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ABSTRACT OF THE DISSERTATION 

ANALYZING DECISION MAKING IN ALTERNATIVE CONTRACTING FOR 

HIGHWAY PAVEMENT REHABILIATION PROJECTS 

by 

Mohamed Ibrahim 

Florida International University, 2016 

Miami, Florida 

Professor Wallied Orabi, Co-Major Professor 

Professor Arindam Chowdhury, Co-Major Professor  

The negative impacts associated with highway pavement rehabilitation projects drove 

state highway agencies (SHAs) towards increased adoption of alternative contracting 

methods (ACMs) to accelerate the construction of such projects; hence, reducing these 

impacts on the travelling public. However, the application of such methods showed 

mixed results due to the lack of specific guidelines addressing the adoption of such 

methods and the selection of the best ACM for each project. This lack of guidelines stems 

from the lack of research studies examining the impact of each of these methods on the 

time/cost trade-off relationship in highway rehabilitation projects. Existing literature 

includes several studies aimed at developing generic and subjective guidelines based on 

past experiences that do not take into consideration the unique nature of each of these 

methods. 

Hence, this research study aimed at analyzing the SHAs’ decision making process 

regarding two of the most-widely used ACMs: Incentive/Disincentive (I/D) and Cost + 

Time (A+B) contracting methods, in order to support decision makers in choosing the 
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most-suitable method for their projects. To this end, two models were developed in this 

dissertation to examine the time/cost trade-off for each method using simulation and 

regression analysis. Each model was validated against real-life projects and used to 

assign appropriate ID and “B” values based on the SHA’s desired duration reduction and 

available budget. Furthermore, a risk analysis module was developed to determine the 

most-likely duration reduction that the contractor can achieve for each project under each 

method.  

The developed models should help improve the decision making process regarding the 

selection and implementation of these methods in highway rehabilitation projects. For 

example, the models can help SHAs identify the minimum ID level that can be offered 

for each project and the expected duration that the contractors can bid on under the A+B 

contracting method. Finally, the models were contrasted and applied to real-life projects 

with different characteristics to verify existing guidelines and establish the candidate 

ACM for each project category. The findings of this study will benefit the society, SHAs, 

and the economy in general by optimizing the use of available time and money resources. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Research Background 

According to the U.S. Department of Transportation 2013 status report, only 44% of the 

nation’s urban roadway system is classified as “pavement with a good ride quality” (DOT 

2013); furthermore, the American Society for Civil Engineers (ASCE) evaluates the 

conditions of the nation’s roadways with a grade “D” (ASCE 2013). These poor 

conditions are estimated to cost the travelling public approximately $67 billion per year 

in additional vehicle repairs and operating costs (ASCE 2013). As a result, these 

roadways often require maintenance and rehabilitation work (El-Rayes and Kandil 2005) 

which are estimated to amount to $86 billion annually in order to, at least, be able to 

maintain these conditions, let alone improve them (DOT 2013). This led to a shift in the 

focus of highway construction projects, in most states, from building new roads to 

maintaining and rehabilitating the existing ones (Herbsman 1995, Lee et al. 2004) which 

is evident in the increase in the total expenditure on highway rehabilitation projects from 

approximately 62% to 75% of the total allocated highway construction budget over the 

period from 2000 to 2010 (DOT 2013). Moreover, it is estimated that more than 40% of 

the nation’s highways and 70% of its arterials will need repair in the near future (Olguin 

et al. 1995). 

Nevertheless, these maintenance and rehabilitation projects are often located in urban and 

highly trafficked areas (Bayraktar and Hastak 2009, Choi 2008) which lead to many 

severe and undesirable negative impacts on the travelling public as they often include 
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closing one or more portions of the highway; these impacts include; but are not limited 

to: severe congestion, limited property access, safety risks to motorists and construction 

workers, and increased vehicle operating costs (Choi et al. 2012; El-Rayes 2001). These 

negative impacts are often measured in terms of the additional daily road user costs 

(DRUC) that the travelling public will incur due to the presence of a work zone area 

(Herbsman et al. 1995). To illustrate how costly these impacts can be, consider the case 

of the I-66 rehabilitation project in Fairfax County, Virginia which is the main connector 

between Fairfax County and Washington D.C. (Mallela & Sadasivam 2011). In this 

project, VDOT adopted the traditional low bid contracting strategy with construction only 

allowed during nighttime and involved closing three lanes of the mainline for 44 nights 

and the full closure of the ramp for 30 nights (Mallela and Sadasivam 2011). Through 

utilizing the traffic data on this section of I-66 and the project characteristics, it was 

computed that the total road user cost for the project was $3.7 million which is 

approximately 75% of the total construction cost of $5 million (Mallela and Sadasivam 

2011). This example demonstrates the severity and the large scale of the negative impacts 

of the highway rehabilitation projects and illustrates the pressing need to find ways to 

reduce these impacts. 

Consequently, these projects subjected the SHAs to new challenges as they became under 

increasing pressure, from the public, to reduce these negative impacts (Fick et al. 2010). 

In a survey conducted in the state of Texas, the public believed that minimizing the 

negative impacts of the maintenance and rehabilitation projects to be the main solution 

for the congestion problems experienced on Texas highways (Ibarra 2002). As illustrated 

in figure (1-1) which is based on Olguin et al. (1995), the longer the project’s duration, 
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the more severe these negative impacts are; hence, to reduce these impacts, SHAs need to 

find ways to reduce these projects’ durations. 

 
Figure 1-1: Relationship between project’s duration and the DRUC     

In order to combat these new challenges, the Federal Highway Administration (FHWA) 

established a number of programs aimed at reducing the durations of the highway 

maintenance and rehabilitation projects including the “Everyday Counts” program 

(Mallela and Sadasivam 2011). This program encouraged SHAs to start adopting 

alternative contracting methods (ACMs) which are aimed at motivating the contractors to 

reduce the projects’ durations (Hancher 1999); and two of the most widely used ACMs 

are the Incentive/Disincentive (I/D) method and the Cost + Time (A+B) method (Fick et 

al. 2010). Nonetheless, in order for the contractors to reduce the project’s duration using 

these methods, they need to utilize more resources which ultimately leads to an increase 

in their construction costs (El-Rayes 2001) which conflicts with the already limited 

budgets available to the SHAs. For instance, the Oregon Department of Transportation 

(ODOT) estimates that in order to maintain its current highway conditions, it needs an 
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additional $405 million annually over its current allocated budget (ODOT 2014). In 

addition, some of these ACMs showed mixed results when being implemented by the 

SHAs either due to poor planning or the unsuitability of the method for a particular 

project. For example, Florida Department of Transportation projects that were contracted 

using the A+B method experienced, on average, 13% time growth (Ellis et al. 2007), 

while some of its I/D projects experienced on average 8.4% cost overrun (Dutta and 

Patel. 2012); moreover, Michigan Department of Transportation (MDOT) did not witness 

a significant duration reduction in some of its I/D projects; albeit with an increase in cost 

(El-Gafy 2014). These mixed results further complicate the SHAs’ already complex and 

essential task of selecting the appropriate type of ACM for their pavement rehabilitation 

projects and ensure the success of their implementation (Antoniou et al. 2012); hence, the 

need for models to help in this task.            

In order to enhance the SHAs decision making regarding the choice and applicability of 

the different ACMs for their pavement rehabilitation projects, decision makers need to be 

able to determine: 1) the time/cost trade-off relationship associated with each ACM; 2) 

the appropriate level of time reduction (ΔT) that can be achieved using each method; 3) 

the necessary monetary value of each day reduced that they are willing to give the 

contractor to achieve the required ΔT; 4) the total additional cost that they will incur and 

the savings in the DRUC that will offset this additional cost; and finally 5) the most-

suitable ACM to be used based on both the project’s characteristics, and their time and 

budgetary constraints. Nevertheless, the determination of these decision variables is not 

an easy feat as they often involve the determination of some decision parameters that are 

not readily available for the SHAs’ personal (Ellis and Herbsman 1990) which explains 
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why most SHAs do not have a formal methodology of selecting the most appropriate 

contracting method (Molenaar et al. 2014). To illustrate the complexity of the problem 

facing the SHAs’ decision makers, the following example is used. In this example it is 

assumed that the SHA has three different rehabilitation projects that need to be 

constructed using either the I/D or the A+B contracting methods and each project has its 

own construction cost and DRUC; however, the SHA has certain budgetary constraints 

that it needs to fulfill. In this example, the SHA can have a total of 24 different 

combinations of decisions on the choice of the ACM and each choice has its own total 

cost and savings in the DRUC. Therefore, to optimize their decision, the chosen 

combination should satisfy both of the following conditions: 1) total DRUC savings 

should be more than the total construction cost in order not to waste the public money, 

and 2) total construction cost should be less than the available budget limit. However, 

there is no way for the SHA to guarantee the satisfaction of these conditions without 

being able to compute the decision variables highlighted in the previous paragraph i.e. 

they need to determine the time/cost trade-off relationship associated with each method. 

This simple example shows the task at hand and its huge consequences on the public, the 

contractor, and the agency; nonetheless, this task gets more complicated in real life 

considering the large number of projects that need to be constructed, and the availability 

of more types of ACMs that can be used. Consequently, there is an urgent need for new 

research in the area of the decision making for alternative contracting methods, especially 

in highway pavement rehabilitation projects, to help SHAs in selecting the most-suitable 

method for their projects based on the desired level of duration reduction and their 

budgetary constraints that is capable of: 1) determining the time/cost trade-off 
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relationship associated with the I/D contracting method; 2) determining the time/cost 

trade-off relationship associated with the A+B contracting method; and 3) enhancing the 

decision-making regarding these two methods and selecting the best method of the 

above-mentioned ones for their pavement rehabilitation projects as illustrated in figure 

(1-2).            

 
Figure 1-2: Outline of the ACMs analysis model     

1.2. Problem Statement 

To develop the above-mentioned ACMs’ decision making model, several problems need 

to be addressed first; these problems are: 1) understanding the impact of the I/D contracts 

and the value of the ID on the time/cost trade-off for pavement rehabilitation projects; 2) 

understanding the impact of the A+B contracting method and the value of the “B” 

component on the time/cost trade-off for pavement rehabilitation projects; and 3) 

assisting the SHAs in selecting the most-suitable type of alternative contracting for their 
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pavement rehabilitation projects. Consequently, to perform these tasks, this study will 

comprehensively examine the impacts of both the I/D and A+B contracting methods on 

the time/cost trade-off for pavement rehabilitation projects and develop models that are 

aimed at examining the SHAs’ decision making with regards to these two types of 

ACMs.    

Nonetheless, in order to first understand how the different types of ACMs can impact the 

time/cost trade-off relationship for a construction project, the nature of this relationship 

has to be investigated. Several studies in the literature proved that for any construction 

project, there is an interrelationship between the project’s duration and cost (Kaka and 

Price 1991). Furthermore, it was proved that for each construction project, contracted 

under traditional contracting, there is a point at which the construction cost is at its 

minimum and any decrease or increase in the project’s duration from that point will result 

in an increase in the project’s cost as shown in figure (1-3), which is based on Cusack 

(1985). This is due to the fact that any additional day beyond this point will increase the 

project’s cost due to the increase in its indirect cost and any day less will also increase the 

cost due to the increase in the direct cost.    

 
Figure 1-3: Relationship between construction cost and time for traditional contracting   
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Nonetheless, this relationship gets more complicated when contracting the project using 

alternative contracting methods. As seen from figure (1-4), the value of the time assigned, 

whether for the incentive/disincentive or the “B” component, has to be incorporated in 

the trade-off between the time and cost which will ultimately lead to the shifting of this 

curve and a new normal point. Moreover, the trade-off between time and cost is impacted 

by the type of the ACM used as each method allocates the risk differently between the 

involved parties (Anderson and Damnjanovic 2008). This is evident in figure (1-4), 

which is based on Shr et al. (2004), as the degree of the shifting in the time/cost trade-off 

curve differ between both the I/D and the A+B contracting methods, the reasons behind 

this difference will be explained in the following paragraphs. 

 
Figure 1-4: Relationship between construction cost and time for alternative 

contracting 

   

First, with the regards to the I/D contracting method and its impact on the time/cost trade-

off relationship for a pavement rehabilitation project, the basic rationale behind the use of 
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completed beyond the schedule (Jaraiedi et al. 1995, CDOT 2006, ODOT 2006). 

Furthermore, in most cases, the value of both the incentive and disincentive are the same 

(CDOT 2006) and is set by the SHAs and included as part of the bid documents 

(Herbsman et al. 1995, NYSDOT 1999). Hence, in order for the contractors to reduce the 

project’s duration and earn the incentive amount, they need to increase their productivity 

levels by utilizing more resources which will lead to an increase in their construction 

costs (Anderson and Russell 2001). However, since the incentive amount act as a bonus 

for the contractor and the task of determining the original project duration is still with the 

SHA, the risk bared by the contractor remain the same as with the traditional contracting 

(NYSDOT 1999) which makes the calculation of the additional costs that the contractor 

will incur focus on how to estimate the contractors’ additional productivity and resources 

utilized. Nonetheless, existing research concerned with determining the impact of the I/D 

contracting method only focus on: 1) helping the contractor with their bid preparation 

process for the I/D contracting method by adding the ID value, predetermined by the 

SHAs, to the construction cost (Shr et al. 2004); 2) setting the maximum incentive to be 

assigned for a given project based on the value of the DRUC (Shr and Chen 2004, Jiang 

et al. 2010); 3) developing models for calculating the contractors’ cost of time reduction 

based on the SHAs engineers judgment (Sillars and Riedl 2007); 4) developing models 

for calculating the cost of time reduction, from the contractors’ perspective, without 

incorporating any trade-off with the desired reduction in duration (Choi 2008); and 5) 

providing generic guidelines for selecting the appropriate value for the ID without 

providing a method for the calculation of the actual value (MnDOT 2005, Jaraiedi et al. 

1995). Despite the important contributions of all of these research studies, there is a 
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research gap in this area as no studies are aimed at quantifying these parameters from the 

SHAs’ perspective (Choi et al. 2013), and none of them addressed the impact of the I/D 

contracting method on the trade-off between the desired duration reduction, the value 

assigned to each day of the project, and the project’s cost. Therefore, there is an urgent 

need for a model that is capable of quantifying the impact of the I/D contracting method 

and the value of the incentive/disincentive on the trade-off between time and cost of 

pavement rehabilitation projects and determine the value of the ID to be used based on 

the desired level of duration reduction and the available budget. 

Second, the A+B contracting method is a type of the multi-parameter bidding techniques 

used to select the winning contractor for highway projects. With this method, the 

contractor is selected on the basis of the lowest combined bid of cost and time (Felker 

2002). Contractors are required to submit a bid that consists of two different components: 

one (A component) representing the bid price for the construction operations, and the 

other (B component) representing the cost of the time required to complete the project 

(El-Rayes 2001). The “A” component is calculated based on the unit prices multiplied by 

the contract quantities, while the “B” component is calculated by multiplying the number 

of calendar days required to complete the project by the value assigned for each day, 

which is determined by the SHA (PaDOT 2013). Hence, since the contractors are the 

entity that sets the project’s duration, they assume higher risk than with the I/D contracts, 

as illustrated in figure (1-5), with this type of contracts that they account for in terms of 

additional cost (Anderson and Russell 2001). In addition, since with this type of 

alternative contracting, time becomes a decisive factor in determining the winning bid, 

the contractor is inclined to use more aggressive resource utilization scenarios in order to 
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reduce the project’s duration and win the bid which will be reflected in the additional cost 

incurred (Herbsman et al. 1995).  

 
Figure1- 5: Risk allocation for the I/D vs. the A+B contracting methods   

Moreover, this greater importance that is placed on the project’s duration makes the 

contractor more eager to reduce the time to the maximum possible limit to win the bid. 
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value of the “B” component on the time/cost trade-off associated with pavement 

rehabilitation projects. Therefore, there is a pressing need for a model that is capable of 

quantifying the impact of the A+B contracting method and the value of the “B” 

component on the trade-off between time and cost of pavement rehabilitation projects and 

determine the value of the “B” component to be used based on the desired level of 

duration reduction and the available budget. 

Third, due to the lack of models aimed at quantifying the impact of the I/D and A+B 

contracting methods on the time/cost trade-off relationship for pavement rehabilitation 

projects, there are no studies aimed at examining the SHAs decision making with regards 

to ACMs and help them in selecting the most suitable method for their projects. The only 

available research studies in this area are the ones that provide guidelines for selecting 

each method based on the project’s qualitative characteristics without comparing the 

results that can be obtained using each method against the other (Anderson and 

Damnjanovic 2008, NYSDOT 1999, CDOT 2006). Hence, the need for such models is of 

paramount importance as they can help the SHAs in realizing the best possible outcomes 

from their alternative contracting projects which in return will both save the public’s 

money and help enhance the poor conditions of the nation’s highways.    

1.3. Research Objectives 

The main goal of this research study is to investigate and quantify the impact of the I/D 

and A+B contracting methods on the time/cost trade-off relationship for highway 

pavement rehabilitation projects and improve the SHAs’ alternative contracting decision 

making process. In order to achieve this goal, the research objectives along with the 

research questions and hypothesis to achieve this goal are identified: 
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Objective 1: 

To understand the impact of the I/D contracting method and the value of the 

incentive/disincentive on the trade-off between time and cost of pavement rehabilitation 

projects and determine the most-likely value of the I/D to be used.  

Research Questions: 

a. What are the resource utilization scenarios that are likely to be used by the 

contractor under the I/D contracting method? 

b. How to calculate the net additional cost incurred by the contractor when using the 

I/D contracting method? 

c. How to determine the relationship between the reduction in the project’s duration 

and the additional cost incurred by the contractor under the I/D contracting 

method? 

d. How to determine the ID value associated with each level of reduction in the 

project’s duration and the associated cost to the owner?  

e. What is the most-likely level of reduction in the project’s duration for each ID 

level and the most-likely ID level for the entire project?  

Hypothesis: 

The nature of the time/cost trade-off relationship changes with the use of the I/D 

contracting method and the time performance of pavement rehabilitation projects 

procured using the I/D contracting method differ according to the value of the ID 

assigned. 
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Objective 2: 

To comprehend the impact of the A+B contracting method and the value of the “B” 

component on the pavement rehabilitation projects’ time/cost trade-off relationship and 

determine the most-likely value of the “B” component to be used.  

Research Questions: 

a. What are the resource utilization scenarios that are likely to be used by the 

contractor under the A+B contracting method? 

b. How does the additional cost incurred by the contractor to reduce the project’s 

duration under A+B contracts differ from the one under the I/D contracts? 

c. How to calculate the net additional cost incurred by the contractor when using the 

A+B contracting method?  

d. What is the relationship between the reduction in the project’s duration and the 

additional cost incurred by the contractor under A+B contracts?  

e. How to determine the value of the “B” component associated with each level of 

reduction in the project’s duration and the associated cost to the owner? 

f. What is the most likely level of duration reduction in the project’s duration for 

each value of the “B” component and the most-likely value of the “B” component 

for the entire project?  

Hypothesis: 

The nature of the time/cost trade-off relationship changes with the use of the A+B 

contracting method and the time performance of pavement rehabilitation projects 

procured using A+B contracts differ according to the value of the “B” component. 
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Objective 3: 

To examine the SHAs’ decision-making process with regards to the I/D and A+B 

contracting methods and assist them in selecting the most-suitable method for their 

pavement rehabilitation projects according to their duration and budgetary constraints. 

Research Questions: 

a. How to examine the decision making for the I/D contracting method and assure 

the success of its implementation?  

b. How to examine the decision making for the A+B contracting method to ensure 

that it fulfills its goals?  

c. How to select the most-suitable alternative contracting method based on the 

SHAs’ decision parameters and the projects’ characteristics? 

d. How to develop the time/cost trade-off relationship for the A+B+I/D contracting 

method?   

Hypothesis: 

Each type of the alternative contracting methods might be suitable for a particular project 

and specific constraints but not necessarily the other.  

1.4. Research Methodology 

In order to achieve the above-mentioned research objectives, the research methodology is 

divided into four main research tasks as follows: (a) conduct a comprehensive literature 

review of the latest research studies in the field of alternative contracting methods (2) 

determine the impact of the I/D contracting method and the value of the 

incentive/disincentive on the trade-off between time and cost of pavement rehabilitation 

projects and determine the value of the ID to be used; (3) determine the impact of the 
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A+B contracting method and the value of the “B” component on the pavement 

rehabilitation projects’ time/cost trade-off relationship and determine the optimal value 

for the “B” component to be used; and (4) examine the alternative contracting decision 

making process. Each of these tasks is further divided into a number of sub-tasks as 

shown in figure (1-6). 

 
Figure 1-6: Research tasks and sub-tasks   

Task 1: Literature Review

1.1 Review previous research about the I/D and A+B contracting methods

1.2 Inspect research studies about the time performance of the I/D and A+B contracting methods

1.3 Explore the different models estimating the cost and time associated with the I/D and A+B methods

1.4 Examine the studies aimed at evaluating the performances of the I/D and A+B contracting methods

Task 2: Impact of the I/D Contracting Method on the 

Time/Cost Trade-Off 

2.1 Calculate the possible duration reductions

2.2 Calculate the contractor’s net additional cost

2.3 Determine the relationship between the reduction in 

the project’s duration and the net additional cost 

2.4 Calculate the ID value associated with each level of 

reduction in the project’s duration

2.5 Perform a risk analysis to determine the most likely 

duration reduction for each ID level and the most likely 

ID level for the project

2.6 Estimate the optimal value for the ID to be used for 

pavement rehabilitation projects according to the 

desired level of duration reduction

Task 3: Impact of the A+B Contracting Method on the 

Time/Cost Trade-Off 

2.1 Calculate the possible duration reductions

2.3 Calculate the contractor’s net additional cost

2.4 Determine the relationship between the reduction in 

the project’s duration and the net additional cost 

2.5 Calculate the value of the “B” component associated 

with each level of reduction in the project’s duration

2.6 Perform a risk analysis to determine the most likely 

duration reduction for each “B” component value and 

the most likely “B” component value for the project

2.7 Estimate the optimal value for the “B” component to 

be used for pavement rehabilitation projects according 

to the desired level of duration reduction

2.2 Investigate the difference between the additional 

cost under A+B and I/D contracts

Task 4: Examining Alternative Contracting Decision Making

4.1 Examining the I/D contracting method decision making process

4.2 Examining the A+B contracting method decision making process

4.3 Contrasting the performance, cost and the risk associated with the I/D and A+B methods relative to each level of 

duration reduction to select the most-suitable one based on the SHAs’ decision parameters.

4.4 Combining the performance and cost associated with the I/D and A+B contracting methods to derive the time/cost 

trade-off relationship for the A+B+I/D contracting method

1.5 Examine the existing guidelines for selecting the most-suitable ACM
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1.4.1. Task 1: Conduct a comprehensive literature review 

The objective of this task is to comprehensively explore the latest developments in the 

related research concerning alternative contracting methods to establish the knowledge 

base and identify the research gaps. This task will be accomplished by conducting the 

following sub-tasks: 

1- Review of the previous research about the I/D contracting method. 

2- Review of the previous studies about the A+B contracting method 

3- Inspect research studies about the time performance of the I/D and A+B 

contracting methods. 

4- Explore the different models that are developed to estimate the cost and time 

associated with the I/D and A+B contracting methods. 

5- Examine the studies aimed at evaluating the performances of the I/D and A+B 

contracting methods. 

6- Examine the existing guidelines for selecting the most-suitable ACM.  

1.4.2. Task 2: Determine the impact of the I/D contracting method on the time/cost 

trade-off for pavement rehabilitation projects. 

The objective of this task is to investigate and model the impact of the I/D contracting 

method and the value of the ID on the trade-off between time and cost of pavement 

rehabilitation projects and determine the value of the ID to be used. This research task 

will be accomplished by performing the following sub-tasks: 

1- Calculate the possible duration reductions that the contractor will be willing to 

achieve under the I/D contracting method. 
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2- Calculate the net additional cost incurred by the contractor when using the I/D 

contracting method. 

3- Determine the relationship between the reduction in the project’s duration and the 

net additional cost incurred by the contractor under the I/D contracting method. 

4- Calculate the ID value associated with each level of reduction in the project’s 

duration. 

5- Perform a risk analysis to determine the most likely duration reduction that can be 

achieved for each level of ID and the most likely ID level for the entire project. 

6- Estimate the value for the ID to be used for pavement rehabilitation projects 

according to the desired level of duration reduction. 

1.4.3. Task 3: Determine the impact of the A+B contracting method on the time/cost 

trade-off for pavement rehabilitation projects. 

The objective of this task is to explore and model the impact of the A+B contracting 

method and the value of the “B” component on the trade-off between time and cost of 

pavement rehabilitation projects and determine the value of the “B” component to be 

used. This research task will be completed by performing the following sub-tasks: 

1- Calculate the possible duration reductions that the contractor will be motivated to 

achieve under the A+B contracting method. 

2- Investigate the difference between the additional cost incurred by the contractor to 

reduce the project’s duration under A+B contracts versus I/D contracts. 

3- Calculate the net additional cost incurred by the contractor when using the A+B 

contracting method 
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4- Determine the relationship between the reduction in the project’s duration and the 

net additional cost incurred by the contractor under the A+B contracting method. 

5- Calculate the value of the “B” component associated with each level of reduction 

in the project’s duration. 

6- Perform a risk analysis to determine the most likely duration reduction that can be 

achieved for each value of the “B” component and the most likely value of the 

“B” component for the entire project. 

7- Estimate the value for the “B” component to be used for pavement rehabilitation 

projects according to the desired level of duration reduction. 

1.4.4. Task 4: Examine the alternative contracting decision making process. 

The objective of this task is to examine the SHAs’ decision-making process with regards 

to the I/D and A+B contracting methods, help them improve the decision making process 

for these methods, and assist them in selecting the most-suitable method for their 

pavement rehabilitation projects based on their decision parameters. This research task 

will be achieved by performing the following sub-tasks: 

1- Examining the I/D contracting method decision making process. 

2- Examining the A+B contracting method decision making process 

3- Contrasting the performance, cost and the risk associated with the I/D and A+B 

contracting methods relative to each level of duration reduction to select the most-

suitable one based on the SHAs’ desired level of duration reduction and available 

budget, and decision parameters. 
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4- Combine the performance and cost associated with the I/D and A+B contracting 

methods to derive the time/cost trade-off relationship for the A+B+I/D contracting 

method. 

1.5. Scope and Limitations 

This research study proposes two different models to examine the SHAs’ alternative 

contracting decision making process. In order to develop such models, a number of 

preceding steps of developing models that are capable of: 1) depicting the impact of such 

ACMs on the time/cost trade-off relationship for pavement rehabilitation projects; and 2) 

determining the relationship between the value of time assigned, the desired duration 

reduction, and the final total project cost to the owner, were conducted.  

The development of the former models involved: 1) examining the contractor’s resource 

utilization scenarios accompanied with each method; 2) simulate the reduction in the 

project’s duration as a result of these scenarios using construction schedule simulation 

software; 3) calculating the net total cost growth as a result of the increase in direct cost 

and the savings in the indirect costs; 4) performing regression analysis to derive the 

relationship between the reduction in the project’s duration and the increase in its net 

total cost. Furthermore, several key steps were taken to increase the applicability of the 

developed models. First, these models accounted for the impact of different pavement 

strategies, pavement cross-sections, and construction windows on the productivity of the 

pavement rehabilitation projects which makes them applicable to the three most-widely 

used pavement strategies, which are: Portland Cement Concrete Pavement, Asphalt 

Concrete Pavement, and Milling and Asphalt Concrete Overlay. Second, when 

calculating the increase in the contractor’s direct cost, average equipment rental rates 
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from different sources across the nation were used; hence, the model is applicable in 

different regions of the nation. Finally, when calculating the indirect cost savings, several 

scenarios depicting the different possible percentages of the indirect costs were used 

which allows the user to utilize the developed models with different indirect cost 

scenarios.  

At the same time, the development of the latter models involved: 1) calculating the value 

of time accompanied with each level of duration reduction; 2) calculating the 

corresponding total costs for the owner; and 3) performing a risk analysis to determine 

the most likely value of time to be used and the most likely duration reduction to be 

achieved. This makes the developed models applicable for all the possible ranges of 

duration reductions that can be achieved for any particular project. 

On the other hand, several aspects of the highway rehabilitation projects using ACMs 

were not considered in this study. The proposed model is only aimed at examining the 

SHAs’ decision making with regards to the I/D and A+B contracting methods; hence, the 

developed model cannot be used when the decision involves other types of ACMs. 

Moreover and as mentioned above, the model is applicable to the three most widely used 

pavement strategies only; thus, it cannot be used for any other pavement strategy such as: 

Crack and Seat Asphalt Overlay, for instance. Finally, the model is only applicable to 

pavement rehabilitation projects and not any other type of highway maintenance projects.        

1.6. Research Significance 

This research study is aimed at supporting the SHAs in their decision making process 

with regards to the use of alternative contracting methods. The research conducted in this 

study is expected to have a considerable impact on: 1) reducing the negative impacts 
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associated with the pavement rehabilitation projects; 2) enhancing the use of the I/D and 

A+B contracting methods to ensure their success and the protection of the public’s 

money; and 3) enhance the SHAs’ decision making with regards to the selection of the 

most appropriate ACM, out of the I/D and A+B methods, to be used for their projects 

based on their desired level of duration reduction, their available budgets, and the risk 

associated with each method. Consequently, the above impacts are anticipated to provide 

major benefits to the society, the SHAs, and the overall economy. 

1.6.1.  Benefits to the Society: 

By ensuring the success of the use of the alternative contracting methods, their main goal 

of reducing the durations of the pavement rehabilitation projects will be achieved. This 

will minimize the negative impacts associated with such projects which will benefit the 

society in a multitude of ways including, but not limited to: 1) reduce the road user costs 

associated with such projects resulting from additional vehicle operating costs; 2) reduce 

the disruptions to local communities and business; 3) minimize the safety hazards for 

both the traveling public and the construction workers; and 4) enhance the quality of life 

for the local communities by providing them with better roads and infrastructure.   

1.6.2. Benefits to the SHAs: 

By helping the SHAs enhancing their ACMs decision making processes, a number of 

significant benefits will be realized. These benefits include: 1) protecting the public 

money by not overspending on ACMs; 2) achieve their rehabilitation projects’ targets and 

deliver their promises to the public; 3) make the best use of their limited budgets 

allocated to pavement rehabilitation projects; and 4) improving the quality of the nation’s 

highways.  
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1.6.3. Benefits to the Economy: 

This research study provides a number of potential benefits to the overall economy of the 

nation including: 1) faster and more reliable transportation of goods due to the better state 

of the highways; 2) protecting the federal funds allocated to pavement rehabilitation 

projects; and 3) reducing the transportation costs and, ultimately, the price of local goods 

which will make them more competitive, locally and internationally.  

1.7. Dissertation Organization 

This dissertation is organized into six main chapters. Chapter 1 introduced the research 

issues under study, the research gap and the statement of the research problem. 

Furthermore, it introduced the research objectives together with their accompanied 

questions and hypothesis, and the methodology adopted to achieve these objectives. 

Finally, the significance of this research study and its limitations were highlighted. 

Chapter 2 provides a comprehensive literature review for all the research concerned with: 

the I/D and A+B alternative contracting methods; the time performance of these 

contracting methods; the different models that are developed to estimate the cost and time 

associated with the I/D and A+B contracting methods; examine the studies aimed at 

evaluating the performance of the I/D and A+B contracting methods; and, examine the 

existing guidelines for selecting the most-suitable alternative contracting method.  

Chapter 3 presents in details the steps of developing the model used to determine the 

time/cost trade-off relationship under the I/D contracting method. First, the chapter 

presents the possible resource utilization scenarios that a contractor can use under the I/D 

contracting method and how to calculate both the additional construction cost and the 

savings in indirect cost associated with each scenario. Second, the chapter discusses the 
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methodology of developing the time/cost trade-off model for the I/D contracting method 

and how the model was validated. Third, the chapter moves to the development of the 

model for assigning the ID value based on the desired level of duration reduction and 

calculate its associated cost. Next, a risk analysis module to determine the most likely ID 

value for the project and the most likely duration reduction for each ID value was 

explored. Finally, an application example of the developed model was presented.   

Chapter 4 presents the details of developing the model used to determine the time/cost 

trade-off relationship under the A+B contracting method. First, the chapter presents the 

possible resource utilization scenarios that a contractor can use under the A+B 

contracting method and how the risk of determining the contract time affects these 

scenarios; then, the additional cost to offset this risk, the additional construction cost and 

the savings in indirect cost associated with each scenario were calculated. Second, the 

chapter discusses the methodology of developing the time/cost trade-off model for the 

A+B contracting method and how the model was validated. Third, the chapter moves to 

the development of the model for assigning a monetary value for the “B” component 

based on the required level of duration reduction and calculate its associated cost. Next, a 

risk analysis model to determine the most likely “B” value for the project and the most 

likely duration reduction for each “B” value was explored. Finally, an application 

example of the developed model was presented.   

Chapter 5 discusses examining the SHAs’ alternative contracting decision making 

process using the two models developed in this research study. First, how the use of each 

model separately can improve the SHAs’ decision making with regards to their respective 

contracting method to ensure the success of their implementation. Second, the chapter 
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contrasts the performance, cost and risk associated with each contracting method through 

the developed model to assist the SHAs in selecting the most-suitable method for their 

projects based on their time reduction needs and available budget. Finally, the chapter 

combines the two developed models in this study to derive the time/cost trade-off 

relationship for another widely-used ACM which is the A+B+I/D method.  

Chapter 6 summarizes the conducted research and presents its conclusions, contribution 

to the body of knowledge, and limitations; it also lists the recommendations for future 

research.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Introduction 

The main objective of this chapter is to review the latest research studies concerned with 

examining the SHAs’ alternative contracting decision making process. This 

comprehensive review will summarize and provide a detailed overview for the critical 

parameters affecting the SHAs’ alternative contracting decision making process and 

explore the areas in which a research gap exists and which will be addressed through the 

development of this study. These existing research studies can be grouped into four main 

groups: 1) studies aimed at determining the impact of the I/D contracting method on the 

time/cost trade-off relationship for a pavement rehabilitation project and assigning the 

most appropriate ID value for the implementation of the I/D contracting method and the 

current practices adopted by the SHAs; 2) studies aimed at evaluating the impact of the 

A+B contracting method on the time/cost trade-off relationship for a pavement 

rehabilitation project and assigning the most suitable “B” value for the implementation of 

the A+B contracting method and the current practices adopted by the SHAs; 3) studies 

aimed at evaluating the performance of the application of the I/D and A+B contracting 

methods; and 4) the existing guidelines and research studies on how to select the most 

appropriate alternative contracting method for a particular project.  

2.2. I/D Contracting Method Studies 

The existing research studies concerned with the implementation of the I/D contracting 

method will be sub-divided into the following groups: 
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2.2.1. Determination of the Time/Cost Trade-Off: 

According to the Federal Highway Administration, the I/D contracting method involves 

“a contract provision which compensates the contractor a certain amount of money for 

each day identified critical work is completed ahead of schedule” (FHWA 1989). As a 

result of the inclusion of this provision, the I/D contracting method impacts the time/cost 

trade-off for a construction project as contractors try to crash the duration beyond the 

project’s normal point (Gillespie 1998, Daniels et al. 1999, Shr et al. 2004). Hence, In 

order to be able to depict the impact of the I/D contracting method on the time/cost trade-

off relationship, a number of studies examined this impact first on the project’s time and 

cost. Since with the I/D contracting method the responsibility of setting the contract time 

still lies in the hands of the SHAs (Herbsman et al. 1995, Sillars 2007, PaDOT 2013). 

Arditi and Yasamis (1998), defined the accelerated schedule under the I/D contracting 

method as a 6 or 7-day schedule. Later on, and as this method started gaining popularity 

and being adopted by more than 35 states (Pyeon and Park 2010), contractors started 

using additional resources to earn the incentives (Choi 2008, Jiang and Chen 2009). On 

the other hand, the cost of the project associated with the I/D contracting method tends to 

be higher than with the traditional contracting due to the trade-off relationship between 

these two decision variables (Arditi and Yasamis 1998, Shr 1999, Choi and Kwak 2012).  

In order to determine the impact of the I/D contracting method on the time/cost trade-off 

for the construction projects, several research studies attempted to tackle this problem 

through the use of different methodologies. One of these studies was the study conducted 

by Shr and Chen (2004). In this study the researchers used historical data from FDOT 

alternative contracting projects including: A+B, I/D, and No Excuse Bonus projects to 
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develop a time/cost trade-off model for alternative contracting methods in general. The 

model is developed through the use of regression analysis between the (days used – final 

contract time)/(final contract time), as the independent variable, and the (final 

construction cost – award bid)/ (award bid), as the dependent variable and a second 

degree polynomial equation was derived. The effort conducted in the above-mentioned 

research was able to derive a time/cost trade-off relationship for the alternative 

contracting methods; however, the study assumed that all contracting methods had the 

same impact on this relationship; hence, providing a unified model for all. Second, the 

study used historical data without attempting to determine neither the contractor’s 

productivity associated with each method, nor the increase in cost. Another study that 

aimed at quantifying this relationship but specifically for the I/D contracting method is 

the one conducted by Sillars and Riedl (2007). In this study, the researchers used a two-

stage process to derive the effect of the I/D contracting method on the project’s cost. 

Stage I started by the SHA’s engineer’s estimate for the project cost under traditional 

contracting and based on expert opinions from Oregon DOT the degree of acceleration 

and the associated cost were determined by identifying the impact of certain factors on 

the cost of acceleration. This was followed by stage II in which the cost of acceleration 

for the critical items were broken down into the different cost components and the impact 

of certain project characteristics on them was quantified. As illustrated above, this study 

aimed mainly at quantifying the cost of acceleration through the use of expert opinions 

without developing a model depicting the relationship between time and cost as a result 

of using the I/D contracting method. Furthermore, Jiang et al. (2010) attempted to 

quantify the time/cost relationship for Indiana I/D projects through the use of historical 
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I/D projects data. In that study, polynomial regression of the historical cost and time data 

of projects completed from 2006 to 2008 was performed to come up with the time/cost 

trade-off relationship. However, and similar to the first discussed study, historical data 

was utilized to derive the relationship without attempting to determine neither the 

contractor’s productivity associated with each method, nor his increase in cost. Finally, 

one of the comprehensive studies attempting to quantify the time/cost trade-off 

relationship for I/D contracting projects was the one conducted by Choi (2008). In that 

study, CA4PRS software was used to simulate the project’s duration under different 

resource utilization scenarios through the increase in the amount of resources used by 

fixed percentages; while, at the same time, the contractor’s additional cost was calculated 

using a cost growth formula. After that, a regression analysis was conducted between the 

duration reduction and the corresponding increase in the contractor’s cost and a trade-off 

relationship was derived. Although this study derived the relationship based on 

estimating the contractor’s additional productivity and cost, some limitations existed. 

First and with regards to the productivity calculation, the percentage increase in resources 

was chosen arbitrarily between 5% and 25% without exploring neither the applicability of 

employing these additional resources into the work zone, nor the possibility of using 

more resources that might lead to additional duration reduction; moreover, when 

increasing the resources, the above study assumed that all resources’ levels increase at 

once without considering which ones are the critical ones that practically impact the 

project’s duration. Second, regarding the calculation of the cost increase, the savings in 

the contractor’s indirect costs were not accounted for which might lead to an inflation in 

the final cost increase value. 



30 
 

2.2.2.   Assigning the ID Value: 

Another important decision with regards to the implementation of the I/D contracting 

method is the most suitable ID value to be assigned. Pyeon and Lee (2012) used a multi-

step process to determine the ID amount to be assigned. These steps started by 

determining the project’s baseline schedule, DRUC, contractor’s cost increase and 

agency savings; then, provided a range for the ID amount from the contractor’s cost 

increase to the summation of the DRUC and the savings. As seen, the study only 

provided a wide range of possible ID values to be assigned without setting a specific 

value that is tied to the desired duration reduction. Similar ranges were also provided by 

Choi and Kwak (2012). Furthermore a number of studies tackled this problem by 

estimating the project’s DRUC and setting the ID value as a percentage of that value 

(Ibarra 2002, Fick et. al 2010, Jiang et al. 2010). Dutta and Patel (2012) developed a tool 

to calculate the incentive amount by knowing the bid cost, bid duration and planned 

duration. Through these parameters and with the use of a regression tool, the contractor 

additional cost was computed and the incentive amount was calculated by dividing this 

cost by the number of days to be reduced. However, by equating the ID value to the 

contractor’s additional cost, the success of the implementation of the ID method might be 

in jeopardy as it provides the contractor with a minimum motivation to seek any duration 

reduction. At the same time, the majority of the current SHAs’ I/D contracting guidelines 

only states that the ID value to be assigned should be related to the DRUC (NYSDOT 

1999, CDOT 2006, ODOT 2006, PaDOT 2013, FDOT 2015, MDOT 2015), among 

others. 
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2.3. A+B Contracting Method Studies 

The existing research studies concerned with the implementation of the A+B contracting 

method will be sub-divided into the following groups: 

2.3.1. Determination of the Time/Cost Trade-Off: 

A+B contracting method is a contracting method in which the low bidder is selected on 

the basis of combined low construction cost and time (WSDOT 2015); hence, the 

contractor seeks to reduce the project’s duration to win the bid which impacts the 

time/cost trade-off relationship for the project. Nevertheless, the determination of this 

impact is a difficult task for the SHAs as the productivity rate differs from one contractor 

to another and only each contractor knows the resources available to him (Ellis and 

Herbsman 1990). As a result, most of the studies concerned with examining the impact of 

the A+B method did that from the contractor’s point of view. For example, Shen et al. 

(1999) developed a model to help the contractor in selecting the optimal bid to submit for 

A+B projects. The model uses the value of time assigned by the SHA to reach the 

optimal cost-time bid. The model is based on the fact that for a given value of time, there 

can be infinite combinations of time and cost and hence develops a total combined bid 

ISO map. From the ISO map, the ISO line with the lowest combined value is selected and 

then added to the contractor’s time-cost curve under the traditional contracting method 

and the point of intersection gives the optimal bid. As seen, the model is aimed only at 

helping the contractors in determining the optimal bid by using their traditional 

contracting time/cost trade-off and the value of time assigned by the SHA; thus, the 

trade-off relationship under the A+B was not developed and the above model cannot be 

used by the SHAs as they don’t have access to the information regarding the contractors’ 
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traditional trade-off curve. Another effort with regards to the A+B contracting method 

was the one conducted by El-Rayes (2001). This effort developed a model for optimizing 

the contractors’ resource utilization under the A+B method in order to enable them to 

minimize the total combined bid amount using different crew formations and continuity 

scenarios and applying dynamic programming to reach the optimal resource utilization 

scenario that will lead to the lowest combined bid. In spite of the importance of the above 

study, it also only aimed at helping the contractors with their A+B decision not the SHA 

as the model depends on the amount of resources that are available for the contractor 

which are not known for the SHAs. On the other hand, the only study aimed at helping 

the SHAs with their A+B decision making process is the one conducted by Shr et al. 

(2004). This study was based on the model developed by Shr and Chen (2004) and it uses 

the model developed in that study to calculate the minimum bid that the contractor should 

submit and then use this amount as the basis for the SHAs to set a range for the 

acceptable time bids. Nevertheless, since this model is based on Shr and Chen (2004) 

model, it inherits its same problems which are: assuming a unified time/cost trade-off 

relationship for all alternative contracting methods, and using historical data rather than 

calculating the actual productivities.  

2.3.2. Assigning the “B” Value: 

There is a lack of studies in the area of assigning the most suitable “B” value based on the 

SHAs’ decision variables and the project’s characteristics. As a result, most of the 

guidelines developed by the different SHAs for the A+B contracting method states that 

the “B” value should be equal to the DRUC (TXDOT 1998, NYSDOT 1999, MnDOT 

2005, CDOT 2006, ODOT 2006, PaDOT 2013, MDOT 2015, WSDOT 2015). 
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2.4. Evaluating the Performance of the I/D and A+B Contracting Methods: 

Several studies attempted to assess the results of implementing the different types of 

ACMs using data from projects that have already been executed. One of these studies is 

the one conducted by the University of Florida that assesses the effectiveness of ACMs 

implemented by Florida Department of Transportation (FDOT) in terms of time and cost 

(Ellis et al. 2007). In this study the researchers studied 1132 ACM projects and divided 

them by the type of work required. They then used three different ratios to assess the cost 

effectiveness of these methods which are: 

i. Initial Award Performance, which compares FDOT’s initial cost estimate with the 

award bid.  

ii. Cost Growth Performance, which compares the actual costs with the award bid. 

iii. Actual Cost Performance, which compares the actual costs with FDOT’s initial 

cost estimate. 

Based on these ratios, they found that the performance of each method varied among 

these ratios; for instance, the A+B contracting method had the best performance in terms 

of initial award performance. At the same time, in terms of project type, a general 

assessment of all ACMs was performed and it showed that for all project types identified, 

ACMs performed positively with regard to initial award performance and actual cost 

performance, with exception of bridges; while they all experienced significant cost 

growths. With regard to the time performance, again three similar ratios were used and 

similar variation in performance was recorded as the A+B contracting method proved 

best in the initial time performance and lane rental was the worst in all three ratios. 
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In addition, a similar study was conducted by Michigan State University to evaluate the 

impacts of using ACMs for projects let by Michigan DOT (El-Gafy 2014). In this study, 

the performances of different ACMs; namely: A+B, Accepted for Traffic, Interim 

Completion, Lane Rental, and No Excuse,  in terms of time, cost, and quality were 

assessed. To assess the time effectiveness of these methods, two performance indices for 

each project were calculated:  

i. Original Time Performance Index (OTPI), which is calculated as follows: 

((Actual Duration Used – Original Contract Duration)/(Original Contract 

Duration))   

ii. Present Time Performance Index (PTPI), which is calculated as follows: ((Actual 

Duration Used – Present Contract Duration)/(Present Contract Duration)).  

Next, a statistical analysis was performed to examine whether the actual contract duration 

was affected by the presence of the different ACMs and whether certain acceleration 

techniques shortened the project duration relative to the conventional projects. Similarly, 

a project Cost Performance Index (CPI) for each project was calculated as follows: 

((Authorized Contractor Cost – Original Contract Cost)/Original Contract Cost)) which 

was then followed by a statistical analysis to investigate the degree by which the project 

cost is affected by the presence of ACMs, how much the ACMs increased project cost, 

and whether ACMs increase the projects’ costs significantly compared to conventional 

projects. Finally to examine the impact of ACMs on the project quality, the distress index 

and the remaining service life of the pavements were used. Based on the above, several 

conclusions were reached by this study: 
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1- There is no statistical difference in terms of time performance between the 

projects procured using ACMs and the conventional projects.  

2- Projects procured by ACMs had better cost control than those procured 

conventionally.  

3- In terms of quality, ACM projects showed better long term quality than 

conventional projects. 

Another study that aimed to evaluate the effectiveness of ACMs is the one conducted by 

Anderson & Damnjanovic (2008). This study was based on a questionnaire sent to all 

SHAs asking them to assess the different methods in terms of reduction in time and 

whether the cost is under or over budget. For the former parameter a scoring scale of 1 to 

5 was developed where “1” means increase in projects’ duration while “5” means more 

than 10% reduction in the project’s duration. Similarly, for cost “1” means more than 5% 

over budget and “5” means more than 5% under budget. According to this study, the 

A+B and I/D methods showed the greatest time reduction as more than 30% of the 

respondents said that these methods reduced time by 5-10%. On the other hand, in terms 

of cost, most of the respondents stated that all methods increased the cost over the initial 

budget with A+B being the method that most frequently leads to cost overruns. 

Moreover, Strong (2006) conducted a national survey of different SHAs’ construction 

engineers to rank the performance of different ACMs & traditional contracting in 

different project types using eight performance factors. The ACMs studied were: A+B, 

lane rental, and design build and the factors considered were: administrative cost, 

construction cost, time, management complexities, road user costs, disruption to third 
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parties, quality, and innovation. Based on this survey, A+B was the highest ranked 

method for all the nine types of projects examined. 

Finally, Choi et al. (2012) attempted to determine the schedule effectiveness of both the 

A+B and I/D contracting methods using data from transportation projects in California. 

In this study, the researchers compared three different types of rehabilitation projects 

executed by these two methods with projects executed by traditional contracting methods 

through computing a schedule effectiveness ratio which is calculated by subtracting the 

original contract time from the final contract time and then dividing it by the original 

contract time. Through this study it was found that the I/D method was very effective in 

terms of schedule reduction while the A+B method showed schedule overruns in over 

30% of the studied projects. 

As demonstrated by all of the above studies, the performance of each type of the 

alternative contracting methods differs according to the type of work, project 

characteristics and the parameters examined; hence, there is a pressing need for 

guidelines and models that can help the SHAs in selecting the most suitable alternative 

contracting method for their projects. 

2.5. Selecting the Most Suitable Alternative Contracting Method: 

The literature concerning this research area can be divided into two distinct groups: 

SHAs’ guidelines, and research developed guidelines. 

2.5.1. SHAs’ Guidelines 

 As previously illustrated, each of the above ACMs has its own advantages and 

disadvantages which makes them suitable to apply for certain types of projects rather 

than the others. In an attempt to identify the applicability of each method, several SHAs 
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developed general guidelines, based on past experiences, of which types of ACMs are 

suitable for which types of projects. Some of these guidelines were developed for the use 

of ACMs in general while others for the use of a specific type of ACM. An example of 

the former type is the one developed by Ohio Department of Transportation. The Ohio 

DOT (2006) sets several criteria that if any of them is met, then the project may use an 

ACM, these criteria are: 

i. Interstate or freeway projects that involve reconstruction, widening, interchange, 

or bridge work. 

ii. Projects in heavily populated or travelled areas that require total road closures. 

iii. Projects that have considerable effects on emergency services, school, or 

businesses. 

iv. Projects that complete a gap in the highway system. 

On the other hand, several SHAs developed specific guidelines for each type of ACM; 

for example, California Department of Transportation (CALTRANS) guidelines suggest 

that the use of A+B contracts is best for projects with total estimated cost of at least $5 

million and DRUC of at least $5,000 (Felker 2002). At the same time, Minnesota 

Department of Transportation guidelines (MNDOT) (2005) identified types of projects 

were A+B should not be used which are: when there are pending right of way issues, 

potential utility conflicts, and incomplete design plans. They also specified specific 

project works that are suitable for A+B contracting among which are mill & overlay, 

bridge painting, and un-bonded concrete overlay. Finally, NYSDOT (1999) added that 

A+B contracts are best suitable for: 

i. Projects that have preconstruction level of D or worse. 
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ii. Projects with high accident locations. 

iii. Projects with DRUC of at least $3,000. 

iv. When the total B portion is large enough to influence the bidding amount. 

With regard to I/D contracts, the Federal Highway Administration (FHWA) identified 

five characteristics that if any of them is present in projects will warrant the use of I/D 

provisions, these characteristics are: 

i. Projects that severely disrupt the traffic.  

ii. Projects that significantly increase road user cost. 

iii. Projects that significantly impact neighboring businesses. 

iv. Major bridges out of service. 

v. Projects with lengthy detours. 

 Furthermore, NYSDOT (1999) stated that certain conditions if present in a project will 

favor the use of I/D contracts over other ACMs, these conditions are: 

i. When the project has critical milestones or phases that affect traffic. 

ii. When the project is let using a number of contracts; hence, the shorter ones are 

best let by I/D contracts. 

iii. When projects can only be constructed over a fixed period of time but its 

estimated duration exceeds this period. 

iv. If the project is of short duration, hence, the B portion is insignificant.  

2.5.2. Research Studies’ Guidelines 

 In addition to the above guidelines, several research studies attempted to help SHAs in 

selecting the best ACM by defining other guidelines as well, an example of these is the 

one conducted by Fick et al. (2010). In this study, the researchers conducted a survey of 
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several SHAs asking about their experiences with each ACM and from these results they 

developed guidelines for the use of A+B and I/D contracting methods. Moreover, Jaraiedi 

et al. (1995) conducted a survey of both highway contracting agencies and highway 

contractors about the projects that are best suitable for I/D contracts and came up with 

five guidelines, which are: 

i. Projects that impair emergency services. 

ii. Projects where the safety of the road users is in jeopardy. 

iii. Projects which severely impact traffic. 

iv. Projects that affects businesses. 

v. Projects with lengthy detours. 

As evident from the above two categories of guidelines, most of them provide general 

and broad types of projects for the use of alternative contracting methods and do not 

attempt to provide guidelines for the use of one alternative contracting method over the 

other according to the project’s characteristics or the SHAs’ decision parameters. 

2.6. Conclusion: 

This chapter provided an extensive literature review on the latest research studies 

conducted in the following areas: 1) studies aimed at determining the impact of the I/D 

contracting method on the time/cost trade-off relationship for a pavement rehabilitation 

project and assigning the most appropriate ID value for the implementation of the I/D 

contracting method and the current practices adopted by the SHAs; 2) studies aimed at 

evaluating the impact of the A+B contracting method on the time/cost trade-off 

relationship for a pavement rehabilitation project and assigning the most suitable “B” 

value for the implementation of the A+B contracting method and the current practices 
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adopted by the SHAs; 3) studies aimed at evaluating the performance of the application 

of the I/D and A+B contracting methods; and 4) the existing guidelines and research 

studies on how to select the most appropriate alternative contracting method for a 

particular project. However, the review showed that there is an urgent need for further 

research in these areas to cover important gaps and optimize the SHAs’ alternative 

contracting decision making process. These research needs include: 

1- Determining the impact of the I/D contracting method on the time/cost trade-off 

relationship for highway pavement rehabilitation projects. 

2- Assigning the most appropriate ID value for each individual project based on 

required duration reduction and budgetary constraints. 

3- Determining the impact of the A+B contracting method on the time/cost trade-off 

relationship for highway pavement rehabilitation projects. 

4- Assigning the most appropriate “B” value for each individual project based on 

required duration reduction and budgetary constraints. 

5- Examine the SHAs’ alternative contracting decision making process.    

  



41 
 

CHAPTER 3 

DEVELOPING THE TIME/COST TRADE-OFF MODEL FOR THE I/D 

CONTRACTING METHOD 

 

3.1. Introduction 

The main objective of this chapter is to develop a time/cost trade-off model for pavement 

rehabilitation projects contracted under the I/D contracting method that has the 

capabilities of: 1) determining the relationship between the duration reduction and the 

increase in cost under the I/D contracting method; 2) assigning the appropriate ID value 

to be offered to the contractor based on the desired level of duration reduction and the 

owner’s budgetary constraints; and 3) determining the most likely duration reduction that 

can be achieved for each level of ID and the most likely ID level for the entire project. 

Consequently, the proceeding sections will focus on: 1) quantifying the achievable 

duration reductions and their associated costs under the I/D contracting method; 2) 

deriving a relationship between the duration reduction and the increase in cost under the 

I/D contracting method; 3) relating the value of the ID to be assigned to the desired 

degree of duration reduction; 4) performing a risk analysis to determine the probability of 

achieving each ID level and each corresponding duration reduction; and 5) demonstrating 

the abilities of the developed model by applying it to a real-life pavement rehabilitation 

project. The above tasks will be achieved through the use and combination of four 

modules as shown in figure (3-1); namely: 1) Time/cost trade-off module, 2) ID level 

calculation module, 3) owner’s cost calculation module, and 4) risk analysis module.   
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Figure 3-1: I/D trade-off calculation model 

3.2. Time/Cost Trade-off Module 

The main objective of this module is to help SHAs in determining the relationship 

between the reduction in a pavement rehabilitation project’s duration and the contractor’s 

additional cost associated with that reduction under the I/D contracting method; hence, 

the first step to achieve this objective is to quantify each component of this relationship. 

In an attempt to quantify these components under the I/D contracting method, Choi 

(2008) used simulation and a cost growth equation to calculate the above-mentioned 

parameters from the contractor’s perspective; nevertheless, in that attempt, all the 

resources were increased incrementally to establish the utilization scenarios and the 

savings in the time-related indirect cost resulting from the reduction in the project’s 

duration were not accounted for which might lead to an inflation in the value of the 

contractor’s additional cost. Hence, in this research a similar methodology to the one 

used in the above-mentioned study was adopted but with: focusing on increasing the 

levels of the critical resources only as these are the ones that impact the project’s 

duration, and incorporating the indirect cost savings to calculate the net additional cost 

incurred by the contractor as outlined in the following sub-sections. 
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Construction Cost 
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T/C Trade-off
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•Shape

Probability Calculation

ID Assigned 

Accelerated Duration
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•Savings in Indirect Cost
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3.2.1. Contractor’s Schedule Compression due to Resource Utilization: 

In order to simulate the project’s duration as a result of the change in the contractor’s 

resource utilization levels, the Construction Analysis for Pavement Rehabilitation 

Strategies (CA4PRS) schedule simulation software was utilized. CA4PRS was developed 

by the University of California at Berkeley Pavement Research Center and is specialized 

in pavement rehabilitation projects and was validated and implemented in a number of 

different states (Lee et al. 2008). CA4PRS has three main modules: work zone analysis 

module, schedule simulation module, and cost estimation module; in addition to real-life 

project examples already stored in its database. Furthermore, to account for all the major 

factors impacting the production of pavement rehabilitation projects, the different 

construction strategies, construction windows, and cross-section designs were taken into 

consideration when conducting the schedule simulations (Choi 2008). Accordingly, the 

first step to conduct the schedule simulation is to extract the base-line schedule used for 

the project accompanied by its corresponding critical resources’ levels from CA4PRS; 

second, the levels of the critical resources, as analyzed by CA4PRS, were increased 

incrementally and the corresponding projects’ duration were simulated till reaching the 

maximum limits of these resources (Lee 2011). These two steps were done for each 

different pavement strategy, cross-section, and construction window which resulted in a 

number of resource utilization scenarios and their corresponding durations as shown in 

table (3-1): 

Table 3-1: Resource Utilization Scenarios and their Corresponding Durations    

Strategy Cross-

Section 

Profile 

Constru-

ction 

Window 

Duration (days) 

Ordinary 

Usage 

Inc. 

Level 1 

Inc. 

Level 2 

Inc. 

Level 3 

Inc. 

Level 4 

PCCP 12 inch  Nighttime 361 268 247 229 211 
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Strategy Cross-

Section 

Profile 

Constru-

ction 

Window 

Duration (days) 

Ordinary 

Usage 

Inc. 

Level 1 

Inc. 

Level 2 

Inc. 

Level 3 

Inc. 

Level 4 

Weekend 196 178 164 152 140 

Extended 193 175 161 149 138 

8 inch 

Nighttime 201 140 127 116 105 

Weekend 87 78 70 64 58 

Extended 85 76 69 63 57 

ACP 6 inch 

Nighttime 229 208 177 154 139 

Weekend 24 22 19 17 15 

Extended 24 22 19 16 15 

MACO 6 inch 

Nighttime 131 117 106 99 98 

Weekend 25 23 21 20 19 

Extended 24 22 20 19 18 

 

3.2.2. Contractor’s Direct Cost Growth 

 As discussed earlier, as a result of reducing the project’s duration, the contractor had to 

use additional resources which in return will lead to an increase in the project’s direct 

cost. This cost (CAC) can be expressed using the contractor’s cost growth formula below 

(Choi 2008): 

                                                                      

                                                                          (3-1) 

To calculate this formula, the unit prices for the different critical resources were collected 

from 17 different sources ranging from states’ published rental rates to other federal and 

nationwide resources and the average of these rates was used. The use of more than one 

source helps in accurately reflecting the contractor’s cost increase without the influence 

of specific locations’ conditions and increasing the applicability of the developed model 

across the different regions of the country. As a result, the additional CAC for each 

resource utilization scenario in table (3-1) was calculated as shown in table (3-2): 

 



45 
 

Table 3-2: Contractor’s Additional Cost Increase    

Strategy Cross-

Section 

Profile 

Construction 

Window 

Inc. 

Level 1 

Inc. 

Level2 

Inc. 

Level 3 

Inc. 

Level 4 

PCCP 

12 inch  

Nighttime 2.64% 4.84% 6.73% 9.63% 

Weekend 4.67% 8.58% 11.92% 17.06% 

Extended 4.58% 8.42% 11.70% 16.74% 

8 inch 

Nighttime 1.37% 2.49% 3.41% 4.77% 

Weekend 2.03% 3.68% 5.04% 7.05% 

Extended 1.98% 3.59% 4.93% 6.89% 

ACP 6 inch 

Nighttime 1.04% 2.64% 3.82% 4.82% 

Weekend 0.29% 0.74% 1.08% 1.37% 

Extended 0.29% 0.73% 1.05% 1.33% 

MACO 6 inch 

Nighttime 0.83% 1.51% 2.11% 2.48% 

Weekend 0.14% 0.26% 0.36% 0.42% 

Extended 0.14% 0.25% 0.35% 0.41% 

  

3.2.3. Contractor’s Time-Related Indirect Cost Savings 

Time-related indirect costs are those costs that the contractor incurs everyday in the 

project regardless of the nature or quantity of work that is done on that day. Therefore, 

whenever the contractors can reduce the project’s duration, the total amount of these 

costs decreases providing realized savings for the contractor. In order to quantify the 

savings in the indirect costs, the magnitude of these costs for a construction project has to 

be first quantified. This task was attempted by a number of previous research studies and 

one of the most comprehensive attempts to quantify the amount of indirect costs was 

conducted by Assaf et. al (1999). In that study, the researchers found that the project 

overhead ranges from 11% to 20% of the total project’s direct cost with the norm at 

14.9%; moreover, of these project overheads, the time-related ones accounted for 60% 

(Assaf et. al 1999). Therefore, to account for the savings in the time-related indirect cost, 

this study assumed that their average value account for 8.9%, which is 60% of the norm 
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value, of the project’s total direct cost and the calculation of the savings were done using 

the following steps: 

1- Assume the total cost = direct cost + 0.089*Direct Cost and calculate the direct 

cost. 

2- Calculate indirect cost = 0.089*Direct Cost. 

3- Calculate indirect cost/day = indirect cost/project’s duration 

4- Calculate the time-related cost savings = (indirect cost/day)*(number of days 

reduced).    

After calculating the two components of the change in the project’s cost as a result of the 

duration reduction, the contractor’s net cost growth can be expressed using equation (3-2) 

with the results shown in table (3-3): 

                                 

                                                          (3-2) 

Table 3-3: Duration Reductions vs. Net Cost Growth    

S
tr

a
te

g
y

 

P
ro

fi
le

 

(i
n

ch
) 

C
o
n

st
ru

-

ct
io

n
 

W
in

d
o
w

 Trade-Off 

Inc. 

Level 1 (%) 

Inc. 

Level 2 (%) 

Inc. 

Level 3 (%) 

Inc. 

Level 4 (%) 

ΔT  ΔC  ΔT  ΔC  ΔT  ΔC  ΔT  ΔC 

P
C

C
P

 12   
Nighttime -25.7 0.54 -31.7 2.25 -36.7 3.73 -41.7 6.22 
Weekend -9.20 4.26 -16.6 7.84 -22.7 10.9 -28.8 15.8 

Extended -9.18 4.18 -16.6 7.69 -22.7 10.7 -28.8 15.5 

8  

Nighttime -30.3 0.01 -36.9 0.81 -42.4 1.49 -48.2 2.58 

Weekend -10.4 1.83 -18.9 3.31 -25.8 4.54 -33.3 6.40 

Extended -10.4 1.78 -18.9 3.23 -25.8 4.43 -33.3 6.25 

A
C

P
 

6  

Nighttime -9.04 0.53 -22.9 1.36 -33.0 1.98 -39.6 2.61 

Weekend -8.88 0.24 -22.8 0.61 -32.8 0.89 -39.2 1.14 

Extended -8.84 0.24 -22.6 0.60 -32.9 0.86 -39.6 1.10 

M
A

C

O
 

6  

Nighttime -10.8 0.54 -19.5 0.98 -24.8 1.45 -25.9 1.79 

Weekend -10.2 0.09 -18.4 0.17 -23.9 0.24 -26.4 0.29 

Extended -9.54 0.09 -18.1 0.16 -23.7 0.24 -26.3 0.28 
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3.2.4. Modeling the Time/Cost Trade-Off Relationship 

Using the data shown in table (3-3), and knowing that the relationship between the 

construction cost and time can be expressed by a second degree polynomial, a polynomial 

regression was performed to derive the relationship between the project’s duration and its 

cost under the I/D contracting method as shown in figure (3-2): 

 
 Figure 3-2: I/D contracting method time/cost trade-off 

The performed regression analysis yielded the relationship shown by equation (3-3) 

between the construction cost and time under the I/D contracting method with R-squared 

value of approximately 0.60 emphasizing a very good fit: 

                                (3-3) 

Following Choi (2008) steps to convert the above equation in terms of the relationship 

between the increase in the construction cost and the reduction in the project’s duration, 

equation (3-3) can be rewritten as follows: 

y = 0.3876x2 + 0.0114x + 0.0032
R² = 0.5968
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                                (3-4) 

where: ΔC = contractor cost increase expressed as a percentage of the engineer’s cost 

estimate; t0 = engineer’s project duration estimate expressed as 100%; and Δt  = reduction 

in project’s duration expressed as a percentage of the engineer’s duration estimate. 

By deriving equations (3-3) and (3-4), the trade-off relationship between the time and 

cost of a pavement rehabilitation project under the I/D contracting method can now be 

accurately defined. 

3.2.5. Model Validation 

To test the accuracy of this model, a validation test against real life pavement 

rehabilitation projects contracted through the I/D contracting method was conducted. To 

validate the above developed model, the expected cost derived from the model was 

validated against the final cost of real-life I/D projects. To perform this task, data from 76 

different I/D projects was gathered from different sources. The model validation was 

performed through the following steps: 

1- Calculating the expected final cost of the project as a result of reducing its 

duration using the developed model. This was done using the projects’ engineer’s 

time estimate as t0, the project’s actual time to calculate Δt, and the engineer’s 

cost estimate and applying equation (3-4) to these values.  

2- Comparing the calculated costs with the actual costs from the projects which was 

done using a paired-sample t-test. This test was chosen as it has the capability of 

detecting the difference in the mean of the two datasets and its suitability for the 

available data as they represent the same project with two different scenarios and 

their large number fulfills the normality assumption for the t-test.  
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3- Examine the resulting p-value and confidence intervals from the performed t-test. 

Accordingly, table (3-4) shows a summary of the results of the paired-sample t-test 

conducted for the calculated cost vs. the actual cost.   

Table 3-4: Paired-Sample t-test Results     

 Paired Differences t df Sig.  

(2-tailed) 
95% Confidence Interval of the 

Difference 

Lower Upper 

FinalCost - 

CalcCost 

-1094497.5 94005.7 -1.67 75 .098 

 

From the above table, the p-value for the t-test, at a 95% confidence level, was equal to 

0.098 which is larger than 0.05; hence, we do not reject the null hypothesis (H0) and the 

means of the costs can be assumed equal; furthermore, the lower limit of the confidence 

interval has a negative value while the upper limit has a positive one which shows that 

sometimes the mean of the calculated cost is larger than the mean of the final cost and 

sometimes the opposite is true. This supports the conclusion that the two means can be 

assumed equal since the confidence interval does not lie away from the “0” point. 

3.2.6. Sensitivity Analysis 

After validating the relationship between the increase in cost and the reduction in the 

project’s duration under the I/D contracting method, sensitivity analysis for the developed 

model was conducted. Two analyses were performed to examine the impact of certain 

independent variables on the time/cost trade-off relationship for the I/D pavement 

rehabilitation projects; these variables are: the percentage that the indirect cost constitutes 

of the project’s direct cost and the equipment rental rates used to calculate the increase in 

the contractor’s direct cost. Regarding the former, three percentages of the indirect cost 
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representing the upper and lower bounds of the range concluded by Assaf et al. (1999), as 

well as its norm, were used to calculate the net cost growth incurred by the contractor 

under the I/D contracting method. When applying these different percentages to the 

calculation of the time/cost trade-off, while keeping all other variables constant, the 

results showed that as the percentage of the indirect cost decreases, the net cost growth 

increases for the same duration reduction, and vice-versa (figure 3-3) which was further 

reinforced when a scenario of no indirect costs savings i.e. only the increase in the direct 

costs, was examined. 

 
Figure 3-3: Indirect cost sensitivity analysis  

With regards to the latter variable, and besides the average rates that were originally used 

to develop the model, the maximum, minimum, and a sample of one of the SHAs rates 

(CALTRANS) were used to test the impact of these rates on the time/cost trade-off 

relationship for pavement rehabilitation projects under the I/D contracting method. When 

applying these different rates to the calculation of the time/cost trade-off, while keeping 

all other variables constant, it was observed that these rental rates are positively 
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correlated with the net cost growth for the same duration reduction, and vice-versa (figure 

3-4); furthermore, it was proved that the CALTRANS rental rates almost yielded the 

same trade-off relationship as the maximum rates which means that these particular rates 

are among the highest in the country. It is also worth noting that at very low time 

reductions, the impact of the different rental rates is minimal as only few more resources 

are needed. 

 
Figure 3-4: Equipment rental rates sensitivity analysis  

3.3. ID Level Calculation Module 

After deriving the relationship between the increase in cost and the reduction in the 

project’s duration for a pavement rehabilitation project contracted under the I/D 

contracting method, the ID level calculation module will be used to assign the appropriate 

ID level for pavement rehabilitation projects based on the desired level of duration 

reduction. To achieve this objective, a relationship between the duration reduction and 

the ID level to be assigned has to be developed and the first step in developing such a 

relationship is to understand the rationale behind using such type of contracts; and 
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consequently, the constraints imposed on them. As discussed in the previous chapters, the 

main objective for SHAs behind adopting the I/D contracting method is to reduce the 

negative impacts of the pavement rehabilitation projects on the road users. However, with 

the adoption of such method, SHAs will incur more costs, than what they would have 

incurred using traditional contracts, reflected in the incentive offered; albeit, this 

additional cost must not exceed the DRUC in order to protect the public money. On the 

other hand, in order for the contractor to be able to reduce the project’s duration, 

additional resources have to be committed which is reflected in an increased cost. Hence, 

to motivate the contractors to accelerate the project’s duration, the incentive offered must 

be more than the additional cost that they will incur (CC) (Jaraiedi et al. 1995). These 

constraints can be expressed in the form of the following inequality: 

                    (3-5) 

Hence, by substituting equation (3- 4) into the equation (3-5), the inequality can be 

expressed as:  

                                        (3-6) 

As shown from equation (3-6), the constraints for selecting the appropriate ID level can 

now be expressed in terms of the duration reduction which will be used in developing the 

ID module. Furthermore, by calculating the ID level as a percentage of the DRUC, where 

this percentage ranges from 0-100%, SHAs will be sure that the second constraint of 

equation (3-6) is satisfied i.e. the savings realized by accelerating the project are more 

than the additional cost incurred. Moreover, setting a variable ID level for a given project 

based on the desired level of duration reduction, means that each pavement rehabilitation 
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project can have more than one ID level which ultimately means that the relationship 

between the ID level and the project duration can be depicted as shown in figure (3-5):  

 

Figure 3-5: Relationship between the ID level and the project’s duration  

From figure (3-5), in order to be able to assign the appropriate ID level for each duration 

reduction, the coordinates of points 1 through 4, i.e. time and ID, have to be calculated. 

These points represent the lower and upper bounds of the possible duration reductions for 

the first two ID levels that can be assigned for a given pavement rehabilitation project. As 

seen in the figure, point (1) represents the minimum duration reduction that can be 

achieved for a project (t1) and the corresponding minimum ID level that can be assigned 

to achieve it (ID1); while point (2) represents the maximum duration reduction that can be 

achieved using ID1 (t2). Similarly, if the SHA needs to reduce the time beyond t2, then 

point (3) represents the next possible time reduction after t2 (t3) and the corresponding ID 

level that needs to be assigned to achieve such a reduction (ID2); and finally, point (4) 

represents the maximum duration reduction (t4) that can be achieved using ID2. The steps 
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to calculate the coordinates of these four points are summarized in figure (3-6) and 

explained in details in the following sections:  

 
 

Figure 3-6: Steps for calculating the coordinates of points 1 through 4  

3.3.1. Point 1: (Minimum Duration Reduction & Minimum ID Level): 

 Step 1.1: Calculate the minimum duration reduction for any project (t1). By 

developing the engineers estimate of the baseline schedule for the project under 

traditional contracting (T), SHAs can assume the minimum duration reduction which is 1 

day to be the time at point 1; hence, (t1) can be calculated using the following equation: 

             (3-7) 

  Step 1.2: Calculate the minimum ID level that has to be offered (ID1). Through 

utilizing the first constraint of equation (3-6), the minimum ID that can be offered is the 

one that is, at least, equal to the additional cost incurred by the contractor. Hence, by 

using equation (3-6) while assuming t0 = 100%, expressing ΔT as a percentage of t0 and 

the ID as a percentage of DRUC, the minimum ID to be offered (ID1) can be calculated 
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by knowing the engineer’s cost estimate associated with the baseline schedule (C) as 

shown in equation (3-8): 

     
                 

 

 
    

    
    (3-8) 

3.3.2. Point 2: (Maximum Duration Reduction using ID1): 

 Step 2.1: Calculate the ID Value. Point 2 represents the maximum duration 

reduction that can be achieved by using ID1; in other words, the ID for this point is still 

equal to ID1. 

  Step 2.2: Calculate the maximum duration reduction that can be achieved using 

ID1 (ΔT1). Through utilizing the first constraint of equation (3-6) and substituting with 

ID1, ΔT1 can be calculated as a percentage of the baseline duration using the following 

equation: 

        
  

        

 
         

      
    (3-9) 

Where the negative sign reflects a reduction in the project’s duration. 

And consequently, the maximum days of duration reduction that can be achieved by 

offering ID1 can be calculated using equation (3-10): 

                   (3-10) 

3.3.3. Point 3: (Duration Reduction Beyond t2 and the Corresponding ID Level): 

 Step 3.1: Calculate the reduced duration (t3). Similar to point 1, SHAs can 

assume the minimum duration reduction beyond t2 to be 1 day; hence, (t3) can be 

calculated using the following equation: 

              (3-11) 
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  Step 3.2: Calculate the ID level associated with t3 (ID2). By using the first 

constraint of equation (3-6), ID2 can be calculated as follows: 

     
                   

   
 

 
    

    
    (3-12) 

Where ΔT1’ is ΔT1 adjusted to the nearest whole number of days reduced. 

3.3.4. Point 4: (Maximum Duration Reduction Using ID2): 

 The calculations for the coordinates of point 4 are similar to point 2; thus, the ID 

= ID2 and ΔT2 and t4 can be calculated using equations (3-9) and (3-10).  

Finally, for any given project there might be additional feasible ID levels, beyond ID2, 

that can be assigned to achieve more duration reduction; hence, the calculation of the 

coordinates of their boundary points will be similar to points (3) and (4) and by using the 

following generalized equations: 

                (3-13) 

     
                     

   
 

 
    

    
    (3-14) 

        
  

        

 
         

      
    (3-15) 

where: ti = project’s duration at point i expressed in days; IDi = the level of ID associated 

with the duration at point i expressed as a percentage of the DRUC; T = engineer’s 

project duration estimate expressed in days; C = engineer’s project cost estimate 

expressed in dollars; DRUC = daily road user cost expressed in dollars; ΔTi = maximum 

reduction in the project’s duration at point i expressed as a percentage of the engineer’s 

duration estimate; and ΔTi’ is ΔTi adjusted to the nearest whole number of days reduced. 
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 Nevertheless, SHAs need to determine the feasibility of any further ID levels by 

examining the availability of additional resources in their markets, and whether any 

additional resources can be logistically deployed into the construction site or not; 

furthermore, some SHAs have a maximum ID amount that they can pay (Pyeon and Lee 

2012); once any of these conditions is met, then the maximum possible duration 

reduction, and its corresponding ID level, are reached for that particular project and the 

calculations using the ID module are completed. 

3.4. Owner Cost Calculation Module 

Another important factor in the SHAs decision regarding the suitable ID level for their 

projects is the total cost of the project that they will incur as a result of selecting each ID 

level. Previous studies concerned with the I/D contracting method attempted only at 

quantifying this cost from the contractors’ perspective (Choi et al. 2013). Nevertheless, 

through utilizing the owner’s cost module component of the developed model and after 

determining the accelerated duration associated with each ID level from the ID module, 

the total project cost from the SHA’s perspective can be calculated. Recalling figure (3-6) 

and points 1 through 4 shown in that figure, the owner’s cost at each of these points can 

be calculated using equations (3-16) through (3-19), respectively. 

                      (3-16) 

                     
          (3-17) 

                            (3-18) 

                      
         (3-19) 

Generally, for any point beyond point (4), the owner cost can be calculated using the 

following equations: 
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For odd-numbered points: 

                             (3-20) 

For even-numbered points: 

                          
         (3-21) 

where: Ci = project’s cost at point i expressed in dollars; C = engineer’s cost estimate 

expressed in dollars; IDi-1 = the level of ID associated with the duration at point i-1 

expressed as a percentage of the DRUC; DRUC = daily road user cost expressed in 

dollars; T = engineer’s duration estimate expressed in days; ti-1 = project duration at point 

i-1 expressed in days; and ΔT’i-2 = maximum reduction in the project’s duration at point 

i-2 after being adjusted for a whole number of days and expressed as a percentage of the 

engineer’s duration estimate. 

Consequently, through utilizing the above two modules summarized in figure (3-7), 

SHAs can accurately set the appropriate ID level according to their desired acceleration 

level and their own budgetary constraints which will guarantee the success of adopting 

the I/D contracting method and prevent any waste of the public money. 

 
Figure 3-7: Summary of ID, time, and owner’s cost calculation steps  

Point 1

• t1 = T-1

• ID1 = [0.7866-0.3876*(-1/T)*C]/DRUC

• C1 = C + ID1*DRUC

Point 2

• ID = ID1

• ΔT1 = - [((ID1*DRUC)/C)-0.7866]/0.3876

• t2 = T + (ΔT1*T)

• C2 = C + (ID1*DRUC*(-ΔT1’)*T)

Point 3

• t3 = t2 - 1

• ID2 = [0.7866-0.3876*((ΔT1’-
(1/T))*C]/DRUC

• C3 = C + (ID2*DRUC*(T – t3) 

Point 4

• ID = ID2

• ΔT2 = [((ID2*DRUC)/C)-0.7866]/0.3876

• t4 = T + (ΔT2*T)

• C4 = C + (ID2*DRUC*(-ΔT2’)*T) 
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3.5. Model Application 

As explained above, in order for the SHAs to be able to utilize the ID level calculation 

module, they need to calculate the project’s DRUC, engineer’s time estimate, and 

engineer’s cost estimate. Therefore, one of CA4PRS stored projects; namely: I-15 Devore 

project in San Bernardino, California, was used to test the application of the ID and 

owner’s cost modules. This project involved the rehabilitation of a 2.67 mile stretch, 

equivalent to 10.7 lane-mile, of damaged concrete truck lanes on I-15 which is a highly 

trafficked corridor in Southern California with an AADT of approximately 100,000 with 

10% truck rate (Choi and Kwak 2012). 

The first step in the application of the model was to calculate its three inputs, DRUC, 

engineer’s time estimate, and engineer’s cost estimate, using CA4PRS. To calculate the 

DRUC, the traffic volume and the lane closure pattern for the project were defined and 

the DRUC value came out to be $243,551, it is worth noting that this value includes both 

the user and agency daily costs (Choi and Kwak 2012). With regards to the engineer’s 

time estimate (baseline schedule), the project scope, resources types and quantities, and 

their production rates were the inputs used and the baseline schedule was simulated to be 

201 days based on nighttime closure. Finally, regarding the engineer’s cost estimate, the 

estimated cost for this project as per the project data stored in CA4PRS was $18 million 

(Choi and Kwak 2012). Next, the ID module steps were applied to determine the different 

ID levels that can be offered for this project together with their corresponding duration 

reductions. Figure (3-8) shows the results for I-15 Devore project. As seen from the 

figure, there are 18 different daily ID levels that can be used for this project ranging from 

59% of DRUC to 76% of DRUC, which are equivalent to $143,695 to $185,099, with 
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corresponding duration reductions ranging from 1 to 125 days out of the original project 

duration of 201 days, respectively. Consequently, this wide range of possible duration 

reductions led to an increase in the project’s final total cost, from the SHA’s perspective, 

ranging from $18.1 million to $41 million, an increase of $0.1 million to $23 million, 

respectively, and corresponding DRUC savings ranging from $0.2 million to $30 million.     

 
Figure 3-8: I-15 Devore ID levels  

To test these results, the schedule simulation module of CA4PRS was utilized as 

discussed earlier and shown in figure (3-9). 
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Figure 3-9: Steps for testing the ID and owner’s cost modules  

 

In order for the contractors to be able to reduce the duration of the project, they will need 

to increase the resources they utilize; hence, using the critical resource output provided 

from the baseline schedule simulation, the levels of these resources were increased 

incrementally and the new corresponding schedules were simulated and the contractor’s 

costs were calculated using equation (3-4). This process was repeated until no more 

critical resources can be increased (Lee 2008). These durations and costs were consistent 

with the durations and costs calculated through the model as shown in table (3-5): 

Table 3-5: Duration Reduction and Corresponding ID Levels for I-15 Devore Project     

Point Calculated 

Duration 

Reduction 

Simulated 

Duration 

Reduction 

ID (% of 

DRUC)
a
 

ID ($/day) Additional 

Contractor 

Cost ($/day) 

1 200 199 59 143,695 141,935 

2 195 197 59 143,695 143,671 

3 194 192 60 146,131 144,018 

4 188 189 60 146,131 146,100 

 

where the calculated duration reduction refers to the one derived from the I/D model, the 

simulated duration reduction refers to the one calculated using CA4PRS, the ID 
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calculated using the developed model and the additional contractor cost is calculated 

using equation (3-4). 

As seen from table (3-5), all the simulated duration reductions fall within the calculated 

intervals for each ID level; and for all the points, the additional cost incurred by the 

contractor is less than the ID value offered which was calculated using the ID module. 

3.6. Risk Analysis Module 

Although the ID level and the owner’s cost calculation modules can help SHAs in 

deciding the level of ID to be used based on the desired levels of time reduction, as 

evident from the I-15 Devore example, there can be many different ID levels to be used 

for a given project and each has a wide range of possible time reductions. This can create 

a conflict of interest between the owner and the contractor as the owner will want to 

achieve the maximum time reduction that can be possibly achieved by the selected ID 

level to get the maximum possible benefits from the additional money invested, while the 

contractors will want to achieve the minimum time reduction for such an ID value to 

maximize their profits. Furthermore, the higher the duration reduction, the less chance it 

can be achieved and the less motivated the contractor will be which applies both to the 

different ID levels and within each ID level. Hence a risk analysis module is developed to 

help SHAs in selecting the most likely level of ID to be achieved by the contractors and 

the most likely time reduction that can be achieved by this selected ID level. An expected 

risk model is used to evaluate this risk which involves determining the type of probability 

distribution that best represents this problem. According to Fente et al. (2000), and 

Ozolin and Muench (2007), the most suitable probability distribution type that can 

represent the risk related to a construction project’s duration is the beta distribution; thus, 
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in this module, the beta distribution will be assumed to represent the probability of the 

most likely duration reduction; and the shape corresponding to α < β is assumed to be the 

most appropriate shape. This latter assumption is based on two factors: first, the 

probability of the contractors being able to achieve the duration reduction closer to the 

minimum boundary is higher than the ones closer to the maximum boundary as the latter 

requires a sophisticated level of management skills and a high number of resources to be 

allocated that might not be available to the average contractor; and second, the motivation 

of the contractor to achieve the former is much higher than the latter. After setting the 

most suitable probability distribution, the probability of each duration reduction is 

calculated using the cumulative density function for this particular shape of the beta 

distribution.     

By applying the risk analysis module to the results obtained from the I-15 Devore 

example and as shown in table (3-6), it was deduced that the ID level with the highest 

probability of being achieved is the 62% of DRUC which corresponds to a time reduction 

ranging from 10.4% to 13.4% of the original project’s duration.  

Table 3-6: ID Probability Levels    

 ΔT (% of Original Duration)  ID (% of DRUC) Probability 

0% - 3.0% 59% 3.04% 

3.5% - 6.5% 60% 9.19% 

7.0% - 10.0% 61% 12.50% 

10.4% - 13.4% 62% 13.67% 

13.9% - 16.9% 63% 13.35% 

17.4% - 20.4% 64% 12.08% 

20.9% - 23.9% 65% 10.28% 

24.4% - 27.4% 66% 8.28% 

27.9% - 30.8% 67% 6.31% 

31.3% - 34.3% 68% 4.53% 

34.8% - 37.8% 69% 3.05% 

38.3% - 41.3% 70% 1.89% 
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 ΔT (% of Original Duration)  ID (% of DRUC) Probability 

41.8% - 44.8% 71% 1.06% 

45.3% - 48.3% 72% 0.52% 

48.8% - 51.7% 73% 0.21% 

52.2% - 55.2% 74% 0.06% 

55.7% - 58.7% 75% 0.01% 

59.2% - 62.2% 76% 0.00% 

 

Furthermore, within this ID level and by applying the same calculation procedures, it was 

concluded that a duration reduction of 1.1% of the maximum duration for this ID level, 

which is equivalent to a 11.5% duration reduction from the original project’s duration, or 

in other words 178 days, is the most likely duration reduction that can be achieved by the 

contractor using the 62% ID level as shown in figure (3-10).    

 
Figure 3-10: Risk analysis results 
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Hence through utilizing the four modules that constitute the developed ID time/cost 

trade-off model, SHAs’ I/D contracting decision making process will greatly improve.  

3.7. Conclusion 

In this chapter a new model aimed at quantifying the impact of the I/D contracting 

method on the time/cost trade-off relationship and the impact of the different ID levels on 

the trade-off between time and cost of pavement rehabilitation projects was developed. 

The model assigns the appropriate ID values based on the desired level of reduction in 

the project’s duration and estimates the additional cost, incurred by the owner, associated 

with each ID level due to the acceleration of the project’s construction and finally 

determines the likelihood of achieving these desired levels of duration reduction. The 

model consists of four modules; namely: time/cost trade-off module, ID level calculation 

module, owner’s cost calculation module, and risk analysis module. The development 

process of this model and its application on a real-life project, were presented in this 

chapter. The results of this application showed that this model has some distinctive 

capabilities including: 1) the ability to accurately depict the time/cost trade-off 

relationship for the pavement rehabilitation projects contracted using the I/D contracting 

method, 2) the ability to assign the proper ID level based on the desired duration 

reduction, 3) the ability to calculate the additional cost incurred by the owner as a result 

of selecting a certain ID level, 4) the ability to determine the most likely level of ID to be 

achieved for the project, and 5) the ability to precisely determine the duration reduction 

to be expected from adopting that particular ID level.       

The developed model can help improve the SHAs planning process for their pavement 

rehabilitation projects using the I/D contracting method as it will enable the decision 
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makers to make better informed decisions when contracting such projects. These 

decisions are both related to the duration and cost of the project which will help in 

reducing the negative impacts of the pavement rehabilitation projects and save the 

public’s money; while, at the same time, allow the SHAs to best utilize their available 

budget.  
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Chapter 4 

DEVELOPING THE TIME/COST TRADE-OFF MODEL FOR THE A+B 

CONTRACTING METHOD 

 

4.1. Introduction 

The main objective of this chapter is to develop a time/cost trade-off model for pavement 

rehabilitation projects contracted under the A+B contracting method. The model is 

designed to have the ability of: 1) depicting the relationship between the duration 

reduction and the increase in the contractor’s cost under the A+B contracting method; 2) 

allocating the appropriate value for the “B” component of the contract based on the 

desired level of duration reduction and the SHA’s budgetary constraints; and 3) setting 

the most likely duration reduction that can be achieved for each value of the “B” 

component and the most likely “B” value for the entire project. Accordingly, the 

following sections will focus on: 1) determining the resource utilization scenarios that are 

likely to be adopted by the contractor under the A+B contracting method, the contractors’ 

additional degree of motivation to reduce the project’s duration, and the resulting levels 

of duration reductions; 2) calculating the additional cost incurred by the contractors as a 

result of the new resource utilization scenarios and the additional risk they assumed as a 

result of setting the project’s duration, 3) deriving a relationship between the duration 

reduction and the increase in cost under the A+B contracting method; 4) tying the value 

of the “B” component to be assigned to the desired duration reduction; 5) conducting a 

risk analysis to determine the probability of achieving each “B” value and each 

corresponding duration reduction; and 6) exhibiting the capabilities of the developed 
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model by applying it to a real-life project example. This is achieved through the use and 

combination of four different modules as shown in figure (4-1); namely: 1) Time/cost 

trade-off module, 2) the “B” component’s value calculation module, 3) owner’s cost 

calculation module, and 4) risk analysis module.   

 
Figure 4-1: A+B trade-off calculation model 

4.2. Model Development 

The development of the model passes through different steps as shown in figure (4-2) 

starting by determining the extent of the duration reductions that the contractor will aim 

for (ΔT) under the A+B contracting method; followed by computing the increase in the 

total net cost associated with every level of duration reduction (ΔC). Subsequently, and 

through utilizing these two parameters, a regression analysis will be performed to derive 

the time/cost trade-off relationship which will then be validated using real-life projects. 
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Finally, a sensitivity analysis will be conducted to investigate the impact of a number of 

different independent variables on the derived relationship. The next sections will 

describe these steps in details. 

 
Figure 4-2: Steps of developing the A+B time/cost trade-off relationship 

4.2.1. Determining the Impact on the Project’s Duration 

There are two main aspects related to the duration of a pavement rehabilitation project 

that are impacted by the use of the A+B contracting method; which are: resource 

utilization and contractor’s motivation. First: since with the A+B contracting method 

time becomes a decisive factor in determining the winning bid, the contractor is inclined 

to use more aggressive resource utilization scenarios in order to reduce the project’s 

duration and win the bid. Moreover, this greater importance placed on the project’s 

duration makes the contractor more eager to reduce the time to the maximum possible 

limit to win the bid. The following sections will aim at quantifying these impacts and 
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calculate the final duration reductions as a result of the use of the A+B contracting 

method. 

4.2.1.1. Resource Utilization Scenarios: 

One of the main advantages of the A+B contracting method is that it encourages the 

contractors to aggressively utilize their available resources to reduce the total value of the 

“B” component of the bid by working overtime and double shifts (NYSDOT 1999, 

Anderson and Russell 2001, CALTRANS 2002). Hence, when simulating the duration 

reduction as a result of the use of the A+B contracting method, not only does the increase 

in the number of resources utilized has to be taken into account, but also the increase in 

the working hours per day; namely: 12 and 16-hours days (NYSDOT 1999). Hence, in 

order to simulate the project’s duration as a result of the change in the contractor’s 

resource utilization levels and working hours, and similar to the method used for 

developing the trade-off model for the I/D contracting method, the Construction Analysis 

for Pavement Rehabilitation Strategies (CA4PRS) schedule simulation software was 

used. In addition to its capability of analyzing the project’s resources and determine the 

critical ones, CA4PRS also provides the user with the option of changing the number of 

working hours per day. Furthermore, all the major factors that impact the production of 

pavement rehabilitation projects were taken into consideration when conducting the 

schedule simulations, such as: the different construction strategies, construction windows, 

and cross-section designs (Choi & Kwak 2012). Accordingly, to conduct the schedule 

simulation, first the base-line schedule used for the project accompanied by its 

corresponding resources’ levels needed to be extracted from CA4PRS; then, the levels of 

the critical resources, were increased incrementally for each working hours scenario and 
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the associated project’s duration were simulated till no extra resources can be added (Lee 

2011) which resulted in a number of resource utilization scenarios shown in table (4-1). 

Table 4-1. A+B Resource Utilization Scenarios and their Corresponding Durations 
S

tr
a
te

g
y

 Cross-

Section 

Profile 

(inch) 

Construction 

Window 

Duration (days) 

Ordinary 

Usage 

Inc. 

Level 1 

Inc. 

Level 2 

Inc. 

Level 3 

Inc. 

Level 4 

P
C

C
P

 

12  

Nighttime 10hrs 362 269 247 229 211 

Nighttime 12hrs 362 197 181 168 155 

Nighttime 16hrs 362 129 118 110 101 

Weekend 197 179 164 152 140 

Extended 193 175 161 149 138 

8 

Nighttime 10hrs 201 140 127 116 105 

Nighttime 12hrs 201 97 88 81 73 

Nighttime 16hrs 201 60 55 50 45 

Weekend 87 78 71 65 58 

Extended 85 76 69 63 57 

A
C

P
 

6  

Nighttime 10hrs 229 209 177 154 139 

Nighttime 12hrs 229 41 35 30 27 

Nighttime 16hrs 229 35 30 26 23 

Weekend 25 22 19 17 15 

Extended 24 22 19 16 13 

M
A

C
O

 

6  

Nighttime 12hrs 132 117 106 99 98 

Nighttime 16hrs 132 41 38 35 35 

Weekend 26 23 21 20 19 

Extended 25 22 20 19 18 

 

It is worth noting from table (4-1) that the “nighttime 10hrs” resource utilization scenario 

was not applicable to the milling and asphalt overlay project (MACO) due to the 

extended hours needed to demobilize the equipment which makes working for 10hrs/day, 

only, a non-economical strategy. 

4.2.1.2. Contractor’s Motivation: 

Another advantage of the A+B contracting method when it comes to fulfilling the goal of 

reducing the duration of a pavement rehabilitation project is that the contractors become 

more eager to reduce the duration in order to increase their chances of winning the bid 
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and hence encourages them to maximize the efficiency of their resources and bid on 

lower durations (NYSDOT 1999). This is evident when data for the bid duration versus 

the engineer’s estimate from the A+B projects were analyzed against those from 

traditional and other alternative contracting projects. For instance, when analyzing the 

ratio of “the bid time versus the engineer’s estimate” for FDOT’s A+B pavement 

rehabilitation projects (Ellis et al. 2007), it was found that it is equal to, on average, -

26.31%, while the same ratio for traditional contracting was only equal to -0.03%. 

Furthermore, when analyzing “the actual time versus the engineer’s estimate” for other 

types of alternative contracting methods; namely: incentive/disincentive, lane rental, and 

liquidated savings, it was equal to: -0.52%, 0%, and -0.02%, respectively. This 

demonstrates that the unique nature of the A+B contracting method encourages the 

contractors to bid on lower durations than what they would have bid using any other 

contracting method as they are more eager to win the bid. Another example that 

reinforces this conclusion is from the Minnesota DOT alternative contracting data 

(Strong 2006). When analyzing the ratio of “bid time per mile” for the A+B projects 

versus traditional projects, it was found that this ratio was 20.3% less for the A+B 

projects. By analyzing these two sets of data, it is clear that in addition to the aggressive 

resource utilization scenarios, the contractors factor-in their desire and eagerness to win 

the bid by bidding on further reduced durations that are not reflected by the resource 

utilization scenarios alone. Therefore, to quantify this eagerness, this study assumed and 

applied an eagerness factor (EF) to the simulated durations resulting from the different 

resource utilization scenarios, in the previous section, equal to 23% which is the average 

of the above two datasets. Consequently, the duration reductions simulated in table (4-1) 
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will be further reduced by applying this eagerness factor to reach the final duration 

reductions that can be achieved using the A+B contracting method as shown in table (4-

2). 

Table 4-2. A+B Contracting Final Durations’ Reductions 

S
tr

a
te

g
y

 Cross-

Section 

Profile 

(inch) 

Construction 

Window 

Duration (days) 

Ordinary 

Usage 

Inc. 

Level 1 

Inc. 

Level 2 

Inc. 

Level 3 

Inc. 

Level 4 

P
C

C
P

 

12  

Nighttime 10hrs 362 207 190 176 162 

Nighttime 12hrs 362 152 140 130 119 

Nighttime 16hrs 362 99 91 85 78 

Weekend 197 138 127 117 108 

Extended 193 135 124 115 106 

8  

Nighttime 10hrs 201 108 98 90 81 

Nighttime 12hrs 201 75 68 62 56 

Nighttime 16hrs 201 47 42 39 35 

Weekend 87 60 55 50 45 

Extended 85 59 53 49 44 

A
C

P
 

6  

Nighttime 10hrs 229 161 136 118 107 

Nighttime 12hrs 229 31 27 23 21 

Nighttime 16hrs 229 27 23 20 18 

Weekend 25 17 15 13 12 

Extended 24 17 15 13 11 

M
A

C
O

 

6  

Nighttime 12hrs 132 90 82 76 75 

Nighttime 16hrs 132 32 29 27 27 

Weekend 26 18 16 15 15 

Extended 25 17 16 15 14 

 

4.2.2. Determining the Impact on the Project’s Cost: 

By attempting to reduce the project’s duration, the final cost of the project will be 

impacted as a result. With the A+B contracting method, this impact is a result of a change 

in three components of the final construction cost; these components are: the direct 

construction cost, the risk associated with the project, and the project’s indirect cost. The 

following sections will demonstrate how these cost components are impacted as a result 

of using the A+B contracting method and how these impacts can be quantified.  
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4.2.2.1. Direct Construction Cost (CAC): 

As discussed in the previous chapter and proven by several studies in the literature, for 

each construction project, there is a point at which the construction cost is at its minimum 

and any decrease in the project’s duration from that point will result in an increase in the 

project’s cost (Cusack 1991). Hence, assuming the normal point to be the duration of a 

pavement rehabilitation project under the traditional contracting method (engineer’s 

estimate), using the A+B contracting method will result in an increase in the project’s 

cost as a consequence of reducing the project’s duration. Therefore, when considering the 

resource utilization scenarios adopted by the contractor under the A+B contracting 

method, discussed in the previous section, not only will the contractor’s cost (CAC) 

increase as a result of using more critical resources, but also the costs of the original 

number of critical and non-critical resources will increase when the contractor adopts the 

extended working hours scenarios which can be expressed by equation (4-1). 

    

                                            

                                                      

                                                     (4-1) 

By adopting the cost growth formula used by Choi (2008) to express the increase in the 

direct cost of the resources, this cost, for each individual component of equation (4-1) can 

be calculated using equations (4-2) through (4-4), respectively. 

                                                                      

                                                                         (4-2) 
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                      (4-3) 

    

                                                                            

                                                                     

                    (4-4) 

Where additional working hours = scenario’s working hours - 8  

In order to calculate the above three equations, the unit prices for the resources were 

collected from 17 different states’ and federal rental rates and the average of these rates 

was used. The use of more than one source helps in accurately reflecting the contractor’s 

cost increase without the influence of specific locations’ conditions and increasing the 

applicability of the developed model across the different regions of the country. As a 

result, the additional CAC for each resource utilization scenario in table (4-1) was 

calculated as shown in table (4-3): 

Table 4-3: Contractor’s Additional Cost Increase    

Strategy Cross-

Section 

Profile 

(inch) 

Construction 

Window 

Inc. 

Level 1 

Inc. 

Level 2 

Inc. 

Level 3 

Inc. 

Level 4 

PCCP 

12  

Nighttime 10hrs 6.86% 8.37% 9.68% 11.85% 

Nighttime 12hrs 10.95% 12.34% 13.12% 14.67% 

Nighttime 16hrs 15.18% 15.53% 15.86% 16.85% 

Weekend 4.01% 6.99% 10.02% 13.91% 

Extended 3.95% 6.87% 9.84% 13.66% 

8 

Nighttime 10hrs 3.91% 4.61% 5.18% 6.12% 

Nighttime 12hrs 6.06% 6.37% 6.63% 7.18% 

Nighttime 16hrs 7.36% 7.39% 7.73% 7.95% 

Weekend 1.98% 3.21% 4.68% 6.15% 
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Strategy Cross-

Section 

Profile 

(inch) 

Construction 

Window 

Inc. 

Level 1 

Inc. 

Level 2 

Inc. 

Level 3 

Inc. 

Level 4 

Extended 1.94% 3.14% 4.59% 6.02% 

ACP 6  

Nighttime 10hrs 1.31% 3.09% 3.99% 4.78% 

Nighttime 12hrs 1.23% 1.39% 1.51% 1.63% 

Nighttime 16hrs 1.88% 2.00% 2.08% 2.19% 

Weekend 0.65% 1.41% 1.56% 1.71% 

Extended 0.64% 1.40% 1.53% 1.67% 

MACO 6  

Nighttime 12hrs 1.27% 1.92% 2.98% 3.35% 

Nighttime 16hrs 2.90% 2.98% 3.12% 3.27% 

Weekend 0.75% 0.98% 1.66% 1.77% 

Extended 0.74% 0.96% 1.64% 1.73% 

   

4.2.2.2. Additional Risk Assumed by the Contractor: 

The main characteristic of the A+B contracting method that distinguishes it from other 

contracting methods is that the contractor bids on both cost and time, i.e. the contractor is 

the entity that sets the project’s duration. Therefore,  by assuming the task of setting the 

project’s duration, the contractors take a higher risk, relative to other contracting methods 

as shown in figure (1-5), which they tend to account for in terms of additional cost 

(Anderson and Russell 2001).  

Hence, when attempting to calculate the net additional cost that the contractor will incur 

under the A+B contracting method, the additional cost as a result of the time risk has to 

be quantified which will be achieved through the following steps:  

1. Risk Definition: 

The first step in quantifying the additional risk assumed by the contractor is to define this 

risk. Consequently, since the contractors are the entity that determines the project’s 

duration, they assume more risk in case they don’t meet that duration. Hence, the extent 

of this risk can be expressed in terms of the percentage difference between the bid time 
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and the actual time of the project. To quantify this percentage, data from real-life projects 

contracted using the A+B contracting method were collected from different sources. The 

ratio of the “Actual Time/Bid Time” for each of these projects was calculated to reflect 

the extent of the delay that these projects faced or, in other words, the risk that the 

contractors do not meet the bid time they set.  

2. Risk Categorization: 

Since the additional risk assumed by the contractors stems from their inability to meet the 

bid duration they set, it is logical that this risk will be directly proportionate to the degree 

of the duration reduction they decide upon when submitting their bids. In other words, the 

severity of the risk associated with the A+B contracting method increases with the 

number of days reduced which can be expressed as the ratio between the bid time and the 

engineer’s time estimate. Accordingly, for the collected projects, the ratio of “Bid 

Time/Engineer’s Time Estimate” was calculated; and the results showed that this ratio 

ranged from 0% to -60%. As a result, to categorize the above data, the equal interval 

categorization method was used. In this method, the range of the data is divided into 

equal intervals with close number of data points. Consequently, the collected data was 

divided into three intervals, each with a 20% range i.e. from 0% to -20%, from -21% to -

40%, and from -41% to -60%. Through this categorization, the risk of not meeting the bid 

time under the A+B method is now tied to the degree of the duration reduction that the 

contractor initially bid on. 

3. Risk Calculation: 

For each of the above intervals of duration reduction there was a wide range of possible 

risk values associated with them. Therefore, to calculate the most likely value of the risk 
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associated with each interval, the probability of each of these values has to be calculated 

and the one with the highest probability will be the risk value associated with that 

respective interval. To calculate these probabilities a Monte-Carlo simulation for the risk 

values associated with each interval was conducted. This was performed by using the 

mean and the standard deviation of the collected data to generate random variables and 

conduct 10,000 iterations. The respective histograms that resulted from these iterations 

were generated as shown in figure (4-3), and accordingly the most likely risk values were 

determined as shown in table (4-4). 

 
Figure 4-3: Monte-Carlo simulation results 

Table 4-4. The Most-Likely Risk Values 

Duration Reduction Range Risk (%) 

0% – (-20%) 2% 

(-21%) – (-40%) 6% 

(-41%) – (-60%) 14% 

 

From the results of the Monte-Carlo simulation, it was concluded that the risk values 

associated with each duration interval are not equal and supports the hypothesis that these 

values increase with the degree of duration reduction that the contractor opt for. 

Nonetheless, since the collected data has a range of duration reduction till -60% only, to 

complete the calculation of the risk values for the remaining intervals, the above three 
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points were used to interpolate a relationship between the risk and the duration reduction 

intervals. Consequently, the risk values for the remaining two duration reduction intervals 

were calculated as shown in table (4-5).  

Table 4-5. The Final Risk Values Used 

Duration Reduction Range Risk (%) 

0% – (-20%) 2% 

(-21%) – (-40%) 6% 

(-41%) – (-60%) 14% 

(-61%) – (-80%) 26% 

(-81%) – (-100%) 42% 

 

4. Risk Conversion: 

Although the most-likely risk values were calculated using the Monte-Carlo simulation, 

these values are expressed in terms of days; hence, to calculate the additional cost the 

contractors add to the bid as a result of this risk, the values in table (4-5) need to be 

converted to dollar values. This conversion will be achieved using the liquated damages 

that the contractor will pay for each day of delay in the project. Therefore, and using 

CALTRANS liquidated damage formula (CALTRANS 2004), the additional cost that the 

contractors will assign to their bid can be expressed using equation (4-5): 

                                                 (4-5) 

Where the liquidated damage can be calculated using CALTRANS liquidated damage 

formula (CALTRANS 2004) as follows: 

                             

                        
       (4-6) 

Hence, using the above two equations, the additional cost that the contractors will add to 

their bid to account for the risk associated with setting the contract duration can be 
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quantified and used to calculate the net additional cost that the contractor will incur as a 

result of the A+B contracting method.  

4.2.2.3. Contractor’s Time-Related Indirect Cost Savings: 

To quantify the savings in the indirect costs, and similar to the methodology adopted for 

the I/D contracting method, this study assumed that the time-related indirect cost 

accounts for 8.9% of the project’s total direct cost.    

Consequently, and following the same steps as with the I/D contracting method, the 

contractor’s net cost growth as a result of reducing the project’s duration through the 

A+B contracting method can be expressed using equation (4-7) with the results shown in 

table (4-6): 

                                                                   

                                   (4-7) 

Table 4-6. Schedule Reduction Rate vs. Net Cost Growth Rate 

S
tr

a
te

g
y

 Cross-

Section 

Profile 

(inch) C
o
n

st
ru

ct
io

n
 

W
in

d
o
w

 Trade-Off 

Inc. Level 1 Inc. Level 2 Inc. Level 3 Inc. Level 4 

ΔT 

(%) 

ΔC 

(%) 

ΔT 

(%) 

ΔC 

(%) 

ΔT 

(%) 

ΔC 

(%) 

ΔT 

(%) 

ΔC 

(%) 

P
C

C
P

 

12  

Nighttime 

10hrs 
-42.8 3.4 -47.5 4.5 -51.3 5.5 -55.2 7.3 

Nighttime 

12hrs 
-58.4 6.2 -61.5 7.3 -64.3 7.9 -67.1 9.2 

Nighttime 

16hrs 
-72.6 9.2 -74.9 9.4 -76.7 9.6 -78.6 10.4 

Weekend -30.1 2.7 -35.8 5.4 -40.5 8.2 -45.2 11.9 

Extended -30.1 2.6 -35.8 5.3 -40.5 8.1 -45.2 11.7 

8  

Nighttime 

10hrs 
-46.4 0.1 -51.4 0.4 -55.6 0.6 -60.1 1.2 

Nighttime 

12hrs 
-62.9 0.9 -66.8 0.9 -69.3 0.9 -72.4 1.3 

Nighttime 

16hrs 
-77.0 1.1 -79.2 0.9 -81.0 1.1 -82.9 1.2 

Weekend -31.0 0.9 -37.5 1.8 -42.9 3.1 -48.6 4.4 

Extended -31.0 0.9 -37.6 1.8 -42.9 3.1 -48.6 4.3 
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S
tr

a
te

g
y

 Cross-

Section 

Profile 

(inch) C
o
n

st
ru

ct
io

n
 

W
in

d
o
w

 Trade-Off 

Inc. Level 1 Inc. Level 2 Inc. Level 3 Inc. Level 4 

ΔT 

(%) 

ΔC 

(%) 

ΔT 

(%) 

ΔC 

(%) 

ΔT 

(%) 

ΔC 

(%) 

ΔT 

(%) 

ΔC 

(%) 
A

C
P

 

6  

Nighttime 

10hrs 
-29.9 -1.1 -40.6 -0.2 -48.4 0.1 -53.5 0.4 

Nighttime 

12hrs 
-86.4 -5.8 -88.5 -5.8 -90.0 -6.0 -91.0 -5.8 

Nighttime 

16hrs 
-88.4 -5.4 -90.1 -5.4 -91.4 -5.5 -92.3 -5.3 

Weekend -29.8 0.4 -40.5 1.1 -48.3 1.1 -53.2 1.2 

Extended -29.8 0.4 -40.4 1.1 -48.3 1.1 -53.5 1.2 

M
A

C
O

 

6  

Nighttime 

12hrs 
-31.3 -1.3 -38.0 -1.2 -42.1 -0.5 -42.9 -0.1 

Nighttime 

16hrs 
-75.9 -3.3 -78.2 -3.4 -79.7 -3.4 -79.9 -3.2 

Weekend -30.8 0.3 -37.2 0.4 -41.5 1.0 -43.3 1.1 

Extended -30.3 0.3 -36.9 0.4 -41.3 1.0 -43.3 1.1 

 

4.2.3. Modeling the Time/Cost Trade-Off for the A+B Contracting Method: 

 Utilizing the data in table (4-6), and since the relationship between the construction cost 

and time can be expressed using a second degree polynomial, a regression analysis was 

performed to derive the relationship between the project’s duration and its cost under the 

A+B contracting method as shown in figure (4-4): 

 
Figure 4-4: A+B contracting method time/cost trade-off 
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The results of the regression analysis show that the relationship between the construction 

cost and time, under the A+B contracting method, can be represented using equation (4-

8) which has R-squared value of approximately 0.51 emphasizing a very good fit: 

                              (4-8) 

Similar to the I/D model and following Choi (2008) steps to convert the above equation 

in terms of the relationship between the increase in the construction cost and the 

reduction in the project’s duration, equation (4-8) can be rewritten as follows: 

                             (4-9) 

where: ΔC = contractor cost increase expressed as a percentage of the engineer’s cost 

estimate; t0 = engineer’s project duration estimate expressed as 100%; and Δt = reduction 

in project duration expressed as a percentage of the engineer’s duration estimate. 

 From equations (4-8) and (4-9), the trade-off relationship between the time and cost of a 

construction project under the A+B contracting method can now be accurately defined. 

4.2.4. Model Validation 

After developing the time/cost trade-off model, its validity has to be tested against real-

life pavement rehabilitation projects. Therefore, to validate the A+B time/cost trade-off 

model, the expected bid cost derived from the model has to be validated against the bid 

price of real-life A+B projects. This task was performed using data from 19 different 

pavement rehabilitation projects contracted through the A+B contracting method and 

gathered from different sources. The model validation process was conducted through the 

following steps: 

1- Computing the model’s expected bid cost of the project as a result of bidding on a 

reduced duration using the projects’ engineer’s time estimate as t0, the project’s 
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actual time to calculate Δt, and engineer’s cost estimate and applying equation (4-

9) to these values.  

2- Comparing the calculated costs with the actual bid prices from the projects using 

a paired-sample t-test. This test was chosen as it has the capability of detecting the 

difference in the mean of the two datasets and its suitability for the available data 

as they represent the same project with two different scenarios and their large 

number fulfills the normality assumption for the t-test.  

3- Examining the resulting p-value and the confidence intervals from the performed 

t-test. 

Accordingly, table (4-7) shows a summary of the results of the paired-sample t-test 

conducted for the calculated bid cost vs. the actual bid price. 

Table 4-7: Paired-Sample t-test Results     

 Paired Differences t df Sig. (2-

tailed 
95% Confidence Interval of the 

Difference 

Lower Upper 

BidCost 

– 

CalcCost 

-9910993.4 372266.3 -1.95 18 .067 

 

From the above table, the p-value for the paired-sample t-test, at a 95% confidence level, 

is equal to 0.067 which is larger than 0.05; hence, we do not reject the null hypothesis 

(H0) and the means of the bid prices can be assumed to be equal; furthermore, the lower 

limit of the confidence interval has a negative value while the upper limit has a positive 

one which shows that sometimes the mean of the calculated costs is larger than the mean 
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of the bid costs and vice-versa. This supports the conclusion that the two means can be 

assumed to be equal since the confidence interval does not lie away from the “0” point. 

4.2.5. Sensitivity Analysis 

Having validated the relationship between the increase in cost and the reduction in the 

project’s duration under the A+B contracting method, sensitivity analyses for the model’s 

independent variables was conducted. Three analyses were performed to examine the 

impact of certain independent variables on the time/cost trade-off for the A+B projects; 

these variables are: the percentage that the indirect cost constitutes of the project’s direct 

cost, the equipment rental rates used to calculate the increase in the contractor’s direct 

cost, the eagerness factor applied by the contractors to reflect their willingness to win the 

bid, and the impact of the different pavement strategies. For the first variable, three 

percentages of the indirect cost representing the upper and lower bounds range concluded 

by Assaf et al. (1999), as well as its norm, were used to calculate the net cost growth 

incurred by the contractor under the A+B contracting method. Accordingly figure (4-5) 

shows the results when applying these three percentages to the calculation of the 

time/cost trade-off, while keeping all other variables constant. 

 
Figure 4-5: Indirect cost sensitivity analysis  
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The results showed that the indirect cost is inversely proportionate to the net cost growth 

or, in other words, as the percentage of the indirect cost decreases, the net cost growth 

increases for the same duration reduction, and vice-versa. This observation was further 

proved when examining a scenario of no indirect costs savings i.e. only the increase in 

the direct costs were taken into consideration. 

Regarding the second variable, in addition to the average rates that were originally used 

to develop the model, the maximum, minimum, and a sample of one of the SHAs rates 

(CALTRANS) were used to test the impact of these rates on the time/cost trade-off 

relationship under the A+B contracting method. When applying these different rates to 

the calculation of the time/cost trade-off, while keeping all other variables constant, it 

was concluded that these rental rates are directly proportionate to the net cost growth for 

the same duration reduction (figure 4-6); furthermore, it was proved that the CALTRANS 

rental rates almost yield the same trade-off relationship as the maximum rental rates have 

yielded. 

 
Figure 4-6: Equipment rental rates sensitivity analysis  
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Regarding the third variable, since the eagerness factor used to develop the model was 

the average of two datasets, higher and lower values were used to examine the impact of 

this independent variable on the additional cost increase. When applying these different 

rates to the calculation of the time/cost trade-off, while keeping all other variables 

constant, it was deducted that if the eagerness factor decrease, the bid time will increase 

and the indirect cost savings will decrease; hence, the total additional cost will increase as 

demonstrated in figure 4-7. 

 
Figure 4-7: Eagerness factor sensitivity analysis  
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the most-suitable ACM to be used which will be explored in details in the following 

chapter. 

 
Figure 4-8: Pavement strategies sensitivity analysis  

 

4.3. “B” Component Value Calculation Module 

After developing and validating the relationship between the increase in cost and the 

reduction in the project’s duration under the A+B contracting method, the “B” 
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component values for pavement rehabilitation projects based on the SHA’s desired level 
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To further explain the rationale behind these constraints and focusing on the first part of 

the inequality, since the assigned “B” value impacts the degree of importance of the 

project’s duration relative to the overall bid; thus, the higher the “B” value, the more 

eager the contractor will be to reduce the project’s duration, and the overall bid value, 

which will lead to an increase in the construction cost as proved by the trade-off 

relationship. This increase in the construction cost will be reflected in the “A” portion of 

the bid; therefore, the “B” value should be higher than the contractor’s additional cost to 

balance the weight assigned to the two portions, motivate the contractor to reduce the 

duration to the desired level, and provide a fair opportunity for the competent contractor 

to be able to win the bid. At the same time, the assigned “B” value should not exceed the 

DRUC otherwise there will be no advantage in reducing the project’s duration.  

Hence, by substituting equation (4- 9) into equation (4-10), the inequality can be 

expressed as:  

                                    (4-11) 

From equation (4-11), the constraints for selecting the appropriate “B” component value 

can now be expressed in terms of the duration reduction which will be used in developing 

the “B” component module. Moreover, setting a variable “B” value for a given project 

based on the desired level of duration reduction means that for each pavement 

rehabilitation project there can be more than one “B” value and that the relationship 

between the “B” value and the project duration can be depicted as shown in figure (4-7):  
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Figure 4-9: Relationship between the “B” value and the project’s duration  

As shown from figure (4-9), calculating the coordinates of points 1 through 4, i.e. time 

and “B” value, is essential when attempting to assign the appropriate “B” value for each 

duration reduction. These points represent the lower and upper bounds of the possible 

duration reductions for the first two “B” values that can be assigned for a given pavement 

rehabilitation project. As shown in the figure, point (1) represents the minimum duration 

reduction that can be achieved for a project (t1) and the corresponding minimum “B” 

value that can be assigned to it (B1); while point (2) represents the maximum duration 

reduction that can be achieved under B1 (t2). Similarly, if the SHA needs to reduce the 

time further than t2, then point (3) represents the next possible time reduction after t2 (t3) 

and the corresponding “B” value that needs to be assigned to achieve this duration 

reduction (B2); and finally, point (4) represents the maximum duration reduction (t4) that 

can be achieved under B2. As a result, the steps of calculating the coordinates of these 

four points are summarized in figure (4-10): 
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Figure 4-10: Steps for calculating the coordinates of points 1 through 4  

4.3.1. Point 1: (Minimum Duration Reduction & Minimum “B” Value): 

 Step 1.1: Calculate the minimum duration reduction for any project (t1). Through 

developing the engineer’s estimate for the baseline schedule for the project under 

traditional contracting (T), SHAs can assume the minimum duration reduction to be 1 day 

less than the engineer’s estimate which will be the time at point 1; hence, (t1) can be 

calculated using the following equation: 

             (4-12) 
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engineer’s cost estimate associated with the baseline schedule (C) and using equation (4-

13): 

    
               

 

 
    

    
    (4-13) 

4.3.2. Point 2: (Maximum Duration Reduction using B1): 

 Step 2.1: Calculate the “B” value. Point 2 corresponds to the maximum duration 

reduction that can be achieved by using B1 meaning that the “B” value for this point is 

still B1. 

  Step 2.2: Calculate the maximum duration reduction that can be achieved using 

B1 (ΔT1). By using the first constraint of equation (4-11) and substituting with B1, ΔT1 

can be calculated as a percentage of the baseline duration using the following equation: 

        
  

       

 
        

     
    (4-14) 

Where the negative sign reflects a reduction in the project’s duration. 

And consequently, the maximum days that can be reduced using B1 as the value for “B” 

can be calculated using equation (4-15): 

                   (4-15) 

 

4.3.3. Point 3: (Duration Reduction Beyond t2 and the Corresponding B Value): 

 Step 3.1: Calculate the reduced duration (t3). Similar to point 1, SHAs can 

assume the minimum duration reduction beyond t2 to be 1 day; hence, (t3) can be 

calculated as follows: 

              (4-16) 



92 
 

  Step 3.2: Calculate the “B” value associated with t3 (B2). Using the first 

constraint of equation (4-11), B2 can be calculated as follows: 

    
                 

   
 

 
    

    
    (4-17) 

Where ΔT1’ is ΔT1 adjusted to the nearest whole number of days reduced. 

4.3.4. Point 4: (Maximum Duration Reduction Using B2): 

 The calculation of the coordinates for point 4 is similar to point 2; thus, the B 

value = B2 and ΔT2 and t4 can be calculated using equations (4-14) and (4-15).  

Finally, for any given project there might be a number of additional feasible “B” values, 

beyond B2, that can be assigned to achieve more duration reductions; hence, the 

calculation of the coordinates of the boundary points for these “B” values will be similar 

to the calculation of points (3) and (4) using the following generalized equations: 

                          (4-18) 

    
                   

   
 

 
    

    
    (4-19) 

        
  

       

 
        

     
               (4-20) 

where: ti = project’s duration at point i expressed in days; Bi = the value of B associated 

with the duration at point i expressed as a percentage of the DRUC; T = engineer’s 

project duration estimate expressed in days; C = engineer’s project cost estimate 

expressed in dollars; DRUC = daily road user cost expressed in dollars; ΔTi = maximum 

reduction in the project’s duration at point i expressed as a percentage of the engineer’s 

duration estimate; and ΔTi’ is ΔTi adjusted to the nearest whole number of days reduced. 
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 Nevertheless, SHAs need to determine the feasibility of any further “B” values by 

examining the availability of additional resources in their markets, and whether any 

additional resources can be logistically deployed into the construction site or not. 

4.4. Owner Cost Calculation Module 

Another important factor that impacts the SHAs’ decision on the suitable “B” value for 

their projects is the total cost of the project that they will incur as a result of selecting 

each of these values. Therefore, the owner’s cost module component of the developed 

model will be used to calculate the total project’s cost from the SHA’s perspective for 

each duration reduction. Recalling figure (4-8) and points 1 through 4 shown in that 

figure, the owner’s cost at each of these points can be calculated by multiplying the cost 

of each day reduced, expressed as a percentage of the engineer’s cost estimate, by the 

number of days reduced by the engineer’s cost estimate and adding the resulting cost to 

the engineer’s cost estimate and as expressed by equations (4-21) through (4-24), 

respectively. 

     
              

 

 
 

   
            (4-21) 

     
                 

  

   
                   (4-22) 

     
                 

   
 

 
 

   
                  (4-23) 

     
                 

  

   
                  (4-24) 

Generally, for any point beyond point (4), the owner cost can be calculated using the 

following equations: 

For odd-numbered points: 
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                  (4-25) 

For even-numbered points: 

     
                   

  

   
                  (4-26) 

where: Ci = project’s cost at point i expressed in dollars; C = engineer’s cost estimate 

expressed in dollars; Bi-1 = the value of B associated with the duration at point i-1 

expressed as a percentage of the DRUC; DRUC = daily road user cost expressed in 

dollars; T = engineer’s duration estimate expressed in days; ti-1 = project duration at point 

i-1 expressed in days; and ΔT’i-2 = maximum reduction in the project’s duration at point 

i-2 after being adjusted for a whole number of days and expressed as a percentage of the 

engineer’s duration estimate. 

Consequently, through adopting the “B” value and the owner’s cost calculation modules 

which are summarized in figure (4-11), SHAs can accurately set the appropriate value of 

the “B” component according the desired acceleration level for their projects and their 

own budgetary constraints which will guarantee the success of adopting the A+B 

contracting method and prevent any waste of the public money. 



95 
 

 
Figure 4-11: Summary of “B” value, time, and owner’s cost calculation steps  

 

4.5. Model Application 

To test the application of the “B” value and owner cost modules, the I-15 Devore 

pavement rehabilitation project in San Bernardino, California, was used. The first step in 

the application of the model was to calculate its three inputs which are: DRUC, 

engineer’s time estimate, and engineer’s cost estimate, using CA4PRS. As outlined in the 

application of the I/D model in the previous chapter, the DRUC value for this project was 

equal to $243,551, while the engineer’s time estimate (baseline schedule) was 201 days 

based on nighttime closure and the engineer’s cost estimate was $18 million. Next, the 

“B” value module steps were applied to determine the different “B” values that can be 

offered for this project together with their corresponding duration reductions. Figure (4-

12) shows the results for I-15 Devore project if it was contracted using the A+B 

contracting method and after applying the developed model. As observed from the figure, 

there are 16 different “B” values that can be used for this project ranging from 50% of 
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DRUC to 65% of DRUC with corresponding duration reduction ranging from 1 to 145 

days out of the traditional project duration of 201 days, respectively. As a result, this 

wide range of possible duration reductions yielded an increase in the project’s final total 

cost to be between $18.1 million to $40.7 million, an increase of $0.1 million to $22.7 

million, respectively, and corresponding DRUC savings of $0.24 million to $35 million.     

 
Figure 4-12: I-15 Devore “B” values  

To test these results, the schedule simulation module of CA4PRS was utilized as 

discussed earlier and shown in figure (4-13). 
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Figure 4-13: Steps for testing the “B” value and the owner’s cost modules  

In order for the contractors to be able to reduce the duration of the project, they will need 

to increase the resources they utilize; hence, using the critical resource output provided 

from the baseline schedule simulation, the level of these resources was increased 

incrementally and the new corresponding schedules were simulated and the contractor’s 

cost was calculated using equation (4-9). This process was repeated until no more critical 

resources can be increased (Lee 2008). These durations and costs were consistent with 

the durations and costs calculated through the model as shown in table (4-8): 

Table 4-8: Duration Reduction and Corresponding “B” Values for I-15 Devore Project     

Point Calculated 

Duration 

Reduction 

Simulated 

Duration 

Reduction 

B (% of 

DRUC) 

B ($/day) Additional 

Contractor Cost 

($/day) 

1 200 199 50 121,776 121,385 

2 199 199 50 121,776 121,631 

3 198 196 51 124,211 121,876 

4 189 190 51 124,211 124,084 

 

where the calculated duration reduction refers to the one derived from the A+B model, 

the simulated duration reduction refers to the one calculated using CA4PRS, the “B” 
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value calculated using the developed model and the additional contractor cost is 

calculated using equation (4-9). 

As seen from table (4-8), all the simulated duration reductions fall within the calculated 

intervals for each “B” value; and for all the points, the additional cost incurred by the 

contractor is less than the “B” value offered which was calculated using the “B” value 

module. 

4.6. Risk Analysis Module 

As proved by the model application, the “B” value and the owner’s cost calculation 

modules can help SHAs in deciding the value of the “B” component to be used based on 

the desired levels of duration reduction; however, as apparent from the I-15 Devore 

example, there can be many different “B” values to be used for a given project and each 

has a wide range of possible time reductions. This can create a conflict between the 

owner and the contractor similar to the one created with the I/D contracting method. 

Hence a risk analysis module is developed to help SHAs in selecting the most likely 

value of the “B” component to be achieved by the contractors and the most likely time 

reduction that can be achieved by this selected “B” value. An expected risk model is used 

to evaluate this risk using the same type of probability distribution (beta) with the shape 

corresponding to α < β. Nevertheless, and unlike the assumption made for the I/D 

contracting method, the difference between the α and β values was increased for the 

calculation of the most likely time reduction that can be achieved by a selected “B” value. 

This increase will impact the calculation of the probabilities as it will increase the 

probability of the values towards the lower end of the duration reduction. The rationale 

behind this assumption was that due to the more aggressive resource utilization scenarios 
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adopted by the contractor and the eagerness associated with the desire of winning the bid, 

there is a small room for further duration reductions that the contractor can achieve; 

hence, the probability of achieving the ones towards the upper end becomes increasingly 

difficult and unachievable in some cases. Nevertheless, for the most likely “B” value, the 

assumption used for the calculations of the I/D contracting method is still valid. Next, 

after setting the most suitable probability distribution and the values of the α and β, the 

probability of each duration reduction is calculated using the cumulative density function 

for this particular shape of the beta distribution.     

By applying the risk analysis module to the results obtained from the I-15 Devore 

example and as shown in table (4-8), it was deduced that the “B” value with the highest 

probability of occurrence is the 55% of DRUC level which corresponds to a time 

reduction ranging from 21.4% to 25.9% of the original project’s duration.  

Table 4-9: “B” Values Probability Levels  

ΔT (% of Original Duration) B (% of DRUC) Probability 

0% - 1.0% 50% 0.11% 

1.5% - 6.0% 51% 3.56% 

6.5% - 10.9% 52% 7.51% 

11.4% - 15.9% 53% 10.16% 

16.4% - 20.9% 54% 11.67% 

21.4% - 25.9% 55% 12.22% 

26.4% - 30.8% 56% 11.96% 

31.3% - 35.8% 57% 11.05% 

36.3% - 40.3% 58% 8.76% 

40.8% - 45.3% 59% 8.12% 

45.8% - 50.2% 60% 6.26% 

50.7% - 55.2% 61% 4.38% 

55.7% - 60.2% 62% 2.66% 

60.7% - 65.2% 63% 1.25% 

65.7% - 70.1% 64% 0.33% 

70.6% - 72.1% 65% 0.01% 
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Furthermore, within this “B” value and by applying the same calculation procedures, it 

was concluded that a duration reduction of 0.6% of the maximum duration for the 55% 

“B” value, which is equivalent to a 21.9% duration reduction from the original project’s 

duration i.e. 157 days, is the most likely duration reduction that can be achieved by the 

contractor using the 55% “B” figure (4-14).       

 
Figure 4-14: Risk analysis results  
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4.7. Conclusion 

In this chapter a new model aimed at quantifying the impact of the A+B contracting 

method on the time/cost trade-off relationship and the impact of the different “B” values 

on the trade-off between time and cost of pavement rehabilitation projects was 

developed. The developed model first determines the relationship between the time 

reduction and cost increase for an A+B pavement rehabilitation project and then assigns 

the appropriate “B” values based on the desired level of reduction in the project’s 

duration and estimates the additional cost, incurred by the owner, associated with each 

“B” value due to the acceleration of the project’s construction and finally determines the 

likelihood of achieving these desired levels of duration reduction. The model consists of 

four modules; namely: time/cost trade-off module, “B” value calculation module, 

owner’s cost calculation module, and risk analysis module. The development process of 

this model and its application on a real-life project, were presented in this chapter. The 

results of this application showed that this model has some distinctive capabilities 

including: 1) the ability to accurately depict the time/cost trade-off relationship for 

pavement rehabilitation projects contracted under the A+B contracting method, 2) assign 

the appropriate “B” value based on the desired duration reduction, 3) the ability to 

calculate the additional cost incurred by the owner as a result of selecting a certain “B” 

value, 4) the ability to determine the most likely value of the “B” component to be 

achieved for the project, and 5) the ability to precisely determine the duration reduction 

to be expected from adopting that particular “B” value.       

The developed model can help improve the SHAs planning process for their pavement 

rehabilitation projects using the A+B contracting method as it will enable the decision 



102 
 

makers to make better informed decisions when contracting such projects. These 

decisions are both related to the duration and cost of the project which will help in 

reducing the negative impacts of the pavement rehabilitation projects and save the 

public’s money; while, at the same time, allow the SHAs to best utilize their available 

budget.  
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Chapter 5 

EXAMINING THE SHAS’ ALTERNATIVE CONTRACTING DECISION 

MAKING PROCESS 

 

5.1. Introduction 

The main objective of this chapter is to examine the SHAs’ alternative contracting 

decision making process for their pavement rehabilitation projects by taking into account 

their decision variables and project characteristics. The aforementioned process will 

involve a number of different tasks, each with a specific aim; namely: 1) examining the 

SHAs’ decision making process with regards to the I/D contracting method to ensure the 

success of its implementation; 2) examining the SHAs’ decision making process with 

regards to the A+B contracting method so it can fulfill its planned goals; 3) contrasting 

the performance, cost and risk associated with each of the two contracting methods 

through using the developed time/cost trade-off models to assist the SHAs in selecting 

the most-suitable method for their projects based on their decision variables and the 

project’s characteristics; and 4) combining the two developed time/cost trade-off models 

to derive the time/cost trade-off relationship for the A+B+I/D alternative contracting 

method. Accordingly, the next sections will concentrate on: 1) determining the most 

important factors impacting the success of the I/D contracting method and how the 

developed model can enhance the SHAs’ decisions regarding these factors; 2) 

determining the most critical parameters regarding the success of the A+B contracting 

method and how the developed model can improve the SHAs’ decisions with regards to 

these parameters, 3) comparing both models to select the most-suitable method 

depending on the SHAs’ decision variables and the project characteristics; and 4) 
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developing a time/cost trade-off model for the A+B+I/D contracting method. The above 

objectives will be achieved through the use of the models developed in chapters 3 and 4 

as shown in figure (5-1). 

 
Figure 5-1: Use of the I/D and the A+B trade-off models to enhance the SHA’s 

alternative contracting decision making process 

 

5.2. Examining the I/D Contracting Method Decision Making Process 

The developed time/cost trade-off model for the I/D contracting method can help the 

SHAs in enhancing their decision making process regarding certain important factors that 

impact the outcome of the use of this method. Through the use of any individual module 

or a combination of modules that constitute the developed model, several decisions 

regarding the implementation of the I/D contracting method can be greatly improved; 

these decisions involve: 1) determining the most suitable ID level to be assigned based on 

a certain desired level of duration reduction; 2) setting the maximum ID value for a 

project; 3) identifying the minimum ID level that can be offered for a given pavement 
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rehabilitation project and decide if it meets the SHA’s guidelines; 4) knowing the cost 

that the SHA will incur with each duration reduction before the start of the project; and 5) 

determining the most likely duration reduction that can be achieved for each specific 

project. The next sections will describe how the developed model can help with each of 

these decisions in details. 

5.2.1. Determining the Most Suitable ID Level to be Assigned: 

One of the main decision parameters that impacts the success of the implementation of 

the I/D contracting method is setting the ID value itself. Nonetheless, and as discussed in 

chapter 1, the current SHAs’ practices do not relate the ID value to the desired duration 

reduction as they only use their experience to determine what percentage of DRUC to be 

used (Sillars 2007)  which creates a lot of problem while implementing the I/D 

contracting method. For instance, MnDOT guidelines states that the ID value should be 

sufficient to encourage the contractor to reduce the duration and recommends a daily ID 

ranging from $5,000 to $10,000 for all project types and durations (MnDOT 2005), while 

TxDOT uses a value of $25,000 per day for reconstruction projects of high traffic 

volumes (Anderson and Ullman 2000). However, through the use of the ID value 

calculation module and as demonstrated by the I-15 Devore example, SHAs can 

accurately select the ID level based on their desired duration reduction which will prevent 

any over or under valued ID values and avoid wasting the public’s money. To 

demonstrate the usefulness of the developed model, consider a resurfacing project of US-

1 from district 6 at FDOT. For this project, the SHA paid approximately an additional 

$700,000 to reduce the duration by 10 days; however, if they had utilized the I/D trade-

off model, they should have offered a daily I/D amount of $55,721 to achieve the desired 
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10 days duration reduction which would have resulted in an additional cost of 

approximately only $557,000 amounting for a savings of $138,000 of the public’s 

money. 

5.2.2. Setting the Maximum ID Value: 

Setting the maximum ID to be paid to the contractor for a given project can have a big 

impact on the project’s success as it predetermines the maximum days to be saved and, in 

return, the maximum total cost that the SHA will pay. However, the current SHAs’ 

practices regarding the setting of this value only follow generic guidelines and do not 

assure neither the success of the I/D contracting method implementation nor provide 

adequate planning from the SHAs’ perspectives. For instance, and as demonstrated in 

table (5-1) which is based on Herbsman et al. (1995), and Shr and Chen (2004), first there 

are three different methods currently in use by the SHAs for setting the maximum ID 

value; and second, none of these techniques is project specific or tied to the SHAs’ goals 

for a particular project. For instance, district 6 at FDOT sets the maximum I/D to be 

offered as a percentage of the total project cost disregarding the DRUC value for that 

particular project.  

Table 5-1. Types of Maximum ID Values Used by the SHAs  

Type of Maximum ID Value Number of States Implementing 

Percentage of Project’s Cost 9 

Fixed Dollar Amount 8 

Number of Days 1 

 

Nevertheless, through the use of the developed model, the SHAs’ can either set the 

maximum ID value based on their desired duration reduction and budgetary constraints or 

even use their current generic guidelines to set the expectations for the maximum 

duration reduction and improve their planning for the implementation of the I/D 
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contracting method. Each of these strategies will be demonstrated using the application 

example from chapter 3. 

Regarding the former strategy, through the use of the ID value module, SHAs’ can relate 

the desired duration reduction to the appropriate ID value to be offered; hence, through 

utilizing the owner cost module, they can calculate the maximum ID that they will have 

to pay to achieve this desired reduction. Therefore, and through this new practice, SHAs 

can better plan their financial resources and avoid any unexpected cost overruns resulting 

from additional paid incentives. To demonstrate this approach, consider the I-15 Devore 

project and its application from chapter 3, if, for example, CALTRANS wanted a 

maximum duration reduction of 14 days for this project, then they will have to offer the 

contractor a daily ID value equivalent to 61% of the DRUC ($148,566/day); 

consequently, the maximum ID they should set can be calculated as follows: 

                      

And the maximum project’s cost that they will incur will be $20,079,926 and at the same 

time they will realize a total DRUC savings of $3,409,714.  

On the other hand and regarding the latter strategy, assuming that CALTRANS has a 

10% of the total project’s cost cap on the total ID to be paid, which is equivalent to 

$1,800,000; therefore, according to their reduction needs they can have a couple of 

options to choose from as shown in table (5-2): 

Table 5-2. I-15 Devore Maximum ID Options  

Duration 

Reduction Aimed 

For (days) 

Daily ID 

Value to be 

offered ($) 

Total Additional 

Cost ($) 

DRUC Savings ($) 

1-6 143,695 143,695 – 862,170 243,551 – 1,461,306 

7-12 146,131 1,022,917 – 1,753,572 1,704,857 – 3,166,163 
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Hence, the developed I/D trade-off model can be used by the SHAs to set the maximum 

ID to be offered or the expected days to be reduced based on their current maximum ID 

guidelines which will greatly improve their planning practices for the I/D contracting 

method and avoid any cost overruns or misuse of the ID provision by the contractor. 

5.2.3. Identifying the Minimum ID Value to be Offered: 

Through the use of the ID value calculation module, the minimum ID value, which is 

equal to the contractor’s additional cost for a one-day duration reduction, can be precisely 

calculated. The calculation of the minimum ID value will help enhance the SHAs’ I/D 

contracting decision making in a number of ways. First, it will assure that the ID offered 

presents enough motivation for the contractor to reduce the project’s duration because if 

the minimum ID value does not cover the contractor’s additional cost, then no time 

reduction will be achieved and the use of the I/D contracting method will be deemed to 

fail. This problem was faced by a number of SHAs; for instance, from data about the I/D 

projects actual time versus contract time collected from FDOT district 6, approximately 

13% of these projects experienced no duration reduction resulting from the use of the I/D 

contracting method. For instance, for a resurfacing project of SR 986, the contractor was 

not able to achieve any duration reduction over the bid time as the daily I/D offered was 

$5,000 while the additional cost to reduce one day was $7,880; hence, the I/D amount 

offered should be at least $7,920 as calculated by the developed model. Second, it will 

help in deciding whether the use of the I/D contracting method is suitable for their project 

or not at the early planning stage based on the following criteria: 

1- If the project meets their budgetary constraints. 

2- If the minimum ID value is consistent with their guidelines and rules. 
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5.2.4. Knowing the Final Project Cost that the SHA will Incur: 

Due to the limited financial resources available to the SHAs and the large number of 

pavement rehabilitation projects that they have to construct, being able to accurately 

estimate the final cost for the I/D projects is a vital planning task from their part. 

However, with the current I/D contracting practices and without tying the ID value with 

the desired duration reduction, SHAs only have a rough estimate of the possible range of 

the project’s cost which might lead to cost overruns and consequently creates problems in 

terms of appropriately allocating their financial resources and avoid public outrage. For 

example, in a study of FDOT I/D projects, Ellis et al. (2007) found that the I/D projects’ 

actual cost experienced a cost overrun over the award cost of an average 12.5% which 

was mainly due to additional incentives paid to the contractor. Thus, through the use of 

the owner’s cost calculation module, this problem can be solved and SHAs can accurately 

estimate, barring any unforeseen circumstances, the final cost that they will incur and 

plan their financial resources more efficiently. An example to demonstrate this capability 

of the developed model is the project SR907 in Florida. For this project, the engineer’s 

cost estimate was US$ 1.6 million which was 25% less than the actual final cost of US$ 

2.1 million; however, the final cost calculated using the I/D model was less than 10% off 

the actual final cost which is considered a very acceptable degree of accuracy.   

5.2.5. Determining the Most Likely Duration Reduction: 

When setting their desired duration reduction for a given pavement rehabilitation project, 

SHAs need to examine the likelihood of achieving this reduction so as not to: 1) 

discourage contractors from bidding by setting unrealistic targets, 2) avoid public 

discontent when the target is not met, and 3) preserve their resources. Nevertheless, 



110 
 

neither the current practices nor the available research provide any guidelines towards 

quantifying this likelihood; however, they tend to provide broad guidelines and lean 

towards avoiding any types of risks at all. Therefore, through the use of the risk analysis 

module, and as demonstrated by the I-15 Devore example, SHAs can know the 

probabilities of both achieving each ID level and each duration reduction within that ID 

level. The benefits of the developed model can be demonstrated through figure (5-2) 

which compares the three practices: traditional contracting, current I/D practice, and the 

developed I/D model, against each other in terms of duration reduction, additional owner 

cost, and user cost savings. 

 Figure 5-2: Comparison between the developed I/D model and the current practice 
 

As seen from the figure, for that particular project, the current I/D practice led to a 

duration reduction of 12 days with an increase in owner cost of $900,000 and user cost 

savings of $2,900,000; i.e. total dollar savings of $2,000,000. Nevertheless, both the time 

and cost performance of this project would have improved with the use of the developed 
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I/D model as it will lead to a duration reduction of 23 days with an increase in owner cost 

of $3,400,000 and user cost savings of $5,600,000; i.e. total dollar savings of $2,200,000; 

hence, providing more duration reduction with a higher dollar savings. 

5.3. Examining the A+B Contracting Method Decision Making Process 

Certain aspects regarding the SHAs’ current decision making practices for the A+B 

contracting method can be greatly improved by the use of the A+B time/cost trade-off 

model developed in this study. These decisions include: 1) assigning the “B” value based 

on the desired duration reduction; 2) identifying the expected and maximum duration 

reductions that the contractor can bid on i.e. have a firm idea about the project’s final 

duration before the bid submission phase; 3) helping in identifying the unbalanced bids 

submitted by the contractors; 4) knowing the cost that the SHA will incur with each 

duration reduction; and 5) finding out the probabilities of achieving each desired duration 

reduction. The next sections will provide details of how the application of the developed 

model can help with each of these decisions in details. 

5.3.1. Assigning the “B” Value: 

Assigning a dollar value to the “B” component of the bid is one of the pivotal tasks that 

influence the success of the implementation of the A+B contracting method. Nonetheless, 

currently, most SHAs only use their engineering judgment to determine this value which 

hinders the opportunities of the success of the implementation of the A+B method 

(Anderson and Russell 2001). Furthermore, in some instances, the SHA does not tie the 

value assigned to the “B” portion to the DRUC at all; for example, Utah DOT uses the 

liquidated damages used for traditional contracting, which are fixed amounts based on the 

project’s cost (table 5-3), as the “B” value for projects with AADT less than 10,000 
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(UDOT 2011). This practice might actually prove damaging to the purpose of the A+B 

contracting method as it might not entice the contractor to bid on a reduced duration. For 

example, for the project SR-35 by UDOT, the SHA assigned $1,570 for the “B” value as 

per table (5-3) while according to the general A+B model, the minimum value to be 

assigned for the “B” component for this project should have been $4,200; which did 

result in the project being constructed over a longer duration by 7 days than if it was 

constructed using traditional contracting. Also, when applying the strategy-specific 

models to this example, it was found that in case of PCCP 12, the minimum “B” value 

should have been $4,430; while in case of the other strategies, the minimum “B” value 

should have been $2,550.Therefore, through the use of the “B” value module, the task of 

assigning the “B” value can be performed in a much more methodical way, as a 

percentage of the DRUC and according to the SHAs’ desired duration reduction on which 

they want the contractor to bid on, which increases the opportunities of the success of its 

implementation.  

Table 5-3. UDOT Liquidated Damages  

Original Contract Amount ($) Daily Liquidated Damage 

From To 

$0  $100,000  $560 

100,000 500,000 930 

500,000 1,000,000 1,200 

1,000,000 5,000,000 1,570 

5,000,000 10,000,000 2,130 

10,000,000 30,000,000 2,430 

30,000,000   4,870 

 

5.3.2. Identifying the Expected and Maximum Duration Reductions: 

Since the task of setting the project’s duration is in the hands of the contractors without 

any control from the SHA, the SHA might end up with a project that has a longer 
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duration than if it was contracted using traditional contracting. For instance, for a minor 

rehabilitation project for SR-35 in Utah, the engineer estimate for the project’s duration 

was 45 days; however, the winning bid was for 50 days and even the second lowest bid 

received was for 48 days which voids the A+B contracting method from its main goal 

(UDOT 2016). Hence, a tool by which the SHA can estimate a possible range for the 

project’s durations that the contractor will bid on becomes essential. This is achieved 

through the use of the developed model as the duration range associated with each “B” 

value can be accurately computed before the invitation to bid phase and through this 

computation the SHA can avoid any high duration bids and eliminate the above-

mentioned problem completely. 

At the same time, sometimes the contractors bid on an unrealistic low duration to win the 

bid but later they cannot fulfill this duration (UDOT 2011); nevertheless, due to the lack 

of means of tying the duration reduction with the expected cost, SHAs use fixed 

percentages to get to the minimum duration reduction; for instance, Utah DOT uses 30-

35% below the estimated duration (UDOT 2011). Thus, the use of the developed A+B 

trade-off model will help the SHA in knowing the minimum duration that the contractor 

can bid on, i.e the maximum duration reduction that can be achieved for that particular 

project.   

5.3.3. Recognizing the Unbalanced Bids: 

One of the major problems with the A+B contracting method is the problem of the 

unbalanced bids which occurs when the contractor intentionally reduce the duration while 

excessively increasing its cost (“A” component) to win the bid (UDOT 2011, Sillars 

2007). This practice, although not illegal, often jeopardizes the success of the project and 
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wastes the SHA’s financial resources. However, with the use of the developed model, 

SHAs can know beforehand the expected cost associated with each duration so they will 

be able to determine, during the bid opening phase, if the contractor used this practice or 

not. This can be illustrated by the use of the I-15 Devore example and considering the 

different bidding scenarios that could have been submitted to CALTRANS as shown in 

table (5-4): 

Table 5-4. Balanced Versus Unbalanced Bid Scenarios  

Bid Scenario A ($) B (days) Balanced/Unbalance 

1 18,860,003 194 Balanced 

2 21,487,900 189 Unbalanced 

 

As seen from the above table, through the use of the developed model, SHAs can 

determine if the bids submitted to them are balanced or not and prevent this practice by 

the contractor from a very early stage. 

5.3.4. Knowing the Final Cost that the SHA will Incur: 

Due to the limited budgets available to the SHAs and the large number of pavement 

rehabilitation projects in their states, being able to accurately estimate the final cost for 

their A+B projects is a vital planning task. However, with the current practices and 

without tying the “B” value with the desired duration reduction, SHAs only have a vague 

estimate of the possible range of the project’s cost at the pre-bidding phase which create 

problems in terms of appropriately allocating their financial resources and avoid public 

outrage. Thus, through the use of the owner’s cost calculation module, this problem can 

be solved and the SHAs can accurately estimate, barring any unforeseen circumstances, 

the final cost that they will incur and plan their financial resources more efficiently. An 

example to demonstrate how the developed model can be used to enhance this project’s 
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parameter is the project SR5. For this project, the engineer’s cost estimate was US$ 7.2 

million which was almost 30% less than the actual final cost of US$ 10.3 million; 

however, the final cost calculated using the developed A+B model was approximately 

4.5% less than the actual final cost. At the same time, if this project was constructed 

using the PCCP 12 strategy, the final cost would have been 3.9% off the actual final cost; 

while, if constructed using the other strategies, the final cost would have been 15% less 

than the actual final cost.    

5.3.5. Finding the Probabilities of Achieving Each Duration Reduction: 

When setting their desired duration reduction for a given pavement rehabilitation project, 

SHAs need to examine the likelihood of achieving this reduction so as not to: 1) 

discourage the contractors from bidding, 2) avoid public discontent when the target is not 

met, and 3) not waste their resources. Nevertheless, neither the current practices nor the 

available research provide any guidelines towards quantifying this likelihood. Therefore, 

through the use of the risk analysis module, and as demonstrated by the I-15 Devore 

example, SHAs can know the probabilities of both achieving each “B” value and each 

duration reduction within that “B” value. The benefits of the developed model can be 

demonstrated through figure (5-3) which compares the three practices: traditional 

contracting, current A+B practice, and the developed A+B model, against each other in 

terms of duration reduction, additional owner cost, and user cost savings for Utah SR-31 

project. 
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Figure 5-3: Comparison between the developed A+B model and the current practice 

As seen from the figure, for that particular project, the current A+B practice led to a 

duration increase of 10 days albeit with a decrease in the owner cost of $70,000 but with 

an increase in user cost of $100,000; i.e. total additional dollar cost of $30,000. 

Nevertheless, both the time and cost performance of this project would have improved 

with the use of the developed A+B model as it will lead to a duration reduction of 5 days 

with an increase in owner cost of $20,000 and user cost savings of $51,000; i.e. total 

dollar savings of $31,000; hence, providing a duration reduction with a higher dollar 

savings. In addition, when applying the specific pavement strategies models developed in 

chapter 4, it is evident that the use of the developed models will lead to both cost and 

time savings over the current practice for all pavement strategies as shown in figure (5-4). 
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Figure 5-4: Comparison between the different A+B strategies and the current practice 

 

5.4. Selecting of the Most-Suitable ACM:  

One of the main challenges facing any SHA when dealing with alternative contracting 

methods is how to select the one method that best suits its project and fulfills its planned 

objectives. Nevertheless, the current practice in choosing the most suitable alternative 

contracting method depends on generic guidelines that decide on the ACM based on the 

project’s qualitative characteristics without any comparison between the methods in 

question (Anderson and Damnjanovic 2008); an example of these guidelines for both the 

I/D and A+B contracting methods is presented in table (5-5) from PaDOT (2013) and 

NYSDOT (1999), respectively: 

Table 5-5. I/D and A+B Guidelines  

I/D Guidelines A+B Guidelines 

High traffic volume High traffic volume 

Lengthy detours Safety Concerns 

Constructability Major reconstruction 

Safety concerns Complete a gap in the highway system 

Public interest in early completion Lengthy Detours 

Major emergency route  
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As seen from the above table, the guidelines for the selection of the appropriate ACM are 

very general and almost the same for the two methods to the extent that Georgia SHA 

states that “candidate projects [for I/D contracting method] are same as for A+B Bidding” 

(Carpenter 2013) ; nonetheless, with the use of the two developed models, SHAs can now 

base their selection of the most suitable ACM for their project on quantitative decision 

parameters. The selection process will depend on each SHA’s decision parameters as 

demonstrated in the following sections. 

5.4.1. The Construction Cost is the Sole Decision Parameter: 

By comparing the time/cost trade-off curves for the I/D and A+B contracting methods the 

decision of selecting the most-suitable contracting method can be quantitatively reached. 

Figure (5-5) shows the comparison of the two trade-off curves for the I-15 Devore 

project. 

 
Figure 5-5: Time/cost trade-off curves for I/D and A+B contracting methods 
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From the above figure, and when the cost is the only decision parameter considered by 

the SHA, it is clear that the A+B contracting method provides a cheaper alternative for 

the same duration reduction with the exception of the very low duration reductions 

(<=1%). In addition to the above conclusion, a number of additional observations can be 

deduced from the above figure that will help the SHAs in their choice of the appropriate 

ACM for their project; these observations are: 

1- The two curves are not parallel; meaning that the savings in cost between the two 

methods increase with the increase in the extent of the required duration reduction to the 

favor of the A+B contracting method. 

2- The A+B contracting method can reach higher duration reductions that are not 

achievable via the use of the I/D contracting method which means that if these high 

duration reductions are aimed for by the SHA, then the A+B contracting method should 

be the method of choice.  

Nevertheless, when comparing the additional construction costs associated with each 

method, SHAs need to take into consideration the unique nature of each of these 

methods. One of the main differences between these two methods is that with the I/D 

method, the SHA does not pay for the cost of acceleration until it is already achieved; 

unlike with the A+B method where the cost of acceleration becomes the contract cost and 

will be paid regardless of whether the desired duration is achieved or not which 

associates more risk with the A+B method. Therefore, when comparing the two methods 

based on the construction cost, the net expected costs should be the values compared 

rather than the absolute cost values. Therefore, the expected cost for the I/D contracting 
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method should reflect the cost and probability of occurrence, calculated from the risk 

analysis module, of every duration, higher than the desired one as illustrated by equation 

(5-2): 

                         
           
     (5-2) 

where; Ci is the cost of duration i, and Pi is the probability of duration i.  

On the other hand, the expected cost for the A+B method will always be the cost of the 

desired duration reduction as shown in equation (5-3):  

                              (5-3) 

Hence, the net expected risk (NER) will be computed as the difference between the two 

expected costs where a negative value will indicate that the I/D contracting method is less 

risky, in terms of cost, than the A+B method and vice-versa. By applying the above 

analysis to a sample of the projects from different categories, the following results were 

obtained (table 5-6): 

Table 5-6. Projects Net Expected Risk Sample  

P
ro

je
ct

 % Duration 

Reduction 

I/D Expected 

Cost ($) 

A+B (General) 

Expected Cost 

($) 

NER ($) 

1 -0.9%    7,999,111  8,070,290  -71,179 

-3.6%    8,197,083  8,235,131  -38,049  

-6.4%    8,214,054  8,403,567  -189,513  

2 -2.7%    2,592,320  2,572,181   20,139  

-4.3%    2,670,774  2,656,607   4,167  

-6.3%    2,751,483  2,759,388  -7,905  

 

As seen from the above table, the net expected risk for the first project is always a 

negative value for the desired duration reductions which means that the I/D method is 

less risky, in terms of cost, for that particular project; however, for the other two projects, 

and depending on the desired duration reduction the I/D contracting method can be less 
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or more risky, in terms of cost, than the A+B method. Consequently, although, the cost of 

the specific duration reduction for the I/D contracting method is higher, when considering 

the net expected risk, this cost might end up lower and it is up to the SHA to set and 

assess the degree of risk they are willing to accept for their project. 

Furthermore, when comparing the NER values for the different A+B models respective to 

the different pavement strategies, table (5-7) shows that the most-suitable method for the 

PCCP 12 strategy conforms with the one selected by the general model, while for the 

other strategies, this type of analysis tend to favor the A+B method more; albeit, only in 

few scenarios.  

Table 5-7. Pavement Strategies Net Expected Risk Values  

Project % Duration 

Reduction 

NER (General) 

($) 

NER (PCCP 

12) ($) 

NER (PCCP 8, 

ACP & MACO) 

($) 

1 -0.9% -71,179 -    75,322  -48,583 

-3.6% -38,049  -    54,692  53,472 

-6.4% -189,513  - 218,767  -27,362 

2 -2.7%  20,139  10,025 75,595 

-4.3%  4,167  1,816 104,970 

-6.3% -7,905  -32,068 129,012 

 

5.4.2. DRUC Savings Versus the Additional Construction Cost: 

Nevertheless, in most cases, the cost of the project is not the only decision parameter 

considered by the SHA, but also the DRUC savings realized from the application of these 

methods. Therefore, SHAs need to calculate the benefit/cost ratio associated with each 

method to select the most suitable one based on the different projects’ characteristics. 

Before conducting this type of analysis, the fact that the risk of not achieving the required 

duration reduction is higher with the A+B contracting method because the contractor is 



122 
 

the entity that determines the project duration (Herbsman et al. 1995) needs to be taken 

into account. Therefore, considering that the risk associated with the A+B contracting 

method ranges from 1% to 8% more than the one associated with the I/D contracting 

method (Ellis et al. 2007, Choi et al. 2012), with an average of 4.5%; and by comparing 

the time/cost trade-off curve for the I/D and A+B contracting methods, SHAs’ can select 

the most suitable ACM for their projects. Hence, in order to reach a decision, the SHAs 

need to compare the cost difference between the two methods versus the difference in the 

DRUC savings that can be achieved by each since the higher risk associated with the use 

of the A+B contracting method will have an impact on the DRUC savings realized by the 

SHA; and consequently, the benefit/cost ratio associated with the use of both methods. 

As illustrated from figure (5-6), and assuming that the additional risk associated with the 

A+B contracting method will be reflected in achieving a duration higher than the targeted 

one by 4.5%, and although the cost associated with the I/D contracting method is higher 

than the A+B method, the additional risk associated with the A+B method will result in 

lower DRUC savings than with the I/D method as it will lead to achieve a lower duration 

reduction. Thus, in order to be able to select the best method for a given project, the 

different benefit/cost ratios (B/C) associated with each method and for each project 

category have to be computed and compared to reach a conclusion on the most suitable 

method for each project category. To perform the above-mentioned analysis, several 

steps were conducted as described in the following sections. 
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Figure 5-6: Cost and benefit associated with each contracting method 

5.4.2.1. Data Collection and Preparation: 

In order to perform the above-mentioned analysis and be able to draw conclusions with 

regards to the different projects categories, data from real-life pavement rehabilitation 

projects, contracted through both traditional and alternative contracting methods, from six 

different states were collected through utilizing the SHA’s websites. The collected data 

included the project’s engineer’s time and cost estimates and the AADT. From the 

AADT, the DRUC associated with each project was calculated using the DRUC tables 

developed by Daniels et al. (1999). Nonetheless, since these tables were developed in 

1999, an inflation adjustment was applied to the resulting DRUC values based on the 

ratio of the transportation components of the CPI indices for 2015 versus 1999 obtained 
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from the Bureau of Labor Statistics website (www.bls.gov 2016). Furthermore, since the 

developed tables are based on Texas costs, the DRUC for each of the 83 projects was 

adjusted according to each project’s location using the RS Means location indices (RS 

means 2010). 

5.4.2.2. Data Categorization: 

After preparing the data for analysis, the data was grouped and categorized according to 

three main project’s characteristics: engineer’s duration estimate, DRUC, and engineer’s 

cost estimate. For the first category, the duration of the collected data ranged from 24 to 

600 days; hence, the equal interval method was used to categorize these projects into four 

categories of 150-days range each as this method proved suitable for the collected data 

since all categories had close number of data points. For the DRUC and engineer’s cost 

estimate, the equal quantile method was used to categorize the data into three and two 

unequal-interval categories, respectively, since the data were clustered close to certain 

values.  

5.4.2.3. Data Analysis and Results: 

All projects collected in the previous step were analyzed using the two models developed 

in chapters 3 and 4; and since the data were not defined according to the different 

pavement strategies; hence, the A+B general model was used. Using the engineer’s time 

and cost estimates and the DRUC for each project and assuming the project was 

contracted once by the I/D contracting method and once by the A+B contracting method, 

the costs and the DRUC savings for each method were calculated for each level of 

duration reduction. However, as illustrated in figure (5-6), each contracting method will 

have a different cost and DRUC savings for the same targeted duration reduction; hence, 

http://www.bls.gov/
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a benefit/cost (B/C) ratio for the difference in DRUC savings versus the difference in 

additional cost was computed for each project using equation (5-1):  

 
    

                                 

                                
    (5-1) 

After computing the B/C ratio for each project, the averages of all projects belonging to 

the same group for each contracting method were computed and compared for different 

levels of duration reductions; consequently, a B/C ratio of more than 1 means that the I/D 

contracting method is better than the A+B method for that particular group of projects, 

while a B/C ratio of less than 1 means that the A+B contracting method is better. 

Figure (5-7) shows the results for the different categories of project durations.  

 Figure 5-7: B/C ratio by project’s traditional duration 

 

From the figure, the following conclusions can be drawn: 

1- For projects with a traditional duration of less than 300 days, the I/D contracting 

method should be chosen by the SHA if the desired duration reduction is less than 

20%; otherwise, the A+B method should be chosen. 
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2- For projects with a traditional duration between 300 and 450 days, the I/D method 

should only be chosen by the SHA if the desired duration reduction is 5% or less; 

otherwise, the A+B method should be chosen. 

3- For projects with a traditional duration of more than 450 days, the A+B method 

should always be chosen. 

These results are consistent with some SHA’s already in use guidelines; such as: Utah 

and Ohio (Anderson and Damnjanovic 2008), which demonstrates the accuracy and 

applicability of the developed time/cost trade-off models for the I/D and A+B contracting 

methods. 

Furthermore, figure (5-8) shows the results for the different categories of project DRUCs. 

 Figure 5-8: B/C ratio by project’s DRUC 

 

As seen from the above figure, the following conclusions can be drawn: 

1- The A+B contracting method is the most suitable method for projects with low 

DRUC, less than $15,000. 
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2- The I/D contracting method is the most suitable method for projects with high 

DRUC, more than $15,000 

These results conform with some research studies and SHA’s already in use guidelines; 

such as: Michigan and Pennsylvania (Anderson and Damnjanovic 2008, Jaraiedi et al. 

1995, Dutta and Patel 2012, PaDOT 2013), which demonstrates the accuracy and 

applicability of the developed time/cost trade-off models for the I/D and A+B contracting 

methods. 

 Finally, figure (5-9) shows the results for the different categories of project traditional 

costs. 

 
Figure 5-9: B/C ratio by project’s traditional cost 

As seen from the above figure, the following conclusions can be drawn: 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

5% 10% 15% 20% 25% 30% 35%

B/C Ratio

Desired Duration Reduction (%)

B/C Ratio by Project's Traditional Cost

(< $5mn)

(> $5mn)



128 
 

1- For projects with a low traditional cost, less than $5 million, the I/D method 

should be chosen by the SHA if the desired duration reduction is less than 20%; 

otherwise, the A+B method should be chosen. 

2- For projects with a high traditional cost, more than $5 million, the I/D method 

should be chosen by the SHA if the desired duration reduction is less than 15%; 

otherwise, the A+B method should be chosen. 

These results are in-line with some SHA’s already in use guidelines; such as: Utah and 

Pennsylvania (UDOT 2011, PaDOT 2013), which demonstrates the accuracy and 

applicability of the developed time/cost trade-off models for the I/D and A+B contracting 

methods. 

5.4.2.4. Sensitivity Analysis: 

Since the risk associated with the A+B contracting method might change from location to 

another, a sensitivity analysis was conducted to examine the impact of the change in this 

risk on the decision of selecting the most suitable alternative contracting method. This 

hypothesis was tested on projects from category 2 of the engineer’s duration estimate and 

the results are shown in figure 5-10.   

 
Figure 5-10: B/C ratio sensitivity analysis 
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From the figure above, it is noted that the risk value associated with the A+B contracting 

method has a direct impact on the B/C ratio of the projects and; hence, an impact on the 

decision regarding the best alternative contracting method to be used. For example, if the 

risk value is towards the lower end of the range (1%), the A+B contracting method will 

be the better method across the board of all duration reductions; however, if the risk value 

is towards the higher end of the range (8%), the I/D contracting method will be the better 

method across all of the desired duration reductions. Therefore, when choosing the best 

alternative contracting method for their projects, SHAs need to apply the value of the risk 

that best reflects the conditions in their markets in order to reach an accurate decision. 

Another type of sensitivity analysis that can be performed is the one concerned with how 

the SHAs view the worth of each DRUC dollar versus the construction cost dollar. In the 

above analysis, it was assumed that the SHAs view these dollar values as equal; i.e. a 

ratio of 1:1; however, in some instances the value of the DRUC dollar might be lower 

since it is not actual money spent. In that case, and as depicted by the grey line in figure 

(5-6), the B/C ratio for each contracting method will be lower and in some cases the 

benefit might be less than the additional cost which, in that particular case, will favor the 

use of the traditional contracting method over both the I/D and A+B methods.  

5.4.3. Probability of Achieving the Duration Reductions: 

If the probability of achieving the desired durations’ reductions is the most-important 

decision parameter for the SHA, then they can utilize the risk analysis modules of the two 

models to compare the two methods and select the most-suitable one. To demonstrate the 

above analysis, the following two examples are applied (table 5-8):    
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Table 5-8. Difference in Probability of Occurrence for Certain Duration Reduction 

Intervals  

Project Duration reduction Interval Probability of Occurrence (I/D vs. 

A+B) 

Time 

Category 3  

0% - 2.7% less by 18.48% 

3.3% - 13.3% more by 52.46% 

14% - 24% less by 23.36% 

24.7% - 34.7% less by 6.88% 

Time 

Category 4  

0% - 1.7% less by 0.85% 

2% - 6.3% more by 10.51% 

6.7% - 11% more by 8.74% 

11.3% - 15.7% less by 0.76% 

16% - 20.3% less by 6.82% 

20.7% - 25% less by 1.06% 

25.3% - 30% less by 0.66% 

 

As seen from the above table, the probability of occurrence for each interval of duration 

reduction is unique for each project and depends on its initial duration, DRUC, and the 

number of possible I/D and “B” values that can be assigned to that particular project. 

Furthermore, the probability fluctuates between the two contracting methods; thus, the 

SHA needs to examine each desired duration reduction separately against its 

corresponding NER and B/C ratio in order to be able to select the most suitable 

alternative contracting method for its particular project depending on the importance and 

weights it assigns to the different decision parameters that can be extracted from the 

above three types of analyses. 

5.5. Time/Cost Trade-off Model for A+B+I/D Contracting Method 

Another popular and relatively new type of alternative contracting methods, which has 

been adopted by the SHAs, is the A+B+I/D method (Sillars 2007). This method is 

basically a combination of both the A+B and the I/D contracting methods; hence, with 

the A+B+I/D method, the contractors bid on both the construction cost and time and after 

the lowest combined bid is selected by the SHA and its bid time becomes the contract 
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time, an I/D provision is added to the contract to encourage the contractor to further 

reduce the duration (Anderson and Russell 2001). Due to its aggressive approach towards 

duration reduction, this method was used and adopted by different SHAs in highly 

trafficked roads, critical bridges, and emergency routes (Shr et al. 2004). Nonetheless, 

and similar to the A+B and I/D contracting methods, there were no studies attempting to 

quantify the parameters of this contracting method from the SHAs’ perspectives and help 

them in their decision making process, as the only available studies focus on the 

contractors’ perspective; for instance, Shr et al. (2004). As a result, and through 

combining the two time/cost trade-off models developed in this study for the I/D and 

A+B contracting methods, the time/cost trade-off relationship for the A+B+I/D can be 

established. 

5.5.1. Model Development: 

As seen from the definition of the A+B+I/D method, the SHA first applies the A+B 

contracting method for the bidding process on the project, then after the project is 

awarded, the I/D method is applied. Hence, the time/cost trade-off relationship for this 

contracting method can be considered as a two-step process as shown in figure (5-11). 

First, the SHA starts by applying the A+B trade-off model for the traditional contracting 

method as explained in chapter 4; then, using the selected “B” value and its 

corresponding bid cost, the trade-off model for the I/D contracting method will be applied 

to reach the final duration reduction that can be achieved and its corresponding project 

cost. Through these two steps, the SHAs can be able to determine the trade-off for the 

A+B+I/D contracting method at an early project phase. It is worth-noting, that due to the 
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general approach in developing this trade-off model, the A+B model used in the two-step 

process is the general model that is applicable to all pavement strategies.  

 
Figure 5-11: Time/cost trade-off relationship steps for A+B+I/D contracting method: 

 

To illustrate this methodology and revisiting figure (4-8), since by using the “B” value 

module, there can be a number of possible “B” values to be used by the SHA; hence, to 

reach the final project duration and cost, the I/D trade-off model will have to be applied 

to every possible point on this graph. However, by using the A+B risk analysis module 

for each “B” value, the calculation can be simplified and the final time/cost trade-off 

relationship for the project can be depicted as shown in figure (5-12).  
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Figure 5-12: Final time/cost trade-off relationship for A+B+I/D contracting method  

 

As seen from the figure, after determining the most-likely duration reduction to be 

achieved by each “B” value and their corresponding costs, the I/D model will be applied 

but with the most-likely bid duration as the project initial duration (T), and its 

corresponding bid cost as the projects initial cost (C). Thus, when using the equations 

developed in chapter 3 for the ID level module and the owner’s cost module, the 

variables “T” and “C” will no longer be the engineer’s estimates, but the contractor’s bid-

upon duration and cost. After conducting the above steps, the risk analysis module for the 

I/D contracting method can be applied to determine the most-likely final duration for the 

project and its corresponding cost.  
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5.5.2. Model Application: 

The application of the A+B+I/D time/cost trade-off model passes through a number of 

different steps as shown in figure (5-13) and explained below: 

 
Figure 5-13: Steps of applying time/cost trade-off model for A+B+I/D contracting 

method 
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3- Apply the A+B risk analysis module to compute the most-likely duration 

reduction associated with each “B” value and its corresponding bid cost. 

4- For each of the most-likely durations, apply the ID value calculation module and 

equations (3-7) to (3-15) but with substituting the duration and cost calculated 

from step 3 for the “T” and “C” values to calculate the possible ID values that can 

be offered for each selected “B” value. 

5- For each of the most-likely durations, apply the I/D model’s owner’s cost 

calculation module and equations (3-16) to (3-21) but again with substituting the 

duration and cost calculated from step 3 for the “T” and “C” values to calculate 

the associated cost with each duration reduction achieved by the selected ID level. 

6- For each “B” value, the stopping criteria will be when ID ≥ DRUC. 

7- For some “B” values, the I/D provision cannot be added because the minimum ID 

level that has to be offered will be greater than the DRUC; therefore, if the SHA 

wants to implement the A+B+I/D method, then they must chose lower “B” value. 

8- Apply the I/D risk analysis module to compute the most-likely ID level and the 

most-likely duration reduction associated with each ID level and its corresponding 

owner’s cost.  

When applying the following steps to the I-15 Devore project, and using the results from 

chapter 4 with the most likely “B” value of 55% of DRUC and most likely duration of 

157 days with a cost of $23.8 million, the minimum ID level that can be offered for that 

project will be 78% of the DRUC while the maximum will be 97% of DRUC as no more 

reduction can be achieved. Moreover, applying the I/D risk analysis module, the most 

likely ID level to be achieved for the “B” value of 55% is the 81% of DRUC (figure 5-
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14) which leads to a time reduction ranging from 8.3% to 10.8% of the “B” value’s most 

likely bid duration and 28.4% to 30.3% of the original project’s duration under the 

traditional contracting method. In addition, by applying the I/D risk analysis module to 

the 81% ID level, it was concluded that a duration reduction of 0.7% of the maximum 

duration for the 81% ID level under the 55% “B” value, which is equivalent to a 8.9% 

duration reduction from the bid time and 28.9% duration reduction from the original 

project’s duration under the traditional contracting method i.e. 143 days, is the most 

likely duration reduction that can be achieved by the contractor using the 55% “B” value 

in an A+B+I/D contract. Furthermore, the highest “B” value that the SHA can use for this 

project is the 59% of the DRUC as any higher “B” will lead to an ID level greater than 

the DRUC.  

 
Figure 5-14: Most likely ID level for the 55% “B” value 
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5.6. Conclusion 

 

This chapter presented how the use of the two developed models in chapters 3 and 4 can 

help SHAs in enhancing their alternative contracting decision making process in a 

number of different ways. First the chapter illustrated how each model can be used 

separately to greatly enhance the SHAs’ current decision making practices with respect to 

each corresponding contracting method. With regards to the use of the I/D model, SHA’s 

can now: 1) set the maximum ID value for a project; 2) determine the most suitable ID 

level to be assigned based on a certain desired level of duration reduction; 3) identify the 

minimum ID level that can be offered for a given pavement rehabilitation project and 

decide if it falls within the SHA’s guidelines; 4) know the cost that the SHA will incur 

with each duration reduction; and 5) find out the probabilities of achieving each desired 

duration reduction. Considering the use of the A+B model, SHAs can: 1) assign the “B” 

value based on the desired duration reduction; 2) identify the expected and maximum 

duration reductions that the contractor can bid on before the bid submission phase; 3) 

identifying the unbalanced bids submitted by the contractors; 4) know the cost that the 

SHA will incur with each duration reduction; and 5) find out the probabilities of 

achieving each desired duration reduction. 

In addition, the chapter discussed how the SHAs can select the best alternative 

contracting method for their project using the developed models and deduced solid 

quantitative conclusions regarding the choice between the I/D and A+B contracting 

methods given different project characteristics and SHAs’ decision variables. Finally, the 

chapter demonstrated the usefulness of the developed models by developing a time/cost 

trade-off model for the A+B+I/D method through combining the two models together. 
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CHAPTER 6 

CONCLUSIONS 

 

6.1. Conclusions 

The research study introduced in this dissertation aimed at enhancing the SHAs’ 

alternative contracting decision making process for highway pavement rehabilitation 

projects.  In order to be able to achieve such a goal, a number of research advances and 

developments were conducted; these developments include: 1) a time/cost trade-off 

model for pavement rehabilitation projects contracted through the I/D contracting 

method; 2) a time/cost trade-off model for pavement rehabilitation projects contracted 

under the A+B contracting method; and 3) models for enhancing the SHAs’ decision 

making process with regards to the use of the above-two alternative contracting methods.  

The first of these developments involved developing a time/cost trade-off model for the 

I/D contracting method in order to be able to determine the relationship between the 

reduction in the project’s duration and the increase in the project’s cost resulting from the 

use of this contracting method. The model was developed by examining the different 

resource utilization scenarios that the contractor can adopt when constructing a project 

under the I/D contracting method, calculating the additional direct cost as a result of these 

resource utilization scenarios, determine the savings in the indirect costs due to the 

reduction in the project’s duration, and deriving a relationship between the duration 

reduction and the total net cost increase. As a result, the model is capable of defining the 

time/cost trade-off relationship for the I/D contracting method. Furthermore, the model 

related the level of the ID that the SHAs have to offer with their desired duration 
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reduction and calculated the cost that the owner will incur as a result of this reduction. 

Moreover, the probabilities of achieving each ID level together with the probabilities of 

achieving each duration reduction within each ID level were defined and calculated. As a 

result, the developed model and all its components provided some breakthroughs with 

regards to the research and application of the I/D contracting method including: 1) the 

ability to accurately depict the time/cost trade-off relationship for the pavement 

rehabilitation projects contracted using the I/D contracting method, 2) the ability to 

assign the proper ID level based on the desired duration reduction, 3) the ability to 

calculate the additional cost incurred by the owner as a result of selecting a certain ID 

level, 4) the ability to determine the most likely level of ID to be achieved for the project, 

and 5) the ability to precisely determine the duration reduction to be expected from 

adopting that particular ID level.   

The second development achieved in this research study involved developing a time/cost 

trade-off model for the A+B contracting method in order to be able to determine the 

relationship between the reduction in the project’s duration and the increase in the 

project’s cost resulting from the use of this contracting method. The model was 

developed by examining the different resource utilization scenarios and work schedules 

that the contractor can adopt when constructing a project under the A+B contracting 

method, defining the additional motivation imposed by this type of contracts on the 

contractors to further reduce the project’s duration in order to win the bid, calculating the 

additional direct cost as a result of these resource utilization scenarios and working hours 

schedules, defining and estimating the extent of the additional risk that the contractor’s 

assume with this type of contracts and how they account for it in terms of additional cost, 
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determining the savings in the indirect costs due to the reduction in the project duration, 

and deriving a relationship between the duration reduction and the total net cost increase. 

As a result, the model is capable of defining the time/cost trade-off relationship for the 

A+B contracting method; in addition, it was able to relate the value of the “B” component 

that the SHAs have to set with their desired duration reduction and calculated the cost 

that they will incur as a result of this reduction. Moreover, the probabilities of achieving 

each “B” value together with the probabilities of achieving each duration reduction 

within each “B” value were defined and calculated. As a result, the developed model and 

all its components showed some distinctive capabilities including: 1) the ability to 

accurately depict the time/cost trade-off relationship for pavement rehabilitation projects 

contracted under the A+B contracting method, 2) assign the appropriate “B” value based 

on the desired duration reduction, 3) the ability to calculate the additional cost incurred 

by the owner as a result of selecting a certain “B” value, 4) the ability to determine the 

most likely value of the “B” component to be achieved for the project, and 5) the ability 

to precisely determine the duration reduction to be expected from adopting that particular 

“B” value. 

Finally, the above-two developed models were utilized to develop an enhancement and 

optimization process with regards to the SHAs’ alternative contracting decision making. 

This process aimed at enhancing the aforementioned decision making process from a 

number of different aspects; which are: 1) enhancing the SHAs’ decision making process 

with regards to the I/D contracting method to ensure the success of its implementation; 2) 

improving the SHAs’ decision making process with regards to the A+B contracting 

method so it can fulfill its aimed goals; 3) contrasting the performance, cost and risk 
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associated with each of the two contracting methods through using the developed 

time/cost trade-off models to assist the SHAs in selecting the most-suitable method for 

their projects based on their decision variables and the project’s characteristics; and 4) 

combining the two developed time/cost trade-off models to derive the time/cost trade-off 

relationship for another alternative contracting method which is the A+B+I/D method. 

Regarding the first aspect, the developed I/D time/cost trade-off model provided the 

SHAs with a reliable and accurate tool to: 1) set the maximum ID value for a project; 2) 

determine the most suitable ID level to be assigned based on a certain desired level of 

duration reduction; 3) identify the minimum ID level that can be offered for a given 

pavement rehabilitation project and decide if it meets the SHA’s guidelines; 4) know the 

cost that the SHA will incur with each duration reduction before the start of the project; 

and 5) find out the probabilities of achieving each desired duration reduction; which were 

not achievable with their current decision-making practices. Second, the developed A+B 

time/cost trade-off model provided the SHAs with a reliable and accurate tool to: 1) 

assign the “B” value based on the desired duration reduction; 2) identify the expected and 

maximum duration reductions that the contractor can bid on i.e. have a firm idea about 

the project’s final duration before the bid submission phase; 3) help in identifying the 

unbalanced bids submitted by the contractors; 4) know the cost that the SHA will incur 

with each duration reduction; and 5) find out the probabilities of achieving each desired 

duration reduction; which their current decision making practices cannot help with. 

Third, the process of choosing the best ACM for their pavement rehabilitation project, 

which was primarily based on experience and non-distinctive qualitative measures, can 

now be performed in a much more quantitative way by contrasting the two developed 
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trade-off models. This process helps the SHA in choosing the best ACM for their project 

based on their decision variables and the project’s characteristics which personalizes the 

decision for each specific project. Finally, through combining the two-developed models, 

the time/cost trade-off relationship for one of the most newly popular ACMs, which is the 

A+B+I/D, can be defined. The SHA starts by applying the A+B trade-off model for the 

traditional contracting method; then, using the selected “B” value and its corresponding 

bid cost, the trade-off model for the I/D contracting method will be applied to reach the 

final duration reduction that can be achieved and its corresponding project cost. Through 

these two steps, the SHAs can be able to determine the trade-off for the A+B+I/D at an 

early project phase and enhance their decision making process. 

The above-mentioned research advances improve the current practices of the highway 

pavement rehabilitation projects contracted under the alternative contracting methods and 

can help in: 1) reducing the negative impacts of the pavement rehabilitation projects on 

the traveling public; 2) ensuring the success of the implementation of the I/D and A+B 

contracting methods; 3) enhancing the SHAs’ decision making with regards to the 

adoption of the alternative contracting methods; and 4) helping in preserving the SHAs’ 

limited budgets and protecting the public’s money. Consequently, the above impacts are 

anticipated to provide major benefits to the society, the SHAs, and the overall economy.        

6.2. Research Contributions: 

The developed research study contributes tremendously to the current alternative 

contracting and highway rehabilitation body of knowledge; these contributions include: 

1- Capturing the different ways by which the adoption of the I/D contracting method 

impacts the time and cost of a pavement rehabilitation project. This was achieved 
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through developing an inclusive time/cost trade-off model for the I/D contracting 

method; as well as, a novel model that can relate the level of the ID to be assigned 

with the desired level of duration reduction, calculate the expected final cost that 

the SHA will incur and the most-likely duration reduction that can be achieved 

within each ID level. 

2- Identifying the unique ways by which the adoption of the A+B contracting 

method impacts the time and cost of a pavement rehabilitation project and the 

contractor’s motivation which was accomplished by formulating a comprehensive 

time/cost trade-off model for the A+B contracting method. In addition, the 

relationship between the “B” value to be allocated to the project’s duration and 

the desired level of duration reduction was quantified through the development of 

an original model that also has the capabilities of calculating the expected final 

cost that the contractor will bid on at an early planning stage and determining the 

most-likely “B” value to be achieved and the most-likely duration reduction that 

can be achieved within each “B” value.   

3- Enhancing the decision making process for each of the two alternative contracting 

methods, I/D and A+B, by providing the SHAs’ with the ability of determining 

the most critical factors that impact the success of these methods in an accurate 

manner. 

4- Enhancing the selection of the most suitable alternative contracting method to be 

used for a particular pavement rehabilitation project by taking into consideration 

the SHAs’ decision variables and the project’s unique characteristics. 
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5- Devising a two-step time/cost trade-off relationship for the A+B+I/D contracting 

method that fully captures the complicated nature of this newly adopted 

alternative contracting method.  

6.3. Recommendation for Future Research 

The presented research study introduced new highway pavement rehabilitation time/cost 

trade-off models for the two most popular types of alternative contracting methods, the 

I/D and A+B methods. Although these models present a breakthrough in the alternative 

contracting research and are effective tools in enhancing the SHAs’ alternative 

contracting decision making process, a number of future research opportunities are 

available to further enhance and improve this process. These opportunities include, but 

not limited to: 1) developing time/cost trade-off models for other popular types of 

alternative contracting methods; such as: lane rental and warranties; 2) expanding the 

models developed in this study to cover other types of highway maintenance and 

rehabilitation projects; 3) improving the accuracy of the models by linking them to the 

available tools used to calculate the different input values; and 4) introducing more 

decision variables and including more project characteristics to the process of selecting 

the alternative contracting methods. 

6.3.1. Develop Models for Other Types of ACMs: 

In this study, time/cost trade-off models were developed for the I/D and A+B contracting 

methods and later for the A+B+I/D method; however, there are other frequently used 

types of ACMs, each with their unique characteristics, including: lane rental, warranties, 

interim completion date, and no-excuse incentives (Anderson and Damnjanovic 2008). 

Therefore, the above-developed models do not apply to these types of ACMs and new 



145 
 

type-specific models need to be developed that account for: 1) the impact of each method 

on the project’s duration, and 2) the impact of each method on the project cost.  

6.3.2. Include Other Types of Highway Maintenance Projects and Other Construction 

Methods: 

There are a number of different highway maintenance and rehabilitation projects 

depending on either: the type of work done or the component of the system that requires 

maintenance; for instance, 25.9% of the total bridges in the United States are either 

considered structurally deficient or functionally obsolete; hence, requiring significant 

maintenance & repair works (DOT 2013). Nevertheless, these different project types 

differ from each other in terms of the resources used and the sequence of work which 

impacts the time/cost trade-off relationship even when using the same contracting 

method. Therefore, future research opportunities are present in this area and can build on 

the developed models in one of two ways: 

1- Develop more individual models for the different types of works or different 

highway system’s elements. 

2- Expand the current model to be applicable for more than one project type or more 

highway system element. 

Furthermore, the methodology used to develop the models in this study can be used to 

develop models for other construction methods such as: accelerated bridge construction 

(ABC); however, the success of developing such models depends on the availability of 

real-life projects’ data and tools to simulate the construction schedule under these 

methods similar to the CA4PRS software.  
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6.3.3. Linking the Developed Models to Different Tools Used to Calculate the Inputs: 

Since the developed models depend on certain types of inputs; namely, engineer’s 

traditional time and cost estimates, and the DRUC; hence, improving the accuracy of 

these inputs will, in return, improve the accuracy of the developed models. However, 

there are already different types of tools available to the SHAs to calculate these 

parameters; thus, linking these tools to the developed models to calculate the whole set of 

the different project parameters together will help enhancing the accuracy of the final 

models’ outcomes. 

6.3.4. Introduce More Decision Variables and/or Project Characteristics to the 

Selection Process: 

Some SHAs might have additional decision criteria that they take into consideration 

when deciding on the contracting method that they want to use for their projects; these 

variables can include, but not limited to: quality and safety (El-Gafy 2014). Moreover, 

each project has its own unique characteristics, whether physical or non-physical. 

Nevertheless, when improving the decision making process in this study, only time, cost, 

and risks were taken into consideration; in addition, to the project’s non-physical 

characteristics. Hence, future models that are capable of including these variables and 

characteristics which are not covered by this study will prove beneficial for the SHAs and 

improve their alternative contracting decision making process. 
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