small structural 

difference in either the Apo or Ca2+ bound form of DREAM-D150N compared to DREAM, 

but overall the mutation D150  N at EF-hand 2 in DREAM does not affect the 

conformational transition triggered by Ca2+ in the protein.  

The association of Ca2+ to DREAM EF-hand 3 mutant (DREAM-E186Q) leads to 

a small but reproducible decrease in emission intensity (~ 2%) along with a 2 nm blue-shift 

of emission maximum in Ca2+DREAM-E186Q emission spectrum relative to that observed 

in the ApoDREAM-E186Q (Figure 7.1, right panel). These results illustrate that Ca2+ 

association to EF-hand 4 in DREAM-E186Q does not trigger a significant change in the 

protein tertiary structure, suggesting that the side chain of W169 residue remains solvent 

exposed in the Ca2+ bound form.  

On the other hand, Ca2+ association to DREAM EF-hand 4 mutant (DREAM-

E234Q) results in about 11% decrease in the emission intensity along with 5 nm blue-shift 

of emission maximum on Ca2+DREAM-E234Q emission spectrum relative to that 

ApoDREAM-E234Q (Figure 7.2). These changes in emission intensity and hypsochromic 

shift are similar to that obtained in DREAM-D150N mutant and DREAM wild-type. These 

results indicate that binding of Ca2+ at EF-hand 3 induces structural transition in DREAM-

E234Q mutant. In contrast, association of Mg2+ to ApoDREAM-E234Q does not lead to 

changes in W169 surrounding as evident from the emission spectrum of ApoDREAM-

E234Q is similar to that of Mg2+DREAM-E234Q. Interestingly, emission intensity of 

Ca2+Mg2+DREAM-E234Q is increased about 5% relative to that of the Ca2+DREAM-

E234Q. 
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Figure 7.2: W196 emission spectra of Apo, Mg2+, Ca2+, and Ca2+Mg2+ bound DREAM-

E234Q.  Conditions: 40 µM DREAM in 20 mM Tris pH 7.4, 10 mM LDAO, and 1 mM 

DTT. 

These results suggest that the replacement of E234 by Q  leads an increase the 

binding affinity for Mg2+ at EF-hand 4 with Mg2+ binding to EF-hand 4 impacts the 

emission of W169. Also, we cannot exclude the mutation of EF-hand 4 impacts the 

emission properties of W169 in the Mg2+ bound DREAM.   

7.2.2 Association of Ca2+ triggers changes in hydrophobicity at the surface of 

DREAM-EF hand mutants 

Previous work in our lab demonstrated that a large hydrophobic pocket exists on 

the surface of DREAM wild-type (Gonzalez and Miksovska, 2014). As the apolar cavity 

may provide a binding site for small hydrophobic molecules, surface hydrophobicity of 

DREAM was further explored. DREAM EF-hand mutants and their Ca2+ and/or Mg2+ 

bound forms were studied using steady-state fluorescence spectroscopy. Extrinsic 

fluorophores 8-anilino 1-naphathalene sulfonate (1,8-ANS) and 6-anilino 2-naphthalene 
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sulfonate (2,6-ANS) were employed to probe the surface hydrophobicity due to their high 

sensitivity to their local environment. 

The increase in emission intensity of 1,8-ANS  in the presence of DREAM-D150N 

indicates that ANS association  to the protein is independent of deactivated EF-hand 2. 

Significant increase in emission intensity was observed upon Ca2+ association to both Apo 

and Mg2+DREAM-D150N (Figure 7.3, left panel). Interestingly, the emission spectra of 

1,8-ANS bound to Ca2+- and Ca2+Mg2+DREAM-D150N are similar suggesting that the 

change in surface hydrophobicity is dependent solely on Ca2+ association. Moreover, 

previous studies have shown that Mg2+ binding to DREAM wild-type leads to a small but 

reproducible increase in the 1,8–ANS emission compared to that of Apo form (Gonzalez 

and Miksovska, 2014). In contrast, association of Mg2+ to ApoDREAM-D150N does not 

change in 1,8–ANS emission intensity relative to that of Apo form suggesting that the 

replacement of D150 by N abolishes the association of Mg2+ at EF-hand 2.  

 

Figure 7.3: Fluorescence emission spectra of 1,8-ANS (left panel) and 2,6-ANS (right 

panel) bound to DREAM-D150N (40 µM). The excitation wavelength was 350 nm and 

319 nm for 1,8-ANS and 2,6-ANS, respectively. 
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The results for 2,6-ANS bound to DREAM-D150N are consistent with those 

obtained using 1,8-ANS probe (Figure 7.4, right panel).  A significant increase in the 

emission intensity of 2,6-ANS upon Ca2+ association to both Apo and Mg2+DREAM-

D150N was observed. Likewise, the emission intensity of 2,6-ANS is remained unchanged 

in both Apo and Mg2+ forms.  

Furthermore, the same fluorescence emission pattern was observed in EF-hand 3 

mutant. Emission intensity change obtained for either 1,8-ANS or 2,6-ANS bound to 

DREAM-E186Q upon Ca2+ association to both the Apo and Mg2+ forms was comparable 

to the aforementioned results for DREAM-D150N (Figure 7.4, left and right panels, 

respectively). Likewise, identical change in emission intensity was also observed for either 

1,8- or 2,6-ANS bound to the Apo and Mg2+ forms of DREAM-E186Q.  

 
 

Figure 7.4: Fluorescence emission spectra of 1,8-ANS (left panel) and 2,6-ANS (right 

panel) bound to DREAM-E186Q (40 µM). The excitation wavelength was 350 nm and 

319 nm for 1,8-ANS and 2,6-ANS, respectively. 

 

Furthermore, the identical results were also observed in the emission intensity of 

both 1,8- and 2,6-ANS in the presence of Apo and Mg2+DREAM-E234Q (Figure 7.5 left 

and right panels). A further increase in intensity was obtained upon Ca2+ association to 
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both the Apo and Mg2+ forms.  However, association of Mg2+ to ApoDREAM-E234Q leads 

to a small but reproducible increase in the 1,8- and 2,6-ANS emission intensity relative to 

that of the Apo form. These results suggest that Mg2+ binding to EF-hand 4 may impact the 

emission of ANS, or the mutation of EF-hand 4 may affect the emission properties of ANS 

in the Mg2+ bound form. 

 
 

Figure 7.5: Fluorescence emission spectra of 1,8-ANS (left panel) and 2,6-ANS (right 

panel) bound to DREAM-E234Q (40 µM). The excitation wavelength was 350 nm and 

319 nm for 1,8-ANS and 2,6-ANS, respectively. 
 

7.2.3 Fluorescence intensity decay of tryptophan  

Since the tryptophan fluorescence lifetime is highly sensitive to small variations in 

the fluorophore environment, probing the lifetime of W169 in DREAM provides further 

insight into Ca2+ and/or Mg2+ induced changes in protein dynamics. The W169 lifetime 

data of DREAM mutants were best fit using a combination of Gaussian distribution and 

discrete exponential model. Goodness of the fits was judged based on residuals and the 2 

value of the non-linear least square fitting curve. The W169 lifetime parameters of 

DREAM EF-hand mutants are summarized in Table 7.1.  
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The DREAM-D150N (Figure 7.6, left panel) exhibits two distinct lifetimes, of 

which the discrete lifetime component (2) of 7.4 ns is Ca2+ independent, whereas Gaussian 

distribution lifetime component (1) varies upon Ca2+ binding to the Apo or Mg2+ forms. 

In the Apo form, the components 1 is centered at 2.9 ns with a distribution width (w1) of 

1.3 ns. Upon Ca2+ association, these values of 1 and w1 decrease to 1.9 ns and 0.7 ns, 

respectively. In addition, the fractional contribution of the Gaussian distribution (f1) also 

decreases from 39% in the Apo to 16% for the Ca2+ bound form. These results are similar 

to the results determined for DREAM-WT (see Chapter 4). 

 
 

Figure 7.6: Frequency domain W169 intensity decay of Apo, Mg2+, Ca2+, and Ca2+Mg2+ 

bound DREAM-D150N (left panel) and DREAM-E186 (right panel). The solid lines 

represent the data fitting using a combination of Gaussian distribution and discrete 

exponential decay model. The recovered parameters are shown Table 7.1. 

 

In contrast, Ca2+ association at EF-hand 4 in DREAM-E186Q (Figure 7.6, right 

panel) does not induce a structural change in the protein as evident from constant lifetime 

components 1 of 2.1 ns and 2 of 5.9 ns in both Apo and Ca2+ and/or Mg2+ bound forms. 

In addition, the Gaussian distribution width (w1) and the fractional contribution (f1) 

parameters are almost identical in the Ca2+ free and Ca2+ bound forms of the protein. 
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On the other hand, Ca2+ association at EF-hand 3 in DREAM-E234Q (Figure 7.7) 

induces similar change in protein dynamics as observed for DREAM-WT and DREAM-

D150N mutant. Namely, Ca2+ association leads to a decrease in W169 lifetime component 

1 from 2.5 ns in the Apo to 1.8 ns for the Ca2+ bound form.  

 
 

Figure 7.7: Frequency domain intensity decay of Apo, Mg2+, Ca2+, and Ca2+Mg2+ bound 

DREAM-E234Q (40 μM). The solid lines represent the data fitting using a combination 

of Gaussian distribution and discrete exponential decay model 

 

Moreover, the Gaussian distribution width (w1) becomes narrower in the Ca2+ 

bound form (0.76 ns) compared to that obtained for the Apo or Mg2+ form (1.1 ns). Similar 

to other DREAM constructs, the W169 lifetime component 2 of DREAM-E234Q (6.3 ns) 

is independent of Ca2+ association. Our fluorescence lifetime results suggest that Ca2+ 

association at EF-hand 3 but not EF-hand 4 triggers significant alteration in the tertiary 

structure and/or modulates conformational flexibility of DREAM protein. These results are 

in accordance with that obtained in the steady-state emission study.  
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Table 7.1: Emission decay parameters of W169 in DREAM EF-hand mutants using a 

continuous Gaussian distribution and a discrete component. 

 

 

7.2.4 Fluorescence intensity decay of 1,8-ANS binding to DREAM mutants 

The fluorescence decay parameters of 1,8-ANS are sensitive to structural changes 

associated with Ca2+ or Ca2+Mg2+ binding to DREAM EF-hand mutants. The decay 

parameters for 1,8-ANS binding to DREAM EF-hand mutants are summarized in Table 

7.2. In 20 mM Tris pH 7.4 buffer, 1,8-ANS exhibits a fast lifetime, 1 of  0.27 ns and a 

minor fraction (~ 2%) of 4 ns lifetime due to the non-planar excited state decay (Upadhyay 

et al. 1995, Someya, Yui 2010). In the presence of DREAM protein, two additional 

DREAM-D150N 
1 

(ns) 

w1  

(ns) 

f1 

(%) 
1  

2 

(ns) 

f2 

(%) 
α2  

<> 

(ns) 
2  

Apo 2.9 1.29 ± 0.04 39.2 0.62 ± 0.02 7.4 60.8 0.38 ± 0.02 5.6 0.9 

Mg2+ 2.8 1.20 ± 0.08 34.6 0.58 ± 0.05  7.4 65.4 0.42 ± 0.05 5.8 0.6 

Ca2+ 1.9 0.72 ± 0.07 16.2 0.45 ± 0.02  7.4 83.8 0.55 ± 0.02 6.5 0.9 

Ca2+Mg2+ 1.8 0.70 ± 0.04 16.0 0.43 ± 0.04  7.4 84.0 0.57 ± 0.04 6.5 1.1 

DREAM-E186Q          

Apo 2.1 0.82 ± 0.08 22.1 0.44 ± 0.01 5.9 77.9 0.56 ± 0.01 5.0 1.0 

Mg2+ 2.1 0.82 ± 0.04 23.5 0.46 ± 0.01 5.9 76.5 0.54 ± 0.01 5.0 1.4 

Ca2+ 2.2 0.88 ± 0.03 24.8 0.47 ± 0.01 5.9 75.2 0.53 ± 0.01 5.0 1.1 

Ca2+Mg2+ 2.1 0.85 ± 0.07  22.8 0.44 ± 0.05 5.8 77.2 0.56 ± 0.05 5.0 3.4 

DREAM-E234Q          

Apo 2.5 1.11 ± 0.01 33.1 0.54 ± 0.01 6.3 66.9 0.46 ± 0.01 5.0 0.7 

Mg2+ 2.4 1.00 ± 0.01 31.3 0.55 ± 0.01 6.3 68.7 0.45 ± 0.01  5.0 0.8 

Ca2+ 1.8 0.76 ± 0.02  18.7 0.45 ± 0.01  6.3 81.3 0.55 ± 0.01 5.4 0.9 

Ca2+Mg2+ 1.8 0.74 ± 0.04 18.8 0.45 ± 0.02  6.3 81.2 0.55 ± 0.02 5.4 0.9 

A constant standard error of 0.2 for the phase angle and 0.004 for modulation ratio was used. 1 is the 

mean decay time of the Gaussian distribution with a width of distribution w1. 2 is the lifetime of the discrete 

single exponential term. Values of 1 and 2 were determined from the fitting curve of an average intensity 

decay trace of five measurements. Values of w, , and experimental errors were calculated from the means 

and standard deviations of an average intensity decay trace of five measurements in at least two independent 

protein preparations while 1 and 2 parameters were linked across. 
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lifetimes, 2 and 3 were obtained suggesting that 1,8-ANS binds to DREAM at two distinct 

binding sites with different polarity (Gonzalez and Miksovska, 2014).  

The long lifetime, 3, was associated to 1,8-ANS bound to a nonpolar solvent 

restricted binding site on DREAM’s surface that promotes the decay of the excited state by 

populating the long lived non-planar conformation of 1,8-ANS (Gonzalez and Miksovska, 

2014). The fast lifetime, 2, was attributed to the 1,8-ANS probe bound to a partially solvent 

exposed binding surface (Gonzalez and Miksovska, 2014). 

Intensity decay of 1,8-ANS bound to DREAM EF-hand 2 mutant (DREAM-

D150N) is shown in Figure 7.8.  

 

Figure 7.8: Frequency domain intensity decay of 1,8-ANS bound to DREAM-D150N. 

Phase delay and modulation ratio are shown as solid symbols and empty symbols, 

respectively. Recovered intensity decay parameters are shown Table 7.2. 

 

Binding of 1,8-ANS to Ca2+ or Ca2+Mg2+ DREAM-D150N exhibits an increase in 

its long lifetime (3 ~ 18 ns)  and pre-exponential value (α3 ~ 44%) relative to that of 

ApoDREAM-D150N (3 ~ 17 ns, α3 ~ 27 %). The similar values of 3 and α3 were obtained 

for 1,8-ANS binding to both Ca2+ and Ca2+Mg2+DREAM-D150N suggest that 1,8-ANS 
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binding to the identical binding sites in both Ca2+ and Ca2+Mg2+ forms. The results also 

suggest that 1,8-ANS association to the DREAM-D150N is independent of deactivated EF-

hand 2. Interestingly, an increase in the value of 3 and α3 components (18 ns and 37 %, 

respectively) is also obtained for Mg2+ association to ApoDREAM-D150N suggesting that 

association of Mg2+ at EF-hands 3 and/or 4 in DREAM leads to a change in hydrophobicity 

similar to that obtained in Ca2+ bound form. These results suggest that change in surface 

hydrophobicity of DREAM-D150N is dependent on Ca2+ and/or Mg2+ association to EF-

hands 3 and 4. 

Intensity decay of 1,8-ANS bound to DREAM EF-hand 3 mutant (DREAM-

E186Q) and DREAM EF-hand 4 mutant (DREAM-E234Q) are shown in Figure 7.9 (left 

and right, respectively). 

 

Figure 7.9: Frequency domain intensity decay of 1,8-ANS bound to DREAM-E186Q (left) 

and DREAM-E234Q (right). Phase delay and modulation ratio are shown as solid symbols 

and empty symbols, respectively. Recovered intensity decay parameters are shown Table 

7.2. 

 

Binding of 1,8-ANS to DREAM-E186Q and DREAM-E234Q exhibits the same 

fluorescence intensity decay pattern (Figure 7.9). An increase in the values of 3 and α3 

components (~ 16 ns and ~ 24 %, respectively) is obtained for Ca2+ association to Apo and 
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Mg2+DREAM-E186Q. The results suggest that Ca2+ association solely at EF-hand 3 is able 

to induce change in DREAM’s surface hydrophobicity. Furthermore, Ca2+ association to 

ApoDREAM-E234Q leads a decrease of 2 component (4.3 ns) and a small increase in the 

values α3 component (14 %) compared to that of Apo form (2 = 5.3 ns and α3 = 11%). 

These results suggest that binding of Ca2+ at EF-hand 4 results in change in DREAM’s 

surface hydrophobicity, however, the surface hydrophobicity change induced by Ca2+ 

association at EF-hand 4 differs from that of Ca2+ association at EF-hand 3. 

 Table 7.2: Decay parameters for 1,8-ANS and DREAM EF-hand mutant complexes 

 

7.2.5 Circular dichroism spectra 

Circular dichroism (CD) is an excellent method for characterization of the 

secondary structural change in DREAM upon Ca2+ and/or Mg2+ association. In this study, 

the functional role of each EF-hand induces the secondary structure changes that were 

DREAM-D150N 
1 

(*) 

(ns) 

α1  

(%) 
2  

(ns) 

α2  

(%) 
3  

(ns) 

α3  

(%) 
2 

Apo 0.27 48 5.2 26 16.6 26 1.4 

Mg2+ 0.27 28 6.6 37 17.6 35 1.7 

Ca2+ 0.27 25 6.6 32 17.8 43 1.6 

Ca2+Mg2+ 0.27 24 6.6 32 17.9 44 1.5 

DREAM-E186Q        

Apo 0.27 60 5.5 22 15.2 18 1.4 

Mg2+ 0.27 62 5.6 21 15.7 17 1.3 

Ca2+ 0.27 55 5.9 21 16.4 24 1.4 

Ca2+Mg2+ 0.27 55 6.0 22 15.9 23 0.8 

DREAM-E234Q        

Apo 0.27 67 5.3 22 14.3 11 0.3 

Mg2+ 0.27 65 5.0 22 13.5 13 1.2 

Ca2+ 0.27 66 4.3 20 13.1 14 1.9 

Ca2+Mg2+ 0.27 62 4.8 23 13.6 15 2.7 
(*): fixed value of 0.27 ns for the lifetime of free 1,8 ANS in 20 mM Tris pH 7.4 

buffer (Upadhyay et al. 1995, Someya, Yui 2010).  
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characterized in DREAM EF-hand mutants. Similar to DREAM, the CD spectra of 

DREAM EF-hand mutants exhibit the strong negative CD signal at the region between 208 

nm and 222 nm on the spectrum, indicating a high alpha-helical content of the protein. 

Upon Ca2+ association to ApoDREAM-D150N (Figure 7.10, left panel), a significant 

decrease in ellipticity between 208 nm and 222 nm was observed, which indicates an 

increase in alpha helical content and/or rearrangement of the alpha helices. On the other 

hand, Mg2+ association to ApoDREAM-D150N leads to a minor decrease in CD signal 

suggesting that when EF-hand 2 is inactive, Mg2+ binds to EF-hand 3 and 4, inducing a 

local rearrangement in alpha helices at its binding site. However, association of Mg2+ to 

these sites does not significantly alter the secondary structure of DREAM.  

 
 

Figure 7.10: Circular dichroism spectra of Apo, Mg2+, Ca2+, and Ca2+Mg2+ DREAM-

D150N (left panel) and DREAM-E186Q (right panel). Conditions: 40 μM DREAM in 20 

mM Tris pH 7.4, 10 mM LDAO, and 1 mM DTT. 

 

On the other hand, Ca2+ association DREAM-E186Q (Figure 7.10, right panel) 

induces significant secondary structural change similar to that obtained in DREAM and 

DREAM-D150N. Association of Mg2+ to DREAM-E186Q results in an intermediate CD 

signal compared to that measured for the Apo and Ca2+DREAM-E186Q. Thus, the CD data 
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indicate that Mg2+ is able to induce a structural change distinct from those observed for 

metal free and Ca2+ bound DREAM-E186Q.  

Moreover, Ca2+ association to DREAM-E234Q (Figure 7.11) leads to a decrease of 

ellipticity compared to that observed for the Apo or Mg2+DREAM-E234Q. Our CD data 

demonstrate that binding of Ca2+ at either EF-hands 3 or 4 induces significant secondary 

structural change in DREAM, whereas binding of Mg2+ at EF-hand 2 leads to a local 

rearrangement in the secondary structure near its binding site.   

 
 

Figure 7.11: Circular dichroism spectra of Apo, Mg2+, Ca2+, and Ca2+Mg2+ DREAM-

E234Q. Conditions: 40 μM DREAM-E234Q in 20 mM Tris pH 7.4, 10 mM LDAO, and 

1 mM DTT. 

 

7.2.6 Thermodynamics of DREAM and DNA interaction 

Characterization of the thermodynamics of interactions is important for 

understanding the biomolecular recognition between DREAM and DNA, as well as the 

functional role of individual EF-hands in DREAM. The energetics of DREAM and 

DREAM EF-hand mutants binding to the duplex DNA oligonucleotides corresponding to 

the DRE sequence of prodynorphin (namely DNA) were carried out using isothermal 

titration calorimetry (ITC) technique. The isotherms for DNA binding to both ApoDREAM 
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and ApoDREAM EF-hand mutants were best fit into a two-sets of sites model, which 

represents two independent sets of binding affinity between ApoDREAM and DNA.  The 

recovered isotherm parameters are summarized in Table 7.3.  

Table 7.3: ITC parameters recovered for DNA binding to DREAM and DREAM EF-hand 

mutants using a two sets of sites model 

 

 

ApoDREAM association to DNA (Figure 7.12, panel A) exhibits an endothermic 

interaction evidenced by positive binding enthalpy (+ΔH).  The first binding site has higher 

binding affinity (Kd1 = 0.8 μM) and larger binding enthalpy (ΔH1 = + 35 kcal/mol) 

compared to that of the second binding site (Kd1 = 8.5 μM, ΔH1 = + 8.8 kcal/mol). In 

addition, the stoichiometry at the high (n1) and low (n2) binding affinity sites are 1.4 ± 0.1 

and 3.3 ± 0.3 mole of protein per mole of DNA, respectively. These results suggest an anti-

cooperative mechanism, in which one ApoDREAM molecule binds to DNA with higher 

affinity that decreases the binding affinity of the other three ApoDREAM molecules for 

the same DNA. Our isothermal profile for ApoDREAM (residues 65-256) binding to DNA 

DREAM and DNA n1 
Kd1  

(µM) 

ΔH1 

(kcal/mol) 
n2 

Kd2  

(µM) 

ΔH2 

(kcal/mol) 

ApoDREAM 1.4 ± 0.1 0.8 ± 0.1 35 ± 2 3.3 ± 0.3 8.5 ± 0.1 8.8 ± 2.8 

Mg2+DREAM 0.6 ± 0.1 0.3 ± 0.1 -18 ± 1 6.8 ± 0.8 10 ± 0.5 0.7 ± 0.1 

ApoDREAM-D150N 1.1 ± 0.1 2.8 ± 0.8 12 ± 1 3.4 ± 1.8 74 ±30 15 ± 11 

ApoDREAM-E186Q 0.9 ± 0.1 1.4 ± 0.5 21 ± 1 3.5 ± 1.5 98 ± 4 39 ± 28 

ApoDREAM-E234Q 0.7 ± 0.1 2.7 ± 0.2 43 ± 1 2.8 ± 0.4 67 ± 6 50 ± 9 

*Ca2+DREAM 1 222 ± 5 330 ± 5 - - - 

*Ca2+DREAM-D150N 1 264 ± 6 360 ± 6 - - - 

*Ca2+DREAM-E186Q 1 174 ± 2  79 ± 1 - - - 

*Ca2+DREAM-E234Q 1 164 ± 3  86 ± 1 - - - 

(*) Isothermal data were fit using a sequential binding sites model with n1 = 1. 

All experiments were conducted at 25 °C 



174 
 

(duplex DNA corresponding to the DRE sequence of prodynorphin gene) is similar to that 

obtained for ApoDREAM mut65-256 (identical amino acid sequence with the 

ApoDREAM construct in this study) binding to the same DNA (duplex DNA 

corresponding to the DRE sequence of prodynorphin gene) reported previously (Osawa et 

al., 2001). The lower binding affinity observed at the first binding site for ApoDREAM 

binding to DNA (Kd = 0.8 μM) in our experiment compared to that obtained in the previous 

study (Kd = 0.2 μM) (Osawa et al., 2001) can be explained by the different temperatures 

between our experiment (25˚C) and in the previous study (37 ˚C) (Osawa et al., 2001). The 

similar tendency for temperature dependence of binding affinity has been observed for 

binding of polymerase to primed-template DNA (Datta et al., 2006; Datta and LiCata 

2003). Nevertheless, the isotherm of ApoDREAM binding to DNA in our study denotes a 

good reference to investigate the functional roles of individual EF-hand in DREAM in 

modulating the interaction with DNA.   

Mg2+DREAM exothermically interacts with DNA (Figure 7.12, panel B) with 

higher binding affinity (Kd1 = 0.3 μM) and negative binding enthalpy (ΔH1 = -18 

kcal/mole) at the first binding site compared to that of ApoDREAM. In addition, a high 

stoichiometry value (n2 = 7), low binding affinity (Kd2 = 10 μM), and small binding 

enthalpy (ΔH2 = 0.7 kcal/mol) at the second binding site between Mg2+DREAM and DNA 

suggest a non-specific interaction at this binding site. Our ITC results indicate that DNA 

specifically binds to both Apo and Mg2+ DREAM; however, binding affinity is higher in 

the Mg2+ form. In addition, different binding thermodynamics of DNA association with 

Apo and Mg2+DREAM suggest the different binding mechanisms of interaction between 

these forms (Holdgate, 2001; Freiburger et al., 2009). 
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Figure 7.12: ITC isotherms for ApoDREAM (A) and Mg2+DREAM (B) binding to DNA. The upper panels of each profile reflects the 

thermal power expressed in units of µcal/s. The lower panel shows integrated reaction heats (ΔH) expressed in units of kcal/mol. The 

solid lines present the best fitting curve using a two-set of sites model with deletion of the first titration point. The experiment was 

carried out by titration of 500 μM of DREAM protein (in syringe) into 15 μM DNA (in sample chamber) at 25 ˚C.  
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To understand the functional properties of each EF-hand of DREAM in modulating 

the interaction with DNA, ITC experiments were carried out for the association of DNA 

with DREAM EF-hand mutants. The isotherm profiles for DNA binding to ApoDREAM 

mutants D150N, E186Q, and E234Q (Figure 7.13 panels: A, B, and C, respectively) are 

similar to that obtained for ApoDREAM binding to DNA. However, the binding affinity is 

slightly smaller at the first binding site (Kd1 ~ 1.4 to 2.8 μM) and that is much higher (Kd2 

~ 67 to 98 μM) at the second binding site compared to that of ApoDREAM. These results 

suggest a small structural deviation between ApoDREAM wild-type and mutants (see 

explanation in discussion). In contrast, the isotherms of DNA association to Ca2+ bound 

DREAM and DREAM EF-hand mutants can be best modeled using a sequential binding 

sites model with binding stoichiometry, n = 1. No significant binding was observed for 

DNA association with Ca2+DREAM wild-type and Ca2+DREAM-D150N (Kd ~ 225 to 265 

μM) (Figure 7.14, panel A and B, respectively), whereas a higher binding affinity was 

observed for association of DNA to Ca2+DREAM-E186Q and Ca2+DREAM-E234Q (Kd ~ 

164 to 174 μM) (Figure 7.14, panels C and D, respectively). These results suggest that 

binding of Ca2+ at either EF-hand 3 or 4 in DREAM is able to modulate interaction with 

DNA, but binding of Ca2+ at both EF-hands 3 and 4 in DREAM fully inhibits the interaction 

between DREAM and DNA.
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Figure 7.13: ITC isotherms for ApoDREAM-D150N (A) and ApoDREAM-E186Q (B), and ApoDREAM-E234Q (C) binding to DNA. 

The upper panels of each profile reflects the thermal power expressed in units of µcal/s. The lower panel shows integrated reaction heats 

(ΔH) expressed in units of kcal/mol. The solid lines present the best fitting curve using a two-set of sites model with deletion of the first 

titration point. The recovered isothermal parameters are shown in Table 7.3. 
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Figure 7.14: ITC isotherms for Ca2+DREAM (A), Ca2+DREAM-D150N (B), Ca2+DREAM-E186Q (C), and Ca2+DREAM-E234Q (D) 

binding to DNA. The upper panels of each profile reflects the thermal power expressed in units of µcal/s. The lower panel shows 

integrated reaction heats (ΔH) expressed in units of kcal/mol. The solid lines present the best fitting curve using a sequential binding 

sites model with deletion of the first titration point. The recovered isothermal parameters are shown in Table 7.3. 
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7.2.7 Oligomeric states of DREAM in complex with DNA 

Because Ca2+/Mg2+ occupancy at EF-hands directly changes oligomerization of 

DREAM, which in turn mediates the interactions with DNA (Osawa et al., 2001; Osawa et 

al., 2005; Lusin et al., 2008; Gonzalez and Miksovska 2014), the oligomerization states of 

DNA in complex with ApoDREAM and Mg2+DREAM were characterized using time-

resolved anisotropy. The anisotropy decay traces of DNA in buffer, and DNA in complex 

with ApoDREAM, Mg2+DREAM, and Ca2+DREAM are shown in Figure 7.15, panel A. 

The anisotropy decay parameters are shown in Table 7.4. The anisotropy decay of DNA in 

buffer solution and Ca2+DREAM-DNA complex were fit into a single correlation time 

model with rotational correlation time (θ1) of 10.7 ns and 8.1 ns, respectively. Anisotropy 

decay of ApoDREAM-DNA complex was fit into a two rotational correlation time model, 

in which the fast rotational correlation time (θ1) of 8.1 ns represents the rotation of DNA 

free in buffer solution and the slow rotational correlation time (θ2) of 54.5 ns reflects global 

rotation of ApoDREAM-DNA complex (Table 7.4).  

To investigate the interaction of Mg2+DREAM with DNA, anisotropy decay 

experiments were carried out in the presence of 100 μM. The anisotropy decay of DNA in 

buffer solution containing Mg2+ and the Mg2+DREAM-DNA complex (Figure 7.15, panel 

B) complex were fit using a two correlation time model with the fast rotational correlation 

time (θ1) of 2.7 ns reflecting the local motion of the fluorophore (ethidium bromide) and 

the slow rotational correlation time (θ2) of 21.9 ns representing the global motion of the 

Mg2+DREAM-DNA complex (Table 7.4).  

 

 



180 
 

 
 

Figure 7.15: A: Time-resolved anisotropy of DNA in buffer solution (triangle), Ca2+DREAM-DNA complex (square), and ApoDREAM-

DNA complex (circle). B: Time-resolved anisotropy of DNA in buffer solution containing 100 μM MgCl2 (pentagon) and 

Mg2+DREAM-DNA complex (hexagon). Differential phase angle and modulation ratio are shown as solid and empty symbols, 

respectively. Solid lines represent the non-linear least square fit and recovered parameters are shown in Table 7.4. 
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 Table 7.4:  Time-resolved anisotropy decay parameters of DREAM and DNA interaction 

 

With the known molecular weight of DNA and DREAM, the rotational correlation 

time is estimated to be 8 ns for DNA, 18.5 ns for monomeric DREAM bound to one DNA 

molecule, and 50 ns for tetramer DREAM bound to one DNA molecule, using a degree of 

hydration of 0.98 ml g-1 for a spherical complex at 20 °C (Weber, 1953; Fischer et al., 

2004). The experimentally determined value of θ1 for unbound DNA in the ApoDREAM 

and Ca2+DREAM samples matches well with the estimated θ1 value. However, the θ1 value 

of DNA in buffer is about 2 ns slower, reflecting rotation of a non-spherical shape of DNA. 

The determined θ2 value for ApoDREAM-DNA complex (54.5 ± 6.0 ns) matches the 

estimated θ2 value for tetramer DREAM bound one DNA molecule (50 ns), within 

experimental error. In addition, the determined θ2 value for Mg2+DREAM-DNA (21.9 ns) 

is about 2 ns slower compared to the calculated value, suggesting a non-spherical shape of 

the Mg2+DREAM-DNA complex. 

7.2.8 Molecular dynamics simulation of DREAM and DREAM EF-hand 

mutants 

To get insight into the functional roles of individual EF-hands in modulating the 

conformational dynamics, the three dimensional (3D) structures of the Apo and Mg2+ and 

 θ1 (ns) θ2 (ns) r1 r2 2 

DNA in buffer 10.7 ± 0.2 - 0.30    - 1.1 

ApoDREAM-DNA 8.1 ± 0.2 54.5 ± 6.0 0.22 0.11 0.9 

Ca2+DREAM-DNA 8.1 ± 0.1 - 0.28 - 2.7 

DNA in Mg2+ buffer 2.8 ± 0.2 14.2 ± 0.6 0.12 0.16 1.0 

Mg2+DREAM-DNA 2.7 ± 0.2 21.9 ± 0.9 0.13 0.16 1.2 

All experiments were conducted at 20 °C 
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Ca2+ bound DREAM are required. Since  the structure of the Ca2+ free form exhibits high 

flexibility and heterogeneity in solution,  the 3D structure of Apo or Mg2+ bound DREAM 

has not been  experimentally determined (Lusin et al., 2008). Alternatively, advances of 

molecular dynamics (MD) simulations provide a comprehensive approach to model the 

structures of proteins (Hospital et al., 2015).  

 

Figure 7.16: The backbone root-mean-square deviations (RMSD) of Apo, Mg2+, and Ca2+ 

DREAM during a 100 ns simulation time. 

 

The MD simulations of Apo and Mg2+DREAM were constructed using the NMR 

structure of Ca2+DREAM as an initial structure. The time evolution of the backbone root-

mean-square deviations (RMSD) profile (Figure 7.16) shows that the RMSD of 

Ca2+DREAM  increased quickly within the first 10 ns, then changed gradually, and reached 

equilibrium around 4.5 and 5.5 Å after 15 ns simulation time. The backbone RMSD of 

Mg2+DREAM shows more flexibility compared to that of Ca2+DREAM, but changed 

gradually and remained around 4.5 and 5.0 Å after 60 ns.  The RMSD of ApoDREAM 

exhibits the highest flexibility compared to that of the Mg2+ and Ca2+ bound forms. 
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However, the ApoDREAM also reached equilibrium around 5.5 and 6.0 Å after 85 ns 

simulation time. 

The root-mean-square fluctuation (RMSF) plot of C atoms was used to calculate 

the fluctuations of individual residues with respect to the average structure in Apo, Mg2+, 

and Ca2+ bound forms of DREAM protein. The RMSF profile (Figure 7.17) shows that 

binding of Ca2+ at EF- hands 3 and 4 in DREAM reduces the fluctuation of the Ca2+ binding 

loop of  EF hands 3 (residues 170 - 186) and 4 (residue 215 - 234), whereas the long flexible 

loop connecting α7 and α8 (residues 200 - 210) in DREAM remains highly flexible when 

Ca2+ is bound.  

 

Figure 7.17: The root-mean-square fluctuation (RMSF) plot of C atoms represents the 

fluctuations of individual residues with respect to the average structure in the structures of 

Apo, Mg2+, and Ca2+ bound forms of DREAM from 20 to 100 ns simulation time. 

 

These results are in agreement with that observed from the previous MD simulation 

study in our group (Pham, Dhulipala et al. 2015) and the NMR study reported by Lusin et 

al. (Lusin et al., 2008), indicating that the force field (CHARMM27) and the MD 



184 
 

simulation approach in this study are suitable for constructing a 3D model of 

Mg2+DREAM. Indeed, the RMSF profile of Mg2+DREAM shows that when Mg2+ is bound 

at EF-hand 2, the region containing α1, α2, and α5 in the N-terminus of DREAM exhibit 

decrease in  fluctuation compare to that of Apo and Ca2+ bound forms. Interestingly, the 

loop connecting α3 and α4 (residues 121 – 128) exhibits increased fluctuation, whereas the 

long loop connecting α7 and α8 (residues 197 – 211) and C-terminal regions (residues 216 

to 256) are more stable in Mg2+DREAM.  

7.2.9 Dynamical network analysis of DREAM molecular dynamics simulations 

 

 To better illustrate the dynamic organization of DREAM, I carried out analysis of 

the MD simulations using dynamic network analysis. This approach allows me to build 

three dimensional networks which represent the cluster of amino acids whose motions are 

highly correlated. The resulting networks of  Apo, Ca2+ bound at EF-hands 3 and 4, Ca2+ 

bound at EF-hand 3 (DREAM-E234Q mutant), and Ca2+ bound at EF-hand 4 (DREAM-

186Q mutant) (Figure 7.18).  

 Dynamical network analysis of ApoDREAM and Ca2+DREAM simulations 

(Figure 7.18, top left and right panels, respectively) shows that communities in 

ApoDREAM remain connected, however, the correlation between communities, 

represented by thinner edges connecting the nodes, is much weaker compared to that of 

Ca2+DREAM. In addition, communities containing α-helices 1, 2, 3, 4, and 5 in the N-

terminus (red, yellow, and orange) are rearranged upon calcium binding to either or both 

EF-hands. The red community, which contains only α2 in the Apo form, is correlated to 

α3, α5, and partially with α4 in Ca2+ bound form, creating a compact domain in the N-

terminus. Interestingly, in the absence of Ca2+, the α10 helix is coupled to the N-terminal 
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domain of DREAM through weak interactions with α3 and α4, whereas   it strongly 

interacts with α7 and α8 in the Ca2+ bound form creating a highly correlated domain in the 

C-terminus. Analysis of DREAM-E186Q shows that binding of Ca2+ at EF-hand 4 

rearranges the purple community, in which α8 becomes connected with α6 and α7. In 

addition, organization of the red, yellow, and orange communities in the N-terminus 

remains similar with that of the ApoDREAM. 

 

Figure 7.18: Graphic representation of the monomer structures averaged over 100 ns of 

MD simulations of Apo (green), Ca2+ bound at EF-hands 3 and 4 (blue), Ca2+ bound at EF-

hand 4 in DREAM-E186Q mutant (light blue), and Ca2+ bound at EF-hand 3 in DREAM-

E234Q mutant (pink). All nodes and edges of the communities are colored and shown as 

ball and stick, respectively.  

 

On the other hand, analysis of DREAM-E234Q mutant (Ca2+ bound EF-hand 3) 

shows that the gray community, which contains only α9 and/or partial α6 in ApoDREAM, 
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Ca2+DREAM, and Ca2+DREAM-E186, is significantly spatially reorganized and includes 

a new connection to a part of α5. Furthermore, the organization of the red, yellow, and 

orange community in Ca2+DREAM-E234Q is structurally similar to that of Ca2+DREAM 

wild-type, lacking the strong correlation within residues of α1. These results suggest that 

EF-hand 3 may play an important role in Ca2+ signaling transduction from the C- to N- 

terminal domains of DREAM. 

7.2.10 Dynamical paths connecting residues R98 and E186 in DREAM 

 Following the results from dynamical network analysis, which suggested that Ca2+ 

association to EF-hand 3 may play a crucial role in tertiary structure reorganization and 

propagation of Ca2+ signal transduction from C- to N-terminal domains in DREAM 

dynamic pathway was determined between E186, the catalytic residue in EF-hand 3 

(Osawa et al., 2005),  and R98, located in N-terminal. The residue R98 was chosen for 

analysis because it was proposed to be critical for DREAM interaction with DNA (Lusin 

et al., 2008). Therefore, the paths connecting R98 and EF-hand 3 may reflect the paths for 

Ca2+ signal transduction from EF-hands 3 from the C-terminus to the N-terminus in order 

to allosterically regulate the interactions with DNA. Experimentally, W169 was employed 

as an intrinsic fluorophore due to its sensitivity to changes in hydrophobicity of the 

surrounding environment upon Ca2+ association. Steady-state fluorescence emission and 

change in fluorescence lifetimes of W169 were monitored and combined with 

computational results elucidate the functional role of each EF-hand in DREAM. Analysis 

of ApoDREAM shows a single path connecting residues R98 and E186 (Figure 7.19, top 

left panel). In addition, the thinner edges connecting the communities in this path represent 

weak connection. Furthermore, residue W169 is not included in the path connecting R98 
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and E186 in ApoDREAM. In contrast, two strongly coupled paths connecting residue R98 

and E186 were obtained in Ca2+DREAM wild-type (Figure 7.19, bottom panel). Further 

analysis of the paths connecting R98 and E186 in Ca2+DREAM reveals that they contain 

the major hydrophobic residues F88, L155, I157, L158, L159, W169, L173, F121, L155, 

Y118, F114, L134, F135, F133, Y130, and A137 (Figure 1.19, bottom panel), which are 

strongly coupled and create a large hydrophobic cluster in the center of DREAM, 

connecting the N- and C-terminal domains and surrounding the W169 residue.  

 

Figure 7.19: Top: The path connecting residues E186 and R98 in ApoDREAM (left), 

Ca2+DREAM-E234Q mutant (right), and Ca2+DREAM wild-type (bottom). The nodes in 

communities are shown as balls. Communities are colored using the same color codes as 

shown in Figure 7.18. The hydrophobic residues in the path connecting from R98 to E186 

in Ca2+DREAM wild-type are shown in stick (bottom).  
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Furthermore, analysis of DREAM-E234Q (Ca2+ bound at EF-hand 3) reveals a 

single path connecting residues R98 and E186 (Figure 7.19, top right panel). Interestingly, 

the path contains hydrophobic residues F88, L155, I157, L158, L159, W169, and L173 

which are also observed in Ca2+DREAM wild-type. 

Computational results show structural reorganization in DREAM when Ca2+ is 

bound at EF-hands 3 and 4. This conformational change is accompanied by rearrangement 

of α-helices 4, 5, 7, 8, and 10, which allow residues L155, I157, L158, L159, L134, Y130, 

Y118, and L173 to form a hydrophobic pocket around W169 in the Ca2+ bound form. 

Indeed, the fluorescence steady-state emission and lifetime data show a decrease in 

emission intensity as well as a 5 nm hypsochromic shift, along with decrease in 

fluorescence lifetime of W169 which indicates that the residue W169 is buried in a less 

polar environment compared to their Apo forms (section 7.2.1). These results highlight the 

role of EF-hand 3 in Ca2+ signal transduction in DREAM. 

7.2.11 Dynamical paths connecting residues R98 and E234 in DREAM 

In parallel, dynamical network analysis was performed to determine contribution 

of EF-hand 4 in Ca2+ signaling.  The computational results show a single path connecting 

residues R98 and E234Q in ApoDREAM, Ca2+DREAM wild-type, Ca2+DREAM-E186Q 

mutant (Figure 7.20).  

The path between R98 and E234 in ApoDREAM is weakly coupled, which is 

represented by the thin edges connecting the nodes between communities. On the other 

hand, a strongly coupled path between R98 and E234 was observed in Ca2+DREAM wild-

type and is comprised of hydrophobic residues F88, V152, L159, I157, W169, F235, L236, 

I232, L167, and F171 (Figure 7.20, bottom panel).  
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Figure 7.20: The path connecting residues R98 and E234 in ApoDREAM (green), 

Ca2+DREAM (blue). The nodes in communities are shown as balls. Communities are 

colored using the same color scheme as shown in Figure 7.18. The hydrophobic residues 

within paths connecting from R98 to E234 in Ca2+DREAM are shown in stick. Note that 

only two hydrophobic residues I157 and L167 surrounding W169 were observed in the 

path. 

 

Interestingly, only two hydrophobic residues I157 and L167 surrounding the 

residue W169 were observed in this path, suggesting that binding of Ca2+ at EF-hand 4 

may not significantly alter the hydrophobic environment surrounding W169. Moreover, 

the path connecting residues R98 and E234 in Ca2+DREAM-E186Q mutant shares some 

common residues with that of Ca2+DREAM wild-type. However, a strongly coupled 

hydrophobic cluster formed by residues L167, F171, I232, F235, and L236 was obtained 

in Ca2+DREAM wild-type (Figure 7.20, bottom panel).  
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7.2.12 Mg2+ association to EF-hand 2 stabilizes the N-terminal domain 

Previous studies have shown that binding of Mg2+ at EF-hand 2 in DREAM 

stabilizes the monomeric form of the protein, whereas ApoDREAM mainly forms a 

tetramer (Osawa et al., 2005; Gonzalez and Miksovska, 2014). However, the absence of   

Mg2+DREAM structure prevents us from understanding how Mg2+ binding to EF-hand 

stabilizes the DREAM monomer, as well as the influence of Mg2+ on the interaction with 

DNA. In this study, MD simulation and dynamical network analysis were employed to 

provide insight into structural changes initiated upon Mg2+ association. Then, the 

functional role of EF-hand 2 in the modulating DREAM-DNA interaction was elucidated. 

  

 

Figure 7.21: The MD simulation model of Mg2+DREAM: Association of Mg2+ at EF-hand 

2 forms a new hydrophobic cluster (shown as pink solid surface), that has not been 

observed in either Apo or Ca2+DREAM. The other two aromatic clusters identified in the 

C-terminus and N-terminus are conserved in the NMR structure of Ca2+DREAM and 

shown as grey solid surface and blue solid surface.  

 

The MD simulation of Mg2+DREAM reveals that binding of Mg2+ at EF-hand 2 

results in the formation of a new hydrophobic cluster formed by hydrophobic residues L93, 
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L96, F100, F148, F151, V151, L155, and L159 (shown as pink surface cluster in Figure 

7.21 which has not been observed in the NMR structure of Ca2+DREAM (Lusin et al., 

2008).   

The presence of a hydrophobic cluster is consistent with the dynamical network 

analysis that reveals a large network reorganization at the N-terminus upon Mg2+ binding. 

Specifically, α1, α2 and α5 (the exiting α-helix of EF-hand 2) form a strongly coupled 

community that is shown in Figure 7.22, left panel.  

It is important to note that binding of Mg2+ at EF-hand 2 changes the orientation of 

DNA-interacting helix α2 so that the hydrophobic residues L93, L96, and F100 on the inner 

side of α2 are in contact with the hydrophobic residues F121 (from α3), F148, F151, V151, 

L155, and L159 from α5 (exiting helix of EF-hand 2), creating a strongly coupled network. 

Binding of Mg2+ triggers  reorganization of the N-terminus domain which results in an 

increased exposure  of basic and polar residues K90, K91, Q94, S95, R98, K101 on the 

solvent exposed side of α2 (Figure 7.22, right panel). A salt bridge between residues E92 

from α2 and R160 from α5 is observed in the structure of Apo (Figure 7.23, left panel) and 

Mg2+DREAM (Figure 7.22, left panel), absent in the average MD structure of 

Ca2+DREAM, may contribute to the stabilization of α2 and could lead to the increased 

stability of ApoDREAM and Mg2+DREAM-DNA complex (see ITC experimental results). 

The orientation of α2 in ApoDREAM and Mg2+DREAM is somewhat similar to 

that of the basic helix-loop-helix DNA binding motif, in which exposed residues on the 

basic helix form sequence-specific contacts with the DNA backbone (Ma et al., 1994; Lusin 

et al., 2008). Interestingly, residues L155 and L159 from α5, which are proposed to interact 

with L251 on the second Ca2+DREAM molecule to form a Ca2+DREAM dimer (Lusin et 
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al., 2008), are inserted into the N-terminal hydrophobic cluster surrounded by F87, F100, 

F121, F148, and F151 in Mg2+DREAM. The structure of the ApoDREAM tetramer is 

unknown, however it is possible that L155, L159 and L251 are involved in the stabilization 

of ApoDREAM tetramer suggesting that Mg2+ association at EF-hand 2 precludes the 

protein from forming a tetramer in the absence of Ca2+. These observations are in 

accordance with the experimental results, showing that Mg2+ stabilizes DREAM as a 

monomer, previously reported by our group (Gonzalez and Miksovska, 2014) and Osawa 

et al. (Osawa et al., 2005). 

 

     

Figure 7.22: Left: Dynamical network analysis of the 100ns MD simulation of the first 6 

α-helices in Mg2+DREAM N-terminus displayed in communities (each community has 

different color). Right: The dynamical network Hydrophobic cluster  L93, L96, and F100 

on the inner side of α2 contact with the hydrophobic residues F121 (from α3), F148, F151, 

V151, L155, and L159 from α5 (exiting helix of EF-hand 2) that is stabilized upon Mg2+ 

association to DREAM. The basic and polar residues K90, K91, Q94, S95, R98, and K101 

interfacing with DNA are shown on the outer site of α2. The leucine residues L155 and 

L159 at the dimeric interface of DREAM are in red, whereas the basic residues forming a 

salt bridge between α2 and α5 are shown in light blue. 
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On the other hand, dynamical network analysis of the MD simulation structure of 

ApoDREAM reveals that α2 is not involved in an extended community, suggesting a 

decrease in stability of the N-terminus domain (Figure 7.23, right panel). 

 

Figure 7.23: Left: Dynamical network analysis of the 100ns MD simulation of the first 6 

α-helices in ApoDREAM N-terminus displayed in communities (each community colored 

differently). Right: In the absence of Mg2+, the α2 is not involved in an extended 

community formed by α1, α5, and α6, suggesting a decrease in stability of the N-terminus 

domain despite of the salt bridge formation between residues E92 and R160 (in light blue, 

bottom). 

 

In contrast to Mg2+DREAM, dynamical network analysis of the MD simulation 

structure of Ca2+DREAM reveals that binding of Ca2+ at EF-hand 3 and 4 leads to the 

breakage of salt bridge between residue E92 and R160 as well as the absence of the of the 

extended  community formed by α1, α2, and α5. Indeed, in the structure of  Ca2+ DREAM, 

α1 is repositioned in such way that partially blocks the DNA binding site on α2, resulting 

in the decrease of DREAM  affinity for  DNA (Figure 7.24). 
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Figure 7.24: Dynamical network analysis of the 100ns MD simulation of the first 6 α-

helices in Ca2+DREAM N-terminus displayed in communities (each community colored 

differently).  Rearrangement of α1 partially blocks the DNA binding site on α2. 

 

7.2.14 Computational docking of ApoDREAM and DNA 

The computational docking complex of ApoDREAM and DNA is shown in Figure 

7.25. The docking complex of ApoDREAM-DNA reveals that the assembly of 

ApoDREAM and DNA involves two major types of interaction. Electrostatic interactions 

are found between the negatively charged phosphate oxygens from nucleotides C43, A13, 

and C41 from DNA and the positively charged side chain of residues K90, K91, and K101 

from α2 in DREAM, respectively. 

The complex is further stabilized by hydrogen bonds between residue R98 and 

nucleotides T11, C12, and C41 with the total energy of 14.3 kcal/mol, determined using 

YASARA Structure program version 13.1.25 (Krieger et al., 2002), in which the planar 

guanidinium group of residue R98 from DREAM inserts into the minor groove at the target 

DRE site formed by 5’-10GTCA13-3’ and ‘3-41CAGT38-5’ (Carrion, 1999; Ledo et al., 2000) 

(Figure 7.23). Moreover, the cation- interactions was also obtained between residue R98 

from DREAM and nucleotides T11, C12, A40, and C41 from DNA with the total 
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interaction strength of 10.6 kcal/mol. Hydrogen bond interactions were also found between 

pairs of amino acid residue-nucleotide: K90-C43 (5.8 kcal/mol), K91-A13 (5.2 kcal/mol), 

K101-A41 (5.1 kcal/mol), Q94-T42 (3.4 kcal/mol), S95-A13 (5.7 kcal/mol), and Q120-

G15 (4.5 kcal/mol) (Figure 7.23). Furthermore, the residues and nucleotides at interface 

hot spots determined in the ApoDREAM-DNA docking complex are consistent with the 

basic residues proposed in other studies (Carrion et al., 1999; Lusin et al., 2008). 

 

 

Figure 7.25: (a): The MD simulation of docking complex between ApoDREAM (residues 

75-256) and 25 oligomers corresponding to the DRE sequence of prodynorphin gene 

(namely DNA). (b): A closer view at the interaction interface between ApoDREAM and 

DNA. Yellow dot lines represent hydrogen bond interactions. (c): the sequence of 25 

oligonucleotides corresponding to the DRE. (d): the sequence alignment of 45 amino acid 

residues in the N-terminus of DREAM (residues: 75-120, top) and that of the non-DNA 

binding recoverin (residues: 12-57) to highlight the positively charged residues in DREAM 

participating to the interaction with DNA.  
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7.3 Discussion 

7.3.1 Conformational dynamics associated with Ca2+ binding at EF-hand 3 

and/or 4 modulates DREAM and DNA interaction 

In this report, I have studied functional properties of individual EF-hands of 

DREAM in regulating the protein conformational dynamics and interaction with DNA. In 

the previous study, I have shown that Ca2+ association to the EF-hands 3 and 4 in the C-

terminal domain of DREAM leads to the changes in conformational dynamics of residue 

W169. In the Ca2+ bound DREAM, W169 is located  in a less polar environment, as 

demonstrated by a decrease in the emission intensity (-18 %) along with a concomitant 

hypsochromic shift of 5 nm of the emission spectra relative to that of Ca2+ free forms (Pham 

et al., 2015). In addition, the Gaussian distribution component of W169 lifetime (1) in 

ApoDREAM decreases from 3.5 ns to 1.7 ns in the Ca2+ bound form suggesting lower 

heterogeneity of the Ca2+ bound protein Furthermore, the exponential decay fraction of 

ApoDREAM (f1 = 77%) significantly decreases when Ca2+ is bound (f1 = 44%) (Pham et 

al., 2015).  

The overall emission properties of Ca2+ free and Ca2+ bound DREAM-D150N are 

very similar to those determined for DREAM wild-type. However, closer inspection of the 

results reveals a small deviation in fluorescence properties of W169 in this mutant, namely, 

quenching of W169 emission intensity in this mutant is less efficient than in the DREAM 

wild-type and the Gaussian component of the W169 lifetime is shorter (2.9 ns)  in the Ca2+ 

free form of the protein.  In the Ca2+ bound form of protein, residue D150 is located ~ 14.5 

Å from W169, indicating that the charge distribution in the EF-hand 2 impacts the 

conformation of residues located at the interface of the C- and N- terminus domains.     



197 
 

Furthermore, our ITC data show that the binding affinity of ApoDREAM-D150N 

with the duplex DNA at the high affinity site is weaker (Kd1 = 2.8 μM) and the change of 

enthalpy (ΔH1 = + 12 kcal/mol) is smaller compared to that of ApoDREAM (Kd1 = 0.8 μM 

and ΔH1 = + 35 kcal/mol) suggesting a small deviation in the conformational dynamics 

between the structures of ApoDREAM-D150N and ApoDREAM impact DREAM 

interactions with DNA.  

In order to explain the deviation between the Apo forms of DREAM wild-type and 

DREAM-D150N mutant, the MD simulation structure of ApoDREAM was superposed 

with the MD simulation structure of ApoDREAM-D150N (Figure 7.26, left panel).  

 

Figure 7.26: Left: Residue W169 is buried in a more hydrophobic environment observed 

in ApoDREAM (yellow) compared to that obtained in ApoDREAM-D150N mutant 

(green). Right: The superposition of five α-helices in the N-terminal domain of 

ApoDREAM (yellow) and ApoDREAM-D150N (green). 

 

Interestingly, the indole ring of W169 in ApoDREAM-D150N (green in Figure 

7.26, right panel) becomes more buried in the hydrophobic cavity formed by residues  

Y130, L134, F138, I157, L158, L173, and F252 (Figure 7.26, left panel) compared to that 

observed in  ApoDREAM wild-type. The subtle structural rearrangement of the α1 in the 



198 
 

N-terminal domain of ApoDREAM-D150 (Figure 7.26, right panel) relative to 

ApoDREAM explaining the weaker interaction of duplex DNA with ApoDREAM-D150N.  

The Ca2+ association at EF-hands 3 and 4 in DREAM-D150N completely 

eliminates the interaction with duplex DNA with a Kd of 225 μM, similar to that of 

Ca2+DREAM wild-type (Table 7.3).  

The fluorescence properties of W169 are differently modulated by Ca2+ binding to 

EF-hands 3 and 4.  The fluorescence properties of DREAM-E186Q with Ca2+ bound to 

EF-hand 4 are similar to the fluorescence properties of ApoDREAM, whereas the 

fluorescence properties of DREAM-E234Q with Ca2+ bound to EF-hand 3 are analogous 

to emission properties of calcium saturated DREAM wild-type.  These data strongly 

indicate that Ca2+ association to the EF-hand 3 is necessary for structural transition between 

the ApoDREAM and Ca2+ bound DREAM conformation. Interestingly, the emission data 

of 1,8-ANS indicate that the accessibility of the C- terminal hydrophobic cavity increases 

upon Ca2+ binding to EF-hand 3 or EF hand 4. On the other hand, the Ca2+ association to 

either EF-hand 3 or 4 is able to diminish the DREAM affinity for DNA. However, binding 

of Ca2+ at both EF-hands 3 and 4 is necessary for the regulation of DREAM association to 

DNA. Also, Ca2+ binding to EF-hand 3 may triggers structural changes that are localized 

in the vicinity of EF-hand 3 and Ca2+ association to both EF-hands may be necessary for 

global structural transition in DREAM that is required for inhibition of DREAM 

interactions with DNA. These data also indicate that fluorescence emission and lifetime of 

W169 may not be an ideal probe to monitor the global transition in DREAM protein and 

thus there is a need for additional fluorescence probe to be placed in the N- terminal domain 

that would be sensitive to conformational changes in this domain. There are two tyrosine 
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residues located in the N- terminal domain of DREAM, but their emission is efficiently 

quenched by W169 and they cannot be used for probing conformational changes in the N- 

terminus domain. 

The ITC data show several DNA binding sites on DREAM molecules with one high 

affinity site and additional three lower affinity site. Ca2+ association to DREAM inhibits 

DNA binding to both the high and low affinity sites. To understand how Ca2+ binding to 

DREAM antagonistically modulates the interaction with duplex DNA, the structure of 

Ca2+DREAM was superposed with the MD simulation structure of ApoDREAM (Figure 

7.27, top panel).  

 

Figure 7.27: Top: Amino acid sequence alignment of residues (K90 – N102) in α2 of 

ApoDREAM (green) and Ca2+DREAM (blue). Bottom: The dimer Ca2+DREAM was 

constructed according to the model proposed by Lusin et at. (Lusin et al., 2008). 
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The amino acid alignment of residues (K90 – N102) from α2 of ApoDREAM and 

Ca2+DREAM (Figure 7.27, top panel) reveals that the side chains of residues in α2 (Q94, 

R98, K101) in Ca2+DREAM rotate about 180 degrees, preventing formation of DREAM-

DNA complex. In addition, the structure of  head-to-tail homodimer of Ca2+DREAM 

(Figure 7.27, bottom panel), constructed using the dimeric model proposed by Lusin et al 

(Lusin et al., 2008), reveals the loop connecting α7 and α8 from the second Ca2+DREAM 

molecule blocks the DNA binding interface (α2) in the first Ca2+DREAM molecule which 

prevents interaction of DNA.  

7.3.2 Association of Mg2+ at EF-hand 2 structurally facilitates the interaction 

between DREAM and DNA 

Because the concentration of free Mg2+ is maintained at nearly constant level of 1 

μM in cells, Mg2+ is not likely to directly regulate cell signaling (Romani, Scarpa 1992). 

However, DREAM possesses a highly Mg2+ sensitive EF-hand 2 (Kd ~ 13 μM) that raises 

a question about the physiologically relevance of Mg2+DREAM in the resting state of the 

cell, as well as its role in modulating the interaction with DNA. The functional role of Mg2+ 

bound to EF-hand 2 in DREAM in modulating DNA interaction was demonstrated by 

experimental data.  Dynamical network analysis illustrates that Mg2+ binding at EF-hand 2 

alters the orientation of α2 in such way that the residues L93, L96, and F100 on the inner 

side of α2 are coupled with the hydrophobic residues F121 (from α3), F148, F151, V151, 

L155, and L159 from α5 (exiting helix of EF-hand 2), while side chain of the basic and 

polar residues K90, K91, Q94, S95, R98, K101 at DNA binding interface are extruded to 

the solvent (Figure 7.20). Our ITC data show that affinity for DNA specifically binding to 

Mg2+DREAM (Kd1 = 0.3 μM) is somewhat higher compared to that of ApoDREAM (Kd1 
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= 0.8 μM). In addition, association of DNA to Mg2+DREAM is an exothermic reaction 

with favorable enthalpy (ΔH) of -18 kcal/mol, whereas binding of DNA to ApoDREAM is 

an endothermic reaction with ΔH of + 35 kcal/mol. These results suggest that the binding 

mechanisms are different for association of DNA to Apo and Mg2+ forms of DREAM. To 

further examine the different mechanisms of DNA association with ApoDREAM and 

Mg2+DREAM, time-resolved anisotropy experiments were carried out.  Our anisotropy 

decay data illustrate that DNA binds to tetrameric ApoDREAM and monomeric 

Mg2+DREAM. The binding interface between ApoDREAM and the duplex DNA was 

determined using experimental restraints from previous studies (Carrion, Link et al. 1999a, 

Ledo, Link et al. 2000, Lusin, Vanarotti et al. 2008) for the input in protein-DNA 

computational docking. The model of Mg2+DREAM-DNA complex was not investigated 

in this study due to the lack of experimental information for docking input. These results 

demonstrate that assembly of ApoDREAM and DNA involves two major types of 

interaction: electrostatic interactions between the negatively charged phosphate oxygens 

from nucleotides C43, A13, and C41 from DNA and the positively charged residues K90, 

K91, and K101 from α2 in DREAM.  The complex is further stabilized by hydrogen bond 

interactions between pairs of amino acid residue-nucleotide: K90-C43, K91-A13, K101-

A41, Q94-T42, S95-A13, and Q120-G15 (Figure 7.25). Furthermore, the complex is 

further stabilized by  hydrogen bonds and cation- interactions between the side chain of 

residue R98 from DREAM with the nucleotides at the minor groove of the target DRE site 

formed by 5’-10GTCA13-3’ and ‘3-41CAGT38-5’.  The residue R98 in DREAM plays a role 

in the interaction not only with DNA (Lusin et al., 2008), but also with K+ channel Kv4.3 
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(Gonzalez, Pham et al. 2014), highlighting its biological relevance in modulating 

interactions with DNA and target proteins.  

7. 4 Summary 

In this report, we show comprehensive evidence demonstrating the impact of 

Mg2+/Ca2+ on conformational dynamics of DREAM as well as the functional properties of 

individual EF-hands in DREAM upon interaction with duplex DNA. We demonstrate that 

Mg2+ binding at EF-hand 2 structurally stabilizes the DREAM N-terminal domain, which 

facilitates interaction with duplex DNA. The binding of Ca2+ at either EF-hand 4 is able to 

modulate the interaction of DNA. However, binding of Ca2+ at both EF-hands 3 and 4 is 

necessary to abolish interaction between DREAM and DNA. These findings provide 

insight into the roles of individual EF-hands in DREAM under physiological and 

pathological conditions, which can be used as a model to uncover the functional properties 

of EF-hands in other neuronal calcium sensor proteins and to characterize the effects of 

Mg2+ on various Ca2+ signaling pathways in cells.  
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8. CHARACTERIZE KINETICS AND THERMODYNAMICS ASSOCIATED 

WITH CARBON MONOXIDE BINDING OR RELEASING FROM HORSE 

HEART MYOGLOBIN AND MICROPEROXIDASE-11 IN SODIUM BIS-(2-

ETHYLHEXYL) SULFOSUCCINATE ENCAPSULATION: A MODEL SYSTEM 

TO STUDY CONFORMATIONAL DYNAMICS OF DREAM FULL LENGTH IN 

MEMBRANE ANCHORED STATE. 

(The work described in this chapter was partially published in (Larsen, Vetromile et al. 

2011)) 

8.1 Background and significance 

Reverse (inverted) micelles (RM) are nanoscale droplets of water surrounded by 

amphiphilic surfactants in nonpolar solvent with  surfactant molecules oriented in such way 

that the nonpolar tails are in contact with the organic phase and the polar heads enclose a 

water pool inside the micellar cavity (Figure 8.1).  

 

Figure 8.1: The schematic presentation of AOT molecule (left) and a reverse micelle 

particle containing an Mb molecule encapsulated within internal water pool (right).  
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Reverse micelles have attracted considerable attention as micromedia for chemical 

and biochemical reactions due to their ability to solubilize hydrophilic reactants in organic 

solvents. Reverse micelles based upon sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) 

have been extensively studied using various physical techniques since these micelles are 

thermodynamically stable, optically transparent and the size of the internal water pool can 

be varied from 10 Å (≈30 water molecules) to 140 Å (≈400,000 water molecules) through 

varying the molar water to surfactant ratio (wo = [water]/[surfactant]) (Kotlarchyk et al., 

1985; Moilanen et al., 2007;  Fenn et al., 2009). The properties of encapsulated water 

molecules are traditionally described using a two-state model as originally proposed by 

Zinsli (Zinsli, 1979). Interfacial water molecules that solubilize charged surfactant head 

groups as well as counter cations exhibit increased viscosity and slow relaxation rates 

whereas the water molecules located within the core of the water pool show properties 

similar to bulk water. Reverse micelles have been extensively used to probe the effect of 

confinement and hydration on protein structure, dynamics, and folding. The structural 

properties of encapsulated proteins depend on the water pool size, surfactant charge and 

interactions between protein and surfactant (Van Horn et al., 2005; Van Horn et al., 2009; 

Naoe et al., 2004). For example, it has been shown that encapsulation of cytochrome c in 

AOT RM is associated with a structural destabilization, opening of the heme crevice and 

dissociation of the Met-80 heme axial ligand (Abel et al., 2010; Brochette et al., 1988). To 

investigate the conformational dynamics in restricted environment of RM, I have used PAC 

and transient absorption to characterize the kinetics and thermodynamics associated with 

CO binding/releasing from horse heart Mb and from microperoxidase-11 (MP-11). Protein 

MP-11 is an 11 residue polypeptide fragment obtained by proteolytic cleavage of 
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cytochrome c. The heme group in MP-11 is covalently attached to the peptide chain 

through two thioether linkages and retains axial histidine ligand (Verbaro et al., 2009). 

8.2 Results 

8.2.1 UV/Vis absorption spectra 

The absorption spectra of ferric, ferrous and CO bound Mb encapsulated in AOT 

RM of wo = 40 are displayed in Figure 8.2. The optical spectrum of Fe3+Mb exhibits a 

maximum of the Soret band at 414 nm and a broader absorption band with maximum at 

534 nm with an additional shoulder at 564 nm (Table 8.1).  These values are very similar 

to the absorption spectrum of a hemichrome Mb intermediate with bis-histidine heme iron 

coordination (Miksovksa et al., 2006). Formation of the hemichrome Mb was previously 

reported for metMb exposed to low concentration of GuHCl (Culbertson and Olson, 2010) 

or to Fe3+Mb complexed with negatively charged surfactants such as sodium dodecyl 

sulfate (Miksovksa et al., 2006) or AOT (Murakami et al., 2011).  

 

 

Figure 8.2: Optical absorption spectra of Mb (left) and MP-11 (right) encapsulated within 

RM w=40.  The traces for Fe3+Mb/Fe3+Mp-11 are shown as solid thick lines, for 

Fe2+Mb/Fe2+MP-11 as dashed lines and for CO-Mb and CO-MP11 as solid thin lines. 
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Reduction of Mb in AOT micelles is associated with a hypsochromic shift of the 

Soret band to 411 nm and the appearance of a broad band in the visible region, max = 626 

nm. Such a large blue shift in the Soret band absorption maxima relative to Fe2+Mb in 

aqueous solutions (max = 434 nm) indicates pronounced changes in the heme binding 

pocket.  

Table 8.1: The position of the Soret band and Q bands for Mb, and MP-11 encapsulated 

within the AOT reverse micelles, wo = 40. The numbers is parenthesis corresponds to the 

max for Mb and MP-11 in aqueous solutions, pH = 7.0. 

 

 

The absorption spectra of MP-11 in RM are shown in Figure 8.2 (right). The Soret 

band of Fe3+MP-11 is centered at 410 nm and upon heme iron reduction, shifts to 419 nm 

with two Q bands appearing at 523 nm and 551 nm that are characteristic of a low-spin six-

coordinated heme c species. The formation of six-coordinate species was previously 

observed for MP-11 solubilized in aqueous solutions and was attributed to intermolecular 

coordination between the heme iron and -NH2 group of Val11 or ε-NH2 group of Lys 13 

(Wang, Van Wart 1989)(144). The optical absorption results suggest that the 

intermolecular coordination of MP-11 is retained upon peptide encapsulation within the 

reverse micelles. Saturation of Fe2+MP-11 within RM with CO leads to the formation of 

the six-coordinated low-spin heme iron. Interestingly, the Soret band maxima of MP-11 

adducts are red-shifted relative to the optical spectra of MP-11 in aqueous solutions 

 
Soret band 

max (nm) 

Q bands 

max (nm) 
 

Soret band 

max (nm) 

Q bands 

max (nm) 

Fe3+Mb 
414 

(406) 

534, 565 

(508. 630) 
Fe3+MP-11 

410 

(400) 

521 

(532) 

Fe2+Mb 
411 

(435) 

531 

(560) 
Fe2+MP-11 

419 

(416) 

523, 551 

(520, 550) 

CO-Mb 
420 

(424) 

537, 567 

(540, 579) 
CO-MP-11 

415 

(412) 

528, 562 

(525) 
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suggesting strong interactions between MP-11 and the negatively charged sulfate groups 

of the AOT molecules. 

8.2.2 Photoacoustic calorimetry results  

The PAC trace for CO photo-dissociation from Mb in RM is displayed in Figure 

8.2 together with the PAC trace for Fe3+Mb (used as the calorimetric reference). The 

sample acoustic wave is shifted in phase relative to the reference indicating the presence 

of volume/enthalpy changes occurring on timescales from ~ 50 ns to ~ 15µs. These data 

indicate that CO escape from Fe2+Mb in RM can be described as a two-step process with 

the prompt step (prompt < 50 ns)  corresponding to Fe-CO bond cleavage and the subsequent 

step reflecting CO escape from the protein matrix to the surrounding solvent.   

 

Figure 8.3: PAC traces for CO photo-dissociation from Fe2+Mb in AOT RM of wo = 40 

(thick black line), for the reference compound (Fe3+Mb in AOT RM of wo = 40) and the fit 

(gray line). 
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The PAC sample and reference traces were measured over the temperature range 

from 20 to 35 C and deconvolution of the PAC traces provided the rate constant for CO 

escape from Fe2+Mb encapsulated within AOT RM  to be ~ 8.3 x106 s-1 at 20 C with an 

associated activation energy, Ea = 24 ± 13 kJ mol-1.  The observed rate constant is 

approximately six times faster relative to the rate constant for CO escape from Fe2+Mb in 

aqueous solutions at pH 7.0 (kesc = 1.4 x 106 s-1 and Ea = 43 ± 3 kJ mol-1) (Belogortseva et 

al., 2007). Based upon spectroscopic data and molecular dynamics approaches, a 

comprehensive molecular mechanism for ligand migration in Mb was proposed including 

the initial diffusion of the photo-dissociated ligand into the internal network of 

hydrophobic cavities and subsequent ligand return into the distal heme binding pocket 

(Small et al., 1992; Mouawad et al., 2005). The escape of CO from the protein matrix 

requires opening of a transient channel between the heme propionates through an outward 

rotation of the distal histidine side chain and the rate for closing/opening of histidine gate 

was estimated to occur on timescale of 1 -10 µs, which is comparable to the 700 ns time 

constant determined in previous PAC measurements (Larsen et al., 2011).  The faster 

ligand escape observed for Mb within RM indicates that either Mb confinement within RM 

and/or electrostatic interactions between the encapsulated Mb and negatively charged 

micellar interface accelerates the transition between the closed and open conformations of 

the histidine gate resulting in the faster CO exit from protein matrix. Alternatively, 

perturbations to the Mb tertiary structure may trigger the opening of new ligand migration 

pathway(s) with lower activation barriers that are not populated under native conditions.  
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8.2.3 Transient absorption results 

To further investigate the interactions between CO and Fe2+Mb/Fe2+MP-11 in 

reverse micelles, the rate constants for CO rebinding were determined using transient 

absorption spectroscopy (Figure 8.4). Rebinding of CO to the heme iron in the Fe2+Mb-

AOT system is a biphasic process with the faster process occurring with the time constant 

of 41 µs (A1 ~ 0.7) and the second phase having a lifetime of 176 µs (A2~ 0.3) at 20 C. A 

similar biphasic process was observed for CO rebinding to MP-11 with 1 = 23 µs and 2 

= 57 µs with equal amplitudes for both phases (data not shown). The rate constants for CO 

rebinding to Fe2+Mb were probed over the temperature range from 15 C and 30 C to 

determine the activation barrier for ligand rebinding (Figure 8.4, Inset).  

 

Figure 8.4:  Transient absorption trace for CO rebinding to Fe2+Mb encapsulated within 

RM, wo = 40. Inset: Arrhenius plot of the rate constants for the fast (circles) and slow 

(squares) phase of the CO rebinding to Mb.  
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The fast phase shows an activation barrier of 15 ± 6 kJ mol-1 and similar activation 

barrier was determined for the slow phase, Ea = 19 ± 9 kJ mol-1. These values are 

comparable to the activation energies determined for CO rebinding to Fe2+Mb in aqueous 

solutions, Ea ~ 19 kJ mol-1 (Hasinoff, 1974).  

Overall, these data are in agreement with the photoacoustic results confirming that 

Mb encapsulation within RM leads to the opening of the protein structure facilitating ligand 

access to the heme binding pocket. The presence of bi-exponential CO rebinding kinetics 

to both Fe2+Mb and Fe2+MP-11 is somewhat surprising. Analysis of the CO rebinding data 

in RM is complicated as the CO concentration within the micellar water pool and surfactant 

interface is unknown. However, the presence of the multi-exponential CO rebinding 

kinetics points out that Fe2+MP-11 and Fe2+Mb may be located at least in two distinct 

environments, such as water pool and surfactant interface, with different CO concentration 

or that the CO rebinds from both the interior water cavities as well as diffusion from the 

bulk organic solvent. 

8.3 Summary and Outlook 

 The ability to probe thermodynamics associated with physiological processes in 

biomolecules on sub-millisecond time scales remains a significant challenge in molecular 

biophysics. Nonetheless, as demonstrated in the sections above, time resolved 

photothermal methods offer a unique opportunity to access enthalpy and molar volume 

changes associated with photo-initiated processes on time scales ranging from tens of 

milliseconds down to tens of nanoseconds. Photoacoustic calorimetry has now been widely 

applied to a vast array of biological molecules with photo-triggerable physiological 

processes and thermodynamic profiles have been revealed on very fast time scales. I have 
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now demonstrated the utility of the PAC method for proteins encapsulated within reverse 

micelles and are currently employing these methods to investigate the conformational 

dynamics of DREAM full length (residues 1 -256) in membrane-anchored state as well as 

the interaction of presenilins with DREAM full-length encapsulated in reverse micelles 

upon photolysis of caged Ca2+ compound. 
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9. CONCLUSIONS 

 The conformational dynamics and stability associated with Mg2+ and/or Ca2+ 

binding to DREAM in the regulation of interactions between DREAM and DNA or 

presenilins have been successfully delineated throughout this dissertation.  

 The impact of Ca2+ and/or Mg2+ on conformational dynamics and stability of 

DREAM have been described in Chapters 4 and 5.  The binding of Ca2+ to DREAM triggers 

the reorganization of the interface between EF-hand 2 and EF-hand 3 with the W169 side 

chain being located in a less polar environment. In addition, association of Ca2+ reduces 

solvent accessibility to the W169 residue due to tertiary structure alterations and/or 

decreased conformational flexibility. In addition, a transition from the t to g+ rotamer of 

W169 side chain was observed during molecular dynamic simulations supporting the idea 

that the bimodal distribution could arise from two rotameric orientations of W169 with the 

side chain of the g+ rotamer being more solvent exposed than that of the t rotamer. The 

W169 lifetime data indicates that DREAM can adopt an additional conformation with a 

long W169 lifetime of 7.5 ns that may reflect conformations of DREAM populated in the 

presence of lipid membranes and vesicles.  

In addition, I have also shown that association of Mg2+ and/or Ca2+ to DREAM EF-

hands increases the stability of the protein, although to different extents. Despite the low 

impact of Mg2+ association with EF-hand 2 on the DREAM tertiary structure, the presence 

of Mg2+ stabilizes the native state with respect to a partially unfolded state. The results 

show that DREAM unfolding is a complex process that occurs through a partially unfolded, 

intermediate state. The Ca2+ association to EF-hands 3 and 4 stabilizes the partially 

unfolded state with respect to the unfolded state whereas the association of Mg2+ increases 
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the stability of the native state only in the presence of Ca2+. These results suggest that the 

intracellular fluctuations in Ca2+ and Mg2+ concentrations control the global conformation 

and stability of DREAM and likely regulate its interactions with intracellular partners. 

In Chapter 6, I have presented that association of presenilin-1 carboxyl α-helix 9 

(HL9) with DREAM is Ca2+ dependent. The assembly of DREAM and HL9 is primarily 

dominated by hydrophobic interactions between residues F462 and F465 from HL9 and 

residues M191, I194, M197, M198, M249, F252, V255, and I256 at the C-terminal 

hydrophobic cavity in DREAM. I have also illustrated that residue F252 as well as EF-

hand 3 in DREAM play crucial roles in the regulation of the interaction of DREAM with 

HL9. These results provide an insight into the conformational dynamics of DREAM 

associated with Ca2+ and/or Mg2+ binding to DREAM in regulation of DREAM and 

presenilins interactions. Our findings also provide the crucial hot spots at the binding 

interface between DREAM and presenilin 1, which provides the potential druggable 

pockets for structure-based development of a novel drug compounds to treat Alzheimer’s 

disease. 

The functional roles of individual EF-hands in DREAM in modulating the 

conformational dynamics of DREAM protein and upon interactions with DNA have been 

delineated in Chapter 7. I have shown that Mg2+ association at EF-hand 2 structurally 

stabilizes the N-terminal alpha-helices 1, 2, and 5, thereby assisting the interaction with 

DNA. The binding of Ca2+ at EF-hand 3 induces significant structural changes in DREAM, 

represented by the critical paths comprised of hydrophobic residues F88, F121, Y130, 

F133, L134, A137, V152, L155, I157, L159, W169, and L173. These findings illustrate 
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the critical role of EF-hand 3 for Ca2+ signal transduction from the carboxy- to amino-

terminus in DREAM. Interestingly, Ca2+ association at EF-hand 4 stabilizes the carboxy-

terminus by forming a strong coupled network consisting of hydrophobic residues L167, 

F171, I232, F235, and L236 in DREAM. 

Lastly, in Chapter 8, I successfully characterize kinetics and thermodynamics 

associated with carbon monoxide binding or releasing from horse heart myoglobin and 

microperoxidase-11 in sodium bis-(2-ethylhexyl) sulfosuccinate encapsulation for the 

development of a novel model system to study conformational dynamics of DREAM full 

length in membrane anchored state. I have demonstrated that transient absorption and 

photoacoustic calorimetry methods for proteins encapsulated within reverse micelles are  

novel and reliable approaches to investigate the conformational dynamics of DREAM full 

length (residues 1 -256) in membrane-anchored state as well as the interaction of 

presenilins with DREAM full-length encapsulated in reverse micelles. The study also 

reveals novel insights into the protein conformation, physiological function, and protein-

membrane interactions. Such information is critical to understanding NCS proteins 

function within the confined space of the cell as well as to develop a more reliable method 

to study myristoylation or palmitoylation switch of NCS proteins. 
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