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ABSTRACT OF THESIS 

EVALUATION OF SURFACE LAYER PARAMETERIZATIONS USING IN-SITU 

OBSERVATIONS 

by 

Jeremy Katz 

Florida International University, 2016 

Miami, Florida 

Professor Ping Zhu, Major Professor 

Appropriate calculation of surface turbulent fluxes between the atmosphere and 

the underlying surface is one of the major challenges in geosciences.  In practice, the 

surface turbulent fluxes are estimated from the mean surface meteorological variables 

based on the bulk transfer model combined with Monnin-Obukhov Similarity (MOS) 

theory. Few studies have been done to examine the extent that to which this flux 

parameterization framework can be applied to different weather and surface conditions. A 

novel validation method is developed in this thesis research, which is applied to evaluate 

the surface flux parameterization using in-situ observations. The main findings are: (a) 

the theoretical prediction that uses MOS theory does not match well with those directly 

computed from the observations collected in the coastal region. (b) Large spread in 

exchange coefficients mainly occurs in the calm wind regime with strong stability. (c) 

Large turbulent eddies, which depend largely on the mean flow and surface conditions, 

tend to break the constant flux assumption in the surface layer. 
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Chapter I: INTRODUCTION 

1.1 Turbulence and the Atmospheric Boundary Layer 

The atmospheric boundary layer (ABL) is lowest layer of the atmosphere, where 

the atmosphere interacts directly with the underlying surface. The atmospheric flow in 

the ABL is dominated by turbulence, the small-scale air motion characterized by irregular 

changes in wind, temperature, and moisture.  The time scale of these motions typically 

varies from less than a second to tens of minutes.  There are cases where larger turbulent 

eddies can develop driven by the surface dynamic and thermodynamic forcing. Although 

these large eddies often organize into coherent circulations with well-defined structures 

(Christen et al. 2007), their movements are still chaotic and it is impossible to predict 

their life-cycle deterministically. As a result, turbulent motion has to be described 

statistically.   

Atmospheric turbulence is important because turbulent mixing provides a 

mechanism to exchange energy, moisture, and momentum between the atmosphere and 

the underlying surface. The sensible and latent heating transported by atmospheric 

turbulence from surface to the atmosphere is a major forcing that drives atmospheric 

motion and weather, including tropical cyclones in the tropics and sub-tropics.  This 

vertical transport process can be schematically illustrated by Figure 1.1 in which the 

sensible heat flux is used as an example. The thick solid curve represents the vertical 

profile of mean potential temperature.  The two points A and B in the figure are subjected 

to an arbitrary turbulent eddy, which causes the air particle at A to gain downward 

motion (i.e., w’<0).  Once the particle moves downward, it becomes colder than the 

assumed stratified environment in which the eddy is embedded to result in a cold 
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potential temperature perturbation (i.e., θ’<0).  From this sequence, a positive sensible 

heat flux will be generated, i.e., w’θ’>0.  Concurrently, the air particle at B subjected to 

the same eddy will gain an upward motion (i.e., w’>0) and a warm perturbation with 

respect to the mean (i.e., θ’>0) as it moves to a new environment.  This sequence will 

also cause a positive sensible heat flux w’θ’ > 0.  Thus, a net positive sensible heat flux 

will be generated by this eddy despite the fact that the atmospheric perturbations created 

by this eddy at two sides are off-phase. This relationship for w’ and θ’ will hold true 

independently of the size and orientation of eddies. Therefore, in this particular scenario 

the net result will be a positive sensible heat flux under the assumed environmental 

stratification. For the same reason, in a stably stratified atmosphere in which the mean 

potential temperature increases with height, a negative sensible heat flux will be 

generated.  This framework applies to the vertical transport of moisture and momentum 

as well. 

Quantitatively, the vertical turbulent transport of heat, moisture, and momentum 

is measured by the covariance between the vertical velocity perturbation and 

perturbations of potential temperature (θ), water vapor mixing ratio (q), and horizontal 

wind components (u and v), i.e., ''w ,
''qw , ''uw and ''vw , known as kinematic sensible 

heat flux, moisture flux, and momentum flux, where overbar and prime indicate the mean 

and the perturbation with respect to the mean.  

Although the concept of vertical transport induced by turbulence is simple, an 

appropriate determination of turbulent fluxes of heat, moisture, and momentum is one of 

the major challenges in meteorology since an accurate calculation of covariance requires 
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a detailed information of the chaotic turbulent eddies that span over a spectrum of 

temporal and spatial scales. Unfortunately, this information cannot be obtained by the 

convectional meteorological observations and numerical weather forecasting models. It 

can be obtained only by the high resolution meteorological instruments that are capable 

of recording the high frequency perturbations associated with turbulent eddies. Thus, a 

central problem of boundary layer meteorology is to search for a method that can 

appropriately determine turbulent fluxes using conventional meteorological 

measurements or variables predicted by numerical weather forecasting models. 

1.2 The Bulk Transfer Parameterization of Surface Turbulent Fluxes 

 It has long been recognized that the turbulent fluxes are nearly constant in the 

lowest layer of ABL (approximately 30 – 50 m above the surface depending on the wind 

shear and static stability), a layer known as constant flux layer or surface layer (SL) in 

literature (e.g., Stull 1988). The constant flux assumption allows the turbulent fluxes to 

be related to the mean meteorological variable at a given height in the SL using the so-

called bulk transfer parameterization in the form of 

,

)(

)(

''

''

22

*



















GQs

GHs

D

qqUCqw

UCw

UCu

        (1.1) 

where 
4/122

* )''''( wvwuu  is the friction velocity. U ,  , and q represent the wind 

speed, potential temperature, and water vapor mixing ratio at the reference height, 

typically 10 m above the surface. G  and Gq  are the surface “skin” potential 



4 
 

temperature and water vapor mixing ratio, which are typically taken as the values a few 

centimeters above the ground surface (Stull 1988). However, since there is a sharp 

gradient of variables close to the surface, how to appropriately define and measure “skin” 

potential temperature and moisture is still debatable.  The variables DC , HC  and QC  are 

the dimensionless exchange coefficients for momentum, heat, and moisture, and are often 

called the drag coefficient, Stanton number, and Dalton number, respectively in the 

relevant literature. Previous studies (e.g., Mahrt et al. 2001, Garratt 1977, Grachev et al. 

2001) show that exchange coefficients exhibit a strong dependence on wind speed and 

atmospheric stability. Although simple and physically straightforward, the bulk transfer 

model itself is not closed. In order to calculate surface turbulent fluxes using Eq.1.1, 

exchange coefficients DC , HC  and QC  need to be determined externally.  

The most common method used to close the bulk transfer parameterization is the 

well-known Monin-Obukhov similarity (MOS) theory.  On the basis of the assumption of 

constant fluxes in the SL and using Buckingham  theorem of dimensional analysis, 

Monin and Obukhov (1954) was able to derive a relationship between the vertical 

gradient of mean properties in the SL and surface turbulent fluxes as, 
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where  is the Von-Karman constant. 
*

*
u

w s



 and, 

*

*
u

qw
q s


 are the temperature 

scale and moisture scale, respectively. 
L

z
  is the ratio of height z to the Monin-

Obukhov length defined as 
'

3

*

' v

v

wg

u
L




 , where θv is the virtual potential temperature. 

m , h  and q  are the dimensionless functions of atmospheric stability parameter, 

which cannot be obtained by the dimensional analysis itself but must be determined 

empirically using observations.  

The most recognized empirical dimensionless stability functions used today are 

those obtained by Businger et al. (1971) based on results from the famous Kansas field 

experiment in the form of: 
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Integrating Eqs. 1.2 – 1.4 using Eqs.1.5-1.6, one may obtain the vertical profiles of mean 

variables in the SL: 
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0z , 0z  and qz0  are the surface aerodynamic roughness and thermal roughness for wind, 

potential temperature, and water vapor, respectively. 

  Combining the MOS formulae (Eq. 1.7) with the bulk transfer model (Eq.1.1), it 

yields, 
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Eqs. 1.1 and 1.10 provides a practical way to calculate surface turbulent fluxes using 

mean meteorological variables available in convectional observations and numerical 

simulations. To date, this method of determining surface turbulent fluxes parametrically 

has been widely used in all applications in geoscience from local forest/agriculture 

problems, weather forecasting, to global climate researches. Arguably, MOS may be 

considered one of the most successful theories not only in turbulence research (Wang and 

Bras 2009) but also in atmospheric sciences in general.   
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However, a key component of the method, the stability function (Eqs. 1.5 and 1.6 

or Eqs. 1.8 and 1.9) was obtained nearly 50 years ago based on the results from the 

Kansas field experiment on homogeneous wheat fields. Evidence has shown that 

turbulence motions, in particular the energy containing eddy, are strongly flow-dependent 

and subjected to surface conditions. Thus, it remains to be a scientific question whether 

those relations obtained in fair weather conditions on flat homogeneous wheat fields can 

be extended to severe weather conditions or complex inhomogeneous surface conditions 

or ocean surface. In this thesis study, I developed a method that can provide an 

appropriate evaluation the parameterization of surface turbulent fluxes of heat, moisture, 

and momentum using in-situ observations. The main objective is to revisit the surface 

layer turbulent flux parameterization commonly used in various applications in 

geosciences and provide an insight for parameterization improvement.  
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Fig. 1.1 Schematic illustration of the vertical heat fluxes induced by turbulent eddies. The 

thick curve indicates the vertical profile of mean potential temperature. Points A and B 

are subjected to an eddy circulation. Overbar and prime indicate the mean and the 

deviation from the mean.   
Figure 1 Schematic illustration of the vertical heat fluxes induced by turbulent eddies. The 

thick curve indicates the vertical profile of mean potential temperature. Points A and B 

are subjected to an eddy circulation. Overbar and prime indicate the mean and the 

deviation from the mean.   
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Chapter II: METHODOLOGY IN EVALUATION OF SURFACE FLUX 

PARAMETERIZATION 

2.1 Scientific Questions  

Recent studies show that the surface turbulent transport processes can deviate 

significantly from the theoretical predictions by MOS and bulk transfer model (e.g., Zhu 

and Furst 2013, Donelan et al. 2005). The problem can be clearly illustrated by Figure 

2.1, which shows the drag coefficients in near neutral conditions ( DNC ) as a function of 

wind speed obtained from multiple independent field experiments over land. Although 

DNC  from different field experiments shows fairly large scatter, possibly because of the 

large differences in surface conditions in these experiments, all the data show a clear 

trend of  DNC  increasing with a decrease in wind speed. However, the theoretical 

prediction of drag coefficients in neutral conditions according to Eq. 1.10 is a constant 

independent of wind speed. On the basis of their analyses, Zhu and Furst (2013) argued 

that such an inconsistency between observations and theoretical predictions cannot be 

explained by the possible increase in effective aerodynamic roughness with a decrease in 

wind speed because of the enhanced viscous effects and reduced the streamlining of 

surface obstacles proposed by Mahrt et al (2001).  Rather, it reflects the internal change 

in turbulent energy cascade with wind speed, which is not considered in the classic MOS 

framework. Although Zhu and Furst (2013) focused only on the problems in the near 

neutral conditions, their findings suggests that there is a need to reevaluate the surface 

flux parameterization formulated by MOS and bulk transfer model in the stratified 

boundary layer as well. With present-day advances in measuring turbulence, the time is 
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right to provide comprehensive evaluation of surface flux parameterization using in-situ 

high-resolution turbulent data, which has a much higher accuracy than that of 50 years 

ago.    

From Eq. 1.1, the exchange coefficients can be calculated directly from 

observations provided that the mean meteorological variables are known and turbulent 

fluxes can be quantified by the eddy correlation method, which, then, can be compared 

with the theoretically derived exchange coefficients via Eq. 1.10 to provide an evaluation 

of surface flux parameterization. However, how to accurately calculate exchange 

coefficients using Eq.1.1 and Eq.1.10 is not a scientifically trivial question. 

Observationally, there are two difficulties that practically prevent calculating accurate 

exchange coefficients directly from Eq.1.1 and Eq.1.10. First, to calculate the exchange 

coefficients for heat and moisture from observations, one needs to know the surface skin 

temperature, θG, and skin moisture, qG. Strictly speaking, the skin temperature and 

moisture should be the one defined at the height of thermal surface roughness, which is 

readily seen from the derivation of the vertical profiles of mean variables in the surface 

layer. Measuring skin temperature and moisture is difficult not only because the surface 

thermal roughness itself is unknown and changes from time to time for a fixed location 

but also because there is a sharp gradient of temperature and moisture close to the 

surface. Thus, a slight change in height can result in a large bias in the skin temperature 

and moisture measurement. Moreover, there is also a large uncertainty in measuring skin 

temperature and moisture caused by surface radiation, dew, surface obstacles, and other 

factors. As a result, it is impossible to obtain accurate surface skin temperature and 

moisture measurements. 
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Second, in order to calculate the theoretical exchange coefficients from Eq.1.10, 

the surface aerodynamic roughness and thermal roughness are needed. Over the ocean, 

surface roughness is function of wind speed, which has been extensively investigated in 

many studies (e.g., Donelan et al. 2004; Black et al. 2007). Overland, wind speed may not 

be a major factor because of the static nature of surface roughness elements. But surface 

roughness depends strongly on wind direction as a result of surface inhomogeneity. As 

illustrated by Fig.2.2, depending on the wind direction, turbulent flow can be 

substantially affected by the inhomogeneous surface roughness elements. Ridder (2010) 

argued that MOS, which over-simplifies the complication resulting from rough terrain, 

may lead to the misrepresentation of the surface layer turbulent flow and the induced 

vertical turbulent transport. To alleviate the problem, Ridder (2010) proposed a so-called 

roughness sublayer (RSL) falling in between the surface and the surface layer to account 

for the complication from the rough terrain.   

As a consequence of the previously stated difficulties in determining surface skin 

temperature and moisture and surface aerodynamic and thermal roughness, it is 

practically impossible to provide a meaningful evaluation of theoretically derived 

exchange coefficients using observations. Thus, to provide an appropriate evaluation of 

surface flux parameterization formulated using the MOS and bulk transfer model, 

innovative methods need to be developed.  

2.2 A new framework for evaluating surface flux parameterization  

 As discussed in the previous section, an accurate calculation of exchange 

coefficients using Eqs. 1.1 & 1.10 from observations requires not only high temporal 
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resolution meteorological data from which the turbulent fluxes can be quantified using 

eddy correlation method but also the information of surface aerodynamic roughness and 

thermal roughness and accurate measurements of surface skin temperature and moisture 

from which the thermal difference between the surface and air above it can be adequately 

determined. While the former is relatively easy to obtain owning to the advanced 

technology in sonic anemometer and gas analyzer, the latter is difficult to obtain since no 

method so far is available that can be used to accurately determine surface 

aerodynamic/thermal roughness and surface skin temperature and moisture. In this study, 

a novel method, which does not require surface roughness and skin temperature and 

moisture but can provide an appropriate evaluation of surface flux parameterization, has 

been proposed. The physical base and details of this method are presented as follows.  

 Under the assumption of constant flux in the SL, the vertical profiles of mean 

variables derived from MOS (i.e., Eq.1.7) can be applied to two heights, z1 and z2 

respectively in the SL,  
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To obtain Eqs. 2.1-2.2, we have assumed that at an instant of time the turbulent flow at z1 

and z2 experiences the same surface roughness and stability measured by Monin-

Oubhkov length. Subtracting one from the other, it yields, 

,

)]()()[ln(

)]()()[ln(

)]()()[ln(

12

1

2*

12

1

2*

12

1

2*

12

12

12





















L

z

L

z

z

zq
qq

L

z

L

z

z

z

L

z

L

z

z

zu
UU

hhzz

hhzz

mmzz










 (2.3) 

Following the basic concept of bulk transfer model and Eq.1.1, one may represent 

turbulent fluxes in terms of the difference of mean variables between the two heights as, 
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where DaC , HaC  and QaC  are the adjusted dimensionless exchange coefficients for 

momentum, heat, and moisture, respectively.  Combine Eq. 2.3 and with Eq. 2.4, it 

yields, 
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The adjusted exchange coefficients DaC , HaC  and QaC  can be readily calculated from 

observations directly via Eq. 2.4 provided that observations are available at z1 and z2. 

They can be also calculated from Eq. 2.5 derived from MOS and the basic concept of 

bulk transfer model. Thus, the comparison between the observationally and theoretically 

determined coefficients ( DaC , HaC  and QaC ) provides an objective evaluation of 

surface turbulent flux parameterization although the computed coefficients are not the 

standard exchange coefficients used in various applications in geosciences. The 

advantage of the new proposed method is that the uncertainties associated with surface 

aerodynamic and thermal roughness and surface skin temperature and moisture, which 

can substantially affect the accuracy of evaluation, are excluded. It should be emphasized 

that this method is not designed to evaluate the exchange coefficients themselves but the 

flux parameterization formulated by MOS and bulk transfer model. Eqs. 2.4-25, thus, 

provide objective evaluation framework for surface flux parameterization, and it can be 

readily applied to any surface and weather conditions as long as high-temporal resolution 

observations are available at two heights in the SL.   
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Fig. 2.1: Drag coefficients in near neutral conditions (CDN) against wind speed obtained 

from multiple independent field experiments over land (After Zhu and Furst, 2013). 
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Fig. 2.2: Schematic illustration of scenarios of time-averaged turbulent motion over a 

rough terrain.  This figure is not drawn to real scale. H, SL, and RSL are the boundary 

layer depth, surface layer, and roughness surface layer (after Mahrt 2001). 
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Chapter III: INSTRUMENTATION, OBSERVATION, AND DATA 

PROCESSING  

3.1 Instrumentation 

 The observational platform used in this study is the International Hurricane 

Research Center (IHRC) 10-meter Portable Weather Tower (PWT). The tower and trailer 

are shown in Fig. 3.1. Tower located instrumentation systems have been widely used in 

various other studies in the past to capture the rapidly changing turbulent flow within the 

SL.  The PWT was originally constructed during the Florida Coastal Monitoring Program 

(FCMP), with the intent for the tower to be used in the studying of tropical cyclones as 

they made landfall.  To that end, the PWT was built to be as resilient as possible to the 

strong winds of potential tropical cyclones.  It can withstand up to 90 ms-1 wind gusts that 

often correspond to Category 5 tropical cyclones on the Saffir-Simpson Hurricane Wind 

Scale and weighs approximately 7000 lbs.  When the PWT’s mast is fully raised, its 

height is 10 meters.  The tower mast is fixed onto a trailer that also it to be towed to 

potential tropical cyclone landfall positions, or where research needs dictate it to be.  The 

PWT has housing for three oversized 12V batteries that power it when there is no other 

access to power on site.  Thus, the PWT can be deployed in remote regions without 

power access and can continue to function without power for an extended period of time. 

The PWT is also equipped with a generator for using in remote areas where power is not 

available. The PWT has had several successful deployments in the past with tropical 

cyclones landfalls, and at those times it was equipped with two sets of 3-D Gill propeller 

anemometers and an RM Young wind vane anemometer that were installed at the 5-m 

and 10-m instrument sites on the tower mast. 
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During the past three years, the tower instrumentation has been upgraded. The 

Gill propeller anemometers and an RM Young wind vane anemometer have been 

replaced with two sets of Gill WindMaster Pro (WMP) sonic anemometers and LI-COR 

LI-7200 enclosed CO2/H2O gas analyzers at 5-m and 10-m.  The Gill WMP sonic 

anemometer is designed to measure the three dimensional wind components: u, an along 

wind component; v, a cross wind component; and w, a vertical component.  The basis for 

using a sonic anemometer is to measure the difference in transit time of an ultrasonic 

pulse transmitted between a pair of transducer heads.  The transit time depends upon the 

speed of sound and the velocity of the air in its path.  The path length between the pair of 

heads is already known, and when compared to a specific transit time, a velocity is 

measured from that result.  To add on to this, the speed of sound is based on air density, 

which is also a function of temperature and water vapor mixing ratio.  With this 

knowledge, it is possible to compute an equivalent atmospheric virtual temperature 

known as a sonic temperature, Ts, through the sonic anemometer.  Ts can be calculated 

via the following equation: 
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where, T is the ambient temperature, 
d

v




 is the ratio of specific heats of vapor and dry air, 

d

v

M

M
 is the ratio of the molar masses for water vapor and dry air, e is the water vapor 

pressure and p is the total air pressure (Lanzinger at el. 2005).  The WMP sonic 
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anemometer has a maximum operating wind speed of 65 ms-1 and a data output rate of up 

to 32 Hz.  More information in regards to the Gill WMP can be found in Appendix A. 

 The LI-7200 closed path infrared gas analyzer measures a number of variables. 

The meteorological variables important to this study consist of: concentration density of 

water vapor, dew point temperature, total atmospheric pressure, and various other 

diagnostic values.  The gas analyzer uses measurements of atmospheric trace gases by 

determining the absorption of an infrared light beam emitted within the optical path of the 

sensor.  The infrared beam of light is absorbed by specific gases (e.g., H2O or CO2) at 

known wavelengths.  This effect reduces the intensity of the infrared beam.  The 

reduction is measured by the sensor as a function of the gases’ molar concentration 

(Aubient 2012).  The molar concentration of the measured gas can then be converted to 

other form of variables.  For example, H2O would be converted over to water vapor 

mixing ratio by using the output variable labeled “H2O concentration density” and 

multiplying it by the ratio of molar masses for water vapor and dry air, 
d

v

M

M
 (LI-COR 

Biosciences 2010). 

 The intake tube of the gas analyzer is connected to the inlet port, that keeps 

precipitation out of the gas analyzer.  A flow module serves to keep a constant supply of 

air to the analyzer’s optical path.  The flow module is able to control the rate of flow of 

air and is measured in Standard Liters Per Minute (SLPM) and can be changed by the 

user.  The flow rate was set to 14 SLPM for the observations in this study, which is the 

recommended level according to the LI-7200 user manual.  It is also positioned in a 

manner that the same air is being sampled by the gas analyzer and the WMP.  The LI-
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7200 allows for accurate data acquisition during precipitation events.  In the past it was 

difficult to obtain useful observations during periods of precipitation events since 

precipitation would cause sensor malfunctions.  While precipitation events can still pose 

a problem for instruments, the LI-7200 is capable of mitigating most of these issues.  

More information for the LI-7200 are included in Appendix A. 

 Near the base of the tower, there is a large white box that houses the data 

acquisition system for the data collected by the tower instruments.  Collected data are 

sent from the instruments through a series of Ethernet cables, logged using software 

provide by LI-COR, and is saved as 15 minute tab delimited ASCII files onto the hard 

drive of a laptop located inside the white box.  Instruments used in this study had a 

sampling rate of 20 Hz.  Near the rear left of the tower is a metallic, waterproof container 

where the three oversized 12V batteries are located.  These batteries powering all of the 

equipment on the tower 

3.2: Tower Deployment in SCOPE Field Experiment 

 The data used in this study were collected during the Surfzone Coastal Oil 

Pathways Experiment (SCOPE), a nearshore field experiment supported by Gulf Of 

Mexico Research Initiative (GoMRI). The PWT was deployed at the Beasley Park, Fort 

Walton Beach, Florida from December 3rd to December 20th 2013, during which there 

were three cold air outbreak events.  These events allow us to investigate how weather 

systems affect turbulent transport in the SL in coastal regions.  Figure 3.3 shows the 

tower deployment site, which is located at the longitude of 86.584613° and latitude of 

30.394424°. The PWT was set up in a small parking lot with a few trees and buildings to 
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the west of it.  Further to the northwest there are more trees and several small buildings.  

To the east and south of the tower there are several dunes with brushes on them and 

recreation pavilions. Figure 3.4 shows the local surface condition at the tower site. The 

PWT was blocked off with caution tape during the deployment to keep the general public 

away.   

3.3 Data processing 

3.3.1 Eddy Correlation Method 

 Montgomery (1948) proposed the eddy correlation method as a means to calculate 

the transport of heat, mass, and momentum induced by turbulent eddies. For this method 

to be appropriately applied, the frequency of data collection is recommended to be at 

least 10 Hz in order to resolve energy containing eddies with scales greater than the 

inertial sub-range in the turbulent spectrum. During the SCOPE experiment, the 

meteorological variables were collected at 20 Hz, thus, the eddy correlation method is 

applicable.  

Following the Reynolds decomposition, the instantaneous value of a generic 

variable can be represented as a mean and the deviation from the mean, i.e., turbulent 

components: 

aaa '  , (3.2) 

where overbar and prime indicate the mean and perturbation.  In this study, the time 

interval used to calculate the mean is 15 minutes. We have tested several choices of time 

interval for turbulent statistics, such as, 10 and 20 minutes. The statistical results are 

nearly identical. To avoid red noise in the spectrum, a de-trending process is performed to 
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remove any linear trend present. With the turbulent components determined, the variance 

and covariance of turbulent variables are, then, computed as: 
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Applying Eqs. 3.3-3.4 to corresponding variables, kinematic momentum, heat and 

moisture fluxes, wu  , wv  ,  vu  ,  w , and qw  , and turbulent kinetic energy (TKE), 

)(
2

1 222 wvu   can be calculated. 

3.3.2 Quality Control and Assurance Procedures 

(a) Spike Removal 

 As a result of the influence of dust, insects, rain droplets, wildlife feces, and other 

unknown reasons, high resolution data recorded by WMP and LI-COR 7200 may contain 

erroneous data points. Thus, quality control of measurements is required to remove the 

erroneous data.  In this study, the method proposed by Schmid et al. (2000) is used to 

remove the spike data values.  A spike data value is defined as follows: 

spikeD jji    (3.5) 

where χ represents a generic variable; the subscript j denotes the jth averaging time period 

(15 min). j  is the standard deviation of the jth averaging time period. The subscript i 

denotes the ith observation in the jth averaging time period. D is a discrimination factor 

that depends on the variable being assessed.  As with the nature of high resolution 20 Hz 

measurements of temperature and water vapor versus the 3-D wind components, a values 
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of D=4.0 is assigned for temperature and moisture, and D=5.0 is assigned for the wind 

velocity components. 

(b) Sonic Anemometer Tilting Correction 

 Once the spike data points are removed, a tilt correction algorithm needs to be 

applied to the sonic anemometer output to correct the possible influence of tower tilting.  

Previous studies have highlighted that large error in estimating momentum fluxes can 

occur as a result of small errors that come from misalignment of turbulent wind sensors 

(e.g., Pond, 1968, Deacon, 1968, Kaimal and Haugen, 1969, Dyer and Hicks, 1972).  

These large momentum flux errors can be traced back to the cross contamination of 

velocities that occur in a tilted sensor.  For example, fluctuations in the longitudinal 

components of the wind appear as vertical velocity fluctuations, and vice versa. Figure 

3.5 schematically illustrates the error induced by the slope of a terrain. Tilting cannot be 

completely avoided because of slight slopes in terrain or the difficultly with perfectly 

leveling the PWT.  Observations from Wilczak et al. (2001) showed that for a 1° tilt in a 

sonic anemometer, the estimation error of momentum fluxes is typically greater than 10% 

under moderately unstable conditions.  However, these errors can be as large as 100% 

under strong convective conditions. 

 In a right-hand local Cartesian coordinate framework, there are three degrees of 

freedom available that allow three rotations around the z-axis, the new y-axis, and the 

new x-axis, respectively. These rotations can be represented mathematically without 

generality in the form of, 
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where , , and  are the Euler angles associated with the rotations associated with x-

axis, y-axis, and z-axis. Assuming  000 wvu  represents the mean wind vector in the 

sonic anemometer coordinate frame, the mean wind vector   333 wvu  in the desired 

coordinate frame after three sequences of rotation can be expressed as,                                   
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It can be shown mathematically that the fluxes of scalars and wind stress tensor after 

three rotations can be written as,  
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where, ),,(03 R is the transpose of ),,(03 R . 
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Using the generalized rotation transformation represented by Eqs.3.6-3.9, Tanner 

and Thurtell (1969) proposed a method, often known as the double rotation (DR) method, 

to minimize the error in estimating fluxes because of tilting by rotating the sonic 

anemometer coordinate into a streamwise coordinate. In the new streamwise coordinate, 

the x-axis is parallel along the mean flow and points to the down-wind direction of the 

mean flow. Accordingly, the z-axis is normal to and points away from the mean local 

streamline. To obtain such a desired coordinate orientation, two rotations need to be 

made. The first rotation involves to align u component along the mean wind direction 

and forces v = 0, which will result in the yaw angle DR in DR correction: 
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The mean wind vector after the first rotation becomes, 
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The second rotation is performed in order to eliminate the mean vertical velocity w .  The 

second rotation is done under the assumption that the mean vertical velocity in the SL 

over a sufficiently long time period is zero.  The second rotation yields the pitch angle

DR :  
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In the DR correction, only two rotations are needed, thus, the third angle  in Eq. 3.6 is 

simply zero. With the determined DR and DR , the corrected fluxes after the DR 
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correction can be easily calculated from Eqs. 3.8-3.9. The DR method provides an 

optimal method to remove errors that come from a tilted sonic sensor.  However, there is 

a potential problem with using the DR method when a mean vertical velocity that close to 

the surface does indeed exist.  In such a case, the DR method would remove it as an error 

in the data assuming it as a tilting error. In this study, we carefully compared the mean 

vertical velocities calculated using different time intervals varying from 5 min to 30 min.  

The majority of data legs do have nonzero vertical velocity, which does not appear to be 

realistic considering the weather conditions during the SCOPE. Therefore, the DR 

correction is applied to all the data collected. 

(c) Consistency Checks 

A series of consistency checks were made to examine if the measurements taken 

at the 10 and 5 meters were in agreement with each other.  The first was to make sure that 

all the fluxes had the same sign, so that there no data points were the fluxes between the 

10 and 5 meters were going in the opposite direction.  An example of this would be if 

sensible heat flux was positive at 10 meters, but negative at 5 meters, then that point in 

the dataset would be removed as a result of the physical inconsistency.  This is based on 

the basic assumption that the vertical turbulent transport cannot reverse its direction in 

the SL. The second consistency check is to examine if the direction of fluxes is consistent 

with the vertical gradient of mean meteorological variable at 10 m and 5 m altitude.  For 

example, if the water vapor mixing ratio at 10 m is smaller than that at 5 meters, yet the 

determined latent heat flux from eddy correlation method is negative, then, the data point 

in the data set would be removed due to the physical inconsistency. 
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Fig. 3.1: International Hurricane Research Center (IHRC) portable meteorological tower.  
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Fig. 3.2 Photo of the sonic anemometer (right) and gas analyzer (left) atop the PWT.  

Also shown in the photo are the pre-existing propeller anemometers (bottom) and wind 

vane monitor (top). 



29 
 

 

Fig. 3.3: Aerial view of PWT deployment at Beasley Park, Fort Walton Beach Florida. 

Small black and yellow target marks the location of PWT during the time period that it 

was deployed. 
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Fig. 3.4: Local surface conditions at the tower site. 
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Fig. 3.5: Schematic sketch showing the error caused by misalignment of sonic 

anemometer (after Mahrt 2010). 
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Chapter IV: DATA ANALYSES AND RESULTS  

4.1 Overview of SCOPE Tower Observations  

 During the SCOPE, IHRC PWT successfully collected 3D wind components, 

atmospheric pressure, sonic virtual temperature, and water vapor mixing ratio at 20 HZ at 

10 m and 5 m from 11:45 UTC, December 3 to 12:00 UTC, December 20, 2013 without 

interruption. Figure 4.1 shows the time series of 15-min mean west-east and south-north 

wind components, temperature, and water vapor mixing ratio at 10 m and 5 m compared 

with the NCEP FNL (Final) Operational Global Analysis data at the grid point closest to 

the tower deployment site. The tower measurements match the FNL analyses fairly well, 

suggesting that the local terrain and inhomogeneity do not interrupt the large-scale flow 

pattern to the first order approximation. The tower observations catch 17 diurnal cycles 

although some of them are interrupted by the weather systems, in particular, the cold 

frontal passage. There were three cold outbreaks occurred during the deployment period.  

The first of which occurred on December 7th.  However, this front would then retrograde 

back north to only go move southward and through Beasley Park on the 10th.  A third and 

final cold front for the deployment period passed through the region on 14th bringing with 

it some thunderstorms as well. The signature of cold frontal passage is also shown in the 

sudden change in wind direction and decrease of water vapor mixing ratio, which 

corresponds well with the temperature drop. For most of the time during the experiment, 

winds were coming from north and northwest associated with the cold frontal passage, 

but there were times when winds were coming from south and southeast. Thus, 

depending on the wind direction, the PWT collected the turbulent flow data over both 

land and ocean surface conditions.    
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 The time series of friction velocity, TKE, sensible heat fluxes, and latent heat 

fluxes of each 15-min data leg determined by the eddy correlation method at 10 m and 5 

m appear in Fig. 4.2. While there are well-defined diurnal cycles shown in surface 

sensible heat fluxes, the time variation of surface latent heat fluxes does not exactly 

follow the diurnal variation of sensible heat fluxes, indicating the complication of coastal 

surface inhomogeneity to surface turbulent transport processes. Yet, the larger magnitude 

and more apparent diurnal variation of surface sensible heat fluxes than that of latent heat 

fluxes suggest that the surface evaporation (or latent heating of the atmosphere) is not the 

dominant energy source at the coast even at the beachfront so close to ocean.  The 

dominant source of energy not coming from surface evaporation is likely caused by the 

fact that winds were mainly coming from inland during this experiment.  

There are three large episodes of TKE shown in time series of observations. They 

correspond well with the cold frontal passages, however, no such signature is shown the 

momentum and heat fluxes, suggesting that although the perturbations generated by the 

cold outbreaks are an important source of TKE, they are not the efficient flux carrier 

since the vertical velocity perturbation associated with frontal processes do not appear to 

be well correlated to the perturbations of thermodynamic variables. The situation is 

different from the typical thermal plumes in which the perturbations of vertical velocity 

and conservative thermodynamic variables are well correlated. As a result of a correlation 

between the frontal processes and the perturbations of thermodynamic variables, in the 

present study we do not treat the surface fluxes associated with the frontal passages 

separately from those of other time periods, rather, following the classic way of boundary 

layer research we investigate the surface turbulent transport processes in terms of 
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atmospheric stability and wind speed. This treatment of turbulent fluxes is also derived 

from the consideration that surface flux parameterization is developed based on the mean 

meteorological variables rather than specific weather events. 

  To examine the basic assumption of constant fluxes in the SL, Fig. 4.3 plots the 

fluxes and TKE of all 15-min data legs at 10 m against those at 5 m. Overall, the constant 

flux assumption holds well for the entire dataset collected during the experiments. The 

results showing that the constant flux assumption holds gives us the confidence that the 

method for evaluating surface flux parameterized developed in section 2.2 is applicable 

to the turbulent data collected in the SCOPE experiment. The figure also shows that the 

TKE at the two levels are nearly identical. This correlation of TKE at two heights is 

interesting since TKE is determined not by covariance but by the variance of velocity. It 

suggested that the constant flux assumption of the SL may be extended to the second-

order turbulent moments in general. This assumption is confirmed by the linear 

relationship between TKE and square of friction velocity, which will be shown in Section 

4.3. However, data spreads along the constant line are shown in all second-order 

turbulent moments, suggesting that there are processes that tend to break down the 

constant assumption in the SL. The cause of the spreading will be further investigated in 

Section 4.4.  

4.2 Evaluation of Surface Flux Parameterization 

 In Section 2.2, I presented a method for evaluating surface flux parameterization 

via comparison of observationally determined and theoretically derived adjusted 

exchange coefficients of two levels in the SL. This proposed method does not require 

information of surface roughness and skin temperature and moisture, and thus, can be 
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easily applied to the observations collected in this study. Figure 4.4 shows the 

observationally determined adjusted drag coefficients calculated by Eq. 2.4 compared 

with the theoretically derived adjusted drag coefficients calculated by Eq. 2.5 where for a 

better illustration of the data, the scale of CDa (y-axis) has been nonlinearly adjusted. 

Note that the stability parameter, the Monin-Oubhkov length, is calculated directed from 

its definition,  
'

3
*

' v

v

wkg

u
L




  using observations, and the averaged L at 10 m and 5 m is 

used in the theoretical calculation of CDa. The figure clearly shows that most of the data 

points fall in the near neutral and weak stratification conditions. There is a large spread in 

the data (i.e., a substantial change in CDa) shown in the stability range near ζ=z/L=0, 

indicating that CDa is extremely sensitive to the stability change in the near neutral 

conditions. A slight change in stability can result in a large change in CDa. In other words, 

a tiny error in estimating stability can lead to a large bias in determination of drag 

coefficient. This sensitivity is a major uncertainty in the estimation of drag coefficient 

and poses a great challenge in calculation of surface momentum fluxes parametrically. 

The theoretical prediction of CDa by the default MOS formula (blue curve) deviates 

substantially from the observed values, particularly in the unstable conditions. It fails to 

represent the strong dependence of CDa on stability in the near neutral conditions and 

tends to underestimate the value of CDa. However, it is shown that a better fitting of data 

points can be obtained by tuning the Von-Karman constant, к. The best fitting of the data 

yields the value of k=1.1.        

  The result shown in Fig. 4.4 may have important implications. It suggests that the 

empirical stability function obtained from the Kansas field experiment by Businger et al. 
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(1971) can be extended to different surface conditions other than homogeneous wheat 

fields, and the improvement of surface flux parameterization may be achieved in the 

existing parameterization framework. However, some assumptions used by the classic 

MOS, such as Von-Karman constant, need to be reevaluated using extensive observations 

collected by more advanced instrumentation than 50 years ago. The possible ways to 

improve the current parameterization framework for surface fluxes will be discussed in 

detail in Section 4.3.  

  The comparison between observationally determined and theoretically derived 

adjusted exchange coefficient of heat, CHa, for all 15-min data legs is shown in Fig. 4.5. 

Again, the observations show a substantial sensitivity of CHa to stability parameter in the 

near neutral conditions. But such a sensitivity cannot be well represented the default 

MOS formula. Tuning Von-Karman constant, k, obtains a better data fitting in the 

unstable range, but alone it is not enough to match the observations in the stable 

conditions. This result is not a surprise since intermittent turbulence in the stable 

conditions is notoriously difficult to represent. It turns out that a better fitting of 

observations points can be obtained by further tuning the parameter, γ, in the empirical 

stability function,  .0;1 
L

z
for

L

z
h   The best fitting of the data yields k=0.6 and 

γ=650.  

 Similar results are found for the adjusted exchange coefficient of moisture, CQa 

(Fig. 4.6). The observations show a strong dependence of the adjusted coefficients on 

stability parameter in the near neutral conditions, and the default MOS formula is unable 

to represent the observed variation well. The best fitting yields k=0.1 and γ=50. It should 
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be emphasized that in many applications including some well-known numerical models, 

such as, Weather Research and Forecasting (WRF) model and Hurricane WRF (HWRF) 

model, the exchange coefficients for heat and moisture are treated as identical. This 

assumption for the exchange coefficients for heat and moisture may not be appropriate 

according the SCOPE data. In fact, there were no fast-responding moisture observations 

available in the Kansas field experiment that can be used to quantify moisture fluxes 

using eddy correlation method. Whether the empirical stability function for heat, h , can 

be extended to moisture field was never discussed in the original work of Businger et al. 

(1971). The assumption that h is the same as q  was made later in applications mainly 

due to the lack of accurate moisture data. This is because the techniques to obtain fast-

responding temperature and moisture measurements are different. The former can be 

accurately obtained from sonic anemometer, whereas the latter relies on the gas analyzer, 

a technique developed in the late 90s. With the current advanced gas analyzer techniques, 

it is the time to revisit this issue, which will be addressed in my future research. 

 Figures 4.4-4.6 show that the observationally determined adjusted exchange 

coefficients exhibit a certain data spread. To explore what causes the spread, we grouped 

the same data into two categories with wind speed greater and smaller than 2 ms-1. The 

results are shown in Fig. 4.7, which clearly shows that the large spread of observations 

mainly occurs in the low-wind regime. The large spread in calm-wind conditions is likely 

caused by the convectively driven boundary layer in which convective plumes can 

generate strong non-local mixing and the strong stable boundary layer in which only 

intermittent turbulence may occur. Previous studies show that both of the scenarios 
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appeared to be problematic for MOS. Thus, attentions need to be paid to the calm-wind 

conditions in future research.   

4.3 Issues Regarding Basic Assumptions of MOS 

4.3.1 Von-Karman Constant 

 In Section 4.2, the Von-Karman constant in the theoretically derived adjusted 

exchange coefficients was tuned to provide the best fit of the observationally determined 

coefficients. A question remains to be addressed here is: if such tuning of the Von-

Karman constant is physically robust?  Historically, the MOS formula Eq. 1.2 was 

derived from the Buckingham Pi theorem of dimensional analysis in which k needs to be 

treated as a constant known as Von-Karman constant. Then, it would difficult to justify a 

varying k within the classic MOS framework. In a recent study, Zhu and Furst (2013) 

showed that Eq. 1.2 does not have to be obtained from a pure dimensional analysis 

perspective; it can be derived directly from the TKE budget equation,
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where e represents TKE, p is pressure, and g is gravity. 0 and 0 are ambient potential 

temperature and air density, respectively. The term on the left-hand side (LHS) is the 

local storage term. The first, second, third, fourth, and fifth terms on the right-hand side 

(RHS) of Eq. 4.1 are the TKE shear production term, buoyancy production term, vertical 

transport term, pressure correlation term, and dissipation term, respectively.  

Under the assumption of constant flux (𝑤′𝑒̅̅ ̅̅̅ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡; 𝑤′𝑝′̅̅ ̅̅ ̅̅ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) in 

the SL, for a steady neutral boundary layer flow ( 0 and 



w

t

e
), Eq. 4.1 reduces to, 
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Eq. 4.2 indicates a balance between shear production and dissipation.  In high order 

turbulent closure models (e.g., Mellor and Yamada 1974; Zeman, 1981; Deardorff 1973), 

the TKE dissipation is often parameterized as: 

,
2/3




e
e  (4.3) 

where  is the empirical dissipation length scale, and in the SL it is often considered as a 

function of height, 

,2 zc  (4.4) 

where c2 is an empirical coefficient. The SCOPE observations and observations collected 

in other field experiments show that there is a linear relationship between TKE and 

square of frictional velocity (Fig. 4.8), thus, TKE may be represented in terms of 2
*u as, 

,1
2
* ecu   (4.5) 

where c1 is a linear regression coefficient. The best fitting yields c1=0.2. With Eqs. 4.3-

4.5, the balance between TKE shear production and dissipation, Eq.4.2, can be rewritten 

as, 
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Eq. 4.6 has the exactly same format of MOS formula in neutral conditions, 1
*


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Coefficient η in our new parameterization framework based on the TKE budget analyses 

is equivalent to the Von-Karman constant in the MOS framework but it does not have to 
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be a constant. Zhu and Furst (2013) showed that η is a function of wind speed in neutral 

conditions, i.e., ).(u   

In the non-neutral condition, the TKE buoyancy production needs to be 

considered. The TKE budget equation then becomes: 
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Normalizing Eq. 4.7 by the shear production term, yields: 
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 is the flux Richardson number. Applying Eqs. 4.3 – 4.5, 

and using the definition of the Monin-Obukhov length (
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Eq. 4.9 is equivalent to the MOS formula, )(
* L

z
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


. Thus, it is arguable that the 

MOS formula derived from the dimensional analysis may be considered as a specific case 

in our more generalized framework. 

In neutral conditions, Zhu and Furst (2013) showed that η can be directly 

estimated from the Kolmogorov’s energy spectrum law. Kolmogorov first showed that in 
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the inertial sub-range, the energy density per unit wave number depends only on the wave 

number and the rate of energy dissipation. Dimensional analysis yields: 

,)( 3/53/2   eS  (4.10) 

where   is the angular wave number, )(S is the energy density per unit wave number in 

the inertial sub-range, and  is the universal Kolmogorov constant.  Equation 4.10 is also 

known as Kolmogorov’s 5/3 power law. Converting Eq. 4.10 from wave number domain 

to frequency domain, yields: 
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where to obtain Eq. 411 the relationship 
U

f


2
  is used, U is the mean wind speed, and 

)( fS is the energy density per unit frequency. Theoretically, the energy density of the 

three wind components u, v, and w should be the same in the inertial sub-range, and this 

allows us to determine TKE dissipation, e , based in Eq. 4.11. To validate the theoretical 

conclusion that wind components u, v, and w have the same spectra in the inertial sub-

range, we carefully examined the turbulence spectra of the SCOPE data. As an example, 

Figure 4.9 shows power spectra of u, v, and w of an arbitrary spectral lag (15 min) from 

the ENP data. Several features are shown in the figure. First, in the inertial sub-range, the 

spectra of u, v, and w all follow the -5/3 power law nicely, indicating the good quality of 

the SCOPE data. Second, for large energy containing eddies, the magnitude of w power 

spectra is substantially smaller than that of horizontal (u and v) wind power spectra. This 

result is consistent with previous studies (e.g., Kaimal et al. 1972; 1976; and Busch 

1973). Finally, the power spectra magnitudes of the different wind components are nearly 
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the same in the inertial sub-range consistent with the theoretical derivation, confirming 

that the energy dissipation rate can be estimated from the power spectra of horizontal and 

vertical wind components. As shown in Fig. 4.9, although the spread of power spectra in 

the inertial subrange is fairly large, there is no apparent trend. Thus, the averaged e over 

the frequency band in the inertial subrange, which is defined from 0.1 Hz to 5 Hz in this 

study, can be considered as the mean e  for a specific spectrum lag (15min). Once e is 

determined, the coefficient c2 can be estimated based on Eqs. 4.3-4.4. Figure 4.10 shows 

the estimated coefficient 2
2/3

1 cc  as the function of wind speed for the SCOPE data in 

near neutral conditions ( 1.01.0 
L

z
 ). It clearly shows that the coefficient  

2
2/3

1 cc  is not a constant but instead increases with the decrease of wind speed. The 

conclusion is that the Von-Karman constant from the dimensional analysis argument may 

not be really a constant in the real SL. Abandoning this assumption in the new 

parameterization framework developed from the TKE budget analysis is possible, and 

this abandonment allows for more freedom to improve surface flux parametrization.  So 

far, we only focused on the neutral conditions. How stability affects  and how to extend 

Eq. 4.9 to thermodynamic variables will be investigated in my future research. 

4.3.2 Constant Flux Assumption in the SL 

 The MOS theory and the method for evaluating surface flux parameterization 

developed in this study are based on the constant flux assumption in the SL. However, as 

indicated in Fig. 4.3, there is a fairly large spread of data along the constant line, 

suggesting that there must be processes that tend to break down the constant flux 
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assumption. Since turbulent eddies span a spectrum of scale, it is a natural question as to 

if all scale eddies tend to satisfy this assumption. This question may be addressed by 

decomposing the turbulent fluxes in terms of scales using fast Fourier Transform (FFT).  

Let w(n) and χ(n) be the time series of vertical velocity and a generic scalar, 

where n=0,1,…N-1 are the observation points. The FFT of w(n) and χ(n), then, may be 

written as, 
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where k is the FFT frequency, and  ]1
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frequency. 20/1t s is the data sampling interval. The spectral energy, then, may be 

written as,  
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where superscript * denotes the complex conjugate. One may also define the cross 

spectrum between w(n) and χ(n) as, 
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where subscripts r and i indicate the real and imaginary parts of a complex. )(kCw and

)(kQw  are known as the cospectrum and quadrature spectrum, respectively. The 
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Parseval’s theorem states that the sum of spectral energy and cospectral amplitudes over 

all FFT harmonics equals the variance of w(n) and χ(n) and the covariance between them, 

respectively, i.e.,  
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Thus, )(kCw  provides a way to decompose a vertical flux in terms of FFT harmonics. 

Using this method, I decomposed the momentum, sensible heat, and latent heat fluxes for 

all flux legs (15 min) of the SCOPE data. Figure 4.11 shows the decomposition of latent 

heat fluxes in terms of eddy frequencies for all flux legs (15 min) of the SCOPE data. 

Since the mean wind speed during the SCOPE was about 4 m/s, the frequency of 0.02 Hz 

approximately corresponds to a spatial scale of 200 m.  Thus, the results shown in 

Fig.4.11 indicate that fluxes induced by turbulence smaller than 200 m are nearly 

constant in the SL. However, large eddy circulations tend to break the constant flux 

assumption of MOS. Similar results are shown in momentum fluxes and sensible heat 

fluxes (not shown here). Since large eddies are more flow dependent and more subjected 

to underlying surface, we speculate that the constant flux assumption will be substantially 

affected by the complex terrain and mesoscale and synoptic weather systems and may not 

be held as well as that in fair weather condition over the homogeneous terrain. The 
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unique characteristics of large eddies poses a great challenge for including their 

contribution surface flux parameterization.  
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Fig. 4.1: Time series of 15-min mean (a) west-east wind component, (b) south-north wind 

component, (c) temperature, and (d) water vapor mixing ratio at 10 m (red dots) and 5 m 

(green dots). Blue curve indicates the NCEP FNL analysis data at the grid point closest to 

the tower site. 
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Fig. 4.2: Time series of (a) friction velocity, (b) TKE, (c) sensible heat fluxes, and (d) 

latent heat fluxes of each 15-min data leg determined by the eddy correlation method at 

10 m (red curve) and 5 m (blue curve).  
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Fig. 4.3: (a) friction velocity, (b) TKE, (c) sensible heat fluxes, and (d) latent heat fluxes 

of all 15-min data legs at 10 m against those at 5 m. Red line indicates the constant line.  
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Fig. 4.4: Comparison between observationally determined (dots) and theoretically 

derived (curves) adjusted drag coefficients. Blue and red curves indicate the theoretical 

predictions with Von-Karman constant taken as k=0.4 and k=1.1, respectively. Note that 

to better illustrate the data, the scale of CDa (y-axis) has been nonlinearly adjusted. 
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Fig. 4.5: Comparison between observationally determined (dots) and theoretically 

derived (curves) adjusted exchange coefficient for heat. Blue and red curves indicate the 

theoretical predictions by the default MOS formula and tuned MOS formula, 

respectively.  Note that to better illustrate the data, the scale of CHa (y-axis) has been 

nonlinearly adjusted. 
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Fig. 4.6: Comparison between observationally determined (dots) and theoretically 

derived (curves) adjusted exchange coefficient for moisture. Blue and red curves indicate 

the theoretical predictions by the default MOS formula and tuned MOS formula, 

respectively. Note that to better illustrate the data, the scale of CQa (y-axis) has been 

nonlinearly adjusted. 
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Fig. 4.7: The same data shown in Figs. 4.4-4.6 but grouped into two categories with wind 

speed smaller and greater than 2 ms-1. 
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Fig. 4.8: TKE as a function of 2
*u  from different field experiments including SCOPE. 

The black, blue, red, pink, green cyan dots indicated the data collected during SCOPE 

and the data collected previously at the Everglades national park, FIU Biscayne Bay 

campus, during the landfall of Hurricane Ivan, Waveland, and Naples. 
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Fig 4.9: Power spectra of u, v, and w for an arbitrary 15 minute spectral lag from the 

SCOPE data. 
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Fig. 4.10: Estimated coefficient 2
2/3

1 cc  against wind speed for the SCOPE data in 

near neutral conditions ( 1.01.0 
L

z
 ). 
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Fig. 4.11: Decomposition of latent heat fluxes in terms of eddy frequencies for all flux 

legs (15 min) of the SCOPE data. 

  



57 
 

Chapter V: SUMMARY AND DISCUSSION 

Vertical turbulent transport in the SL plays a key role in determining the exchange 

of momentum, heat, and moisture between the atmosphere and the underlying surface.  

However, in numerical weather forecasting, climate simulation and projection, and many 

other applications in geosciences, the surface turbulent transport is a sub-grid scale 

process that can only be determined parametrically.  A common method to parameterize 

SL turbulent fluxes is the bulk transfer model in which the turbulent fluxes are 

represented in terms of surface mean meteorological variables.  While the method itself is 

simple and provides a practical way to calculate surface fluxes, the exchange coefficients, 

which relate the turbulent fluxes to mean meteorological variables, cannot be determined 

by the bulk model itself. In practice, to close the parameterization system, the bulk 

transfer model is often combined with the MOS theory from which the analytical 

expressions for exchange coefficients can be derived. Although widely used in numerical 

simulations and other applications in geosciences, some characteristics of the 

theoretically derived exchange coefficients from MOS are not supported by observations.  

Examples of this kind of behavior include the failure of MOS in predicating drag 

coefficients in overland calm wind conditions (Zhu and Furst 2013). Moreover, the 

empirical stability functions used in MOS were obtained almost 50 years ago based on 

the Kansas field experiment taken place on homogeneous wheat fields. It remains to be a 

question as to if the empirical stability functions obtained from the Kansas field 

experiment are applicable in different weather and surface conditions other than 

homogeneous wheat fields in fair-weather conditions. Despite the scientific importance to 

address the unanswered questions associated with the flux parameterization developed 
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from MOS and bulk transfer model, how to provide an appropriate evaluation of the 

parameterization system using observations poses a great challenge for boundary layer 

meteorologists. The problem stems from the difficulties not only in obtaining direct 

turbulent flux data itself but also in measuring surface skin temperature and moisture and 

surface aerodynamic and thermal roughness, which are needed to calculate turbulent 

fluxes parametrically from mean variables and theoretically from MOS. Over a complex 

terrain, surface roughness can depend strongly on wind direction due to surface 

inhomogeneity. The sharp vertical gradient of temperature and moisture close to the 

surface, surface radiation, dew, and other factors result in large uncertainties in skin 

temperature and moisture measurements. Thus, it is practically impossible to provide a 

meaningful evaluation of surface flux parameterization directly from observations. 

To solve the problem in evaluating surface flux parameterization using 

observations, in this study, a novel method has been developed. This method utilizes the 

observations collected by the fast-responding sensors at two levels in the SL to examine 

the formalism of MOS and bulk transfer model. The advantage of this method is that the 

uncertainties associated with surface aerodynamic and thermal roughness and surface 

skin temperature and moisture, which can substantially affect the accuracy of calculating 

exchange coefficients, are excluded, and thus, it can provide an objective evaluation of 

surface flux parameterization. This method can be readily applied to any surface and 

weather conditions as long as fast-responding observations are available at two heights in 

the SL.    

 The data used in this study was collected during the SCOPE, a nearshore field 

experiment supported by GoMRI. The IHRC PWT deployed at the Beasley Park, Fort 
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Walton Beach, Florida collected the meteorological variable using fast-responding 

sensors at 5 m and 10m during the entire experimental period from December 3rd to 

December 20th 2013. The goal of this thesis study is provide a comprehensive evaluation 

of surface flux parameterization using the in-situ tower observations of SCOPE based on 

the innovative evaluation method developed in this study. The main results are 

summarized as follows.  

1. The theoretical prediction of adjusted exchange coefficients based on the MOS 

formalism obtained from the well-known Kansas field experiment does not match well 

with those directly computed from the SCOPE data. However, we showed that the 

surface flux parameterization can be improved within the existing MOS formalism if 

some of the assumption made by MOS can be relaxed. For example, tuning Von-Karman 

constant yields a better fit of the observational data by the theoretical prediction.  The 

physical base for such tuning of parameters used in MOS has been discussed from the 

TKE budget perspective. We showed that the classic log-wind profile in the SL obtained 

from the dimensional analysis of MOS can be derived from the TKE budget with 

appropriate assumptions but ending up with a varying parameter equivalent to Von-

Karman constant. The argument from the TKE budget perspective is shown to be 

consistent with the SCOPE data.    

2. The large spread in observed adjusted exchange coefficients mainly occurs in the 

calm wind regime with strong stability. We argued that the fluxes induced by the 

convective plumes in strong unstable conditions and intermittent turbulence in strong 

stable conditions are the main culprits that deviate the observations the theoretical 

predictions by MOS. Previous studies also show that both of the scenarios appeared to be 
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problematic for MOS. Thus, attention needs to be paid to the calm-wind conditions in 

future research.   

3. Large turbulent eddies, which depend primarily on the mean flow pattern and 

surface conditions, tend to break down the constant flux assumption in the SL. We 

speculate that the constant flux assumption will be substantially affected by the complex 

terrain and mesoscale and synoptic weather systems and may not be as reliable as that in 

fair weather condition over the homogeneous terrain. The unique characteristics of large 

eddies poses a great challenge for including their contribution surface flux. 

In this study, although we successfully derived the formulism for momentum 

transport from the TKE budget equation, how to develop a similar method to account for 

heat and moisture transport has not been discussed. To explore this possibility will be a 

focus of my future research. 
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Appendix A 

IHRC Portable Wind Tower 

Instrument Specifications 

Table A.1 Instrument specifications for the Gill WindMaster Pro Ultrasonic 

Anemometer. 

 

Wind Speed 

 Range:    0 to 65 m/s (0 to 145 mph) 

 Resolution:   0.01 or 0.001 m/s 

 Accuracy (12 m/s):  < 1.5% RMS 

Wind Direction  

 Range:    0.0 to 359.9 degrees 

 Resolution:   1 degrees or 0.1 degrees 

 Accuracy (12 m/s):  2 degrees 

Speed of Sound 

 Range:    300 to 370 m/s 

 Resolution:   0.01 m/s 

 Accuracy:   < ± 0.5% @ 20 degrees C 

General 

 Output sample rate:  up to 32 Hz 

 Sonic temp. range:  -40 to +70 degrees C 
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Table A.2 Instrument specifications for the LiCor LI-7200 CO2/H2O Gas Analyzer 

System 

 

General 

 Accuracy:   within 2% of reading 

 Resolution (H2O, CO2): 0.0067 ppt 

Operating temp. range: -25 to 50 degrees C 

 Power requirements:  10.5 to 30 volts DC 

 Power consumption:  12 W nominal 

 Path length:   12.5 cm 

 Bandwidth:   up to 20 Hz  

 RH range:   0-95% (non-condensing) 
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