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ABSTRACT OF THE DISSERTATION

GAMMARIDEAN AMPHIPODS AS BIOINDICATORS IN SUBTROPICAL
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by
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Florida International University, 2016

Miami, Florida

Professor James W. Fourqurean, Major Professor

Anthropogenic disturbances are ubiquitous in coastal marine ecosystems. As

such, more intensive monitoring efforts are necessary to conserve these valuable habitats.

Bioindicators, organisms that predictably respond to changes in environmental variables,

may be utilized in monitoring efforts to assess ecosystem functioning. To incorporate

organisms into monitoring programs as bioindicators managers need to first understand

the difference between the natural phenology of the focal organisms and their responses

to different forms of anthropogenic disturbance.

To determine if gammaridean amphipods could be used as indicators of changes

in environmental quality in sub-tropical seagrass ecosystems, I conducted spatial and

temporal surveys of amphipod communities in south Florida. Amphipod community

structure varied significantly across sites and seasons. Variation in community structure

was largely driven by macrophyte biomass, food availability, seasonally variable factors

(epiphyte abundance, dissolved oxygen, salinity, and temperature), water-column

nitrogen concentration, and factors related to freshwater input, including low Thalassia

testudinum and high Halodule wrightii densities, and salinity.
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Amphipods are also susceptible to mechanical damage in seagrass habitats and

could be used as indicators of ecological functioning of a region. A major source of

mechanical damage in seagrass ecosystems is caused by boat propellers. I simulated

propeller scars in continuous seagrass beds to investigate the effects of scarring on

seagrass ecosystem functioning. Seagrasses located adjacent to propeller scars

experienced a shift in the limiting resource from light to phosphorus. Amphipod

community structure, however, was not impacted by scarring, but amphipod density was

reduced in fragmented patches. To determine if plant-herbivore interactions were

impacted by propeller scarring, we removed amphipods from half of the experimental

plots and measured epiphyte biomass and community composition. Top-down control on

epiphyte biomass or community composition by amphipods was not affected by

fragmentation, despite reduced amphipod densities.

My dissertation research demonstrates that amphipods could be incorporated into

existing management programs in sub-tropical seagrass ecosystems as environmental

indicators. Reduced amphipod densities in fragmented seagrass beds suggests that

amphipods could also be used as ecological indicators, but more research is needed to

determine the extent of the impacts of fragmentation on higher trophic levels.
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CHAPTER 1

INTRODUCTION
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Anthropogenic disturbances such as land use changes, increases in nutrient and

contaminant pollution, harvesting of plants and animals, and introductions of nonnative

species are causing reductions in biodiversity worldwide (Dirzo et al. 2014). Such

reductions in biodiversity can reduce the stability of an ecosystem ultimately leading to

changes in ecosystem functioning (Jackson et al. 2001; Ives & Carpenter 2007; Hooper et

al 2012; MacDougall et al. 2013). Up to 60% of the global population is situated near

coasts, thereby increasing the susceptibility of coastal ecosystems to multiple,

anthropogenic disturbances (Vitousek et al. 1997; Halpern et al. 2007, 2008). As such,

the need for systematic monitoring programs is increasing as they are necessary to the

conservation of shallow-water habitats.

Monitoring programs in marine habitats, however, are costly in terms of the time

and money necessary to establish and maintain them, so it is important to design

monitoring programs to collect as much information as possible while simultaneously

minimizing ecological impacts and costs (Thomas 1993). Plants and animals are often

used in monitoring programs as indicators of changes in an ecosystem. These organisms

are broadly termed bioindicators, but can be indicative of changes in the environmental

quality of a habitat (environmental indicators), the ecological functioning of a region

(ecological indicators), or the biodiversity of higher taxa (biodiversity

indicators)(definitions summarized in McGeoch 2007).

Effective bioindicators are abundant, have limited dispersal abilities, and respond

predictably to changes in the environment (Thomas 1993). As such, plants are often focal

species in environmental monitoring programs. Seagrasses, for example, are extensively

monitored worldwide because their shallow, coastal distribution means they are at the
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forefront of multiple anthropogenic stressors including pollution and sedimentation from

runoff, mechanical damage from boating and coastal development activities (e.g.,

dredging), and fisheries and over-fishing (Short et al. 2011). Plant species tend to provide

information on resource availability over longer temporal scales (e.g., seagrasses provide

information on the long-term resource availability of an environment, Fourqurean &

Rutten 2003), and are less sensitive to short-term changes in resource availability or to

different pollutants than algal species or animals (e.g., oil and dispersants have minimal

impacts on seagrasses Wilson & Ralph 2008).

Amphipods are commonly used as environmental indicators in seagrass and other

marine temperate environments where natural history research has been conducted for

decades (Reish & Barnard 1979; Conradi et al. 1997; Douglass et al. 2010). Because

amphipods are sensitive to changes in their environment, they have been used as

indicators of degraded water quality (de-la-Ossa-Carretero et al. 2012), oil and dispersant

pollution (Gesteira & Dauvin 2000), bioaccumulation/toxicity studies (Rainbow et al.

1989), and changes in salinity, temperature, dissolved oxygen, and turbidity (Reish &

Barnard 1979; Conradi et al. 1997). Amphipods are used less often as bioindicators in

tropical environments than in temperate environments, despite the multiple,

anthropogenic stressors faced by these organisms (Thomas 1993).

This dissertation investigates the use of amphipods in tropical seagrass

ecosystems as environmental and ecological indicators of changes in ecosystem health

and functioning. In Chapter II entitled: “Environmental drivers of amphipod density,

diversity, and community composition”, I collected amphipods from sites in Florida Bay,

the Florida Keys National Marine Sanctuary, and Dry Tortugas National Park to identify
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amphipod community structure. The purpose of this chapter was to understand the broad-

scale drivers of amphipod abundance, diversity, and community composition across south

Florida. Results from this chapter contribute to the necessary, but scant body of

knowledge about the natural history of amphipods in this region.

Building on Chapter II, Chapter III is entitled: “Gammaridean amphipods in

Florida Bay and their utility as indicators in a tropical seagrass monitoring program”,

and focused on understanding the temporal drivers of amphipod community structure

throughout the course of a year. For organisms to be considered as bioindicators, data are

needed regarding the natural variability in community structure through time. As such,

this chapter contributes to the understanding of temporal variability in amphipod

communities with the purpose understanding if amphipods would be good indicators of

changes in environmental quality in Florida Bay.

In Chapter IV entitled: “Habitat fragmentation has weak impacts on some aspects

of ecosystem functioning in a tropical seagrass bed”, I simulated propeller scars in a

continuous seagrass bed to understand how propeller scarring impacts seagrass ecosystem

functioning. The first objective of this chapter was to understand the impacts of propeller

scarring on seagrass resource dynamics by analyzing seagrass nutrient and isotope

content. The second objective was to understand the impacts of propeller scarring on

amphipod communities by analyzing diversity and community composition across

treatments. The final objective was to understand the impact of propellers scarring on the

relationship between seagrass epiphytes and grazing amphipods.

All chapters in this dissertation were focused on understanding the responses of

amphipod communities to environmental variability or disturbances to evaluate the
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potential for incorporating amphipod sampling into seagrass monitoring programs in

south Florida. Together Chapters II and III are the first studies to investigate the spatial

and temporal drivers of amphipod communities in seagrasses of south Florida and the

wider Caribbean and Gulf of Mexico bioregion. These data are important in assessing the

utility of amphipods as environmental indicators, and provide baseline data on amphipod

spatial and temporal distribution and the environmental drivers of amphipod distribution

for managers to use in future monitoring programs. Chapter IV was the first study to

investigate the effects of habitat fragmentation via propeller scarring on amphipod

communities, epiphyte community composition (i.e., relative abundances of major

phototrophic groups), seagrass stoichiometry, and the ecological relationship between

amphipods and epiphytes. Chapter IV assessed the utility of using amphipods as

ecological indicators of habitat fragmentation in seagrass ecosystems.

The chapters of this dissertation represent the first attempt at identifying the

relationship between amphipod community structure and composition with multiple

abiotic and biotic factors. Relationships between amphipod abundance, diversity, and

community composition are documented across broad spatial and temporal scales to

develop a better understanding of the natural history of these organisms. This work

demonstrates that amphipods would be good environmental indicators, but more work is

needed to determine if amphipods would be good ecological indicators in sub-tropical

seagrass ecosystems. Results from this dissertation can be used as a baseline of natural

history information upon which amphipod monitoring programs can be developed and

incorporated into existing seagrass monitoring programs.
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CHAPTER II

ENVIRONMENTAL DRIVERS OF AMPHIPOD DENSITY, DIVERSITY, AND

COMMUNITY COMPOSITION
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ABSTRACT

The use of organisms as bioindicators of changes in environmental quality is

limited by the availability of natural history data on the potential indicator.

Understanding the spatial distribution of potential indicators is necessary to determine if

detected changes in their distribution is a result of the natural phenology of the organism

or is in response to changes in environmental variables. I studied amphipod community

composition, density, diversity, and species richness in relation to environmental drivers

at 15 sites in south Florida seagrass beds. Amphipod community composition and

diversity were largely driven by site-specific differences in macrophyte biomass,

epiphyte biomass and seasonally variable factors (dissolved oxygen and temperature),

nitrogen concentration, and factors associated with hardbottom habitats (e.g., high

macroalgal diversity and low seagrass density) as determined by principle components

analysis. Macrophyte biomass described 37% of the variation in amphipod density among

sites where sites with high macrophyte biomass and sites with low macrophyte biomass

had high amphipod densities. Epiphyte abundance and seasonally variable factors

explained 32% of the variation in diversity and 26% of the variation in species richness

among sites. Sites with high epiphyte abundance, low temperature and low dissolved

oxygen were characterized by low amphipod diversity and richness. These results suggest

that amphipod community structure is variable through time in response to environmental

variability (e.g., temperature and dissolved oxygen). We recommend increasing sampling

effort both spatially and temporally to develop a more comprehensive understanding of

the environmental drivers of amphipod community structure, and the natural phenology

of gammaridean amphipods.
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INTRODUCTION

The spatial distribution of organisms is regulated by a suite of interacting biotic

and abiotic variables. Understanding how populations and communities respond to

specific drivers regulating spatial distribution patterns is an important pre-requisite when

designing monitoring programs. Furthermore, managers need to be able to distinguish

between natural and anthropogenically-induced changes in spatial patterns of potential

bioindicator species to incorporate them into monitoring programs as indicators of

environmental or ecological changes in an ecosystem (Noss 1990; Spellerberg 1991). As

such, a baseline of natural history data needs to be available for reference.

Gammaridean amphipods are widely used in temperate monitoring programs in

marine and aquatic environments as indicators of nutrient enrichment (de-la-Ossa-

Carretero et al. 2012), oil pollution and associated dispersants (Gesteira and Dauvin

2000), and heavy metals (Rainbow & White 1989). Amphipods are under-utilized as

bioindicators in tropical ecosystems, however (Thomas 1993). An effort has been made

in recent decades to understand the drivers of amphipod abundance and diversity in

northern and central Florida (Young and Young 1976; Young et al. 1978; Nelson 1979,

1980; Stoner 1980a, 1980b; Nelson et al. 1982; Lewis and Stoner 1983; Lewis 1987;

Schneider and Mann 1991), but little is known about their distribution and diversity in

south Florida.

The distribution of gammaridean amphipod species is dependent on top-down

control (i.e., fish predation) and species-specific tolerances to variability in many

environmental factors. Amphipods are found in high abundances in dense, vegetated

habitats (Heck and Wetstone 1977; Stoner 1980a, 1980b; Lewis and Stoner 1983; Orth et
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al. 1984; Stoner and Lewis 1985), because the structural complexity provides refuge from

predation (Russo 1987). Furthermore, amphipod communities have strong interannual

variability because of species-specific responses to abiotic factors, such as, salinity,

temperature, dissolved oxygen, and turbidity (see Douglass et al. 2010). Sediment type

can also limit the colonization of a habitat by domicolous or tube-dwelling amphipods as

these species require extremely fine sediment types to construct their tubes (Barnard

1970, Bousfield 1973, Barnard 1991, Bousfield and Hoover 1997).

Florida Bay, the Florida Keys National Marine Sanctuary (FKNMS), and Dry

Tortugas National Park (DRTO) are of economic importance in south Florida, generating

billions of dollars in tourism and fishing revenues each year (NOAA 2007), and are

currently affected by Everglades restoration efforts and anthropogenic disturbances

(Sklar et al. 2002; Klein and Orlando 1994; Fourqurean and Robblee 1999; Fourqurean

and Rutten 2003; Kruczynski and McManus 2002; Collado-Vides et al. 2007). As such,

seagrass and water-quality monitoring was established in Florida Bay as part of the

Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER), the FKNMS

Seagrass and Water Quality Monitoring Projects (Fourqurean and Rutten 2003), and Dry

Tortugas National Park (DRTO) to monitor ecosystem responses to anthropogenic

impacts in south Florida.

Incorporating both plants and primary consumers into monitoring programs can

provide information of both short and long-term effects of disturbance on ecosystem

health and future functioning. Different pollutants, including nutrients, oil, sediments,

and heavy metals, can have very different impacts on the plant and animal populations

associated with nearshore habitats (e.g., oil and dispersants have little impact on
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seagrasses but crustaceans are more sensitive to oil- and dispersant-associated pollutants

than are seagrasses; Gesteira and Dauvin 2000; Wilson and Ralph 2008). The first

objective of this study was to determine the differences in amphipod density, species

richness, species diversity, and amphipod community composition in DRTO, Florida

Bay, and the FKNMS. The second objective was to understand the spatial differences in

multivariate amphipod community composition and environmental variables across sites.

The final objective was to determine the environmental drivers of amphipod community

composition. We surveyed gammaridean amphipod communities at 15 sites in near-shore

marine and estuarine waters in south Florida that differed markedly in environmental

characteristics, ranging from clear-water, backreef seagrass meadows to sites with highly

variable salinity, temperature and water quality close to the mainland of Florida. We

include in our analysis data collected in conjunction with three separate monitoring

programs. Data collected as part of the FCE-LTER (Florida Bay sites only) and the

FKNMS benthic habitat monitoring programs include data on macrophyte density and

seagrass nutrient content, which is used as a metric of long-term nutrient availability at

each site (Frankovich and Fourqurean 1997). The Water Quality Monitoring and

Projection Project collects data on a suite of water column variables, which are more

indicative of current environmental conditions. We hypothesize that site-specific

macrophyte and abiotic characteristics (hereafter environmental climates) will explain the

variability associated with amphipod communities among sites in Florida Bay, the

FKNMS, and DRTO.
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METHODS

Site Description

Quarterly monitoring of seagrass-dominated benthic habitats began in 1996 at 30

permanent sites within the FKNMS (Fig. 2.1; see Fourqurean and Rutten 2003 for

details). The project was expanded in 2012 to include an additional 10 sites located

nearer to shore than the original 30 sites. Bi-monthly monitoring of 5 sites began in

Florida Bay in 2000 as part of the FCE-LTER program, which was designed to monitor

ecosystem responses (e.g., primary productivity, and trophic, nutrient, and landscape-

scale dynamics) to restoration efforts in south Florida (Childers 2006). Permanent

seagrass monitoring sites (N=17 sites) were also established within Dry Tortugas

National Park (DRTO) in 2012. To assess the spatial and environmental controls on

amphipod community composition in the current study, samples were collected at 10

haphazardly selected sites from the permanent monitoring sites established in the

FKNMS and DRTO in July 2013. Samples collected at the 5 FCE-LTER monitoring sites

in Florida Bay were collected in July 2014.

The FKNMS, DRTO, and Florida Bay are shallow, coastal habitats that include

extensive seagrass beds, coral reefs, and mangrove islands. The FKNMS covers an area

of 2,900 nmi2, which includes DRTO (NOAA 2007). The dominant seagrass species in

these regions are Thalassia testudinum, Syringodium filiforme, and Halodule wrightii.

Macrophyte cover varies spatially (Fourqurean et al. 2001) and, as such, provides the

opportunity to sample sites with varying degrees of habitat complexity (based on species

present and percent cover) within relatively close proximity. Resource availability, as
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determined from seagrass tissue analyses, also varies spatially allowing for samples to be

collected from a variety of nutrient regimes (Campbell and Fourqurean 2009).

Macrophyte assessment and sampling

Surveys of benthic vegetation were conducted along 50m permanent transects as

part of all three monitoring programs. Percent cover of benthic vegetation (seagrasses and

macroalgae) and organisms (sponges and coral) was assessed using a modified Braun-

Blanquet technique. Along each transect, 0.25 m2 quadrats were assessed at 10 randomly

selected points. A Braun-Blanquet score between 0 and 5 was assigned to each taxa

present where a score of 0.1 is used when a solitary individual is covering ≤ 5%, 0.5

indicates a few individuals covering ≤5%, 1 indicates numerous individuals covering ≤

5%, 2 indicates 5%–25% cover, 3 indicates 25%–50% cover, 4 indicates 50%–75%

cover, and 5 indicates 75%–100% cover. Braun-Blanquet scores were then used to

estimate density of each taxon ( ) present, calculated as follows:

= (Σ ) ×
where is the number of quadrats sampled at a site in which species is present, is the

total number of quadrats sampled, and is the Braun-Blanquet score for species in the

th quadrat (Fourqurean and Rutten 2003). Abiotic data were collected at each site,

including surface and bottom temperature, surface salinity, turbidity, and light

attenuation.

Short shoots from all seagrasses present were collected for nutrient analyses.

Seagrass leaves were first scraped free of epiphytes using a razor blade. Epiphyte tissue
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was stored in 20 mL scintillation vials wrapped in foil to prevent light exposure and

placed in the freezer at -20 °C. Seagrasses were assessed for leaf morphology (leaf length

and width) and dried at 60 °C to a constant weight. Dried seagrasses were weighed and

homogenized for nutrient analyses. Total phosphorus content was determined using a

dry-oxidation, acid hydrolysis extraction with calorimetric analysis (Fourqurean et al.

1992). Carbon and nitrogen content were determined using a CHN analyzer (Fisions

NA1500). Chlorophyll a content was used as a proxy for epiphyte biomass. Scraped

epiphyte material was lyophilized to obtain a dry weight. Chlorophyll a pigments were

extracted for 24-48 hours using 90% acetone. Chlorophyll a concentrations were

determined using a Shimadzu RF-5301PC Spectrofluorophotometer. Total epiphyte load

was estimated as leaf-specific chlorophyll a (µg Chl a leaf area-1).

Amphipod collection

Replicate samples were collected from each site (n=5-10 replicates) using a

modified Virnstein Grabber (Virnstein and Howard 1987; Douglass et al. 2008). Samples

were collected adjacent to monitoring transects in plots with similar macrophyte

community composition to that along the transect. The grabber samples an area of 0.4 m2

by removing aboveground seagrass biomass and minimizing sediment collection.

Samples were rinsed through 400 μm mesh filter bags and stored on ice during transport

to the lab where they were stored at -20 °C until they were processed. Macrophytes were

removed and the remaining samples were rinsed through a 500 μm sieve to remove

sediment or loose epiphytic material. Prior to identification, amphipod samples were

rinsed with deionized water and sorted under a dissecting microscope. Organisms were
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stored in ethanol until identification. Amphipods were identified to the species level

(LeCroy 2002). Macrophytes, including detritus, were dried to a constant weight at 60 °C

(approx. 5 days). Dried macrophytes were then combusted for 4 hours at 500 °C to

estimate ash free dry weight (AFDW; dry weight minus ash weight). Amphipod density

was calculated as the number of amphipods within a sample divided by the AFDW (in g)

of macrophytes collected in the same sample.

Environmental data

Water quality samples were collected within a month of amphipod and seagrass

sampling, except where stated otherwise. Methods for field sampling and sample

analyses are detailed in Boyer and Jones (2002). Water quality data were collected during

July 2014 as part of the FCE-LTER program at three of the five sites sampled (Duck Key

(TS/Ph 9), Bob Allen Keys (TS/Ph 10), and Sprigger Bank (TS/Ph 11);

http://fcelter.fiu.edu/data/). Data for environmental variables from two of the Florida Bay

sites (Trout Cove (TS/Ph 7) and Little Madeira (TS/Ph 8)) and Dry Tortugas National

Park have not been collected in recent years, so average values for historical data (July

1991-July 2008 for Florida Bay, and July 1996-July 2011 for Dry Tortugas sites) were

calculated during summer months and used as a proxy for present day water quality. A

notable caveat to this analysis is that animals are more responsive to short-term changes

in water quality than seagrasses, for example, and averaging historic water quality data

may not be an adequate predictor of current community composition.

From these extensive monitoring datasets, we used the following water-quality

variables: nitrate+nitrite (NOX; μM), nitrate (NO3
-; μM), nitrite (NO2

-; μM), ammonium
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(NH4
+; μM), total nitrogen (TN; μM), dissolved inorganic nitrogen (DIN; μM), total

organic nitrogen (TON; μM), total phosphorus (TP; μM), soluble reactive phosphorus

(SRP; μM), total organic carbon (TOC; μM), chlorophyll a (CHLa; μg) and dissolved

oxygen (DO, mg L-1). Data from the water quality monitoring programs were augmented

with data collected during the seagrass and amphipod sampling, including water depth,

turbidity, temperature, salinity, nutrient content of photosynthetic tissues (carbon,

nitrogen, phosphorus), epiphyte abundance (chlorophyll a per g seagrass tissue), seagrass

biomass in 0.4 m2 area (g dry weight, g organic matter, and g inorganic matter), and

macrophyte densities (Thalassia testudinum, Syringodium filiforme, Halodule wrightii,

calcareous green total density, Batophora spp., Dasycladus spp., chlorophytes (not

including calcareous green algae), rhodophytes (not including Laurencia sp.),

phaeophytes, and sponges).

Statistical analysis

We analyzed patterns in density, species richness, diversity, and species

dominance across sites (Objective I) using 1-way analysis of variance (ANOVA). To

standardize the number of individual collected at each site during each sampling season,

rarefied richness was calculated:

= 1 − ( − )! ( − )!( − − )! !
where the expected number of species from a sample of fewer individuals was

calculated using the number of species with individuals of species (Clarke et al.
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2014). Shannon-Wiener ( ) and inverse Simpson’s ( ) indices were used to estimated

species diversity and dominance, respectively. and were calculated as follows:

= −
Where is the proportion of species , and S is the number of species (Oksanen et al.

2015). Dependent variables were ln(X+1) transformed when necessary to meet the

assumptions of normality and homoscedasticity for ANOVA.

Multivariate amphipod community differences among sites (Objective II) were

examined using a 1-factor permutational ANOVA (PERMANOVA). Community data

were first square root transformed to down-weight the abundance of dominant taxa

(Clarke 1993). The community matrix was then standardized by the total number of

species and a resemblance matrix was calculated using Bray-Curtis dissimilarity (Clarke

et al. 2014). The dissimilarity among sites was plotted in a non-metric multidimensional

scaling plot where sites within close proximity to each other are more similar than further

sites. Significant groups, or clusters, were identified using hierarchical cluster analysis.

The similarity profile procedure (SIMPROF; Clarke et al. 2014) was used to identify

multivariate clusters significant to the p<0.05 level. Species contributing to differences

among clusters were identified by the SIMPROF procedure were identified using the

similarity percentage procedure (SIMPER).

Several environmental variables were highly correlated as determined by

Spearman’s rho rank correlation (Hmisc package in R; Harrell et al. 2016). As such,

principle components analysis (PCA) was used to reduce our original environmental

dataset of 33 variables to principle components (PCs). The environmental data were
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normalized by first transforming [log(X+1)] them and then calculating z-scores for each

variable. A resemblance matrix was calculated using Euclidean distance. We used a

varimax rotation on the components to facilitate their interpretation. Hierarchical cluster

analysis and SIMPROF procedure were used to identify significant groupings of

environmental variables by sites (Objective II). Environmental variables contributing to

the differences between clusters were identified using SIMPER analysis.

For objective III, the environmental variables contributing to differences in

amphipod community composition, density, species richness, and diversity were

determined using distance-based linear models (DISTLM; Primer v.6). The DISTLM

procedure is a multivariate multiple regression used to test the significance between the

amphipod community matrix, amphipod density, species richness, or diversity metrics,

and our environmental data represented as PC scores. A linear model using Bray-Curtis

dissimilarity (for the amphipod community matrix) or Euclidean distance (for amphipod

density, species richness, and diversity) resemblance matrices was fit using DISTLM. We

used DISTLM to determine the best model of environmental components describing the

variation in amphipod communities. We used the ‘Best’ model selection procedure in the

DISTLM analysis, which analyzes every possible combination of environmental

variables to identify the best fit model. Models were permuted 9999 times and ranked

using the AICc selection criterion. The contribution of each independent variable was

described by the amount of variation explained (Anderson et al. 2008).
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RESULTS

A total of 2593 amphipods were identified from 15 sites across south Florida.

These amphipods represented 48 unique species from 20 families (Fig. 2.2). Amphipod

density (Fig. 2.3a; Table 2.1), species richness (Fig. 2.3b), and Shannon-Wiener diversity

(Fig. 2.3c) were all significantly different across sites (p<0.001 for all metrics; see Table

2.2 for results of Tukey’s HSD). Amphipod community composition was significantly

different across sites (PERMANOVA; p<0.001). Non-metric multidimensional scaling of

amphipod communities illustrated differences across sites with a stress of 0.11 (Fig. 2.4).

In general, sites located bay-side were more similar to each other (dark grey circles, Fig.

2.4) than to oceanside sites. Sites located within Florida Bay (Trout Cove, Little Madiera,

Duck Key, and Bob Allen) were similar to each other. Sites with high macrophyte cover,

including the western-most Florida Bay site (Sprigger Bank, 503, 501, 314, and 296) are

more similar to each other than to sites with less macrophyte cover. Despite the large

distance over deeper waters between DRTO and FKNMS/Florida Bay, DRTO sites (in

black, Fig. 2.4) did not cluster together, away from other sites.

Site-wise cluster analysis of the amphipod community data identified three

distinct clusters that were significant at the p<0.05 level (denoted by grey squares at

nodes, Fig. 2.5a). The strongest difference between clusters as indicated by low similarity

(4.32% similar), occurred between sites 5 and 215, and all other sites. Interestingly, sites

5 and 215 are the western- and eastern-most sites. The amphipod communities in these

two clusters were 95.68% different, and SIMPER analysis between the clusters identified

Ampithoe ramondi as the species contributing the most (40.95%) to the differences
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between clusters. All other species in these particular clusters contributed <10% to the

difference. The second significant clustering occurred at 10.51% similarity and sites 235,

237, 269, and Trout Cove were in one cluster, and sites 15, 296, 314, 501, 503, Bob

Allen, Duck Key, Little Madiera, and Sprigger Bank were included in the second cluster.

The amphipod communities between these clusters were 85.49% different with

Erichthonius sp. A contributing 15.97%, Grandidierella bonnieroides contributing

10.95%, and all other species contributing <10% to the differences between clusters. The

final division occurred at 18.31% similarity between sites 296, 314, and Sprigger Bank,

and sites 15, 501, 503, Bob Allen, Duck Key, and Little Madiera. The amphipod

communities between these clusters were 81.69% different with Tethygeneia longleyi

contributing 13.50% and all other species contributing <10% to the differences between

clusters.

Site-wise cluster analysis of the environmental data identified five distinct clusters

that were significant at the p<0.05 level (denoted by grey squares at nodes, Fig. 2.5b).

The strongest difference between clusters as indicated by the larger distance between

them, occurred between sites Trout Cove and Little Madiera, and all other sites

(distance=9.85). The average squared distance between clusters as determined by

SIMPER analysis was 101.04. Salinity (6.82% contribution to dissimilarity between

clusters), Halodule wrightii density (6.76%), nitrate (6.63%), nitrate+nitrite (6.40%), and

nitrite (6.21%) were the variables contributing most to the dissimilarity between clusters.

Both Trout Cove and Little Madiera are located near areas of significant terrestrial runoff

and are characterized by low salinity and high abundance of H. wrightii. The second

significant groupings occurred between site 237, and sites Sprigger Bank, Bob Allen,
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Duck Key, 15, 5 215, 235, 269, 501, 503, 296, and 314. The average squared distance

between clusters was 78.55. The variables contributing the highest percent to the

dissimilarity were non-calcifying chlorophytes (19.06%), sponges (16.78%), and

Dasycladus spp. (10.54%) with all other variables contributing <10%. Site 237 is a

hardbottom community characterized by a diverse macroalgal community with sparse

octocorals and seagrasses throughout. The third significant clustering occurred between

sites Sprigger Bank, Bob Allen, Duck Key, and sites 15, 5, 215, 235, 269, 501, 503, 296,

and 314. The average squared distance between clusters was 68.75. DO contributed most

to the dissimilarity between these clusters (7.12%). The fourth significant clustering

occurred between site 15 and sites 5, 215, 235, 269, 501, 503, 296, and 314. The average

squared distance between clusters was 51.95. Phaeophytes (26.28%) and epiphyte

biomass (18.36%) were the variables contributing most to the difference between

clusters. The final clustering occurred between sites 5, 215, 235, and 269, and sites 501,

503, 296, and 314. The average squared distance between clusters was 41.09. Seagrass

leaf carbon (9.28%) contributed most to the dissimilarity between clusters.

Principle component analysis reduced the environmental dataset from 33 original

variables to 4 principle components, which explained 75% of the variation (Fig. 2.6;

Table 2.3). The first principle component explained 33% of the variation. Variables

associated with nitrogen concentration (DIN, NOX, NO3
-, NH4

+, NO2
-, TN, and TON) and

proximity to freshwater input (Halodule wrightii, salinity, temperature, and Thalassia

testudinum) loaded heavily on the first component. Sites located near areas of terrestrial

runoff (Trout Cove and Little Madiera) are characterized by seasonally variable salinity,

low T. testudinum density, and high H. wrightii density. The second component explained
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15% of the variation. Variables associated with macrophyte biomass (seagrass dry

weight, AFDW, ashes, seagrass leaf phosphorus, and Syringodium filiforme) loaded

heavily on the second component. The third component explained 14% of the variation.

Variables associated with epiphyte biomass (food abundance) and seasonal factors (DO

and temperature) loaded heavily on the third component. Finally, the fourth component

explained 13% of the variation. Variables associated with hard bottom habitats (non-

calcifying chlorophytes, sponges, and Dasycladus spp.) loaded heavily on the fourth

component.

Principle component scores were used as independent variables in the DISTLM

analysis to understand the relationship between amphipod multivariate community

structure and univariate diversity indices, and environmental components. Amphipod

samples from sites with low macrophyte biomass (Duck Key, Bob Allen, Trout Cove,

and Little Madiera) separated from amphipod samples collected from sites with high

macrophyte biomass (site 501, 503, 314, and 296) in the dbRDA ordination. The best

model (AICc=125.22) describing the variation in multivariate community composition

included the macrophyte biomass component and described 12% of the variation. Several

other models were within two AICc units, and are considered statistically similar models

(Burnham and Anderson 2002). These models included the hardbottom component alone

(described 9% of the variation; AICc=125.68), the nitrogen component alone (describing

9% of the variation; AICc=125.69), the epiphyte biomass component alone (describing

8% of the variation; AICc=125.93), the biomass and hardbottom components together

(describing 21% of the variation; AICc=126.78), the biomass and nitrogen components
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together (describing 21% of the variation; AICc=126.80), and the biomass and epiphyte

components together (describing 19% of the variation; AICc=127.08).

Amphipod density was positively correlated with macrophyte biomass (DISTLM

marginal test p=0.02 and explained 37% of the variation alone). The best model

describing the variation in amphipod density as ranked by AICc values (AICc=97.972)

included the macrophyte biomass component and described 36.9% of the variation. The

second best model (AICc=99.064) included both the macrophyte biomass and

hardbottom components, and described 45% of the variation. Species richness was

positively correlated with the epiphyte biomass component (DISTLM marginal test

p=0.055 and explains 26% of the variation alone). The best model describing the

variation in species richness included the epiphyte biomass component (AICc=-28.696)

and described 26% of the variation. The second best model as determined by AICc values

(AICc=-29.507) described 37% of the variation and included the epiphyte biomass and

hardbottom components. The Shannon-Wiener index was positively correlated with the

epiphyte biomass component (DISTLM marginal test, p=0.03 and described 32% of the

variation alone). The best model describing variation in the Shannon-Wiener index

included both the epiphyte biomass and hardbottom components (AICc=-19.08), and

described 49% of the variation. The second best model included only the epiphyte

biomass component (AICc=-17.83) and described 32% of the variation.
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DISCUSSION

Research geared towards increasing understanding of the ecological role of

amphipods in regulating ecosystem functioning in seagrass ecosystems has been

increasing in both frequency and geographic extent. Despite the recognized ecological

importance of amphipods, studies understanding the factors controlling amphipod

distribution and community composition are still lacking (but see Guerra-García and

García-Gómez 2001, Douglass et al. 2010, and Altermatt et al. 2014). Amphipod

community composition, amphipod density, species richness, diversity, and

environmental climates varied significantly across sites in our study suggesting that local

environmental factors play an important role in regulating amphipod community

structure. Amphipod density was highest in Florida Bay sites (Duck Key, Little Madiera,

Trout Cove, and Bob Allen) and sites with high macrophyte density (501, 503, and 296).

At sites where amphipod species richness and diversity were higher, epiphyte biomass

was lower. Amphipod community composition was also largely driven by macrophyte

biomass. Nitrogen availability and characteristics of hardbottom habitats are not

significantly correlated with community composition, density, or diversity; however, they

are important in describing some of the variation in our models. This study suggests that

amphipod community structure could be used as bioindicators of changing environmental

conditions in south Florida seagrass ecosystems.

Amphipod abundance is higher and denser in more complex seagrass habitats

(Stoner 1980a, 1980b), perhaps as a mechanism for predator avoidance (Russo 1987;

Young et al. 1976; Young and Young 1978; Nelson et al. 1982). With the exception of
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the Florida Bay sites in our study, amphipod density was generally higher in sites with

high macrophyte density. Sites 501, 503, and 296, for example, had higher densities of

both macrophytes and amphipods. Conversely, sites 5, 215, and 235 had lower

macrophyte densities and lower amphipod densities. Sites in eastern Florida Bay (Duck

Key, Bob Allen Key, Trout Cove, and Little Madiera) were an exception in that

amphipods were found to be very abundant while macrophyte density was relatively low.

Duck Key had the highest amphipod density of all sites sampled, but seagrass and

macroalgae densities were very low.

Species richness and amphipod diversity were higher in sites with lower epiphyte

abundances. Amphipods are important grazers in seagrass ecosystems and have been

attributed to reducing the overall biomass of epiphytes attached to seagrasses, even under

eutrophic conditions where epiphytes can be over-abundant (Neckles et al. 1993, Heck et

al. 2000, Hughes et al. 2004; McSkimming et al. 2015). Furthermore, amphipods have

species-specific grazing preferences (Duffy and Harvilicz 2001). More diverse grazer

communities reduce the relative abundance of different species within the epiphyte

community providing more even regulation of overall epiphyte biomass (Duffy et al.

2001). As such, the more species-rich, diverse amphipod communities in our study could

be responsible for the reduced epiphyte biomass. Changes in factors regulating amphipod

richness and diversity could have impacts on epiphyte biomass. For example, in

overfished seagrass ecosystems, increased epiphyte biomass is attributed to a changes in

top down control (Heck et al. 2000). The removal of large piscivores relieved predation

pressure on smaller fish species, e.g., pinfish (Lagodon rhomboides), which prey on

amphipods. The overabundance of amphipod predators caused a reduction in amphipods,



28

thereby resulting in an increase in epiphyte biomass (Heck et al. 2000, Heck and

Valentine 2006, Heck and Valentine 2007).

Amphipod community composition, density, diversity, and richness were not

significantly related to the nitrogen or hard bottom components; however, both of these

factors were important in describing some of the variation in the best fit models for

community composition and amphipod density, respectively. Nitrogen is not generally

the limiting nutrient in south Florida marine ecosystems (Fourqurean et al. 1992,

Fourqurean and Zieman 2002), so assimilation of excess nitrogen by epiphytes would be

stored in a process called luxury consumption (Tilman and Pacala, 1993). Because

phosphorus is limiting in south Florida and is often unavailable to macrophytes and

epiphytes (Fourqurean et al. 1992), the excess nitrogen is stored in plant and algal tissues

and used when phosphorus becomes available. Amphipods and other grazers selectively

graze on nitrogen-rich food sources, which can increase their overall fitness (Jiménez et

al. 1996; Cruz-Rivera and Hay 2000; Duarte et al. 2010; Baggett et al. 2012). Sites with

higher nitrogen availability could facilitate the assembly of different communities than

sites with lower nitrogen availability. Similarly, the added complexity of multiple algal

species associated with the hardbottom component could create more refuge from

predators, thereby allowing for the colonization of higher densities of amphipods.

For amphipods to be incorporated into monitoring programs, a clear

understanding of their spatial distribution is needed. Where amphipods are currently used

as bioindicators, decades of research on amphipod natural history have been conducted

(Thomas 1993). We conclude from this study that amphipods could be good indicators of

changes in environmental conditions of water quality in south Florida, but more data are
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needed. Because factors that vary with seasons are strong drivers of amphipod

communities, we need temporal replication to understand the natural variation in

amphipod community structure. As such, we recommend increased sampling effort of

amphipods both spatially and temporally to increase our understanding of the natural

history of gammaridean amphipods in this region.
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TABLES

Table 2.1. Mean±S.E. of amphipod density, species richness, Shannon-Wiener index, and
inverse Simpson’s Dominance index by site.
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Table 2.2. Results from Tukey’s HSD test across
sites (comparison) for standardized amphipod
abundance, species richness, Shannon-Wiener
diversity, and inverse Simpson’s dominance
index. P-values shown for significant comparisons
only.
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Table 2.3. Standardized principle component factor loadings after varimax rotation.
Variables loading strongly on each component are in bold text.
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FIGURE LEGENDS

Figure 2.1. Map of the study area. Sites are designated by black points with site
identifiers (numbers or letters). Study areas include Florida Bay (TC-Trout Cove, DK-
Duck Key, LM-Little Madiera, BA-Bob Allen Keys, and SB-Sprigger Bank), the Florida
Keys National Marine Sanctuary (215, 501, 503, 235, 237, 296, 314, and 269), and the
Dry Tortugas National Park (5 and 15).

Figure 2.2. Shade plot of amphipod density by site. Each cell is shaded to correspond to
the abundance of the species at that site. Darker grey cells indicate a higher density and
lighter cells indicate lower density.

Figure 2.3. Bar plots of a) amphipod density, b) species richness, and c) Shannon-Wiener
diversity index by site. Error bars are standard errors. For significance see Table 2.2.
Shading of boxes represents general location where black boxes are DRTO sites, light
grey boxes are oceanside, and dark grey boxes are bayside
and Florida Bay. Shading of bars is for illustrative purposes only.

Figure 2.4. Amphipod community data by sites. Nonmetric multidimensional scaling plot
illustrates similarity between sites where closer points are more similar. Shading of site
symbols (circles) represents general location where black circles are DRTO sites, light
grey circles are oceanside sites, and dark grey circles are bayside and Florida Bay sites.
Shading is for illustrative purposes only.

Figure 2.5. Maps of (a) similar amphipod communities and (b) environmental climates
from cluster analyses across sites. Symbols used to identify sites within the same cluster.

Figure 2.6. Biplot of first and second principle components explaining 53% of the
variation in environmental data. Nitrogen concentration (PC1) explains 35% of the
variation. Hardbottom community (octocoral density) (PC2) explains 18% of the
variation.
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FIGURES

Figure 2.1. Map of the study area. Sites are designated by black points with site
identifiers (numbers or letters). Study areas include Florida Bay (TC-Trout Cove, DK-
Duck Key, LM-Little Madiera, BA-Bob Allen Keys, and SB-Sprigger Bank), the Florida
Keys National Marine Sanctuary (215, 501, 503, 235, 237, 296, 314, and 269), and the
Dry Tortugas National Park (5 and 15).
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Figure 2.2. Shade plot of amphipod density by site. Each cell is shaded to correspond to
the abundance of the species at that site. Darker grey cells indicate a higher density and
lighter cells indicate lower density.
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Figure 2.3. Bar plots of a) amphipod density, b) species richness, and c) Shannon-Wiener
diversity index by site. Error bars are standard errors. For significance see Table 2.2.
Shading of boxes represents general location where black boxes are DRTO sites, light
grey boxes are oceanside, and dark grey boxes are bayside
and Florida Bay. Shading of bars is for illustrative purposes only.
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Figure 2.4. Amphipod community data by sites. Nonmetric multidimensional scaling plot
illustrates similarity between sites where closer points are more similar. Shading of site
symbols (circles) represents general location where black circles are DRTO sites, light
grey circles are oceanside sites, and dark grey circles are bayside and Florida Bay sites.
Shading is for illustrative purposes only.
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Figure 2.5. Maps of (a) similar amphipod communities and (b) environmental climates
from cluster analyses across sites. Symbols used to identify sites within the same cluster.
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Figure 2.6. Biplot of first and second principle components explaining 53% of the
variation in environmental data. Nitrogen concentration (PC1) explains 35% of the
variation. Hardbottom community (octocoral density) (PC2) explains 18% of the
variation.
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CHAPTER III

GAMMARIDEAN AMPHIPODS IN FLORIDA BAY AND THEIR UTILITY AS

INDICATORS IN A SUBTROPICAL SEAGRASS MONITORING PROGRAM
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Abstract

Amphipod crustaceans are widely used as bioindicators of environmental

conditions or disturbances in temperate ecosystems but are not as widely used in tropical

ecosystems. A clear understanding of the drivers of amphipod spatial and temporal

distribution is necessary before amphipods can be incorporated into monitoring programs

and used as bioindicators. We monitored amphipod community structure for a year in

Florida Bay to assess the relationship between amphipod community composition and

environmental variables. Cluster analyses of multivariate amphipod communities

identified spatial differences in community composition. Amphipod communities in

eastern sites (Bob Allen Keys, Little Madiera, Trout Cove, and Duck Key) were more

similar to each other than to the western site community (Sprigger Bank). Within the

eastern sites, sites located in the central bay (Bob Allen Keys and Duck Key) were

different from sites in the northern bay (Trout Cove and Little Madiera). The third

grouping differentiated between Sprigger Bank communities by seasons: the January

community was different from communities in April, July, and October. Using principle

components (PC) analysis, we reduced our environmental dataset from 33 variables to 4

principle components, which explained 73% of the variation in the original

environmental data. We then used PC scores to identify correlations between univariate

density and diversity measures and environmental components. The four components

were representative of macrophyte density (explains 37% of the variation), freshwater

input (12%), nitrogen availability (13%), and seasonality (11%). Amphipod density was

negatively correlated with macrophyte density and positively correlated with water-

column nitrogen. Macrophyte density was higher at Sprigger Bank, which should support
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a dense amphipod community according to previous studies. However, sediments were

finer at eastern sites and coarse at Sprigger Bank limiting the abundances of tube-

dwelling, or domicolous, amphipods at the latter site. Conversely, domicolous amphipods

dominated communities at eastern sites. Water-column nitrogen may impact nitrogen

content of epiphytic microalgae upon which amphipods graze, thereby resulting in an

increase in amphipod density in areas of higher nitrogen availability. Amphipod richness,

diversity, and dominance were not correlated with macrophyte density or nitrogen

components, but were negatively correlated with freshwater input. As a result,

communities at Trout Cove and Little Madiera, near sources of terrestrial runoff, had

more diverse communities with lower species dominance. Amphipod density and

univariate diversity metrics were not significantly correlated with the seasonality

component. We recommend continued monitoring of amphipod communities in Florida

Bay to better understand environmental drivers regulating their spatial and temporal

distribution.

Keywords: Florida Bay, amphipod, spatial distribution, temporal distribution,

bioindicator, environmental indicator

Highlights

 Analyses of environmental drivers of amphipod community structure were

conducted

 Amphipod communities differ spatially despite similar seagrass composition

 4 principle components describe 73% of the variation in the environmental dataset
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 Amphipod density positively correlated with nitrogen, negatively with plant

density

 Richness, diversity, and dominance were negatively correlated with freshwater

input.

Introduction

Understanding the spatial and temporal constraints of organisms and the biotic

and abiotic drivers regulating community composition are important first steps in

establishing a baseline of species distribution and community composition in a region.

Coastal marine ecosystems are dynamic regions that are at the forefront of anthropogenic

disturbances such as nutrient input from runoff and mechanical damage from boating,

dredging, and trampling (Short & Wyllie-Echeverria 2009; Short et al. 2011).

Establishing a baseline for future studies and understanding the mechanisms driving

changes in species distributions and community structure are important when developing

a management plan (Thomas 1993). The major goal of monitoring programs is to

effectively sample a habitat to maximize information gathered and minimize the

destructive impacts and monetary costs of sampling (Thomas 1993; Fourqurean & Rutten

2003). Identifying species as indicators of degraded conditions can make monitoring

programs more effective in assessing the overall health and functioning of an ecosystem

than monitoring programs not utilizing indicator species.

Monitoring vegetated habitats provides a great deal of information regarding the

health of an ecosystem. Macrophytes, including algae, respond to disturbances at
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different timescales providing both short- and long-term snapshots of ecosystem health.

Seagrasses assimilate available nutrients over long periods of time (i.e., months or years)

(Frankovich & Fourqurean 1997, reviewed in Orth et al. 2006); whereas, some species of

macro- and micro-algae respond very quickly to elevated nutrient concentrations

(Rosenberg & Ramus 1984, Hein et al. 1995, Worm & Sommer 2000). As such, algae are

better indicators of more recent changes in nutrient availability than seagrasses in some

ecosystems. Some species are intolerant to excessive nutrient availability while others are

tolerant to high water-column nutrient concentrations and are typically found in high

abundances at sites where nutrient inputs are high (e.g., the macrophytes Typha spp.

(Jensen et al. 1995; Craft & Richardson 1997, Craft et al. 2007) and Halodule wrightii

(Howard et al. 2016), and the alga Anadyomene spp. (Collado-Vides et al. 2013)). The

specific tolerances of different species of macrophytes to excessive nutrients, for

example, can impact their distribution. Including both groups of benthic vegetation in

monitoring programs can provide valuable information on short- and long-term bottom-

up control (resource availability).

However, how disturbances impact the functioning of an ecosystem, including

both top-down (consumers) and bottom-up (resources) forces, is unclear from

macrophyte information alone. Amphipods provide an integrated approach to ecosystem

monitoring because they provide information about the interaction of both top-down and

bottom-up controls. They graze on epiphytic and benthic microalgae (Duffy & Hay

2000), and are an important food source to many different species of fish, thereby

providing information on the functioning of higher trophic levels (Brook 1977; Young &

Young 1976; Young et al. 1978). Furthermore, animals are sensitive to different types of
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disturbances than plants. For example, amphipods are very sensitive to contamination

related to oil spills (Gesteira & Dauvin 2000); whereas, seagrasses are more tolerant of

these marine disturbances (Wilson & Ralph 2008). Including amphipod sampling in a

seagrass and macroalgae monitoring program may provide a cost effective way to get a

more comprehensive assessment of ecosystem health and overall functioning.

Amphipods have been long used as indicators of water quality in temperate,

coastal environments (Reish & Barnard 1979). They respond to disturbances such as

elevated nutrient levels, heavy metal pollution, salinity and dissolved oxygen changes, oil

pollution, turbidity, fishing (Reish & Barnard 1979), and are sensitive to mechanical

disturbances (Dahl 1948). As such, amphipods have been identified as important

bioindicators in estuarine ecosystems because they meet the criteria for good bioindicator

species: they are ecologically important, abundant, have specific niches, are sensitive to

pollutants, and have low dispersal abilities (Thomas 1993). Despite their ecological

importance and proven usefulness in management programs, they are underused in

tropical monitoring programs.

Amphipods are ubiquitous in terrestrial, freshwater, and marine habitats

worldwide and have species-specific tolerances to abiotic and biotic factors. Little is

known about the general ecology of many species, however, limiting the current potential

for amphipods to be included in monitoring programs as indicator species. Recent studies

have assessed their community composition and species distributions to create a baseline

from which researchers can determine the utility of including amphipod sampling as a

potential monitoring tool (Altermatt et al. 2014). Similarly, we surveyed gammaridean

amphipod communities at five sites across four seasons in Florida Bay, a large (ca. 2000
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km2) embayment with strong environmental gradients (see Fourqurean and Robblee 1999

for a description of the prevailing gradients). The main objectives in this study were to:  I.

determine if there are differences in amphipod density, species richness, Shannon-Wiener

diversity, inverse Simpson’s dominance (hereafter referred to as amphipod density and

diversity metrics), and multivariate community composition across five sites in Florida

Bay and across four months (January, April, July, and October); II. determine if the

annual environmental climates differ by site using benthic vegetation and seagrass

nutrient data collected as part of the Florida Coastal Everglades Long Term Ecological

Research (FCE-LTER) program. We used nutrient data from both datasets because water

quality nutrient analyses are an instantaneous measure of nutrient concentrations and are

often variable; whereas, seagrass nutrient content is accumulated over longer time scales

thereby proving information on the long-term nutrient climate (Frankovich & Fourqurean

1997, Fourqurean and Rutten 2003, Burkholder et al. 2007). Our final objective was to

III. determine the environmental drivers of amphipod density and diversity metrics, and

multivariate community composition.

Systematic monitoring of seagrass ecosystems in Florida Bay began in the 1980’s,

and since 2000 this monitoring has been an critical component of the FCE-LTER. Florida

Bay is important economically, supporting commercial and recreational fishing and

boating, and is currently being affected by Everglades restoration activities and other

long-term factors, including climate change and sea-level rise. Furthermore, because the

FCE-LTER seagrass sites are situated along gradients of seagrass complexity (shoot

density, species composition, and canopy height), phosphorus availability (Fourqurean &

Zieman 1992), and salinity climate (McIvor et al. 1994), characterizing the mesograzer
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populations would inform researchers of current amphipod community composition and

species diversities along multiple biotic and abiotic conditions.

Materials and Methods

Site Description

Florida Bay is a shallow, oligotrophic bay that comprises approximately 30% of

Everglades National park (NRC 2002). The FCE-LTER program began in 2000 to

monitor ecosystem responses (primary productivity, and trophic, soil, nutrient

disturbance, and landscape-scale dynamics) to the process of restoring freshwater sheet-

flow through south Florida (Childers 2006). As part of the FCE-LTER monitoring

program, data on the benthic communities (macrophyte density, nutrient and isotope

ratios, sediment type, abiotic data) are collected bimonthly throughout the year. For this

study, we collected samples at five sites along the FCE-LTER transect to investigate

environmental drivers of amphipod community structure. Replicate (n=5) samples were

collected at Trout Cove (TS/Ph 7), Little Madeira (TS/Ph 8), Duck Key (TS/Ph 9), Bob

Allen Keys (TS/Ph 10), and Sprigger Bank (TS/Ph 11) in January, April, July, and

October of 2014 (Fig. 3.1).

Both Florida Bay and the Everglades are phosphorus limited ecosystems

(Fourqurean & Zieman 1992; Noe et al. 2001). Florida Bay has limited hydrologic

connectivity (Boyer et al. 1999), restricting connectivity among basins and among

ecosystems (freshwater Everglades, Gulf of Mexico, and Atlantic Ocean). Multiple

environmental gradients exist across Florida Bay as a result of its compartmentalized
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nature. Nitrogen and phosphorus concentrations in the water column decrease from

northern to southern Florida Bay (Fourqurean et al. 1993, Rudnick et al. 1999). Spatial

patterns in nutrient ratios (N:P and C:P) in the water column and seagrass leaves are

significantly higher in western than eastern Florida Bay, suggesting that the Gulf of

Mexico is a source of phosphorus for benthic macrophytes (Fourqurean & Zieman 1992;

Fourqurean et al. 1993; Boyer et al. 1997). Northeastern Florida Bay has limited water

exchange with the Atlantic Ocean and can result in hypersaline conditions during the dry

season or hyposaline conditions during the wet seasons (McIvor et al. 1994, Nuttle et al

2000).

Macrophyte Sampling

Abundance and species composition of macrophytes and other benthic taxa

(including octocorals, scleractinean corals, and sponges) were assessed as percent cover

at 10 randomly selected 0.25 m2 quadrats along a permanent 50 m transect at each site

using a modified Braun-Blanquet technique (Fourqurean et al 2001). Each taxon within

each quadrat is assigned a Braun-Blanquet score between 0 and 5, where 0.1 indicates a

solitary individual is covering ≤ 5% of the quadrat, 0.5 indicates a few individuals

covering ≤5%, 1 indicates numerous individuals covering ≤ 5%, 2 indicates 5%–25%

cover, 3 indicates 25%–50% cover, 4 indicates 50%–75% cover, and 5 indicates 75%–

100% cover. Braun-Blanquet scores were then used to estimate density of each taxon

( ) present, calculated as follows:

= (Σ ) ×
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where is the number of quadrats sampled at a site in which species is present, is the

total number of quadrats sampled, and is the Braun-Blanquet score for species in the

quadrat. Abiotic data were collected at each site, including temperature, salinity, and

turbidity.

Short shoots from each seagrass species present were collected for analyses of

nutrient content in photosynthetic tissues, a long-term indicator of the relative availability

of nutrients. Seagrasses were transported on ice to the lab where leaves were scraped free

of all epiphyte material using a razor blade. Epiphyte tissue was stored at -20 °C in 20

mL scintillation vials until further processing. Leaf morphology was measured for each

short shoot collected, and seagrasses were dried at 60 °C to a constant weight. Dried

seagrasses were weighed and homogenized for nutrient analyses. Total phosphorus

content was determined using a dry-oxidation, acid hydrolysis extraction with

calorimetric analysis (Fourqurean & Zieman 1992). Carbon and nitrogen content were

analyzed using a CHN analyzer (Fisions NA1500). Chlorophyll a content of the adhering

epibiont community was used as a proxy for epiphyte biomass. Scraped epiphyte material

was lyophilized to obtain a dry weight. Chlorophyll a was extracted for 24-48 hours

using 90% acetone. Chlorophyll a concentrations were determined using a Shimadzu RF-

5301PC Spectrofluorophotometer. Total epiphyte load was estimated as leaf-specific

chlorophyll a (µg Chl a leaf area-1).

Amphipod Sampling

A modified Virnstein Grabber (Virnstein & Howard 1987; Douglass et al. 2008)

was used to collect replicate samples (n=5) at each site during each season (Ntotal=100).
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Samples were collected adjacent to the transect at plots with similar macrophyte

composition as that within the transect. The Virnstein Grabber samples an area of 0.4 m2

per replicate by removing aboveground biomass and associated epifauna while

minimizing the collection of sediments. Seagrass and epifauna were collected in 400 μm

mesh filter bags and transported on ice to the laboratory where they were stored at -20 °C

until processing. Samples were thawed, and any seagrass or macroalgae present were

removed. The samples were filtered through a 500 μm sieve and preserved in 5%

formalin. The amphipods in the samples were removed and identified down to the species

level (LeCroy 2002) under a dissecting microscope.

Seagrass tissues (living and detrital) and macroalgae collected in the Virnstein

Grabber were also dried to a constant weight at 60 °C. Dried vegetation was combusted at

500 °C for 4 hours to estimate ash free dry weight (AFDW). Amphipod density was

calculated by dividing the number of amphipods of each species by g macrophyte AFDW

in the 0.4 m2 sampling area.

Environmental dataset

Water quality data collected as part of the FCE-LTER following the methods of

the Water Quality Monitoring and Projection Project of the Florida Keys National Marine

Sanctuary (FKNMS) by the Southeast Environmental Research Center at Florida

International University (http://serc.fiu.edu/wqmnetwork/) were used. Water quality

samples are collected quarterly each year at the same sites and around the same time

seagrass monitoring occurs. Methods for field sampling and sample analyses are

described in detail in Boyer & Jones (2002). From this extensive monitoring dataset, we
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used the following water-quality variables: nitrate+nitrite (NOX; μM), nitrate (NO3
-; μM),

nitrite (NO2
-; μM), ammonium (NH4

+; μM), total nitrogen (TN; μM), dissolved inorganic

nitrogen (DIN; μM), total organic nitrogen (TON; μM), total phosphorus (TP; μM),

soluble reactive phosphorus (SRP; μM), total organic carbon (TOC; μM), chlorophyll a

(CHLa; μg) and dissolved oxygen (DO).

Water quality samples in Florida Bay were collected consistently from 2000

through 2008. We averaged data collected across years within each of the four months in

which we collected amphipod and seagrass samples as a proxy for current water quality.

Seagrasses are long-term integrators water-column nutrients and are unlikely to respond

quickly to short-term changes in water quality (Frankovich and Fourqurean 1997).

However, animals are more responsive to short-term changes in water quality, but in the

absence of current data, averages were used to capture the historical variability in water

quality. In addition to average water quality data, we included variables collected as part

of the LTER seagrass monitoring in our environmental dataset: depth, turbidity,

temperature, nutrient content of seagrass leaves (carbon, nitrogen, phosphorus), epiphyte

abundance (chlorophyll a per short shoot), seagrass biomass in 0.4 m2 area (dry weight,

and weights of organic and inorganic matter), and macrophyte densities (Thalassia

testudinum, Syringodium filiforme, Halodule wrightii, Halimeda spp., Penicillus spp.,

total density of calcareous green algae, Batophora spp., Laurencia spp., and sponges).
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Statistical Analysis

Rarefied species richness was calculated to standardize the number of individuals

sampled across sites (Gotelli & Colwell 2001) using Primer v.6. Rarefied richness was

calculated as follows:

= 1 − ( − )! ( − )!( − − )! !
where the expected number of species from a sample of fewer individuals was

calculated using the number of species with individuals of species (Clarke et al.

2014). Shannon-Wiener ( ) and inverse Simpson’s ( ) indices were used to estimated

species diversity and dominance, respectively. and were calculated as follows:

= − = 1∑
where is the proportion of species , and is the number of species (Oksanen et al.

2016).

For objective I, patterns in amphipod species richness, diversity (Shannon-Weiner

index), and dominance (inverse Simpson’s index) were evaluated through time (January,

April, July, October) using a multivariate analysis of variance (MANOVA) in R Studio

(R development core team 2015) using the ‘car’ package (Fox & Weisberg 2011).

MANOVA was used in lieu of a univariate repeated measures design because replication

was low and sphericity, an assumption of repeated measures design, could not reliably be

met. Mauchly’s test for sphericity reports the test statistic, W, and an associated p-value.

W ranges between 0 and 1 where a small W indicates a violation of sphericity (Winer et

al. 1991), as does a significant p-value (p<0.05). In our analysis, W was low yet the p-
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value was not significant. The contradiction between small W and non-significant p-value

means we cannot determine if sphericity is met; furthermore, Mauchly’s test is unreliable

with small datasets (O’Brien & Kaiser 1985). When sphericity cannot be met,

multivariate analyses are recommended (von Ende 2001). In MANOVA seasonal

replication was treated as multiple dependent variables and the independent variable was

Site (n=5 sites in Florida Bay). Post-hoc analysis was conducted using univariate analysis

of variance (ANOVA) models and Tukey’s HSD (von Ende 2001). Diversity indices

were log(x+1) transformed to meet the normality assumption.

Differences in multivariate community composition across sites and sampling

dates were tested using a 2-factor, fully-crossed permutational ANOVA

(PERMANOVA). The community data matrix was first square root transformed to

suppress the influence of dominant taxa collected (Clarke 1993), and a dissimilarity

matrix was calculated using Bray-Curtis dissimilarity. The Bray-Curtis matrix was

visualized using non-metric multidimensional scaling (nMDS)(Primer v.6), where points

closer together are more similar than distant points. A hierarchical agglomerative cluster

analysis with group-average linkage procedure was used to identify similarities in

amphipod communities across sites and seasons. Multivariate groupings significant to the

p<0.05 level were identified using a similarity profile test (SIMPROF; Clarke et al.

2014). Similarity percentage (SIMPER) analysis was used to determine which species

were contributing to the differences among communities within each grouping identified

with cluster analysis.

For objective II, a series of 1-way ANOVAs were used to test for differences in

each environmental variable across sites. Environmental variables were log or inverse log
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transformed to meet the assumptions of ANOVA. Multivariate analyses were conducted

to understand differences in the environmental climate at each site. Environmental data

were normalized (z-scores created) to accommodate for different units of measure among

environmental variables. A resemblance matrix was calculated using the Euclidean

distance between points. Differences between sites and seasons were analyzed using a 2-

factor PERMANOVA. The interaction term was not analyzed because of a lack of

replication at the season level.

We conducted a Spearman’s rho rank correlation matrix to determine if

environmental variables were correlated (Hmisc package in R; Harrell et al. 2016).

Because several variables were highly correlated, we used principle components analysis

(PCA) to reduce our original 33 environmental variables to fewer principle components

(PCs). The means and ranges of environmental data were standardized by converting

them to z-scores, and varimax rotation was used to facilitate interpretation of principle

components. To understand the influence of environmental factors on amphipod

multivariate community composition, amphipod density, species richness, Shannon-

Wiener diversity index, and inverse Simpson’s dominance index (objective III), PC

scores at each site and season were calculated and used as independent variables in

distance based linear models (DISTLM Primer v.6). DISTLM is analogous to linear

multiple regression and was used to determine relationships between amphipod

community density data and multivariate environmental data (PC scores). We used

distance based redundancy analysis (dbRDA) to visualize the amphipod community data

coded by site (letters) and season (shading) as constrained by environmental components.

We also used DISTLM to determine the best model of environmental components to
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describe each of the univariate, amphipod density and diversity metrics. We used the

‘Best’ model selection procedure in the DISTLM analysis which analyzes every

combination of the independent variables to find the best fit model, as determined by

corrected Akaike Information Criterion (AICc). The model selection procedure was

permuted 9999 times.

Results

In total 3079 amphipods were collected from 18 families and 41 unique species

across the four sampling dates. Of these, 22 species from 10 families were collected at

Bob Allen Keys, 26 species from 16 families were collected at Duck Key, 8 species from

7 families were collected at Little Madiera, 13 species from 10 families were collected at

Sprigger Bank, and 10 species from 5 families were collected at Trout Cove (Fig. 3.2).

Density and Diversity

Individual amphipod species densities varied across sites and sampling times (Fig.

3.2). Annual amphipod density was significantly different across sites (Site main effect in

ANOVA F(4,95)=54.693; p<0.01). Amphipod density at Duck Key was 2.8 times higher

than Little Madiera (p=0.03), 3.6 times higher than Bob Allen (p<0.01), 74 times higher

than Sprigger Bank (p<0.01), and 6.5 times higher than Trout Cove (p<0.01; Table 3.1).

Amphipod density at Little Madiera was 25 times higher (p<0.01), Bob Allen amphipod

density was 20 times higher (p<0.01), and Trout Cove amphipod density was 11 times

higher (p<0.01) than Sprigger Bank. Little Madiera amphipod density was 2.3 times
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higher than Trout Cove (p=0.02). Amphipod density was significantly different across

sites within each season (p<0.01, Fig. 3.3a-d). In January, amphipod density at Duck Key

was 7.7 times higher than Bob Allen Keys (p=0.04) and 34 times higher than Trout Cove

(p<0.01). Amphipod density at Bob Allen was 77.7 times higher, Duck Key amphipod

density was 607 times higher, Little Madiera amphipod density was 113 times higher,

and Trout Cove amphipod density was 17 times higher than Sprigger Bank (p<0.01 for

all comparisons; Fig. 3.3a). In April, amphipod density at Bob Allen was 45 times higher,

Little Madiera was 15 times higher, Trout Cove was 18.8 times higher, and Duck Key

was 30 times higher than Sprigger Bank (p<0.01 for all comparisons; Fig. 3.3b). During

July sampling, amphipod density at Duck Key was 5.1 times higher than Bob Allen

(p<0.01) and 4 times higher than Trout Cove (p=0.01). Bob Allen amphipod density was

6 times higher (p=0.02), Duck Key amphipod density was 31.3 times higher (p<0.01),

Little Madiera amphipod density was 14.7 times higher (p<0.01), and Trout Cove

amphipod density was 7.9 times higher than Sprigger Bank (p<0.01; Fig. 3.3c). In

October, amphipod density at Duck Key was 4.6 times higher than Bob Allen Keys

(p=0.04) and 6.6 times higher Trout Cove (p<0.01). Amphipod density at Bob Allen was

14.5 times higher, Duck Key was 70 times higher, Little Madiera was 30.6 times higher,

and Trout Cove was 10.6 times higher than amphipod density at Sprigger Bank (p<0.01

for all comparisons; Fig. 3.3d). Amphipod density was significantly different across

seasons within each site (p<0.01). At Bob Allen Keys, amphipod density was 3.4 higher

in October (p=0.03) and 4.3 times higher in April (p=0.01) than in July. Amphipod

density at Duck Key was 5.4 times higher in October than in April (p=0.03). At Little

Madiera, October amphipod density was 4.7 times higher than April (p=0.013) and 2.5
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times higher than January (p=0.05). At Sprigger Bank, amphipod density was 4 times

higher in April (p=0.02), 7 times higher in July (p<0.01), and 9.8 times higher in October

(p<0.01) than in January.

Annual, species richness was significantly different across sites (Site main effect

in ANOVA F(4,95)=20.276; p<0.001). Bob Allen had 1.7 more species than Little

Madiera, and twice as many species as both Sprigger Bank and Trout Cove (all p≤0.001).

Duck Key had twice as many species as Little Madiera, and 2.4 more species than both

Sprigger Bank and Trout Cove (all p≤0.001). Species richness was significantly different

across sites within each season (p=0.004; Fig. 3.3e-h). During January sampling, Bob

Allen had 2.6 times more species than Trout Cove (p<0.001), 7.9 times more species than

Sprigger Bank (p<0.001), and 2.3 times more species than Little Madiera (p=0.002)(Fig.

3.3e). Duck Key had 2.7 times more species than Trout Cove (p<0.001), 8 times more

species than Sprigger Bank (p<0.001), and 2.4 times more species than Little Madiera

(p=0.001). In April, Bob Allen had 2.1 times more species than Trout Cove (p=0.015),

twice as many species as Sprigger Bank (p=0.001), and 1.7 times more species than Little

Madiera (p=0.020) (Fig. 3.3f). In July, Duck Key had 3.2 times more species than Trout

Cove (p<0.001), and twice as many species as Bob Allen (p=0.022) and Little Madiera

(p=0.018; Fig. 3.3g). In October, Duck Key had 2.2 times more species than Little

Madeira (p=0.001), 1.6 times more species than Bob Allen (p=0.036), twice as many

species as Sprigger Bank (p=0.003) and 2.6 times more species than Trout Cove

(p<0.001; Fig. 3.3h). Species richness was significantly different across seasons within

each site (p<0.001). At Bob Allen Keys, amphipods were 1.9 more species-rich in April
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than July (p=0.033). At Sprigger Bank, amphipods were 5.5 times more species-rich in

July than January (p=0.005).

Annual diversity and species dominance were significantly different across sites

(Site main effect in ANOVA F(4,95)=20.390, p<0.001 for Shannon-Wiener; F(4,95)=18.674,

p<0.001 for inverse Simpson). Bob Allen was 1.5 times more diverse than Little Madiera,

twice as diverse as Sprigger Bank, and 2.8 times more diverse than Trout Cove (all

p<0.001). Duck Key was 1.7 times more diverse than Little Madiera, 2.1 times more

diverse than Sprigger Bank, and 3 times more diverse than Trout Cove (all p<0.001).

Diversity (Fig. 3.3i-l) and dominance (Fig. 3.3m-p) were significantly different across

sites within seasons (p<0.001 for all). In January, Bob Allen was 7.7 times more diverse

than Little Madeira (p<0.001), 57.5 times more diverse than Sprigger Bank (p<0.001),

and 9.2 times more diverse than Trout Cove (p<0.001; Fig. 3.3i). Duck Key was 7 times

more diverse than Little Madeira (p<0.001), 52.5 times more diverse than Sprigger Bank

(p<0.001), and 8.4 times more diverse than Trout Cove (p<0.001; Fig. 3.3i). Little

Madiera was 7.7 times more diverse than Sprigger Bank (p=0.044). In April, Bob Allen

was twice as diverse as Sprigger Bank (p=0.002) and 1.7 times more diverse than Trout

Cove (p=0.004; Fig. 3.3j). Duck Key was 4.3 times more diverse than Trout Cove during

July (p<0.001; Fig. 3.3k), and Sprigger Bank was 3 times more diverse than Trout Cove,

and (p=0.044; Fig. 3.3k). In October, Duck Key was 2.7 times more diverse than Trout

Cove (p<0.001), 1.5 times more diverse than Bob Allen Keys (p=0.037; Fig. 3.3l), 1.8

times more diverse than Little Madiera (p=0.002), and 1.6 times more diverse than

Sprigger Bank (p=0.006). Bob Allen Keys was 1.9 times more diverse than Trout Cove

(p=0.02). Diversity and dominance were significantly different across seasons within
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each site (p=0.027 for Shannon diversity and p=0.019 for inverse Simpson). At Bob

Allen Keys, diversity was 1.7 times higher in January than July (p=0.031), and 1.7 times

higher in April than July (p=0.021). July was 1.8 times more diverse than January at

Little Madiera (p=0.031). At Sprigger Bank, July was 15 times more diverse January

(p=0.006) and October was 12.6 times more diverse than in January (p=0.02).

Amphipod community data

Amphipod communities differed significantly across sites (p=0.001) and seasons

(p=0.001). Non-metric multidimensional scaling of amphipod communities illustrates site

and season differences with a stress of 0.12 (Fig. 3.4). Sprigger Bank has the most unique

amphipod community of the five sites sampled; whereas, the remaining four sites appear

to have amphipod communities more similar to each other. Amphipod communities at

Bob Allen and Duck Key are more similar to each other than either site is to Trout Cove

or Little Madiera, and vice versa.

The cluster analysis of amphipod community data identified three groups that

were significant at the p<0.05 level denoted by black circles at nodes (Fig. 3.5). The

strongest difference between groups, as indicated by the low similarity, occurred between

central and eastern sites (Little Madiera, Trout Cove, Duck Key, and Bob Allen Keys),

and Sprigger Bank. The community composition of these two groups was 95.58%

dissimilar, and SIMPER analysis between these two groupings identified Grandidierella

bonnieroides as the species contributing the most to the dissimilarity between groups

(20.26%). Within the eastern and central Florida Bay sites, a significant division was

detected between Bob Allen Keys-Duck Keys and Little Madiera-Trout Cove. The
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community composition was 80.44% dissimilar between these groupings with all sites

contributing <10% to the dissimilarity between groups. The final division occurred

between seasons at Sprigger Bank where January communities were different from

communities collected in April, July, and October (Fig. 3.5). The community

composition was 78.49% dissimilar with Erichthonius sp. A (16.86%), Tethygeneia

longleyi (14.8%), and Ampithoe ramondi (12.3%) contributing most to the dissimilarity

between groups.

Within-site PERMANOVA analyses identified seasons within a particular site

that were characterized by a different amphipod community. At Bob Allen, Little

Madeira, and Trout Cove, all cross-season comparisons were significantly different

(p<0.05 for all comparisons). All seasons had significantly different amphipod

communities at Duck Key, with the exception of the comparison between July and

October (p=0.105). Interestingly, amphipod communities at Sprigger Bank were

consistent throughout the year. The only significant difference detected at Sprigger Bank

was the comparison of amphipod communities between January and October (p=0.022).

Within-season PERMANOVA analyses identified sites that were characterized by

different amphipod communities. In all seasons (January, April, July, and October), all

site-level comparisons had significantly different amphipod communities.

Environmental data

A series of 1-way ANOVAs testing differences across sites for each

environmental variable (Table 3.2) were conducted. Thalassia testudinum was more

dense at Little Madiera than all other sites (LM-BA p=0.005; LM-TC p<0.001; LM-SB
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p=0.049; LM-DK p=0.008). No T. testudinum was present at Trout Cove. As such, Bob

Allen (p=0.002), Duck Key (p<0.001), and Sprigger Bank (p<0.001) had significantly

higher densities of T. testudinum. Penicillus spp. was more dense at Sprigger Bank than

Little Madiera (p=0.027) and Trout Cove (p=0.021). Density of total calcareous green

algae (CGT in Table 3.2) was significantly higher at Sprigger Bank than any other site

(SB-DK p=0.018; SB-BA p=0.006; SB-TC p<0.001; SB-LM p<0.001). If assumptions of

ANOVA could not be met due to low replication or complete absence of certain

macrophyte species, ‘na’ was reported for the p-value (see Syringodium filiforme,

Halodule wrightii, Halimeda spp., Batophora spp., Laurencia spp. and Sponge in Table

3.2).

Environmental variables collected at the same time as amphipod samples were

significantly different across sites (Table 3.2). The water at Duck Key was significantly

deeper than Little Madiera, Sprigger Bank, and Trout Cove (all p<0.001). Bob Allen was

significantly deeper than Little Madiera and Trout Cove (both p<0.001). Salinity was

higher at Sprigger Bank than Little Madiera (p=0.043) and Trout Cove (p=0.015).

Salinity at Bob Allen was significantly higher than salinity at Little Madiera (p=0.015)

and Trout Cove (p=0.005). Nutrient content in photosynthetic tissues was significantly

different across sites. Leaf nitrogen was significantly higher at Little Madiera (p<0.001),

Trout Cove (p=0.004), and Duck Key (p=0.040) than at Sprigger Bank. Patterns in

nitrogen content were likely driven by low phosphorus availability, which led to the

luxury consumption and storage of nitrogen. Leaf phosphorus content was significantly

higher at Sprigger Bank than Bob Allen, Duck Key, Little Madiera (all p<0.001), and

Trout Cove (p=0.002). Phosphorus content was significantly higher at Trout Cove than
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Bob Allen (p=0.032) and Duck Key (p=0.019). Similar patterns in phosphorus content

have previously been documented (Herbert et al. 2009). Macrophyte dry weight (DW;

macrophytes collected as part of amphipod sampling) in a 0.04 m2 sampling area was

significantly higher at Sprigger Bank than the other sites (all p<0.001). DW was

significantly higher at Trout Cove than Bob Allen or Duck Key (both p<0.001), and was

higher at Little Madiera than Duck Key (p<0.001). Macrophyte inorganic matter in 0.04

m2 (weight of ashes) was significantly higher at Sprigger Bank than Bob Allen, Duck

Key, and Little Madiera (p<0.001). Trout Cove had significantly higher inorganic matter

than Duck Key (p<0.001), Bob Allen (p=0.006) and Little Madiera (p=0.008).

Macrophyte ash-free dry weight per 0.04 m2 (AFDW; macrophytes collected as part of

amphipod sampling) was significantly higher at Sprigger Bank than the other sites

(p<0.001 for all comparisons), and was significantly higher at Trout Cove than Duck Key

(p=0.027). No differences were detected across sites for Turbidity, Temperature, leaf

carbon content, or epiphyte biomass (chlorophyll a per short shoot).

Average annual water quality variables differed significantly across sites (Table

3.2). Nitrate+nitrite (NOX) was significantly higher at Duck Key than Sprigger Bank and

Bob Allen (both p<0.001). NOX concentrations were higher at Trout Cove than Bob

Allen and Sprigger Bank (both p<0.001). NOX was lower at Sprigger Bank than Bob

Allen and Little Madiera (both p<0.001). Nitrate (NO3
-) concentrations were significantly

higher at Duck Key than Sprigger Bank (p<0.001) and Bob Allen (p=0.004). NO3
-

concentrations were higher at Trout Cove than Bob Allen (p=0.007) and Sprigger Bank

(p<0.001). NO3
- was lower at Sprigger Bank than Bob Allen and Little Madiera (both

p<0.001). Nitrite (NO2
-) concentrations were significantly higher at Duck Key than
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Sprigger Bank (p<0.001) and Bob Allen (p=0.004). NO2
- concentrations were higher at

Trout Cove than Bob Allen (p=0.014) and Sprigger Bank (p<0.001). NO2
- was lower at

Sprigger Bank than Bob Allen and Little Madiera (both p<0.001). Ammonium (NH4
+),

Dissolved inorganic nitrogen (DIN), Total nitrogen (TN), and Total organic nitrogen

(TON) were significantly lower at Sprigger Bank than all other sites (p<0.001 for all

comparisons except for SB-DK for TON where p=0.009). Total phosphorus (TP)

concentration was significantly higher at Sprigger Bank than Bob Allen (p=0.003), Duck

Key (p=0.012), and Little Madiera (p=0.017). Soluble reactive phosphorus (SRP) was

significantly higher at Little Madiera (p=0.004) and Trout Cove (p=0.024) than Sprigger

Bank. Total organic carbon (TOC) was significantly lower at Sprigger Bank than all other

sites (p<0.001 for all comparisons). TOC was significantly higher at Little Madiera than

Bob Allen (p=0.043) and Duck Keys (p<0.001). TOC was significantly higher at Trout

Cove than Bob Allen (p=0.013) and Duck Key (p<0.001). TOC was significantly higher

at Bob Allen (p=0.018) than Duck Key. Chlorophyll a in the water-column was

significantly higher at Trout Cove than Bob Allen (p=0.040), Duck Key (p=0.003), and

Little Madiera (p=0.013). No differences were detected across sites for dissolved oxygen.

Similar to amphipod communities across Florida Bay, environmental climates

differed significantly across sites (PERMANOVA; p=0.001) and seasons (p=0.001). We

could not test for the interaction between site and season because of a lack of replication

at the season level. Environmental variables differed significantly between January and

April (p=0.027) and July (p=0.017), and between April and July (p=0.017). Analysis of

sites across all seasons identified more significantly different environmental climates than

the analysis across seasons. The suite of environmental variables characterizing Bob
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Allen was significantly different from Little Madiera (p=0.03), Sprigger Bank (p=0.03),

and Trout Cove (p=0.02). Environmental variables were similar between Duck Key and

Bob Allen Keys (p=0.063), but significantly different between Duck Key and Little

Madiera (p=0.04), Sprigger Bank (p=0.04), and Trout Cove (p=0.02). The suite of

environmental variables was significantly different at Little Madiera than Sprigger Bank

(p=0.03) and Trout Cove (p=0.03). Sprigger Bank and Trout Cove were characterized by

significantly different (p=0.03) suites of environmental variables as well.

Principle component analysis reduced the environmental dataset to four principle

components, which explain 73% of the variation and are reported here in order of

variation explained by each component (Table 3.3; Fig. 3.6). The first principle

component explained 38% of the variation. Variables associated with macrophyte density

(Halimeda spp. density, Syringodium filiforme density, total calcareous green macroalgal

density, seagrass dry weight, seagrass ash free dry weight, Penicillus spp. density,

seagrass ash weight, and sponge density) loaded heavily on the first component. Principle

component 2 explained 13% of the variation. Nitrogen concentration loaded heavily on

the second principle component (nitrite+nitrite, nitrate, nitrite, and dissolved inorganic

nitrogen). The third principle component explained 12% of the variation. Variables

associated with freshwater input in Florida Bay loaded heavily on the third component

(Halodule wrightii density, depth, water-column chlorophyll a, and salinity). The final

principle component explained 11% of the variation. Factors associated with seasonality

loaded heavily on PC4 (dissolved oxygen, temperature, and salinity).

The DISTLM procedure was used to determine the relationship between

multivariate community composition and univariate diversity measures (amphipod
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density, species richness, Shannon-Wiener diversity, and inverse Simpson’s dominance)

and each of the four principle components. Multivariate amphipod community

composition as reported as the density of each species found at each site was negatively

correlated with macrophyte density (DISTLM marginal tests p<0.001 and explains 24.8%

of the variation alone) along the dbRDA1 axis (Fig. 3.7; r=-0.965) and positively

correlated with the freshwater component (DISTLM marginal tests p<0.001 and explains

18.1% of the variation alone) along the dbRDA2 axis (Fig. 3.7; r=0.965). The best model

describing the variation in the multivariate community composition, as ranked by AICc

values (AICc=156.62) included the both the macrophyte density and freshwater

components, and described 42.9% of the variation (Fig. 3.7). The second best model

(AICc=157.08), included both the macrophyte density and freshwater components as well

as the nitrogen concentration component, and described 50.1% of the variation in

amphipod community composition. Models within two AICc units of each other can be

considered as statistically similar models (Burnham & Anderson 2002).

Amphipod density was negatively correlated with macrophyte density (DISTLM

marginal tests; p=0.002, r=-0.77) with 47% of the variation in density explained by this

component, and positively correlated with nitrogen availability (DISTLM marginal tests;

p=0.029, r=0.54) with 23% of the variation in density explained by this component alone.

Amphipod density was not correlated with freshwater input or seasonality (DISTLM).

The best model describing amphipod density, as ranked by AICc values, included both

the macrophyte component and the nitrogen concentration component, as well as the

freshwater component (DISTLM marginal test p=0.0.184, r=-0.35) and explained 79.8%

of the variation. The model containing all four environmental components had an AICc



71

value within two of the best model, and explained 83% of the variation in amphipod

density.

Species richness was negatively correlated with the freshwater component

(DISTLM marginal test p=0.001, r=-0.90) with 43% of the variation in species richness

described by this component alone. The best model describing the variability in species

richness included the freshwater component and the macrophyte density component

(DISTLM marginal test p=0.173; r=-0.43) and described 52.8 % of the variation

(AICc=37.784). However, the second and third best models, which had AICc values

within two of the best model, included only the freshwater component describing 43% of

the variation (AICc=37.810) or included the macrophyte component, freshwater

component, and nitrogen component (DISTLM marginal test p=0.375, AICc=38.076)

describing 59% of the variation in species richness.

Shannon diversity was negatively correlated with the freshwater component

(DISTLM marginal test p<0.001, r=-1.00) with 61.3% of the variation in Shannon

diversity explained by this component alone. Inverse Simpson’s dominance index was

negatively correlated with the freshwater input component (DISTLM marginal test

p<0.001; r=-1.00) which described 53.8% of the variation in the Simpson’s index. The

best model describing the variation in both Shannon diversity and inverse Simpson’s

index included only the freshwater component.
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Discussion

Use of organisms as bioindicators requires knowledge of their natural history. The

spatial and temporal distribution of species is often variable and must be well understood

prior to incorporation into monitoring programs to understand if detected changes in

population or community structure are a result of anthropogenic forcing or the natural

phenology of the study organism (Noss 1990). In our study, macrophyte density, nitrogen

availability, freshwater input, and seasonality described most of the differences observed

across sites. As such, amphipod density, richness, diversity, species dominance, and

community composition differed both spatially and temporally across Florida Bay.

Variation in amphipod density across sites and seasons was driven by macrophyte

density, nitrogen concentration, and freshwater input. Species richness was driven by

both freshwater input and nitrogen, and diversity and dominance were largely driven by

freshwater alone. Community composition was largely driven by macrophyte density and

freshwater input. Specifically, amphipod communities were less dense and less diverse

where macrophyte communities in Florida Bay were more structurally complex, and they

were also less dense and less diverse in variable environments influenced by seasonal

freshwater flow. Amphipod densities were higher where nitrogen availability was higher.

Our data suggest that amphipod communities do reflect their environment and are good

candidates, by definition, for use as bioindicators (Thomas 1993; McGeoch 2007). We

argue that sampling amphipod communities in existing management programs can

provide valuable information on ecosystem functioning, but more monitoring of
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amphipod communities in Florida Bay is needed to determine if amphipod species or

assemblages would be ideal indicators of environmental conditions.

Gammaridean amphipods are common epiphyte grazers in seagrass ecosystems

that live in close association with seagrasses and can be considered seagrass dependent.

Studies sampling amphipods within seagrass beds found that amphipod densities were

higher in core samples that included seagrass tissue as opposed to core samples taken in

bare sediment patches within continuous seagrass beds (Lewis & Stoner 1983). As such,

dense seagrass habitats support high richness, diversity, and abundances of amphipods

(Heck & Wetstone 1977; Stoner 1980a; Lewis & Stoner 1983; Orth et al. 1984). The

higher habitat structural complexity associated with higher macrophyte density is

hypothesized to provide shelter and protection from predation (Nelson et al. 1982; Young

& Young 1976; Young et al. 1978). Not only do amphipods actively seek out higher

density seagrass habitats when given a choice (Stoner 1980b), they also have seagrass-

specific preferences (Stoner 1983; Virnstein & Howard 1987). Amphipod densities are

often higher in dense, monotypic Syringodium filiforme beds than other species, because

of the plant’s higher surface area to weight ratio (Heck & Orth 1980). Furthermore,

amphipod densities in seagrass beds with macroalgae present are often higher (calcareous

green algae: Stoner & Lewis 1985; drift algae: Schneider & Mann 1991, Holmquist 1994)

possibly as a result of increased habitat complexity (Russo 1987).

In Florida Bay, amphipod density was higher at the four eastern sites (Duck Key,

Trout Cove, Little Madiera, and Bob Allen Key) and lowest at Sprigger Bank, despite the

fact that the macrophyte community was denser and more diverse at Sprigger Bank.

Sprigger Bank in western Florida Bay is characterized by dense Thalassia testudinum and
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Syringodium filiforme with abundant calcareous green macroalgae (Zieman et al. 1989).

Duck Key, on the other hand, has the lowest seagrass density of the 5 sites and the

highest amphipod density. Knowledge of the dependence of amphipods on seagrasses

would have led us to predict higher amphipod density at Sprigger Bank, but this was not

borne out by our data. However, sediment type was very different at Sprigger Bank than

the other four sites in this study. Sediment at Sprigger Bank was coarse, calcium

carbonate sediments largely composed of the skeletal remains of the calcareous

macroalgal genera Halimeda spp. and Penicillus spp. (Zieman et al. 1989). Such coarse

sediments restrict the recruitment of domicolous, or tube-dwelling, amphipod species,

because they require fine sediments to construct their tubes (e.g., Barnard et al. 1991).

The dominant species at Sprigger Bank was Tethygeneia longleyi. This species is not

domicolous (Bousfield 1973), thereby not restricted from recruiting to an area with

coarser sediment. Bob Allen Keys, Duck Key, Little Madiera, and Trout Cove have fine

carbonate sediments that are more similar to each other (Zieman et al. 1989). Domicolous

amphipods are found in high density at the four eastern sites. For example, amphipods

from the families Ampithoidae, Ischyroceridae, and Aoridae are tube-building taxa

(Bousfield 1973) found in high densities at one or more of these sites. A few individuals

of domicolous species were identified at Sprigger Bank but in very low densities.

Amphipod communities are strongly regulated by top-down control and temporal

variations in their density, richness, and diversity have been attributed to predation by

pinfish (Lagodon rhomboides) in the southeastern United States (Thayer et al. 1975;

Sheridan & Livingston 1983; Stoner 1979; Nelson 1979a, 1979b). Pinfish have been

identified as major amphipod predators with up to 100% of their gut contents identified
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as amphipod prey during summer months (Nelson 1979b). Negative correlations between

pinfish biomass and epifaunal abundance (Thayer et al. 1975) further support the

hypothesis that top-down control is driving temporal patterns in amphipod density.

Temporal patterns in amphipod density and diversity indices driven by top-down

forces are not as clear in our data as were found in early studies. While Florida Bay is a

recognized nursery habitat for pinfish to which pinfish recruit in winter and spring

months, grow quickly (as defined by Nelson 1998), and reach high abundance in western

regions of the bay (Powell et al. 2007), the average annual density of amphipods was

variable. Pinfish have not been collected in northeast and eastern Florida Bay, and are

found in very low abundances in central Florida Bay (Powell et al. 2007). As such,

predation by pinfish is not likely driving seasonal differences in amphipod densities.

However, silver jenny (Eucinostomas gula) are ubiquitous through Florida Bay, are

found in high abundances, are known predators of amphipods, and their population

densities peak during summer months (Powell et al. 2007). Despite the presence of

abundant predators, temporal patterns at four sites were not what would be expected (e.g.,

lowest densities in summer/fall when predator densities are at a maximum) if amphipod

densities were regulated by top-down control of predatory fish. A recent analysis

covering several years of seagrass, mesograzer, and predatory fish data showed few

temporal patterns in mesograzer density (Douglass et al. 2010). Contrary to early

publications, Douglass et al. (2010) found a positive relationship between mesograzer

density and fish abundance suggesting that mesograzers are not strongly regulated by top-

down control. Though our data are restricted to a single year, temporal patterns, or lack

thereof, are similar to those reported in Douglass et al. (2010) suggesting that amphipod
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density and diversity may be driven by bottom-up factors (e.g., food availability, habitat

type, abiotic factors like temperature, salinity, and light availability).

Behaviors of the most abundant amphipod species could mask the temporal

impact of predators on total amphipod densities. For example, at Sprigger Bank where

predator densities have the potential to be higher than the other sites, the most abundant

amphipod species was Tethygeneia longleyi. This species inhabits macrophytes near the

substrate (Tararam et al. 1986) possibly making them less susceptible to fish predation.

Amphipod tolerance to seasonality of other environmental variables may be

driving more of the patterns seen in our study. This study is limited by a lack of seasonal

replication in abiotic variables; however, sites have different concentrations of nitrogen in

the water column (PC2: NOX, NO3
-, NO2

-, and DIN). Amphipod density was higher at

sites where nitrogen concentrations were higher. Amphipods, when given a choice,

selectively graze on nitrogen-rich food sources (Jiménez et al. 1996; Duarte et al. 2010).

Furthermore, nitrogen-rich food sources can increase the growth, survivorship, and

fecundity of epifauna, including amphipods (Cruz-Rivera & Hay 2000; Baggett et al.

2013). If epiphytic microalgae are increasing nitrogen uptake as nitrogen becomes more

available, this more nitrogen-rich food source could increase the density of grazing

amphipods. In a phosphorus-limited system like Florida Bay, the addition of nitrogen

alone is unlikely to cause an increase in the abundance of epiphytic microalgae; however,

through luxury consumption, epiphytes could continue to assimilate available nitrogen

providing a higher-quality food source to amphipods.

Amphipods are often used as environmental indicators of changes in water quality

near wastewater outflows and other point-sources of pollution. Species richness and
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abundance is reduced near sewage outfalls (McClelland & Valiela 1998), and wastewater

effluent is attributed to changes in amphipod community structure (Englert et al. 2013).

Species-specific sensitivity may occur where burrowing species are more sensitive to

enrichment than domicolous species (Guerra-García & Koonjul 2005; de-la-Ossa-

Carretero et al. 2012). Amphipod communities in the four eastern sites in Florida Bay are

dominated by domicolous species in relatively high densities.

Trout Cove and Little Madiera are located nearest to mainland Florida at two

major points of freshwater input into Florida Bay. During the rainy season, and especially

when major storms pass within close proximity to Florida, salinity at these sites can be

very low. For example, after Hurricane Isaac passed by Florida in late August 2012,

salinity was recorded at 0.93 psu in Trout Cove and 7.08 psu in Little Madiera, and

remained <20 psu for 4 months (Fourqurean unpub.data). Amphipod species that live in

this region must have elevated tolerance to changes in salinity. Grandidierella

bonnieroides, for example, can survive in a range of salinities from <1 psu to over 40 psu

(Heard 1982). Similarly, Cymadusa compta has been recorded at salinities from 5 psu to

33 psu (Bousfield 1973; Sheridan 1980). As such, G. bonnieroides and C. compta are

found in high density in Trout Cove and Little Madiera. Amphipod species with more

restricted salinity tolerance would be unable to persist in these nearshore sites.

Erichthonius sp. A, for example was found in both Little Madiera and Sprigger Bank;

however, in Little Madiera E. sp. A was only present in low density at the end of south

Florida’s dry season (April and July; July is technically during the wet season but effects

of increased freshwater inflow are not detected until the Fall; Duever et al. 1994; Nuttle
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et al. 2000). E. sp. A was present at Sprigger Bank from January-July, where the salinity

is more stable due to the close proximity to the Gulf of Mexico.

Conclusions & Recommendations

Data presented in this study are meant to develop a baseline of knowledge on

amphipod natural history in Florida Bay. Long-term amphipod monitoring will provide

the data necessary to understand if variations in spatial and temporal distribution of

species is predictable (Holloway & Stork 1991). Furthermore, to be considered

bioindicators we need a clear understanding of the spatial and temporal distribution of

species and community composition to have the ability to differentiate between natural

and anthropogenically-induced variation (Noss 1990).  We recommend monitoring water

quality variables and amphipod communities consistently to include interannual

replication of this analysis. For amphipods to be included as indicators in seagrass

monitoring programs, more information is needed on their relationship with abiotic and

biotic factors across Florida Bay. We need to develop a better understanding of the

natural history of amphipod communities in Florida Bay before they can effectively be

used as environmental indicators.
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Tables

Table 3.1. Mean±S.E. of amphipod density, species richness, Shannon-Wiener index, and
inverse Simpson’s Dominance index by site and season.
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Table 3.2. Mean±S.E. of environmental variables and results of 1-way ANOVA for each
variable across sites. Units of measure listed here in parentheses. Thalassia testudinum
(BB score), Syringodium filiforme (BB score), Halodule wrightii (BB score), Halimeda
spp. (BB score), Penicillus spp. (BB score), Batophora spp. (BB score), Laurencia spp.
(BB score), sponge (BB score), CGT (BB score), Depth (ft), Turbidity (NTU),
Temperature (°C), Salinity (PSU), N (%), C (%), P (%), Epiphyte biomass (chl a per
seagrass short shoot), Dry Weight (DW in g of seagrass biomass collected with
amphipods), Inorganic matter (weight in g of ashes from combusted DW), and Organic
matter (weight in g, ash-free dry weight), Nitrate+Nitrite (NOX; μM), nitrate (NO3

-; μM),
nitrite (NO2

-; μM), ammonium (NH4
+; μM), total nitrogen (TN; μM), dissolved inorganic

nitrogen (DIN; μM), total organic nitrogen (TON; μM), dissolved oxygen (DO),
phytoplankton chlorophyll a (Chl a; μg), total organic carbon (TOC; μM), soluble
reactive phosphorus (SRP; μM), and total phosphorus (TP; μM).
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Table 3.3. Standardized principle component factor loadings after varimax rotation.
Variables loading strongly on each component are in bold text. Units of measure listed
here in parentheses. Thalassia testudinum (BB score), Syringodium filiforme (BB score),
Halodule wrightii (BB score), Halimeda spp. (BB score), Penicillus spp. (BB score),
Batophora spp. (BB score), Laurencia spp. (BB score), sponge (BB score), CGT (BB
score), Date (as sampling month), Depth (ft), Turbidity (NTU), Temperature (°C),
Salinity (PSU), N (%), C (%), P (%), Epiphyte biomass (chl a per seagrass short shoot),
Dry Weight (DW in g of seagrass biomass collected with amphipods), Inorganic matter
(weight in g of ashes from combusted DW), and Organic matter (weight in g, ash-free dry
weight), nitrate+nitrite (NOX; μM), nitrate (NO3

-; μM), nitrite (NO2
-; μM), ammonium

(NH4
+; μM), total nitrogen (TN; μM), dissolved inorganic nitrogen (DIN; μM), total

organic nitrogen (TON; μM), dissolved oxygen (DO), water-column chlorophyll a (Chl
a; μg), total organic carbon (TOC; μM), soluble reactive phosphorus (SRP; μM), and
total phosphorus (TP; μM).
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Figure Legends

Figure 3.1. Map of the study sites in Florida Bay. The five sites sampled were Trout Cove
(TC), Duck Key (DK), Little Madiera (LM), Bob Allen Keys (BA), and Sprigger Bank
(SB).

Figure 3.2. Shade plot of amphipod density by site and season. Each cell is shaded to
correspond to the density of the species at that date and time. Darker grey cells indicate a
higher density and lighter cells indicate lower density.

Figure 3.3. Box plots of amphipod density per m2 (a-d), species richness (e-h), Shannon-
Wiener diversity index (i-l), and inverse Simpson’s dominance index (m-p) by site
(BA=Bob Allen, DK=Duck Key, LM=Little Madiera, SB=Sprigger Bank, and TC=Trout
Cove) and season (rows).

Figure 3.4. Nonmultidimensional scaling plot of amphipod community for each site and
season. Bob Allen (BA, triangles), Duck Key (DK, asterisks), Little Madiera (LM,
inverted triangles), Trout Cove (TC, x’s), and Sprigger Bank (SB, circles). Months are
designated by shading of symbols where the darkest symbols are for January samples and
the lightest samples are for October sampling.

Figure 3.5. Dendrogram of cluster analysis of the amphipod community data across sites
and seasons. Dark circles at nodes indicate significantly different clusters. Non-dashed
lines indicate divisions not supported at the p<0.05 significance level.

Figure 3.6. Biplots of first and third principle components explaining 49% of the
variation in environmental data. Macrophyte density (PC1) explains 37% of the variation.
Freshwater input (PC3) explains 12% of the variation. Bob Allen (BA, triangles), Duck
Key (DK, asterisks), Little Madiera (LM, inverted triangles), Trout Cove (TC, x’s), and
Sprigger Bank (SB, circles). Months are designated by shading of symbols where the
darkest symbols are for January samples and the lightest samples are for October
sampling.

Figure 3.7. dbRDA ordination plot of the best fit model (from the DISTLM procedure) of
multivariate amphipod community data as explained by the environmental components
from the five Florida Bay sites in for seasons.
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Figures

Figure 3.1. Map of the study sites in Florida Bay. The five sites sampled were Trout Cove
(TC), Duck Key (DK), Little Madiera (LM), Bob Allen Keys (BA), and Sprigger Bank
(SB).
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Figure 3.2. Shade plot of amphipod density by site and season. Each cell is shaded to correspond to the density of the species at
that date and time. Darker grey cells indicate a higher density and lighter cells indicate lower density.
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Figure 3.3. Box plots of amphipod density per m2 (a-d), species richness (e-h), Shannon-Wiener diversity index (i-l), and inverse
Simpson’s dominance index (m-p) by site (BA=Bob Allen, DK=Duck Key, LM=Little Madiera, SB=Sprigger Bank, and
TC=Trout Cove) and season (rows).
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Figure 3.4. Nonmultidimensional scaling plot of amphipod community for each site and
season. Bob Allen (BA, triangles), Duck Key (DK, asterisks), Little Madiera (LM,
inverted triangles), Trout Cove (TC, x’s), and Sprigger Bank (SB, circles). Months are
designated by shading of symbols where the darkest symbols are for January samples and
the lightest samples are for October sampling.
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Figure 3.5. Dendrogram of cluster analysis of the amphipod community data across sites
and seasons. Dark circles at nodes indicate significantly different clusters. Non-dashed
lines indicate divisions not supported at the p<0.05 significance level.
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Figure 3.6. Biplots of first and third principle components explaining 49% of the
variation in environmental data. Macrophyte density (PC1) explains 37% of the variation.
Freshwater input (PC3) explains 12% of the variation. Bob Allen (BA, triangles), Duck
Key (DK, asterisks), Little Madiera (LM, inverted triangles), Trout Cove (TC, x’s), and
Sprigger Bank (SB, circles). Months are designated by shading of symbols where the
darkest symbols are for January samples and the lightest samples are for October
sampling.
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Figure 3.7. dbRDA ordination plot of the best fit model (from the DISTLM procedure) of
multivariate amphipod community data as explained by the environmental components
from the five Florida Bay sites in for seasons.
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CHAPTER IV

HABITAT FRAGMENTATION HAS WEAK IMPACTS ON ASPECTS OF

ECOSYSTEM FUNCTIONING IN A SUB-TROPICAL SEAGRASS BED
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Abstract

Habitat fragmentation impacts ecosystem functioning in many ways, including

reducing the availability of suitable habitat and altering resource dynamics.

Fragmentation in seagrass ecosystems caused by propeller scarring is a major source of

habitat loss, but little is known about how scars impact ecosystem functioning. Propeller

scars were simulated in seagrass beds of Abaco, Bahamas, to explore impacts of scarring.

To determine if plant-herbivore interactions were altered by fragmentation, amphipod

grazers were excluded from half the experimental plots, and epiphyte biomass and

community composition were compared between grazer control and exclusion plots. We

found a shift from light limitation to phosphorus limitation at seagrass patch edges.

Fragmentation did not impact top-down control on epiphyte biomass or community

composition, despite reduced amphipod density in fragmented habitats. Seagrass and

amphipod responses to propeller scarring suggest that severely scarred seagrass beds

could be subject to changes in internal nutrient stores and amphipod redistribution.

Keywords: Habitat fragmentation, disturbance, food-webs, plant-herbivore interactions,

stoichiometry, amphipod, epiphytes, seagrass
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Introduction

Habitat fragmentation is a process through which a continuous landscape is

broken into multiple fragments or patches (Laurance et al. 2002; Feeley & Terborgh

2008) often resulting in reduced areal coverage, increased frequency of edge habitats, and

increased predation risk (Turner et al. 2001). In coastal marine ecosystems, habitat

fragmentation can be a natural process driven by waves or currents (Fonseca et al. 1998),

but anthropogenically-driven seagrass meadow fragmentation is increasing in frequency

and severity due to high levels of boat traffic, dredging, and eutrophication (Short et al.

2011). Nearly half of all seagrass species are affected by mechanical damage including

that caused by boat propellers (Short et al. 2011). The rate of seagrass loss has

accelerated in recent decades with global seagrass coverage reduced by one-third since

1879. These losses are associated with substantial loss of ecosystem services (Waycott et

al. 2009).

Fragmentation decreases habitat area and increases the amount of edge habitat

present. Edges are dynamic regions characterized by variable environments including,

temperatures, water or airflow, and habitat complexity (Turner et al. 2001; Bologna &

Heck 2002; Ries & Sisk 2010). As such, the increased variability in edge habitats can

affect the ecological relationships among organisms (e.g., herbivory and predation).

Decreases in faunal abundances at the edge of seagrass patches are often attributed to

increased predation (Irlandi 1994, Bell et al. 2001, Peterson et al. 2001, Uhrin &

Holmquist 2003). For example, Uhrin and Holmquist (2003) found crab and mollusk

densities were lower up to 5 m away from recently-made scars in seagrass meadows
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(Uhrin & Holmquist 2003). Conversely, some invertebrate prey species, including

gammaridean amphipods, are found at higher densities at edge compared to interior

regions (Bologna & Heck 1999, Eggleston et al. 1999, Arponen & Boström 2012).

Amphipods are hypothesized to settle in these edge habitats because current flow is

reduced by the aboveground structure of seagrass (Fonseca et al. 1982), providing a more

amenable environment in which amphipods settle (Tanner 2003). Amphipods are also

known to drift on macroalgae across bare substrate (Schneider & Mann 1990, Holmquist

1994). Once they come into contact with a suitable habitat, usually the edge of a seagrass

patch, they colonize the area (Virnstein & Curran 1986, Tanner 2003, Arponen &

Boström 2012).

Gammaridean amphipods are important grazers in seagrass systems, consuming a

wide range of macro- and micro-algae growing on the substrate or epiphytically on

seagrass leaves. Gammaridean amphipods have strong impacts on regulating epiphyte

growth on seagrasses (Orth and van Montfrans 1984, Neckles et al. 1993, Duffy and Hay

2000, Duffy and Harvilicz 2001, Hughes et al. 2004, Jaschinski and Sommer 2008,

Spivak et al. 2009, Cook et al. 2011, Whalen et al. 2013), and can reduce the impacts of

epiphyte-induced shading of seagrasses even under eutrophic conditions (Neckles et al.

1993, Heck et al. 2000, Hughes et al. 2004; McSkimming et al. 2015). Species identity,

richness, and diversity of amphipods mediates the top-down effect of amphipods on

seagrasses. A diverse amphipod community reduce epiphyte abundance on seagrass

leaves because different amphipod species have different feeding preferences and

abilities (Duffy and Harvilicz 2001).
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Amphipods are a major food source for many juvenile and smaller predatory fish

and decapod species, making amphipods an important energy link from primary

producers to higher trophic levels (Brook 1977; Young & Young 1978). High amphipod

grazer diversity can improve energy transfer up to higher trophic levels by increased

secondary production (Duffy et al. 2003). Grazer diversity facilitates more complete use

of epiphyte resources (Duffy et al. 2001) and, depending on the composition of grazer

species, can even increase seagrass biomass indirectly via epiphyte removal (Duffy et al.

2003).

Studies examining amphipod responses to fragmentation have previously been

conducted using small, artificial, seagrass patches in unvegetated habitats adjacent to

continuous seagrass beds (Healey & Hovel 2004; Arponen & Boström 2012; Pierri-Daunt

& Tanaka 2014). These projects increased understanding of amphipod behavior in

response to patch size and level of isolation from the main seagrass patch, but did not

focus on habitat fragmentation, per se (see Fahrig 2003). A study focusing on the effects

of active fragmentation, found a reduction in the abundance of amphipods in response to

the fragmentation of a previously continuous, artificial, seagrass landscape with no

response to edge habitats (Pierri-Daunt & Tanaka 2014). They attribute the reduction in

amphipod abundance to habitat loss.

Seagrass ecosystems can be highly fragmented, often because of propeller scars

from motor boats (Zieman 1976, Sargent et al. 1995, Bell et al. 2002), which can have

long lasting effects, with recolonization by later successional species taking decades

(Zieman 1976, Kenworthy et al. 2002, Di Carlo and Kenworthy 2008, Uhrin et al. 2011).

Despite their prevalence in shallow, vegetated areas, little is known about how scars
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affect the functioning of seagrass ecosystems. The objective of this study was to examine

if fragmentation via propeller scarring impacts the structure and function of seagrass

ecosystems, as mediated by changes in resource availability and amphipod grazer

communities (Table 4.1). To test this, we simulated propeller scars in a seagrass bed on

Abaco, Bahamas. Additionally, we measured the effects of grazers on epiphyte

communities by removing grazers from half our experimental plots to disentangle the

potentially confounding effects of increasing edge habitat and potentially altered

amphipod distribution and community structure within seagrass patches. We evaluated

seagrass primary production (hypothesis 1) and nutrient and isotopic content (hypotheses

2-3), epiphyte biomass and community structure (hypotheses 4-5), grazer abundance and

community structure (hypotheses 6-7, and plant-grazer interactions (hypothesis 8) as

measures of ecosystem functioning.

Materials and methods

2.1 Site Description and Experimental Design

The study was conducted at two sites in Abaco, The Bahamas (26°25’N,

77°10’W) from August to October 2014. The sites, Cherokee Sound and Jungle Creek,

were characterized by depths of 1.5 m at high tide with >50% Thalassia testudinum cover

(Fig. 4.1). Forty experimental plots were established across a continuous seagrass

landscape, and replicates of each treatment combination (n=10) were randomly assigned

(Fig. 4.2). Amphipod abundance (called Grazing) and fragmentation treatments were

manipulated over the course of 5 weeks at the two sites (one factor in the design). The
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factor of Grazing consisted of two levels (amphipod exclusion and control). The factor of

Fragmentation consisted of two levels (fragmented and continuous control). Edge and

interior sampling plots were nested within the fragmented treatment to test for edge

effects (Table 4.2). Seagrass, amphipod, and epiphyte samples were collected within 15

cm of carbaryl blocks or control plot markers at continuous, interior, and edge locations

at the end of the experiment.

2.2 Fragmentation Treatment

Plots were chosen based on homogeneous cover of benthic vegetation (seagrasses

and macroalgae) across a circular area 6.5 m in diameter, then were randomly assigned as

a control or fragmented treatment. A simulated propeller scar was created around the

circumference of the fragmented plots to a width of 25 cm (approximate width of

propeller scars in the area) using hedge clippers. Seagrasses and macroalgae were

removed at the sediment surface, and regrowth was trimmed weekly. Rhizomes were

severed at the scar edge to prevent transfer of nutrients from adjacent short shoots. All

experimental plots had a diameter of 6.5 m (6 m internal diameter and 0.25 m propeller

scar on both sides for fragmented plots, 6.5 m diameter for continuous plots) with an area

of 33.2 m2. All plot centers were 10 m apart to minimize cross-contaminating treatments

(Fig. 4.2).

To test for fragmentation effects, samples were collected from the center of both

fragmented and continuous plots. Samples were also collected from the edges and interior

locations of a fragmented patch to test for edge effects (Table 4.2; Fig. 4.2). Edge plots

were randomly assigned a cardinal direction to control for the potential effects of current.
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2.3 Grazer Treatment

Amphipods were excluded from half of the experimental plots using carbaryl-

infused plaster blocks as a test of hypothesis 8: amphipod grazing will be reduced at edge

habitats (Table 1). Carbaryl is a water-soluble arthropod deterrent used to remove insects

in agriculture (Tomlin 2000). Current marine applications include removal of arthropod

pests in oyster farms (Dumbauld et al. 2001) and parasitic sea lice in fish farms (Høy &

Horsberg 1991). Carbaryl has a half-life of 5 hours in seawater and degrades rapidly in

the presence of light (undetectable after 96 h; Armbrust & Crosby 1991). Carbaryl

effectively removes invertebrates, such as, amphipods, some gastropods, and burrowing

shrimp (Duffy & Hay 2000, Dumbauld et al. 2001, Douglass et al. 2008, Poore et al.

2009, Cook et al. 2011, Whalen et al. 2013, Duffy et al. 2015), with no lasting effects on

fish, molluscs, polychaetes, seagrasses or algae (Carpenter 1986, Roth et al. 1993,

Dumbauld et al. 2001, Poore et al. 2009).

Slow-release blocks were infused with a low concentration of carbaryl pesticide

using 18.5 g carbaryl to 222 mL water and 555 g plaster of paris (3.3 % carbaryl by dry

weight plaster; Whalen et al. 2013) and secured to the sediment surface using wire hooks.

Carbaryl blocks were replaced weekly to maintain grazer exclusion. Control plots were

unmanipulated (i.e., no block). Block controls (plaster blocks without carbaryl) were not

used because data from a pilot experiment found no significant difference in amphipod

abundances between the control block and ambient control plots (p=0.910, and in Whalen

et al. 2013). In our pilot studies, carbaryl successfully excluded amphipods from sample

plots up to a distance of 30 cm from the treatment block (p<0.05; and in Whalen et al.

2013).
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2.4 Seagrass Responses

Abundance of all benthic flora was estimated as percent cover of each species

present in a 0.25 m2 quadrat placed at each sample location. Shoot density was calculated

by counting shoots in a 0.02 m2 quadrat at each sample location. Thalassia testudinum

productivity rates were estimated using the modified hole-punch technique (Fourqurean

et al. 2001). Shoots were marked adjacent to the sample location (Fig. 4.2), and three to

seven marked shoots were harvested a week later to measure morphometrics (leaf length

and width) and determine areal productivity (g m-2 d-1). All destructive sampling was

conducted at the end of the experiment after amphipod samples had been collected. In the

lab, shoots marked for productivity were gently scraped free of epiphyte material,

processed for growth metrics, and dried in an oven at 60°C. Epiphytes were stored in foil-

wrapped scintillation vials in the freezer until further processing. Dried seagrass shoots

were weighed and homogenized for nutrient and isotopic analyses. Total phosphorus

content of T. testudinum leaves was determined using a dry-oxidation, acid hydrolysis

extraction with colorimetric analysis (Fourqurean et al. 1992). Carbon and nitrogen

content were analyzed using a CHN analyzer (Fisions NA1500).

Seagrass blade tissue from Cherokee Sound were analyzed for stable isotope

ratios (13C, 15N). Samples used for isotope analyses were fumed for 7 days with

concentrated HCl to remove any carbonates, and re-dried in an oven at 60°C to a constant

weight. Stable isotope content was determined using elemental analyzer isotope ratio

mass spectrometer (EA-IRMS) procedures. Organic matter was combusted in the

elemental analyzer and gases were reduced to N2 and CO2, which were measured on a

Finnigan MAT Delta C IRMS in continuous flow mode. Results are presented in standard
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delta notation () using the international standards of atmospheric nitrogen (N2) and

Vienna Pee Dee belemnite (V-PDB) for carbon. Based on sample replicates,

reproducibility of reported  values was better than ± 0.08 ‰ for carbon and ± 0.20 ‰

for nitrogen.

2.5 Epiphyte Responses

High performance liquid chromatography (HPLC) was used to determine

phytopigment abundance per sample, which measures relative concentrations of the

accessory pigments fucoxanthin (found in diatoms), peridinin (found in dinoflagellates),

zeaxanthin and echinenone (found in cyanobacteria), and chlorophyll b (found in

chlorophytes). Pigment abundance was estimated as µg pigment per cm2 seagrass leaf,

and were presented as a percentage of the sum of the masses of all measured pigments.

Abundances of these different pigments were used as indicators of the relative biomass,

as taxon-specific chlorophyll a, for the various photosynthetic epiphyte groups. Scraped

epiphyte material was lyophilized to obtain a dry weight. Epiphyte pigments were

extracted using methanol/acetone/N,N-dimethylformamide/water (Hagerthey et al. 2006)

and analyzed using HPLC analysis according to the methods described in Louda et al.

(1998). Total epiphyte load was estimated as leaf-specific chlorophyll a (µg Chl a leaf

area-1). Epiphyte autotrophic index (µg Chl a g-1 epiphyte dry mass) was also calculated.

2.6 Amphipod identification

Amphipod samples were collected at all grazer exclusion or grazer control

treatments using a modified Virnstein Grabber (Virnstein & Howard 1987). The
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Virnstein Grabber collects seagrass above-ground biomass and associated epifauna from

an area of 400 cm2 without collecting sediment or infauna (Douglass et al. 2008).

Samples were rinsed through 400 µm filter bags, transported on ice and then frozen. In

the lab, samples were thawed and seagrass and macroalgae removed. The remaining

sample was filtered through a 500 µm sieve to remove sediment from the sample. Fauna

collected in the sieve were then preserved in 5% formalin before being rinsed, identified,

and stored in 70% ethanol. Seagrass and algae were dried to a constant weight at 60°C

then combusted at 500°C for four hours to determine ash-free dry weight (AFDW).

Amphipods were identified to the species level (following LeCroy 2002) under a

dissecting microscope. Amphipod density per g macrophyte biomass was calculated for

each species as amphipod abundance divided by AFDW (number of amphipods g-1

macrophyte AFDW per 400 cm2 sample)(Whalen et al. 2013).

2.7 Statistical Analyses

Univariate statistical analyses were conducted using R Studio (R development

core team 2015) and the following packages: ‘car’ (Fox & Weisberg 2011), ‘nlme’

(Pinheiro et al. 2016), ‘multcomp’ (Hothorn et al. 2008), and ‘MASS’ (Venables &

Ripley 2002). Because interior and edge locations do not meet the assumption of

independence for ANOVA when analyzing for fragmentation effects, we created two

separate datasets. The first dataset includes data collected from fragmented-interior and

continuous plots only, and is used to test for fragmentation effects between sites, habitats,

grazer treatments, and all interaction terms in a 3-way analysis of variance (ANOVA).

The second dataset includes data collected from fragmented-edge and interior plots, and
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was used to test for an effect of the edge. All analyses testing for edge effects were done

using 2-way ANOVA within each site (two separate analyses), thereby removing site as a

factor in the model (Table 4.2). Dependent variables were epiphyte biomass and

autotrophic index, and seagrass abundance, productivity, and nutrient content (N and P).

Stable isotopic content (13C and 15N) of seagrass leaves in fragmentation and

grazing treatments (Cherokee Sound only) were analyzed using 2-way ANOVA. Edge

effects, or within-patch differences, in isotopic content between fragmentation and grazer

treatments also were analyzed using 2-way ANOVA.

Community analyses were conducted using Primer 6 software (version 6.1.15;

Primer-E 2012). Epiphyte communities, as described by the accessory pigment relative

abundances, were analyzed using a 3-factor permutational analysis of variance

(PERMANOVA) where site, fragmentation, and grazer treatment were the three main

factors.  Differences in amphipod community structure between sites and fragmentation

treatments were determined using Bray-Curtis dissimilarity index calculated on a matrix

of amphipod densities of each species. Differences in community structures were visually

examined using nonmetric multidimensional scaling (nMDS) ordination (Fig. 4.7

generated using the vegan package in R; Oksanen et al. (2015)), and significance was

determined using PERMANOVA. The most influential taxa contributing to observed

differences were determined using similarity percentage (SIMPER) analyses for both

epiphyte and amphipod communities.
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Results

3.1 Overview

Thalassia testudinum cover was significantly higher at Cherokee Sound (P<0.001,̅=80%) than Jungle Creek ( ̅=62%)(Table 4.3). The habitat was more complex at

Cherokee Sound, with significantly longer leaves, greater leaf area per short shoot, more

leaves per short shoot, higher short shoot density, and larger standing crop biomass (all

P<0.001). Productivity (areal productivity g m-2 day-1, and leaf area productivity cm-2 m-2

day-1) of T. testudinum was significantly higher at Cherokee Sound as well (P<0.001 for

both) (Table 4.3).

3.2 Seagrass responses to fragmentation

Thalassia testudinum abundance ranged from 40% to 100% cover at Cherokee

Sound and 28% to 100% at Jungle Creek at the end of the experiment. Thalassia

testudinum abundance was significantly higher in continuous habitats ( ̅=76 %) than

interior (P=0.025; ̅=66 % cover) and edge (P=0.021; ̅=65 % cover) habitats. Within

fragmented plots, T. testudinum cover was not significantly different between edge and

interior locations, or grazer treatment plots.

Seagrass nutrient content (C, N, P) was significantly different between sites.

Carbon and nitrogen were significantly higher at Jungle Creek ( ̅=38.47 for carbon;̅=2.12 for nitrogen) than at Cherokee Sound (p<0.0001; ̅=35.02 for carbon; ̅=1.91 for

nitrogen), but were not different across within-patch locations or grazer treatments at

either site (Fig. 4.3). Phosphorus (%P) was significantly higher at Cherokee Sound
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( ̅=0.066 %; P<0.001) than Jungle Creek ( ̅=0.059 %). Phosphorus was not affected by

fragmentation (fragmented-interior vs. continuous plots) or grazer treatments. At Jungle

Creek, there was no effect of edge on %P in seagrass tissues (Fig. 4.4a), 4.but % P was

significantly higher in plots where grazers were present (P=0.014; Fig. 4.4b). Conversely,

% P was higher at continuous plots ( ̅=0.069; P=0.001) than edges ( ̅=0.058 %; Fig.

4.4c) in Cherokee Sound, but was unaffected by grazer treatment (Fig. 4.4d).

Stable isotope content (13C and 15N) was analyzed in seagrass tissues at

Cherokee Sound because of the observed depletion of P at edges. 13C was significantly

enriched (P=0.004) at edges ( ̅=-9.53) than continuous ( ̅=-10.37) habitats. 13C was

similar between edge and interior, and continuous and interior locations. No significant

differences between habitats were detected for 15N. Both 13C and 15N appeared

unaffected by fragmentation and grazer treatments. A weak but significant, negative

relationship (P=0.01, R2=0.09) was detected between 13C and phosphorus content (Fig.

4.5).

3.3 Epiphyte responses to fragmentation and grazing

Leaf-specific epiphyte biomass ranged from 0.02-2.38 µg Chl a leaf area-1 at

Cherokee Sound and 0.02-6.91 µg Chl a leaf area-1 at Jungle Creek. Fragmented habitats

ranged from 0.18-1.85 µg Chl a leaf area-1 and 0.15-2.38 µg Chl a leaf area-1 at

continuous habitats. Grazer control treatments ranged from 0.02-2.38 µg Chl a leaf area-1,

while grazer exclusion plots ranged from 0.09-6.91 µg Chl a leaf area-1. Edge habitats

ranged from 0.02-2.29 µg Chl a leaf area-1 at Cherokee Sound and 0.02-6.91 µg Chl a
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leaf area-1 Jungle Creek. Leaf-specific epiphyte biomass was not significantly different

for site, fragmentation, or grazer treatments, nor were there significant edge effects

within sites (Table 4.4).

Epiphyte autotrophic indices ranged from 79.79-1439.12 µg Chl a g-1 epiphyte

dry mass at Cherokee Sound and 23.27-559.50 µg Chl a g-1 epiphyte dry mass at Jungle

Creek. Fragmented habitats ranged from 143.59-483.45 µg Chl a g-1 epiphyte dry mass

and 60.68-703.88 µg Chl a g-1 epiphyte dry mass at continuous habitats. Grazer control

treatments ranged from 23.27-1439.12 µg Chl a g-1 epiphyte dry mass, while grazer

exclusion plots ranged from 27.99-663.85 µg Chl a g-1 epiphyte dry mass. Edge habitats

ranged from 180.54-483.45 µg Chl a g-1 epiphyte dry mass at Cherokee Sound ( ̅=
346.70 µg Chl a g-1 epiphyte dry mass) and 143.59-367.54 µg Chl a g-1 epiphyte dry

mass at Jungle Creek ( ̅= 233.87 µg Chl a g-1 epiphyte dry mass). Epiphyte autotrophic

indices were significantly higher (P<0.005) at Cherokee Sound than at Jungle Creek. The

higher autotrophic index at Cherokee Sound suggests the presence of epiphytes with

more chlorophyll a relative to their total mass. Within-patch analyses of the epiphyte

autotrophic indices were not significantly different among plots for either site (Table 4.4).

The dominant epiphyte phototrophic groups identified in this study were diatoms

(average relative abundance across sites: 56.7%) and chlorophytes (average relative

abundance across sites: 32.1%). Dinoflagellates (average relative abundance across sites:

8.2%) and cyanobacteria (average relative abundance across sites: 3.0%) were identified

as well, but in lower abundances. Epiphyte community composition was significantly

different between sites (P=0.001; Fig. 4.6), but was unaffected by fragmentation and

grazer treatments. Diatoms were the most abundant epiphyte group at Cherokee Sound
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(74.4% average relative abundance), and chlorophytes were the most abundant epiphyte

group at Jungle Creek (52.6% average relative abundance). Within sites, epiphyte

community composition was not significantly different across fragmentation or grazer

treatments.

3.4 Amphipod responses

A total of 314 individual amphipods were collected from 7 families representing

14 unique taxa. At Cherokee Sound, 188 individuals were collected from 3 families

representing 7 different species. Jungle Creek was more diverse with 126 individuals

collected from 6 families representing 10 species. Of the collected amphipods, 2 families

representing 3 species were collected at both sites (Family Aoridae: Grandidierella

bonnieroides; Family Ampithoidae: Cymadusa compta and C. filosa). Amphipod density

ranged from 0-1.63 amphipods g-1 seagrass AFDW at Cherokee Sound and 0-3.85

amphipods g-1 seagrass AFDW at Jungle Creek. Amphipod densities ranged from 0-3.85

amphipods g-1 AFDW in continuous habitats and from 0-1.73 amphipods g-1 seagrass

AFDW in fragmented habitats. In grazer treatments, amphipod density ranged from 0-

3.85 amphipods g-1 seagrass AFDW in grazer exclusion plots and 0-2.92 amphipods g-1

seagrass AFDW in grazer control plots. Amphipod density was not significantly different

between sites or fragmented treatments, but was lower in grazer exclusion plots ( ̅= 0.36

amphipods g-1 seagrass AFDW; p=0.002) than grazer control plots ( ̅= 0.61 amphipods

g-1 seagrass AFDW). The interaction between Site and Grazer treatments was significant

(P=0.043). Amphipod density was higher in grazer control plots ( ̅= 0.59 amphipods g-1

seagrass AFDW) than exclusion plots ( ̅= 0.24 amphipods g-1 seagrass AFDW) at
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Cherokee Sound (Tukey HSD post hoc analysis; P=0.002). No significant differences

between grazer control and exclusion plots were observed at Jungle Creek indicating

carbaryl was ineffective at this site. Carbaryl use to understand the ecological interactions

between amphipods and primary producers is widespread in temperate seagrass

ecosystems (see Duffy et al. 2015). The efficacy of carbaryl in tropical study systems,

however, has been inconclusive to date (J. Campbell, personal communication). We

caution against assuming carbaryl is universally effective in eliminating amphipod

grazers from seagrass beds, even when study sites are in relative close proximity as in our

study.

Because of the significant Site*Grazer treatment interaction, and the

ineffectiveness of carbaryl at Jungle Creek we removed the grazer exclusion plots from

the analyses for fragmentation and edge effects on amphipod density. Amphipod density

was significantly reduced in fragmented plots (P=0.004), but not significantly impacted

by edges (i.e., no difference between interior or edge locations) at Cherokee Sound or

Jungle Creek.

Amphipod communities had a different composition between sites (P<0.001), but

were unaffected by fragmentation. The most common species identified at Cherokee

Sound included Ampithoe ramondi (relative abundance = 34%), Elasmopus levis (relative

abundance = 24%), and Cymadusa filosa (relative abundance = 23%). At Jungle Creek,

Plesiolembos rectangulatus (relative abundance = 47%), Grandidierella bonnieroides

(relative abundance = 13%), Bemlos unicornis (relative abundance = 13%), and

Shoemakerella cubensis (relative abundance = 8%) were the most abundant species.



116

Within sites, amphipod community composition was not significantly different between

edge and interior treatments (Fig. 4.7).

Discussion

Habitat fragmentation in Bahamian seagrass meadows caused some changes in

the functioning of seagrass ecosystems. The most obvious pattern occurred in edge

habitats, i.e., a concurrent nutrient depletion and heavier 13C which are indicative of

increased light availability in seagrass ecosystems (Abal et al. 1994, Campbell &

Fourqurean 2009). While habitat fragmentation had no impact on amphipod and epiphyte

community structure, amphipod density was reduced in fragmented patches. Changes in

amphipod density (reductions in fragmented patches and exclusion plots) did not translate

to changes in top-down control as evidenced by no change in epiphyte biomass or

community composition across study patches. This study highlights the importance of

understanding the impacts of habitat fragmentation via propeller scarring on seagrass

ecosystem functioning. These data can be especially relevant in seagrass monitoring

programs where nutrient and isotope content of photosynthetic tissues are assessed.

4.1 Resource limitation

The coastal areas of Abaco, Bahamas, are primarily phosphorus-limited (Allgeier

et al. 2010). Allochthonous nutrient input is localized in this region (Stoner et al. 2011),

and can influence seagrass productivity and epiphyte community composition. In this

experiment, Cherokee Sound was subjected to higher levels of allochthonous nutrient
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input than Jungle Creek because of the close proximity to a larger human population.

Allochthonous nutrient inputs at Cherokee Sound could account for increased seagrass

productivity, higher phosphorus content, and different epiphyte community composition

than at Jungle Creek.

Propeller scarring in Cherokee Sound caused as shift in nutrient and isotopic

content of seagrass photosynthetic tissues in edge habitats. Phosphorus content became

depleted at edges of plots, while 13C increased, indicating a change in seagrass

physiological processes initiated by altering the physical environment. When seagrasses

are shaded they have lighter 13C values in photosynthetic tissues (Durako & Hall 1992;

Abal et al. 1994; Campbell & Fourqurean 2009). Propeller scars remove above- and

below-ground tissues creating isolated patches within a larger, continuous, seagrass bed.

The removal of plants via scarring relieves adjacent seagrasses from self-shading by

allowing increased light penetration, exposing more photosynthetic tissue to light. In

general, light is not a limiting factor in this system because of the clear, shallow, water

column; however, short-shoot density was quite higher at Cherokee Sound, suggesting

the seagrasses here indeed may be self-shading.

4.2 Plant-herbivore interactions

Fragmentation created by simulated propeller scars reduced amphipod density

overall. This is in contrast with other studies, e.g., no influences of fragmented eelgrass

beds or fragment size were detected on epifaunal or nekton communities in eelgrass

fragments created in the lower Chesapeake Bay (Lefcheck et al. 2016). In southwest

Finland, amphipod densities in fragmented treatments were higher than in continuous
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treatments (Arponen & Boström 2012), which the authors attributed to an edge effect. In

other cases edges, like those created by propeller scars in seagrass beds, can increase

predation risk on some invertebrate species causing reduced abundance at edges

(scallops: Bologna & Heck 1999; decapods: Tanner 2005). We found no impact of the

presence of the edge on amphipod density (i.e., amphipod densities in edge and interior

plots were not significantly different) despite the presence of predators, such as Geres

cinereus (yellowfin mojarra) and Lutjanus apodus (schoolmaster snapper; Rooker 1995),

at both sites.

Reduced abundance of gammaridean amphipods has also been attributed to the

loss of habitat associated with fragmentation. After fragmentation of artificial seagrass

patches in Brazil, amphipod abundances were reduced in smaller experimental fragments

when compared to larger fragments (Pierri-Daunt & Tanaka 2014). Abundance of

epifauna, including amphipods, was reduced in live seagrass beds in San Diego,

California, but only after habitat area was reduced by 90% (Reed & Hovel 2006).

Amphipod densities were reduced after fragmentation in our study as well, but the

amount of habitat loss was much less than 90% and fragments were embedded within a

continuous seagrass bed. The propeller scars may have created a barrier over which

amphipods would have been reluctant to cross because of the potentially elevated

predation risk in scars. If the propeller scars acted as a barrier isolating amphipods within

fragmented patches from the surrounding, continuous seagrass beds, natural top-down

control exerted by amphipod predators present at our sites could have resulted in the

detected reduction in amphipod densities in fragmented patches.
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Epiphyte biomass (measured as chlorophyll a) was not significantly different

between Jungle Creek and Cherokee Sound despite measured differences in ambient

nutrient availability (as determined from seagrass elemental content). Epiphyte

chlorophyll a, however, is not a sensitive indicator of nutrient availability in oligotrophic

seagrass ecosystems (Fourqurean et al. 2010), even under experimental nutrient

enrichment (see Armitage et al. 2005, 2006). Accessory phytopigments in epiphytes are

more responsive to changes in ambient nutrient content (Armitage et al. 2005;

Frankovich et al. 2009) and may be a better metric to investigate.

Epiphyte community composition, however, differed significantly between

Cherokee Sound and Jungle Creek. Both sites were dominated by diatoms and

chlorophytes, but the relative abundance of each phototrophic group was rather different

at each site. Diatoms dominated epiphyte communities at Cherokee Sound, whereas

chlorophytes dominated epiphyte communities at Jungle Creek. In Florida Bay, the

relative abundance of diatoms decreased with phosphorus enrichment (Frankovich et al

2009) and the relative abundance or chlorophytes (chl b) increased with phosphorus

enrichment (Armitage et al. 2006). In Abaco, diatom abundance was higher at Cherokee

Sound, the more phosphorus enriched site. Shifts in epiphyte communities were caused

by experimental nutrient enrichment in Florida Bay. Experimental nutrient enrichment

could promote the colonization of more opportunistic species of microalgal epiphytes by

changing the ambient nutrient availability. In Abaco, nutrient enrichment has occurred

over a longer time period and is indicative of ambient nutrient availability, not

experimental fertilization. As such, epiphyte communities could be more stable and

indicative of a climax community under naturally occurring nutrient availability.
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Differences in epiphyte communities could lead to different amphipod

communities at our study sites. Gammaridean amphipods exhibit species-specific feeding

preferences on epiphytic algae (Duffy and Hay 1994, Duffy and Hay 2000, Duffy and

Harvilicz 2001). The dominant amphipod species at Cherokee Sound was Ampithoe

ramondi, which accounted for 34% of amphipods collected. A. ramondi feeds primarily

on diatoms and filamentous green algae (Brawley & Adey 1981). Elasmopus levis and

Cymadusa filosa consisted of 24% and 23% of the sampled amphipod community,

respectively, and both species graze on chlorophytes (Buza-Jacobucci & Pereira-Leite

2014; Ceh et al. 2005; Bruno & O’Connor 2005; Duffy & Hay 2000). Epiphyte

communities at Cherokee Sound were dominated by diatoms and chlorophytes, a food

source for all dominant amphipod species and less abundant species in this study

(Grandidierella bonnieroides (Zimmerman et al. 1979) and A. longimana (Bousfield

1973)).

Despite the reduction of amphipod density in fragmented plots and the removal of

amphipods from half the experimental plots, there was no evidence for top-down control

of epiphyte biomass or the relative abundance of different phototrophic groups in this

study. As such, epiphyte biomass was similar in amphipod control and exclusion plots,

and in fragmented and continuous plots, refuting our hypothesis that epiphyte biomass

would be higher when amphipods were absent (Table 4.1). Recent research indicates that

amphipods fail to reduce the overall biomass of epiphytes, but can alter the community

composition of epiphytes on seagrasses (Duffy & Hay 2000). However, these studies

were conducted in mesocosms stocked with locally dominant amphipod species

Mesocosms neglect important variables such as immigration, emigration, the importance
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of rare or smaller species, and ecological interactions (e.g., competition and predation),

which may impact the epiphyte community composition directly and indirectly. Potential

amphipod predators were abundant in our study sites, which could have resulted in an

overall reduction of amphipod densities independent of our experimental manipulations.

Top-down control of amphipods could reduce grazing pressure on epiphytes resulting in

no detectable impact of amphipod grazers on epiphyte abundance and biomass.

Mechanical damage caused by increased boat traffic is likely to increase as

coastal development continues (Short et al. 2011; Hallac et al. 2012). As such, studies are

needed to address the gaps in our understanding of how propeller scarring will alter the

ecological functioning of seagrass ecosystems. This study demonstrates that light to

moderate mechanical damage (as defined by Sargent et al. 1995) plays an important role

in changing the stoichiometry of seagrass ecosystems. Severely scarred seagrass beds

may suffer from depletion of internal nutrient stores and redistribution of amphipods as

more and more suitable habitat is lost. The impacts of the scars on amphipod densities

could become more apparent over time as seagrass complexity decreases and habitat loss

increases (see Walker et al. 1989; Whitfield et al. 2002).
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Tables

Table 4.1. Predicted and observed responses to habitat fragmentation in seagrass
ecosystems from Abaco, Bahamas. E= Edge, I= Interior, and C= Continuous. Predictions
were derived from previous studies on the effects of propeller scarring in seagrass
ecosystems, and habitat fragmentation or patch dynamics of gammaridean amphipods.
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Table 4.2. Table detailing plots and initial models used to test for Fragmentation or Edge
Effects. CS= Cherokee Sound, and JC= Jungle Creek.

*The factor Grazer was removed from the model after the initial run indicated a
significant Site×Grazer interaction to test for fragmentation effects in unmanipulated
plots.
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Table 4.3. Average values ± standard error for seagrass percent cover and productivity
across treatments at each site. Differences between sites are significantly different for
each seagrass metric. Tt=Thalassia testudinum; LAI=Leaf Area Index



126

Table 4.4. Minimum, mean and maximum epiphyte biomass by main effect (site, habitat
type, and grazer treatment) as described by the epiphyte autotrophic index (µg Chl a g-1

epiphyte dry mass) and leaf specific epiphyte biomass (µg Chl a leaf area-1).
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Figure Legends

Figure 4.1. Map of study area. Black points indicate experimental sites.

Figure 4.2. Schematic of experimental plots. Black shading indicated simulated propeller
scar where seagrasses were removed, and grey coloring indicates where seagrasses are
intact. Arrows indicate distance between ecotones (0.25 m is the width of the scar; 3 m is
the distance from the scar to the patch center) or patch centers (10 m). Letters indicate
where samples were collected: N= Grazer exclusion; G= Grazer control; C= Continuous
sample location; I= Interior sample location; E= Edge sample location; P= Productivity
samples. Figure not drawn to scale.

Figure 4.3. Nitrogen content in seagrass photosynthetic tissues within sites. Differences
in nitrogen content by sampling location (panels a and c), and grazer treatments (panels b
and d). G= grazer control; NG= grazer exclusion. Significant differences indicated by
letters above error bars.

Figure 4.4. Phosphorus content in seagrass photosynthetic tissues within sites.
Differences in phosphorus content by sampling location (panels a and c), and grazer
treatments (panels b and d). G= grazer control; NG= grazer exclusion. Significant
differences indicated by letters above error bars.

Figure 4.5. Relationship between 13C and % phosphorus.

Figure 4.6. Relative abundance of epiphytes by major taxonomic group at each site. CS=
Cherokee Sound, JC= Jungle Creek.

Figure 4.7. Non-metric multidimensional scaling plot illustrating community differences
between sites, but not across locations within sites. Jungle Creek plots are indicated by
open shapes and Cherokee Sound plots are in solid shapes. Circles are Interior plots,
squares are edge plots, and triangles are continuous plots. Codes for amphipod taxa
consist of four letters and ‘+’, where Amlo is Ampithoe longimana, Amra is Ampithoe
ramondi, Cyco is Cymadusa compta, Cyfi is Cymadusa filosa, Elle is Elasmopus levis,
Beun is Bemlos unicornis, Grbo is Grandidierella bonnieroides, Plre is Plesiolembos
rectangulatus, Prsc is Protohadzia schoenerae, Nehi is Neomegamphopus hiatus, and
Shcu is Shoemakerella cubensis.
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Figures

Figure 4.1. Map of study area. Black points indicate experimental sites.
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Figure 4.2. Schematic of experimental plots. Black shading indicated simulated propeller
scar where seagrasses were removed, and grey coloring indicates where seagrasses are
intact. Arrows indicate distance between ecotones (0.25 m is the width of the scar; 3 m is
the distance from the scar to the patch center) or patch centers (10 m). Letters indicate
where samples were collected: N= Grazer exclusion; G= Grazer control; C= Continuous
sample location; I= Interior sample location; E= Edge sample location; P= Productivity
samples. Figure not drawn to scale.
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Figure 4.3. Nitrogen content in seagrass photosynthetic tissues within sites. Differences
in nitrogen content by sampling location (panels a and c), and grazer treatments (panels b
and d). G= grazer control; NG= grazer exclusion. Significant differences indicated by
letters above error bars.
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Figure 4.4. Phosphorus content in seagrass photosynthetic tissues within sites.
Differences in phosphorus content by sampling location (panels a and c), and grazer
treatments (panels b and d). G= grazer control; NG= grazer exclusion. Significant
differences indicated by letters above error bars.
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Figure 4.5. Relationship between 13C and % phosphorus.
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Figure 4.6. Relative abundance of epiphytes by major taxonomic group at each site. CS=
Cherokee Sound, JC= Jungle Creek.
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Figure 4.7. Non-metric multidimensional scaling plot illustrating community differences
between sites, but not across locations within sites. Jungle Creek plots are indicated by
open shapes and Cherokee Sound plots are in solid shapes. Circles are Interior plots,
squares are edge plots, and triangles are continuous plots. Codes for amphipod taxa
consist of four letters and ‘+’, where Amlo is Ampithoe longimana, Amra is Ampithoe
ramondi, Cyco is Cymadusa compta, Cyfi is Cymadusa filosa, Elle is Elasmopus levis,
Beun is Bemlos unicornis, Grbo is Grandidierella bonnieroides, Plre is Plesiolembos
rectangulatus, Prsc is Protohadzia schoenerae, Nehi is Neomegamphopus hiatus, and
Shcu is Shoemakerella cubensis.
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CONCLUSIONS AND FUTURE DIRECTIONS
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Anthropogenic disturbance is ubiquitous, impacting even the most remote

ecosystems. As such, monitoring programs have become a necessary component to the

conservation of terrestrial, aquatic, and marine ecosystems worldwide. Major goals of

monitoring programs are to adequately sample a habitat that maximizes the information

being gathered while minimizing the destructive impacts of and costs associated with

sampling (Thomas 1993; Fourqurean & Rutten 2003). Incorporating species that can be

indicators of changing ecosystem conditions can make monitoring programs more

effective in assessing the overall health and functioning of an ecosystem (Thomas 1993).

Amphipods are widely used as indicators in temperate ecosystems where long-

term natural history and taxonomic information exist, but are not widely used in tropical

ecosystems (Thomas 1993). This dissertation is the first to study the broad-scale spatial

distribution of amphipod communities, and identify the relationship between amphipod

community composition, species richness and diversity, and site-specific environmental

climates in a sub-tropical ecosystem. Baseline data collected as part of this body of

research can be used to justify incorporating amphipod sampling into monitoring

programs in south Florida and similar sub-tropical ecosystems.

To determine if amphipods would be indicators of changes in environmental

conditions, I studied the spatial and temporal distribution of marine gammaridean

amphipods in south Florida. In Chapter II, I identified amphipods at 15 sites across the

Florida Keys National Marine Sanctuary, Florida Bay, and Dry Tortugas National Park.

From these data I identified environmental drivers of amphipod community composition,

density, species richness, and diversity. In south Florida, amphipod communities are

largely driven by habitat complexity (macrophyte biomass), food availability (epiphyte
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abundance) and factors that vary seasonally (dissolved oxygen and temperature), nitrogen

concentration in the water-column, and factors associated with hardbottom habitats (high

macroalgal diversity and low seagrass density). These environmental factors can vary

with anthropogenic influences. Different types of disturbance, including changes in water

quality can influence both macrophyte and epiphyte communities, as well as nitrogen

concentrations in the water column. Changes in the complexity of amphipod habitats

(macrophyte biomass and species composition) and the quantity and quality of their food

source (epiphyte biomass and nutrient content) can potentially alter the distribution of

amphipods (see Stoner 1980, Reed & Hovel 2006, Cruz-Rivera & Hay 2000, Duarte et al.

2010). This work is the first assessment of amphipod community structure across south

Florida and the relationship with local environmental climates. These baseline data can

be used for future comparisons of amphipod community structure to better understand

their spatial and temporal distribution and the factors driving the variation in amphipod

communities.

For amphipods to be incorporated as bioindicators into seagrass monitoring

programs, a solid understanding of the spatial and temporal variability in their

community structure is necessary in order to distinguish between natural variation and

variation as a result of anthropogenic changes (Noss 1990). Building on Chapter II,

Chapter III investigated the temporal variability in amphipod community structure in

Florida Bay. I found that amphipod communities in Florida Bay exhibit site-specific

temporal variability. Variation in amphipod communities was largely driven by

macrophyte density, nitrogen concentration, and freshwater input. Results from Chapters

II and III indicate that there is a relationship between environmental variables and
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amphipod community structure, but more information is needed to fully understand the

extent of temporal variability.

Seagrass beds and gammaridean amphipods are not only impacted by chemical

pollutants (e.g., nutrients, toxicants), but are also impacted by mechanical damage from

boat propellers, dredging, fishing practices, and trampling (Barnard 1958; Barnard 1961;

Short et al. 2011). In Chapter IV, I simulated propellers scars in a continuous seagrass

bed to investigate the impacts of propeller scarring on seagrass ecosystem functioning. I

found that fragmentation of seagrass habitats as a result of boat propeller scars altered

seagrass nutrient stores and reduced amphipod density, but did not impact the ability of

amphipods to remove epiphytic algae from seagrass leaves. While propeller scarring does

impact seagrass and amphipod communities, there was little impact on the overall

functioning of the ecosystem. The reduction of amphipod densities in seagrass patches

fragmented by propeller scarring could provide preliminary evidence that amphipods

could be used as ecological indicators. More work is needed to investigate the impact of

amphipod reduction in fragmented plots on higher trophic levels.

All chapters provide support that gammaridean amphipods would be good

indicators of changes in environmental conditions in sub-tropical seagrass beds. Not only

does this research increase our knowledge of the factors regulating amphipod community

structure, it has contributed to the understanding of the utility of amphipods as

environmental indicators in sub-tropical ecosystems. Amphipod samples are inexpensive

to collect in existing monitoring programs and are ecologically relevant species that

accumulate pollutants and have predictable responses to changes in some environmental

variables (e.g., Rainbow & White 1989). However, more temporal data are needed to
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better understand the factors regulating amphipod community structure so managers can

distinguish between the natural phenology of amphipods and the responses of amphipods

to anthropogenic disturbances in south Florida (see McGeoch 2007, and Rainio &

Niemelä 2003). As such, I recommend increasing the spatial and temporal extent of

amphipod sampling and maintaining sample collection as part of the existing seagrass

monitoring programs. This work will be increasingly valuable as increasing human

populations and Everglades restoration continue to influence south Florida marine

ecosystems. Furthermore, the results of this dissertation are applicable to management

efforts in seagrass habitats in other tropical ecosystems.
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