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ABSTRACT OF THE DISSERTATION

ESSAYS ON VOLATILITY DRIVERS, TRANSMISSIONS AND EQUITY

MARKET CORRELATIONS IN A GLOBAL SETTING

by

Antonio M. Figueiredo

Florida International University, 2016

Miami, Florida

Professor Ali M. Parhizgari, Major Professor

Volatility is a major topic in financial markets in general, and probably the

single most intriguing factor in financial risk management. Although volatility itself

is not synonymous with risk, it is closely associated with it in the realm of risk

management. In this study, I focus on the volatility in the foreign exchange markets

and investigate the spillover of volatility from this market to equity correlations and

its impact on global equity markets’ bid-ask spreads as a proxy for market quality.

I also explore the role that accounting earnings quality play in subsequent volatility

in the U.S. equity markets.

I provide a theoretical base and its associated empirics for the link between

exchange rate volatilities and global equity correlations. I test this theory using

multiple techniques that end with the application of autoregressive error correction

analysis, wherein, I demonstrate the predictive power of options implied exchange

rate volatilities against ex-ante global equity correlations. My findings indicate that

exchange rate implied volatilities, coupled with one-period ex-post correlations, are

more predictive of subsequent equity market correlations than other models. I then

examine the impact of currency volatilities on the average monthly spreads in ADRs

and their underlying local shares. I employ dynamic panel data estimation to show

v



that currency volatility explains a significant portion (16.6%) of the variation in

spreads across markets, heretofore largely unexplored by extant finance literature.

Finally, I employ well established accrual measures to calculate aggregate accru-

als for the S&P 500 on a quarterly basis and examine the ability of this aggregate

measure to forecast future trends in the volatility of the index. I find a statistically

significant relation between subsequent twelve-month volatility in the S&P 500 in-

dex and aggregate accruals. This relation holds whether total or abnormal accruals

measures are employed. My findings document a rare long-term indicator of volatil-

ity in the widely followed index. I also show that my aggregate accrual measure

yields additional information about S&P 500 volatility when compared with simple

historical volatility measures or option implied volatility.

vi



TABLE OF CONTENTS

CHAPTER PAGE

1. FROM CURRENCY VOLATILITIES TO GLOBAL EQUITY CORRELA-
TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Prior literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Data and sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Empirical applications and results . . . . . . . . . . . . . . . . . . . . . . 16
1.5.1 Identification of employed volatility measures . . . . . . . . . . . . . . 17
1.5.2 Linking implied volatility with a forecast of one period ahead realized

volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.3 Measuring equity correlations . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.4 Linking currency volatilities with equity correlations . . . . . . . . . . 24
1.5.5 Evaluation of forecast accuracy of FX implied volatility models . . . . 31
1.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 38

2. CURRENCY VOLATILITY AND BID-ASK SPREADS OF ADRS AND
LOCAL SHARES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Prior literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Data and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Correlation among independent variables . . . . . . . . . . . . . . . . . 53
2.4.2 ADRs versus Local shares . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.3 Fixed-effects analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.4 Relation of bid-ask spread to liquidity factors by currency . . . . . . . 60
2.4.5 Dynamic panel data estimation of relation between spreads and liquid-

ity determinants . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.6 Principal components analysis of determinants of liquidity . . . . . . . 67
2.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3. DO AGGREGATE ACCRUALS YIELD INCREMENTAL INSIGHTS INTO
S&P 500 VOLATILITY? . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Prior literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Data and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.1 Sample construction and accrual calculation . . . . . . . . . . . . . . . 77
3.3.2 Analysis of accruals vs returns and volatility . . . . . . . . . . . . . . . 80
3.3.3 Explanatory information about S&P 500 volatility from aggregate ac-

cruals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



3.4.1 Firm level accruals and subsequent twelve-month volatility . . . . . . . 85
3.4.2 S&P 500 aggregate accruals and subsequent twelve-month S&P 500

returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.3 S&P 500 aggregate accruals and subsequent twelve-month S&P 500

volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.4 Do option implied volatilities entirely capture insights from the S&P

500 volatility and aggregate accruals relation? . . . . . . . . . 100
3.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 103

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

viii



LIST OF TABLES

TABLE PAGE

1.1 Summary statistics of the data . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 FX Implied Volatility as Forecast of Realized Volatilities — MAPE . . . 21

1.3 International equity markets correlations . . . . . . . . . . . . . . . . . . 22

1.4 Average three-month FX implied volatilities for European currencies
during periods of low, medium, and high implied FX volatility levels 24

1.5 Tests of relations between international equity market correlations and
FX option implied volatilities . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Absolute percent error of full model forecasts up to six periods ahead
under dynamic and static processes versus näıve model . . . . . . . 34
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CHAPTER 1

FROM CURRENCY VOLATILITIES TO GLOBAL EQUITY

CORRELATIONS

1.1 Introduction

Volatility forecasts are vital components of asset pricing and risk management in

finance. Prior literature on the measurement, modeling, and forecasting volatility

abounds. Poon and Granger (2003) provide a comprehensive review of such studies.

Their review, however, does not link volatility with correlations. It is well estab-

lished that volatility of portfolio assets as well as correlations among these assets

play a joint central role. In this paper I propose and test a parsimonious theoretical

model to forecast ex-ante correlation among global equity markets. The benefits of

forecasting such future correlations with any reasonable accuracy would be worth-

while for several reasons. Notably, correlations dictate the benefits of diversification,

are used in the calculation of realized volatility of diversified portfolios, and are key

ingredients in portfolio optimization. Further, volatility and correlations among

equity markets are shown to be time-varying (see Longin and Solnik, 1995, 2001).

Nonetheless, the main determinants of these time variations remain an active area of

academic research. Thus, uncovering new insights into the dynamics of the drivers

of correlation among global equity markets should be invaluable to academicians

and practitioners. This paper explores and identifies such drivers both theoretically

and empirically. Testing the derived theory on twelve global equity indices (eleven

country indices plus the pan-European STOXX index), the results support the ex-

istence of a relation between option implied exchange rate volatility and subsequent

correlations among the equity markets represented by these indices.
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In practice, equity correlations among global markets are generally assumed to

be stable and as a result the most recent period observed correlations are often used

as the forecast for the next period correlations. These correlations are important in

the calculation of portfolio weights in the optimization process. Reducing correla-

tion forecast errors should result in more accurate portfolio weights calculation and

thus more efficient portfolios with higher Sharpe ratios. For instance, employing

the theoretically derived model, I demonstrate how option implied exchange rate

volatility can be used to yield lower forecast errors for global equity correlations.

My coverage in this paper is both theoretical and empirical. On the theoretical

side I aim to establish a unified framework to link economic fundamentals with

correlations among international equity markets. On the empirical side I focus on

foreign exchange rates and correlations among the equity markets of eleven countries

and the pan-European STOXX index. On both fronts, I contribute to the current

literature by examining the relation between currencies, or more specifically between

option implied volatility in the foreign exchange markets, and international equity

market correlations. In addition, as an extension of my empirics, I compare the

relation between FX volatility and equity correlation with that of equity volatility

and equity correlation. This comparison provides further insights about the factors

that drive international equity correlations and contributes to the establishment of

weights that are often arbitrarily set in global minimum-variance portfolio analyses.

Heretofore, several studies, such as Roll (1988) and Longin and Solnik (1995),

have demonstrated that international markets tend to move together when equity

volatility is high. Longin and Solnik (2001) find that correlations are more specif-

ically related to bearish market trends and not necessarily volatility. In any case,

high volatility and declining markets tend to go hand in hand as evidenced by a

widely observed negative relation between the CBOE’s VIX (an established indi-
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cator of market volatility) and the S&P 500 index. The empirical evidence linking

equity volatility, and the VIX as its proxy, to equity correlation is compelling, but it

lacks solid theoretical support. While volatility in the world’s largest equity market

and economy is likely to affect most equity markets and economies around the globe,

the strength of the impact is likely to depend on the extent of bilateral trade and

economic interdependence. The VIX measure does not capture any of these dynam-

ics. Since international finance theory says foreign exchange rate is a major factor

in bilateral trade, I hypothesize that option implied foreign exchange volatility can

better reflect such dynamics between any given two countries, and is thus a more

effective predictor of equity correlations than the VIX.

To establish a theoretical link, I resort to prior theoretical findings. My search

suggests and I hereby would like to acknowledge that there is no consensus in the

finance and economic literature regarding the link between economic fundamentals

and correlations among international equity markets. This is somewhat surprising

given that there are several, though segmented, proposed theoretical economic mod-

els and empirical studies that demonstrate a relation between equity correlations and

economic indicators such as business cycles, inflation, and economic output. There

are also studies that argue such relation, if it exists, is either not significant enough,

or not stable over short and long horizons.

1.2 Prior literature

Evidence supporting a link between economic cycles and equity correlations is

provided by several researchers. For instance, Erb et al. (1994) find that inter-

national equity market correlations tend to be higher during economic downturns.

Moskowitz (2003) documents this pattern for the U.S. market. Longin and Solnik

(1995) show that dividend yields and short-term interest rates, both of which are
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linked to economic cycles, are related to international equity correlations. Dumas

et al. (2003), proposing a framework for a link between country outputs and cor-

relations between their equity markets, show that under the hypothesis of market

segmentation the correlation predicted by their model is significantly below what

is observed, but match the observed values under a market integration assumption.

Forbes and Chinn (2004) provide evidence that bilateral trade is the main factor de-

termining how shocks are transmitted from large economies to other stock markets.

Graham et al. (2012) study the integration of twenty-two emerging markets with

the U.S. market, and find a high degree of co-movement at lower frequencies. They

conclude that diversification benefits of investing in emerging markets from a U.S.

investor’s perspective is dependent on the investment horizon. Della Corte et al.

(2012) find that volatility and correlation timing is possible and clearly beneficial in

international asset allocation.

On a related though different front, several studies link equity volatility with

equity correlations. For example, Longin and Solnik (2001) find that during bear

markets when equity volatility is above normal, equity correlations tend to also be

higher. Connolly et al. (2007) show that option implied volatility on the U.S. and

German market indices are positively related to subsequent equity market corre-

lations. Cai et al. (2009) consider both economic factors and equity volatility as

explanatory variables for international equity correlations. They employ CBOE’s

VIX measure of implied volatility for the S&P 500 as a proxy for overall equity

volatility and the inflation rate in each country as an economic cycle indicator.

They find that equity correlation between two given countries is higher when equity

volatility is above normal and both countries’ inflation rates are below their respec-

tive historical averages, which they interpret to mean that both countries are in an

economic contraction phase.
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In contrast to the above strands of research, refuting the relation between eco-

nomic factors and equity correlations, King et al. (1994) show that economic vari-

ables fail to explain the time variation in the covariance of national equity markets.

Ammer and Mei (1996) support these findings. Using industrial production data

and equity returns from seven major countries, Kizys and Pierdzioch (2006) lend

further support to this notion by showing that the relation between business cy-

cles and international equity correlations is not statistically significant. Forbes and

Rigobon (2002) refute the notion of contagion during major crises such as the 1997

Asian crisis and the U.S. stock market crash in 1987 by showing no increase in un-

conditional correlation coefficients during those periods. Instead, they argue that

correlations are conditional on market volatility and that this ‘interdependence’ is

present at all times, not only during crises.

As an extension to the Veronesi (1999) model, Ribeiro and Veronesi (2002) pro-

pose an intertemporal rational expectations model by which uncertainty about the

state of the global economy drives higher international equity correlations during

economic downturns. They present a theoretical argument supporting their model

and demonstrate that historical patterns on international equity correlations are well

explained by their proposed model. Their findings lend some theoretical support to

empirical studies linking option implied equity volatility and subsequent equity cor-

relations. See Connolly et al. (2007), and Cai et al. (2009). After all, as an implied

volatility measure of the S&P 500, a benchmark for the equity market in the world’s

largest economy, the VIX is a good indicator of the market’s perceived uncertainty

about equity values and the overall economy. Under the assumption that uncer-

tainty about the U.S. markets and the U.S. economy also imply uncertainty about

the global economy, and that equity investors would require to be compensated for

this increased risk, theory would predict that international equity markets in cycli-
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cal countries would decline somewhat in unison during periods of high uncertainty,

thus increasing correlation among these markets. There is ample empirical evidence

supporting this phenomenon.

Among other prior works that may be cited at this juncture, Forbes and Chinn

(2004), Aslanidis and Casas (2013) and Bodart and Reding (1999) are more related

to my study. Forbes and Chinn (2004) provide empirical support for the impact of

bilateral trade on financial markets. Aslanidis and Casas (2013) use portfolios of

equity and currency to evaluate parametric and semi-parametric models for estimat-

ing the conditional cross-correlation matrix for portfolio allocation. They find that

a semi-parametric model performs better when using out-of-sample data. Contrary

to my findings that equity correlations are positively related to implied exchange

rate volatility, Bodart and Reding (1999) find that “an increase in exchange rate

volatility is accompanied by a decline in international correlations between bond

and, to a lesser extent, stock markets.” Obviously, there are important and clear

distinctions between my study and Bodart and Reding (1999)’s. First, their study

is on bond rather than equity markets. Further, rather than employing measures of

foreign exchange rate volatility, Bodart and Reding’s results are based primarily on

the comparison between countries within and outside the Exchange Rate Mechanism

of the European Monetary System. My study, on the other hand, examines how

the equity correlation between a given pair of international equity markets is related

to the volatility of the pertinent exchange rate for these two markets. Specifically,

my analysis utilizes a daily market-driven measure of implied volatility for exchange

rates.

Given the above brief review, it is clear that the breadth and scope of the prior

contributions are highly diverse, that a clear consensus is lacking, and that a well-

grounded and empirically tested approach to establish the link between currency
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volatilities and global equity correlations is warranted. This is, as stated earlier, the

aim of this study.

1.3 Theoretical model

Based on the notion that there is no widely accepted theory that links exchange

rate volatility with international equity market correlations, I first consider a few

preliminary intuition-based relations that draw upon asset pricing models and in-

ternational finance parity fundamentals. These provide preliminary theoretical un-

derpinning for my analysis. I then derive a generalized theoretical framework that

could assist me with my empirical pursuits.

I start with the widely accepted stochastic model for spot exchange rates that can

be used as the basis for pricing exchange rate options such that implied exchange

rate volatility can be imputed by observed market prices for such options. For

simplicity, I start with a two-market (country) two-currency situation. I will use

EUR and US for the two countries with the dollar/euro spot rate as the exchange

rate in what follows. My reference to EUR may be interpreted as any country in

the Euro zone.

St = S0exp
{

(rEUR − rUS)t− σ2t/2 + σWt

}
(1.1)

where St, expressed in euros per dollar, is the spot exchange rate at time t, S0 is the

spot exchange rate at time 0, rUS and rEUR are the respective dollar-denominated

and euro-denominated risk free rates for the pertinent period from time 0 to time

t, σ is the expected volatility, at time t, for the exchange rate over the life of the

option, and Wt is a Wiener process.

The above expression is consistent with stochastic asset pricing that forms the

basis for option pricing under Black-Scholes. The risk-free rates represent the ob-
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served risk-free rates at time t for the U.S. and Euro zone markets, and σ is the

expected volatility, at time t, for the exchange rate over the life of the option.

On the surface, relation 1.1 is seemingly unrelated to the real side of the econ-

omy, e.g., equity markets1. Upon further scrutiny, I will demonstrate that St or its

volatility is indeed related to the real side of the global economy and thereby to the

correlations among its components. To facilitate the derivations that follow, I have

provided a schematic flow chart that shows the steps in my approach from one end,

e.g., currency volatility, to the other end, e.g., global equity correlations.

The differential interest rate term (rEUR − rUS) in relation 1.1 is highly crucial

in moving us forward in my derivations. For spot exchange rate quotes at time t,

I assume an equilibrium price based on a micro-based macro model for the dollar-

euro spot rate that is a simplified version of the model proposed by Evans and

Lyons (2009). The original model, along with several other exchange rate models,

are described in detail in Evans (2011). My simplified version of the model has the

form:

St = EtSt+1 + [rEUR,t − rUS,t] (1.2)

where Et denotes market expectations based upon available information at time t,

rUS and rEUR are as defined earlier and are now analogous to risk-free short-term

dollar and euro rate for a given period. Moving forward one period, equation 1.2

becomes:

EtSt+1 = EtSt+2 + Et[rEUR,t+1 − rUS,t+1] (1.3)

1Zellner’s (1962) “Seemingly Unrelated Regressions (SUR)” is a good reference point
for this topic.
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In equation 1.2, the risk-free rates at time t are observed, while in equation 1.3

they are based on equilibrium market expectations of central banks’ actions (for

instance, the FED and the ECB) in response to changes in the macro economy.

To expand relation 1.3, I resort to the Taylor rule. Taylor rule based models for

interest rates assume that central banks set nominal rates according to divergences

of inflation from inflation targets and divergences of GDP from potential GDP.

Specifically, employing a modified version of real exchange rate definition based on

Evans (2011), interest rate expectations are set according to:

Et[rEUR,t+1 − rUS,t+1] = (1 + λπ)Et[πEUR,t+1+i − πUS,t+1+i]

+ λyEt[yEUR,t+1 − yUS,t+1]− λξξt+1 (1.4)

where i > 0, πEUR,t+1+i−πUS,t+1+i represents the future difference between inflation

in the Euro zone and the U.S., yEUR,t+1 − yUS,t+1 represents the future difference in

log output gap between the Euro zone and the U.S., ξt = St + pEUR,t − pUS,t is the

real exchange rate, and λπ, λy, λξ are positive. See Appendix A for a derivation of

relation 1.4.

Relation 1.4 implies that market participants expect the euro-dollar rate differ-

ential to be higher when the corresponding future inflation differential is higher, the

output gap is wider, or when the real exchange rate declines. The first two implica-

tions suggest central banks should raise short-term interest rates when inflation and

output gap rises, a widely held view. The last implication suggests that deviations

from purchasing power parity levels have some impact on central banks’ rate setting

decisions. My model, as is the case in the original Evans and Lyons (2009) model,

does not require that central banks follow a known recipe for setting rates such as

the Taylor rule, but simply that market expectations for future rates are driven by

market expectations for the inflation and output macro variables. The output gap
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in essence is a substitute for the differential in productivity measures, which in turn

could easily be linked to the equity market returns.2 Irrespective of these details,

my intent to link St with the real side of the economy is well in place in light of

relations 1.1 through 1.4.

Substituting the value for rate expectations from relation 1.4 into relation 1.3

and iterating forward yields:

EtSt+1 = Et
∞∑
i=1

γift+1 (1.5)

where it is assumed that Et lim
i→∞

γiSt+i = 0, γ = 1/(1 + λξ) < 1, and

ft = (1+λπ)[πEUR,t+1−πUS,t+1]+λy[yEUR,t−yUS,t]+

(
1− γ
γ

)
[pUS,t−pEUR,t] (1.6)

See Appendix B for a detailed derivation. Equation 1.5 expresses the market

expectations for exchange rates for the next period in terms of the market expec-

tations for macroeconomic fundamentals denoted by ft. Substituting the results of

equation 1.5 into equation 1.2 we have:

St = (rEUR,t − rUS,t) + Et
∞∑
i=1

γift+1 (1.7)

Defining variation in exchange rate as ∆St+1 = Et∆St+1 + St+1 − EtSt+1, and

embedding it into equation 1.2 yields:

∆St+1 = (rEUR,t − rUS,t) + St+1 − EtSt+1 (1.8)

Equations 1.2 through 1.8 draw heavily upon Evans (2011), save some minor

modifications. Considering relations 1.7 and 1.8 together, variations in exchange

rates over short periods are primarily driven by revisions of future expectations

of the macroeconomic variables, or the asset side of the economy. This can also

2See, for instance, Parhizgari and Aburachis (2003).
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be inferred by taking the variance on both sides of equation 1.5. Consequently,

volatility in exchange rate is driven by the volatility in future expectations of the

macroeconomic variables. Based on the definition of the macro fundamentals ft in

relation 1.6, this volatility is a function of the variance in the difference of macroe-

conomic variables in two countries and the correlation among them, implying that

high volatility in exchange rates are associated with high correlation among the

difference in macroeconomic variables. This arises because of the identity:

V ar(aX + bY ) = a2σ2
x + b2σ2

y + 2abρx,yσxσy (1.9)

From the above identity, it is clear that given a certain value of σx, V ar(aX+bY )

will be maximized when ρx,y = 1 since σx > 0, σy > 0, and −1 ≤ ρx,y ≤ 1.

Therefore, taking into account just the first two terms from equation 1.6, I can

conclude that volatility of dollar/euro exchange rate will be maximized when the

correlation between the inflation differential [πEUR,t+1 − πUS,t+1] and the log output

gaps [yEUR,t − yUS,t] is 1. In this maximization state, the inflation differential is a

linear combination of the log output gaps and thus could be expressed as:

πEUR,t+1 − πUS,t+1 = K1,t[yEUR,t+1 − yUS,t+1] +K2,t (1.10)

where K1,t and K2,t are constants, yUS,t and yEUR,t represent the log of the real

output for the U.S. and the Euro zone, respectively. Relation 1.10 also implies that

rEUR,t − rUS,t = K1,t[yEUR,t − yUS,t] +K2,t (1.11)

since the Fisher Effect holds that an increase (decrease) in the expected inflation

rate in a country will cause a proportional increase (decrease) in the interest rate

in the country. After some simple exponential algebra (See Appendix C), relation

1.11 can be expressed as:

K0,t
YEUR,t

exp (rEUR,t/K1,t)
=

YUS,t

exp (rUS,t/K1,t)
(1.12)

11



where YUS,t represents the real output for the U.S., K0,t = exp
(
K2,t

K1,t

)
, and analo-

gously YEUR,t represents the real output for the Euro zone. Therefore, in the spot

rate volatility maximization state, equation 1.10 states that the correlation between

the inflation differential in the U.S. and the Euro zone and the output gap between

the countries is maximized at 1. This also implies that the correlation between

the discounted real output of the two countries is also maximized at 1 as shown in

equation 1.12.

Further assuming that investors are risk-neutral, the broad equity market value

for the U.S., denoted as MUS, is given by:

EtMUS,t =

∫ ∞
t

erUS(τ−t)Dτdτ (1.13)

where Dτ represents an aggregate cash payout to investors that is linked to the

country’s output. The broad equity market value for the Euro zone is defined

analogously.

If the cash payout to investors in each country is a proportion of the real out-

put for each country, then I can conclude that when the volatility of the spot rate

between the two countries approaches a maximum, the correlation between the dis-

counted market values for the two countries should also approach its maximum of

1. This theoretical link is illustrated in Figure 1.1. Assuming that all (currency,

equity, and option) market participants have the same access to information regard-

ing interest rates and the state of the macro economy, the model described in this

section provides a theoretical justification for the hypothesis that implied volatility

in currency option prices is positively related to equity market correlations over the

life of the option.

So far, I have shown that under some plausible assumptions there is a theoretical

justification for equity correlations between two countries to be elevated when the

12



Figure 1.1: Theoretical link between FX volatility and equity correlation.

This flow chart briefly depicts the potential links between foreign exchange rate
volatility and equity correlation. It brings together a stochastic model of exchange
rates, Taylor rule based market expectations of interest rates, and underlying as-
sumptions related to widely accepted parity conditions (i.e. international Fisher
rule). It also assumes that broad equity markets value should reflect the discounted
present value of future aggregate cash payouts and that these payouts are linearly
related to each country’s output (GDP).

volatility of the exchange rate between the two countries’ currencies is also elevated.

Assuming that option implied foreign exchange rate volatility is a good predictor

of subsequent observed foreign exchange rate volatility, it should then follow that

option implied exchange rate volatility would be a contributing factor in the forecast

of subsequent equity correlations.

At the empirical level, further modification and fine tuning of the above relations

become necessary. These will be discussed in Section 1.5.

As was mentioned earlier, the forecast of correlations is a key ingredient in the

calculation of component weights for the optimal portfolio. In the case of a global
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portfolio comprised of broad exposure to equity markets in various countries, I

contend that the forecast of future correlations between any country pair would be

more accurate if the pertinent option implied exchange rate volatility is a factor in

such forecast. Nonetheless, the theoretical justification I have put forth suggests

that this is especially true when the exchange rate volatility is elevated. Therefore,

my empirical work centers on evaluating the following relation:

CorrXYt,t+3 = CorrXYt−3,t + FXIVt + FXdummyt + εt (1.14)

where CorrXYt,t+3 corresponds to the pairwise correlation over the three-month

ahead period starting at time t, CorrXYt−3,t represents the pairwise correlation over

the thee-month period preceding time t, FXIVt is the pertinent FX option implied

volatility at time t, and FXdummyt is the interaction between this implied volatility

and a dummy variable set to 1 (zero) to indicate a period of high (low) volatility.

The threshold value used to set this dummy variable was based on historical patterns

of volatility levels.

Taking into consideration the findings of previous studies that demonstrate the

relation between equity volatility and equity correlations (see Longin and Solnik,

2001; Connolly et al., 2007; Cai et al., 2009), I also consider the following relation:

CorrXYt,t+3 = CorrXYt−3,t + FXIVt + FXdummyt + V IXdummyt + εt (1.15)

where V IXdummyt is the interaction between the value of the VIX at time t and

a dummy variable set to 1 (zero) to indicate a period of high (low) volatility when

the VIX index is above (below) 25 at time t. All other variables are as defined in

equation 1.14. Once again, the threshold value used to set the V IXdummyt variable

was based on historical patterns of VIX levels. Empirically evaluating relation 1.15

is necessary to determine whether the inclusion of exchange rate volatility in the

forecast yields any incremental benefits when equity volatility is also used as a factor.
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1.4 Data and sources

My primary data includes daily values for eight FX exchange rates, S&P 500 30-

day implied volatility VIX measure, one-month, three-months, and one-year at-the-

money implied FX rate volatility, and returns of eleven international single country

equity indices and the pan-European STOXX index. The coverage is from January

1, 1999, to June 30, 2015. The starting date for the sample period coincides with

the introduction of the Euro currency.

The implied volatility for the eight U.S. dollar cross exchange rates are pro-

vided by Bloomberg. The eight foreign currencies used are: Euro, British Pound,

Japanese Yen, Swiss Franc, Canadian Dollar, Australian Dollar, Mexican Peso, and

the Brazilian Real. The implied FX volatilities reflect the market expected future

volatility for a given FX exchange rate from now (time t) until maturity. I consider

one-month, three-months and one-year maturity horizons, but use three-month op-

tion implied FX volatility in the estimation of my regressions. Bloomberg implied

volatility measures can be used to obtain the correct Black-Scholes price for a delta

neutral straddle struck at maturity.

In order to compute correlations among international equity markets in a com-

mon currency, I employ the Datastream U.S. dollar denominated daily values for

the equity indices in my study. In total, I examine the return and pairwise cor-

relations for twelve equity indices. Four of these markets (plus the pan-European

STOXX index) are markets where the Euro is the official currency. The other seven

of these markets correspond to markets wherein each of the other foreign currencies

in my sample is the official currency. The U.S. is the benchmark market in my sam-

ple used for the correlations calculations. Specifically, I use the main equity index

in the United States (S&P 500), Canada (S&P/TSX composite), United Kingdom
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(FTSE 100), Australia (S&P/ASX 300), Germany (DAX 30), France (CAC-40),

Switzerland (SMI), Spain (IBEX 35), Italy (FTSE MIB), Japan (NIKKEI 225),

Mexico (IPC), and Brazil (BOVESPA) as proxies for the broad equity markets in

these countries.

1.5 Empirical applications and results

At the empirical level, applications of relations 1.8 through 1.13 in conjunction

with relation 1.1 require computation of a few underlying concepts and some sub-

stitutions. Very briefly, these are:

1. Identification of employed volatility measures

2. Linking implied volatility with a forecast of one period ahead realized volatility

3. Measuring equity correlations, and finally

4. Linking currency volatilities of steps 1 and 2 with equity correlations of step

3 via an autoregressive error correction model3 (See Appendix D).

Obviously, steps 1 through 4 above do not automatically correspond with any

of the relations expressed in 1.8 through 1.13. This ‘seemingly unrelated’ reference

will be clarified as I move on in each step and as I identify and assign components

to their underlying variables in relations 1.8 through 1.13. Further, to expand the

breadth of my empirics, additional relations and simplifying assumptions are also

introduced.

3This model corrects for autocorrelation in the error term by modeling the random
error term with an autoregressive model. It is not the same as the error correction model
in Engle and Granger (1987).
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1.5.1 Identification of employed volatility measures

As implied volatility measures, I employ Bloomberg’s exchange rate implied

volatility for one month, three months, and one year. Realized exchange rate volatil-

ity is calculated via two approaches: variance of exchange rates over a given period

(Classical method), and by employing Garman and Klass (1980) methodology. The

former is given by

σ2
St

=
1

N

N∑
t=1

(FX RETt − FX RET )2 (1.16)

where FX RETt represents the daily change in the FX exchange rate at day t

calculated using first differences, and FX RET is the mean FX exchange daily

return over the measured period. The standard deviation is simply the square

root of the calculated variance. I then annualize the daily standard deviation by

multiplying it by the square root of 365. I perform this calculation for each of the

eight foreign exchange rates used in my study and over each day in my data sample,

measuring realized volatility over rolling periods of one-, three-, and twelve-months

ahead.

In the second method, following Garman and Klass, I utilize open, close, high,

and low daily values to measure volatility of ∆St. It is shown that this measure is

about eight times more efficient than a simpler measure that uses close-to-close daily

values.4 Specifically, I employ the reduced-form estimator which yields virtually

the same efficiency as the full-form estimator. The difference is that the reduced-

form estimator specification has marginally different coefficients and excludes cross-

product terms. Under this methodology, I calculate realized volatility as the average

4Garman and Klass, 1980, pg. 74
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of the daily volatilities during the period, where the volatility for a given day t is:

σ2
St

=
1

2
[ln(High)− ln(Low)]2 − [2 ln 2− 1][ln(Open)− ln(Close)]2 (1.17)

where ln denotes the natural logarithm function, and High, Low, Open, and Close

represent the daily high, low, open, and close exchange rate. Once again, I perform

this calculation for each of the eight foreign exchange rates used in my study and

for each day in my data sample, measuring realized volatility over rolling periods of

one-, three-, and twelve-months ahead. Table 1.1 contains summary statistics for

the volatilities of the currencies and the VIX used in my study.

1.5.2 Linking implied volatility with a forecast of one period ahead re-

alized volatility

Utilizing the above two computed measures of realized volatility, I am in a po-

sition to employ and examine the efficacy of Bloomberg’s option implied FX rate

volatility measures5 as forecasts of actual currency volatilities. The aim is to simply

test and establish a set of currency forecast measures of volatility that are currently

readily available. Within the framework I have adopted, I evaluate the forecasts for

one-, three-, and twelve-month horizons using both of the afore-calculated volatil-

ity measures. To evaluate the results, I compute the mean absolute percent error

(MAPE) for each forecast. I report the results of this evaluation in Table 1.2. An

analysis of the results lead to the following general conclusions: 1) Bloomberg’s op-

tion implied currency volatilities are good predictors of actual subsequent currency

volatility with mean absolute percent errors lower than 0.5% in all cases using the

Garman-Klass method except for the Brazilian real, 2) shorter horizon forecasts

5These measures are readily available from Bloomberg. See Section 1.4 on data and
sources.
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are more accurate, and 3) forecast errors are lower for the major currencies versus

the emerging market currencies. The observed trends are consistent with greater

liquidity for options of major currencies and with shorter maturities.

Table 1.1: Summary statistics of the data

This table contains summary statistics for the daily percentage returns in FX ex-
change rates, daily values of annualized implied one-month ahead volatilities, rolling
daily values of one month ahead volatilities calculated under the “classic” method as
in equation 1.16, and rolling daily values of one month ahead volatilities calculated
under Garman-Klass measurement described in equation 1.17.

Obs Mean Max Min σ2 Skew Kurtosis

Panel A: Daily returns in FX rates. Mean and Std dev. are annualized.

Canadian Dollar 4, 301 −0.017 0.033 −0.04 0.108 0.143 3.185
Australian Dollar 4, 301 0.018 0.083 −0.073 0.157 −0.346 9.499
British Pound 4, 301 −0.005 0.029 −0.035 0.106 −0.264 2.328
Euro 4, 301 −0.005 0.035 −0.025 0.122 0.038 1.295
Swiss Franc 4, 301 −0.032 0.091 −0.194 0.144 −3.63 107.189
Japanese Yen 4, 301 0.008 0.055 −0.035 0.124 0.032 3.598
Mexican Peso 4, 299 0.039 0.07 −0.067 0.128 0.662 12.34
Brazilian Real 4, 179 0.085 0.1 −0.103 0.212 0.328 10.952

Panel B: Daily values of annualized implied one-month ahead volatilities (in pct).

Canadian Dollar 3, 943 8.862 26.945 4 3.384 2.137 6.376
Australian Dollar 4, 296 11.712 44.53 5.575 4.286 2.714 12.169
British Pound 4, 291 8.897 29.623 4.335 3.054 2.677 10.348
Euro 4, 300 10.268 28.885 4.165 3.082 1.377 4.154
Swiss Franc 4, 268 10.579 28.375 4.485 2.66 1.206 3.9
Japanese Yen 4, 299 10.605 38.42 4.45 3.19 1.93 7.294
Mexican Peso 3, 724 10.869 71.43 4.8 5.907 3.967 23.534
Brazilian Real 3, 029 14.387 66.345 5.347 6.458 3.179 15.173

Panel C: Daily values of S&P500’s 30-day implied volatility—CBOE’s VIX.

VIX 4, 149 20.977 80.86 9.89 8.732 2.002 6.688
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Table 1.1: Summary statistics of the data — cont’d

Obs Mean Max Min σ2 Skew Kurtosis

Panel D: Rolling daily one-month realized return volatility—classic method.

Canadian Dollar 4, 280 9.81 41.141 3.55 4.626 2.293 8.878
Australian Dollar 4, 280 13.958 86.038 5.47 7.287 4.414 30.933
British Pound 4, 280 9.967 31.237 3.012 3.662 2.189 8.033
Euro 4, 280 11.538 30.098 3.332 3.848 0.826 1.603
Swiss Franc 4, 280 12.783 85.75 3.872 6.819 6.406 59.341
Japanese Yen 4, 280 11.639 38.14 3.793 4.299 1.549 5.467
Mexican Peso 4, 280 11.037 66.201 3.107 6.288 3.539 20.316
Brazilian Real 4, 280 17.528 89.344 2.959 10.976 2.571 9.663

Panel E: Rolling daily one-month realized return volatility—Garman-Klass.

Canadian Dollar 4, 280 9.668 33.433 4.396 4.028 1.825 5.448
Australian Dollar 4, 280 13.426 63.88 5.907 5.912 3.534 19.493
British Pound 4, 280 9.827 36.853 3.852 3.927 3.019 12.407
Euro 4, 280 11.184 29.312 3.621 3.449 1.187 3.211
Swiss Franc 4, 280 12.081 37.841 3.987 3.558 1.948 8.854
Japanese Yen 4, 280 11.328 33.864 3.885 3.57 1.632 5.296
Mexican Peso 4, 280 10.439 75.616 3.76 6.153 4.449 32.502
Brazilian Real 4, 280 14.464 59.885 3.734 7.829 2.369 7.924

1.5.3 Measuring equity correlations

Considering relations 1.10 and 1.12 and their ensuing discussions related to the

correlation between the real sides of the two economies, this section paves the way

for the empirics via simple assumptions and substitutions. First, it is assumed that

the real side of the economy may be represented by the assets side or the equity

markets in each country. Second, to address the notion that correlations increase in

times of higher volatility, I designate September 2008 to August 2009 as the most

recent notable period of high volatility and treat it as a separate time period. I

then calculate unconditional correlations among the twelve equity markets for each
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Table 1.2: FX Implied Volatility as Forecast of Realized Volatilities — MAPE

This table contains the mean absolute percentage error (MAPE) obtained from
using the Bloomberg FX rate implied volatilities as the forecast for the subsequent
realized volatilities. Results are tabulated for one-month, three-month, and one-
year option implied foreign exchange volatilities as forecasts of realized volatilities
calculated using both the “classical” and the Glass-Karman methods.

Classical Method Garman-Klass
Currency 1-mo 3-mo 1-year 1-mo 3-mo 1-year

Canadian Dollar 0.283 0.306 0.326 0.189 0.231 0.27
Australian Dollar 0.683 0.753 0.81 0.415 0.472 0.496
British Pound 0.206 0.202 0.269 0.167 0.178 0.231
Euro 0.273 0.265 0.291 0.18 0.193 0.235
Swiss Franc 0.741 0.697 0.53 0.285 0.258 0.258
Japanese Yen 0.345 0.322 0.342 0.233 0.232 0.275
Mexican Peso 0.546 0.561 0.643 0.441 0.454 0.486
Brazilian Real 1.17 1.32 1.28 0.609 0.644 0.639

of these two time periods.6 The results, tabulated in Table 1.3, are compared and

saved for further application in step 4.

Other high/low categorizations for equity markets also appear logical. Again,

considering the monetary components of relations 1.10 and 1.12, it would be pressing

to categorize the equity markets according to the volatility of the currency markets.

Based on the historical implied FX volatilities of three major currencies (Euro,

British Pound, and Swiss Franc), I divide the equity sample into three sub-periods

of low, medium, and high implied FX volatility. Similar to the above categorization,

equity market correlations are then calculated separately for each of these three sub-

periods and are utilized in the next step. Table 1.4 summarizes the results of this

analysis for the three major European currencies. Notice that average volatility for

6Correlations are measured using daily returns of the U.S. dollar denominated value of
the equity indices provided by Datastream. In order to address the time zone effect, I lag
the Japanese and Australian markets by one day when calculating correlations.
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Table 1.4: Average three-month FX implied volatilities for European currencies
during periods of low, medium, and high implied FX volatility levels

This table contains the average three-month FX implied volatility for each European
currency in my sample calculated as the simple average of daily values of 3-month
implied volatility. The sample period for this table is from January 1999 through
June 2015. Low implied FX volatility level refers to the following sub-periods:
Feb2005—Nov2007 and Sept2012—Jun2015. High implied FX volatility level refers
to the following periods: Aug2000—Sept2001, Sept2008—Aug2009, and May2010—
Jan2012. All other sub-periods are deemed to have medium levels of implied FX
volatility. EUR refers to the Euro, USD refers to the US dollar, GBP refers to the
British Pound, and CHF refers to the Swiss Franc.

Currency

EUR-USD GBP-USD CHF-USD

Implied Volatility Level
Low 7.88 7.36 8.61

Medium 10.53 8.94 11.01
High 13.87 11.87 13.16

the Euro in each category is similar to that of the Swiss Franc and generally higher

than the volatility of the British Pound. Figure 1.2 graphically depicts how the

volatility of the Euro and the Swiss Franc appear to move together. This trend

is not surprising given the economic interdependence between Switzerland and the

Euro zone. In fact, the Swiss National Bank pegged the two currencies for a period

of about three years. The surprise abolishment of this peg on January 15, 2015

resulted in a temporary spike in the Swiss Franc option implied volatility, clearly

visible on the graph in Figure 1.2.

1.5.4 Linking currency volatilities with equity correlations

This step brings together and sets side by side the components that are so far

separately computed. In brief, this step links currency volatilities of steps 1 and

2 with equity correlations of step 3 via an autoregressive error correction model.
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Expressed differently, the implied measures of, or the substitutes for, the underlying

concepts of both sides of relation 1.10 or 1.12 are now ready for further empirical

analysis. As discussed at the end of Section 1.3, using monthly data I estimate

relation 1.15, repeated here for convenience and relabeled relation 1.18. Each time

period t refers to a one-month period, thus the dependent variable in relation 1.18

represents the correlation of variables X and Y over three months starting at time

t. The other variables are as described in Section 1.3. Based on historical ranges

for FX implied volatility discussed in Section 1.5.3, FXdummyt in the evaluation of

relation 1.18 was computed as the interaction of FXIVt and a dummy set to 1 when

the FX implied volatility is 11 or greater (12 was used for the Brazilian real and

Mexican peso) and set to 0 otherwise. Similarly, the threshold for the VIX dummy

variable was set at 25.

CorrXYt,t+3 = CorrXYt−3,t + FXIVt + FXdummyt + V IXdummyt + εt (1.18)

The autoregressive error correction methodology I employ is a modified OLS by

which the autocorrelation of the errors is accounted for via an autoregressive model

for the random error (See appendix D). Specifically, I estimate four stepwise varia-

tions of relation (17) and refer to these variations as Models 1, 2, 3, and 4. Model 1

contains CorrXYt−3,t (also labeled Lag CorrXY ) as the sole independent variable.

Model 2 extends Model 1 by adding FXIVt as the second independent variable, and

Model 3 extends Model 2 by including FXdummyt as a third independent variable.

Model 4 includes all independent variables listed in relation 1.18. These four vari-

ations of relation 1.18 are evaluated a total of twelve times for each of the country

equity index pairs listed in Section 1.4 plus the pan-European STOXX index. The

results of these 48 (12 equity market pairs x 4 models) regression estimations are

summarized in Table 1.5.
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Table 1.5: Tests of relations between international equity market correlations and
FX option implied volatilities

This table contains the results of regressions of three-month correlations between
the U.S. S&P500 index and eight other country equity indices. Correlations are
measured ex-post using daily U.S. dollar returns with the other indices. The variable
Lag CorrXY is the most recent three-month correlation up until observation day.
Measured on daily observations, V IX dummy is the interaction with the VIX index
of a dummy set to 1 (zero) if the VIX is above (below) 25, and FXIV dummy is
the interaction with the FX rate of a dummy set to 1 (zero) if the pertinent FX
rate 3-month implied volatility is above (below) 11. Each Panel contains the results
for a given currency/country. Numbers below the coefficient estimates are t-values.
The asterisks ∗,∗∗ , and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1%
level, respectively. Sample period includes monthly observations from Jan 1, 1999
to Jun 30, 2015.

Lag FX IV VIX Adj.
Intercept CorrXY FX IV dummy dummy R2

Panel A: US-Germany equity market correlation

Model 1: 0.2724∗∗∗ 0.5150∗∗∗ 0.282
(7.99) (8.64)

Model 2: 0.1955∗∗∗ 0.4730∗∗∗ 0.0095∗∗∗ 0.314
(4.63) (7.87) (2.98)

Model 3: 0.2826∗∗∗ 0.4672∗∗∗ −0.0013 0.0058∗∗ 0.331
(4.89) (7.84) (−0.22) (2.18)

Model 4: 0.3532∗∗∗ 0.4431∗∗∗ −0.0088 0.0064∗∗ 0.0024∗∗∗ 0.361
(5.74) (7.51) (−1.40) (2.45) (2.96)

Panel B: US-UK equity market correlation

Model 1: 0.2125∗∗∗ 0.5869∗∗∗ 0.372
(7.36) (10.61)

Model 2: 0.1526∗∗∗ 0.5542∗∗∗ 0.0084∗∗∗ 0.394
(4.18) (9.92) (2.61)

Model 3: 0.2259∗∗∗ 0.5319∗∗∗ 0.0002 0.0052 0.401
(3.66) (9.22) (.04) (1.47)

Model 4: 0.2386∗∗∗ 0.5357∗∗∗ −0.0021 0.0048 0.001 0.406
(3.82) (9.28) (−0.32) (1.36) (1.26)
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Table 1.5: Tests of relations between international equity market correlations and
FX option implied volatilities — cont’d (2 of 5)

Lag FX IV VIX Adj.
Intercept CorrXY FX IV dummy dummy R2

Panel C: US-Switzerland equity market correlation

Model 1: 0.2179∗∗∗ 0.4873∗∗∗ 0.24
(7.65) (7.73)

Model 2: 0.1567∗∗∗ 0.4727∗∗∗ 0.0063 0.248
(3.05) (7.42) (1.43)

Model 3: 0.2187∗∗∗ 0.4689∗∗∗ −0.0012 0.0035 0.253
(2.98) (7.36) (−0.16) (1.18)

Model 4: 0.2993∗∗∗ 0.4332∗∗∗ −0.0092 0.0037 0.0024∗∗∗ 0.279
(3.81) (6.75) (−1.12) (1.28) (2.61)

Panel D: US-Canada equity market correlation

Model 1: 0.3035∗∗∗ 0.5306∗∗∗ 0.281
(7.38) (8.59)

Model 2: 0.2783∗∗∗ 0.5062∗∗∗ 0.0047 0.289
(6.26) (7.94) (1.47)

Model 3: 0.4121∗∗∗ 0.4516∗∗∗ −0.0093 0.0093∗∗ 0.309
(5.7) (6.72) (−1.37) (2.33)

Model 4: 0.4301∗∗∗ 0.4207∗∗∗ −0.0099 0.0077∗ 0.0015∗ 0.321
(5.92) (6.09) (−1.47) (1.9) (1.78)

Panel E: US-Australia equity market correlation

Model 1: 0.3453∗∗∗ 0.2885∗∗∗ 0.079
(9.51) (4.05)

Model 2: 0.3325∗∗∗ 0.2829∗∗∗ 0.0013 0.081
(7.41) (3.91) (.49)

Model 3: 0.2734∗∗∗ 0.2679∗∗∗ 0.0099∗ −0.0048∗ 0.095
(4.88) (3.7) (1.77) (−1.75)

Model 4: 0.3752∗∗∗ 0.2088∗∗∗ 0.001 −0.0032 0.0027∗∗∗ 0.131
(5.68) (2.81) (.16) (−1.18) (2.78)
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Table 1.5: Tests of relations between international equity market correlations and
FX option implied volatilities — cont’d (3 of 5)

Lag FX IV VIX Adj.
Intercept CorrXY FX IV dummy dummy R2

Panel F: US-Japan equity market correlation

Model 1: 0.3717∗∗∗ 0.2088∗∗∗ 0.044
(10.75) (2.95)

Model 2: 0.2656∗∗ 0.1700∗∗ 0.0118∗∗∗ 0.093
(5.62) (2.42) (3.21)

Model 3: 0.2263∗∗∗ 0.1676∗∗ 0.0166∗∗ −0.0022 0.096
(3.28) (2.39) (2.31) (−0.78)

Model 4: 0.2788∗∗∗ 0.1465∗∗ 0.0114 −0.0014 0.0012 0.106
(3.59) (2.05) (1.41) (−0.48) (1.45)

Panel G: US-Brazil equity market correlation

Model 1: 0.2603∗∗∗ 0.5687∗∗∗ 0.331
(5.87) (8.11)

Model 2: 0.2046∗∗∗ 0.5328∗∗∗ 0.0054∗ 0.345
(3.7) (7.31) (1.67)

Model 3: 0.2208∗∗∗ 0.5331∗∗∗ 0.0031 0.0014 0.346
(3.27) (7.29) (.49) (.42)

Model 4: 0.3380∗∗∗ 0.4909∗∗∗ −0.0058 0.0029 0.0031∗∗ 0.366
(3.83) (6.53) (−0.76) (.83) (2.04)

Panel H: US-Mexico equity market correlation

Model 1: 0.3439∗∗∗ 0.4704∗∗∗ 0.229
(8.14) (7.37)

Model 2: 0.3148∗∗∗ 0.4388∗∗∗ 0.0044∗∗ 0.247
(7.15) (6.75) (2.11)

Model 3: 0.3957∗∗∗ 0.4086∗∗∗ −0.0033 0.0051∗∗ 0.264
(6.66) (6.17) (−0.75) (2.01)

Model 4: 0.4253∗∗∗ 0.3880∗∗∗ −0.0056 0.0051∗∗ 0.0013 0.273
(6.82) (5.76) (−1.21) (2.) 1.52)
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Table 1.5: Tests of relations between international equity market correlations and
FX option implied volatilities — cont’d (4 of 5)

Lag FX IV VIX Adj.
Intercept CorrXY FX IV dummy dummy R2

Panel I: US-France equity market correlation

Model 1: 0.2541∗∗∗ 0.5208∗∗∗ 0.287
(7.85) (8.74)

Model 2: 0.1898∗∗ 0.5068∗∗∗ 0.0068∗∗ 0.303
(4.29) (8.53) (2.11)

Model 3: 0.3058∗∗∗ 0.4865∗∗∗ −0.0068 0.0073∗∗∗ 0.329
(4.97) (8.25) (−1.13) (2.66)

Model 4: 0.3562∗∗∗ 0.4708∗∗∗ −0.0123∗ 0.0077∗∗∗ 0.0017∗∗ 0.343
(5.39) (7.98) (−1.87) (2.85) (1.99)

Panel J: US-Italy equity market correlation

Model 1: 0.2529∗∗∗ 0.4898∗∗∗ 0.25
(7.99) (7.96)

Model 2: 0.1758∗∗∗ 0.4733∗∗∗ 0.0081∗∗ 0.272
(3.9) (7.73) (2.38)

Model 3: 0.2904∗∗∗ 0.4551∗∗∗ −0.0055 0.0073∗∗ 0.296
(4.57) (7.49) (−0.87) (2.52)

Model 4: 0.3428∗∗∗ 0.4337∗∗∗ −0.011 0.0078∗∗∗ 0.0017∗ 0.308
(4.96) (7.05) (−1.57) (2.7) (1.85)

Panel K: US-Spain equity market correlation

Model 1: 0.2625∗∗∗ 0.4529∗∗∗ 0.21
(8.22) (7.1)

Model 2: 0.1912∗∗∗ 0.4368∗∗∗ 0.0075∗∗ 0.229
(4.17) (6.87) (2.15)

Model 3: 0.2733∗∗∗ 0.4223∗∗∗ −0.0022 0.0052∗ 0.241
(4.16) (6.62) (−0.33) (1.74)

Model 4: 0.3366∗∗∗ 0.3976∗∗∗ −0.0089 0.0058∗ 0.0020∗∗ 0.26
(4.74) (6.2) (−1.24) (1.96) (2.21)
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Table 1.5: Tests of relations between international equity market correlations and
FX option implied volatilities — cont’d (5 of 5)

Lag FX IV VIX Adj.
Intercept CorrXY FX IV dummy dummy R2

Panel L: US-STOXX equity market correlation

Model 1: 0.2841∗∗∗ 0.4779∗∗∗ 0.239
(8.26) (7.73)

Model 2: 0.2187∗∗∗ 0.4595∗∗∗ 0.0072∗∗ 0.259
(4.88) (7.44) (2.24)

Model 3: 0.3165∗∗∗ 0.4456∗∗∗ −0.0045 0.0062∗∗ 0.279
(5.15) (7.26) (−0.75) (2.3)

Model 4: 0.3808∗∗∗ 0.4239∗∗∗ −0.0113∗ 0.0068∗∗ 0.0021∗∗ 0.303
(5.81) (6.94) (−1.75) (2.54) (2.55)

In all of the above experiments, the foreign exchange option implied volatility

is for the three-month horizon. As noted earlier in Section 1.5.2, I consider one-

month, three-month, and twelve-month option implied volatilities in my analysis.

Although FX option implied volatility is a more accurate predictor of actual volatil-

ity for shorter maturity options, calculation of cross-country one-month correlations

using daily data is not always practical due to the lack of sufficient number of ob-

servations.7 Thus, the next shorter horizon (three months) is used in my regression

analysis. I recognize that there is a bit of a horizon mismatch with the VIX volatility

measure as it captures the options implied volatility on the S&P500 for the next

thirty days, not three months. Although a three-month VIX volatility measure is

available, it is not nearly as widely followed and its underlying options are signifi-

cantly less liquid. Since the focus of my analysis is on the relation between equity

7For instance, February usually contains three trading holidays for the Brazilian market
due to the Carnival holiday and one U.S. trade holiday in observance of President’s Day
(2nd Monday in February). This results in too few overlapping trading days to calculate
a significant correlation between the S&P 500 and the Bovespa for such months.
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correlations and FX implied volatility (not the VIX), I do not believe this choice

impacts the interpretation of my results.

I find that in all country pairs, with the exception of US-Switzerland and US-

Brazil, the coefficients for FX implied volatility and/or the interaction of implied

volatility and the FX dummy are significant in Models 2 and 3. This is consistent

with my theoretical premise of a contemporaneous relation between FX volatility

and equity correlations. Moreover, the use of FX implied volatility in the analysis

is backed by my earlier empirical findings that option implied FX volatility are

good proxies for subsequent FX volatility. Since all the independent variables in

relation 1.18 are known ex ante at time t and the dependent variable is the equity

correlation over time t to t + 3, my findings suggest that FX implied volatility is

useful in forecasting subsequent equity correlation between pertinent broad country

equity markets.

Next, I evaluate the performance of the aforementioned four model variations

when predicting equity correlations using out-of-sample data. In this exercise I also

evaluate how a näıve forecast would compare to these models. A näıve forecast

is defined as using the most recent three-month observed equity correlation as the

forecast for the next three-month equity correlation.

1.5.5 Evaluation of forecast accuracy of FX implied volatility models

To forecast ‘ex-ante’, I re-estimate the full model as specified in relation 1.15

while excluding the last six periods from the sample data. The goal is to use these

six periods/months in out-of-sample forecasts and compare the results with those

of the näıve model, i.e., that next period correlations are the same as the current

ones. I follow two approaches, dynamic and static forecasts, i.e., I forecast one- or

more-periods ahead ‘without ’ re-estimating the model ( = dynamic), or I re-estimate
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the model before each period forecast ( = static). The former is a more stringent

test of the model. Each periodic forecast, by my structure, is for the subsequent

three-month correlations between a pair of equity markets.

Forecast errors are calculated as MAPE (mean absolute percentage error). The

results are reported in Table 1.6. Panels A and B contain the MAPEs for the näıve

and the full model under the dynamic process, respectively, while panels C and D are

the same but under the static alternative. Panels A and B, by definition, may not be

the same. The reported errors are over ‘one period ’ only. In the vast majority of the

cases, the näıve model errors (panels A and C) are greater than the corresponding

errors in the full model (panels B and D). This is strong evidence that the full model

yields more accurate forecasts than the näıve model. Thus, the full model provides

a more accurate tool for the practitioners who use current correlations as the best

forecast for the next period. These results are not surprising since the analysis

discussed in Section 1.5.4 points out that Model 4, the complete model as described

in relation 1.15, yielded the highest R̄2. Somewhat surprisingly, the errors in Panel

D are not consistently lower than those in Panel B. In fact, for the last period,

the opposite is true. It is expected that in out-of-sample forecasts without model

re-estimation the forecast errors further out into the future would build up and be

larger. I attribute this anomaly to three factors: 1) I only estimated a limited six

periods ahead, 2) equity market correlations are known to cluster and vary gradually

over time, and 3) each correlation forecast has a two-month overlap with the adjacent

period, thus mitigating the advantage of monthly model re-estimation.

In order to evaluate the out-of-sample forecast accuracy of all the model vari-

ations I reported in Section 1.5.4 I employ a simulation analysis to systematically

produce 132 forecasts for each of the model variations. All models are re-estimated

over a fixed number of observations ( = 60 months) in a rolling regression process
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(a) Implied 3-mo volatility: eur-usd

(b) Implied 3-mo volatility: gbp-usd

(c) Implied 3-mo volatility: chf-usd

Figure 1.2: Three-month implied volatility of European currencies
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äı

ve
m

o
d
el

—
co

n
t’

d

F
o
re

ca
st

e
u
r/

g
b
p
/

ch
f/

ca
d
/

a
u
d
/

jp
y
/

m
x
n

/
b

rl
/

D
a
te

g
e
r

fr
a

it
a

e
sp

st
o
x
x

u
k

sw
z

ca
n

a
u
s

ja
p

m
e
x

b
ra

P
an

el
C

:
M

A
P

E
fo

r
n

äı
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while generating one-period ahead forecasts. The simulation is designed to retain

the models that yield statistically significant parameters in each re-estimation. Ini-

tially, I estimate each model for the first five years8 and then re-estimate it rolling

forward one month at a time. The last re-estimated model includes observations on

t− 3 equity correlation, while values for the independent variables are as of time t.9

The MAPE results of the simulation forecasts for all the models are reported in

Table 1.7. Since the forecast error measures are in percent, they are comparable

across the models. The number of occurrences (observations) used in the calculation

of MAPE (not observations in the re-estimation of equations) is included in the

table. The lowest MAPE for each currency/equity index pair is bolded. In the

calculation of MAPE for the näıve model, 132 forecasts (cases) are used. For all

other instances, fewer forecasts (cases) are used since some of the re-estimations do

not yield statistically significant coefficients (at the 10% level or below).10

8Data for the Brazilian Real implied volatility starts in 2003 so the sample period
including this currency is shorter. The data for the Mexican Peso implied volatility is
sporadic for 1999 so it also results in slightly fewer observations. All other currencies have
data for the entire sample period.

9For instance, the estimation of the first rolling regression uses monthly data from
January 1, 1999 through December 31, 2003 (five years) for the values of the VIX and FX
implied volatility, while data for 3-months ahead realized correlation extend into March
2004. The one-period ahead monthly forecast is calculated based on the regression co-
efficients and the values of the VIX and pertinent FX implied volatility as of the last
trading day in March 2004. That forecast is compared with the realized correlation over
the ensuing three months starting the first trading day in April 2004 and ending the last
trading day of June 2004. Therefore, there is no look-ahead bias and the estimation of
the regression coefficients does not employ any data from the forecast period. After calcu-
lating each forecast the regression evaluation period is rolled forward one month and the
whole process is repeated until the end of the sample period in June 2015. This yields a
total of 132 forecasts.

10For example, in order for a forecast from Model 2 to be included in the MAPE
calculation, such forecast would need to be based on a rolling regression estimation that
yielded a statistically significant coefficient for the FX implied volatility variable. For
Model 3, the case of AUD/AUS, the in-sample estimation yields a regression coefficient for
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äı

ve
fo

re
ca

st
m

o
d
el

.
T

h
e

re
la

ti
on

fo
r

m
o
d
el

s
1

th
ro

u
gh

4
ar

e
li
st

ed
b

el
ow

th
e

ta
b
le

.
F

or
ec

as
ts

ar
e

ob
ta

in
ed

b
y

on
e-

p
er

io
d

ah
ea

d
ro

ll
in

g
re

gr
es

si
on

s
st

ar
ti

n
g

w
it

h
th

e
fi
rs

t
fi
ve

ye
ar

s
of

d
at

a
an

d
th

en
re

-e
st

im
at

in
g

it
ro

ll
in

g
fo

rw
ar

d
on

e
m

on
th

at
a

ti
m

e.
S
am

p
le

p
er

io
d

is
fr

om
J
an

.
1,

19
99

th
ro

u
gh

J
u
n
e

30
,

20
15

.
T

h
e

fo
re

ca
st

s
fo

r
co

rr
el

at
io

n
s

on
e

p
er

io
d

ah
ea

d
ob

ta
in

ed
b
y

ea
ch

ro
ll
in

g
re

gr
es

si
on

es
ti

m
at

io
n

is
th

en
co

m
p
ar

ed
to

th
e

ac
tu

al
su

b
se

q
u
en

t
th

re
e

m
on

th
co

rr
el

at
io

n
.

T
h
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

fo
re

ca
st

an
d

th
e

ac
tu

al
su

b
se

q
u
en

t
va

lu
e

is
u
se

d
to

ca
lc

u
la

te
th

e
m

ea
n

ab
so

lu
te

p
er

ce
n
t

er
ro

r
re

p
or

te
d

b
el

ow
.

In
th

e
ca

lc
u
la

ti
on

of
M

A
P

E
I

ex
cl

u
d
e

in
st

an
ce

s
w

h
er

e
th

e
co

effi
ci

en
t

fo
r

th
e

p
er

ti
n
en

t
in

d
ep

en
d
en

t
va

ri
ab

le
in

ea
ch

m
o
d
el

is
n
ot

st
at

is
ti

ca
ll
y

si
gn

ifi
ca

n
t

at
th

e
10

%
le

ve
l
or

b
et

te
r.

T
h
e

n
u
m

b
er

of
fo

re
ca

st
s

in
cl

u
d
ed

in
th

e
ca

lc
u
la

ti
on

of
ea

ch
M

A
P

E
is

al
so

in
cl

u
d
ed

in
th

e
ta

b
le

.

e
u
r/

g
b
p
/

ch
f/

ca
d
/

a
u
d
/

jp
y
/

m
x
n

/
b

rl
/

M
o
d
e
l

g
e
r

fr
a

it
a

e
sp

st
o
x
x

u
k

sw
z

ca
n

a
u
s

ja
p

m
e
x

b
ra

N
ä
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To summarize the results of the simulation experiments, the forecast MAPEs for

nearly all the models are consistently lower than those for the näıve model. This

is true across all currency/equity pairs. As expected, some models perform rela-

tively better. For instance, models 2 and 3 produce the lowest MAPE in ten of the

twelve currency/equity pairs.11 The fact that these two models are driven primarily

by the FX implied volatility further strengthens my theoretical and empirical posi-

tion that FX implied volatility contains important information in forecasting equity

correlations.

1.6 Summary and Conclusions

Accurate forecasts of equity correlations are valuable in risk management and

in construction of efficient portfolios. Among practitioners and academicians it is

commonplace to use the most recent period equity correlations as the best forecasts

for the subsequent period correlations. I consider this practice less desirable and

instead provide a theoretical model to improve upon such näıve forecasts. I test and

verify my theoretical position using extensive data across twelve global markets over

192 monthly periods. The findings are very supportive and encouraging.

The measurement and forecast of global equity market correlations have so far

been mostly confined within the boundaries of the equity markets. Resort to external

variables is rare since such variables are often considered to be unrelated to the

the FX IV dummy that is significant at the 10% level (See Panel E in Table 1.5). However,
none of the five-year rolling regressions yielded a statistically significant coefficient for this
variable. Consequently, Table 1.7 contains no MAPE for Model 3, column AUD/AUS.

11Once again the Brazilian Real/Bovespa case was an exception. This is not surprising
since this group has the least amount of data (starting in 2003 versus 1999 for all other
cases) and the FX implied volatility for the Brazilian Real is the least accurate forecast
of actual observed currency volatility. See Table 1.2.
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equity markets. I depart from this position and hypothesize that such variables,

e.g., option implied FX volatilities, may indeed possess valuable information though

they may appear ‘seemingly unrelated’.

I establish a theoretical model that links foreign exchange rate volatility to global

equity correlations. I test this model empirically and evaluate its relative ex-ante

forecast accuracy extensively. I start with a stochastic model for exchange rates that

is driven primarily by the interest rate differentials among the countries. Further

assuming that market expectations for interest rates are based on the Taylor rule

and applying international finance parity fundamentals, I show that when exchange

rate volatility is elevated, the correlation between pertinent broad equity markets

are also elevated.

My theoretically derived relations between the international equity market cor-

relations and the exchange rate volatilities are contemporaneous. Therefore, an

effective predictor of exchange rate volatility would also be effective in predicting

equity market correlations. I find that option implied FX rate volatility is a good

predictor of subsequently observed exchange rate volatility, especially for the one-

month and three-month horizons. I show empirically that this variable is related to

the subsequent equity market correlations. In other words, options implied FX rate

volatility is an effective ex-ante predictor of equity market correlations.

Since my predictor, i.e., the option implied FX rate volatility, depends on cur-

rency option quotes and trades, the empirical evidence on the relation between this

variable and equity correlations appears stronger when the liquidity in the currency

options markets is higher. Further, I find this relation to be stronger among the

major currencies such as the British Pound, Japanese Yen, Euro, Canadian Dollar,

Australian Dollar, and the Swiss Franc. The Mexican Peso and the Brazilian Real

yield weaker and in some instances statistically insignificant relations.
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I also test the theoretical model in light of a few prior models. For instance, since

the relation between equity correlations and the value of the VIX as a proxy for

equity volatility is well established, I show that options implied FX volatility yields

further insights into such relation. I analyze this position by evaluating models

with and without the VIX as an independent variable. My findings indicate that

for nearly all markets the options implied FX volatility remains a significant factor

in all model variations. The full model in my analysis, which includes FX implied

volatility as well as a variables that indicate elevated levels of VIX and FX volatility,

yields the best forecasts.

Testing the practitioners’ current positions against my empirically derived fore-

casts further demonstrates the robustness and the practical use of my theoretically

derived and empirically tested models. To be thorough, I consider both ‘dynamic’

and ‘static’ processes in forecasting, wherein under the dynamic there would be no

updating of any measures whatsoever. I perform such tests out-of-sample for the

last six periods in my data sample. Based on the criteria of mean absolute percent

errors, I verify that my theoretical and empirical positions do indeed provide sub-

stantial enhancements over the näıve positions that the practitioners often tend to

take. This outcome is yielded under both processes.

Lending further support to my theoretical framework, I carry out a simulation

that results in a total of up to 132 out-of-sample forecasts for all variations of

the models, including the näıve model. This simulation effort, which is open to

a longer time horizon and is thus more stringent, uses a rolling 60-month window

and models wherein the estimated coefficients are statistically significant. This

strategy can easily be implemented by practitioners in their search for optimized

portfolios. It is simply an extra effort to take advantage of the relations that are

uncovered in this study. The simulation results underscore the superiority of my
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theoretical/empirical models under all model variations. This again represents a

solid empirical confirmation of my theoretical position.
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CHAPTER 2

CURRENCY VOLATILITY AND BID-ASK SPREADS OF ADRS

AND LOCAL SHARES

2.1 Introduction

Foreign exchange volatility is one of the main differentiating factors that drives

cross-sectional differences in liquidity across international markets when compared

with liquidity drivers in domestic markets; yet, previous studies have largely ignored

this important liquidity driver in international equities. Using bid-ask spread as a

proxy for liquidity, I identify a significant positive relation between spreads and

option-implied foreign exchange volatility (hereafter ‘FX volatility’). I document

that FX volatility accounts for a sizeable 16.6% of the variance in my comprehensive

sample of ADRs.

Due to the largeness of my sample, a low-frequency estimator is used for es-

timating bid-ask spreads. The increasing availability of high-frequency data has

not obviated the use of low-frequency spread estimators. Studies that cover time

periods preceding the availability of intraday data and those that include compre-

hensive samples of international stocks for which intraday data are unavailable still

make use of such estimators. Opting to stay in this domain of analysis, I employ

the bid-ask spread estimator introduced by Corwin and Schultz (2012) to pioneer a

comprehensive study of the impact of currency volatilities on the spreads of ADRs

and their underlying local shares. Frequent swings in currency markets lend further

relevance to a comprehensive study of the impact of currency volatilities on market

liquidity, as measured by spread, across global markets.

My analysis contributes to current literature by proposing FX implied volatility

as a determinant of liquidity and examining whether the relation between spreads
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and FX implied volatility is stronger for ADRs than for local shares. My insights

add to the understanding of the interconnectedness of global markets and could be

used by global investors when choosing between ADRs and underlying local shares

in their portfolios.

Aside from Corwin and Schultz (2012), several other low-frequency bid-ask spread

estimators exist. Roll (1984) covariance spread estimator is a seminal example and

is still in use today. Other examples include the estimators described in Lesmond

et al. (1999), hereafter ‘LOT estimator’, and Holden (2009). I choose to employ

Corwin and Schultz (2012) due to the simplicity in the calculation of the bid-ask

spread estimator and the higher correlation of the estimator, as opposed to the afore-

mentioned additional estimators, with the actual spread calculated using intraday

TAQ data as documented in their paper. The ease of calculation makes the use of

a comprehensive stock sample possible and the documented higher accuracy of the

bid-ask spread estimator increases the confidence that my results reflect accurate

spread variations in the sample.

In finance literature, liquidity measures come in various flavors. The quoted or

effective bid-ask spread is a common barometer of liquidity in a market. It is also

well established that price, volume, volatility, and firm size are major factors in the

liquidity of stocks. Stoll (2000) provides evidence of the cross-sectional relation of

quoted proportional half spread (0.5 × (Bid-Ask)/Price) to these trading character-

istic factors (price, volume, volatility and firm size) using high-frequency data for

3,890 NYSE-, AMSE-, and NASDAQ-listed stocks (excluding ADRs and REITs)

over the three-month period from December 1997 to February 1998. The impact

of currency volatility on the bid-ask spread of global stocks is largely unexplored.

Most studies linking foreign exchange and global shares focus on the role of for-

eign exchange, in conjunction with their underlying local shares, in driving ADR

43



returns. Examples of such studies include Alsayed and McGroarty (2012), Gagnon

and Karolyi (2010), Aquino and Poshakwale (2006), Ely and Salehizadeh (2002),

Kim et al. (2000), Poshakwale and Aquino (2008), and Suarez (2005).

Stoll (2000) attributes the link of quoted proportional half spread with the stocks

trading characteristics to such factors as inventory and order processing attributes.

Higher volume, frequency of trades, and larger firm size increase the odds of locat-

ing a counterparty thus reducing the risk of inventory buildup. The stock prices

control for discreteness and reflect the expectation that lower-priced stocks tend to

be riskier. With the minimum tick size at $0.01 in the U.S., lower priced stocks

will tend to have larger proportional spreads than their higher-priced counterparts

all else being equal. Currency volatility is another source of firm risk for U.S. and

international firms alike. Consistent with Jorion (1990), this is especially true for

multinational corporations whose earnings and valuations are greatly affected by ex-

change rates. In contrast, Bartov and Bodnar (1994) find no significant correlation

between abnormal returns of firms with international activities and fluctuations in

the U.S. dollar.

My study aims to explain and reconcile the above controversial findings. I focus

on the relation of bid-ask spreads to currency volatility for ADRs and their under-

lying firms. Since ADRs are US dollar-denominated receipts for underlying shares

of international firms, changes in the exchange rate should have a direct effect on

the price of ADRs as the possibility of arbitrage ensures that ADR prices and the

dollar-denominated prices of their underlying shares move in tandem. Currency

fluctuation is also a source of risk for underlying local shares from the perspective

of a foreign investor as it increases uncertainty in the dollar price of the asset.

Lesmond (2005) provides a comprehensive cross-sectional and time-series analy-

sis of the liquidity of emerging markets. He uses the LOT bid-ask spread estimator
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as the primary measure of liquidity. He also performs a factor analysis of five liq-

uidity measures including the LOT estimator, the Roll (1984) covariance bid-ask

spread estimator, and Amihud (2002)’s illiquidity measure. Overall, he finds great

dispersion in market liquidity across the 31 emerging markets in his sample. His

findings attest to my aim to search for the source of these dispersions. I attribute

this source, or a major portion of it, to FX volatility.

Liquidity has several aspects: effective spread, price impact, turnover, market

depth, and relative trading frequency. As Amihud (2002) states, none of these

measures capture all aspects of liquidity. The focus of this study is therefore not to

evaluate the various liquidity measures. Rather, its goal is to investigate the impact

of foreign exchange volatility on one of the measures of liquidity, i.e., the bid-ask

spread as estimated by Corwin and Schultz (2012). I examine the FX volatility

impact in a simple one-factor model and in conjunction with known determinants

of spreads such as price, volume, size, and volatility. I also employ fixed effects

and dynamic panel analyses to contrast the impact of foreign exchange volatility on

ADRs with their underlying local shares.

By definition, ADR prices should be a function of the underlying local share

prices and the pertinent foreign exchange rates. Therefore, ADR volatility and

bid-ask spreads should be positively related to foreign exchange volatility and FX

bid-ask spreads assuming no offsetting fluctuations in the underlying local share

prices. The relation between bid-ask spreads of the underlying local shares and FX

volatility is not as clear-cut. Nonetheless, it intuitively makes sense that increased

volatility in a given foreign exchange rate would be interpreted by the market as

increased risk for assets denominated in that currency, thus impacting the liquidity

in foreign local shares. In the case of firms whose products are closely linked to the

US dollar, such as commodity producers, the link between their local share prices and

45



foreign exchange volatility should be even stronger. I find that currency volatility

has a stronger impact on the bid-ask spread of ADRs than on their underlying local

shares.

2.2 Prior literature

The main sources of liquidity drivers considered in Stoll (2000) – namely, volume,

price, size, and volatility – have previously been identified separately as determinants

of trading friction/costs. Harris (1994) considers price as a proxy for discreteness. He

notes that minimum price variations imposed by stock exchanges result in discrete

bid-ask spreads. He also argues that in the presence of these imposed minimum

spreads, the resulting spreads are wider than they would be otherwise. Using a

discrete spread model, he shows that stocks priced below $10 would have 38% lower

spreads if the minimum spread were to be set at 1/16 as opposed to 1/8 effective at

the time of his analysis. Since then, the US Securities and Exchange Commission

(SEC) has mandated decimalized quoted stock prices (as of April 9, 2001), resulting

in tighter spreads and a current minimum tick of $0.01 in the US.

Benston and Hagerman (1974) investigate the determinants of bid-ask spreads in

the over-the-counter (OTC) market. Among the significant determinants of spread

identified in their study is price per share. This is consistent with the notion in Stoll

(2000) that price is a proxy for risk since lower-priced stocks tend to be riskier.

Pagano (1989) examines the relation between trading volume and liquidity. Un-

der the assumption that in thin markets traders placing large orders will experience

adverse price changes, he suggests a positive feedback loop where trading volume

and market liquidity feed on each other. Brennan and Subrahmanyam (1995) cor-

roborate that volume is related to market depth. Stoll and Whaley (1983) show

that firm size is negatively associated with trading costs as reflected in the bid-
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ask spreads. They contend that the higher transaction costs for small firms partly

explain the small firm effect attributed to Banz (1981) and Reinganum (1981).

Prior to Stoll (2000), other studies examined the relation of trading costs to a

combination of these aforementioned liquidity drivers. For instance, in their study of

determinants of transaction costs for institutional investors with different investment

styles, Keim and Madhavan (1997) find that volume, volatility, price, and firm size

are associated with trading costs. They also find differences in trading costs driven

by the exchange on which the stock was listed. In turn, Cohen et al. (1976) argue

that volatility and liquidity are inversely related since less liquid markets tend to

be more volatile. They also identify market thinness as a major determinant of

common stock returns volatility across international markets.

2.3 Data and methodology

For FX volatility, I use the forward-looking at-the-money one-month implied

volatility calculated by Bloomberg using quotes for currency options. The Bloomberg

data is daily but I use only the month-end observations thus yielding monthly ob-

servations for my sample universe. Bloomberg implied volatility measures can be

used to obtain the correct Black Scholes price for a delta-neutral straddle struck at

maturity. Bid-ask spreads are estimated according to Corwin and Schultz (2012)

using Bloomberg’s historical daily closing, high, and low prices for ADRs and their

respective underlying local shares. For each security in my sample I estimate an

average bid-ask spread for each month. I also use historical monthly averages for

price, trading volume and market capitalization as additional independent variables

in my regressions. Recent stock return volatility is the remaining independent vari-

able in my analysis. The value for this variable is calculated monthly using daily

stock returns over the most recent twelve months. For example, the recent return
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volatility for a given stock i in my sample for the monthly observation corresponding

to December 2014 is calculated as the variance of the daily returns for stock i from

January 1, 2014 through December 31, 2014. My sample period is from January

1, 1999 to December 31, 2015. My sample includes 545 securities (including single

ADRs, ADRs, and underlying shares) from firms across 34 markets with 25 distinct

local currencies.

In calculating the estimated bid-ask spread, I implement the adjustments de-

scribed in Corwin and Schultz (2012). To adjust for overnight price movements, two

adjustments are made. When the low price at day t+ 1 is greater than the closing

price at day t, both the high and low prices for day t + 1 are decreased by the as-

sumed overnight move from day t close to day t+ 1 low. Conversely, when the high

price at day t+1 is less than the closing price at day t, both the high and low prices

for day t + 1 are increased by that difference. For stocks that trade infrequently,

sometimes the low and high prices for a given day t are equal. In those instances,

the previous day’s high/low range is used as day’s t high and low prices as long as

the initial equal high and low prices for day t are within the previous day’s high/low

range. If these high/low prices are outside the previous day’s high/low range, then

day t’s high and low prices are adjusted to reflect the same range as the previous

day, but adjusted (increased or decreased) by the amount that the initial high/low

price was outside the previous day’s range. Finally, the bid-ask estimate may be

negative. This happens because the estimator assumes that the variance of a given

stock over a two-day period is twice as large as the variance over a single day, and

this does not always happen during volatile periods or when overnight changes are

large. In case of negative bid-ask estimates, the estimate is set to zero. The bid-ask
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spread estimate is calculated as:

S =
2[exp(α)− 1]

1 + exp(α)
(2.1)

where α is defined as:

α =

√
2β −

√
β

3− 2
√

2
−
√

γ

3− 2
√

2
(2.2)

and β and γ are calculated as:

β =
1∑
j=0

[
ln

(
Ht+j

Lt+j

)]2

(2.3)

and

γ =

[
ln

(
Ht,t+1

Lt,t+1

)]2

(2.4)

The notations are as follows. Ht+j represents the high price for a given stock

on day t + j, Lt+j represents the low price for a given stock on day t + j, Ht,t+1

represents the high price for a given stock over a two-day period from t to t + 1,

and Lt,t+1 represents the low price for a given stock over a two-day period from t to

t+ 1. For a detailed derivation of the above formulas please see Corwin and Schultz

(2012).

For each stock in my universe and for each month-end day t in my sample period

I calculate a rolling thirty-day average of the estimated bid-ask spreads calculated

as described above. This thirty-day period corresponds to the time to expiration

for the currency options used in the calculation of the FX implied volatility. This

yields a potential maximum 204 (12 × 17 years) monthly observations for each ADR

in my sample that have been in effect for the entire sample period. The number

of observations for each ADR and underlying local share varies according to the

number of months in my sample period over which the security has been listed and

for which I can estimate the spread according to my methodology. Each monthly

observation in my sample includes the 30-day option-implied FX volatility observed
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at month-end, the estimated average bid-ask spread over that same 30-day period,

and the monthly averages for historical price, volume, market capitalization, and

recent return variance calculated as described in the beginning of this section. In line

with Stoll (2000), price, volume, and size are log scaled in my regression analyses.

Initially, I divide my universe into two subgroups: ADRs and local shares. I

perform separate simple pooled OLS regressions for each subgroup to estimate the

relation between the average monthly bid-ask spread and option implied currency

volatility. I then examine whether the slopes in the relation for these two subgroups

are equal. Specifically, I estimate:

Spreadi,t,t+30 = λ0 + λ1FXIVi,t + εt (2.5)

where Spreadi,t,t+30 is the average spread for stock i over the thirty-day calendar

period from t to t+ 30, and FXIVi,t is the 30-day option implied volatility for the

relevant currency i observed at day t. I also estimate an expanded version of relation

2.5 that includes price, volume, firm size (market capitalization) observed on day t,

and recent daily return variance over the past year (see relation 2.6 below). The last

variables are included to capture the long-term effect, if any, and evaluate whether

currency volatility yields any additional information regarding bid-ask spreads than

what can be inferred by price, volume, firm size, and recent return variance. The

expanded formulation I evaluate is:

Spreadi,t,t+30 = λ0 + λ1FXIVi,t + λ2Pricei,t,t+30 + λ3V oli,t,t+30

+ λ4Sizei,t,t+30 + λ5σ
2
i,t−252,t + εt (2.6)

where Pricei,t,t+30 is the log-scaled average daily closing price for stock i over the

thirty-day calendar period from t to t + 30, V oli,t,t+30 is the log-scaled average

trading dollar or local currency volume (volume weighted average price multiplied
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by average share volume) for stock i over the thirty-day calendar period from t to

t+ 30, Sizei,t,t+30 is the log-scaled average market capitalization for stock i over the

thirty-day calendar period from t to t+30, and σ2
i,t−252,t is the average daily variance

of returns for stock i over the previous twelve months.

My sample universe is a panel data set with firms (ADRs and local shares) as

cross-sections over monthly periods. For the local shares, price, volume, and firm

size are measured in their respective local currencies. Therefore, a simple pooled

OLS regression of the observations for all these firms would be problematic. I thus

perform a panel analysis and estimate firm fixed effects. I also employ dynamic panel

data estimation to evaluate a modified version of relation 2.6 that includes the first

lag of the dependent variable as an instrumental variable in the GMM estimation.

The expanded relation is:

Spreadi,t,t+30 = λ0Spread 1i,t−30,t + λ1FXIVi,t + λ2Pricei,t,t+30 + λ3V oli,t,t+30

+ λ4Sizei,t,t+30 + λ5σ
2
i,t−252,t + εt (2.7)

I initially estimate relation 2.7 for the entire ADR subgroup. Then, I subdivide

the entire sample universe into ADRs and local shares subgroups, and estimate it

separately for each currency. I follow the methodology proposed by Blundell and

Bond (1998), which is an extension of the model in Arellano and Bond (1991). These

methodologies employ GMM-style instruments making use of multiple lags. Blundell

and Bond (1998) employ both lagged levels and lagged differences, while Arellano

and Bond (1991) uses only lagged levels. The difference GMM approach transforms

the data to remove the fixed effects. The number of instruments produced are

quadratic in the length of the time series. Because the length of the time series in

my panel data is well over 100, I limit the number of past lags used to 5. Dynamic

panel data estimators are highly sensitive to model specification and instruments.
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So, I impose a couple of different lag restrictions in the dynamic panel data analysis

to ensure that my model is reasonably robust to these variations.

Because price, trading volume, and firm size are by definition interconnected

(e.g. firm size = price × shares outstanding) I expect a high degree of correlation

among these variables. In order to construct a more parsimonious model devoid

of multicollinearity, I subject the predictor variables in equation 2.6 to a principal

components analysis. This analysis yields insights into the proportions of the vari-

ance in the data that is explained by each retained component. I then utilize these

uncorrelated (orthogonal by design) components to construct optimally-weighted

composite component scores for each observation in the data. These scores are used

to identify variables in a more parsimonious model to examine the relation between

bid-ask spreads and liquidity drivers after eliminating the multicollinearity issues

inherent in the estimation of equation 2.7. I limit my principal components anal-

ysis to the ADR subgroup in my sample because the variables in the local shares

subgroup are measured in various distinct currencies.

2.4 Empirical results

Table 2.1 contains summary statistics for the bid-ask spread and FX implied

volatility employed in my analyses. Single ADRs1 consist primarily of Chinese firms

(82 out of 101 firms) whose underlying currency does not float freely against the

US dollar. To account for this special situation, I provide the major results of my

analyses with and without these firms. Excluding single ADRs, the underlying assets

for the firms in my sample are mostly denominated in Euro, British Pound, Brazilian

Real, and the Ruble. The magnitudes of FX implied volatility in my sample range

1Single ADRs are ADRs for foreign firms that do not have local exchange listed shares
in their respective home markets.
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from as low as 0.64 for the Hong Kong dollar, due to its peg to the US dollar, to as

high as 16.6 for the South African Rand. The estimated monthly spread estimates

range from below 0.1% to as high as 28.6%. My pooled sample contains a total of

74,551 firm/month observations though some of these records are dropped in the

regression analyses due to missing values for some variables.

2.4.1 Correlation among independent variables

The trading characteristics (price, trading volume, size, and recent return vari-

ance) suggested by Stoll (2000) as cross-sectional determinants of proportional half

spreads exhibit strong correlations with each other. Higher prices are associated

with larger size as well as higher trading volume. In turn, larger firm size is also

associated with larger trading volume. The relation between FX implied volatility

and these trading characteristics is not well defined. A low correlation would be an

indication that FX implied volatility contains information about the bid-ask spread

that is not captured in these trading characteristics. I calculate, and report in Ta-

ble 2.2, Pearson correlation coefficients for the FX implied volatility, price, trading

volume, size and recent return variance for four subsamples: all ADRs and local

shares (Panel A), non-single ADRs and local shares (Panel B), all ADRs (Panel C)

and all local shares (Panel D). I find that there is very low correlation, in some

cases negative, between FX implied volatility and the other trading characteristics.

As expected, correlation among these trading characteristics are high, ranging from

0.49 to 076. This raises the issue of multicollinearity when regressing bid-ask spreads

on these variables. While the overall reliability of the model would not necessarily

be compromised, the interpretation of the impact of each predictor on the bid-ask

spread would be challenging from the results of the full model.
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2.4.2 ADRs versus Local shares

I initially examine the effect of FX implied volatility on the estimated spreads.

I also investigate whether the strength of the relation between bid-ask spread and

FX implied volatility is different for the ADRs versus the local shares subgroups.

I estimate pooled regression separately for the ADRs (excluding single ADRs) and

for the local shares. I then test for the equality of regression coefficients in these two

estimations. The results of this analysis are tabulated in Table 2.3. The relation for

ADRs yields a higher R2.

I also compute least square means2 of the estimated spreads for the ADRs and

the local shares separately. I use least square means, as opposed to an arithmetic

mean, in order to account for unbalanced/missing data when comparing the two

subsamples. I find that average spreads for ADRs are significantly smaller than

average spreads for local shares in my sample. Because my high-low spread estimator

is measured in percentages, the spreads in my estimations can be compared across

currencies. My findings suggest lower trading costs for the NYSE and NASDAQ

where the ADRs trade than for the various exchanges where their corresponding

underlying shares trade. Taxes, fees, commissions, and structural differences across

markets will likely widen the gap in cost differences. Lesmond (2005) includes

commissions in his comparison of liquidity across emerging markets.

2.4.3 Fixed-effects analysis

Before employing panel estimation on relation 2.6, I find a statistically significant

relation between bid-ask spread and FX implied volatility, price, volume, size, and

2Least square means is a mean estimated from a linear model after controlling for other
covariates in the model.
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Table 2.3: Relation of bid-ask spreads to FX volatility: ADRs vs. Local shares

This table displays the results of separate estimations for the pooled regression of
my estimated monthly average spread on implied FX volatility for ADRs (excluding
single ADRs) and local shares from my sample universe. Also included below are
the test for equality of the slopes for the ADR and Local share estimation as well as
the least square means of their respective estimated average spreads. Sample data is
monthly from January 1, 1999 to December 31, 2015. The last monthly observation
corresponds to the option implied volatility on November 30, 2015 and the average
of estimated spreads over the 30-day period starting December 1, 2015. ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10%, 5%, and 1% level, respectively. T-stats
are in parentheses.

Spreadi,t,t+30 = λ0 + λ1FXIVi,t + εt

Prob. LSMean†
Obs. Int. FXIV R2 >F-val Spread

Panel A: Regression Results

ADRs 32, 129 0.4766∗∗∗ 0.0143∗∗∗ 0.058
(111.88) (44.46)

Local Shares 36, 017 0.6317∗∗∗ 0.0156∗∗∗ 0.02
(96.38) (27.39)

Panel B: Test for equality of slopes

ADRs vs. Local 0.034

Panel C: Least Square Means

ADRs 0.6198
Local Shares 0.7884

Panel D: Test for equality of LS-Means

H0:
LSMean ADR=Local < .0001
† Least square means is a mean estimated from a linear model after controlling for other covariates in the model.

recent return variance using simple pooled univariate regressions. To conserve space,

I do not tabulate these results. Based on adjusted R2, size and recent return variance

explain most of the variation in the estimated spread when compared with the

other independent variables. FX implied volatility yields the third highest adjusted

R2 among the univariate estimations. The signs of the regression coefficients are
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consistent with the results in Stoll (2000). FX implied volatility is positively related

to spread suggesting that higher FX volatility is associated with larger spreads. The

intuition behind this relation is that high FX volatility increases the volatility in

the US dollar denominated value of international firms, thereby prompting traders

in these shares to opt for different strategies, such as a preference for market orders

over limit orders.

The relation of bid-ask spreads to the other variables considered in my study

are well documented in the finance literature. I confirm a negative relation between

price and spreads, consistent with price being a proxy for risk and the notion, as in

Stoll (2000), that lower-priced stocks tend to be riskier. It is also consistent with

Harris (1994) who finds price as a proxy for discreteness, as well as Benston and

Hagerman (1974) who show a negative relation between price and bid-ask spreads

in the OTC market. I also observe a negative relation between market depth and

bid-ask spreads, where dollar trading volume is a proxy for market depth. This

view is supported by Pagano (1989) and Brennan and Subrahmanyam (1995). The

relation between bid-ask spreads and firm size is also negative, consistent with Stoll

and Whaley (1983). The intuition behind this relation is that larger firm sizes lead

to larger trading volumes and this increased liquidity in turn drives down trading

spreads. Finally, I confirm a positive relation between bid-ask spread and recent

return variance, a measure of volatility. Volatile stocks usually induce traders to

favor market orders over limit orders for improved immediacy in trading execution.

This has the effect of overall wider spreads. Volatility is also associated with lower

liquidity, a concept well documented in Cohen et al. (1976).

I do not necessarily, a priori, expect the sign of these relations to hold in a

multivariate regression due to multicollinearity and endogeneity. For instance, Keim

and Madhavan (1997) document that price, volume, firm size, and volatility are
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related to trading costs. In the multivariate fixed-effects estimation reported in

Panel A of Table 2.4, the coefficients on volume are positive (for both ADR and local

share subgroups). This is contrary to the intuition suggesting a negative relation

as discussed earlier in this section. I attribute this to shortcomings in estimation

methodology, and at best consider it a novelty when other controlling variables

are present. Note that for the universe of ADRs and local shares excluding single

ADRs I find a Pearson correlation coefficient of 0.72 between volume and price

and a correlation coefficient of 0.73 between volume and size (see Panel B, Table

2.2). This suggests that much of the impact of volume on bid-ask spreads might

already be reflected by the price and firm size variables. The coefficients on FX

implied volatility in Panel A of Table 2.4 remain positive and highly statistically

significant. This suggests that FX implied volatility contains information about

the bid-ask spread that is not captured by the other factors introduced by Stoll

(2000), confirming a major premise in the motivation for this study. This notion is

reinforced by the low correlation between FX implied volatility and the other Stoll

(2000) variables reported in Table 2.2.

2.4.4 Relation of bid-ask spread to liquidity factors by currency

Panel B contains the results from panel regression estimation of relation 2.6

for each currency in my sample, estimated separately for ADRs and local shares.

The results exclude some of the currencies in my sample due to lack of sufficient

data and/or the presence of only a single firm cross-section in the panel data for

each of those currencies. Considering each currency sub-panel separately is likely

to underestimate/overestimate the explanatory power of the liquidity factors, but

it also serves to highlight the differences in the relation between spreads and liquid-

ity determinants across currencies. The sample used in Stoll (2000) includes only
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domestic US firms and is thus a more uniform sample than the one in my study.

A more diverse sample is likely to exhibit cross-firm and cross-currency variations

in liquidity, consistent with Chordia et al. (2000) and Hasbrouck and Seppi (2001)

findings of weak commonality in liquidity. Another potential source of variation in

liquidity in my sample, versus the domestic sample in Stoll (2000), is the variation in

legal investor protection across countries. López de Silanes et al. (1998) document

sources of liquidity variation between French/civil law countries and English/code

law countries.

Firm fixed effects are detected in most of the estimations documented in Table

2.4. The exceptions are the estimations that use panel data for firms whose local

currencies include the Norwegian Krone (NOK), the Peruvian Nuevo Sol (PEN),

and the Taiwan Dollar (TWD). A common factor among these estimations is the

small number of firm cross-sections, though firm fixed effects are still detected for

other currencies with low numbers of firm cross-sections.

The signs on regression coefficients are not uniform across currencies. Some of

the differences likely stem from unobserved effects related to each currency. A low

number of cross-sections for some currencies likely also plays a part. The coefficient

on FXIV, the main variable in my study, yields the most consistent result in Table

2.4. Forty-four of the 48 estimations in Panel B of Table 2.4 show a statistically

significant and positive coefficient on FXIV as suggested by my theoretical position

that high FX volatility should lead to wider spreads. Once again, multicollinearity

is the likely cause of inconsistent regression coefficient signs in Panel B of Table 2.4.
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2.4.5 Dynamic panel data estimation of relation between spreads and

liquidity determinants

Table 2.5 displays the results from the dynamic panel data estimations employing

GMM. Panel A shows the results for ADRs and local shares separately but including

firms across all currencies. All regression coefficients are significant but once again

the sign on the coefficient for volume is contrary to the idea that higher trading

volumes are associated with lower trading spreads. The low p-values for the Sargan

test leads me to reject the null hypothesis that specification 2.7 is over-identified.

Considering the estimations for each currency reported in Panel B, exceptions occur

in only three instances.

Similar to the fixed-effects analysis for each currency discussed in Section 2.4.3,

twelve currencies are dropped from the dynamic panel data estimation due to the

insufficient number of firm cross sections for a given currency. As was the case

in Table 4, the signs of the coefficients in Panel B in Table 2.5 are not consistent

across the estimations for the various currencies. The coefficients on FX volatility

for estimations with at least fifteen cross-section firms are consistently statistically

significant and positive, indicating that high FX volatility is associated with higher

spreads. The only exception is the case of the estimation for the Hong Kong dol-

lar subsample when the coefficient on FX volatility is not significant for the ADR

subgroup and is only significant at the 10% for the local shares subgroup. I at-

tribute this to the fact that the Hong Kong dollar is pegged to the US dollar thus

substantially limiting the volatility in the HKD/USD exchange rate.
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2.4.6 Principal components analysis of determinants of liquidity

As reported in Table 2.2, some of the determinants of liquidity in my analysis

exhibit a high degree of correlation among themselves. Namely, using data for my

entire sample universe, volume exhibits a Pearson correlation coefficient of 0.73 with

price, and 0.76 with firm size. In turn, the correlation between firm size and price

is 0.57 (see Table 2.2 Panel A). FX implied volatility and recent return variance

show low correlations with each other and with the remaining liquidity drivers. I

thus subject the determinants of liquidity in my multivariate formulation described

in relation 2.6 to a principal components analysis. I limit this exercise to the ADR

subsample to ensure that variables (specifically, price, volume, and firm size) are

measured in the same currency. I extract three components, based on the results of

a scree test, and perform an orthogonal rotation. Combined, these three components

account for 82.3% of the variance in my data.

The estimates of liquidity variables and their corresponding factor loadings are

presented in Table 2.6. Post rotation, a variable is considered to load on a given

component when the factor loading is 0.40 or greater for that component and less

than 0.40 for the others. Based on this criterion, three of the liquidity variables

(i.e., price, volume, and firm size) are found to load on the first component. I label

this component “current traits”. Recent return variance is the only variable found

to load on the second component, thus eponymously labeled “return variance”. FX

implied volatility is the only variable found to load on the third component, thus

eponymously labeled “FX volatility”. By design, the correlation among the retained

components is zero.

Current traits, represented by component 1, accounts for 45% of the variance in

the data. Recent return variance (component 2) accounts for 20.6%, and FX implied
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volatility accounts for an additional 16.6%. In total, the three retained components

account for a combined 82.7% of the variance in the data. While component 3,

heavily loaded by FX implied volatility accounts for the smaller percentage of the

variance in the data when compared to the other two retained components, it still

accounts for a sizeable 16.6%. This means that prior academic studies on deter-

minants of liquidity in international markets did not include a significant driver of

liquidity. This study closes that gap with a comprehensive analysis of the impact

of well-established determinants of liquidity such as price, volume, firm size, and

return variance in conjunction with my proposed variable – FX implied volatility.

Table 2.6: Principal components analysis of liquidity drivers — ADR subgroup

This table contains the results from the principal component analysis of the drivers
of average monthly bid-ask spreads: price, volume, firm size, FX implied volatility,
and recent return volatility. As in Stoll (2000), price, volume, and firm size are log-
scaled. Loadings on each component from each variable are included in the table.
The proportional and cumulative variance explained by each component is included
at the bottom of the table.

Component

Variable 1 2 3

FX imp. vol. −0.04 0.05 0.99
Price 0.69 −0.25 −0.16

Volume 0.88 −0.06 0.08
Size 0.88 −0.21 −0.04

Return variance (σ2) −0.16 0.97 0.04

Pct. of Variance Explained

Proportion 0.4527 0.2084 0.1662
Cumulative 0.4527 0.661 0.8273

I then employ the derived principal components (PCs) as predictor variables in

relation 2.6. By design, the multicollinearity that is present in the initial estimation

of equation 2.6 is now fully eliminated. I estimate OLS regression for the ADR

subsample. The results are reported in Table 2.7.
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Table 2.7: Relation of spreads to principal components — ADR subgroup

This table contains the results from the OLS regression of the component scores from
the principal component analysis on bid-ask spreads. These scores are optimally-
weighted linear composites of the liquidity drivers that load on each component as
reported in Table 6. These drivers include price, volume, firm size, FX implied
volatility, and recent return volatility. As in Stoll (2000), price, volume, and firm
size are log-scaled. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and
1% level, respectively. T-stats are in parentheses.

Spreadi,t,t+30 = ϕ0 + ϕ1Comp1 + ϕ2Comp2 + ϕ3Comp3 + υt

ADRs only

Intercept 0.6207∗∗∗

(267.9)
Princ. Comp1—Current Traits −0.1881∗∗∗

(−81.15)
Princ. Comp2—Recent Variance 0.2005∗∗∗

(86.49)
Princ. Comp3—FX Volatility 0.1121∗∗∗

(48.35)

Obs. 32, 129
Adj. R2 0.338

The estimated coefficients of each of the PCs – i.e., the predictor variables –

are consistent with the intuitions discussed in detail in Section 2.4.3. The first PC

(current traits) has a negative coefficient reflecting the inverse relation between bid-

ask spreads and the three trading characteristics that comprise the current traits

component: price, volume, and firm size. Intuitively, all three traits are negatively

related to spreads. Lower priced stocks tend to be riskier and are thus associated

with larger trading spreads. Lower stock prices also tend to result in larger percent

spreads due to fixed fees and commissions in some markets. Lower volume is asso-

ciated with higher inventory risk, and consequently larger spreads, due to greater

difficulty in locating counterparties for a trade. Smaller firms tend to attract less

capital for trading, resulting in lower liquidity and larger spreads. The inverse rela-
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tion between market capitalization and bid-ask spreads is well documented in Stoll

and Whaley (1983).

The coefficient for the second PC (recent variance) is positive, indicating a pos-

itive relation between volatility and bid-ask spreads. This results from the inverse

relation between volatility and liquidity documented in Cohen et al. (1976).

The coefficient for the third PC (FX implied volatility) is also positive and

highly statistically significant. This implies, as posited earlier in the motivation

for this study, that higher volatility in FX markets increases the risk of foreign

currency-denominated assets and that this risk is reflected in wider bid-ask spreads.

Compared with the estimates reported in Tables 2.4 and 2.5, the results in Table

2.7 are more parsimonious and devoid of multicollinearity issues, leading to more

reliable interpretations of the coefficients.

2.5 Summary and conclusions

I introduce a new factor to explain cross-sectional variations in liquidity, measured

as proportional bid-ask spread, among international firms. I contribute to the extant

literature by introducing this new factor and by expanding the analysis to the broad

ADR universe and their underlying local shares. I find that FX implied volatility

yields additional information about bid-ask spreads of international shares that is

not captured by well-established liquidity factors documented in prior literature. I

also employ the more recent spread estimator, which is a simple and more economical

substitute for the spread measures that are derived from high-frequency data.

Since the liquidity factor I introduce is a forward-looking estimator of FX volatil-

ity, my results suggest that my factor can be used to predict subsequent trading

spread. This is in contrast with the contemporaneous relation for spread and trading
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characteristics reported in prior studies. This distinction expands and underscores

the usefulness of my findings in a forward-looking setting.

I use a broad universe of international firms and ADRs to establish the relation

between spread and liquidity determinants in a global setting. I find that when

each variable is considered separately in univariate regressions, all relations hold

according to previous findings and my a priori intuitions are supported – price,

volume, and firm size are negatively related to spread, while recent return variance is

positively related. FX volatility, central to the motivation for this study, is positively

related to bid-ask spreads. To control for other variables, I expand the univariate

pooled OLS regressions. Without such controls, the results will be distorted by the

presence of the confounding effects. My analyses are conducted separately for ADRs

and local shares and I show that these two universe are statistically significantly

different from each other in their responses to the spreads. The average estimated

spread for ADRs are smaller than those for local shares. This suggests that trading

costs in ADRs on average are expected to be lower than in the local shares.

In multivariate analyses, the signs on the coefficients for the liquidity driver

variables are inconsistent. I attribute this problem to multicollinearity driven by

the high correlation among the trading characteristics variables: price, volume, and

firm size. I report these correlations and show that FX implied volatility has very

low correlations with these variables and thus represents an excellent addition to the

multivariate analyses. I employ fixed-effects as well as dynamic panel estimations

to test the theoretical specifications that I posit. I document the relation between

spread and FX implied volatility for each currency subsample, highlighting the cross-

sectional variations that are driven by country and currencies.

Finally, I use principal components to address the multicollinearity in the data.

I then show that for the ADR subsample, after adjusting for multicollinearity, the
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relation between liquidity drivers and spread behaves according to my a priori ex-

pectations. More importantly, I also show that FX implied volatility explains 16.6%

of the variation in my data, implying that my proposed liquidity driver should have a

material impact on spreads, heretofore largely unexplored in the financial literature.
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CHAPTER 3

DO AGGREGATE ACCRUALS YIELD INCREMENTAL INSIGHTS

INTO S&P 500 VOLATILITY?

3.1 Introduction

The S&P 500 is one of the most important proxies for the U.S. market. As such,

forecasting volatility trends for the index is vital in financial risk management. VIX,

an implied volatility measure for the S&P 500 developed by the CBOE, is widely

used in risk management and has attracted interest from academic researchers. The

CBOE has capitalized on the wide acceptance of the VIX measure as a benchmark

for stock market volatility via the introduction of a bevy of derivative products such

as VIX futures, VIX options, VIX binary options, and mini-VIX futures. In turn,

academicians have proposed a multitude of models, mostly stochastic ones, for pric-

ing VIX futures and options. This study is an effort to augment the current body of

research on VIX and market volatility by investigating whether there is an account-

ing relation to subsequent U.S. market volatility. While such a link, if empirically

established, could be used to develop a VIX futures pricing model, development of

a full pricing model is beyond the scope of my efforts. Using accounting data, I

examine the relation between total accruals, aggregated for all S&P 500 members

for which accruals can be calculated, and subsequent volatility for the S&P 500.

I then verify whether a relation holds in the presence of other market signals

for one-year ahead market volatility. The outlook for earnings, interest rates, ex-

change rates, economic growth, and political developments all play a role in the

equity markets’ expectations for subsequent volatility. In the near term, the VIX,

also known in Wall Street parlance, as the “fear gauge”, is commonly believed to

incorporate all of the factors reflecting the market’s expectation for volatility in the

73



S&P 500 over the next thirty days.1 Versions of the VIX based on three-month

and six-month S&P 500 options are also disseminated by the CBOE, but are not

as widely followed. While a version based on S&P 500 options expiring in one-year

could be computed according to the VIX methodology, further out-of-the-money

strikes for longer horizon options are normally not very liquid, calling into question

the accuracy of such a measure. Therefore, I employ liquid S&P 500 options with

strikes not more than 15% away from the value of the underlying index, and ap-

ply the Black Scholes formula to calculate an implied volatility for the index over

a one-year horizon. I then utilize this calculated measure to examine whether ag-

gregate S&P 500 accruals yield any additional explanatory information regarding

subsequent one-year S&P 500 volatility.

3.2 Prior literature

The accrual anomaly, attributed to Sloan (1996), establishes that firm level ac-

cruals are negatively related to future stock returns. By decomposing earnings into

accrual and cash flow components, Sloan (1996) demonstrates that the larger the ac-

crual component of earnings, the less persistent the earnings tend to be. His finding

that stock prices do not appear to reflect the information in the accrual compo-

nent of earnings is convincing evidence that stock prices reflect näıve expectations

about earnings. A large body of research in the accounting and finance literature

has followed. Dechow and Dichev (2002) for instance, propose models for measur-

ing accrual and earnings quality, while Chan et al. (2006) investigate how much of

earnings quality is attributable to discretionary versus non-discretionary accruals.

1The VIX is based on a weighted average of out-of-the-money S&P 500 options prices
over two nearby maturities. See https://www.cboe.com/micro/vix/vixwhite.pdf for fur-
ther details on the calculation of the VIX.
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More recently, Rajgopal and Venkatachalam (2011) show that deteriorating earn-

ings quality is associated with higher idiosyncratic return volatility at the firm level.

They measure accruals as per Sloan (1996), and use the residuals from regressing

accruals on pertinent accounting metrics as a proxy for accruals quality. They also

use the accruals quality measure developed by Dechow and Dichev (2002). The vast

majority of accrual related studies, whether from an accounting or finance perspec-

tive, focus on accruals at the firm level. An exception, however, is Hirshleifer et al.

(2009) who aggregate the accrual measure at the market level using the Center for

Research in Security Prices (CRSP) value-weighted market index as a market proxy.

They demonstrate that, contrary to Sloan (1996)’s findings, market-level aggregate

accruals are positively associated with future returns.

In the realm of market volatility, the S&P 500 is the most common market

benchmark, and thus CBOE’s VIX is the proxy for market volatility. Various models

for pricing VIX futures have been proposed. Grünbichler and Longstaff (1996)

assume a mean-reverting squared-root volatility process to construct a volatility

futures and options pricing model. Zhang and Lim (2006) develop a stochastic

pricing model for VIX futures, while Wu (2006) help establish lower and upper

bounds for VIX futures prices. Zhu and Zhang (2007), based on the variance term

structure, develop a no-arbitrage pricing model for VIX futures. Zhu and Lian

(2012) derive an analytical formula for VIX futures pricing and present empirical

evidence supporting the use of Heston (1993)’s stochastic volatility model in VIX

futures pricing. Dupoyet et al. (2011) propose a constant elasticity variance (CEV)

model, with and without jumps, to price volatility futures and empirically compare

that model to the Cox–Ingersoll–Ross formulation. Finally, there have also been

several models proposed for pricing VIX options, and Wang and Daigler (2011)

provide an excellent objective assessment of these models.
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I link these two bodies of research by examining whether the accrual-volatility

relation revealed by Rajgopal and Venkatachalam (2011) holds at the aggregate S&P

500 level, and by evaluating whether accruals can be useful in VIX futures pricing.

The intuition behind the accrual anomaly (aka the earnings fixation hypothesis)

is that markets fail to recognize that earnings boosted by accruals are not persistent,

thus resulting in a negative surprise when the accruals reverse and earnings revert

to normal levels. The reverse is true when earnings are artificially depressed by

negative accruals. These surprises, especially for firms at the extremes of the accruals

spectrum, are likely to be associated with higher volatility. I thus, à priori, expect

increasing subsequent stock return volatility for firms as one moves away from the

median firm ranked by total accruals. I also hypothesize that the absolute value of

an aggregate, weighted measure of accruals for the S&P 500 is positively related to

subsequent volatility for the index, and is thus useful in pricing VIX futures.

3.3 Data and methodology

Total accruals are calculated at the firm level according to Sloan (1996) using

Compustat data, while returns and volatility are calculated using CRSP (Center

for Research in Securities Prices) data. I follow Kothari et al. (2005) in calculating

performance-matched abnormal accruals. Compustat is also the source for historical

members of the S&P 500. Daily settlement prices for VIX futures, which started

trading in March 2004, are from the CBOE. I calculate accruals at both the annual

(1964-2012) and quarterly (1987-2012) frequencies. The start of my quarterly ac-

crual sample coincides with the introduction of SFAS 95 that established standards

for cash flow reporting. This is also the time when Compustat began including

the Standard Industrial Classification (SIC) code in its annual files, a vital piece of
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information used for grouping like firms in the calculation of performance-matched

abnormal accruals.

3.3.1 Sample construction and accrual calculation

Sloan (1996)’s definition of accrual is based on the indirect balance sheet method.

Under this original definition, accruals are computed as the change in non-cash

current assets less change in current liabilities excluding the change in short-term

debt and change in income taxes payable, minus depreciation and amortization

expense. Formulaically, it is defined as:

Accruals = (∆CA−∆Cash)− (∆CL−∆STD −∆TP )−Dep (3.1)

where ∆CA represents change in current assets (Compustat item act and actq),

∆Cash represents change in cash/cash equivalents (Compustat item che and cheq),

∆CL represents change in current liabilities (Compustat item lct and lctq), ∆STD

represents change in debt included in current liabilities (Compustat item dlc and

dlcq), ∆TP represents change in income taxes payable (Compustat item txp and

txpq), and Dep represents depreciation and amortization expense (Compustat item

dp and dpq). The Compustat item mnemonics in parentheses are Compustat data

field names for the annual and quarterly Compustat files, respectively.

At annual frequencies, total accruals for each firm are calculated according to

equation 3.1 using Compustat data items from the annual Compustat database.

This results in an accrual measure for each firm for each fiscal year in the sample

period. Firms’ fiscal years may end in any month of the year, though December

is the most common fiscal year-end for the North-America Compustat universe. In

my sample, December fiscal year-ends comprise 63% of the observations. For firms

with fiscal years ending in any of the first five calendar months of the year up to
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and including the month of May, the fiscal year for the firm is noted as the previous

calendar year. For example, the 2012 fiscal year for Oracle Corp. (symbol ORCL),

whose fiscal year ends in May, corresponds to the calendar period spanning from

June 2012 through May 2013.

Return and volatility for each firm are measured over a twelve month period

starting four months after the fiscal year-end of the firm. This delay is necessary

to avoid look-ahead bias and is consistent with Alford et al. (1994) who find that

four months after fiscal year-end the SEC form 10-K for most firms are publicly

available2. Sloan (1996) also incorporates this delay. So, in the case of fiscal year

2012 for Oracle Corp., accruals are measured during the fiscal period from June 1,

2012 through May 31, 2013, while subsequent returns and volatility are measured

for the twelve-month period beginning on October 1, 2013 and ending on September

30, 2014. My sample for the annuals accrual analysis includes Compustat data for

fiscal years from 1964 through 2012. The sample begins in 1964 because that is

the earliest year for which there are data for a sufficient number of firms. I limit

the upper bound of the sample to fiscal year 2012 because the empirical analysis

requires return and volatility data through September 2014. Finally, I also exclude

firms for which the accrual measure cannot be calculated due to missing data. As a

rule, such data is not available for banks, life insurance, and property and casualty

insurance companies. This results in a total of 182,052 firm-year observations for

the annual data sample.

Abnormal accruals for each firm are calculated on a yearly basis according to the

Kothari et al. (2005) performance-matched measure derived from the Jones (1991)

2Since 2005 the SEC has imposed further restrictions on the filing deadline for firms
listed in the U.S., requiring firms with $700mn or more in market capitalization to file
within 60 days and firms with more than $75mn to file within 75 days. Only smaller firms
have a total of 90 days to file. See http://www.sec.gov/answers/form10q.htm.
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model. In the Jones model, discretionary accruals are estimated cross-sectionally

each year as the residual of the following regression model:

TAi,t = β0 + β1(1/ASSETSi,t−1) + β2∆SALESi,t + β3PPEi,t + εi,t (3.2)

where TAi,t represents total accruals for firm i at time t, ASSETSi,t−1 are lagged

total assets for firm i, ∆SALESi,t represents change in sales scaled by lagged total

assets ASSETSi,t−1, PPEi,t represents property, plant, and equipment also scaled

by lagged total assets, and εi,t is an error term. Kothari et al. (2005) include the

financial performance metric return-on-assets (ROA) as an additional independent

variable to the Jones (1991) model expressed in relation 3.2. The goal is to control for

the effect of financial performance on measured discretionary accruals. Employing

Kothari et al. (2005) model, I estimate:

TAi,t = δ0+δ1(1/ASSETSi,t−1)+δ2∆SALESi,t+δ3PPEi,t+δ4ROAi,t−1+υi,t (3.3)

where ROAi,t−1 is the return-on-assets for firm i at period t − 1 calculated as net

income divided by average total assets over the period. All other independent vari-

ables are as described for equation 3.2. Estimation of equation 3.3 is performed

annually for each two-digit SIC code group. I employ a robust regression using

the Maximum-likelihood method introduced by Huber (1973) in order to accom-

modate outliers in the data (these are common when calculating accruals across a

large universe of firms). The residuals from equation 3.3 constitute my measure of

performance-adjusted abnormal accruals for each firm.

The calculation of accruals at a quarterly frequency follows essentially the same

methodology save for some adjustments. First, in this case the data comes from the

quarterly Compustat files. The year-over-year change for each balance sheet item

in equation 3.1 is calculated using quarterly data, while the depreciation term is

summed over the prior four quarters. For each fiscal year I aggregate my quarterly
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sample into four quarters denoted as: March, June, September, and December.

For firms with fiscal quarters ending in other calendar months, I group them with

the quarter denoted by the month that is the next closest month in the year. For

instance, the quarterly subsample for March 2012 includes firms with quarters ending

in January, February and March 2012. Since U.S. listed firms are required to file 10-

Q forms quarterly with the SEC, each of my quarterly sub-samples includes all firms,

regardless of the firm’s fiscal year-end month. Initially, I use the entire universe of

quarterly data in order to calculate the abnormal accruals for each firm. I then

compute a value-weighted aggregate measure of accruals for the S&P 500 for each

of the denoted quarters in my sample. This process yields a total of 106 quarterly

aggregate accruals observations from March 1987 through June 2012.

3.3.2 Analysis of accruals vs returns and volatility

Similar to Sloan (1996), I use the annual sample data to build deciles based

on accruals levels calculated for each firm for each year. I then calculate average

accruals, subsequent average returns, and subsequent average volatility (defined as

the annualized standard deviation of daily returns) for each decile. Next I calculate

the averages for each decile across years. Denoting the lowest decile as the decile

with the worst (highest) average accruals level, I expect average returns to increase

somewhat monotonically with the decile ranking in accordance with the results ob-

tained by Sloan (1996). I also calculate the average firm market capitalization for

each decile. Firm size, as measured by market capitalization, is a well- established

predictor of future returns. Therefore, in studies examining relations between eco-

nomic and/or accounting factors and future stock returns, it is common practice

to adjust returns for size and/or to employ CAPM to calculate abnormal returns.

Sloan (1996) adjusts returns by size. I do not make such adjustments as my focus is
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on examining the relation between accruals and subsequent volatility, not returns.

Nonetheless, I compute average firm market capitalization for each decile in order to

demonstrate that there is not a size bias in the higher deciles. In fact, I expect both

extreme deciles to exhibit lower average market capitalization as smaller firms are

more susceptible to extreme accruals. Regarding the accrual-volatility relation, I

expect the highest and lowest deciles to exhibit the highest average volatility levels,

while the middle deciles exhibit the lowest average volatility levels. This bifurcated

pattern is expected because according to the earnings fixation hypothesis, investors

are expected to be surprised by future earnings for firms whose current earnings are

either materially increased or materially reduced by accruals.

At first, I examine the relation between accruals and subsequent volatility for

each firm in my annual accruals sample. As stated above, volatility is measured

with a four-month lag to avoid look-ahead bias. I choose a robust regression with

M-estimation and Huber weighting for my estimation to adjust for outliers in the

data. I perform my analysis separately using positive and negative accruals, as well

as using the absolute value of accruals. Each of these scenarios are repeated using

first a total accruals measure and then an abnormal accruals measure. This results

in a combined total of six different scenarios that I examine in my analysis of annual

data.

Next, I repeat the analysis using rolling four quarters of data to calculate my

accruals measures. I repeat the analysis for the six scenarios examined with annual

data, however, this time I further segment my analysis into pre- and post-2000 as

well as pre- and post-2002 periods. Prior to March 15, 2000 the SEC allowed firms

to have their quarterly filings reviewed as part of the annual audit rather than prior

to filing. That changed when the SEC issued Regulation S-K which required timely

reviews (Securities and Exchange Commission, 1999a,b). Since the passage of the
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Sarbanes-Oxley Act3 in 2002 (heretofore SOX 2002), the principal officers (normally

the chief executive officer and the chief financial officer) are required to approve

and certify the accuracy and integrity of the financial results of their firms on a

quarterly basis. À priori, I expect the impact of accruals on subsequent volatility

to be modestly weaker post 2000 and even weaker post 2002.

Finally, I aggregate S&P 500 firms weighted by their market capitalization to

construct an aggregate accrual level for the S&P 500 on a quarterly basis. I then

compute subsequent twelve-month returns and volatility for the S&P 500 starting

four months after each quarterly measurement as described in section 3.1. I once

again employ robust regressions to investigate whether aggregate accruals are sig-

nificantly related to subsequent volatility in the S&P 500 index. The analysis of

the association of aggregate S&P 500 accruals and subsequent S&P 500 returns is

similar to that in Hirshleifer et al. (2009), but involves the use of quarterly data to

account for the fact that less than 65% of S&P 500 firms in my sample have fiscal

years ending in December. The results involving aggregate accruals and subsequent

volatility constitute a major contribution of this research.

3The Act was enacted July 30, 2002. In the Senate, it was called the “Public Company
Accounting Reform and Investor Protection Act”, while in the House it was known as the
“Corporate and Auditing Accountability and Responsibility Act.” It is also known by its
more informal moniker SOX. The Act contains eleven titles (or sections) and it was passed
as a reaction to the accounting scandals at Enron and Worldcom. Tittle III of the Act
requires the quarterly certification of results by firms’ principal officers. For further details
on this legislation see: http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-
107publ204.htm
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3.3.3 Explanatory information about S&P 500 volatility from aggregate

accruals

I next examine whether aggregate S&P 500 accruals yield additional explanatory

information regarding subsequent one-year ahead S&P 500 volatility when compared

with other market based volatility indicators. If my investigation were focused on

short-term (thirty day) volatility expectations for the S&P 500, CBOEs VIX would

be the obvious choice for a well-established, market-driven, option-implied indicator

of short-term volatility. However, because my analysis requires a twelve-month

horizon indicator of S&P 500 volatility, the choice for such an indicator is not so

clear.

I consider two indicators for my tests. The first indicator I consider is the

CBOEs Mid-Term volatility index (VXMT). As per the CBOE website this index

is “a measure of the expected volatility of the S&P 500 Index over a 6-month time

horizon. It is calculated using the well-known VIX methodology applied to SPX

options that expire 6-to-9 months in the future.” Data for the VXMT index is,

however, only available starting in January 2008. As a result, my sample contains

two few quarterly data points for analysis. The second indicator I consider more

closely matches my intended twelve-month time horizon. Using OPRA (Options

Price Reporting Authority) data and the Black-Scholes formula, I calculate one-

year option implied volatility from daily SPX options prices. Specifically, I use data

from VIX futures expiration days when trading in SPX options is often very active.

My sample data for SPX options is from May 2005 to December 20134. Because

March, June, September and December are the only months in my dataset that

4Prior to 2005, trading in S&P 500 (SPX) options was less liquid. It was in 2003 that
the CBOE started using SPX options for the VIX calculation. Before then the VIX was
based on S&P 100 options.

83



always have options expiring in exactly twelve months, I relax the twelve-month

requirement and, for each day in my dataset, calculate the option implied volatility

for options expiring in eleven, twelve, or thirteen months. This is to ensure a

minimum number of observations for my analysis.

The Black-Scholes formula also requires the dividend yield and the risk-free

rate over the life of the option for the calculation of implied volatility. I use the

annual ex-post value of S&P 500 dividends as the ex-ante expectation of dividends

since dividends paid by most S&P 500 member firms rarely deviate far from their

widely divulged dividend declarations. The present value of such dividends is then

subtracted from the current value of the S&P 500 index in order to adjust for the

dividend yield. The risk free rate I employ is the twelve-month constant maturity

Treasury Bill rate available from the Federal Reserve Bank of St. Louis Economic

Data (FRED) website. I use strikes for out-of-the-money puts and calls that are

within 15% of the current value of the underlying S&P 500 index because these are

the most liquid contracts. Data is obtained from the OPRA quotes files with non-

zero bids within the first five minutes of the market open on VIX futures expiration

days (my sample data contains 102 expiration days). The quote midpoint is used

as the option price input in the Black-Scholes formula. I then employ the numerical

method in Forsythe and Moler (1967) to solve for the option implied volatility of

each strike within the aforementioned strike range. The option implied volatility

for each day in my dataset is computed as the average of the calculated implied

volatilities for these option strikes on that day.

I expect my one-year horizon option implied volatility measure to be an effec-

tive predictor of subsequent twelve-month volatility in the S&P 500. My focus is

to examine whether aggregate S&P 500 accruals yield further insights about sub-

sequent S&P 500 volatility. I regress twelve-month subsequent S&P 500 volatility
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on aggregate accruals and option implied volatility. I test for statistical significance

of the aggregate accruals coefficient to determine whether aggregate accruals has

additional explanatory information about subsequent S&P 500 volatility.

3.4 Empirical results

Table 3.1 presents average twelve-month returns and volatility across deciles.

Grouping the Compustat universe into deciles based on total accruals per fiscal year

reveals that companies at the highest and lowest deciles exhibit higher subsequent

volatility than the rest of the sample. Firm size also appears to play a role as the

highest and lowest deciles have lower average market capitalization. This suggests

that the observed higher volatility may be partly due to smaller firm size. The

results in Table 1 also show that higher deciles (lower accruals) are associated with

higher subsequent twelve-month returns, consistent with Sloan (1996)’s findings.

3.4.1 Firm level accruals and subsequent twelve-month volatility

In my analysis of the association between firm level accruals and subsequent

twelve-month volatility, I perform robust regressions with M-estimation and Huber

weights. Because extreme accruals, both negative and positive, are associated with

subsequent volatility, the primary independent variable in my regressions is the

absolute value of accruals. Nonetheless, two other estimations of the main model

are separately performed for firms with positive accruals and negative accruals. The

results of my tests are summarized in Table 2. Panel A contains the results of the

regressions using the abnormal accruals measure of Kothari et al. (2005) as the

primary independent variable, while Panel B contains analogous results employing

the Sloan (1996) total accruals measure. Each estimation of the model contains only
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Table 3.1: Average 12-mo returns and volatility across yearly accrual deciles

This table groups the annual sample data (FY1964-FY2012) by accrual level deciles
and displays the subsequent twelve-month return, annualized average daily volatility,
and average market capitalization for each decile. Deciles are generated yearly so
firms can fall under different deciles on a given year depending on the firms accrual
level for that year. Return and volatility for each firm are measured over a twelve-
month period starting four months after the fiscal year-end for the firm, and then
averaged within each decile for each fiscal year. Market capitalization for each firm
is measured at the beginning of the period when returns are measured. Firms with
market capitalization below $100mn are excluded.

Average Average Average Average
Decile No. firms Accruals Return Volatility Mkt. Cap ($mn)

1 8, 322 0.1378 0.0419 0.5724 975.00
2 8, 346 0.0325 0.0897 0.4915 1, 743.80
3 8, 347 0.0032 0.1086 0.4568 2, 254.20
4 8, 347 −0.0146 0.1253 0.4298 3, 224.10
5 8, 338 −0.0284 0.1208 0.4183 3, 321.90
6 8, 359 −0.0408 0.1235 0.4102 3, 907.00
7 8, 349 −0.0541 0.1363 0.4248 3, 634.80
8 8, 344 −0.0703 0.1237 0.4446 3, 349.00
9 8, 350 −0.0946 0.1287 0.4779 2, 624.60
10 8, 327 −0.1768 0.1306 0.5600 1, 561.00

one accruals measure as the independent variable, resulting in a total of six distinct

estimations of the following general model:

V OLi,t+1 = λ0 + λ1ACC absi,t + λ2ACC posi,t + λ3ACC negi,t + εi,t (3.4)

where ACC absi,t is the absolute value of total firm level accruals for firm i at period

t, ACC posi,t is the total firm level accruals for firm i at time t whose total accruals

are greater than or equal to zero, ACC negi,t is the total firm level accruals for

firm i at time t whose total accruals are negative, and V OLi,t+1 represents the daily

average return volatility of firm i measured over a twelve-month period starting four

months after fiscal year end over which accruals were calculated.
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In every variation of the regressions in the general model 3.4, the results reveal

a statistically significant association between firm level accruals and subsequent

firm returns volatility. This association is stronger when abnormal accruals are the

independent variable as evidenced by the higher R2s in Panel A of Table 3.2. It

is also clear that negative accruals have a stronger impact on subsequent volatility

than positive accruals since the Model 3 variations in both Panel A and B yield the

highest R2 within their respective panels. As is often the case in regressions with a

single accounting metric as the sole independent variable, overall R2s in Table 3.2

are low.

The results of my estimations of the general model 3.4 using quarterly data are

summarized in Table 3.3. In this version of the analysis, accruals are calculated

using rolling four quarters of accounting data. The calculation is performed at a

quarterly frequency such that each firm-quarter accrual calculation uses a four rolling

quarter period that has three overlapping quarters with the previous firm-quarter

observation. This leads to a larger number of observations than were available for

my analysis using annual data.

Prior to March 15, 2000 the SEC allowed firms to have their quarterly filings

reviewed as part of the annual audit rather than prior to filing. That changed when

the SEC issued Regulation S-K which required timely reviews (Securities and Ex-

change Commission, 1999a,b). Manry et al. (2003) show that prior to this mandate,

fourth quarter “settling up” was reduced, and the association of earnings with re-

turns was higher for firms that elected to have their quarterly reports reviewed prior

to filing. Manry et al. (2003) also show that firms electing to have their quarterly fil-

ings reviewed as part of the year end audit (retrospective reviews), tended to report

more “optimistically” in interim quarters. Since total firm level accruals embed all

discretionary and non-discretionary accruals, analysis of total accruals measured at
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Table 3.2: Robust regressions of subsequent 12-mo volatility on current period ac-
crual measures — annual data

This table contains the results of robust regressions of twelve-month subsequent
volatility on firm accruals for three variations of the general model. In Panel A,
the accrual measure used in the regression is the abnormal accrual in relation 3.3
proposed by Kothari et al. (2005). The regressions are evaluated three separate
ways. Model 1 uses the absolute value of abnormal accruals, Model 2 includes only
firms with positive abnormal accruals, and Model 3 includes only firms with nega-
tive abnormal accruals. The values in parentheses below the regression coefficients
are p-values. Panel B is analogous to Panel A, except that in Panel B the accrual
measure in the dependent variable is the Sloan (1996) measure expressed in relation
3.1. Data for accrual calculation are from Compustat annual files for all firms with
total assets of $50 million or higher. Sample period is from fiscal year 1987 through
2012. General regression model evaluated is as follows:

V OLi,t+1 = λ0 + λ1ACC absi,t + λ2ACC posi,t + λ3ACC negi,t + εi,t

Accruals Positive Negative
Intercept (abs. value) Accruals Accruals

Obs. λ0 λ1 λ2 λ3 R2

Panel A: Subsequent 12-mo volatility on Kothari et al. (2005) abnormal accruals

Model 1: 78, 689 .027 .076 .040
(< .0001) (< .0001)

Model 2: 40, 008 .027 .0689 .031
(< .0001) (< .0001)

Model 3: 38, 681 .0271 −.0821 .048
(< .0001) (< .0001)

Panel B: Subsequent 12-mo volatility on Sloan (1996) total accrual measure

Model 1: 79, 868 .0266 .0583 .035
(< .0001) (< .0001)

Model 2: 19, 332 .0307 .041 .027
(< .0001) (< .0001)

Model 3: 60, 536 .025 −.0686 .041
(< .0001) (< .0001)

quarterly frequencies using pre-2000 data should yield more insights into potential

market surprises when such accruals are unwound versus a similar analysis using

data post 2000.
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Table 3.3: Robust regressions of subsequent 12-mo volatility on current period ac-
crual measures — quarterly data

This table contains the results of robust regressions of twelve-month subsequent
volatility on firm accruals for three variations of the general model. This table is
analogous to Table 2, but in this table accruals are calculated using four rolling
quarters of data. In Panel A, the accrual measure used in the regression is the
abnormal accrual in relation 3.3 proposed by Kothari et al. (2005). The regressions
are evaluated four separate ways. Model 1 uses the absolute value of abnormal ac-
cruals. Model 1 is partitioned into pre/post 2000 and pre/post 2002 to yield four
sub-models. Model 2 includes only firms with positive abnormal accruals, and Model
3 includes only firms with negative abnormal accruals. The values in parentheses be-
low the regression coefficients are p-values. Panel B is analogous to Panel A, except
that in Panel B the accrual measure in the dependent variable is the Sloan (1996)
measure expressed in relation 3.1. Data for accrual calculation are from Compustat
quarterly files for all firms with total assets of $50 million or higher. Sample period
is from fiscal year 1987 through 2012. General regression model evaluated is:

V OLi,t+1 = λ0 + λ1ACC absi,t + λ2ACC posi,t + λ3ACC negi,t + εi,t

Accruals Positive Negative
Intercept (abs. value) Accruals Accruals

Obs. λ0 λ1 λ2 λ3 R2

Panel A: Subsequent 12-mo volatility on Kothari et al. (2005) abnormal accruals

Model 1: 186, 684 .0249 .0738 .036
(< .0001) (< .0001)

Model 1B: 93, 806 .0242 .0764 .043
(Pre Mar 2000) (< .0001) (< .0001)

Model 1C: 92, 878 .0254 .072 .031
(Post Mar 2000) (< .0001) (< .0001)

Model 1D: 112, 758 .0255 .08 .042
(Pre Jul 2002) (< .0001) (< .0001)

Model 1E: 73, 926 .0243 .058 .024
(Post Jul 2002) (< .0001) (< .0001)

Model 2: 94, 221 .0251 0.0652 .027
(< .0001) (< .0001)

Model 3: 92, 463 .0247 -0.0811 .046
(< .0001) (< .0001)

89



Table 3.3: Robust regressions of subsequent 12-mo volatility on current period ac-
crual measures — quarterly data — cont’d

Accruals Positive Negative
Intercept (abs. value) Accruals Accruals

Obs. λ0 λ1 λ2 λ3 R2

Panel B: Subsequent 12-mo volatility on Sloan (1996) total accrual measure

Model 1: 252, 875 .0251 .0565 .032
(< .0001) (< .0001)

Model 1B: 111, 149 .0243 .058 .035
(Pre Mar 2000) (< .0001) (< .0001)

Model 1C: 141, 726 .0257 .056 .030
(Post Mar 2000) (< .0001) (< .0001)

Model 1D: 137, 727 .0256 .0649 .039
(Pre Jul 2002) (< .0001) (< .0001)

Model 1E: 115, 148 .0248 .0426 .020
(Post Jul 2002) (< .0001) (< .0001)

Model 2: 61, 130 .0283 0.0374 .018
(< .0001) (< .0001)

Model 3: 191, 745 .0237 -0.0665 .040
(< .0001) (< .0001)

Note: Number of observations in Model 1 from Panel B is higher than in Panel A because the calculation of abnormal

accrual used in Panel A requires a minimum number of records from the same two-digit SIC code. Abnormal accrual

in Panel A is calculated as the residual of the regression in relation 3.3 for each firm in a two-digit SIC code group.

Similarly, the Sarbanes-Oxley (SOX) Act (passed in 2002) requires officers of the

firm to certify the accuracy of the financial statements. Cohen et al. (2008) document

a decline in earnings management through accruals following SOX. This would lead

me to expect that partitioning my sample pre versus post SOX would reveal an

even greater difference than what I expect to find by partitioning on the timely

review requirement. In order to investigate these conjectures, Model 1 is estimated

using quarterly data for post March of 2000 and post June of 2002 observations.

These additional estimations are denoted as Models B, C, D and E in Table 3.3. As

expected, the regression coefficients and R2 s for Model 1B versus Model 1 in Table
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3.3 reveal that post 2002, firm level accruals have less of an impact on subsequent

firm return volatility. Notice that this is the case in both Panel A and B of Table

3.3, implying that this conclusion holds whether Kothari et al. (2005) abnormal

accruals or Sloan (1996) total accruals are employed. Once again, as was the case in

my analysis using annual data, the overall results in Table 3.3 Panel A, employing

Kothari et al. (2005) abnormal accruals, show a stronger relation between accruals

and subsequent volatility than the results in Panel B employing Sloan (1996) total

accruals.

3.4.2 S&P 500 aggregate accruals and subsequent twelve-month S&P

500 returns

Similar to the work by Hirshleifer et al. (2009), I compute an aggregate market-

cap weighted accrual measure for the S&P 500 as a proxy for aggregate market

accruals. All S&P 500 member firms for which accruals can be calculated are in-

cluded in this aggregate measure. This means banks, insurance companies and

other financial services firms are excluded from this aggregate measure. The cal-

culations are made quarterly by aggregating firms at quarters denoted as March,

June, September, and December. About 63% of the firms in my sample have fiscal

years ending in December. The remaining firms have fiscal years ending in all of the

other months of the year, though after December, the three most popular months

are March, June and September. In the end, every firm with an accruals measure is

included in every quarterly S&P 500 aggregate accrual calculation. In contrast, Hir-

shleifer et al. (2009) employ annual data for the accruals calculation and aggregate

them based on the CRSP value-weighted market index.

At the firm level, Sloan (1996) demonstrates that accruals are negatively associ-

ated with subsequent stock returns. In sharp contrast, Hirshleifer et al. (2009) find
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that “aggregate accruals is a strong positive time series predictor of aggregate stock

returns.” Hirshleifer et al. (2009) provide an excellent discussion of the various rea-

sons why the accrual anomaly may not hold at the aggregate level. In this research,

I empirically examine the time series relation between S&P 500 aggregate accruals

and subsequent returns as a stepping stone to my ultimate goal of examining the

relation between aggregate accruals and subsequent volatility.

Table 3.4 contains the results of robust regressions of subsequent twelve-month

S&P 500 returns on various accruals measures. The general model evaluated, in-

cluding all the considered accruals measures, is:

SP RETt+1 = λ0 + λ1TOT ACCt + λ2TOT ACC abst + λ3AB ACCt

+ λ4AB ACC abst + εi,t (3.5)

where TOT ACCt is the S&P 500 aggregate total accrual measure constructed by

market-cap weighting total accruals for member firms at period t, TOT ACC abst

is an analogous measure constructed with the absolute value of total accruals for

member firms at period t, AB ACCt is the S&P 500 aggregate abnormal accrual

measure constructed by market-cap weighting abnormal accruals for member firms

at period t, AB ACC abst is an analogous measure constructed with the absolute

value of abnormal accruals for member firms at period t, and SP RETt+1 represents

the twelve-month subsequent return for the S&P 500 starting four months after

the end of the four rolling fiscal quarters over which accruals were calculated. In

all regression variations (Models 1 thru 4) in Table 3.4, there were 106 quarterly

observations corresponding to the sample period from March 1987 through June

2012. Contrary to the findings by Hirshleifer et al. (2009) I find a negative, though

not statistically significant, relation between S&P 500 returns and aggregate S&P

500 accruals. See Models 1 and 3 in Table 3.4. Employing the absolute value of
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accruals to aggregate S&P 500 accruals yields a positive relation to subsequent S&P

500 returns, but again this is not statistically significant.

3.4.3 S&P 500 aggregate accruals and subsequent twelve-month S&P

500 volatility

I now turn to the main focus of my aggregate accrual analysis — the relation

between S&P 500 subsequent twelve-month volatility and aggregate S&P 500 accru-

als. According to the earnings fixation hypothesis, näıve investors tend to fixate on

firms’ reported earnings figures, while neglecting the magnitude of the relative con-

tributions from the cash flow and accruals components that make up the earnings.

This fixation leads investors to overvalue firms with a high component of accruals

in their earnings, causing such firms to earn low abnormal subsequent returns as

the accruals reverse (a negative surprise to näıve investors). The reverse is true for

firms with a low accruals component in their earnings. This observed pattern is

illustrated in Table 1 where firms’ subsequent annual returns are negatively related

to the firms’ current relative total accruals level grouped by deciles. The relation

between accruals and volatility is more symmetrical, with volatility increasing mono-

tonically from the middle to the outer deciles in Table 3.1. Accordingly, I employ the

absolute value of my two accruals measures (total accruals and abnormal accruals)

when analyzing the relation between subsequent S&P 500 volatility and aggregate

S&P 500 accruals.

Several important characteristics of financial market volatility have been well

documented. Some of these documented characteristics are: a leptokurtic distribu-

tion of risky asset returns, temporal dependence of volatility, volatility clustering,

and volatility mean reversion. Diebold et al. (1998) argue that the forecast of volatil-

ity is highly dependent on the current level of volatility, its persistence and speed
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of mean reversion, and the forecast horizon. For horizons longer than six months,

Alford and Boatsman (1995) and Figlewski (1997) suggest employing a simple his-

torical model with low frequency data over a horizon at least as long as the forecast

horizon. Taking into consideration these documented features of volatility in finan-

cial time series, I consider the most recently observed three-month and twelve-month

S&P 500 volatility as additional independent variables in my analysis. In that fash-

ion, I can evaluate whether my constructed S&P 500 aggregate accruals measure

reveals any additional explanatory information about subsequent S&P 500 volatility

than what could be construed from the most recently observed volatility alone.

I employ robust regressions with M-estimates and Huber weighting to estimate

the variations of the following general model:

SP V OLt+1 = λ0 + λ1TOT ACC abst + λ2AB ACC abst + λ3V OL 3MOt

+ λ4V OL 12MOt + εi,t (3.6)

where TOT ACC abst is the S&P 500 aggregate total accruals measure constructed

by market-cap weighting the absolute value of total accruals for member firms at

period t, AB ACC abst is the S&P 500 aggregate total accruals measure constructed

by market-cap weighting the absolute value of abnormal accruals for member firms

at period t, V OL 3MOt is the volatility of the S&P 500 for the three-month period

ending at time t, V OL 12MOt is the volatility of the S&P 500 for the twelve-month

period ending at time t, and SP V OLt+1 is the subsequent twelve-month volatility

in the S&P 500 starting at time t.

The accruals measures are computed over four rolling fiscal quarters and time t

refers to the time following the four-month lag when the accounting data for calcu-

lating the accruals measure is assumed to be publicly available. More specifically,

taking the March 2000 quarter as an example, the aggregate S&P 500 accrual mea-
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sure includes the firm level accrual for all member firms using four rolling quarters

of accounting data ending in January, February, or March 2000, depending on the

fiscal quarter-end for each firm. Consistent with Alford et al. (1994), it is assumed

that after a four-month lag the accounting data for all firms would be available to

calculate the aggregate accrual for the S&P 500. In the example of the March 2000

quarter, this four-month lag would extend through the end of July 2000. Conse-

quently, the subsequent twelve-month volatility in the S&P 500 is then measured

from August 2000 to August 2001. Staying with the same example, the three-month

historical volatility in the S&P 500, denoted as V OL3MOt in equation 3.6, would

be measured over the three-month period starting in the beginning of May 2000

through the end of July 2000. Analogously, the twelve-month historical volatility in

relation 3.6 would be measured from July 1999 through July 2000.

Table 3.5 contains the results of the nine different estimations of equation 3.6.

The first variation (Model 1), shows a significant relation between subsequent S&P

500 volatility and aggregate S&P 500 aggregate total accruals at the 5% level. Em-

ploying the absolute value of aggregate abnormal accruals, Model 2 confirms the sta-

tistical significance of this relation at the 5% level but with a much higher R2. This

result is consistent with the assumption that abnormal accruals are more likely to

generate subsequent earnings surprises than total accruals. Because of the material

impact of requiring timely reviews and of SOX on publicly traded firms’ accounting

practices, I again partition my sample by pre/post March 2000 and pre/post June

2002. My results reveal that pre 2000 the association of aggregate abnormal accru-

als and subsequent S&P 500 volatility was highly significant, accounting for a large

portion of the variation in subsequent S&P 500 volatility (Model 2B in Table 3.5).

The same holds true when I partition on SOX (Model 2D). Likewise, the association

of aggregate abnormal accruals and subsequent S&P 500 volatility is significant in
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the post timely review test (Model 2C), but at a lower level (p ≤ 0.051). When I

run my tests on the post SOX observations, however, the association of aggregate

abnormal accruals and subsequent S&P 500 volatility is no longer significant in my

test.

The results for Models 3, 4 and 5 demonstrate that simple historical volatility,

whether it is over the most recent three or twelve months, is positively associated

with volatility in the S&P 500 over the following twelve months. This is consistent

with the notion of volatility persistence in financial markets time series. Combined

with aggregate abnormal accruals, the predictive power of historical three-month

volatility grows stronger. Note the higher R2 in Model 3 versus Model 4 in Table

3.5. The relation is the strongest when only pre 2000 observations are considered

(Model 3B yields the highest R2 in Table 3.5). Once again, post SOX aggregate

abnormal accruals show no relation to subsequent S&P 500 volatility as indicated

by the statistically insignificant λ2 coefficient in Model 3E. In contrast to my results

for Model 2C, aggregate abnormal accruals are no longer significant post Regulation

S-K when historical volatility is included in the model. These results are consistent

with the findings of Manry et al. (2003) who document a decline in interim quarter

“optimism” when firms have their quarterly reports reviewed prior to filing. The

results are also consistent with Cohen et al. (2008) who document a decline in

accrual- based earnings management following the passage of the Sarbanes-Oxley

Act.

The loss of statistical significance in abnormal accrual coefficients post SOX 2002

could be caused by the lower number of observations in the sub-sample (40 observa-

tions vs 62 pre SOX observations). Alternatively, it might be explained by reduced

earnings management through discretionary accruals brought on by the passage of

the Sarbanes-Oxley Act. Yet another possible explanation is the impact of Quan-
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titative Easing on overall market volatility. It is possible that quantitative easing

by the world’s major central banks has kept equity market volatility artificially low

over the 2010-2015 period. Under this assumption, the association between S&P

500 volatility and aggregate accruals may be distorted over this period.

3.4.4 Do option implied volatilities entirely capture insights from the

S&P 500 volatility and aggregate accruals relation?

In section 3.4.3 I show that although twelve-month volatility in the S&P 500

is strongly related to the most recent preceding three or twelve-month observed

volatility in the index, aggregate S&P 500 accruals yield incremental information

regarding subsequent S&P 500 volatility. For robustness, I examine whether this

would still be true if option implied volatility, instead of the most recent three-month

volatility, is considered.

Diebold et al. (1998) suggest that the most recently observed volatility of a ran-

dom financial returns time series is a good näıve forecast for next period volatility.

My finding that twelve-month S&P 500 volatility is related to the most recently

observed three-month volatility lends support to their suggestion. Nonetheless, an

option implied volatility measure that incorporates both historical information as

well as future market expectations should be even more strongly related to subse-

quently observed volatility in the S&P 500. Employing highly liquid SPX options,

I find that this is indeed the case. I replace the most recent historically observed

twelve-month volatility in equation 3.6 with the twelve-month option implied volatil-

ity calculated using options data at time t. I thus estimate:

SP V OLt+1 = λ0 + λ1TOT ACC abst + λ2AB ACC abst + λ3V OL 3MOt

+ λ4IV OL 12MOt + εi,t (3.7)
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Table 3.6 contains the results of estimating the six separate variations of equation

3.7. Due to data availability, the estimation periods in my study start in March 2005.

SPX options have been used by the CBOE to calculate the VIX cash and settlement

values since 2003. Before then, S&P 100 options were used. Notice that my entire

estimation period for this robustness check falls within the post SOX era (where

the association between S&P 500 volatility and aggregate S&P 500 accruals is not

significant). Unsurprisingly, these results are confirmed in estimation of Model 1

and Model 2 variations reported in Table 3.6.

Results from estimating Models 3 and 4 in Table 3.6 show that for the post 2005

period S&P 500 volatility exhibits no significant relation to aggregate abnormal

accruals when either the most recent three-month volatility or the option implied

volatility measure are employed as additional independent variables. Model vari-

ations 5 and 6 in Table 3.6 can be used to compare the predictive power of the

most recent three-month volatility versus the twelve-month option implied volatil-

ity regarding the subsequently observed twelve-month volatility in the S&P 500.

Both Models 5 and 6 yield statistically significant coefficient estimates while Model

6 yields a higher R2. This is consistent with my expectation that S&P 500 option

implied volatility calculated from highly liquid SPX options would be a better pre-

dictor of subsequent twelve-moth S&P 500 volatility than a näıve forecast based

solely on the most recent three-month volatility. I am not, however, able to draw

conclusions regarding the impact of option implied volatility on the relation between

S&P 500 volatility and aggregate accruals post 2005.

I attribute the lack of association between S&P 500 volatility and aggregate

accruals post 2005 partly on the accounting changes brought upon by SOX 2002,

but also suspect that quantitative easing has played a role in artificially suppressing

volatility on the S&P 500 since 2010. It would be interesting for future research
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to investigate whether my documented S&P 500 volatility and aggregate accruals

association will re-emerge post the end of quantitative easing and further passage

of time post SOX.

3.5 Summary and conclusions

The volatility of the S&P 500 is widely accepted as representative of broad equity

market volatility in the U.S. and is often also considered a benchmark for global

equity volatility. In turn, equity volatility plays a vital role in risk management and

portfolio optimization, and has important economic repercussions. Consequently,

understanding the drivers of volatility in the S&P 500 is of great importance to

academicians and market participants. Most of the academic literature has focused

on forecasting volatility over short time horizons. Time series models and option

implied standard deviation models are the two common methodologies employed

in volatility forecasting (Poon and Granger (2003) provide a comprehensive review

of volatility forecasting models). In this paper I have introduced an accounting

based signal for subsequent twelve-month volatility in the S&P 500. It contributes

to current literature both in the sense of the uniqueness of employing aggregate

abnormal S&P 500 accruals as an indicator of future S&P 500 volatility and by the

fact that this volatility indicator is for the less common longer horizon of twelve

months.

The accrual anomaly, attributed to Sloan (1996), has spurred several accounting

and finance studies related to earnings manipulation and stock returns. Hirshleifer

et al. (2009) pioneer the aggregation of firm accruals for the broad market at a

yearly frequency and report that contrary to Sloan (1996)’s findings, at the aggregate

level accruals are positively associated with subsequent twelve-month broad equity

market returns. I construct an aggregate abnormal accrual measure for the S&P
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500 at a quarterly frequency and find no significant relation between subsequent

S&P 500 returns and this aggregate accrual measure. More importantly, I find a

statistically significant relation between S&P 500 twelve-month volatility and the

aggregate absolute value of abnormal accruals for the S&P 500 calculated at the

beginning of the twelve-month volatility measurement period. Thus, I conclude

that aggregate S&P 500 accruals contain useful information regarding the index’s

subsequent twelve-month volatility.

After the passage of the Sarbanes-Oxley Act of 2002, Cohen et al. (2008) show

that accrual-based earnings management has declined and has been replaced with

real earnings management. I partition my sample period into pre and post SOX

(2002) and find that the relation between S&P 500 volatility and aggregate S&P

500 accruals is insignificant post SOX. I also examine whether the information con-

tained in aggregate accruals about subsequent S&P 500 volatility is incremental to

what could be inferred from either a simple time series model or an option implied

standard deviation model. I employ robust regressions with both aggregate accru-

als and recently observed S&P 500 volatility (both three-month and twelve-month

volatility) as independent variables. By themselves, I find both three-month and

twelve-month volatility are effective indicators of subsequent twelve-month S&P 500

volatility, consistent with the widely known clustering and persistence of volatility in

financial returns time series. When aggregate accruals are included as an additional

independent variable I show that accruals yield significant additional information

about subsequent S&P 500 volatility.

I then consider twelve-month S&P 500 volatility implied from SPX option prices

as a predictor of S&P 500 volatility. Unsurprisingly, I show a strong relation between

option implied volatility and subsequently twelve-month volatility observed for the

S&P 500, though its explanatory power is not much greater than that of a näıve
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forecast using the most recent three-month volatility. Because data for SPX option

prices in my sample is limited to post 2005 (thus post SOX), I cannot draw any

conclusions regarding the comparison of aggregate accruals predictive power versus

option implied volatility pre-SOX.
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APPENDIX A

Attributed to economist John B. Taylor (1993), the Taylor rule dictates how

central banks should set the nominal interest rate in response to changes in inflation

and GDP. Mathematically, the rule is expressed as:

rt = πt + r∗t + λπ(πt − π∗t ) + λy(yt − y∗t ) (A.1)

where rt represents the nominal short-term interest rate at time t, πt is the inflation

at time t, π∗t is the target inflation rate, r∗t is the equilibrium real interest rate, yt is

the log of real GDP and y∗t is the log of GDP potential.

Additionally, the rule requires that both coefficients λπ and λy be positive. This

means that according to the Taylor rule, interest rates should be set higher when

inflation is above target or GDP is above its potential. As a rule of thumb, Taylor

(1993) suggests that λπ = λy = 0.5. Under this assumption, when inflation rises

by 1% equation A.1 would imply that the nominal interest rate should be raised by

1.5%. Conversely, should GDP decline by 1%, the appropriate response would be

to cut nominal rates by 0.5%. In more general terms, equation A.1 implies that the

proper response for a 1% increase in inflation should be to raise nominal interest

rates by more than 1% since λπ > 0 and the combined coefficient on πt is (1 + λπ).

Therefore, assuming financial markets use the Taylor rule to derive nominal interest

rate expectations for the U.S. we have:

Et[rUS,t+1] = (1 + λπ)Et[πUS,t+1+i] + λyEt[yUS,t+1] + r∗US (A.2)

where yUS,t represents the difference between the log of current and potential GDP.

The expression for interest rate expectation for Germany in the Euro zone can

be expressed analogously. For consistency with empirical evidence, foreign central

banks are assumed to also increase nominal rates when their currency depreciates
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relative to the US dollar. Clarida et al. (1998) demonstrate that to be the case for

German and Japanese central banks. With this additional term, the expression for

expected nominal rates in Germany analogous to equation A.2 is:

Et[rEUR,t+1] = (1 + λπ)Et[πEUR,t+1+i] + λyEt[yEUR,t+1] + r∗EUR − λξξt+1 (A.3)

where ξt ≡ St+pEUR,t−pUS,t is the real exchange rate. Assuming that the equilibrium

real exchange rate in the U.S. and Germany are the same and subtracting equation

A.2 from A.3 yields:

Et[rEUR,t+1 − rUS,t+1] = (1 + λπ)Et[πEUR,t+1+i − πUS,t+1+i]

+ λyEt[yEUR,t+1 − yUS,t+1]− λξEtξt+1 (A.4)
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APPENDIX B

Equation 1.3 reads:

EtSt+1 = EtSt+2 + Et[rEUR,t+1 − rUS,t+1] (B.1)

Substituting the expression for the expected nominal rate difference between Ger-

many and the U.S. in equation A.4 into the second term of equation B.1 yields:

EtSt+1 = EtSt+2 + (1 + λπ)Et[πEUR,t+1+i − πUS,t+1+i]

+ λyEt[yEUR,t+1 − yUS,t+1]− λξξt+1 (B.2)

Plugging in the expression for real exchange rate ξt ≡ St + pEUR,t − pUS,t into B.2

we have:

EtSt+1 = EtSt+2 + (1 + λπ)Et[πEUR,t+1+i − πUS,t+1+i]

+ λyEt[yEUR,t+1 − yUS,t+1]− λξEt[St+1 + pEUR,t − pUS,t] (B.3)

Bringing the term with λξEtSt+1 to the left hand side of equation B.3 we then have:

(1 + λξ)EtSt+1 = EtSt+2 + (1 + λπ)Et[πEUR,t+1+i − πUS,t+1+i]

+ λyEt[yEUR,t+1 − yUS,t+1]− λξEt[pEUR,t − pUS,t] (B.4)

Now let’s define γ = 1/(1 + λξ) < 1, since λξ > 0. Expressing λξ in terms of γ and

substituting into equation B.4 yields:

(1/γ)EtSt+1 = EtSt+2 + (1 + λπ)Et[πEUR,t+1+i − πUS,t+1+i]

+ λyEt[yEUR,t+1 − yUS,t+1] +

(
1− γ
γ

)
λξEt[pEUR,t − pUS,t] (B.5)

By defining:

ft = (1 + λπ)[πEUR,t+1 − πUS,t+1] + λy[yEUR,t+1 − yUS,t+1]

+

(
1− γ
γ

)
λξEt[pUS,t − pEUR,t] (B.6)
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Equation B.5 can be simplified as:

EtSt+1 = γEtSt+2 + γEtft+1 (B.7)

Iterating equation B.7 forward one period, it follows that:

EtSt+2 = γEtSt+3 + γEtft+2 (B.8)

Substituting the result for EtSt+2 from B.8 into equation B.7 yields:

EtSt+1 = γ2EtSt+3 + γ2Etft+2 + γEtft+1 (B.9)

Iterating forward equation B.8 and substituting the result for EtSt+3 into equation

B.9 yields:

EtSt+1 = γ3EtSt+4 + γ3Etft+3 + γ2Etft+2 + γEtft+1 (B.10)

Notice that if equation B.7 is iterated indefinitely the first term will become zero

as Et lim
i→∞

γiSt+i = 0 since γ = 1/(1 + λξ) < 1. The terms with γiEtft+i become an

infinite sum. Thus,

EtSt+1 = Et
∞∑
i=1

γift+1 (B.11)

which is the expression in equation 1.5.
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APPENDIX C

Equation 1.11 reads:

rEUR,t+1 − rUS,t+1 = K1,t[yEUR,t − yUS,t] +K2,t (C.1)

Recall from the definition of the Taylor Rule in appendix A equation A.1, yt is the

log of real GDP. Thus, by defining Yt to be real GDP, equation C.1 can be rewritten

as:

rEUR,t − rUS,t = K1,t[lnYEUR,t − lnYUS,t] +K2,t (C.2)

Rearranging equation C.2 and applying the logarithm property ln a
b

= ln a − ln b,

yields:

ln
YEUR,t

YUS,t

=
rEUR,t − rUS,t −K2,t

K1,t

(C.3)

It then follows that:

YEUR,t

YUS,t

= exp

(
rEUR,t − rUS,t −K2,t

K1,t

)
(C.4)

Defining K0,t = exp
(
K2,t

K1,t

)
, equation C.4 can be rewritten as:

K0,t
YEUR,t

YUS,t

=
erEUR,t/K1,t

erUS,t/K1,t
(C.5)

which is equivalent to equation 1.12

K0,t
YEUR,t

exp (rEUR,t/K1,t)
=

YUS,t

exp (rUS,t/K1,t)
(C.6)
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APPENDIX D

Because of the time series nature of our data, the key assumption in ordinary

least square regressions of independence in residuals would be violated. I account

for the autocorrelation of the errors via an autoregressive model for the random

error. Specifically, the autoregressive error model employed is:

yt = x
′

tβ + υt (D.1)

υt = ϕ1υt−1 − ϕ2υt−2 − · · · − ϕmυt−m + εt (D.2)

εt ∼ IN(0, σ2) (D.3)

In this modelεt is assumed to be normally and independently distributed with

a mean 0 and variance σ2 as expressed in relation D.3. Regression coefficients

β and error model parameters ϕt are estimated simultaneously to correct for the

autocorrelation in the times series data.
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