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(a) 

   

(b) 

Figure 4.18. SEM images of the sample after SPS  and annealing. 
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As given in Figure 4.19, the XRD pattern exhibits that the sample after 60 h ball milling 

includes Ni, Mn, and Ni2.88Mn0.16Ga0.96. The XRD peaks of Ni and Ni2.88Mn0.16Ga0.96 

(JCPDS No. 04-013-9295) at 19.87, 22.84, 325.54, and 38.69º, are superimposed which 

is the reason for the wide peak width at these angles. The peak at 16° belongs to (111) 

crystallographic plane of MnO (JCPDS No. 00-007-0230). The highest intensity peak, 

200, of MnO occurred at 18.6º, which contributed to the highest peak. There is no Ga 

after milling within the XRD accuracy.  

 

Figure 4.19. XRD pattern of the ball milled powder after 60 h. 
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The XRD pattern of the as-SPS is exhibited in Figure 4.20. Based on the XRD results, 

there is no Mn and Ga in the as-SPS sample. Ni, Ni2MnGa, MnO, and Ni2.88Mn0.16Ga0.96 

are the existent phases. The Ni2MnGa (JCPDS No. 05-001-0330) has the orthorhombic 

structure.  

 

 

Figure 4.20. XRD pattern of the as-SPS sample. 

 

Figure 4.21 shows the XRD pattern of the as-SPS sample after annealing at 1000ºC for 

18h in vacuum. This sample is comprised of tetragonal Ni2MnGa (JCPDS No. 04-016-

3020) and Ni2.88Mn0.16Ga0.96. It is difficult to say whether or not Ni still remained in the 

sample. The intensity of the peaks, 002, 202, 123, marked by red color in Figure 4.21, 

belonged to orthorhombic Ni2MnGa, diminished, compared to Figure 4.20. 
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Figure 4.21. XRD  pattern of the as-SPS sample after annealing. 

 

Finally, Figure 4.22 shows the XRD pattern of the uniaxially pressed sample and then 

sintered at 1000ºC for 18h in vacuum. The sample consists of tetragonal Ni2MnGa 

(JCPDS No. 04-016-3020) and Ni2.88Mn0.16Ga0.96. 

 

15 20 25 30 35 40 45

In
te

ns
ity

 

2 Theta (degree)

+ Ni2MnGa
x Ni2.88Ga0.16Mn0.96
o MnO

+ 
11

2

+ 
20

0

+ 
21

3

x 
11

1

x
20

0

x 
22

0

x 
31

1

+ 
21

5

o
11

1

o
22

0o
20

0

o
31

1

+
10

5

00
2

20
2

12
3

+ 
31

2



 77 

 

Figure 4.22. XRD  pattern of the conventionally sintered sample. 

 

The oxidation of Mn occurred in the ball milling process which was carried out in air. Ball 

milling was performed in 60 minutes periods with a 15-minute interval. The results 

indicate that: 

1. High-energy ball milling for 60 h was not enough to form the final composition of 

Ni2.16Mn0.84Ga, but it was enough to mix and form Ni2.88 Mn0.16 Ga0.96. 

2. The Ni2MnGa formation was favored in both SPS and conventionally sintered 

samples over the off-stoichiometric Ni2.16Mn0.84Ga. 

3. The formation of single phase Ni2MnGa requires more time and diffusion among 

constituents. Higher sintering temperature, increasing the time of sintering, and 

adding sintering aids may help the formation of a single phase Ni2MnGa [29]. 
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5. Conclusion 
 

The objective of this research was to develop a novel in situ mechanical treatment 

process on Ni-Mn-Ga  Hesuler alloy to manipulate the microstructure to increase 

anisotropy, which can lead to higher magnetocaloric properties. The first goal was to 

achieve a single phase marteniste in order for in situ mechanical loading process. The 

twin boundary behavior under a compressive stress was studied by real time monitoring 

inside a focused ion beam microscope. Twin boundary movement depends on the 

direction of the compressive stress, and they tend to be aligned to yield maximum 

possible strain under compression.  

Ni2.13Mn0.82Ga yielded a single phase tetragonal martensite based on X-ray diffraction 

patterns. In sample 1 (Ni2.26Mn0.65Ga) with lower Curie temperature, the magnetic 

entropy change at Tc=371 K was calculated -1.11 and 

 -2.53 J/kg K at 20 and 50 kOe, respectively. This entropy change was the result of the 

magnetic transition at Curie temperature. The magnetic entropy change at Tm=323 K 

was calculated -0.48 and -1.46 J/kg K at applied field of 20 and 50 kOe, respectively, 

which originated from martensitic structural transformation. There was no overlap 

between martensitic transformation, at Tm=323 K, and magnetic transition at Tc=371 K. 

Uniaxial compression was applied in two directions with respect to directional 

solidification: nominally parallel to the twin boundaries and nominally perpendicular. 

There was a gradual change in the angle from 18.2º to 13.0º with respect to vertical. 

This change in the angle was not observed when the sample was loaded nominally 

perpendicular to twin boundaries. In situ thermomechanical treatment under opical 

micrsoiopcpe implied that the compressive stress was not enough to move twin 

boundaries. Although the twin structure was pronounced due to heating.  
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High-pressure synchrotron XRD results showed that a phase transformation from a 

tetragonal towards an orthorhombic/monoclinic structure form P=0 to P= 2.2 GPa 

occurred. XRD pattern analysis of the as-SPS sample indicated that the formation of 

Ni2MnGa was favored over the off-stoichiometric Ni2.16Mn0.84Ga. The formation of single 

phase Ni2MnGa requires more time and diffusion. 

Our novel in situ study establishes that twin boundaries can be manipulated in a 

polycrystalline Ni-Mn-Ga alloy.  This means a change in magnetocrsytalline anisotropy, 

which leads to higher magnetic cooling power. This results in a change in 

magnetocrsytalline anisotropy, which leads to a higher magnetic cooling power. 

Mechanical loading in a preferred direction, traditionally referred to as a training process, 

was able to move the twin boundaries, and the combination of focused ion beam 

imaging linked specific movement with mechanical loading.  This technique, in situ 

monitoring process, can be utilized to devise training procedures for future iterations of 

magnetocaloric and shape memory alloys. 

However, more in situ study is required to investigate the behavior of twin boundary 

under stress and heat. A list of suggestions for future research on this area is 

summarized in the next section. 
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6. Recommendations for Future Work 
 

Suggestions for future work can be categorized as below: 

In Situ Mechanical Treatment Inside FIB equipped with EBSD 

This can give an opportunity to monitor twin boundary movement while EBSD pattern 

changes during the in situ mechanical loading. It needs anl adjustment inside FIB 

chamber to have both micro-load frame and EBSD detector.  

In Situ Thermomechanical Treatment Inside FIB  

Heating the sample will result in phase transformation from martensite to austenite. 

During cooling, the reverse transformation occurs while the compressive stress is 

applying. It would be an in situ study which covers both austenite and maretnsite 

phases. 

In Situ Thermomechanical Treatment Inside FIB equipped with EBSD 

If adjustment inside the FIB allows, EBSD pattern can be detected in real time during 

phase transformation and applying compressive stress. It completes the  

above-mentioned study with the proof of EBSD mapping.	

High-Pressure and High-Temperature Synchrotron X- ray Diffraction 

More high-pressure and high-temperature synchrotron X-ray diffraction experiments are 

required to answer the questions which aroused from the first series of the high-pressure 

synchrotron XRD patterns. The phase transformation and structural evolution are 

required to be studied along with ab initio calculations and magnetic measurements in 

order to minimize the magnetic hysteresis which is a hurdle for commercialization. 
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