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ABSTRACT OF THE THESIS
THREE DIMENSIONAL STRESS INTENSITY FACTORS FOR
LARGE ARRAYS OF RADIAL INTERNAL SURFACE CRACKS IN
A CYLINDRICAL PRESSURE VESSEL
by
Javier Pierola
Florida International University
Miami,Florida

Cesar Levy, Major Professor

The objective of this study is to present the mode I stress intensity
factor distribution (SIF) along the crack-front for a wide array of semi-
circular and semi-elliptical surface cracks inside of a pressurized thick-
walled cylinder. A three-dimensional finite element package ANSYS is used
to evaluate the SIF for multicracked cylinder with number of cracks from
n=1 to 128, the ratio of crack-depth to the wall thickness a/r=0.05 to 0.6,
the ellipticity of the crack (the crack-depth to the semi-crack length)
a/c=0.2 to 1.5, the ratio of the outer to the inner radius r /r,=2.

A substructuring technique is introduced which solved a coarse

model meshed with ten-node isoparametric elements and applied the



resulting displacements in the boundary surface of a submodel which is built
employing singular elements along the crack-front to produce the 1A/T
singularity . The SIF is evaluated using nodal-displacement method.

To validate the modeling and analysis procedure of the present results
various configurations were solved using this method and compared to other
finite element solutions. The present results were in very good agreement:
less than 5 % comparing with Raju and Newman’s results and within 8 %
of Kirkhope’s results.

An empirical equation to calculate the maximum SIF, was developed
in this study. The equation was obtained by nonlinear fitting of the finite

element results and the error was within + 5.7 %.
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Chapter 1. Introduction

1.1 General

Reactor pressure vessels, gun barrels, chemical pressure vessels are
among many important applications that can be found for thick-walled
cylindrical pressure vessels. Due to several factors, their particular
geometrical configuration, the types of loading they are subjected to, and the
environmental conditions, these thick-walled pressure vessels are very

susceptible to internal cracking.

Most gun barrels presently in service life are rifled. As a consequence
of this manufacturing process, stress concentration zones appear at the
corners between the rifling and the land. During the firing process, the
internal surface is exposed to the combined action of pressure pulses,
extremes of temperature and an aggressive environment resulting from the
combustion of the gun powder. This repetitive process can produce large

arrays of radial cracks in the areas of stress concentration.



In applications such as nuclear power plants (reactor pressure vessels)
and chemical containment tanks (e.g. pressure vessels containing liquid fuel
at very low temperature ) the pressure load, the corrosive agents and the
service temperature are the principal factors that can contribute to the
development of large arrays of radial cracks. A complete understanding of
the crack behavior in such applications is very important because the failure

can often be catastrophic.

1.2 Literature survey

Since the exact solution of radial cracks in a pressurized cylinder is
very complex, previous investigators have used engineering estimates or
numerical procedures to calculate the stress intensity factor (SIF) of such

a cylinder.

Underwood [1] and Kobayashi [2] estimated the SIF for surface cracks
in pressurized cylinders but without including the wall-thickness effect.
However, Kobayashi et al. [3] estimated the SIF for inner and outer surface
cracks in internally pressurized cylinders from the results of a semi-elliptical

crack in a finite-thickness wall plate which did include the wall-thickness



effect.

Most of the available numerical solutions were obtained using a two
dimensional (2-D) model. Tracy [4] using the complex variable approach,
solved the problem numerically for one, two and four evenly spaced cracks
emanating from the inner surface of a circular ring. Baratta [5], employing
a load relief factor, evaluated the SIF for arrays of up to 48 cracks. Pu and
Houssain [6], using cubic isoparametric elements, calculated the SIF for
arrays of 2 to 40 cracks and for different crack lengths and geometrical
configurations of a cylinder. Perl and Aroné [7,8], using the finite element
method (FEM), obtained the SIF for large arrays of radial cracks of up to
1024 cracks and for a wide range of nondimensional crack lengths of 0.01
to 0.625. Perl and colleagues [8,9], also employed the same method to study
the problem of autofrettaged gun barrels and the problem of internal
thermal shock arising in the firing process. These 2-D solutions model the
crack-front as an straight line; in reality, cracks have curved fronts. For this
reason the 2-D solutions are considered to be an upper bound to the stress
intensity factors prevailing in real situations.

At present, very few three dimensional (3-D) SIF solutions for semi-

circular and semi-elliptical cracks are available. Atluri and Kathiresan [10]



and McGowan and Raymund [11] obtained the SIF for only a single surface
crack using 3-D numerical analysis. Raju and Newman [12] using the 3-D
finite element method, presented a solution for two internal and external
surface cracks in a pressurized cylinder for various load conditions. The
SIFs were obtained from a nodal force method which uses the nodal point
stresses correlated with the crack tip equations to calculate the SIF. This
method is considered to give upper bound solutions. Kirkhope et al. [13,14],
using a similar finite element approach, evaluated the SIF for arrays of up
to 32 radial, surface cracks in a thick-walled cylinder. O’Donoghue et al.
[15,16] presented a solution for two, coplanar, semi-elliptical, surface cracks

in a cylindrical pressure vessel.

1.3 Statement of the problem

All the solutions described above obtained the SIFs along the crack

front for a limited range of configuration parameters. References [10,11 and

12] considered only one and two cracks. In references [13,14] the analysis

was limited to a maximum of 32 cracks.

The purpose of this research is to present the mode I SIF for large



arrays of internal semi-circular and semi-elliptical surface radial cracks in
a thick-walled, pressurized cylinder. The SIF along the crack front for
arrays of up to 180 cracks are obtained, for ratios of crack depth to wall
thickness from 0.05 to 0.6, for ellipticities of the crack (the crack depth to
the semi-crack length) from 0.2 to 1.5, and for a thick-walled cylinder with

a ratio of the outer to the inner radius of 2.

In most of the real situations, it is very difficult to find an exact
solution of the SIF. In particular, for a radially multicracked cylinder a
theoretical SIF is not available. Therefore, a numerical method is needed to
estimate it. To accomplish this approach, a 3-D finite element package,
ANSYS, is used. A substructuring procedure is introduced which employs
two different types of isoparametric elements: 10-node tetrahedral and 20-
node solid. These 20-node elements are collapsed to produce singular
elements along the crack front. The SIF is calculated based on the

displacement method.



Chapter 2. Fracture Mechanics

2.1 General

Many accidents in the past have been caused due to material
deficiencies in the form of pre-existing flaws [17]. In most of these accidents
the design of the structures were made using a conventional design criteria
which did not consider the problem of fracture. These criteria are based on
tensile strength, yield strength and buckling stress and are adequate for
many engineering applications, but they are insufficient when there is a
crack in the structure. In this case, fractures can occur at stress levels that

are below the design limit.

"The structural study which considers crack-extension behavior as a
function of applied loads is called fracture mechanics. Particularly, it is
called linear elastic fracture mechanics when such study does not involve

large plastically yielded regions surrounding cracks" [18] .

As a result of considerable research efforts during the last three



decades, linear elastic fracture mechanics has become a very useful tool in
design, solving many practical engineering problems in failure analysis,

material selection, structural life-prediction, and acceptance test.

2.2 A crack in a structure

When a crack develops in a structure, the application of repeated
loads, and, in many cases, the presence of an aggressive environment will
originate the growth of the crack with time. The larger the crack the higher
the stress concentration induced by it, thus the rate of crack propagation will
increase with time. Due to the presence of the crack, the strength of the
structure decreases and it will continue to decrease progressively as the
crack size increases. The crack will continue to grow until the strength has

become so low that the failure occurs under normal service loading.

Predictions such as the residual strength as a function of crack-size,
the size of crack that can be tolerated at the expected service load (critical
crack size), the time that takes for a crack to grow from a certain initial size

to the critical size and the size of pre-existing flaw that can be permitted at



the beginning of the service life are among the principal objects of

engineering fracture mechanics [19].

2.3 Stress intensity factor (SIF or K))

There are three different modes of separation at the crack-tip, as
shown in Fig. 2.1. In mode I, also called the"opening mode", the tensile
component of stress is applied normal to the face of the crack. The
displacements are perpendicular to the plane of the crack. In mode II, the
shear component of the stress is applied in x-direction ("sliding mode"). The
displacements are in the plane of the crack and perpendicular to the leading
edge of the crack. In mode III, the "tearing mode" is caused by the shear
component of the stress applied normal to the leading edge of the crack. The

displacements are in z-direction.

Any crack deformation can be represented by the superposition of
these three modes. In a cylinder under pressure, an internal crack will be

stressed in mode I, thus the discussions here are limited to mode I.



Mode I

Mode il



For a crack of arbitrary size, a, in a body of arbitrary size and shape
and loaded by arbitrary mode I loading, the stress field in the vicinity of the

crack can be expressed as,

K,
By= L) £ 2.1)
V2n.r

2n.r

where, o; are the stresses acting on a material element dx dy at a distance
r from the crack tip, K, is the stress intensity factor in mode I, © an
angle from the crack plane, and f,.j(e) are known functions of ©. Equation
(2.1) represents the elastic solution for a two-dimensional crack. This
equation also can be applied for our three-dimensional case along the crack
front [26]. In reality, the stress does not become infinite at the crack-tip
because as o reaches the yield stress o,, plastic deformation will occur

creating a plastic zone in the vicinity of the crack tip as shown in Fig.2.2.

10



Elastic stress distribution

Fig. 2.2 Plastic zone at the crack tip.

This factor, K, is the most important parameter in fracture mechanics
and is called the mode I stress intensity factor. K, describes the entire crack
tip stress field . Similar solutions as (2.1) can be obtained for the other two

modes.

The stress intensity factor K, is also a similitude parameter. This
means that if there are two bodies of different size and shape, but of the
same material, with cracks of different size, the two cracks will behave in

the same manner if the stress intensity factor for both cases are equal.

11



Knowledge of the crack-tip stress intensity factor as a function of
applied load and geometry of the structure is necessary to predict the crack-
growth and the fatigue life of the structure. Once, the SIF is computed based
on the principles of elasticity, the critical value of SIF is determined by
experiment for the same material and the same mode of loading. If the
theoretical SIF is less than the critical value by a safe margin then the crack

is acceptable.

In most of the real situations, it is very difficult to find an exact
solution of the SIF. In particular, for a radially, multicracked cylinder a
theoretical SIF is not available. Therefore, a numerical method is needed to

estimate it.

2.4 Plane stress and Plane strain

Consider a thick plate (Fig.2.3) with a crack subject to mode I

loading. In the interior, the material around the crack tip will prevent the

internal plastic zone from contracting; therefore, the interior will have



Fig.2.3 Thick plate under mode I loading

approximately a plane strain condition (e..=0). It will be subjected to a

stress in thickness direction expressed by:

o.= u(aog, + a,) (2.2)

pung

13



At the surface where there is no constraint, there will be no stress in
the thickness direction (0,=0). With increasing thickness, the relative

influence of the surface will decrease.

For the case of a three-dimensional semi-elliptical crack, plane strain

condition will be considered through the interior. At the surface, a transition

between plane strain and plane stress occurs.

14



Chapter 3. Numerical Method

3.1 Finite Element Method (FEM)

The finite element method is one of the most powerful of the
approximate solution methods, this method is applicable to problems with
irregular geometries, heterogeneous and anisotropic materials, and different
types of boundaries conditions. In fracture mechanics the finite element
method offers a relatively simple process to determine the stress intensity

factor for a variety of structures.

The basic idea of FEM is to divide or discretize the structure, body
or region into a large number of finite elements. These elements may be
one, two or three dimensional and are formed for different number of nodes.
The FEM will provide the displacements (or temperature for heat transfer
analysis) at each of these nodes using interpolation functions within each
element to describe the variation of the displacement field as a function of
the global coordinates. From the nodal displacements, the displacements at

any point in the structure are easily determined and from these



displacements, strain, stress and forces are also determined.

311 General form for steady-state problems

Since the problem analyzed in this study is a function of spacial
coordinates only and not a function of time, the steady-state formulation of
the FEM need only be reviewed. In all steady-state problems, a system of

equations 1s always in the form:

Ka=f 3.1

where K is the stiffness matrix, a is the field variable vector and fis
the force vector. The field variable may be displacements in structural
analysis, temperatures in thermal analysis and velocities or pressures in fluid
flow problems. For structural analysis problems, the field variable is the
displacement field . If sufficient boundary conditions are specified to
guarantee a unique solution, equation (3.1) can be solved to obtain the

displacements at each node in the structure (vector a).



3.1.2 Matrix Equation Solver

There are different methods to solve the system of equations
described above, the most common method are Gauss elimination and LU

decomposition.

The ANSYS program uses the wave front or frontal solution
procedure [20] to solve the system of equations generated by the finite
element method. This wave front solver processes the elements sequentially,
the program determines which element is the last to use each nodal point.
As the total system of equations is assembled from the element matrices, the
equations for a nodal point which occurs for the last time are solved in
terms of the remaining unknowns and eliminated from the assembled
stiffness matrix using Gauss elimination. As the solution progresses the
equations for a node which occurs for first time are added to the assembled

matrix.

The number of equations which are active after any element has been
processed is called the wave front. Since this solution method analyzes the

elements successively, the ordering of the elements is very important to



minimize the wave front for reasons of efficiency and problem size. The
computational time is proportional to the square of the wave front; besides,
our version of ANSYS had a maximum wavefront of 800 allowed to solve
any problem. ANSYS has a capability to reorder the elements to reduce
the wave front and therefore to minimize the memory and time required to

solve a problem.

3.2 Singular Elements

The most important step in the numerical analysis of linear elastic
fracture mechanics is the selection of the element type around the crack tip
( for two-dimensional cracks) or crack front (for three dimensional cracks).
As explained before , the stress in the crack tip (or crack-front) tends to
infinity and the stress intensity factor (K,) is the parameter that describes the
stress field near the crack. Therefore, it is necessary to have an element
which describes the same inverse square root singularity of linear fracture
mechanics. Although, a regular element can be used to obtain the stress
intensity factors, the convergence rate is greatly retarded [21], even when

utilizing higher order polynomial elements.
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Fig.3.1 = Two-dimensional eight-node isoparametric elements: quadrilateral

and the same element with three collapsed nodes.

It has been demonstrated by Barsoum [22], that quadratic
isoparametric elements with midside nodes adjacent to the crack tip placed
at the quarter points, not only contain the inverse square root singularity
but also the rigid body motion and constant étrain modes. This type of
element thus provides a very useful tool for modeling two or three
dimensional cracks. Following the notation in Reference [22], the square
root singularity for a eight-node plane isoparametric element shown in

Fig.3.1, will be derived for the sake of completeness.
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For each element, interior coordinates (x and y) are related to nodal

coordinates x; and y, by:

x =Nx; + Nx; + Nx, + ... Nx, 3.1)

y =Ny, + Ny, + Ny, + ... Ny, (3.2)
Here N, are the shape functions associated with the node I,
N, = (1 + ss)(1 + t)(ss, + 1, - 1)/ 4 [ = ij.kl 3.3)

N, = 52 1+ ss)(d - r3)/2 +12(]1 + )l -s3/2 | = m,n,o,p 3.4)

s and r are serendipity coordinates (see Fig.3.1), s, and r, are equal to +
1 for corner nodes and zero for midside nodes. The displacements are

defined in similar form:

u =Ny + Nu; + Ny, + ... Nu, 3.5)
v=Ny+ Ny, + Ny, + ... Ny, 3.6)
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Evaluating the shape functions along i-m-j (r = -1) leads to:

N; = =s(l-s)/2 37
Ny'= sl +si2 (3.8)
Nm = (1-82) (3.9)

By use of equations (3.7-3.9) in (3.1) and (3.5) leads to:

x = -s(l -s)x/2 + s(l + s)xy2 + (I -s%x, (3.10)

u=-s(l-shu2 + sl + su/2 + (1 - s)u, (3.11)

By choosing x; = 0, x,, = 1/4 and x; = 1, then (3.10) yields:

x =81 + 5)/2 + (I -59)/4; 3.12)

therefore, a solution for s is



s=-] 4 2vx% (3.13)

The strain in x-direction is:

€, = 0u/dx = (0u/ds)(ds/0x) (3.14)

Finally, using (3.13) and (3.12) in (3.14) leads to:

€ = - (3 -4VXx Ju/2Vx - (1 - 4Vx Ju/2Vx +(2 - 4Vxu,/Vx (3.15)
Therefore, the strain is a function of 1A/ . The same procedure can

be applied to similar lines and for three dimensional elements.

3.3 Numerical Process

One of the most difficult problems in fracture mechanics is the
analysis of cracks in three-dimensional bodies. The intersection of an area
crack with a free surface is referred to as a surface flaw. These type of

defects are very common in many engineering applications but exact



solutions of these problems are seldom determined. Investigators have

resorted to numerical methods to obtain SIFs in these situations.

To solve this numerical problem using the finite element program
ANSYS a substructuring method is used. The analysis is divided in two

parts: the model and the submodel.

7, s I | The Model

This part consists of developing a coarse model (see Fig.3.2) which
represents the entire structure. Taking advantage of the three planes of
symmetry, only a section of the model is analyzed. The angle © is function
of the number of cracks ( ©=180°/n ). The surface crack in the model is
shown in Fig.3.2, where a is the crack depth, ¢ is the semi-crack length, r,
is the inner radius, r is the wall thickness and 2L is the length of the

cylinder.



crack front

Fig.3.2 Semi-elliptical surface crack in a cylinder. The model represents the

entire cylinder with three planes of symmetry:6=0°,8=180°/nand Z=0.

The finite element model shown in Fig.3.3 is meshed with ten-node
tetrahedral elements (STIF92) and it is generated using the automatic mesh
generator. To obtain a better representation of the displacement field,
smaller elements are chosen near the crack region, meanwhile far away the

element size is larger.



Fig. 3.3 The model meshed with 10-node tetrahedral elements,

The constant pressure load is applied perpendicular 10 the internal
surface of the cylinder and on the crack face. Symmetry boundary
conditions are applied on the corresponding planes of symmetry. In order
to approximate an infinite cylinder and avoid the end-eftect of the cylinder
the ratio of length of the cylinder to the crack length, L/c. is taken as 10.

Poisson’s ratio is assumed to be 0.3, representative of metal cylinders.



Nevertheless, this model is considered to be inadequate for local

crack-front analysis; therefore a submodel is created.

3.3.2 The Submodel

To generate the submodel, direct meshing is used and 20-node solid
elements surround the entire crack-front. By collapsing four nodes and
adjusting midside nodes, singular elements are positioned along the crack-
front as shown in Fig.3.4. The radial size of the submodel is 2a/3 for
circular cracks of radius a and varies from 2¢/3 to 2a/3 for elliptical cracks,
where c is the semi-length and a is the depth of the crack. Therefore most
of the crack is included in the submodel. The singular element size is a/8
wherein eight elements are positioned around the crack front and evenly

spaced every nine degrees in the ¢ direction as shown in Fig.3.5.

This direct generation approach gives better control of the local crack-
front mesh, allows the use of singular elements, and makes the extraction

of K, easier.



singular clements

Fig.3.4 The submodel meshed with 20-node solid elements.

As shown in Fig.3.5, for elliptical cracks the angle ¢ is measured
as in Raju and Newman [12). The SIF for these cases are obtained in planes

perpendicular to the crack-front.
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Fig.3.5 Measure of the angle ¢ for semi-elliptical cracks.

3.3.3 Substructuring Procedure

After the model is generated, meshed and the boundary conditions
applied, the problem is solved for the nodal displacements. Once the nodal
displacements are obtained, the submodel around the crack front is created
using direct generation. The resulting displacements from the model are
applied to the outer boundary of the submodel using the AUX1 cut-boundary
procedure. Finally, the submodel is solved for its displacements after
applying the boundary conditions. Utilizing the KCALC command the

stress intensity factor for ten points along the crack-front is computed.



The direct generation of the nodes and elements in the submodel is a
difficult process which demands extensive time and effort. Since, for all the
cases to be solved, a submodel is generated modifying only the crack-depth,
a, and semi crack-length, ¢, a macro was created which generated the
nodes and elements easily and without errors. This macro is a user-defined
sequence of data input commands written to an external file that may be
used at any other input location. Also, the macro may contain parameters
which may be assigned values by the user. The execution may be repeated
with the parameters incremented. The macros created to generate the

submodel are listed in Appendix C.

3.3.4 Extraction of stress intensity factor

Although there are many methods to estimated the SIF from a finite
element solution, the most utilized are : (1) the displacement method, (2) the
nodal force method and (3) the line integral (energy )method. All these
methods estimate the SIF using established crack tip relations and are
described in reference [23]. Since the calculation of the SIF based on the

displacement method is made automatically in ANSYS using the command
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KCALC, only this method is reviewed here.

The displacements and stresses in the vicinity of the crack are related
to the three modes and are expressed in the crack front coordinates of the

Fig.3.6 by [24] as,

u=(K/4G)Vr/2w)[(2k-1)cosO/2 - cos 30/2)-(K,/4G)Vr/27)[(2k + 3)sin©/2 + sin 30/2]+h.o.f.

v=(K/4G)Vr/2m)[(2k+ 1 )Jcos©/2 - cos 30/2)-(K,/4G)V r/2w)((2xk-3)5in©/2 + sin 30/2|+h.o.f.

w=(2K,/G)Vr/27) sin©/2 +h.o.f. (3.16)

0= (KN 27r)(1- sin©/2 sin 30/2)cosO/2- (KyN 27r)(2+ cos©/2 cos 30/2)5in©/2 +h.of

g, = (KN 2mr)(1 + sin®/2 sin 30/2)cos@/2+ (KN 27r) cox@/2 cox 30/2 sin®/2 + h.o.f.

og.= 0 for plane stress conditions

v (0, + 0,.) for plane strain conditions (3.17)

Q
I

where u,v and w are the displacements in rectangular coordinate system; K,
K, and K, are the stress intensity factors in mode I, II and III respectively;

ag

A

o,, and o.. are the normal stress components in rectangular coordinate

system; r and O are local polar coordinate system; G is the shear modulus;



is Poisson’s ratio; A.o.f. are higher order factors; and the variable « is a

conversion factor between plane strain and plane stress and is expressed as,

k=3-4y for plane strain (3.18a)

k= (3 -v)/(l + v) for plane stress (3.18b)

Neglecting higher order terms as » = 0 the displacement equations

give,

u = (K,/2G)NV772m)(l + )

v = (K2G)V727)(1 + ) (3.19)

w = (K,,/G)Vr/2w)

To extract the values of K,, the finite element results are compared
with equations (3.19). To calculate K, from mode I displacements, the

behavior of v(r) is approximate by,

v /Vr = A4+ Br (3.20)
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where v’ is the finite element approximation to the crack-face displacement,
v, and 4 and B are constants determined from a linear curve fit of nodal
displacements. Figure 3.6 shows that three nodes (i,j,k) are needed for a
half-crack model, all the displacements are relative to crack-tip node i. Once

A and B are determined, the limit r — O is taken, yielding

limv' /Vr =A 3.21)

r—=0

From (3.19) and (3.21),

K, = 2G AV2m)/(l + &) (3.22)

The method of substructuring explained above was validated solving
a similar case but for only two cracks and 1/r,=0.25. This problem, as
mentioned before was solved by Raju and Newman [12] using the nodal-
force method. The results of this validation are presented in the next

chapter.



Fig.3.6 Nodes used for the crack-front displacements.
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3.4 Maximum stress intensity factor equation

An empirical equation was developed in the present study to evaluate
the maximum stress intensity factor for different values of a/c, a/t, n, p, r,
and /. A manner similar to Raju and Newman [12], the coefficients of this
equation were determined by nonlinear fitting. However, the equation
developed herein applies not only for two cracks, but for different number
of cracks. The empirical equation is determined by a combination of two
effects:(1) the function £, which describes the effect of the crack depth to
the wall thickness of the cylinder, a/t. This expression is similar to that one

used in [12] and is written as,

3

2
fi= b+ bg(%% b;(%) * by(2) (3.23)

(2) the function f,, which describes the effect of the separation between

cracks and was utilized by Perl and Aroné [7] in the two dimensional

problem to describe the effect of the number of cracks. This expression is
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given by,

L 1% ¥ i (3.24)

Here, d is the distance between two adjacent cracks at the deepest
point. The ratio 2¢/d takes into account the effect of the crack length to the

separation between cracks and is written in terms of a/f and n, as,

(3.25)

The empirical equation was obtained by superposition of the two
effects of the functions f; (3.23) and £, (3.24) and was fitted to the finite

element results to obtain the coefficients b, for fixed values of a/c. This

equation evaluates the maximum stress intensity factor for multiple radial

cracks in pressurized cylinders and is given by,
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=y G N (3.26)

where p is the internal pressure, r; is the inner radius, 7, is the outer radius,
¢t the wall thickness of the cylinder and Q is the shape function for an

ellipse. The factor Q is given by [12],

Q= 1+ 1.464(9)1'65 G
C

Because of the limitation in the wave front in our version of ANSYS,
it was not possible to obtain a solution for cases where a/f <0.05, therefore
we were unable to compare the results obtained by equation (3.26) with the

limiting case of infinite wall thickness (a/—0).
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Chapter 4. Results

For all the solutions presented in the following sections, a

normalization factor (C,) is used, which is obtained from reference [12] and

is defined as:

c = (&l | ma 4.1)

Here, p is the constant pressure applied in the cylinder, r; is the inner
radius of the cylinder, r is the wall thickness, a is the crack-depth and Q is
the shape factor for an ellipse (equation 3.27). The length of the cylinder

was always large enough (L/c=10) to avoid the end effect on the results.

4.1 Validation of the model

In this section, a comparison between the present results and solutions
obtained by Raju and Newman [12] are presented. These solutions
correspond to a pressurized cylinder having two cracks, where the ratio of

the wall thickness to the inner radius, ¢/r; is 0.25 subject to two different
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crack configurations.

1. Semi-circular surface crack

Figure 4.1 shows the mode I stress intensity factor for two
diametrically located semi-circular cracks (a/c=1), in a cylinder of crack
depth to the wall thickness ratio a/t=0.2 with the ratio of the wall thickness
to the inner radius of #/7,=0.25. The maximum difference between the
present results and those obtained in [12] is 4.3 % lower, and, it occurs at

¢=22.5°.

2. Semi-elliptical surface crack

Figure 4.2 shows the variation of mode I stress intensity factor for
two semi-elliptical cracks (a/c=0.4) in a cylinder with a/=0.2 and
t/r;=0.25. The maximum difference between the present results and those
obtained in reference [12] is 4.4 % lower, and, it occurs at the deepest point

(=90°).

The present results were also compared with the finite element
analysis of Kirkhope [13], the results of the present study were 8 % lower.

These comparisons show that the present results are in very good agreement.
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Fig.4.1 Comparison of stress intensity factor along crack-front for two

semi-circular surface crack in pressurized cylindrical vessel.
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Fig.4.2 Comparison of stress intensity factor along crack-front for two

semi-elliptical surface crack in pressurized cylindrical vessel.
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Nevertheless, it must be stressed that the solutions in [12,13] were
obtained using a nodal force method to evaluate the SIF which gives upper
bound solutions [25]. Herein, the present results are determined employing

the displacement method which gives lower bound for the true value [25].

In order to estimate the number of elements necessary to achieve
convergence in the finite element mesh, a convergence analysis was done.
In Fig.4.3, the displacements in y-direction of the node located at x=1,
y=0, and z=-0.175 are shown as a function of the number of elements. For

1100 elements or more the displacements converged.

Node displacement
1
]
-
1

600 700 800 900 1000 1100
Number of elements

Figure 4.3  Number of elements necessary to achieve convergence.

The above considerations demonstrated that the modeling and analysis
procedure utilized in this investigation offer accurate results thereby
validating the solution obtained for multiple configurations of cracked

cylinders presented in the following section.
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4.2 Results

Table 4.1 shows the cases solved in this study for different crack
shapes: the ellipticity of the crack, a/c=0.2, 0.5, 0.1, and 1.5; the ratio of
crack depth to the wall thickness, a/=0.05, 0.1, 0.2, 0.4, and 0.6; and the
number of cracks, n=1, 2, 4, ..., nmax. The quantity nmax depends upon
the factor 2¢/3. This factor is very important, because the submodel has to
cover 2/3 of the crack to obtain more accurate results. To increase the
maximum number of cracks, some cases were solved using ¢/3 and ¢/2
instead of 2¢/3 (see Table 4.1). These cases were compared to previously

solved problems and the error in K, was found to be 2 % to 3 %.

In appendix A , the normalized mode I stress intensity factors along
the crack front for all the cases solved in this study, are presented. In
appendix B, the results are plotted on graphs showing the variation of the
stress intensity factors for different crack configurations as functions of the

angle ¢, and the number of cracks, n.
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Table 4.1 Crack configurations solved in the present study

a/c a/t n
0.2 0.05 |1;2;4;8; 16; 32*=*
0.1 2; 4; 8; 16**
0.15 |2:4;6; 12
0.2 1:2:4:'8
0.5 0.05 |I1; 2; 4; 8; 16; 32*; 45; 64*; 90**
0.1 1;254; 8: 16; 20; 32; 40**
0.15 |l1;2;4:8: 16%: 320
0.2 1; 2:4; B; 16%; 20
0.4 1; 2; 4; B**
0.6 123 6
1 0.05 |[1;2; 4;8;16; 32; 64
0.1 V; 2:4;8: 1B: 32: 45
0.15 |[l1;2;4;8;16; 32
0.2 132:4:8%: 16 20
0.4 1;2;4;8; 10
0.6 1: 2:4: 6
1.5 0.05 |1;2;4; 8; 16; 32; 45; 64; 90; 180**
0.1 1;2;:4; 8; 16; 32; 50; 64%; 100**
0.15 |[[1;2; 4; 8: 16; 32; 64%*
0.2 1; 2:9: 8; 16; 25 32%; S0
0.4 1:2: 428 16%; 320w
0.6 o2 4 8 (10 16" 20

* ¢/2 submodel size

** ¢/3 submodel size
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4.3 Empirical equation results

As was explained in chapter 3, an empirical equation was developed

in this study to estimate the maximum stress intensity factor in a pressurized

multicracked cylinder. The coefficients (see table 4.2) were determined by

nonlinear fitting of the finite element results and were found for fixed values

of a/c. The variation of a/c is included in the parameters b,

Table 4.2 Values of the coefficients b, (equation 3.26)

.2| 0.43819 | -0.74219 | 4.30884 | -9.32273 | 0.64230 | 1.85949 | 3.74752 | 5.82288 |-6.22339
E 0.63322 | -0.80852 | 1.53499 | -0.65347 | 0.84945 | 4.23347 | 3.52572 | 1.4454] |-2.98802
1.0 | 0.40548 | -0.25485( 0.45425 | -0.15454 | 0.34017 | 1.82339 | 4.76818 | 6.46741 [-7.02430
1.5 0.50172 [ -0.54225| 1.29890 | -0.98514 | 0.37996 | 1.14850 | 7.22075 | 1.83183 |-5.00655

Appendix D shows the maximum SIF obtained using the empirical

equation (3.26). When compared with the finite element results, the

maximum error was found to be + 5.7 %. Equation (3.26) is valid for 1/r,

close to 1; a comparison of the results obtained by this equation and those

obtained in [12] is not possible because results in [12] are obtained for

t/r,<0.25.
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Chapter S. Analysis and Discussion

In the following sections representative graphs are analyzed and
discussed, the graphs and tables of all the cases solved in this study are

presented in the Appendices A and B.

5.1 Semi-circular surface cracks (a/c=1)

Figures 5.1, 5.2, and 5.3 show the variation of the SIF for semi-
circular surface cracks (a/c=1) for ratios of a/r=0.05, 0.2, and 0.6. These
results are given as a function of the angle, ¢, and the number of cracks, n.

- The case of two cracks gives the maximum SIF, for all the cases.
As the number of cracks increases, the SIF decreases tending to a constant
value at the deepest point of the crack (¢=90°).

- The percentage difference in SIF between the n=2 case and the n=1
case is 0.3 % for small cracks (a/1 =0.05). This difference increases with
increasing crack size, with a maximum percentage difference of 3.6 % for

a/t=0.6. For the smallest crack (a//=0.05), even the n=28 case gives a

44



29
z'a -
2.1
2
19
0 10 20 a0 ) 50 80 70 80 90 100 110

phi

Figure 5.1 Stress intensity factor along crack-front for semi-circular surface
crack in pressurized cylindrical vessel (a/r=0.05)
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Fig.5.2 Stress intensity factor along crack-front for semi-circular surface crack
in pressurized cylindrical vessel (¢/r=0.2) .
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Figure 5.3 Stress intensity factor along crack-front for semi-circular surface
crack in pressurized cylindrical vessel (a//=0.6)
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Fig.5.4 Stress intensity factor along crack-front for semi-circular surface crack
in pressurized cylindrical vessel
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higher SIF than the single crack case.

- The maximum value of the SIF for a fixed a/ is at the intersection
of the crack and the surface (¢ =0°).Then the SIF decreases more rapidly
as the size of the crack (a/f) increases. This, also, can be observed in

Fig.5.4.

Figure 5.4 shows the variation of the SIF for two semi-circular cracks
(a/c=1) and various crack size ratios, a//=0.05, 0.1, 0.15, 0.2, 0.4, and
0.6 as a function of the angle ¢. For a/t < 0.4 the normalized SIF is larger

for smaller cracks.

Figure 5.5 shows the variation of the maximum SIF (¢ =0°) for semi-
circular cracks (a/c=1) as a function of the number of cracks and the crack
depth (a/f). For small cracks (small a/r) the values of the SIF are nearly the

same but this difference increases with the increasing of a/r.
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5.2 Semi-elliptical surface cracks.

5.2.1 Ellipticity of the crack less than one (a/c < 1)

Figures 5.6, 5.7, and 5.8 show the variation of the SIF for semi-
elliptical surface cracks (a/c=0.5) and the ratio a/t=0.05, 0.2, and 0.6.
These results are given as a function of the angle, ¢, and the number of
cracks, n.

- The case of two cracks gives the maximum SIF, for all the cases.

- The percentage difference in the stress intensity factor between the
n=2 case and the n=1 case is 0.2 % for small cracks (a/t=0.05). This
difference increases with increasing crack size, reaching a maximum of 5.7
% for a/t=0.6

- The maximum SIF occurs at the deepest point of the crack (¢=90°)
for a/t < 0.4. The SIF increases as the depth of the crack (a/r) increases.
For a/t=0.6, the maximum SIF is at ¢=0°.

- The minimum SIF for small cracks (a4 < 0.1) occurs at
approximately ¢=9° . As the crack depth increases, the angle for minimum
SIF increases to ¢=27° for 0.2 < a/t < 0.6.

- As the number of cracks increases, the difference between the
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Fig.5.5 Maximum stress intensity factor along crack-front for semi-circular

surface crack in pressurized cylindrical vessel.
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Fig.5.6 Stress intensity factor along crack-front for semi-elliptical surface

crack in pressurized cylindrical vessel (¢/r=0.05).
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Fig.5.7 Stress intensity factor along crack-front for semi-elliptical surface crack

in pressunized cylindrical vessel (¢/c=0.5, a/t=0.2).
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Fig.5.8 Stress intensity factor along crack-front for semi-elliptical surface
crack in pressurized cylindrical vessel (a/c= 0.5, a/r=0.6).



maximum SIF (¢=90°) and the value of the SIF at ¢=0° decreases. For
larger a/t, this phenomena occurs for smaller number of cracks.

- For a/t=0.6 (Fig.5.8), the maximum stress intensity factor shifts
from 0° (n=2 cracks) to 90° (n=6 cracks). Therefore, it can be assumed

that between n=2 and »=6 a transition occurs.

Figure 5.9 shows the variation of the normalized SIF for two semi-
elliptical cracks (a/c=0.5) as a function of the ratio crack depth to wall

thickness, a/t, and the angle ¢.
- At the deepest point, $=90°, the SIF decreases for a/t from 0.05
to 0.4, but increases for a/r=0.6. At $=0°, the SIF decreases for a/t from

0.05 to 0.1, but increases for a/t from 0.2 to 0.6.

Figure 5.10 shows the variation of the maximum SIF (¢=90°) for
semi-elliptical cracks (a/c=0.5) as a function of the number of cracks and
the crack depth (a/t).

For small a/t the maximum SIF for n=1 to 16 is approximately
equal, the difference between the SIFs becomes larger as the ratio a/f and

the number of cracks, n, increases.
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Fig.5.9 Stress intensity factor along crack-front for two semi-elliptical surface
crack in pressurized cylindrical vessel (a/c= 0.5).
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Figures 5.11-5.13 show the variation of the SIF for semi-elliptical
surface cracks (a/c=0.2) and the ratio a/t=0.05, 0.1, and 0.2 as a function
of the angle, ¢, and the number of cracks, #.

- The maximum SIF occurs at the deepest point of the crack (¢=90°)
and the minimum at ¢=9°,

- The SIF increases more rapidly from ¢=9° to 90° than the
a/c=0.5 case. For two shallow cracks, the difference between the maximum
and the minimum SIF is 47 % for a/c=0.2 and a//=0.05 (Fig.5.11) versus
20 % for a/c=0.5 and the same a/t (Fig.5.6).

- The larger the ratio of crack depth to wall thickness, a/r, the larger
the difference of the stress intensity factors between the n=2 and the n=1

cases.
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Fig.S. 1 Stress intensity factor along crack-front for semi-elliptical surface crack
in pressurized cylindrical vessel (a/c=0.2, a/r=0.05)
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Fig.5.12 Stress intensity factor along crack-front for semi-elliptical surface crack
in pressurized cylindrical vessel (¢/c=0.2, a/1=0.1) .
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_Fig.S. 13 Stress intensity factor along crack-front for semi-elliptical surface crack
in pressurized cylindrical vessel (a/c=0.2, a/r=0.2)
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Fig.5.14 Stress intensity factor along crack-front for semi-elliptical surface crack
in pressurized cylindrical vessel (¢/c=1.5. a/1=0.05) .
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5.2.2 Ellipticity of the crack higher than one (a/c > 1)

Figure 5.14-5.16 show the variation of the SIF for semi-elliptical
surface cracks (a/c=1.5) and the ratio a/r=0.05, 0.2, and 0.6. These results
are given as a function of the angle, ¢, and the number of cracks, #.

- The shape of the curves is very similar to the case of the semi-
circular cracks. Even though the behavior of the SIF is the same for the
semi-elliptical case, the SIF decreases more rapidly .

- For small number of cracks the maximum SIF occurs at 0°. As the
number of cracks increases, the maximum stress intensity factor shifts from

¢»=0° to approximately 9°.

Figure 5.17 shows the variation of the normalized SIF for two semi-
elliptical cracks (a/c=1.5) as a function of crack depth to wall thickness
ratio, a/t, and the angle ¢.

- The normalized SIF decreases as the crack depth increases.
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Fig.5.15 Stress intensity factor along crack-front for semi-elliptical surface crack
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Fig.5.16 Stress intensity factor along crack-front for semi-elliptical surface crack
in pressurized cylindrical vessel (a/c=1.5. a/r=0.6) .
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Figures 5.18 and 5.19 show the normalized SIF for two cracks and
a/t=0.05 and 0.2 respectively, as a function of the number of cracks, n, and
the ellipticity of the crack, a/c. For the smallest crack, a/t=0.05 (Fig.5.18),
from 0° to 70° the smaller the ellipticity the smaller the normalized SIF,
from 70° to 90° the normalized SIF tends to a constant value, 2.5, except

for a/c=1.5, where the normalized SIF is 2.38.

For a/t=0.2 (Fig.5.19), the behavior is very similar. The smaller the
value of a/c the smaller the SIF, but the angle of transition is smaller,

¢=40°. At the deepest point of the crack (¢=90°) the SIF is higher for

smaller values of a/c.

In order to show the variation of the SIF with the ratio of the
thickness of the cylinder to inner radius, 7/r,, some cases with different 7/r,
were solved. Figure 5.20 shows the variation of the SIF as a function of 7/r,,
for a/c=0.5, a/r=0.4 and for a/c=1, a/r=0.2. As the ratio 1/r, decreases
the stress intensity factor increases as expected. Thus, thinner cylinders

exhibit more dangerous cracks than thicker cylinder for the same a/c ratio.



32

284 i

= .
- -‘\x\ "0-._‘___‘_

L -‘“""‘q.____ :
"'x\\k e R
2.4 - E -“"-.._ k.‘\ _i
e ’ b
gud — O %
28
1.8
1.6 n=2 cracks
143
34 10 20 30 0 50 60 70 80 90
a/t

Fig.5.19 Stress intensity factor along crack-front for two surface cracks
(a/t=0.2) of different ellipticity as a function of the crack depth.

28

ur,
0.25

a/c=0.5, a/t=04

284

_____ afc=1, at=02

b e ~ 0.25
B N = Dessisnsinngzy 0-5
T S s N e g ¥
'3 1 20 0 40 50 50 70 80 90 100
phu
Fig.5.20 Variation of the stress intensity factor along crack-front as a

function of /r..

60



5.3 Conclusions

The stress intensity factor was calculated using a three-dimensional
finite element analysis for different radial configurations of semi-circular and
semi-elliptical internal surface cracks in a pressurized thick walled cylinder.
The finite element models were meshed with ten-node tetrahedral elements
and had between 7500 to 10000 degrees of freedom. A technique of
substructuring was used, building a submodel with twenty-node cubic
isoparametric elements and singular elements along the crack front. The

nodal displacement method was used to calculate the stress intensity factor.

In order to validate these results, two different cases were solved
using this method and compared to other analyses of internal surface radial
cracks in cylinders. The present results were in very good agreement with

other finite element analyses.

The stress intensity factors for different crack configurations were
presented. The ratio of crack depth to crack length ranged from 0.2 to 1.5,

the ratio of crack depth to wall thickness ranged from 0.05 to 0.6 and the
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number of cracks from n=1 to 180 where possible.

The stress intensity factors for all the cases solved in this study were
maximum for two equispaced cracks. For semi-circular surface cracks the
stress intensity factors were maximum at the intersection of the crack with
the inner surface of the cylinder and minimum at the deepest point of the
crack. As for semi-elliptical surface cracks, when a/c was less than 1 the
maximum SIFs were at the deepest point of the crack, except for small
number of large cracks (n=2, a/f=0.6) where the maximum SIF shifted
from the deepest point to the intersection with the inner surface, ¢$=0°.
When a/c was higher than 1 the maximum SIFs were at the intersection of
the crack with the inside surface, but as the number of cracks increased the
maximum occured at an interior point. The smaller the crack the smaller the
difference between the two cracks case and the single crack case. The larger
the number of cracks the smaller the variation of the SIFs with the angle ¢.

As the thickness of the cylinder decreased, the SIFs were found increase.

An empirical equation to estimate the maximum SIF for radial of
internal semi-circular and semi-elliptical surface cracks in pressurized thick

walled cylinders was developed in this study. The values obtained by
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equation (3.26) were within 5.7 % of the finite element results. This
empirical equation is valid for ¢/r, close to 1; a comparison of the results
obtained by this equation and those obtained by Raju and Newman [12] was
not possible because results in [12] were obtained for #/r, less or equal than
0.25. Also, we were unable to compare the results of the empirical equation
with the limiting case of infinite wall thickness because the limited wave

front in our version of ANSYS.

The stress intensity factors obtained in this study should provide a
more realistic estimation of the static fracture endurance, the crack-growth
rate and the total fatigue life of multicracked thick walled pressurized
cylinders, since all the empirical formulas dealing with these subjects are

function of K.

5.4 Future research

In the present study, the stress intensity factor for radial surface
cracks in pressurized cylinders were calculated using a three-dimensional

finite element analysis (ANSYS). A substructuring technique was also
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introduced. This method provides a very useful tool which can be applied

for a variety of three-dimensional linear fracture problems.

In particular, the method of substructuring has been applied to
evaluate the three-dimensional SIF distribution along the crack front for
coplanar arrays of internal semi-circular and semi-elliptical cracks In
pressurized thick walled cylinders. As a future research, this method can be
applied to analyze the combination of large arrays of radial and coplanar
surface internal and external cracks. In the same manner, surface cracks
near the end of the cylinder under pressure and different crack
configurations of surface cracks in cylinders under internal thermal shock

can be considered.
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APPENDIX A

TABLES OF NORMALIZED STRESS INTENSITY FACTORS
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Table A1. Normalized SIF for various number of cracks (a¢/c=0.2, a/r=0.05)

0.2 0.05 0 1.3903 1.3924 1.3874 1.3748 1.3446 1.2390
0.2 0.05 9 1.3031 1.3063 1.2046 1.2981 1.2624 1.1936
02 0.05 | 18 1.5741 1.5763 1.5742 1.5664 1.5321 1.4693
0.2 0.05 | 27 1.8337 1.8388 1.8362 1.8271 1.7701 1.6578
0.2 005 | 36 2.0418 2.0505 2.0478 2.0375 1.9787 1.8012
02 005 | 45 2.1896 2.1977 2.1948 2.1837 2127 1.8901
02 0.05 | 54 2.3179 2.3213 23184 2.3064 2.2270 1.9150
02 005 | 63 2.3888 2.3928 2.3900 2.3177 2.2734 1.9126
0.2 005 | 72 2.4289 2.4275 24248 24117 23073 1.9238
02 0.05 | 81 2.4489 2.4542 2.4517 24383 23533 1.9266
0.2 005 | 0 2.4632 2.4688 2.4663 24527 2.3645 1.9853

Table A2. Normalized SIF for various number of cracks (a/c=0.2, a/r=0.1)

n
alc a/t | phi 2 4 8 16

0.2 0.10 0 13993 1.3924 1.3672 1.2461
0.2 0.10 9 1.3088 1.3024 1.2789 1.2013
02 0.10 | 18 1.5928 1.5851 15558 1.4626
0.2 0.10 | 27 1.8028 1.7945 1.7598 1.65%0
0.2 0.10 | 36 20134 2.0046 1.9633 1.7858
0.2 0.10 | 45 2.1654 21562 2.1085 1.8703
0.2 0.10 | 54 2.2521 2.2429 2.1888 1.8804
0.2 0.10 | 63 23163 23073 2.2457 1.9140
0.2 010 | 72 23757 2.3668 2.2884 1.919%6
0.2 0.10 | 81 2.4181 2.4093 2.3381 1.9193
0.2 0.10 | 90 24132 2.4045 1.3324 1.9554
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Table A3. Normalized SIF for various number of cracks (a/c=0.2, a/t=0.15)

0.2 0.15 0 14142 1.3864 1.3697 1.2640
02 0.15 9 1.3212 1.3176 1.2911 1.2125
0.2 0.15 | 18 1.5%00 1.5733 1.5415 14718
0.2 0.15 | 27 1.8026 1.7848 1.7476 1.6473
0.2 0.15 | 36 1.9908 1.9786 1.9353 1.7595
0.2 0.15 | 45 2.1306 2.1123 2.0634 1.8325
0.2 0.15 | 54 2.2156 2.1978 21443 1.8488
02 0.15 | 63 2.2667 22497 21927 1.8408
0.2 0.15 | 72 2.2962 2.2799 2.2191 1.8494
02 0.15 | 81 2.3407 23246 2.2600 1.8408
02 0.15 | %0 23729 23568 22896 1.8895

Table A4. Normalized SIF for various number of cracks (a/c=0.2, a/r=0.2)

02 | 020 | o 14037 | 14347 | 14086 | 12888
02 | 020 | 9| 13225 | 13509 | 13264 | 12364
02 | 020 | 18| 15628 | 15953 | 15655 | 14979
02 | 020 | 27| 17828 | 18187 | 17872 | 16804
02 | 020 | 36| 19704 | 20088 | 1978 | 17938
02 | o020 |as| 20877 | 21273 | 20963 | 18746
02 | 020 | sa| 21633 | 22080 | 2178 | 18997
02 | 020 | 63| 22108 | 22509 | 22217 | 19404
02 | 020 | 72| 22378 | 22780 | 22497 | 19455
02 | 020 | 81| 22006 | 23197 | 2293 | 19438
02 | 020 | 90| 23160 | 23537 | 23288 | 19918




Table AS. Normalized SIF for various number of cracks (a/c=0.5, a/t=0.05)

n
alc a/t | phi 1 2 4 8 16 12 45 64 9%
0.5 0.05 2.0930 2.0983 2.0980 2.0481 2.0242 1.8662 1.7663 1.5652 1.3593
03 1 0051 9] 19965 | 20016 | 20012 | 19758 | 19524 | 17998 | 1esss | 14850 | 1297
0.5 005 | 18| 2.0316 2.0367 2.0365 20178 1.9936 1.8353 1.7009 1.4915 1.3046
0.5 005 | 27| 21116 2.1169 2.1169 2.0979 2.0723 1.9039 1.7450 1.5338 1.3383
0.5 005 | 36| 21960 22014 2.2018 21858 2.1583 1.9772 1.8058 1.5849 1.3796
0.5 005 | 45| 22774 2.2830 2.2839 2.2758 2.2459 2.0502 1.8726 1.6238 1.4083
0.5 005 | 54| 23568 2.3626 2.3640 2.3601 2.3268 2.1167 1.9270 1.6534 1.4256
0.5 005 | 63| 24224 2.4283 2.4303 2.4219 23871 2.1630 1.9599 1.6683 1.4350
03 | 005 1 72| 24605 | 24664 | 24689 | 24658 | 24291 | 21948 | 19766 | 16799 | 1.ca28
0.5 005 | 81| 24911 2.4971 2.4999 2.5046 2.4665 22245 1.9811 1.6896 1.4513
0.5 005 | 90| 24975 2.5035 2.5065 2.5074 2.4689 22253 1.9781 1.6816 1.4527
Table A6. Normalized SIF for various number of cracks (a/c=0.5, a/1=0.1)
n
a/e a/t |phi 1 2 4 8 16 20 32 40
0.5 010 | 0| 19915 1.9962 2.0321 1.9699 1.8938 1.8033 1.5755 1.4466
0.5 0.10 1.9197 1.9278 1.939% 1.9020 1.8030 1.7218 1.4941 1.3703
0.5 0.10 | 18| 1.9543 1.9579 1.9644 1.9314 1.8163 1.7378 1.4984 1.3702
0.5 010 | 27| 2.0278 2.0310 2.0376 2.0030 18744 | 1.7859 1.5330 1.4044
0.5 0.10 | 36| 2102 21090 21181 20793 1.9425 1.8456 1.5768 1.4401
0.5 0.10 | 45| 21689 2.1793 21922 2.1478 2.0058 1.9004 1.6119 1.4630
0.5 010 | s4| 22275 2.2354 2.2527 2.2021 2.0517 1.9467 1.6357 1.4815
05 0.0 | 63| 22732 2.2796 2.3002 2.2449 2.0803 1.9876 1.6483 1.4898
0.5 010 | 72| 23083 23117 23343 2.2758 21055 2.0042 1.6567 1.4976
0.5 0.0 | 81| 23288 23332 2.3543 2.2966 2.1143 2.0147 1.6655 1.5087
0.5 0.10 | 90| 23201 2.3295 2.3559 22928 2.0893 2.0059 1.6715 1.5152
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Table A7. Normalized SIF for various number of cracks (a/c=0.5, a/t=0.15)

0.5 0.15 0 2.0406 2.0454 2.0380 1.9751 1.7829 1.3928
0.5 0.15 ? 1.9385 1.9477 1.9471 1.8809 1.6914 1.3246
0.5 015 | 18 1.9577 1.9633 1.9565 1.8959 1.6953 1.3218
0.5 015 | 27 20114 2.0216 2.0146 1.9516 1.7314 1.3501
0.5 015 | 36 2.0796 2.0853 2.0781 2.0122 1.7798 1.3809
0.5 015 | 45 2.1412 2.1500 2.1428 20735 1.8294 1.4006
05 015 | 54 2.2130 2.2205 2.2131 21401 1.8659 1.4119
0.5 015 | 63 2.2677 22774 2.2699 2.1935 1.8860 1.4154
0.5 015 | 712 2.3095 23164 2.3089 22299 19109 1.4198
0.5 015 | 81 2.3258 2.3374 23299 2.2493 1.9281 1.4289
0.5 0.15 | %0 2.3228 2.3297 23122 22416 1.9312 1.4332

Table A8. Normalized SIF for various number of cracks (a/c=0.5, a/r=0.2)

n

0.5 0.20 0 2.0057 2.0343 2.0092 1.9060 1.6225 1.5029
0.5 0.20 9 1.9090 1.9239 19122 1.8141 1.5310 1.4183
0.5 020 | 18 1.9229 1.9374 1.9261 1.8260 1.5255 1.4067
0.5 0.20 | 27 1.9722 1.9862 1.9756 1.8698 1.5520 1.4305
0.5 020 | 36 20301 20444 2.0337 1.9204 1.5871 1.4630
0.5 0.20 | 45 2.0504 2.1048 2.0044 1.9725 1.6093 1.4845
0.5 020 | 54 2.1481 21625 21526 2.0216 1.6186 1.4971
05 0.20 21925 22068 2.1974 2.0584 1.6216 1.5020
0.5 020 | 72 22299 22443 2.2356 2.0898 1.6258 1.5085
0.5 020 | 81 2.2556 2.2701 2.2619 2.1116 1.6380 1.5189
0.5 020 | 90 22591 22736 2.2656 21142 1.6444 1.5246

&
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Table Ag.

Normalized SIF for various number of cracks (a/c=0.5. a/t=0.4)

of cracks (a/c=0.5, a/r=0.6)

n
a/c a/t |phi 1 2 4 8
0.5 0.40 0 2.0755 2.1568 2.0840 1.7807
0.5 0.40 1.9503 2.0224 1.9569 1.6672
0.5 0.40 18 1.9272 1.9944 1.9356 1.6454
0.5 040 | 27| 19473 | 20114 19576 | 1.6664
0.5 0.40 315 1.9834 2.0453 1.9966 1.7086
0.5 0.40 45 2.0254 2.0845 2.0409 1.7466
0.5 0.40 54 2.0726 21297 2.0910 1.7748
0.5 0.40 63 2.1088 2.1649 2.1208 1.7984
0.5 0.40 72 2.1351 2.1909 2.1609 1.8205
0.5 0.40 81 2.1540 2.2088 2.1815 1.8393
05 0.40 %0 2.1422 2.1964 2.1705 1.8512

Table A10. Normalized SIF for various number

n

alc a/t |phi 1 2 3 6

0.5 0.60 0 2.2612 2.4362 2.4406 1.9698
0.5 0.60 9 2.0855 2.2948 2.2444 1.8287
0.5 060 | 18| 20241 22175 21724 | 1.7960
0.5 0.60 27 2.0224 2.1995 2.1697 1.8201
0.5 0.60 36 2.0522 2.2146 2.2018 1.8804
0.5 0.60 45 2.0924 2.2489 22471 1.9469
0.5 0.60 54 2.1424 2.2894 2.3043 2.0101
0.5 0.60 63 2.1809 2.3257 2.3488 2.0780
0.5 0.60 12 2.2163 2.3508 2.3891 21527
0.5 0.60 81 2.2449 2.3851 2.4212 2.1880
0.5 0.60 90 2.2443 2.3811 2.4204 2.2055
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Table Al1l1. Normalized SIF for various number of cracks (a/c=1, a/t=0.05)

ale at |phi 1 2 4 8 16 32 64

1.0 0.05 0 2.7961 2.8035 2.8010 2.7996 1.7816 2.6503 2.1808
1.0 0.05 9 2.7700 2.7773 2.7748 2.7735 2.7556 26155 1.1669
1.0 0.05 | 18 2.6597 2.6666 2.6642 2.6630 2.6457 2.5131 2.0911
1.0 0.05 | 27 2.5824 2.5890 2.5868 2.5856 2.5687 2.4569 2.0410
1.0 0.05 | 36 2.5492 2.5557 2.5535 2.5524 2.5356 2.4186 2.0247
1.0 0.05 | 45 2.5291 2.5355 25333 2.5322 2.5156 2.3840 2.0180
1.0 0.05 | 54 2.5054 2.5156 25122 2.5110 2.4930 2.3727 2.0100
1.0 0.05 | 63 24915 24978 2.4957 2.4946 24782 2.3529 2.0033
1.0 0.05 | 72 2.4767 2.4829 2.4808 24797 2.4635 2.3439 1.9965
1.0 005 | 81 2.4789 2.4850 2.4830 24819 2.4657 23413 2.0011
1.0 0.05 | 90 24724 24785 2.4765 24754 2.4592 2.3281 1.9971

Table A12. Normalized SIF for various number of cracks (a/c=1, a/t=0.1)

alc at |phi 1 2 4 8 16 k7] 45

1.0 0.10 0 27374 27424 27433 27158 26211 21707 1.8679
1.0 0.10 9 2.6847 2.6895 2.6908 26636 2.5699 2.1342 1.8413
1.0 0.10 | 18 2.5649 2.5694 2.5704 2.5449 2.4544 2.0485 1.7781
1.0 0.10 | 27 2.5068 25111 25119 2.4879 23978 20113 1.7583
1.0 0.10 | 35 24622 2.4664 2.4670 24446 | 23545 1.9839 1.7425
1.0 0.10 | 45 2.4332 2.4373 2.4377 2.4167 2.3265 1.9681 1.7329
1.0 0.10 | 54 24116 24151 24153 2.3955 2.3055 1.9567 1.7344
1.0 0.10 | 63 2.3938 2.3977 2.3976 2.3787 2.2893 1.9480 1.7287
1.0 0.10 | 72 2.3891 2.3929 2.3927 2.3744 2.2852 1.9480 1.7220
1.0 0.10 | 81 23879 23917 23913 23733 2.2843 1.9430 1.7173
1.0 0.10 | %0 23112 2.3810 2.3806 2.3628 2.2742 1.9442 1.7171
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Table A13. Normalized SIF for various number of cracks (a/c=1, a/t=0. 15)

10 | 015 ] 0f 27066 | 27135 | 27091 | 26448 | 24193 | 1871
10 | 0151 9| 26462 | 26532 | 2648 | 25888 | 23657 | 1863
1.0 0.15 18 2.5133 2.5198 25160 2.4588 2.2492 1.7768
10 | 015 [ 27] 24443 | 24503 | 2447 | 23930 | 21903 | 1747
10 1 015 [ 36] 23915 | 23973 | 23944 | 23460 | 21463 | 17285
10 | 015 145) 23538 | 23593 | 23567 | 23121 | 21157 | 1713
10 | 015 | 54] 23268 | 23321 | 23207 | 22875 | 20947 | 1.708
10 | 015 | 63] 23053 | 23105 | 23082 | 22675 | 20781 | 1.6972
10 | 015 | 72| 22974 | 23026 | 23003 | 22604 | 2072 | 16966
10 | 015 | 81| 2295 | 23071 | 22985 | 2290 | 20728 | 1.6081
10 | 015 [ 90] 22790 | 22840 | 22818 | 22473 | 20583 | 1.6871

Table Al4. Normalized SIF for various number of cracks (a/c=1, a/t=0.2)

10 | 020 | o] 2655 | 26621 | 26636 | 25738 | 22006 | 2.0008
10 | 020 | 9| 26001 | 26111 | 26093 | 25215 | 21594 | 19699
10 | 020 | 18| 24677 | 24778 | 24784 | 23017 | 2082 | 18861
1.0 020 | 27| 23684 | 23778 | 23725 | 22941 | 19811 [ 187
10 | 020 [ 36| 23003 | 23181 | 23112 | 22361 | 19393 | 1.79s8
10 | 020 | 45| 22671 | 22754 | 22678 | 21958 | 19114 | 1.7767
10 | 020 | 54| 22467 | 22547 | 22467 | 21770 | 19003 | 1.7696
10 | 020 63| 22251 | 22329 | 2225 | 21576 | 18866 | 1757
10 | 020 | 72| 21973 | 22048 | 21974 | 21320 | 1858 | 1737
10 | o020 | 81| 22029 | 22108 | 22032 | 21384 | 18718 | 17424
10 | 020 [ 90| 2198 | 22057 | 2198 | 21343 | 18683 | 17387

77



Table A1S5.

Normalized SIF for various number of cracks (a/c=1, a/t=0.4)

n
ale a/t |phi 1 2 4 8 10
1.0 040 | 0| 26134 2.6547 26248 23135 21342
1.0 0.40 2.5157 2.5530 2.5260 22346 2.0692
1.0 0.40 18 2.3638 2.3963 23732 2.1098 1.9610
10 040 | 27| 22558 2.2845 2.2651 2.0267 1.8865
1.0 0.40 36 2.1898 2.2154 2.1995 1.9735 1.8438
1.0 040 | 45| 21398 2.1630 2.1502 1.9368 1.8154
1.0 0.40 54 2.1008 21221 2.1119 1.9088 1.8018
1.0 040 | 63| 2.0806 2.1006 2.0925 1.8966 1.7945
1.0 040 | 72| 2.0608 2.0797 2.0731 1.8832 1.779§
1.0 040 | 81| 2.0440 2.0622 2.0566 1.8708 1.7679
1.0 040 | 90| 20348 2.0528 2.0476 1.8635 1.7638
Table A16. Normalized SIF for various number of cracks (¢/c=1, a/r=0.6)
n
alc att |phi 1 2 4 6
1.0 0.60 2.6747 2.7751 27128 2.4460
1.0 0.60 2.5270 2.6133 2.5618 2.3258
1.0 060 | 18| 23367 2.4078 2.3695 21716
1.0 060 | 27| 22380 2.2048 2.2687 2.0963
1.0 060 | 36| 21568 2.2073 2.1926 2.0423
1.0 060 | 45| 21018 2.1449 2.1404 2.0082
1.0 060 | 54| 20603 2.0974 21016 1.9847
1.0 060 | 63| 20379 2.0706 2.0817 1.9767
1.0 060 | 72| 20144 2.0439 2.0600 1.9643
1.0 060 | 81| 2.0025 2.0300 2.0492 1.9591
1.0 060 | 90| 1.9938 2.0205 2.0408 1.9530
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Table A17. Normalized SIF for various number of cracks (a/c=1.5, a/r=0.05)

0 33147 33282 3.3261 3.3255 3.3144 3.2239 3.0772 2.7657 2.3863 1.6271
9 32763 3.2896 32875 3.2868 3.2758 3.1869 3.0440 2.7815 2.3871 1.6588
18| 3.08% 3.1020 3.1000 3.0994 3.0888 3.0061 2.8748 2.6181 2.2912 1.6221
27 2.9824 2.9942 2.9923 2.9915 1.9813 2.9029 27803 25404 2.2626 1.6231
36| 28548 28761 28743 2.8734 2.8635 2.7899 2.6766 2.4626 2.2038 1.61%0
45 2.7673 2.7780 2.7763 2.7753 2.7657 2.6963 2.5912 2.3853 2.1646 1.6081
54 26703 1.6806 2.6790 2.6778 2.6685 2.6032 1.5056 23089 21192 1.59%6

63 25589 2.5687 25672 2.5660 2.5570 2.4958 2.4051 22519 2.0551 1.5783
72| 2.4639 24732 24718 2.4705 2.4619 2.4040

2.3192 2.1879 1.9959 1.5554

81 2.4082 24174 2.4159 2.4147 2.4063 2.3503 2.2688 21291 1.9612 1.5386

90 23734 23824 23810 23798 23714 2.3165 2.2367 21052 1.9365 1.5266

Table A18. Normalized SIF for various number of cracks (a/c=1.5, a/t=0.1)

n

phi 1 2 4 8 16 32 50 64 100

0 3.2353 3.2413 3.2358 3.2367 3.1688 27573 2.2491 1.9297 1.5292
9 3.1965 32023 3.1970 31977 3.1299 2.7335 22535 1.9730 1.5578
18 3.0068 3.0121 3.0074 3.0077 2.9435 2.5816 2.1643 1.9331 1.5327
27 2.8909 2.895% 28916 2.8916 2.8293 2.5032 2.1262 1.9067 1.5276
36 27724 27771 27732 2.7726 2.7126 24177 2.0825 1.8893 1.5219
45 26720 26764 26728 26715 2.6138 2.3461 2.0460 1.8563 1.5101
54 2.5642 2.5684 2.5651 2.5629 25081 2.2653 1.9954 1.8286 1.4950
63 2.4574 2.4614 24584 2.4555 2.4035 2.1820 1.9371 1.7992 1.4753
72 2.3738 23776 23748 23714 2.3116 2.1157 1.8882 1.7624 1.4661
81 2313 23160 23134 23097 22615 2.0657 1.8492 1.7317 1.4567
90 228719 2.2916 2.28%0 2.2852 2.2376 2.0455 1.8333 1.7171 1.4447
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Table A19. Normalized SIF for various number of cracks (a/c=1.5, a/t=0.13)

n

afc a/t |phi 1 2 4 8 16 2 64

1.5 | 015 0 3.1562 3.1560 3.1537 31234 2.9347 2.1397 1.5588
1.5 0.15 9 3.1247 3.1326 3.1303 3.1002 2.9144 2.1552 1.5733
1.5 0.15 | 18 2.9505 2.9518 2.9496 2.9213 2.7497 2.0757 1.5448
1.5 0.15 | 27 1.8215 2.8250 2.8226 2.7956 2.6364 2.0316 1.5386
15| 015 | 36 2.7201 2.7192 2.7167 2.6%09 2.5431 1.9988 1.5339
1.5 | 015 | 45 2.5996 1.6089 2.6063 2.5818 2.4453 1.9566 1.5203
1.5 0.15 | 54 2.5047 2.5043 2.5016 24785 23522 1.9111 1.5067
1.5 0.15 | 63 2.4140 2.4157 2.4128 23910 22728 1.8695 1.4921
15| 015 | 72 2.3304 2.3283 2.3254 2.3047 2.1935 1.8204 1.4726
1.5 | 015 | 81 2.2616 2.2660 2.2631 2.2432 2.1366 1.7830 1.44%0
15| 015 | 0 2.2323 2.2347 22346 | 22149 21102 1.7644 1.4414

Table A20. Normalized SIF for various number of cracks (a/c=1.5, a/t=0.2)

n

alc a/t | phi 1 2 E 8 16 25 32 50

1.5 0.20 0 3.0877 3.1036 3.0935 3.0371 27017 2.2321 1.9480 1.5534
15 0.20 9 3.0645 3.0792 3.0696 3.0138 2.6873 2.2409 1.9748 1.5807
15 020 | 18 18786 28911 28825 28308 25353 21432 1.9221 1.5554
1.5 020 | 27 2.7584 2.7690 27612 27127 2.4426 2.0930 1.8842 1.5399
1.5 020 | 36 2.6359 2.6447 2.6375 2.5925 2.3479 2.0381 1.8563 1.5228
15 020 | 45 21.5279 1.5352 2.5287 2.4867 22646 1.9884 1.8146 1.5039
15 020 | 54 2.4272 24334 24274 23881 2.1856 1.9373 1.7794 1.4837
15 020 | 63 2.3299 2.3352 2.32%6 2.2927 2.1068 1.8814 1.7443 1.4672
15 020 | 72 22326 2231 22320 21972 2.0251 1.8177 1.7041 1.4540
1.5 0.20 | 81 2.1819 2.1861 2.1812 2.1475 1.9828 1.7849 1.6703 1.4327
15 020 | %0 2.1573 2.1613 2.1565 21234 1.9618 1.7678 1.655% 1.4219
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Table A21. Normalized SIF for various number of cracks (a/c=1.5, a/r=0.4)

ajc a/t |phi 1 2 4 8 16 32

1.5 0.40 0 3.0216 3.0498 3.0309 2.7818 2.0935 1.4704
1.5 | 040 | 9| 29506 | 29762 | 29587 | 27223 | 2079 | 1.4665
15 | o040 [ 18| 27483 | 27702 | 27555 | 25457 | 19863 | 1.4190
15 | o040 [ 27| 25815 | 26003 | 25884 | 24030 | 19142 | 13946
1.5 | 040 | 36| 24497 | 24660 | 24566 | 22924 | 18620 | 1.3766
15 | o040 | 45| 23395 | 23538 | 23466 | 22006 | 18188 | 13558
15 | 040 | se| 22293 | 22419 | 22366 | 21067 | 17675 | 1.3359
15 | 040 | 63| 21248 | 2130 | 2132 | 20157 | 17120 | 13209
15 | o040 | 72| 20427 | 20528 | 20501 | 19433 | 16511 | 1.3098
1.5 | 040 | 81| 19801 | 19896 | 19875 | 18710 | 16257 | 1.2908
1.5 | 040 [ 90| 19573 | 19667 | 19648 | 18666 | 16111 | 12828

Table A22. Normalized SIF for various number of cracks (a/c=1.5, a/t=0.6)

n

alc a/t |phi 1 2 4 8 10 16 20

1.5 060 | O 3.0077 3.0695 3.0352 2.5679 23297 1.8170 1.6716
1.5 0.60 9 2.8676 2.9203 2.8917 2.4756 2.2614 1.8060 1.6410
1.5 0.60 | 18 1.6404 1.6818 2.6624 23142 2.1316 1.7481 1.5684
15 060 | 27 2.4916 1.5261 25137 22191 2.0602 1.7080 1.5352
1.5 060 | 36 2.3546 2.3824 2.3776 2.1310 T 1.9935 1.6782 1.5087
15 0.60 | 45 1.2448 1.2673 2.2690 2.0623 1.9426 1.6510 1.4938
1.5 0.60 | 54 2.1368 21549 21618 1.9893 1.8510 1.6210 1.4727
15 0.60 | 63 2.0276 2.0422 2.0530 1.9087 18177 1.5829 1.4490
1.5 0.60 | 72 '1 9506 1.9629 1.9762 1.8513 1.7692 1.5572 1.4374
1.3 0.60 | 81 1.8950 1.9059 1.9205 1.8077 1.7313 1.5392 1.4234
15 0.60 | %0 1.8758 1.8862 1.9013 1.7926 1.7182 1.5279 1.4127
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APPENDIX B

NORMALIZED STRESS INTENSITY FACTORS vs. ¢
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Fig.B.3 Normalized stress intensity factor vs. ¢ (a/c=0.2, a/r=0.15)
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Fig.B.4 Normalized stress intensity factor vs. ¢ (a/¢=0.2, a/1=0.2)
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Fig.B.6 Normalized stress intensity factor vs. ¢ (a/c=0.5, a/t=0.1)
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Fig.B.7 Normalized stress intensity factor vs. ¢ (a/c=0.5, a/t=0.15)
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Fig.B.8 Normalized stress intensity factor vs. ¢ (¢/c=0.5, a/t=0.2)
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Fig.B.10 Normalized stress intensity factor vs. ¢ (a/c=0.5, a/r=0.6)
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Fig.B.12 Normalized stress intensity factor vs. ¢ (a/c=1, a/t=0.1)
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Fig.B.13 Normalized stress intensity factor vs. ¢ (a/c=1, a/t=0.15)
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Fig.B.15 Normalized stress intensity factor vs. ¢ (a/c=1, a/r=0.4)
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Fig.B.16 Normalized stress intensity factor vs. ¢ (a/c=1, a/t=0.6)
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Fig.B.17 Normalized stress intensity factor vs. ¢ (a/c¢=1.5, a/t=0.05)
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Fig.B.18

Normalized stress intensity factor vs. ¢ (¢/c=1.5, a/r=0.1)
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Fig.B.19 Normalized stress intensity t‘éctor vs. ¢ (a/c=1.5, a/t=0.15)
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Fig.B.20 Normalized stress intensity factor vs. ¢ (a/c=1.5, a/r=0.2)
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Fig.B.21 Normalized stress intensity factor vs. ¢ (a/c=1.5, a/t=0.4)
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MACROS

These macros are used to create the submodel and are divided as

following:

MESH, to create a polar coordinate system every ten degrees.
NMESHO, to create the nodes.
NMESHI, to create the midside nodes.

NMESH?2, to create the elements.

95



S

csys, 1
k,1,ri,180
“Iview,1,1,.5,1
csys,0
local, 14,0,-ri,0,0,0,-90,-90
*set,q,0
*set, ki, 10
:bra
k,ki,c*cos(q*pi/180),a*sin(q*pi/180)
*set,q,q+9
*set, ki, ki+ 10
*if,q,le,90, :bra’
/pnum kpoi, 1
kscale,200,10,110,10,5/3,5/3
kgen,2,10,110,10,,,c,400
kplot
mp,ex,1,e
mp,nuxy,l,nu

csys, 1
d=((c*cos(arg1*pi/180))**2 + (a*sin(arg 1 *pi/ 180)) **2)**.5
rl=d/8

r2=d/3

r3=2x*d/3

bl=

/pnum,node, 1
cskp,11,1,arg2,arg2 +200,arg2 +400
n,arg3

9,1

n,arg3+9,r1/4
ngen,9,1,arg3+9,,,,22.5
n,arg3+18,rl
ngen,9,1,arg3+18,,,,22.5
fill,arg3+18,arg3+19,1,arg3+27
p8,1,1,,1

n,arg3+44,r2

ngen,9,1,arg3+44 225
fill,arg3+18,arg3+44,1,arg3+35
m9,1,1,,1

p8,1,1,,1
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n,arg3+1254,13 .
ngen,9,1,arg3+1254,,,,22.5
fill,arg3+44,arg3+1254,1,arg3+61
mo,1,1,,1
fill,arg3+1254,arg3+1255,1,arg3+ 1263
‘8, 1,1,,1 :

fill,argl,argl +100,1,argl +70

rpg’lslnl i

fill,argl +18,argl +118,1,argl +79

l‘p9,1,1,,1

fill,argl +44,argl +144,1,argl +88
-1p9,1,1,,1

fill,argl +1254,argl +1354,1,argl +1280

m9,1,1,,1

/pnum,node,0

nplot
et,1,95
e, 119,120,101,101,19,20,1,1
emore,128,111,101,110,28,11,1,10
emore,80,81,71,71
egen,8,1,-1
e, 145,146,120,119,45,46,20,19
emore,154,137,128,136,54,37,28,36
emore, 89,90,81,80
egen,8,1,-1
e,1355,1356,146,145,1255,1256,46,45
emore, 1364,163,154,162,1264,63,54,62
emore, 1281,1282,90,89
egen,8,1,-1
egen, 10,100,-24
/type,1,4
/pnum,elem, 1
eplot
numm,node
csys,0
nsel,node, 1

" nasel,node,1,19,9
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rpll,,100,100
nasel,node,36,45,9
pll,,100,100
nasel,node,62,1255,1193
rpll,,100,100
nasel,node,71,89,9
pl0,,100,100
nasel,node, 1281
pl0,,100

nplot

nasel,node, 1200,5000
/pnum,node, 1

nplot

nwrite

nall

finish
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APPENDIX D

FINITE ELEMENT STRESS INTENSITY FACTORS vs.

EMPIRICAL EQUATION RESULTS
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a/c a/t n SIF(E.E.) | SIF(eq.3.26)| Error(%)
0.2 0.05 1 2.4632 2.4256 1.53
2| 2.4688 2.4585 0.42
4| 2.4663 2.4949 -1.16
8| 2.4527 2.4902 <153
16| 2.3645 2.3459 0.79
32 1.9853 1.9854 -0.01
0.1 2| 2.4132 2.3767 1.51
4| 2.4045 2.4128 -0.35
8| 2.3324 2.2989 1.44
16 1.9554 1.9736 -0.93
0.15 2| 2.3729 2.4128 -1.68
4| 2.3568 2.3507 0.26
6 2.2896 2.2543 1.54
0.2 1 2.316 2.3441 S8
2| 2.3537 2.3603 -0.28
4| 2.3288 2.2793 213
8 1.9918 2.006 -0.71
0.5 0.05 1 2.4975 2.4346 247
2 2.5035 2.4805 0.92
4| 2.5065 2.5359 317
8| 2.5074 2.5547 -1.89
16| 2.4689 2.439 1.21
32 2.2253 2.1237 4.57
45 1.9811 1.9177 3.20
64 1.6896 1.6997 -0.60
90 1.4527 1.5039 3,52
0.1 1 2.3201 2.3464 -1.13
2 2.3205 2.399 -2.98
4 2.3559 2.4317 322
8 2.2966 2.3605 -2.78
16| 2.1143 2.1033 0.52
20 2.0147 1.9844 1.50
32 1.6715 1.7096 -2.28
40 15152 1.5802 -4.29
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a/c alt SIF(F.E.) | SIF(eq.3.26)| Error(%)
0.5 0.15 1 2.3258 2.2708 2.36
2 2.3374 2.3203 0.73
+ 2.3299 2.3252 0.20
8 2.2493 2.193 2.50
16 1.9312 1.8811 2.59
32 1.4332 1.4931 -4.18
0.2 1 2.2591 2.2136 2.01
2 2.2736 2.2576 0.70
4 2.2656 2.2392 1.17
3 2.1142 2.0682 2.18
16 1.6444 1.7344 -5.47
20 1.5246 1.6114 -5.69
0.4 1 2.154 2.1765 -1.04
2 2.2088 2.202 0.31
+ 2.1815 2.1259 2.99
: 8 1.8512 1.8793 -1.52
0.6 1 2.2612 2.3804 -5.27
2 2.4362 2.3951 1.69
6 2.2055 2.1235 3.12
1 0.05 1 2.7961 2.762 1.22
. 2.8035 2.7832 0.72
E 2.801 2.8148 -0.49
8 2.7996 2.8436 -1.57
16 2.7816 2.8136 -1.15
32 2.6503 2.612 1.45
64 2.1808 2.1669 0.64
0.1 1 2.7374 2.7133 0.88
2 2.7424 2.7432 -0.03
4| 2.7433- 2.1733 -1.09
8 2.7158 2.7333 -1.46
16 2.6211 2.5842 1.41
32 2.1707 2,1752 -0.21
45 1.8679 1.909 -2.20
0.15 1 2.7066 2.6737 1.22
2 2.7135 2.7059 0.28
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a/c alt n SIF(F.E.) | SIF(eq.3.26)| Error(%)
1 0.15 4 2.7091 2.7224 -0.49
8 2.6448 2.6483 -0.13
16 2.4193 2.3711 1.99
32 1.8771 1.8798 -0.14
0.2 1 2.6505 2.6442 0.24
2 2.6621 2.6753 -0.50
4 2.6636 2.6744 -0.41
8 2.5738 2.5494 0.95
16 2.2006 2.2012 -0.03
20 2.0008 2.044 -2.16
0.4 1 2.6134 2.6288 -0.59
2 2.6547 2.6459 0.33
4 2.6248 2.5776 1.80
8 2.3135 2.3144 -0.04
10 2.1342 2.1798 -2.14
0.6 1 2.6747 2.7557 -3.03
2 2.7751 2.757 0.65
4 2.7128 2.6343 2.89
6 2.446 2.459 -0.53
1.5 0.05 ] 3.3147 3.2581 1.71
2 3.3282 3.2956 0.98
4 3.3261 3.354 -0.84
8 3.3255 3.4189 -2.81
16 3.3144 3.419 -3.16
32 3.2239 32115 0.38
45 3.0772 2.9978 2.58
64 2.7815 2.7079 2.65
90 2.3871 2.387 0.00
180 1.6588 1.7464 -5.28
0.1 1 3.2353 3.1664 213
2 3.2413 3.2211 0.62
4 3.2358 3.2845 -1.51
8 3.2367 3.2396 -0.09

16 3.1688 3.1142 1.72 °
32 2.75873 2.6498 3.90
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a/c alt n SIF(E.E.) | SIF(eq.3.26)| Error(%)
1.5 0.1 50 | 2.2535 2.247 0.29
64 1.973 2.0189 2,33
100 1.5578 1.6382 -5.16
0.15 1| 3.1562 3.1001 1.78
2 3.156 3.1611 -0.16
4| 3.1537 3.2081 1.72
8| 3.1234 3.1417 -0.59
16| 2.9347 2.8265 3.69
2| 2.1552 2.2646 -5.08
64 | 1.5733 1.6617 -5.62
0.2 1 3.087 3.0574 0.96
2 31036 3.1186 -0.48
4| 3.0935 3.1411 -1.54
8| 3.0371 3.0043 1.08
16| 2.7017 2.5993 3.79
25 | 2.2409 2.2254 0.69
32| 1.9748 2.0072 -1.64
50| 1.5807 1.6338 -3.36
0.4 1| 3.0216 3.049 -0.91
2|  3.0498 3.0889 -1.28
4 3.0309 3.0066 0.80
g 27813 2.6758 3.81
16| 2.0935 2.1203 -1.28
32| 1.4704 1.5481 5.2%
0.6 1| 3.0077 3.0814 -2.45
2 3.0695 3.0915 0.72
4| 3.0352 2.9266 3.58
8 2.569 2.4945 2.90
10| 2.3297 2.3105 0.82
16 1.817 1.9031 -4.74
20| 1.6716 1.7172 2.73

103




	Florida International University
	FIU Digital Commons
	11-22-1993

	Three dimensional stress intensity factor for large arrays of radial internal surface cracks in a cylindrical pressure vessel
	Javier Pierola
	Recommended Citation


	FI15103199_003
	FI15103199_005
	FI15103199_007
	FI15103199_009
	FI15103199_011
	FI15103199_013
	FI15103199_015
	FI15103199_017
	FI15103199_019
	FI15103199_021
	FI15103199_023
	FI15103199_025
	FI15103199_027
	FI15103199_029
	FI15103199_031
	FI15103199_033
	FI15103199_035
	FI15103199_037
	FI15103199_039
	FI15103199_041
	FI15103199_043
	FI15103199_045
	FI15103199_047
	FI15103199_049
	FI15103199_051
	FI15103199_053
	FI15103199_055
	FI15103199_057
	FI15103199_059
	FI15103199_061
	FI15103199_063
	FI15103199_065
	FI15103199_067
	FI15103199_069
	FI15103199_071
	FI15103199_073
	FI15103199_075
	FI15103199_077
	FI15103199_079
	FI15103199_081
	FI15103199_083
	FI15103199_085
	FI15103199_087
	FI15103199_089
	FI15103199_091
	FI15103199_093
	FI15103199_095
	FI15103199_097.1
	FI15103199_099
	FI15103199_101
	FI15103199_103
	FI15103199_105
	FI15103199_107
	FI15103199_109
	FI15103199_111
	FI15103199_113
	FI15103199_115
	FI15103199_117
	FI15103199_119
	FI15103199_121
	FI15103199_123
	FI15103199_125
	FI15103199_127
	FI15103199_129
	FI15103199_131
	FI15103199_133
	FI15103199_135
	FI15103199_137
	FI15103199_139
	FI15103199_141
	FI15103199_143
	FI15103199_145
	FI15103199_147
	FI15103199_149
	FI15103199_151
	FI15103199_153
	FI15103199_155
	FI15103199_157
	FI15103199_159
	FI15103199_161
	FI15103199_163
	FI15103199_165
	FI15103199_167
	FI15103199_169
	FI15103199_171
	FI15103199_173
	FI15103199_175
	FI15103199_177
	FI15103199_179
	FI15103199_181
	FI15103199_183
	FI15103199_185
	FI15103199_187
	FI15103199_189
	FI15103199_191
	FI15103199_193
	FI15103199_195.1
	FI15103199_197
	FI15103199_199
	FI15103199_201
	FI15103199_203
	FI15103199_205
	FI15103199_207
	FI15103199_209
	FI15103199_211
	FI15103199_213
	FI15103199_215
	FI15103199_217
	FI15103199_219
	FI15103199_221
	FI15103199_223
	FI15103199_225
	FI15103199_227
	FI15103199_229
	FI15103199_231
	FI15103199_233
	FI15103199_235
	FI15103199_237

