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ABSTRACT OF THE THESIS 

THREE DIMENSIONAL STRESS INTENSITY FACTORS FOR 

LARGE ARRAYS OF RADIAL INTERNAL SURFACE CRACKS IN 

A CYLINDRICAL PRESSURE VESSEL 

by 

Javier Pierola 

Florida International University 

Miami ,Florida 

Cesar Levy, Major Professor 

The objective of this study is to present the mode I stress intensity 

factor distribution (SIF) along the crack-front for a wide array of semi­

circular and semi-elliptical surface cracks inside of a pressurized thick­

walled cylinder. A three-dimensional finite element package ANSYS is used 

to evaluate the SIF for multicracked cylinder with number of cracks from 

n=l to 128, the ratio of crack-depth to the wall thickness a!r=O.OS to 0 .6 , 

the ellipticity of the crack (the crack-depth to the semi-crack length) 

a!c=0.2 to 1.5, the ratio of the outer to the inner radius r/ r;=2 . 

A substructuring technique is introduced which solved a coarse 

model meshed with ten-node isopa rametric elements and applied the 
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resulting displacements in the boundary surface of a submodel which is built 

employing singular elements along the crack-front to produce the 1/Vr 

singularity . The SIF is evaluated using nodal-displacement method. 

To validate the modeling and analysis procedure of the present results 

various configurations were solved using this method and compared to other 

finite element solutions. The present results were in very good agreement: 

less than 5 % comparing with Raju and Newman's results and within 8 % 

of Kirkhope's results . 

An empirical equation to calculate the maximum SIF, was developed 

in this study . The equation was obtained by nonlinear fitting of the finite 

element results and the error was within + 5 . 7 %. 
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Chapter 1. Introduction 

1.1 General 

Reactor pressure vessels, gun barrels, chemical pressure vessels are 

among many important applications that can be found for thick-walled 

cylindrical pressure vessels. Due to several factors, their particular 

geometrical configuration , the types of loading they are subjected to, and the 

environmental conditions, these thick-walled pressure vessels are very 

susceptible to internal cracking. 

Most gun barrels presently in service life are rifled. As a consequence 

of this manufacturing process, stress concentration zones appear at the 

corners between the rifling and the land . During the firing process , the 

internal surface is exposed to the combined ac tion of pressure pulses , 

extremes of temperature and an aggressive environment resulting from the 

combustion of the gun powder. This repetitive process can produce large 

arrays of radial cracks in the areas of stress concentration. 



In applications such as nuclear power plants (reactor pressure vessels) 

and chemical containment tanks (e.g. pressure vessels containing liquid fuel 

at very low temperature ) the pressure load, the corrosive agents and the 

service temperature are the principal factors that can contribute to the 

development of large arrays of radial cracks. A complete understanding of 

the crack behavior in such applications is very important because the failure 

can often be catastrophic. 

1.2 Literature survey 

Since the exact solution of radial cracks in a pressurized cylinder is 

very complex, previous investigators have used engineering estimates or 

numerical procedures to calculate the stress intensity factor (SIF) of such 

a cylinder. 

Underwood [1] and Kobayashi [2] estimated the SIF for surface cracks 

m pressurized cylinders but without including the wall-thickness effect. 

However, Kobayashi et al. [3] estimated the SIF for inner and outer surface 

cracks in internally pressurized cylinders from the results of a semi-elliptical 

crack in a finite-thickness wall plate which did include the wall-thickness 
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effect. 

Most of the available numerical solutions were obtained using a two 

dimensional (2-D) model. Tracy [4] using the complex variable approach, 

solved the problem numerically for one, two and four evenly spaced cracks 

emanating from the inner surface of a circular ring. Baratta [5], employing 

a load relief factor, evaluated the SIF for arrays of up to 48 cracks. Pu and 

Houssain [6], using cubic isoparametric elements, calculated the SIF for 

arrays of 2 to 40 cracks and for different crack lengths and geometrical 

configurations of a cylinder. Perl and Arone [7 ,8], using the finite element 

method (FEM), obtained the SIF for large arrays of radial cracks of up to 

1024 cracks and for a wide range of nondimensional crack lengths of 0.01 

to 0.625. Perl and colleagues [8,9], also employed the same method to study 

the problem of autofrettaged gun barrels and the problem of internal 

thermal shock arising in the firing process. These 2-D solutions model the 

crack-front as an straight line; in reality, cracks have curved fronts . For this 

reason the 2-D solutions are considered to be an upper bound to the stress 

intensity factors prevailing in real situations. 

At present, very few three dimensional (3-D) SIF solutions for semi­

circular and semi-elliptical cracks are available. Atluri and Kathiresan [ 1 0] 
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and McGowan and Raymund [11] obtained the SIF for only a single surface 

crack using 3-D numerical analysis. Raju and Newman [12] using the 3-D 

finite element method, presented a solution for two internal and external 

surface cracks in a pressurized cylinder for various load conditions. The 

SIFs were obtained from a nodal force method which uses the nodal point 

stresses correlated with the crack tip equations to calculate the SIF. This 

method is considered to give upper bound solutions. Kirkhope et al. [13, 14], 

using a similar finite element approach, evaluated the SIF for arrays of up 

to 32 radial, surface cracks in a thick-walled cylinder. O'Donoghue et al. 

[15,16] presented a solution for two, coplanar, semi-elliptical, surface cracks 

in a cylindrical pressure vessel. 

1.3 Statement of the problem 

All the solutions described above obtained the SIFs along the crack 

front for a limited range of configuration parameters. References [1 0,11 and 

12] considered only one and two cracks . In references [13,14] the analysis 

was limited to a maximum of 32 cracks. 

The purpose of this research is to present the mode I SIF for large 
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arrays of internal semi-circular and semi-elliptical surface radial cracks in 

a thick-walled, pressurized cylinder. The SIF along the crack front for 

arrays of up to 180 cracks are obtained, for ratios of crack depth to wall 

thickness from 0.05 to 0.6, for ellipticities of the crack (the crack depth to 

the semi-crack length) from 0.2 to 1.5, and for a thick-walled cylinder with 

a ratio of the outer to the inner radius of 2. 

In most of the real situations, it is very difficult to find an exact 

solution of the SIF. In particular, for a radially multicracked cylinder a 

theoretical SIF is not available. Therefore, a numerical method is needed to 

estimate it. To accomplish this approach, a 3-D finite element package, 

ANSYS, is used. A substructuring procedure is introduced which employs 

two different types of isoparametric elements: 1 0-node tetrahedral and 20-

node solid. These 20-node elements are collapsed to produce singular 

elements along the crack front. The SIF is calculated based on the 

displacement method. 
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Chapter 2. Fracture Mechanics 

2.1 General 

Many accidents m the past have been caused due to material 

deficiencies in the form of pre-existing flaws [ 17]. In most of these accidents 

the design of the structures were made using a conventional design criteria 

which did not consider the problem of fracture. These criteria are based on 

tensile strength, yield strength and buckling stress and are adequate for 

many engineering applications, but they are insufficient when there is a 

crack in the structure. In this case, fractures can occur at stress levels that 

are below the design limit. 

"The structural study which considers crack-extension behavior as a 

function of applied loads is called fracture mechanics. Particularly, it is 

called linear elastic fracture mechanics when such study does not involve 

large plastically yielded regions surrounding cracks" [ 18] . 

As a result of considerable research efforts during the last three 
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decades, linear elastic fracture mechanics has become a very useful tool in 

design, solving many practical engineering problems in failure analysis, 

material selection, structural life-prediction, and acceptance test. 

2.2 A crack in a structure 

When a crack develops in a structure, the application of repeated 

loads, and, in many cases, the presence of an aggressive environment will 

originate the growth of the crack with time. The larger the crack the higher 

the stress concentration induced by it, thus the rate of crack propagation will 

increase with time. Due to the presence of the crack, the strength of the 

structure decreases and it will continue to decrease progressively as the 

crack size increases . The crack will continue to grow until the strength has 

become so low that the failure occurs under normal service loading. 

Predictions such as the residual strength as a function of crack-size, 

the size of crack that can be tolerated at the expected service load (critical 

crack size), the time that takes for a crack to grow from a certain initial size 

to the critical size and the size of pre-existing flaw that can be permitted at 
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the beginning of the service life are among the principal objects of 

engineering fracture mechanics [ 19]. 

2.3 Stress intensity factor (SIF or [(1) 

There are three different modes of separation at the crack-tip, as 

shown in Fig. 2.1. In mode I, also called the"opening mode", the tensile 

component of stress is applied normal to the face of the crack. The 

displacements are perpendicular to the plane of the crack. In mode II, the 

shear component of the stress is applied in x-direction ("sliding mode"). The 

displacements are in the plane of the crack and perpendicular to the leading 

edge of the crack. In mode III, the "tearing mode" is caused by the shear 

component of the stress applied normal to the leading edge of the crack. The 

displacements are in z-direction. 

Any crack deformation can be represented by the superposition of 

these three modes. In a cylinder under pressure, an internal crack will be 

stressed in mode I, thus the discussions here are limited to mode I. 
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For a crack of arbitrary size, a, in a body of arbitrary size and shape 

and loaded by arbitrary mode I loading, the stress field in the vicinity of the 

crack can be expressed as , 

au= (2.1) 

where, au are the stresses acting on a material element dx dy at a distance 

r from the crack tip, K1 is the stress intensity factor in mode I, 8 an 

angle from the crack plane, and f'u(8) are known functions of 8 . Equation 

(2.1) represents the elastic solution for a two-dimensional crack. This 

equation also can be applied for our three-dimensional case along the crack 

front [26]. In reality, the stress does not become infinite at the crack-tip 

because as a reaches the yie ld stress a, , plastic deformation will occur 

creating a plastic zone in the vicinity of the crack tip as shown in Fig .2.2 . 
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Fig . 2.2 Plastic zone at the crack tip. 

This factor, K1, is the most important parameter in fracture mechanics 

and is called the mode I stress intensity factor. K1 describes the entire crack 

tip stress field . Similar solutions as (2.1) can be obtained for the other two 

modes. 

The stress intensity factor K1 is also a similitude parameter. This 

means that if there are two bodies of different size and shape, but of the 

same material, with cracks of different size, the two cracks will behave in 

the same manner if the stress intensity factor for both cases are equal. 
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Knowledge of the crack-tip stress intensity factor as a function of 

applied load and geometry of the structure is necessary to predict the crack­

growth and the fatigue life of the structure. Once, the SIF is computed based 

on the principles of elasticity , the critical value of SIF is determined by 

experiment for the same material and the same mode of loading. If the 

theoretical SIF is less than the critical value by a safe margin then the crack 

is acceptable. 

In most of the real situations, it is very difficult to find an exact 

solution of the SIF. In particular, for a radially, multicracked cylinder a 

theoretical SIF is not available. Therefore , a numerical method is needed to 

estimate it. 

2.4 Plane stress and Plane strain 

Consider a thick plate (Fig .2 .3) with a crack subj ect to mode I 

loading. In the interior , the material around the crack tip will prevent the 

internal plastic zone from contracting; therefore , the interior will have 
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cr 

Fig.2.3 Thick plate under mode I loading 

approximately a plane strain condition (E~~ =O). It will be subjected to a 

stress in thickness direction expressed by: 

(2.2) 

13 



At the surface where there is no constraint, there will be no stress in 

the thickness direction ( a zz = 0). With increasing thickness , the relative 

influence of the surface will decrease. 

For the case of a three-dimensional semi-elliptical crack, plane strain 

condition will be considered through the interior. At the surface, a transition 

between plane strain and plane stress occurs. 
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Chapter 3. Numerical Method 

3.1 Finite Element Method (FEM) 

The finite element method is one of the most powerful of the 

approximate solution methods , this method is applicable to problems with 

irregular geometries , heterogeneous and anisotropic materials, and different 

types of boundaries conditions. In fracture mechanics the finite element 

method offers a relatively simple process to determine the stress intensity 

factor for a variety of structures. 

The basic idea of FEM is to divide or discretize the structure , body 

or region into a large number of finite elements . These elements may be 

one, two or three dimensiona l and are formed for different number of nodes. 

The FEM wi ll provide th e di sp lace ments (o r temperature for heat transfer 

ana lys is) at each of these nodes us ing inte rpo la ti on fun cti ons within each 

element to describe the vari ation of the displacement field as a function of 

the global coordinates . From the noda l displacements, the di splacements at 

any point in the structure a re eas il y dete rmined and from these 
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displacements, strain, stress and forces are also determined. 

3.1.1 General form for steady-state problems 

Since the problem analyzed in this study is a function of spacial 

coordinates only and not a function of time, the steady-state formulation of 

the FEM need only be reviewed. In all steady-state problems, a system of 

equations is always in the form: 

Ka=f (3.1) 

where [(is the stiffness matrix, a is the field variable vector and/ is 

the force vector. The field variable may be displacements in structural 

analysis, temperatures in thermal analysis and velocities or pressures in fluid 

flow problems. For structural analysis problems, the field variable is the 

displacement field . If sufficient boundary conditions are specified to 

guarantee a unique solution, equation (3 .1) can be solved to obtain the 

displacements at each node in the structure (vector a). 
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3.1.2 Matrix Equation Solver 

There are different methods to solve the system of equations 

described above, the most common method are Gauss elimination and LU 

decomposition. 

The ANSYS program uses the wave front or frontal solution 

procedure [20] to solve the system of equations generated by the finite 

element method. This wave front solver processes the elements sequentially, 

the program determines which element is the last to use each nodal point. 

As the total system of equations is assembled from the element matrices, the 

equations for a nodal point which occurs for the last time are solved in 

terms of the remammg unknowns and eliminated from the assembled 

stiffness matrix using Gauss elimination. As the solution progresses the 

equations for a node which occurs for first time are added to the assembled 

matrix. 

The number of equations which are active after any element has been 

processed is called the wave front. Since this solution method analyzes the 

elements successively, the ordering of the elements is very important to 

17 



minimize the wave front for reasons of efficiency and problem size. The 

computational time is proportional to the square of the wave front; besides, 

our version of ANSYS had a maximum wavefront of 800 allowed to solve 

any problem. ANSYS has a capability to reorder the elements to reduce 

the wave front and therefore to minimize the memory and time required to 

solve a problem. 

3.2 Singular Elements 

The most important step m the numerical analysis of linear elastic 

fracture mechanics is the selection of the element type around the crack tip 

( for two-dimensional cracks) or crack front (for three dimensional cracks) . 

As explained before , the stress in the crack tip (or crack-front) tends to 

infinity and the stress intensity factor (K1) is the parameter that describes the 

stress field near the crack. Therefore, it is necessary to have an element 

which describes the same inverse square root singularity of linear fracture 

mechanics . Although , a regular el ement can be used to obtain the stress 

intensity factors, the convergence rate is greatly retarded [21] , even when 

utilizing higher order polynomial elements. 
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Fig.3.1 Two-dimensional eight-node isoparametric elements : quadrilateral 

and the same element with three collapsed nodes. 

It has been demonstrated by Barsoum [22], that quadratic 

isoparametric elements with midside nodes adjacent to the crack tip placed 

at the quarter points, not only contain the inverse square root singularity 

but also the rigid body motion and constant strain modes. This type of 

element thus provides a very useful tool for modeling two or three 

dimensional cracks. Following the notation in Reference [22], the square 

root singularity for a eight-node plane isoparametric element shown in 

Fig .3 . 1, will be derived for the sake of completeness. 

19 



For each element, interior coordinates (x and y) are related to nodal 

coordinates xi and Yi by: 

(3.1) 

(3.2) 

Here N1 are the shape functions associated with the node I, 

N1 - (1 + ss1)(1 + rr1)(ss1 + u, - I )I 4 I i,j,k,l (3.3) 

N1 = s/( 1 + ss1)(1 - t2)/2 + r/(1 + tt1)(1 - s2)/2 I m,n,o,p (3.4) 

sand tare serendipity coordinates (see Fig.3.l), s, and r, are equal to + 

1 for corner nodes and zero for midside nodes. The displacements are 

defined in similar form: 

(3.5) 

(3.6) 
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Evaluating the shape functions along i-m-j (t = -1) leads to: 

Ni = -s(l-s)/2 (3.7) 

Nj = s(l +s)/2 (3.8) 

Nm = (l-s2) (3.9) 

By use of equations (3.7-3.9) in (3.1) and (3.5) leads to: 

x = -s(l - s)x/2 + s(l + s)x/2 + (1 - s2)X111 
(3.10) 

u = -s (1 - s)u/ 2 + s(l + s)u/ 2 + (/ - s 2)U,11 
(3.11) 

By choos ing xi = 0 , X,
11 

= 1/4 and xj = 1, then (3 . 1 0) yie lds: 

x = s(l + s)/2 + (1 - s 2)14 ; (3.12) 

therefo re, a so lu tion for s is 
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s=-1+2Yx (3.13) 

The strain in x-direction 1s: 

(3.14) 

Finally, using (3.13) and (3.12) in (3.14) leads to: 

Therefore, the strain is a function of I !Vi. The same procedure can 

be applied to similar lines and for three dimensional elements. 

3.3 Numerical Process 

One of the most difficult problems in fracture mechanics is the 

ana lysis of cracks in three-dimensional bodies. The intersection of an area 

crack with a free surface is refe rred to as a surface flaw . These type of 

defects are very common m many enginee ring applications but exact 
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solutions of these problems are seldom determined. Investigators have 

resorted to numerical methods to obtain SIFs in these situations. 

To solve this numerical problem usmg the finite element program 

ANSYS a substructuring method is used. The analysis is divided in two 

parts: the model and the submodel. 

3.3.1 The Model 

This part consists of developing a coarse model (see Fig.3 .2) which 

represents the entire structure. Taking advantage of the three planes of 

symmetry, only a section of the model is analyzed. The angle 8 is function 

of the number of cracks ( 8 = 180 ° /n ). The surface crack in the model is 

shown in Fig.3 .2, where a is the crack depth , c is the semi-crack length, ri 

is the inner radius, t is the wall thickness and 2L is the length of the 

cylinder. 
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crack front 
Fig.3.2 Semi-elliptical surface crack in a cylinder. The model represents the 

entire cylinder with three planes of symmetry:8 =0 ° ,8 = 180° I n and Z=O. 

The finite e lement mode l shown in Fig.3.3 is meshed with ten-node 

tetrahedral elements (STIF92) and it is generated using the automatic mesh 

generator. To obtain a better representation of the displacement field, 

smaller elements are chosen near the crack region , mean while far away the 

element size is large r. 
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Nevertheless, this model is considered to be inadequate for local 

crack-front analysis; therefore a submodel is created. 

3.3.2 The Submodel 

To generate the submodel, direct meshing is used and 20-node solid 

elements surround the entire crack-front. By collapsing four nodes and 

adjusting midside nodes, singular elements are positioned along the crack­

front as shown in Fig.3.4. The radial size of the submodel is 2a/3 for 

circular cracks of radius a and varies from 2c/3 to 2a/3 for elliptical cracks, 

where c is the semi-length and a is the depth of the crack. Therefore most 

of the crack is included in the submodel. The singular element size is a/8 

wherein eight elements are positioned around the crack front and evenly 

spaced every nine degrees in the¢ direction as shown in Fig.3.5. 

This direct generation approach gives better control of the local crack­

front mesh , allows the use of singular e le ments, and makes the extraction 

of K1 easier. 
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Fig.3.5 Measure of the angle ¢> for semi-elliptical cracks. 

3.3.3 Substructuring Procedure 

After the model is generated, meshed and the boundary conditions 

applied, the problem is solved for the nodal displacements. Once the nodal 

. displacements are obtained, the submodel around the crack front is created 

using direct generation. The resulting displacements from the model are 

applied to the outer boundary of the submodel using the AUXl cut-boundary 

procedure. Finally, the submodel is solved for its displacements after 

applying the boundary conditions. Utilizing the KCALC command the 

stress intensity factor for ten points along the crack-front is computed. 
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The direct generation of the nodes and elements in the submodel is a 

difficult process which demands extensive time and effort. Since, for all the 

cases to be solved, a submodel is generated modifying only the crack-depth, 

a, and semi crack-length, c, a macro was created which generated the 

nodes and elements easily and without errors. This macro is a user-defined 

sequence of data input commands written to an external file that may be 

used at any other input location. Also, the macro may contain parameters 

which may be assigned values by the user. The execution may be repeated 

with the parameters incremented. The macros created to generate the 

sub model are listed in Appendix C. 

3.3.4 Extraction of stress intensity factor 

Although there are many methods to estimated the SIF from a finite 

element solution, the most utilized are : (I) the displacement method, (2) the 

nodal force method and (3) the line integ ral (energy )method. All these 

methods estimate the SIF us tng es tabli shed c rac k tip relations and are 

described in reference [23]. Since the calculation of the SIF based on the 

displacement method is made automatically in ANSYS using the command 
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KCALC, only this method IS reviewed here. 

The displacements and stresses in the vicinity of the crack are related 

to the three modes and are expressed in the crack front coordinates of the 

Fig.3.6 by [24] as, 

u=(K/4G)rVI721f)[(2K-l)cos812- cos 3812]-(K11/4G){VI]27ij[(2K+3)sin812 +sin 3812]+h.o.f 

v= (K/4G)rVI721f)[(2K + 1 )cos812 - cos 3812[-(K1114C)rVI721fJ[ (2K-3 )sin812 + s in 3812J +h. o.f 

w=(2Ku/G)~ sin812 +h.o.f 

cT==(K/Vl:;;")(l- sin812 s in 3812)cos812- (K11~(2+ cos812 cos 3812)sin812 +h.o.f 

u»,=(K/ \r21rr)(l + sin812 s in 3812)cos8 12 + (K11r-/2;;;) cos812 cos 3812 sin812 + h.o.f 

uu = 0 

u== u (u= + u_..) 

fo r plane s tress <.:onditi o ns 

for plane strain conditions 

(3.16) 

(3. 17) 

where u, v and w are the displacements in rectangular coordinate system; K,, 

K 11 and Km are the stress intens ity factors in mode I , II and III respectively; 

a.a:, a.YY and a.zz are the normal stress components in rectangular coordinate 

system; rand 8 are local polar coordinate system; G is the shear modulus; 

30 



is Poisson's ratio; h. o.f. are higher order factors; and the variable K is a 

conversion factor between plane strain and plane stress and is expressed as, 

gtve, 

K = 3 - 4v 

K= (3 - v)/(1 + v) 

for plane strain 

for plane stress 

(3.18a) 

(3.18b) 

Neglecting higher order terms as r ~ 0 the displacement equations 

v = (K/2G)('/T72;r)(J + K) (3.19) 

To extract the values of K,J the finite element results are compared 

with equations (3 . I 9). T o ca lcu late K1 from mode I displacements, the 

behavior of v(r) is approximate by, 

v' l vr =A + B r (3.20) 
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where v' is the finite element approximation to the crack-face displacement, 

v, and A and B are constants determined from a linear curve fit of nodal 

displacements. Figure 3.6 shows that three nodes (i,j,k) are needed for a 

half-crack model, all the displacements are relative to crack-tip node i. Once 

A and B are determined, the limit r- 0 is taken , yielding 

lim v' IVT =A 
r-o 

From (3.19) and (3.21 ), 

Kl - (2G A VTi)l(l + K) 

(3.21) 

(3.22) 

The method of substructuring e xplained above was validated solving 

a similar case but for only two cracks and !l r;=0 .25. This problem , as 

mentioned before was solved by Raju and Newman [ 12] using the nodal-

force method . The results of this validation are presented in the next 

chapter. 
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Fig.3 .6 Nodes used for the crack-front displacements. 
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3.4 Maximum stress intensity factor equation 

An empirical equation was developed in the present study to eval1:1ate 

the maximum stress intensity factor for different values of ale, air, n, p, ri 

and t. A manner similar to Raju and Newman [12], the coefficients of this . 

equation were determined by nonlinear fitting. However, the equation 

developed herein applies not only for two cracks, but for different number 

of cracks. The empirical equation is determined by a combination of two 

effects:(l) the function / 1, which describes the effect of the crack depth to 

the wall thickness of the cylinder, alt. This expression is similar to that one 

used in [12] and is written as, 

a 2 3 
rt= bt+ bz(a)+ b3(-). + b4(a) 11 

t t t 
(3.23) 

(2) the function f 2 , which describes the effect of the separation between 

cracks and was utilized by Perl and Arone [7] in the two dimensional 

· problem to describe the effect of the number of cracks. This expression is 
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given by, 

.A= 1+ 
b7 

---+ 

1 + 2c 
d 

(1 + 
2c 3 
-) 
d 

(3~24) 

Here, d is the distance between two adjacent cracks at the deepest 

point. The ratio 2cld takes into account the effect of the crack length to the 

separation between cracks and is written in terms of a/t and n, as, 

2c 
d 

a b5(-)n 
. t 

1 + b (a) 
6 t 

(3.25) 

The empirical equation was obtained by superposition of the two 

effects of the functions .fi (3.23) and .t; (3.24) and was fitted to the finite 

element results to obtain the coefficients b; for fixed values of ale. This 

equation evaluates the maximum stress intensity factor for multiple radial 

cracks in pressurized cylinders and is given by, 
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(3.26) 

where p is the internal pressure, r; is the inner radius, ro is the outer radius, 

t the wall thickness of the cylinder and Q is the shape function for an 

ellipse. The factor Q is given by [12], 

a 1.65 
Q = 1 + 1.464(-) 

c 

(3.27) 

Because of the limitation in the wave front in our version of ANSYS , 

it was not possible to obta in a solution for cases where ai r< 0.05 , therefore 

we were unable to compare the results obta ined by equation (3 .26) with the 

limiting case of infinite wall thickness (alr~O) . 
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Chapter 4. Results 

For all the solutions presented in the following sections, a 

normalization factor ( C0 ) is used, which is obtained from reference [ 12] and 

is defined as: 

(4.1) 

Here, p is the constant pressure applied in the cylinder, ri is the inner 

radius of the cylinder, t is the wall thickness, a is the crack-depth and Q is 

the shape factor for an ellipse (equation 3.27). The length of the cylinder 

was always large enough (Lie= I 0) to a void the end effect on the results. 

4.1 Validation of the model 

In this section , a comparison between the present results and solutions 

obtained by Raju and Newman [12] are presented. These solutions 

correspond to a pressurized cylinder having two cracks, where the ratio of 

the wall thickness to the inner radius , t / ri is 0.25 subject to two different 
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crack configurations 0 

10 Semi-circular surface crack 

Figure 401 shows the mode I stress intensity factor for two 

diametrically located semi-circular cracks (ale= 1), in a cylinder of crack 

depth to the wall thickness ratio a/t=002 with the ratio of the wall thickness 

to the inner radius of tlri=Oo25 0 The maximum difference between the 

present results and those obtained in [ 12] is 403 % lower, and, it occurs at 

¢=2205° 0 

20 Semi-elliptical surface crack 

Figure 402 shows the variation of mode I stress intensity factor for 

two semi-elliptical cracks (alc =0.4) in a cy linder with alr=002 and 

t/ri=00250 The maximum difference between the present results and those 

obtained in reference [12] is 4.4 % lower , and , it occurs at the deepest point 

The present results were also compared with the finite element 

analysis of Kirkhope [13], the results of the present stud y were 8 % lower. 

These comparisons show that the present results are in very good agreement. 
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Fig.4.1 Comparison of stress intensity factor along crack-front for two 
semi-circular surface crack in pressurized cylindrical vessel. 
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Fig.4.2 Comparison of stress intensity factor along crack-front for two 
semi-elliptical surface crack in pressurized cylindrical vessel. 
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Nevertheless, it must be stressed that the solutions in [12, 13] were 

obtained using a nodal force method to evaluate the SIF whkh gives upper 

bound solutions [25]. Herein, the present results are determined employing 

the displacement method which gives lower bound for the true value [25]. 

In order to estimate the number of elements necessary to achieve 

convergence in the finite element mesh, a convergence analysis was done. 

In Fig.4.3, the displacements in y-direction of the node located at x = 1, 

y =0, and z = -0. 175 are shown ·as a function of the number of elements. For 

1100 elements or more the displacements converged. 

3.2,.-------------------------, 

c 3 s "'2.8 

~ ~ 2.6 

"' 0 Q. ~ 2.4 
"' z :; e 2.2 
~ E. 2 
0 z 1.8 

1.6600 

Figure 4 .3 

700 800 900 1000 11 00 

Number of elemenls 

Number of elements necessary to achieve convergence. 

The above considerations demonstrated that the modeling and analysis 

procedure utilized in this investigation offer accurate results thereby 

validating the solution obtained for multiple configurations of cracked 

cylinders presented in the following section. 
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4.2 Results 

Table 4.1 shows the cases solved in this study for different crack 

shapes: the ellipticity of the crack, alc=0.2, 0.5, 0.1, and 1.5; the ratio of 

crack depth to the wall thickness, alr=0.05, 0.1, 0.2, 0.4, and 0.6; and the 

number of cracks, n=l, 2, 4, ... , mnax. The quantity nma.x depends upon 

the factor 2c/3. This factor is very important, because the sub model has to 

cover 2/3 of the crack to obtain more accurate results. To increase the 

maximum number of cracks, some cases were solved using c/3 and c/2 

instead of 2c/3 (see Table 4 . 1 ). These cases were compared to previously 

solved problems and the error in K, was found to be 2 % to 3 %. 

In appendix A , the normalized mode I stress intensity factors along 

the crack front for all the cases solved in this study, are presented. In 

appendix B, the results are plotted on graphs showing the variation of the 

stress intensity factors for diffe rent c rack configurations as functions of the 

angle ¢, and the number of cracks , n. 
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Table 4.1 Crack configurations solved in the present study 

I a/c ~ a/t I n 
0.2 0 .05 1· 2· 4· 8· 16· 32** ' ' , ' ' 

0.1 2· 4 · 8· 16** 
' ' ' 

0.15 2; 4; 6; 12 
0.2 1; 2; 4; 8 

0.5 0.05 1· 2· 4· 8· 16· 32*· 45· 64*· 90** 
' ' ' ' ' ' ' ' 

0.1 1· 2· 4· 8· 16· 20· 32· 40** 
' ' ' ' ' ' ' 

0.15 1· 2· 4 · 8· 16*· 32** ' ' , ' ' 
0.2 1· 2· 4· 8· 16*· 20** ' , ' ' ' 
0.4 I· 2· 4· 8** 

' ' ' 
0.6 I· 2· 3· 6** 

' ' ' 
1 0.05 1 . 2 . 4·· 8. I6. 3 2. 64 

' ' ' ' ' ' 
O.I I· 2 · 4· 8· I6· 32· 45 

' ' ' ' ' ' 
0.15 I· 2· 4· 8· I6 · 32 

' ' ' ' ' 
0.2 1· 2· 4· 8· I6 · 20 

' ' ' ' ' 
0.4 1; 2; 4; 8; 10 
0.6 1· 2· 4· 6 

' ' ' 
1.5 0.05 1· 2· 4· 8· I6· 32· 45· 64· 90· I80** ' ' ' ' , ' , ' ' 

O.I I· 2· 4 · 8· I6· 32· 50· 64*· 100** 
' ' ' ' ' ' ' ' 

0.15 I · 2· 4· 8· 16· 32· 64** ' , ' ' ' ' 
0.2 1· 2 · 4· 8· I6· 25· 32*· 50** 

' ' ' ' ' ' ' 
0.4 1· 2· 4· 8· I6*· 32** 

' ' ' ' ' 
0.6 I· 2· 4· 8· ·IO ·16*· 20** ' ' ' ' ' , ' 

* c/2 submodel size 

** c/3 submodel size 
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4.3 Empirical equation results 

As was explained in chapter 3, an empirical equation was developed 

in this study to estimate the maximum stress intensity factor in a pressurized 

multicracked cylinder. The coefficients (see table 4.2) were determined by 

nonlinear fitting of the finite element resu lts and were found for fixed values 

of ale. The variation of ale is included in the parameters b;. 

Table 4.2 Values of the coefficients b; (equation 3.26) 

I aiel b/ I b1 I b, I b4 I b, I b~ I b7 I bs I b~ I 
p.2 0 .43819 -0.74219 4 .30884 -9.32273 0.64230 1. 85949 3.74752 5.82288 -6 .22339 

p.5 0.63322 -0. 80852 1.53499 -0 .65347 0. 84945 4.23347 3.52572 1.4454 1 -2.98802 

1.0 0.40548 -0.25485 0.45425 -0. 15454 0 .34017 I. 82339 4. 76818 6.46741 -7 .02430 

1.5 0.50172 -0.54225 1.29890 -0 .985 14 0 .37996 1. 14850 7.22075 1.83183 -5.00655 

Appendix D shows the maxtmum SIF obtained usmg the empirical 

equation (3.26). When compa red with the finite e lement results, the 

maximum error was found to be + 5 .7 %. Equation (3.26) is valid for rl r; 

close to 1; a comparison of the results obtained by this equation and those 

obtained in [12] is not possible because results in [ 12] are obtained for 

tl r; <0.25 . 
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Chapter 5. Analysis and Discussion 

In the following sections representative graphs are analyzed and 

discussed, the graphs and tables of all the cases solved m this study are 

presented in the Appendices A and B. 

5.1 Semi-circular surface cracks (ale= 1) 

Figures 5.1, 5.2, and 5.3 show the variation of the SIF for semi­

circular surface cracks (ale = l ) for ratios of a/r=0.05, 0.2 , and 0.6. These 

results are given as a function of the angle, ¢, and the number of cracks, n. 

-The case of two cracks gives the maximum SIF , for all the cases . 

As the number of cracks increases, the SIF decreases tending to a constant 

value at the deepest po int of the crack (¢ =90 °). 

-The percentage difference in SIF between the n= 2 case and then= 1 

case is 0.3 % for small cracks (a /t =0.05 ). This difference increases with 

increasing crack s ize, with a maximum percentage difference of 3.6 % for 

alt=0.6. For the smallest c rack (a /!=0.05), even the n=8 case gives a 

44 



2.9,-----------------------------------, 

a/C=1 

2.7 
8/t=O.OS 

2.6 

2.!i 

2.3 

2.2 

2.1 

2 

1~~0--~10~---~20r---3~0---~r---5r0---6r0---7r0---8r0---9r0---1r00--~110 
pbi 

Figure 5. l Stress intensity factor along crack-front for semi-circular surface 
crack in pressurized cylindrical vessel (a l r=0.05) 
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Figure 5.3 Stress intensity factor along crack-front for semi-circular surface 
crack in pressurized cylindrical vessel (alt=0.6) 

2.9"T""""-----------------------------------, 

2.8 a/c=1 

n=2 cracks 
2.7 

,.,.o.1s 1 

22 

2.1 

110 
phi 

Fig.5.4 Stress intensity factor along crack-front for semi-circular surface crack 
in pressurized cylindrical vessel 

46 



higher SIF than the single crack case. 

- The maximum value of the SIF for a fixed air is at the intersection 

of the crack and the surface (¢=0°).Then the SIF decreases more rapidly 

as the size of the crack (aft) increases. This, also, can be observed in 

Fig.5.4. 

Figure 5.4 shows the variation of the SIF for two semi-circular cracks 

(ale= 1) and various crack size ratios, alt=0.05, 0.1, 0.15, 0.2, 0.4 , and 

0.6 as a function of the angle¢. For air < 0.4 the normalized SIF is larger 

for smaller cracks. 

Figure 5.5 shows the variation of the maximum SIF (¢=0°) for semi­

circular cracks (ale= 1) as a function of the number of cracks and the crack 

depth (aft). For small cracks (small a/t) the values of the SIF are nearly the 

same but this difference increases with the increasing of al t. 
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5.2 Semi-elliptical surface cracks. 

5.2.1 Ellipticity of the crack less than one (ale < 1) 

Figures 5.6, 5.7, and 5.8 show the variation of the SIF for semi­

elliptical surface cracks (alc=0.5) and the ratio alt=0.05 , 0.2, and 0.6. 

These results are given as a function of the angle, ¢, and the number of 

cracks , n. 

- The case of two cracks gives the maximum SIF, for all the cases. 

- The percentage difference in the stress intensity factor between the 

n=2 case and the n= 1 case is 0.2 % for small cracks (alr=0. 05 ). This 

difference increases with increas ing crack size, reaching a maximum of 5. 7 

% for alr=0.6 

- The maximum SIF occurs at the deepest point of the crack (¢ = 90 °) 

for alt < 0.4. The SIF increases as the depth of the crack (air) mcreases. 

For alr=0 .6 , the maxi mum SIF is at ¢ =0 ° . 

- The minimum SIF for small crac ks (a l l < 0. I ) occurs at 

approximately¢ = 9 ° . As the crack depth increases, the angle for minimum 

SIF increases to ¢=27° for 0 .2 < air < 0 .6. 

- As the number of cracks increases, the di ffe rence between the 
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maximum SIF (¢=90°) and the value of the SIF at ¢=0° decreases. For 

larger aft, this phenomena occurs for smaller number of cracks. 

- For alt=0.6 (Fig.5.8), the maximum stress intensity factor shifts 

from oo (n=2 cracks) to 90° (n=6 cracks). Therefore, it can be assumed 

that between n=2 and n=6 a transition occurs. 

Figure 5. 9 shows the variation of the normalized SIF for two semi­

elliptical cracks (alc=0.5) as a function of the ratio crack depth to wall 

thickness, aft, and the angle ¢. 

- At the deepest point , ¢ =90°, the SIF decreases for aft from 0.05 

to 0.4, but increases for a/1=0.6. At ¢=0°, the SIF decreases for all from 

0.05 to 0 . 1, but increases for all from 0.2 to 0.6. 

Figure 5.10 shows the variation of the maximum SIF (¢=90°) for 

semi-elliptical cracks (alc=0.5) as a function of the number of cracks and 

the crack depth (air). 

For small air the maxtmum SIF for n =I to 16 is approximately 

equal, the difference between the SIFs becomes larger as the ratio air and 

the number of cracks, n, increases. 
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Fig.5.9 Stress intensity factor along crack-front for two semi-elliptical surface 
crack in pressurized cylindrical vessel (ale= 0.5). 
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Figures 5.11-5.13 show the variation of the SIF for semi-elliptical 

surface cracks (a/c=0.2) and the ratio alt=0.05 , 0.1, and 0.2 as a function 

of the angle, c/>, and the number of cracks, n. 

-The maximum SIF occurs at the deepest point of the crack (¢ =90°) 

and the minimum at cf> = 9 o. 

- The SIF mcreases more rapidly from cf> = 9 o to 90° than the 

alc=0.5 case. For two shallow cracks, the difference between the maximum 

and the minimum SIF is 47 % for a/c=0.2 and alr=0.05 (Fig.5 . 11) versus 

20 % for alc=0.5 and the same air (Fig .5.6). 

-The larger the rati o of crack depth to wall thickness, aft, the larger 

the difference of the stress intensity factors between the n = 2 and the n = 1 

cases. 
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Fig.5.11 Stress intensity factor along crack-front for semi-elliptical surface crack 
in pressurized cylindrical vessel (alc=0.2. alr=0 .05) 
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Fig .5. 14 Stress inten si ty factor along crack-front for semi-ell iptical surface crad 
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5.2.2 Ellipticity of the crack higher than one (a/c > 1) 

Figure 5.14-5.16 show the variation of the SIF for semi-elliptical 

surface cracks (ale= 1.5) and the ratio alt=0.05, 0.2, and 0.6. These results 

are given as a function of the angle, ¢, and the number of cracks, n. 

- The shape of the curves is very similar to the case of the semi­

circular cracks. Even though the behavior of the SIF is the same for the 

semi-elliptical case, the SIF decreases more rapidly . 

- For small number of cracks the maximum SIF occurs at 0°. As the 

number of cracks increases, the maximum stress intensity factor shifts from 

¢=0° to approximately 9 o. 

Figure 5.17 shows the variation of the normalized SIF for two semi­

elliptical cracks (ale = 1.5) as a function of crack depth to wall thickness 

ratio, a ft, and the angle ¢ . 

- The normalized SIF dec reases as the crack depth increases. 
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Figures 5.18 and 5.19 show the normalized SIF for two cracks and 

alt=0.05 and 0.2 respectively, as a function of the number of cracks, n, and 

the ellipticity of the crack, ale. For the smallest crack, alr=0.05 (Fig.5.18), 

from oo to 70o the smaller the ellipticity the smaller the normalized SIF, 

from 70° to 90° the normalized SIF tends to a constant value, 2.5, except 

for ale= 1.5, where the normalized SIF is 2.38. 

For alt=0.2 (Fig.5.19), the behavior is very similar. The smaller the 

value of ale the smaller the SIF, but the angle of transition is smaller, 

¢=40°. At the deepest point of the crack (¢=90°) the SIF is higher for 

smaller values of ale. 

In order to show the variation of the SIF with the ratio of the 

thickness of the cylinder to inner radius, tlr;. some cases with different tlr; 

were solved. Figure 5.20 shows the variation of the SIF as a function of rlr;, 

for ale=0.5 , alt=0.4 and for ale= I , alt=0.2. As the ratio tlr; decreases 

the stress intensity factor increases as ex pected. Thus, thinner cylinders 

exhibit more dangerous cracks than thicker cy linder for the same ale ratio. 
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5.3 Conclusions 

The stress intensity factor was calculated using a three-dimensional 

finite element analysis for different radial configurations of semi-circular and 

semi-elliptical internal surface cracks in a pressurized thick walled cylinder. 

The finite element models were meshed with ten-node tetrahedral elements 

and had between 7500 to 10000 degrees of freedom. A technique of 

substructuring was used, building a submodel with twenty-node cubic 

isoparametric elements and singular elements along the crack front. The 

nodal displacement method was used to calculate the stress intensity factor. 

In order to validate these results, two different cases were solved 

using this method and compared to other analyses of internal surface radial 

cracks in cylinders . The present results were in very good agreement with 

other finite element analyses . 

The stress intensity factors for different crack configurations were 

presented. The ratio of crack depth to crack length ranged from 0.2 to 1.5, 

the ratio of crack depth to wall thickness ranged from 0.05 to 0.6 and the 
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number of cracks from n= I to 180 where possible. 

The stress intensity factors for all the cases solved in this study were 

maximum for two equispaced cracks. For semi-circular surface cracks the 

stress intensity factors were maximum at the intersection of the crack with 

the inner surface of the cylinder and minimum at the deepest point of the 

crack. As for semi-elliptical surface cracks, when ale was less than I the 

maximum SIFs were at the deepest point of the crack, except for small 

number of large cracks (n=2, alr=0.6) where the maximum SIF shifted 

from the deepest point to the intersection with the inner surface, ¢ =Oo . 

When ale was higher than I the maximum SIFs were at the intersection of 

the crack with the inside surface, but as the number of cracks increased the 

maximum occured at an interior point. The smaller the crack the smal ler the 

difference between the two c racks case and the single crack case. The larger 

the number of cracks the smaller the variation of the SIFs with the angle ¢. 

As the thickness of the cylinder decreased, the SIFs were found increase. 

An empirical equation to estimate the maxtmum SIF for radial of 

internal semi-circular and semi-e llipti ca l surface c rac ks in pressurized thick 

walled cylinders was developed in this study. The values obtained by 
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equation (3.26) were within 5.7 % of the finite element results. This 

empirical equation is valid for t/ri close to I; a comparison of the results 

obtained by this equation and those obtained by Raju and Newman [12] was 

not possible because results in [12] were obtained for t/ri less or equal than 

0.25. Also, we were unable to compare the results of the empirical equation 

with the limiting case of infinite wall thickness because the limited wave 

front in our version of ANSYS. 

The stress intensity factors obtained in this study should provide a 

more realistic estimation of the static fracture endurance, the crack-growth 

rate and the total fatigue life of multicracked thick walled pressurized 

cylinders, since all the empirical formulas dealing with these subjects are 

function of K1. 

5.4 Future research 

In the present study, the stress intensity factor for radial surface 

cracks in pressurized cylinders were calculated using a three-dimensional 

finite element analysis (ANSYS). A substructuring technique was also 
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introduced. This method provides a very useful tool which can be applied 

for a variety of three-dimensional linear fracture problems. 

In particular, the method of substructuring has been applied to 

evaluate the three-dimensional SIF distribution along the crack front for 

coplanar arrays of internal semi-circular and semi-elliptical cracks in 

pressurized thick walled cylinders. As a future research , this method can be 

applied to analyze the combination of large arrays of radial and coplanar 

surface internal and external cracks. In the same manner , surface cracks 

near the end of the cylinder under pressure and different crack 

configurations of surface cracks in cylinders under internal thermal shock 

can be considered. 
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APPENDIX A 

TABLES OF NORMALIZED STRESS INTENSITY FACTORS 
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Table A 1. Normalized SIF for various number of cracks (alc=0.2, alr=0.05) 

n 
ale alt phi 1 2 4 8 16 32 

0.2 0.05 0 1.3903 1.3924 1.3874 1.3748 1.3446 1.2390 

0.2 0.05 9 1.3031 1.3063 1.3046 1.2981 1.2624 1.1936 
0.2 0.05 18 1.5741 1.5763 1.5742 1.5664 1.5321 1.4693 

0.2 0.05 27 1.8337 1.8388 1.8362 1.8271 1.7701 1.6578 

0.2 0.05 36 2.0418 2.0505 2.0478 2.0375 1.9787 1.8012 

0.2 0.05 45 2.1896 2.1977 2.1948 2.1837 2.1271 1.8901 

0.2 0.05 54 2.3179 2.3213 2.3184 2.3064 2.2270 1.9150 

0.2 0.05 63 2.3888 2.3928 2.3900 2.3777 2.2734 1.9126 

0.2 0.05 72 2.4289 2.4275 2.4248 2.4117 2.3073 1.9238 

0.2 0.05 81 2.4489 2.4542 2.4517 2.4383 2.3533 1.9266 

0.2 0.05 90 2.4632 2.4688 2.4663 - 2.4527 2.3645 1.9853 

Table A2. Normalized SIF for various number of cracks (alc=0.2, alr=O.l) 

n 
ale alt phi 2 4 8 16 

0.2 0.10 0 1.3993 1.3924 1.3672 1.2461 

0.2 0.10 9 1.3088 1.3024 1.2789 1.2013 

0.2 0.10 18 1.5928 1.5851 1.5558 1.4626 

0.2 0.10 27 1.8028 1.7945 1.7598 1.6590 

0.2 0.10 36 2.0134 2.0046 1.9633 1.7858 

0.2 0.10 45 2.1654 2.1562 2.1085 1.8703 

0.2 0.10 54 2.2521 2.2429 2.1888 1.8804 

0.2 0.10 63 2.3163 2.3073 2.2457 1.9140 

0.2 0.10 72 2.3757 2.3668 2.2884 1.9196 

0.2 0.10 81 2.4181 2.4093 2.3381 1.9193 

0.2 0.10 90 2.4132 2.4045 2.3324 1.9554 
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Table A3. Normalized SIF for various number of cracks (alc=0.2, alt=O.I5) 

n 
ale 3/t phi 2 4 6 12 

0.2 0.15 0 1.4142 1.3864 1.3697 1.2640 

0.2 0.15 9 1.3212 1.3176 1.2911 1.2125 

0.2 0.15 18 1.5900 1.5733 1.5415 1.4718 

0.2 0.15 27 1.8026 1.7848 1.7476 1.6473 

0.2 0.15 36 1.9908 1.9786 1.9353 1.7595 

0.2 0.15 45 2.1306 2.1123 2.0634 1.8325 

0.2 0;15 54 2.2156 2.1978 2.1443 1.8488 

0.2 0.15 63 2.2667 2.2497 2.1927 1.8408 

0.2 0.15 72 2.2962 2.2799 2.2191 1.8494 

0.2 0.15 81 2.3407 2.3246 2.2600 1.8408 

0.2 0.15 90 2.3729 2.3568 . 2.2896 1.8895 

Table A4. Normalized SIF for various number of cracks (alc=0.2, alt=0.2) 

n 

ale aft phi 1 2 4 8 

0.2 0.20 0 1.4037 1.4347 1.4056 1.2888 

0.2 0.20 9 1.3225 1.3509 1.3244 1.2364 

0.2 0.20 18 1.5628 1.5953 1.5655 1.4979 

0.2 0.20 27 1.7828 1.8187 1.7872 1.6804 

0.2 0.20 36 1.9704 2.0088 1.9768 1.7935 

0.2 0.20 45 2.0877 2.1273 2.0963 1.8746 

0.2 0.20 54 2.1633 2.2030 2.1738 1.8997 

0.2 0.20 63 2.2108 2.2509 2.2217 1.9404 

0.2 0.20 72 2.2:378 2.2780 2.2497 1.9455 

0.2 0.20 81 2.2806 2.3197 2.2934 1.9438 

0.2 0.20 90 2.3160 2.3537 2.3288 1.9918 
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Table AS. Normalized SIF for various number of cracks (alc=0.5, alr=0.05) 

n 
a/c aft phi 1 2 4 8 16 32 45 64 90 

0.5 0.05 0 2.0930 2.0983 2.0980 2.0481 2.0242 1.8662 1.7663 1.5652 1.3593 
0.5 0.05 9 1.9965 2.0016 2.0012 1.9758 1.9524 1.7994 1.6849 1.4850 1.2971 
0.5 0.05 18 2.0316 2.0367 2.0365 2.0178 1.9936 1.8353 1.7oo9 1.4915 1.3046 
0.5 0.05 27 2.1116 2.1169 2.1169 2.0979 2.0723 1.9039 1.7450 1.5338 1.3383 
0.5 0.05 36 2.1960 2.2014 2.2018 2.1858 2.1583 1.9772 1.8058 1.5849 1.3796 
0.5 0.05 45 2.2774 2.2830 2.2839 2.2758 2.2459 2.0502 1.8726 1.6238 1.4083 
0.5 0.05 54 2.3568 2.3626 2.3640 2.3601 2.3268 2.1167 1.9270 . 1.6534 1.4256 
0.5 0.05 63 2.4224 2.4283 2.4303 2.4219 2.3871 2.1630 1.9599 1.6683 1.4350 
0.5 0.05 72 2.4605 2.4664 2.4689 2.4658 2.4291 2.1948 1.9766 1.6799 1.4428 
0.5 0.05 81 2.4911 2.4971 2.4999 2.5046 2.4665 2.2245 1.9811 1.6896 1.4513 
0.5 0.05 90 2.4975 2.5035 2.5065 2.5074 2.4689 2.2253 1.9781 1.6816 1.4527 

Table A6. Normalized SIF for various number of cracks (alc=O.S, alr=O.I) 

n 

ale aft phi 1 2 4 8 16 20 32 40 

0.5 0.10 0 1.9915 1.9962 2.0321 1.9699 1.8938 1.8033 1.5755 1.4466 

0.5 0.10 9 1.9197 1.9278 1.9396 1.9020 1.8030 1.7218 1.4941 1.3703 

0.5 0.10 18 1.9543 1.9579 1.9644 1.9314 1 ~8163 1.7378 1.4984 1.3702 

0.5 0.10 27 2.0278 2.0310 2.0376 2.0030 1.8744 1.7859 1.5330 1.4044 

0.5 0.10 36 2.1022 2.1090 2.1181 2.0793 1.9425 1.8456 1.5768 1.4401 

0.5 0.10 45 2.1689 2.1793 2.1922 2.1478 2.0058 1.9004 1.6119 1.4630 

0.5 0.10 54 2.2275 2.2354 2.2527 2.2021 2.0517 1.9467 1.6357 1.4815 

0.5 0.10 63 2.2732 2.2796 2.3002 2.2449 2.0803 1.9876 1.6483 1.4898 

0.5 0.10 n 2.3053 2.3117 2.3343 2.2758 2.1055 2.0042 1.6567 1.4976 

0.5 0.10 81 2.3288 2.3332 2.3543 2.2966 2.1143 2.0147 1.6655 1.5087 

0.5 0.10 90 2.3201 2.3295 2.3559 2.2928 2.0893 2.0059 1.6715 1.5152 
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Table A 7. Normalized SIF for various number of cracks (alc=0.5, a/r=0.15) 

n 
a /c a/t phi 1 2 4 8 16 32 

0.5 0.15 0 2.0406 2.0454 2.0380 1.9751 1.7829 1.3928 
0.5 0.15 9 1.9385 1.9477 1.9471 1.8809 1.6914 1.3246 
0.5 0.15 18 1.9577 1.9633 1.9565 1.8959 1.6953 1.3218 
0.5 0.15 27 2.0114 2.0216 2.0146 1.9516 1.7314 1.3501 
0.5 0.15 36 2.0796 2.0853 2.0781 2.0122 1.7798 1.3809 
0.5 0.15 45 2.1412 2.1500 2.1428 2.0735 1.8294 1.4006 

0.5 0.15 54 2.2130 2.2205 2.2131 2.1401 1.8659 1.4119 

0.5 0.15 63 2.2677 2.2774 2.2699 2.1935 1.8860 1.4154 

0.5 0.15 72 2.3095 2.3164 2.3089 2.2299 1.9109 1.4198 

0.5 0.15 81 2.3258 2.3374 2.3299 2.2493 1.9281 1.4289 

0.5 0.15 90 2.3228 2.3297 - 2.3222 2.2416 1.9312 1.4332 

Table A8 . Normalized SIF for various number of cracks (alc=0.5, alr=0.2) 

n 

ale a/t phi 1 2 4 8 16 20 

0.5 0.20 0 2.0057 2.0343 2.0092 1.9060 1.6225 1.5029 

0.5 0.20 9 1.9090 1.9239 1.9122 1.8141 1.5310 1.4183 

0.5 0.20 18 1.9229 1.9374 1.9261 1.8260 1.5255 1.4067 

0.5 0.20 27 1.9722 1.9862 1.9756 1.8698 1.5520 1.4305 

0.5 0.20 36 2.0301 2.0444 2.0337 1.9204 1.5871 1.463a 

0.5 0.20 45 2.0904 2.1048 2.0944 1.9725 1.6093 1.4845 

0.5 0.20 54 2.1481 2.1625 2.1526 2.0216 1.6186 1.4971 

0.5 0.20 63 2.1925 2.2068 2.1974 2.0584 1.6216 1.5020 

0.5 0.20 n 2.2299 2.2443 2.2356 2.0898 1.6258 1.5085 

0.5 0.20 81 2.2556 2.2701 2.2619 2.1116 1.6380 1.5189 

0.5 0.20 90 2.2591 2.2736 2.2656 2.1142 1.6444 1.5246 
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Table A9. Normalized SIF for various number of cracks .(alc=0.5, a!r=0.4) 

n 
a/c a/t phi 1 2 4 8 

0.5 0.40 0 2.0755 2.1568 2.0840 1.7807 

0.5 0.40 9 1.9503 2.0224 1.9569 1.6672 

0.5 0.40 18 1.9272 1.9944 1.9356 1.6454 

0.5 0.40 27 1.9473 2.0114 1.9576 1.6664 

0.5 0.40 36 1.9834 2.0453 1.9966 1.7086 

0.5 0.40 45 2.0254 2.0845 2.0409 1.7466 

0.5 0.40 54 2.0726 2.1297 2.0910 1.7748 

0.5 0.40 63 2.1088 2.1649 2.1308 1.7984 

0.5 0.40 72 2.1351 2.1909 2.1609 1.8205 

0.5 0.40 81 2.1540 2.2088 2.1815 1.8393 

0.5 0.40 9() 2.1422 2.1964 . 2.1705 1.8512 

Table AIO. Normalized SIF for various number of cracks (alc=0.5, alr=0.6) 

n 

ale aft phi 1 2 3 6 

0.5 0.60 0 2.2612 2.4362 2.4406 1.9698 

0.5 0.60 9 2.0855 2.2948 2.2444 1.8287 

0.5 0.60 18 2.0241 2.2175 2.1724 1.7960 

0.5 0.60 27 2.0224 2.1995 2.1697 1.8201 

0.5 0.60 36 2.0522 2.2146 2.2018 1.8804 

0.5 0.60 45 2.0924 2.2489 2.2471 1.9469 

0.5 0.60 54 2.1424 2.2894 2.3043 2.0101 

0.5 0.60 63 2.1809 2.3257 2.3488 2.0780 

0.5 0.60 72 2.2163 2.3605 2.3891 2.1527 

0.5 0.60 81 2.2449 2 . .3851 2.4212 2.1880 

0.5 0.60 9() 2.2443 2 . .3811 2.4204 2.2055 
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Table All. Normalized SIF for various number of cracks (ale= 1, alt=0.05) 

n 

ale aft phi 1 2 4 8 16 32 64 

1.0 0.05 0 2.7961 2.8035 2.8010 2.7996 2.7816 2.6503 2.1808 

1.0 0.05 9 2.7700 2.7773 2. 7748 2.7735 2.7556 2.6155 2.1669 

1.0 0.05 18 2.6597 2.6666 2.6642 2.6630 2.6457 2.5131 2.0911 

1.0 0.05 27 2.5824 2.5890 2.5868 2.5856 2.5687 2.4569 2.0410 

1.0 0.05 36 2.5492 2.5557 2.5535 2.5524 2.5356 2.4186 2.0247 

1.0 0.05 45 2.5291 2.5355 2.5333 2.5322 2.5156 2.3840 2.0180 

1.0 0.05 54 2.5054 2.5156 2.5122 2.5110 2.4930 2.3727 2.0100 

1.0 0.05 63 2.4915 2.4978 2.4957 2.4946 2.4782 2.3529 2.0033 

1.0 0.05 72 2.4767 2.4829 2.4808 2.4797 2.4635 2.3439 1.9965 

1.0 0.05 81 2.4789 2.4850 2.4830 2.4819 2.4657 2.3413 2.0011 

1.0 0.05 90 2.4724 2.4785 ·2.4765 2.4754 2.4592 . 2.3281 1.9971 

Table Al2. Normalized SIF for various number of cracks (a/c=l, alt=O.l) 

n 
ale aft phi 1 2 4 8 . 16 32 45 

1.0 0.10 0 2.7374 2.7424 2. 7433 2.7158 2.6211 2.1707 1.8679 

1.0 0.10 9 2.6847 2.6895 2.6908 2.6636 2.5699 2.1342 1.8413 

1.0 0.10 18 2.5649 2.5694 2.5704 2.5449 2.4544 2.0485 1.7181 

1.0 0.10 27 2.5068 2.5111 2.5119 2.4879 2.3978 2.0113 1.7583 

1.0 0.10 36 2.4622 2.4664 2.4670 2.4446 2.3545 1.9839 1.7425 

1.0 0.10 45 2.4332 2.4373 2.4377 2.4167 2.3265 1.9681 1.7329 

1.0 0.10 54 2.4116 2.4151 2.4153 2.3955 2.3055 1.9567 1.7344 

1.0 0.10 63 2.3938 2.3977 2.3976 2.3787 2.2893 1.9480 1.7287 

1.0 0.10 72 2.3891 2.3929 2.3927 2.3744 2.2852 1.9480 1.7220 

1.0 0.10 81 2.3879 2.3917 2.3913 2.3733 2.2843 1.9430 1.7173 

1.0 0.10 90 2.3772 2.3810 2.3806 2.3628 2.2742 1.9442 1.7171 
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Table A 13. Normalized SIF for various number of cracks (ale= 1, alr=O.l5) 

n 
ale aft phi 1 2 4 8 16 32 

1.0 0.15 0 2.7066 2.7135 2.7091 2.6448 2.4193 1.8771 
1.0 0.15 9 2.6462 2.6532 2.6486 2.5884 2.3657 1.8483 
1.0 0.15 18 2.5133 2.5198 2.5160 2.4588 2.2492 1.7768 
1.0 0.15 27 2.4443 2.4503 2.4471 2.3930 2.1903 1.7474 
1.0 0.15 36 2.3915 2.3973 2.3944 2.3460 2.1463 1.7265 
1.0 0.15 45 2.3538 2.3593 2.3567 2.3121 2.1157 1.7132 
1.0 0.15 54 2.3268 2.3321 2.3297 2.2875 2.0947 1.7046 
1.0 0.15 63 2.3053 2.3105 2.3082 2.2675 2.0781 1.6972 
1.0 0.15 72 2.2974 2.3026 2.3003 2.2604 2.0732 1.6966 
1.0 0.15 81 2.2956 2.3071 2.2985 2.2590 2.0728 1.6981 
1.0 0.15 90 2.2790 2.2840 2.2818 2.2473 2.0583 1.6871 

Table A 14. Normalized SIF for various number of cracks (ale= l, alt=0.2) 

n 
·-

ale aft phi 1 2 4 8 16 20 

1.0 0.20 0 2.6505 2.6621 2.6636 2.5738 2.2006 2.0008 

1.0 0.20 9 2.6001 2.6111 2.6093 2.5215 2.1594 1.9699 

1.0 0.20 18 2.4677 2.4778 2.4744 2.3917 2.0562 1.8861 

1.0 0.20 27 2.3684 2.3778 2.3725 2.2941 1.9811 1.8271 

1.0 0.20 36 2.3093 2.3181 2.3112 2.2361 1.9393 1.79'68 

1.0 0.20 45 2.2671 2.2754 2.2678 2.1958 1.9114 1.7767 

1.0 0.20 54 2.2467 2.2547 2.2467 2.1770 1.9003 1.7696 

1.0 0.20 63 2.2251 2.2329 2.2250 2.1576 1.8866 1.7577 

1.0 0.20 72 2.1973 2.2048 2.1974 2.1320 1.8658 1.7379 

1.0 0.20 81 2.2029 2.2104 2.2032 2.1384 1.8718 1.7424 

1.0 0.20 90 2.1982 2.2057 2.1986 2.1343 1.8683 1.7387 
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Table Al5. Normalized SIF for various number of cracks (ale= I, alr=0.4) 

n 
ale alt phi 1 2 4 8 10 

1.0 0.40 0 2.6134 2.6547 2.6248 2.3135 2.1342 
1.0 0.40 9 2.5157 2.5530 2.5260 2.2346 2.0692 
1.0 0.40 18 2.3638 2.3963 2.3732 2.1098 1.9610 
1.0 0.40 27 2.2558 2.2845 2.2651 2.0267 1.8865 
1.0 0.40 36 2.1898 2.2154 2.1995 1.9735 1.8438 
1.0 0.40 45 2.1398 2.1630 2.1502 1.9368 1.8154 
1.0 0.40 54 2.1008 2.1221 2.1119 1.9088 1.8018 

1.0 0.40 63 2.0806 2.1006 2.0925 1.8966 1.7945 

1.0 0.40 72 2.66os 2.0797 2.0731 1.8832 1.7795 

1.0 0.40 81 2.0440 2.0622 2.0566 1.8708 1.7679 

1.0 0.40 90 2.0348 2.0528 2.0476 1.8635 1.7638 

Table A 16. Normalized SIF for various number of cracks (ale= I, alr=0.6) 

n 

ale alt phi 1 2 4 6 

1.0 0.60 0 2.6747 2.7751 2.7128 2.4460 

1.0 0.60 9 2.5270 2.6133 2.5618 2.3258 

1.0 0.60 18 2.3367 2.4078 2.3695 2.1716 

1.0 0.60 27 2.2380 2.2948 2.2687 2.0963 

1.0 0.60 36 2.1568 2.2073 2.1926 2.0423 

1.0 0.60 45 2.1018 2.1449 2.1404 2.0082 

1.0 0.60 54 2.0603 2.0974 2.1016 1.9847 

1.0 0.60 63 2.0379 2.0706 2.0817 1.9767 

1.0 0.60 72 2.0144 2.0439 2.0600 1.9643 

1.0 0.60 81 2.0025 2.0300 2.0492 1.9591 

1.0 0.60 90 1.9938 2.0205 2.0408 1.9530 
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Table A17. Normalized SIF for various number of cracks (ale= 1.5, alr=0 .05) 

n 

phi 1 2 4 8 16 32 45 64 90 . 180 

0 3.3147 3.3282 3.3261 3.3255 3.3144 3.2239 3.0772 2.7657 2.3863 1.6271 

9 3.2763 3.2896 3.2875 3.2868 3.2758 3.1869 3.0440 2.7815 2.3871 1.6588 

18 3.0896 3.1020 3.1000 3.0994 3.0888 3.0061 2.8748 2.6181 2.2912 1.6221 

27 2.9824 2.9942 2.9923 2.9915 2.9813 2.9029 2.7803 2.5404 2.2626 1.6231 

36 2.8648 2.8761 2.8743 2.8734 2.8635 2.7899 2.6766 2.4626 2.2038 1.6190 

45 2.7673 2.7780 2.7763 2. 7753 2.7657 2.6963 . 2.5912 2.3853 2.1646 1.6081 

54 2.6703 2.6806 2.6790 2.6778 2.6685 2.6032 2.5056 2.3089 2.1192 1.5996 

63 2.5589 2.5687 2.5672 2.5660 2.5570 2.4958 2.4051 2.2519 2.0551 1.5783 

72 2.4639 2.4732 2.4718 2.4705 2.4619 2.4040 2.3192 2.1879 1.9959 1.5554 

81 2.4082 2.4174 2.4159 2.4147 2.4063 2.3503 2.2688 2.1291 1.9612 1.5386 

90 2.3734 2.3824 2.3810 2.3798 ' 2.3714 2.3165 2.2367 2.1052 1.9365 1.5266 

Table Al8. Normalized SIF for various number of cracks (alc=l.5, alr=O.l) 

n 

phi 1 2 4 8 16 32 50 64 100 

0 3.2353 3.2413 3.2358 3.2367 3.1688 2.7573 2.2491 1.9297 1.5292 

9 3.1965 3:2023 3.1970 3.1977 3.1299 2.7335 2.2535 1.9730 1.5578 

18 3.0068 3.0121 3.0074 3.0077 2.9435 2.5816 2.1643 1.9331 1.5327 

27 2.8909 2.8959 2.8916 2.8916 2.8293 2.5032 2.i262 1.9067 1.5276 

36 2.7724 z.m1 2.7732 2.7726 2.7126 2.4177 2.0825 1.8893 1.5219 

45 2.6720 2.6764 2.6728 2.6715 2.6138 2.3461 2.0460 1.8563 1.5101 

54 2.5642 2.5684 2.5651 2.5629 2.5081 2.2653 1.9954 1.8286 1.4950 

63 2.4574 2.4614 2.4584 2.4555 2.4035 2.1820 1.9371 1 .7992 1.4753 

72 2.3738 2.3776 2.3748 2.3714 2.3216 2.1157 1.8882 1.7624 1.4661 

81 2.3123 2.3160 2.3134 2.3097 2.2615 2.0657 1.8492 1.7317 1.4567 

90 2.2879 2.2916 2.2890 2.2852 2.2376 2.0455 1.8333 1.7171 1.4447 
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Table Al9. . Normalized SIF for various number of cracks (ale= 1.5, alt=0.15) 

n 
ale aft phi 1 2 4 8 16 32 64 

1.5 0.15 0 3.1562 3.1560 3.1537 3.1234 2.9347 2.1397 1.5588 

1.5 0.15 9 3.1247 3.1326 3.1303 3.1002 2.9144 2.1552 1.5733 

1.5 0.15 18 2.9505 2.9518 2.9496 2.9213 2.7497 2.0757 1.5448 

1.5 0.15 27 2.8215 2.8250 2.8226 2.7956 2.6364 2.0316 1.5386 

1.5 0.15 .36 2.7201 2.7192 2.7167 2.6909 2.5431 1.9988 1.5339 

1.5 0.15 45 2.5996 2.6089 2.6063 2.5818 2.4453 1.9566 1.5203 

1.5 0.15 54 2.5047 2.5043 2.5016 2.4785 2.3522 1.9111 1.5067 

1.5 0.15 63 2.4140 2.4157 2.4128 2.3910 2.2728 1.8695 1.4921 

1.5 0.15 72 2.3304 2.3283 2.3254 2.3047 2.1935 1.8204 1.4726 

1.5 0.15 81 2.2616 2.2660 2.2631 2.2432 2.1366 1.7830 1.4490 

1.5 0.15 90 2.2323 2.2347 2.2346 2.2149 2.1102 1.7644 1.4414 

Table A20. Normalized SIF for various number of cracks (ale= 1.5 , alt=0.2) 

n 

ale a/t phi 1 2 4 8 16 25 32 so 

1.5 0.20 0 3.0877 3.1036 3.0935 3.0371 2.7017 2.2321 1.9480 1.5534 

1.5 0.20 9 3.0645 3.0792 3.0696 3.0138 2.6873 2.2409 1.9748 1.5807 

1.5 0.20 18 2.8786 2.8911 2.8825 2.8308 2.5353 2.1432 1.9221 1.5554 

1.5 0.20 27 2.7584 2.7690 . 2.7612 2.7127 2.4426 2.0930 1.8842 1.5399 

1.5 0.20 36 2.6359 2.6447 2.6375 2.5925 2.3479 2.0381 1.8563 1.5228 

1.5 0.20 45 2.5279 2.5352 2.5287 2.4867 2.2646 1.9884 1.8146 1.5039 

1.5 0.20 54 2.4m 2.4334 2.4274 2.3881 2.1856 1.9373 1.7794 1.4837 

1.5 0.20 63 2.3299 2.3352 2.3296 2.2927 2.1068 1.8814 1.7443 1.4672 

1.5 0.20 72 2.2326 2.2371 2.2320 2.1m 2.0251 1.8177 1.7041 1.4540 

1.5 0.20 81 2.1819 2.1861 2.1812 2.1475 L9828 1.7849 1.6703 1.4327 

1.5 0.20 90 2.1573 2.1613 2.1565 2.1234 1.9618 1.7678 1.6559 1.4219 
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Table A21. Normalized SIF for various number of cracks (ale= 1.5, alr=0.4) 

n 

ale alt phi 1 2 4 8 16 32 

1.5 0.40 0 3.0216 3.0498 3.0309 2.7818 2.0935 . 1.4704 

1.5 0.40 9 2.9506 2.9762 2.9587 2.7223 2.0796 1.4665 

1.5 0.40 18 2.7483 2.7702 2.7555 2.5457 1.9863 1.4190 

1.5 0.40 27 2.5815 2.6003 2.5884 2.4030 1.9142 1.3946 

1.5 0.40 36 2.4497 2.4660 2.4566 2.2924 1.8620 1.3766 

1.5 0.40 45 2.3395 2.3538 2.3466 2.2006 1.8188 1.3558 

1.5 0.40 54 2.2293 2.2419 2.2366 2.1067 1.7675 1.3359 

1.5 0.40 63 2.1248 2.1360 2.1322 2.0157 1.7120 1.3209 

1.5 0.40 72 2.0427 2.0528 2.0501 1.9433 1.6511 1.3098 

1.5 0.40 81 1.9801 1.9896 1.9875 1.8710 1.6257 1.2908 

1.5 0.40 90 1.9573 1.9667 1.9648 1.8666 1.6111 1.2828 

Table A22. Normalized SIF for various number of cracks (ale= 1.5. alr=0.6) 

n 

ale alt phi 1 2 4 8 10 16 20 

1.5 0.60 0 3.0077 3.0695 3.0352 2.5679 2.3297 1.8170 1.6716 

1.5 0.60 9 " 2.8676 2.9203 2.8917 2.4756 2.2614 1.8060 1.6410 

1.5 0.60 18 2.6404 2.6828 2.6624 2.3142 2.1316 1.7481 1.5684 

1.5 0.60 27 2.4916 2.5261 2.5137 2.2191 2.0602 1.7080 1.5352 

1.5 0.60 36 2.3546 2.3824 2.3776 2.1310 . 1.9935 1.6782 1.5087 

1.5 0.60 45 2.2448 2.2673 2.2690 2.0623 1.9426 1.6510 1.4938 

1.5 0.60 54 2.1368 2.1549 2.1618 1.9893 1.8510 1.6210 1.4727 

1.5 0.60 63 2.0276 2.0422 2.0530 1.9087 1.8177 1.5829 1.4490 . 
1.5 0.60 72 1.9506 1.9629 1.9762 1.8513 1.7692 1.5572 1.4374 

1 .5 0.60 81 1.8950 1.9059 1.9205 1.8077 1.7313 1.5392 1.4234 

1.5 0.60 90 1.8758 1.8862 1.9013 1.7926 1.7182 1.5279 1.4127 
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APPENDIX B 

NORMALIZED STRESS INTENSITY FACTORS vs. ¢J 
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MACROS 
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MACROS 

These macros are used to create the submodel and are divided as 

following: 

MESH, to create a polar coordinate system every ten degrees. 

NMESHO, to create the nodes. 

NMESH l, to create the mid side nodes . 

NMESH2, to create the elements. 
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MESH 
=================== 
csys, 1 
k,l,ri,l80 

· /view, 1 , 1 , . 5, 1 
csys,O 
local, 14,0,-ri,0,0,0,-90,-90 
*set,q,O 
*set,ki,IO 
:bra 

· k,ki,c*cos(q *pi/ 180) ,a *sin(q *pi/ 180) 
*set,q,q+9 
*set,ki,ki + 10 
*if,q,le,90, :bra' 
/pnum,kpoi , 1 

· kscale,200 , 10,110,10,5/3,5/3 
kgen,2, 10,110, 10, , ,c,400 
kplot 
mp,ex,1 ,e 
mp,nuxy , 1 ,nu 

NMESHO 
========================= 
csys , 1 
d = ((c*cos(arg1 *pi/180))**2 + (a*sin(arg1 *pi/180))**2)** .5 
rl =d/8 
r2=d/3 
r3 =2*d/3 
b1=1 
/pnum ,node, 1 
cskp, 11,1 ,arg2,arg2 +200,arg2 +400 
n,arg3 
rp9 ,1 
n,arg3 +9 ,rl/4 
_ngen,9, 1 ,arg3 +9 , ,, ,22.5 
n,arg3+ 18,r1 
ngen ,9, 1 ,arg3 + 18,,, ,22 .5 
fill,arg3 + 18 ,arg3 + 19 , 1 ,arg3 + 27 
rp8,1 ,1,1 
n,arg3+44 ,r2 
ngen,9, 1 ,arg3 +44 ,, ,22.5 
fill,arg3 + 18 ,arg3 +44, 1 ,arg3 + 35 

rp9 ' 1' 1, 1 
rp8 , 1, 1" 1 
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n,arg3 + 1254,r3 
ngen,9,1,arg3+ 1254,,2i.5 
fill,arg3+44,arg3+ 1254,1 ,arg3+61 
rp9, 1' 1,1 
fill,arg3 + 1254,arg3 + 1255, 1 ,arg3 + 1263 

. rp8, 1, 1,1 

NMESH1 
================================= 

· fill,arg1,arg1 + 100, 1,arg1 +70 
rp9, 1' 1,1 
fill,arg 1 + 18,arg 1 + 118,1 ,arg1 + 79 
rp9, 1, 1,1 
fill,arg1 +44,arg1 + 144, 1 ,arg 1 + 88 

. rp9' 1 ' 1 " 1 
fill,arg1 + 1254,arg 1 + 1354,1 ,arg 1 + 1280 
rp9, 1,1" 1 
/pnum,node,O 

NMESH2 
========================== 
np1ot 
et, 1,95 
e,119,120,101,101,19,20,1,1 
em ore, 12 8, 111 , 1 0 1 , 11 0, 2 8, 11 , 1 , 10 
emore,80,81, 71,71 
egen ,8, 1,-1 
e, 145,146,120, 119,45,46,20,19 
emore, 154,137,128,136,54,37,28,36 
emore,89,90,81 ,80 
egen,8, 1,-1 
e, 1355,1356, 146, 145, 1255, 1256,46,45 
emore, 1364,163,154,162,1264,63,54,62 
emore, 1281,1282,90,89 
egen,8, 1,-1 
egen, 10,100,-24 
/type, 1,4 
/pnum,e1em, 1 
ep1ot 
numm,node 
csys,O 
nse1,node , 1 

· nase1,node, 1, 19,9 
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i'pll" 100,100 
nasel,node,36,45,9 
rpll" 100,100 
nasel, node, 62 , 1255, 1193 
rpll" 100,100 
nasel,node, 71,89,9 
rp10, 100,100 
nasel,node, 1281 
rp10, 100 
nplot 
nasel,node, 1200,5000 
/pnum,node, 1 
nplot 
nwrite 
nall 
finish 
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APPENDIX D 

FINITE ELEMENT STRESS INTENSITY FACTORS vs. 

EMPIRICAL EQUATION RESULTS 
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ale aft n SIF(F.E.) SIF(eq.3.26) Error(%) 
0.2 0.05 1 2.4632 2.4256 1.53 

2 2.4688 2.4585 0.42 
4 2.4663 2.4949 -1.16 
8 2.4527 2.4902 -1.53 

16 2.3645 2.3459 0 .79 
32 1.9853 1.9854 -0.01 

0.1 2 2.4132 2.3767 l. 51 
4 2.4045 2.4128 -0.35 
8 2.3324 2.2989 1.44 

16 1.9554 1.9736 -0.93 
0 . 15 2 2.3729 2.4128 -1.68 

4 2.3568 2.3507 0.26 

6 2.2896 2 .2543 1.54 

0.2 1 . 2.316 2.3441 -1.21 

2 2.3537 2.3603 -0.28 

4 2 .3288 2.2793 2.13 

8 1. 9918 2 ~ 006 -0.71 
0.5 0.05 1 2.4975 2.4346 2.52 

2 2.5035 2.4805 0 .92 

4 2.5065 2.5359 -1.17 

8 2.5074 2.5547 -1.89 

16 2.4689 2.439 1.21 

32 2 .2253 2.1237 4 .57 

45 l. 9811 1. 9177 3.20 

64 1.6896 1.6997 -0.60 

90 1.4527 1.5039 -3.52 

0.1 1 2 .3201 2.3464 -1.13 

2 2.3295 . 2.399 -2.98 

4 2.3559 2.4317 -3.22 

8 2.2966 2.3605 -2.78 

16 2.1143 2.1033 0.52 

20 2.0147 1. 9844 1.50 

32 1.6715 1. 7096 -2 .28 

40 1.5152 1.5802 -4 .29 
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ale aft n SIF(F.E.) SIF(eq.3.26) Error(~ 
0 .5 0.15 1 2.3258 2.2708 2.36 

2 2.3374 2.3203 0.73 
4 2.3299 2.3252 0.20 
8 2.2493 2.193 2.50 

16 1. 9312 1. 8811 2.59 
32 1.4332 1.4931 -4.18 

0.2 1 2.2591 2.2136 2.01 
2 2.2736 2.2576 0.70 
4 2.2656 2.2392 1.17 

8 2.1142 2.0682 2. 18 
16 1.6444 1. 7344 -5.47 

20 1.5246 1.6114 -5.69 
0.4 1 2.154 2.1765 -1.04 

2 2.2088 2.202 0.31 

4 . 2.1815 2.1259 2.55 

8 1.8512 1.8793 -1.52 

0.6 1 2.2612 2.3804 -5 .27 

2 2.4362 2.3951 1.69 

6 2.2055 2.1235 3.72 

1 0.05 1 2.7961 2.762 1.22 

2 2.8035 2.7832 0.72 

4 2.801 2.8148 -0.49 

8 2.7996 2.8436 -1.57 

16 2.7816 2.8136 -1.15 

32 2.6503 2.612 1.45 

64 2.1808 2.1669 0.64 

0.1 1 2. 7374 2.7133 0.88 

2 2.7424 2.7432 -0.03 

4 2.7433 .. 2. 7733 -1.09 

8 2.7158 2.7555 -1.46 

16 2.6211 2.5842 1.41 

32 2.1707 2.1752 -0.21 

45 1.8679 1.909 -2.20 

0. 15 1 2.7066 2.6737 1.22 

2 2.7135 2.7059 0 .28 
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ale aft n SIF(F.E.) SIF(eq.3.26) Error(%) 
1 0.15 4 2.7091 2.7224 -0.49 

8 2.6448 2.6483 -0.13 
16 2.4193 2.3711 1.99 
32 1.8771 1.8798 -0. 14 

0.2 1 2.6505 2.6442 0.24 
2 2.6621 2.6753 . -0.50 
4 2.6636 2.6744 -0.41 
8 2.5738 2.5494 0.95 

16 2.2006 2.2012 -0 .03 
20 2.0008 2.044 -2.16 

0.4 1 2.6134 2.6288 -0.59 
2 2.6547 2.6459 0.33 
4 2.6248 2.5776 1.80 
8 2.3135 2.3144 -0.04 

10 . 2. 1342 2.1798 -2.14 
0.6 1 2.6747 2.7557 -3.03 

2 2.7751 2.757 0.65 
4 2.7128 2.6343 2.89 
6 2.446 2.459 -0.53 

1.5 0.05 I 3.3147 3.2581 1. 71 

2 3.3282 3.2956 0.98 
4 3.3261 3.354 -0 .84 

8 3.3255 3.4189 -2.81 

16 3.3144 3.419 -3.16 

32 3.2239 3.2115 0.38 

45 3.0772 2.9978 2.58 

64 2.7815 2.7079 2.65 

90 2.3871 2.387 0.00 . 

180 1.6588 1. 7464 -5 .28 

0.1 I 3.2353 3.1664 2. 13 

2 3.2413 3.2211 0.62 

4 3.2358 3.2845 -1.51 

8 3.2367 3.2396 -0 .09 

16 3. 1688 3. 1142 1.72 

32 2.7573 2.6498 3.90 
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ale a/t n SIF(F.E.) SIF(eq.3.26) Error(%) 

1.5 0.1 50 2.2535 2.247 0.29 
64 1.973 2.0189 -2 .33 

100 1.5578 1.6382 -5.16 
0. 15 1 3.1562 3. 1001 1. 78 

2 3. 156 3.1611 -0.16 
4 3.1537 3.2081 -1 .72 
8 3.1234 3.1417 -0.59 

16 2.9347 2.8265 3.69 
32 2.1552 2.2646 -5 .08 
64 1.5733 1.6617 -5.62 

0.2 1 3.087 3.0574 0.96 
2 3. 1036 3.1186 -0.48 
4 3.0935 3.1411 -1.54 

8 3.0371 3.0043 !.08 
16 2.7017 2.5993 3.79 
25 2.2409 2.2254 0.69 
32 1.9748 2.0072 -1.64 

.50 1.5807 1.6338 -3.36 
0.4 1 3.0216 3.049 -0.91 

2 3.0498 3.0889 -1.28 

4 3.0309 3.0066 0.80 

8 2. 7818 2.6758 3.81 

16 2.0935 2.1203 -1.28 

32 1.4704 1.5481 -5 .28 

0.6 1 3.0077 3.0814 -2.45 

2 3.0695 3.0915 -0.72 

4 3.0352 2.9266 3.58 

8 2.569 2.4945 . 2.90 

10 2.3297 2.3105 0.82 

16 1.817 1. 9031 -4 .74 

20 1.6716 1.7172 -2 .73 
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