
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-15-2016

Sustainable Resource Management for Cloud Data
Centers
A. S. M. Hasan Mahmud
Florida International University, amahm008@fiu.edu

DOI: 10.25148/etd.FIDC000693
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer and Systems Architecture Commons, Data Storage Systems Commons,
Systems Architecture Commons, and the Theory and Algorithms Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Mahmud, A. S. M. Hasan, "Sustainable Resource Management for Cloud Data Centers" (2016). FIU Electronic Theses and Dissertations.
2634.
https://digitalcommons.fiu.edu/etd/2634

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2634?utm_source=digitalcommons.fiu.edu%2Fetd%2F2634&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SUSTAINABLE RESOURCE MANAGEMENT FOR CLOUD DATA CENTERS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

A. S. M. Hasan Mahmud

2016

To: Interim Dean Ranu Jung
College of Engineering and Computing

This dissertation, written by A. S. M. Hasan Mahmud, and entitled Sustainable Resource
Management for Cloud Data Centers, having been approved in respect to style and intel-
lectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Shaolei Ren

Deng Pan

Jason Liu

Leonardo Bobadilla

Gang Quan

S. S. Iyengar, Major Professor

Date of Defense: June 15, 2016

The dissertation of A. S. M. Hasan Mahmud is approved.

Interim Dean Ranu Jung
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2016

ii

© Copyright 2016 by A. S. M. Hasan Mahmud

All rights reserved.

iii

DEDICATION

To my parents.

iv

ACKNOWLEDGMENTS

I could not be more grateful to my committee member Dr. Shaolei Ren who was my

supervisor for the first three years. He kept in touch even after leaving the university and

consistently helped me in completing the ongoing research. Throughout the years, his

enthusiasm, support, and vision gave me the necessary strength to proceed through the

doctoral program and finish this dissertation.

I would like to express my sincere gratitude to my supervisor Dr. S. S. Iyengar for

his help and support during the last years of my doctoral program. I am thankful to my

committee members Dr. Jason Liu, Dr. Deng Pan, Dr. Leonardo Bobadilla, and Dr.

Gang Quan for their valuable suggestions to improve this dissertation. Dr. Yuxiong He

from Microsoft Research has provided valuable insights while completing the final part

of this dissertation. I am grateful for her active support which improved this dissertation

considerably.

I like to thank my family members who supported me over the last five years. My

mother Shamshun Nahar always encouraged me to pursue higher study since I was a little

boy. This dissertation would not be even possible without her guidance, love and support.

I could not thank my sisters Shanjida and Thanjida enough for their unconditional sup-

port over the years. I am also thankful to my brother-in-law Mohammad Atiqul Islam,

who also happens to be my colleague. We worked together on many projects and my

discussion with him regarding the research problems greatly benefited me in countless

scenarios.

v

ABSTRACT OF THE DISSERTATION

SUSTAINABLE RESOURCE MANAGEMENT FOR CLOUD DATA CENTERS

by

A. S. M. Hasan Mahmud

Florida International University, 2016

Miami, Florida

Professor S. S. Iyengar, Major Professor

In recent years, the demand for data center computing has increased significantly due to

the growing popularity of cloud applications and Internet-based services. Today’s large

data centers host hundreds of thousands of servers and the peak power rating of a single

data center may even exceed 100MW. The combined electricity consumption of global

data centers accounts for about 3% of worldwide production, raising serious concerns

about their carbon footprint. The utility providers and governments are consistently pres-

suring data center operators to reduce their carbon footprint and energy consumption.

While these operators (e.g., Apple, Facebook, and Google) have taken steps to reduce

their carbon footprints (e.g., by installing on-site/off-site renewable energy facility), they

are aggressively looking for new approaches that do not require expensive hardware in-

stallation or modification.

This dissertation focuses on developing algorithms and systems to improve the sus-

tainability in data centers without incurring significant additional operational or setup

costs. In the first part, we propose a provably-efficient resource management solution

for a self-managed data center to cap and reduce the carbon emission while maintaining

satisfactory service performance. Our solution reduces the carbon emission of a self-

managed data center to net-zero level and achieves carbon neutrality. In the second part,

we consider minimizing the carbon emission in a hybrid data center infrastructure that in-

cludes geographically distributed self-managed and colocation data centers. This segment

vi

identifies and addresses the challenges of resource management in a hybrid data center

infrastructure and proposes an efficient distributed solution to optimize the workload and

resource allocation jointly in both self-managed and colocation data centers. In the fi-

nal part, we explore sustainable resource management from cloud service users’ point of

view. A cloud service user purchases computing resources (e.g., virtual machines) from

the service provider and does not have direct control over the carbon emission of the

service provider’s data center. Our proposed solution encourages a user to take part in

sustainable (both economical and environmental) computing by limiting its spending on

cloud resource purchase while satisfying its application performance requirements.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Problem Definition and Contributions . 3
1.2.1 Sustainability in a self-managed data center 3
1.2.2 Sustainability in a hybrid data center infrastructure 5
1.2.3 Sustainability from a cloud service user’s point of view 6
1.3 Related Publications . 8
1.4 Outline of the Dissertation . 9

2. RELATED WORK . 10
2.1 Dynamic Server Provisioning . 10
2.2 Geographical Load Balancing (GLB) . 12
2.3 Colocation Data Center . 15
2.4 Autoscaling of Virtualized Resources . 17
2.4.1 Proactive autoscaling . 18
2.4.2 Reactive autoscaling . 19
2.5 How Our Work is Different? . 20
2.5.1 Sustainability in a self-managed data center 20
2.5.2 Sustainability in a hybrid data center infrastructure 21
2.5.3 Sustainability from a cloud service user’s point of view 22

3. SUSTAINABILITY IN A SELF-MANAGED DATA CENTER 25
3.1 Background . 25
3.2 Model . 28
3.2.1 Workloads . 28
3.2.2 Data center . 30
3.2.3 Demand-responsive electricity price . 31
3.2.4 Renewable energy . 33
3.3 Algorithm Design and Analysis . 35
3.3.1 Problem formulation . 35
3.3.2 CNDC . 37
3.3.3 Performance analysis . 39
3.4 Simulation Study . 46
3.4.1 Data sets . 46
3.4.2 Impact of V . 49
3.4.3 Comparison with prediction-based method 51
3.4.4 Comparison with price unaware methods 53
3.4.5 Sensitivity Study . 54
3.5 System Experiment . 56
3.5.1 Setup . 57

viii

3.5.2 Results . 58
3.6 Summary . 60

4. SUSTAINABILITY IN A HYBRID DATA CENTER INFRASTRUCTURE . . 62
4.1 Background . 62
4.2 Model and Problem Formulation . 65
4.2.1 Data center and propagation delay . 66
4.2.2 Power consumption and carbon footprints 68
4.2.3 Electricity Cost . 70
4.2.4 Problem formulation . 71
4.3 Algorithm Design and Analysis . 72
4.3.1 Solution to P21 . 72
4.3.2 Applying ADMM to solve P21 . 74
4.3.3 Performance of CAGE . 77
4.4 Simulation Study . 78
4.4.1 Data and settings . 80
4.4.2 Benchmarks comparison . 81
4.4.3 Impact of carbon-cost parameter σ . 84
4.4.4 Renewable energy . 85
4.5 System Experiment . 86
4.5.1 Test-bed setup . 86
4.5.2 Settings and results . 88
4.6 Summary . 89

5. SUSTAINABILITY FROM A CLOUD SERVICE USER’S POINT OF VIEW 90
5.1 Background . 90
5.2 Model and Problem Formulation . 94
5.2.1 Model . 94
5.2.2 Problem Formulation . 95
5.3 Algorithm Design and Analysis . 96
5.3.1 Obtaining Inputs to BATS . 97
5.3.2 BATS . 98
5.3.3 Performance of BATS . 100
5.3.4 Discussion . 104
5.3.5 Reserved Instances . 105
5.4 System Implementation . 108
5.4.1 Architecture Overview . 110
5.4.2 Scheduler . 111
5.5 System Experiment . 112
5.5.1 Experimental Setup . 112
5.5.2 Experimental Results . 115
5.6 Simulation Study . 121
5.6.1 Simulator Overview and Validation . 122

ix

5.6.2 Experimental Setup . 123
5.6.3 Optimizing Average and Tail Delay . 123
5.6.4 Choosing Delay-Cost Parameter V Autonomously 125
5.6.5 Learning Delay Lookup Table Online . 126
5.6.6 Selecting Among Different Types of VMs. 128
5.6.7 Supporting Reserved Instances. 129
5.6.8 Sensitivity Study . 131
5.7 Summary . 132

6. CONCLUSION . 133
6.1 Summary of the Dissertation . 133
6.2 Future Direction . 134

BIBLIOGRAPHY . 137

VITA . 148

x

LIST OF FIGURES

FIGURE PAGE

3.1 Electricity trace data . 32

3.2 Trace data for January 1–25, 2012. 47

3.3 Impact of V . 49

3.4 Impact of time-varying V . 51

3.5 Comparison with PerfectHP. 52

3.6 Comparison with PriceUn. 53

3.7 Robustness against price prediction errors. 55

3.8 Robustness against workload prediction errors. 55

3.9 Comparison between simulation and experiment results. 58

3.10 Average value versus V . 60

4.1 Hybrid data center infrastructure. 63

4.2 Distributed data center model . 66

4.3 CAGE solution overview . 78

4.4 Trace data used in simulation and system experiment. 79

4.5 Location of the data centers and load balancers. 79

4.6 Comparison among benchmarks . 82

4.7 Impact of carbon-cost parameter σ . 84

4.8 Impact of peak renewable energy . 85

4.9 Modeling 95th percentile delay and power consumption. 87

4.10 Comparison among benchmarks for system experiments 88

5.1 Architecture diagram of BATS autoscaler. 109

5.2 Workload traces. 113

5.3 RUBiS load response time correlation. 114

5.4 Comparing BATS with other algorithms. 115

xi

5.5 Resource allocation comparison. 116

5.6 Impact of users budget. 119

5.7 Impact of V on the delay and total cost. 120

5.8 Simulator validation. 122

5.9 Average delay comparison with other algorithms. 124

5.10 Tail delay comparison with other algorithms. 124

5.11 Adaptive V. 126

5.12 Delay performance with adaptive delay lookup table. 127

5.13 Impact of horizontal and vertical scaling. 128

5.14 Impact of Reserved Instances on Average delay. 129

5.15 Sensitivity study. 130

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Data centers are continuously growing in both numbers and sizes to meet the surging de-

mand for online computing, increasing their electricity consumption and carbon footprints

worldwide. Today’s large data centers host hundreds of thousands of servers and the peak

power rating of a single data center may even exceed 100MW [60]. Currently, the data

centers consume 3% of global electricity production and would rank 5th in the world if

the data centers were a country [44]. A significant portion of this electricity is produced

from carbon-intensive sources (e.g., coal and oil), often called “brown energy”. Due to

the brown energy consumption, data centers are accountable for emitting 200 million met-

ric tons of carbon dioxide per year [49, 63]. This huge amount of carbon emission has

raised serious concerns about data center energy consumption and its negative impact on

the environment. Governments are aggressively looking to reduce the carbon emission by

introducing energy usage cap, carbon tax, and tax incentives for greener operation [7, 8].

Many IT organizations (e.g., Apple, Facebook, and Google) are consistently pressured,

both from utility providers and governments, to reduce their carbon footprint and energy

consumption [7, 64, 74, 94, 117]. While these companies have taken steps to reduce their

carbon footprints (e.g., by installing on-site/off-site renewable energy facility), they are

consistently looking for new approaches to reduce their energy consumption and carbon

footprints without incurring significant additional operational costs [12, 36, 74]. Moti-

vated by such trends, this dissertation aims to address key sustainability issues in today’s

data centers.

Reducing the IT energy consumption and carbon footprints of an organization mostly

depends on its data center architecture, renewable energy usage, cooling efficiency, and

1

the carbon efficiency of the electricity generation at the data center location. The IT

organizations often use two major types of data centers to cater their computing needs:

self-managed and colocation data centers [12, 55]. Self-managed data centers are owned

and operated by the organization and require huge initial setup cost and manpower to

manage the facility. Many IT organizations need to deploy their servers in multiple ge-

ographical locations to improve service performance for local workloads. However, it

may not be economically feasible for an organization to build and manage a data center

at every location due to initial capital costs. In such scenarios, colocation data centers

play a crucial role. In a colocation, the organization is a tenant and pays rent for space

and energy consumption while the colocation operator manages the facility. Thus, to

achieve low-cost global presence, the organization rents the space in a colocation data

center facility and places its servers there instead of building and managing an entire data

center by itself. Unlike self-managed data centers, the organization has no control over

the cooling or power infrastructure of the colocation. We outline the architectural dif-

ferences between a self-managed data center and colocation data center in Section 4.1.

However, the colocation data center has long been ignored by the academia while there

are numerous studies focusing on how to improve the sustainability for self-managed data

centers [36, 65, 68, 90, 92, 93]. Motivated by the lack of sustainability study in colocation

data centers, this dissertation aims to develop sustainable algorithms to reduce carbon

emission in both self-managed and colocation data centers.

Integrating data center resource and workload scheduling algorithms in existing in-

frastructure are difficult and even impossible if they require the modification of data center

architecture or existing hardware. Our motivation is to design solutions that are compat-

ible with current data centers and applicable without the need for any physical modifi-

cation. We focus more on the software-based and algorithmic aspect of the solution for

their excellent feature of natural incorporability into the existing system.

2

Existing research for data center sustainability can be classified into two broad cat-

egories: workload management and resource management. The workload management

techniques involve scheduling among geographically distributed data centers, deferring

workload for later processing, and partial execution [36,68,111,112]. Resource manage-

ment techniques include managing the underlying computing and infrastructure resources

such as servers, physical CPUs, UPS, and generators [25,33,45,119]. In this dissertation,

we study both workload management and resource management techniques. The exper-

imental results show that our work improves carbon emission by thousands of tons and

save millions of dollars by reducing the energy consumption of an IT organization.

1.2 Problem Definition and Contributions

This dissertation aims to identify the key challenges and explore the sustainable resource

management and workload management for cloud data centers from the following as-

pects:

1.2.1 Sustainability in a self-managed data center

Several companies (e.g., Google and Microsoft) have declared carbon neutrality (a.k.a.

net-zero carbon emission) as their long-term strategic goals for various reasons such as

government tax incentives, public image improvement, etc. [27,41]. An organization must

reduce its carbon emission level to zero over a long (e.g., six months or one year) period

to claim carbon neutrality. In this part, we address how to reduce the carbon emission

of a self-managed data center to “net-zero” level and achieve carbon neutrality without

incurring a significant additional operational cost. The operational cost may include elec-

tricity cost, delay cost, server on/off transition cost, etc. Since carbon neutrality is a long

term goal, achieving it is significantly challenging because of the unknown or intermittent

nature of future workload, unit electricity price, renewable energy availability, etc. For

3

example, the supply of solar and wind energies heavily depend on weather conditions,

and workload may increase due to breaking events. Some initial efforts have been made

to achieve energy capping and carbon neutrality for data centers [64, 94, 117], but they

require accurate prediction of long-term (e.g., six months or one year) future informa-

tion that is generally unavailable, even impossible, to acquire in practice. Our solution

achieves carbon neutrality using only past and instantaneous data, without requiring any

long-term future information. Furthermore, we integrate demand responsive electricity

price enabled by the emerging smart grid technology and show its benefits in reducing the

data center operational cost.

Contributions. Our contributions to sustainable resource management in a self-

managed data center are summarized below:

1. We propose an efficient online algorithm, called CNDC (optimization for Carbon-

Neutral Data Center), to control the number of active servers for minimizing the

data center operational cost under carbon neutrality. To our best knowledge, CNDC

takes the first step towards carbon neutrality while incorporating demand-responsive

electricity prices as well as multiple data center energy sources (e.g., electricity, on-

/off-site renewable energy, and RECs).

2. We leverage the existing Lyapunov optimization technique which dynamically ad-

justs the tradeoff between cost minimization and the potential deviation from car-

bon neutrality. We formally prove that CNDC is efficient and provides an analytical

performance bound compared to the optimal offline algorithm that has future infor-

mation.

3. We also perform trace-based simulation and experiment studies to complement the

analysis. The results show that CNDC reduces cost by more than20% while achiev-

ing lower carbon footprint in an online manner, compared to prediction-based meth-

4

ods. Compared to taking the electricity price as is without incorporating demand

responses, CNDC further decreases the average cost by approximately 2.5%, trans-

lating into hundreds of thousands of dollars per year.

1.2.2 Sustainability in a hybrid data center infrastructure

Besides self-managed data centers, many IT organizations often lease space and house

their servers in geo-distributed colocation data centers, where they share the power (in-

cluding renewables) with other tenants. Thus, many organizations use a hybrid data

center infrastructure, where some computing servers are managed in-house (a.k.a. self-

managed) data centers, and the rest are placed in colocations [62]. Sharing of renewable

energy at a colocation creates new challenges: how can an organization minimize its

carbon footprint in colocations? While numerous studies have investigated geographical

load balancing to minimize carbon emissions of data centers, these studies have primar-

ily focused on self-managed data centers where all the renewables are solely dedicated

to the data center operator. Furthermore, colocation data centers have different cost and

operational structure for energy usage. In this part, we consider a practical hybrid data

center infrastructure (including both self-managed and colocation data centers) and pro-

pose a novel workload and resource management algorithm based on alternating direction

method of multipliers to reduce carbon footprints. Our solution dynamically distributes

incoming workloads to geo-distributed data centers based on local renewable availability,

carbon efficiency, electricity price, and also the energy usage of other tenants that share

the colocation data centers.

Contributions. Our contributions to sustainable workload and resource management

in a hybrid data center infrastructure are summarized below:

5

1. We identify the problem and challenges of minimizing the carbon emission in a

hybrid data center infrastructure which is very common in practice for supporting

large organizations’ computing needs.

2. We propose an efficient online algorithm, called CAGE (Carbon and Cost Aware

GEographical Job Scheduling), to control the number of active servers for minimiz-

ing the data center operational cost under carbon neutrality. To our best knowledge,

CAGE takes the first step towards sustainable resource management in a hybrid

data center infrastructure.

3. We propose a distributed workload and resource management algorithm, based on

the alternating direction method of multipliers (ADMM), that optimizes GLB de-

cision for a hybrid data center to minimize carbon emission, electricity cost, and

revenue loss while meeting performance requirements. CAGE leverages the geo-

graphical variation of carbon usage effectiveness (CUE) of electricity production,

renewable energy, electricity cost, and cooling efficiency for each data center lo-

cation. The optimality of our solution can be guaranteed under mild practical as-

sumptions.

4. We perform extensive trace-based simulation and real life system experimental

studies to show the effectiveness of our solution. Our study shows that CAGE

can reduce carbon emission by 6.35%, 9.4%, and 37% compared to the algorithm

that ignores colocation data centers, minimizes cost, and maximizes performance,

respectively.

1.2.3 Sustainability from a cloud service user’s point of view

Many companies (e.g., Microsoft and Amazon) provide data center resources in the form

of cloud services to the users. Cloud services have evolved into diversified models, such

6

as Platform as a Service (PaaS) and Infrastructure as a Service (IaaS), which relieves

users from the hassle of maintaining their own infrastructure and cater to a wide spectrum

of user needs such as scientific computing and web hosting. Generally, a user manages

the purchased resources (e.g., virtual machines) and has no direct control over the cor-

responding data center energy consumption. An intuitive approach to limit the energy

consumption or carbon emission from a user’s side is to limit the number of purchased

resources. Furthermore, a recent survey [103] shows that 80% small and medium sized

cloud service users are given a specific amount of budget by business departments or

higher-level executives at the beginning of a budgeting period (e.g., typically, a month or

a year). Such budget constraints are also commonly applied to universities and govern-

ments, which typically allocate annual IT operational budgets at the beginning of each

fiscal year [105]. Thus, setting a user spending limit or budget for cloud services is a

win-win scenario: addressing both economical and environmental sustainability issues

for the user. In the final part of this dissertation, we address how to optimize the delay

performance of a cloud service/application while meeting long-term budget constraints

using only past and instantaneous workload information.

Contributions. Our contributions are summarized below:

1. We develop an online autoscaling system, called BATS (Budget-constrained AuTo-

Scaling), that dynamically scales VM instances to optimize the delay performance

while satisfying a user’s budget constraint in the long run. Leveraging Lyapunov

optimization technique, we formally prove that the BATS produces a close-to-

optimal delay performance compared to the optimal algorithm with offline infor-

mation while satisfying the budget constraint.

2. As a system, we build a fully-automated BATS autoscaler service on Windows

Azure. BATS autoscaler only requires user inputs on the desired delay performance

and budget of their applications. It manages the performance monitoring, resource

7

planning, and scaling of user applications automatically. We also combine BATS

algorithm with a reactive module that monitors runtime performance and handles

workload burstiness.

3. We also conduct extensive simulation study that complements the system imple-

mentation results. We evaluate BATS in terms of both average delay and 95th per-

centile delay, showing the effectiveness of our algorithms on different performance

metrics and its scalability on managing applications with hundreds of VMs. We

also show that BATS is truly autonomous; it does not need users to select appropri-

ate algorithm parameters or provide additional application information.

1.3 Related Publications

This dissertation work is drawn from the following publications:

• A. Hasan Mahmud and Shaolei Ren. Online capacity provisioning for carbon-

neutral data center with demand-responsive electricity prices. ACM SIGMETRICS Per-

formance Evaluation Review, 41(2):26–37, 2013.

• A. Hasan Mahmud and S. S. Iyengar. A distributed framework for carbon and cost

aware geographical job scheduling in a hybrid data center infrastructure. In The 13th

IEEE International Conference on Autonomic Computing (ICAC), 2016.

• A. Hasan Mahmud, Yuxiong He, and Shaolei Ren. BATS: budget-constrained au-

toscaling for cloud performance optimization. In IEEE 23rd International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MAS-

COTS), 2015.

8

1.4 Outline of the Dissertation

We discuss related work in Chapter 2. We first provide a snapshot of the current data

center resource management techniques (that we leverage) in Section 2.1, 2.2, 2.3, and

2.4. Then, we describe the key difference between our work and the existing studies in

Section 2.5.

We present how to address sustainability in a self-managed data center in Chapter

3. Section 3.1 provides background information and challenges. Section 3.2 discusses

modeling details, and Section 3.3 presents the offline problem formulation and develops

an online algorithm, CNDC, which explicitly incorporates demand-responsive electricity

prices. Section 3.4 and 3.5 show the simulation and system experimental results, respec-

tively.

Chapter 4 describes our approach to address the issue of sustainability in a hybrid

data center infrastructure. Section 4.1 discusses background information and challenges.

Section 4.2 models a hybrid data center infrastructure. Our distributed solution is pre-

sented in Section 4.3, followed by simulation and experimental results in Section 4.4 and

4.5, respectively.

Chapter 5 develops a solution for cloud service users to cap their spending on the

cloud resources to address sustainability from a cloud service user’s point of view Sec-

tion 5.2 presents the model and problem formulation. In Section 5.3, we develop our

online autoscaling algorithm, BATS. Section 5.4 describes the system implementation for

Microsoft Azure. Sections 5.5 and 5.6 provide real-world experimental and simulation

studies, respectively. Finally, we provide our concluding remarks and future direction in

Chapter 6.

9

CHAPTER 2

RELATED WORK

This dissertation leverages recent mechanisms in data center sustainability research: dy-

namic server provisioning, geographical load balancing, colocation data center resource

optimization, and autoscaling of virtualized resources. First, we present related work for

each of these mechanisms and then discuss the difference between our work and existing

studies.

2.1 Dynamic Server Provisioning

All the solutions we proposed in this dissertation use dynamic server provisioning. The

key idea in dynamic server provisioning is to turn off or lower the CPU frequency of

as many servers as possible while maintaining the desired service performance. It has

been extensively used to minimize the energy consumption and operational cost of a self-

managed data center. For example, [33] uses a queueing theoretic model which predicts

the mean response time for a data center as a function of some input variables such as

power-to-frequency relationship, arrival rate, peak power budget, etc. Using this model,

their algorithm determines the optimal power allocation for every possible configuration

of the input variables. [66] addresses how to determine the number of servers required to

serve the incoming workloads. They propose an online solution that predicts the future

arrivals and uses dynamic server provisioning to turn the servers on/off to minimize op-

erational costs. The performance of their analytical solution is bounded to that of offline

optimal.

Among other work, [45] considers three key trade-offs of data center resource man-

agement that uses dynamic server provisioning. Firstly, it addresses maximizing energy

savings vs. minimizing unmet load demand. It argues that aggressive server provisioning

10

may degrade the application performance while saving energy. Thus, the provisioning

algorithm must maintain specified Service-Level Objectives (SLOs). Secondly, it consid-

ers putting a server in low power state (using DVFS) rather than completely turning it

off to avoid latency between off-on switching. Finally, it considers the trade-off between

energy savings and reliability costs of servers due to on-off cycles. Aggressive server

provisioning (repeated on-off cycles) may lead to the failure of server components (e.g.,

hard drive), incurring additional costs for their replacement. Hence, the solution con-

siders server on-off latency, SLO requirements, and server reliability costs while making

dynamic server provisioning decision. Furthermore, [112] combines dynamic server on-

off and geographical load balancing to reduce energy consumption and electricity cost

while maintaining satisfactory service performance.

Considering the power outages in data centers, [110] reduces the energy cost of ge-

ographically distributed data centers while guaranteeing the performance requirement of

dynamic workload. Their proposed solution leverages dynamic server provisioning and

load shifting among data centers. The optimum solution of the problem is based on the

stochastic multiplexing gain in a cross-data center level which yields slightly better results

compared to the previous approach.

Dynamic Voltage and Frequency Scaling (DVFS). It has been used widely to reduce

active server power by lowering the operating voltage and frequency of the processor. In

contrast to server on-off latency, switching in and out of DVFS states are very fast, typi-

cally in the order of tens of a microsecond [59]. Hsu and Feng propose an algorithm using

DVFS that reduces the energy consumption while keeping the performance degradation

bounded [48]. Using an estimation model that relates the off-chip access to CPU usage

intensity, their solution computes the lowest frequency and voltage required for CPU such

that the server performance is not significantly affected. [14] shows that DVFS can reduce

server power consumption when servers are operating in a typical range of 10% to 50%

11

utilization. [11] explores power consumption reduction by transitioning to the C (sleep)

states whenever the CPU is idle. The deeper C-states turn off L1 and L2 caches. The cache

contents need reloading each time transitioning from a C-state, which hurts performance

if CPU is switching back and forth from C-states frequently. The proposed solution (Idle-

Power) consolidates the CPU timing interrupts and increases the deep C-state residency

of the processor to reduce CPU power consumption. Deng et al. [25] show that DVFS

can be applied to other modern server components, such as DRAM devices and memory

controller, at the time of low usage to reduce energy consumption. While these studies

are encouraging, DVFS only applies to the CPU and some other components of a server,

significantly limiting its potential power savings capability.

2.2 Geographical Load Balancing (GLB)

Our proposed solution for addressing sustainability in a hybrid data center infrastructure

uses geographical load balancing (GLB). To achieve low-cost global presence and to im-

prove service performance, many organizations are using data centers that are geograph-

ically distributed all over the world. Multiple data centers present a unique opportunity

for the organization where it can use GLB to leverage geographical diversities of elec-

tricity cost, renewable energy availability, efficiency, etc., and distribute the workload to

different data center locations to minimize the objective function (e.g., carbon footprint).

There have been a significant number of prior studies that considers GLB for data center

workload scheduling. For example, [92] develops a GLB algorithm by considering the

location varying electricity price to reduce the electricity bill of an organization that has

multiple data centers in geographically distributed locations. In most parts of the U.S.

with wholesale electricity markets, unit prices may vary (e.g., 15 minutes, 30 minutes,

or on an hourly basis) as much as a factor of 10. Their solution leverages the fact that

electricity prices are not well correlated at different locations. During low computational

12

demand, their algorithm routes the workload to a data center that has low electricity price

and reduces the total electricity cost for that organization without hurting the service per-

formance significantly.

[93] considers a multi-electricity-market environment and then formulate the elec-

tricity minimization problem as a constrained mixed-integer programming problem to

minimize the total electricity cost. Compared to the previous work, the notable differ-

ences of this approach are: (1) it captures the tolerable service delay requirements using a

constraint rather than minimizing it, and (2) it solves the linear programming formulation

with Brenner’s fast polynomial-time method that yields better results [19].

[36] leverages multi-location varying carbon efficiency of electricity production and

electricity price to reduce the carbon footprint and cost of geographically dispersed data

centers. Their proposed solution FORTE, a flow optimization based framework for request-

routing, uses an objective function that balances the weighted sum of access latency, elec-

tricity costs, and carbon footprint of geographically distributed data centers. Using this

three-way trade-off, FORTE analyzes the costs of carbon emission reduction for a large-

scale Internet application. They consider Akamai content distribution network (CDN) for

their case study. Based on the analysis, authors also discuss whether it is beneficial for an

operator to use (i.e., being upgraded to the green data center) FORTE.

[68] develops a distributed algorithm for geographical load balancing with provable

optimality guarantees and explores the feasibility of using GLB for demand response in

the grid environment. In their provable optimal solution, each data center minimizes the

cost, which is a linear function of energy cost and delay cost. The delay cost is measured

as the lost revenue due to the delay of requests which includes both network propagation

delay and workload intensity dependent queueing delay at the server end. The geograph-

ical load balancing algorithm decides the routing of the requests to a data center, and the

number of servers required in the on-state (active) to serve the incoming workload. The

13

authors further explore the feasibility and benefits of using GLB to incorporate the renew-

able sources into the grid. They consider time-varying and location-varying renewable

(e.g., wind and solar) energy availability and combines both demand response program

and dynamic electricity pricing. Authors show that when the data center incentive (from

demand response program) is aligned with the goal of brown energy consumption re-

duction, their approach can provide significant social benefit such as reducing the brown

energy consumption or reducing the carbon emission.

[112] exploits the temporal and spatial variations of workload arrival and electricity

prices to reduce energy consumption cost. The temporal job scheduling makes their al-

gorithm more suitable for the delay tolerant batch workloads such as MapReduce jobs.

Unlike delay sensitive interactive jobs, the execution of the delay tolerant batch workload

can be deferred for a long (e.g., hours) time. Its two-time scale (temporal and spatial)

control algorithm reduces electricity cost by considering electricity cost vs. delay trade-

off in geographically distributed data centers. The authors show that by extending (from

a single time scale to two different time scales) the Lyapunov optimization approach,

the average power cost and service delay achieved by the algorithm can be analytically

bounded.

[116] maximizes renewable energy usage in geographically distributed data centers

through dynamic load dispatch, subject to the monthly budget determined by the Internet

service operator. This study models renewable energy generation(e.g., solar panels), with

respect to the varying weather conditions of each data center locations, to handle the in-

termittent supplies of renewable energy. Finally, the authors transform their optimization

problem into a linear-fractional programming (LFP) formulation for a GLB solution with

a polynomial time average complexity.

By considering the smart micro grids and frequent power outages in a data cen-

ter, [114] formulates a stochastic program to minimize the long-term energy cost of dis-

14

tributed Internet data centers while capturing the service request distribution, server pro-

visioning, battery management, generator scheduling, power transactions between smart

micro grids and main grids. The authors argue that, if power outages occur frequently

(e.g., due to cyber attacks) in a data center which is operating in a smart grid environ-

ment, the cumulative cost of running the diesel generators will become very high, and

hence, a smart management is required for the UPS, generators, workloads, etc. Their

solution leverages Lyapunov optimization technique and provides a performance guaran-

tee (theoretically) for their algorithm by enabling an explicit tradeoff between energy cost

saving and battery investment cost.

[118] proposes dynamic pricing of VM resources in geographically distributed data

centers to maximize the long-term profit of the cloud provider. The authors argue that the

resource cost of each location is different and time varying depending on the other factors

such as electricity price, etc. Thus, VM pricing at each location should be adjusted by

the cloud service provider to maximize the profit. Authors leverage dynamic server pro-

visioning and Lyapunov optimization technique to propose an online solution that guides

the operational decisions of the cloud provider to pursue maximum averaged long term

profit.

2.3 Colocation Data Center

We incorporate colocation data centers while addressing sustainability in a hybrid data

center infrastructure. There are some recent studies on reducing the energy consumption

and carbon emission of the colocation data centers. In a colocation environment, multiple

tenants house their server in a facility which is owned by a third party. Unlike self-

managed data centers, the tenants at a colocation data center have no direct control over

the cooling or facility management. Thus, reducing the energy consumption or carbon

emission requires coordination among tenants and the colocation operator. Most coloca-

15

tion data center resource management algorithms leverage either demand response (DR)

or emergency demand response (EDR) program provided by the smart grid environment.

Hence, we briefly discuss these techniques. Demand response provides an opportunity

for consumers to lower their electricity bills by reducing or shifting their electricity usage

during peak periods in response to time-based rates where the electricity rate is higher

during the peak hours [29]. For example, a household consumer can save money by using

their washer and dryer during off-peak hours when the electricity rate is cheaper. In emer-

gency demand response (EDR) program, the utility provider gives financial incentives to

the businesses that reduce their electricity consumption upon receiving a signal. EDR

allows the utility provider to keep the electricity demand within the supply capacity, and

hence, prevent blackouts.

[96] discusses the challenges of colocation data center resource management. The

main difficulty in a colocation data center is that it has no control over the servers placed

by the tenants. Hence, it is not possible for the colocation data center operator to reduce

the energy consumption by turning off the servers like self-managed data centers. The

authors argue that the colocation data center operator and tenants need a collaboration

mechanism. The authors propose an algorithm to reduce the energy consumption of a

colocation data center by using a reward based bidding mechanism for participating ten-

ants. Their work assumes that the colocation operator is participating in the emergency

demand response (EDR) program. The tenants submit bids indicating how much energy

consumption they want to reduce and its corresponding reward amount. The colocation

operator accepts suitable bids to minimize total energy consumption, and the total reward

provided to the tenants does not exceed the financial incentives received from the utility

provider. If a bid is selected, the corresponding tenant reduces its energy consumption and

receives financial reward from the colocation operator. Participation of a tenant is volun-

tary, making it suitable for any colocation data center. [54] extends the studies of [96] by

16

considering equivalent carbon emission reduction instead of energy consumption while

selecting bids.

By coordinating the participating tenants in a colocation data center, [55] reduces the

electricity cost by lowering the energy consumption from colocation operator’s perspec-

tive. Their solution considers time-varying data center cooling efficiency, assuming that

the data center cooling system uses air-side economizer which cools the data center us-

ing cold outside air whenever applicable. It also considers peak power demand charge

which may take up to 40% of colocation operators total electricity bill. The peak power

demand charge is not known perfectly until the end of a billing cycle. This solution uses a

feedback-based online optimization by dynamically keeping track of the maximum power

demand during runtime to compensate peak power demand charge.

[102] proposes an auction-based fair reward(incentive) system for the participating

tenants in a colocation data center to reduce cost and carbon emission by leveraging EDR.

Their proposed solution focuses on the auction mechanism, called FairDR, which simpli-

fies it. Typically, when random energy reduction signals from utility provider arrive at

a colocation data center, participating tenants have to submit bids for energy reduction

each time. In sharp contrast, FairDR collects the bidding information from tenants only

once, while tenants’ actual energy reduction is decided online for subsequent EDR sig-

nals. Furthermore, FairDR guarantees that similar rewards are offered to tenants with

similar energy reduction.

2.4 Autoscaling of Virtualized Resources

We leverage autoscaling of virtualized resources while addressing sustainability from a

cloud service user’s point of view. In general, autoscaling techniques can be classified

into two broad categories: proactive and reactive. In reactive autoscaling, decisions are

actively triggered by a user at the beginning of a decision period via, e.g., predictive

17

modeling of the workload [21, 32, 40, 98, 100]. In contrast, reactive autoscaling decisions

are made in passive response to a system’s current statuses (e.g., CPU, memory, and

I/O utilization) [79, 83]. Below, we present a snapshot of related work for both of these

approaches.

2.4.1 Proactive autoscaling

[40] introduces PRESS, a statistical learning algorithm to predict CPU usage of virtual

machines in an online fashion. It derives a signature for the pattern of historic resource

usage and uses that signature in its prediction. This signature driven prediction works

better for the workloads with repeating patterns. It also uses state driven prediction to

improve the accuracy for other types of workload. [100] discusses CloudScale, a set of

schemes to improve the prediction-driven resource scaling system by using error correc-

tion mechanisms. For under-estimation error correction, CloudScale uses online adaptive

padding and reactive error correction. The authors argue that reactive error correction

alone is often insufficient. When an underestimation error is detected, SLO violation has

already happened. A proactive padding is added to avoid such violations. The algorithm

chooses the padding value based on the recent burstiness of application resource usage

and recent prediction errors.

[98] develops a model predictive algorithm for workload forecasting and uses it

for resource autoscaling. It uses a second order autoregressive moving average method

(ARMA) for workload prediction. [21] uses autoregression techniques to predict the re-

quest rate for a seasonal arrival pattern, and then accordingly turns servers on and off

using a simple threshold policy. The dynamic provisioning policy performs well for peri-

odic request rate patterns that repeat, say, on a daily basis.

[32] explores a new cloud service, Dependable Compute Cloud (DC2), that automat-

ically scales the infrastructure (number of VM for application layer) to meet the user-

18

specified performance requirements (e.g., SLAs). DC2 is application-agnostic and does

not require any offline application profiling or benchmarking. This service allows a CSP

(Cloud Service Provider) to resize user applications to meet performance requirements in

a cost-effective manner. In general, CSPs cannot gather all the necessary application-level

statistics (e.g., response time) without intruding into user-space application. DC2 address

this challenge by leveraging Kalman filtering to automatically learn the system parame-

ters for each application and proactively scales the infrastructure. When executing, the

change in the workload causes a change in the service time of the requests. The Kalman

filter detects this change based on the monitored values and estimates the new system

state which indicates the required scaling actions for DC2.

2.4.2 Reactive autoscaling

[79] presents an autoscaling solution to minimize job turnaround time within budget con-

straints for cloud workflows. This simulation based study is limited to only cloud work-

flows. Every workflow job has a priority and is composed of connected tasks in the form

of a directed acyclic graph (DAG). This study presents two algorithms: scheduling-first

and scaling-first. Scheduling-first algorithm first allocates the service provider budget to

each job based on the job priority and then schedules as many tasks as possible to their

fastest execution VMs within job budget constraint. When the VM type for each task is

determined, the autoscaling mechanism acquires VM instances based on the scheduling

plan. The scaling-first algorithm first determines the type and the number of cloud VMs

within the budget constraint and then, schedules jobs on the acquired resources based

on job priority to minimize weighted average job turnaround time. The scaling-first al-

gorithm first makes resource scaling decisions and then makes job scheduling decisions.

The scaling-first algorithm shows better performance when the budget is low while the

scheduling-first algorithm performs better when the budget is high.

19

[34] introduces a dynamic capacity management policy, called AutoScale, which re-

duces the number of servers needed in data centers driven by time-varying load while

meeting response time SLAs (service level agreements). The goal is to minimize energy

consumption while meeting SLA constraints in a reactive manner. This solution is con-

servative while scaling down the number of servers by not turning servers off recklessly.

It first determines the service rate (Reqs/sec) of a server when meeting 95th percentile

delay of 400 ms. Then, it keeps an additional capacity margin of 100% when scaling up

and scales down only if servers are idle for a specific period.

[83] discusses the performance improvement and cost reduction of a real produc-

tion environment (in AWS) by using AutoScaling. Their study considers a cloud-hosted

application that provides sports fans with real-time scores, news, photos, statistics, live

radio, streaming video, etc., on their mobile devices. Spikes in the workload happen

very quickly and mostly during a game time. The scaling algorithm follows an aggres-

sive scale-up policy to cope with spiky workloads but scales down very conservatively.

It downscales by removing only one VM at a time and making sure that the CPU usage

of content-delivery tier is stable for a long period of time before doing another round of

downscaling. The number of users may suddenly decrease during half time of the game,

and if the algorithm is not conservative in downscaling, servers may overload when half-

time is over.

2.5 How Our Work is Different?

We now discuss the difference between existing studies and this dissertation.

2.5.1 Sustainability in a self-managed data center

In the first part of this dissertation, we address how to reduce the carbon emission of a

self-managed data center to “net-zero” level and achieve carbon neutrality using only in-

20

stantaneous and past information. Most studies provide solution for short-term (e.g., an

hour) carbon emission reduction, and these solutions are not applicable for the long-term

carbon neutrality problem that we are considering [36, 67, 68, 116]. We are addressing

how to reduce carbon emission for many short-term decision period such that the net car-

bon emission is zero after a long budgeting period (e.g., six months or one year). Existing

studies to reduce and cap carbon emission rely on long-term prediction of the future in-

formation (e.g., renewable energy availability, workload demand, and demand responsive

electricity price), which may not be accurate and in many cases are impossible to acquire

in practice [24, 64, 94] In sharp contrast, our solution does not require the prediction of

long-term future information. Furthermore, several heuristic algorithms have been pro-

posed by keeping additional resource allocation margins to compensate the uncertainty

in workload prediction [24, 64], their evaluation is based on the empirical results and do

not provide any analytical performance guarantees. Our prior work [76, 77] proposes on-

line capacity provisioning algorithms for energy capping without incorporating demand-

responsive electricity price. In summary, our solution, called CNDC, offers provable

guarantees on the average cost, theoretically bounds the deviation from long-term carbon

neutrality, and considers emerging demand-responsive electricity price. Our simulation

results also demonstrate the benefits of CNDC over the existing methods empirically.

2.5.2 Sustainability in a hybrid data center infrastructure

There have been numerous studies on optimizing power management in data centers.

For example, [34, 45, 66] use dynamic server provisioning to balance between energy

consumption and application performance. Minimizing energy consumption and carbon

emission via geographical load balancing for self-managed data centers have been ex-

tensively studied. Using GLB for distributed data centers, [23, 36, 68] exploit the spatio-

temporal diversity of carbon efficiency and renewable energy availability to reduce carbon

21

footprints. [90, 92, 93, 120] minimize power cost by considering location varying elec-

tricity prices among multiple geographically distributed data centers. Capping the car-

bon emission and energy consumption of a self-managed data center have been studied

in [74, 76, 116]. Using ADMM for geo-distributed data centers, [111] reduces electric-

ity demand charge by partially executing search queries and [70] minimizes the energy

consumption considering heterogeneous servers in data centers. These studies, albeit

promising, ignore the power sharing in colocations among multiple tenants, and hence,

are not applicable for a hybrid data center infrastructure that are very common in practice.

Some recent studies [55, 58, 96] have investigated market approaches to coordinate

tenants’ power consumption for reducing electricity cost and carbon emissions in the con-

text of colocations. For example, tenants are paid rewards to shed energy consumption to

avoid simultaneously peaking their power usage to reduce peak demand charge [55]. In

other study, tenants engage in power reduction through supply function bidding to tackle

power emergencies caused by oversubscription [58]. [121] proposes an incentive-based

solution by leveraging ADMM to enable demand response for geo-distributed colocation

data centers. These studies, however, are focused on the colocation operator’s pricing

decision. In sharp contrast, our study focuses on the tenant/organization and proposes to

optimize the organization’s GLB in a hybrid data center infrastructure. To our best knowl-

edge, this dissertation is the first to consider the unique sharing of power infrastructure

(and hence, renewables, too) in colocations for optimizing a tenant’s GLB decisions.

2.5.3 Sustainability from a cloud service user’s point of view

We leverage autoscaling of virtualized resources to address this issue. In recent years,

autoscaling has become an integral feature of cloud computing, and various autoscal-

ing mechanisms have been proposed to enable elastic resource acquisitions for perfor-

mance and cost effectiveness. We discuss the well-known autoscaling algorithms in Sec-

22

tion 2.4. Existing studies use both proactive and reactive autoscaling. For example,

[21, 40, 98, 100] use prediction/learning techniques to estimate workload demand/arrival

rates for autoscaling, while [32] builds a performance model to make autoscaling deci-

sions. Many cloud service providers offer both schedule-based and rule-based “reactive”

autoscaling [1, 4–6, 9]: cloud users can specify customized schedules to initiate/release

VM instances at particular times using schedule-based autoscaling while rule-based au-

toscaling scales VM instances based on resource usage thresholds (e.g., CPU, memory

usage). Nonetheless, as pointed by [83], these autoscaling rules often result in unnec-

essarily high costs, because they are difficult to be optimally tuned toward a long-term

budget goal because of highly dynamic workloads and over-subscription of VM resources

for additional capacity headroom. On the contrary, our proposed solution, called BATS,

guides the spending for VM subscription to satisfy long-term budget constraint while it

exploits benefits of both proactive and reactive scaling. Specifically, we scale resources

proactively based on short-term workload prediction, while we also incorporate reactive

autoscaling as a backup during exceptions (e.g., workload spikes).

There have been some prior studies on satisfying short-term budget constraint. For

example, [80] uses a constant hourly budget to decide the optimal number of VM in-

stances for jobs that have a larger deadline (e.g., 1 hour), while [79] also scales and

schedules cloud workflows considering the hourly budget constraint for each individual

job. Similarly, [78, 99, 113] optimizes workflow scheduling by exploiting flow-specific

properties (e.g., user-specified priorities) while considering an instantaneous budget con-

straint. These studies only impose a short-term (e.g., hourly) budget constraint, which

bounds resource availability at each step independently. Our work considers an even

harder problem: the resource availability over different time steps is dependent as we

bound the total resources across the entire budgeting period (e.g., weeks). Moreover,

they focus on delay-tolerant scientific/batch (e.g., large-scale simulation, and video pro-

23

cessing) jobs, whereas we focus on delay-sensitive (e.g., web services) interactive jobs.

Scheduling delay-tolerant jobs are easier under a short-term budget constraint because

their processing can be deferred for later decision periods whereas interactive jobs must

be processed as they arrive.

Our work broadly lies in the category of dynamic resource management and hence, is

also related to some other domains, such as server management in data centers [26, 34].

While many efforts have been dedicated to enable autonomic and self-managing systems

(using control theoretic and learning approaches) [26, 87, 101], only a few address long-

term performance/constraints. For example, the existing research that deals with long-

term constraints (e.g., brown energy [64], monthly cost [117]) in data centers often relies

on accurate predictions of future information that may not be available in practice. To the

best of our knowledge, we develop the first provably-efficient online autoscaling solution

to optimize delay performance for real-world cloud applications while satisfying a long-

term budget constraint.

To reduce the cloud service cost, recent studies propose hybrid VM rental decisions:

dynamically request on-demand instances to cope with workload variations, while using

reserved instances to serve base workloads for cost saving [108]. Reserving VM instances

incurs high upfront reservation fees and often requires yearly or even longer commitment

in practice (e.g., Amazon EC2 [1]). Our study also explores incorporating reserved in-

stances to provide cost savings.

24

CHAPTER 3

SUSTAINABILITY IN A SELF-MANAGED DATA CENTER

Driven by the exploding demand for Internet services, data centers are growing contin-

uously in both number and scale, resulting in a huge amount of energy consumption.

Recent studies have shown that the combined electricity consumption of global data cen-

ters amounts to 623 billion kWh annually and would rank 5th in the world if the data

centers were a country [44]. As a significant portion of electricity is produced by coal

or other carbon-intensive sources, it is often labeled as “brown energy” and the growing

trend of data center electricity consumption has raised serious concerns about the sustain-

ability. In this part of the dissertation, we discuss a novel algorithm to reduce and cap the

carbon emission of a self-managed data center to “net-zero” level.

3.1 Background

Recently, several companies such as Google and Microsoft have declared carbon neutral-

ity (a.k.a. net-zero) as their long-term strategic goals: reducing the net carbon footprint

to zero [27, 41]. A widely-used approach to accomplishing this goal is “first reduce what

you can, then offset the remainder”. While various power management techniques (e.g.,

power proportionality via turning on/off servers [34]) and integration of on-site green en-

ergy (often generated by solar panels and wind turbines) have been proposed to decrease

the carbon footprint of data centers. However, brown energy (or electricity) still accounts

for more than 70% of the energy portfolio in many large data centers [27,41], because the

best location for building a data center may not be the most desired location for generat-

ing sufficient green energies to satisfy the data center requirement. Thus, data centers are

also aggressively seeking off-site renewable energy (procured through power purchasing

agreement or PPA) as well as purchasing renewable energy credits (RECs) to offset the

25

brown energy usage, thereby achieving carbon neutrality [27, 41]. Although completely

offsetting brown energy usage with renewable energy is appealing, the operational cost of

a data center (of which electricity cost is a major factor) cannot be significantly increased

for economic concerns.

Achieving carbon neutrality is significantly challenging in practice: a data center

needs to decide its energy usage in an online manner that cannot possibly foresee the far

future time-varying workloads or intermittent green energy availability. Meanwhile, op-

erational energy cost and quality of service (QoS) are two primary concerns of data center

operations, which must not be significantly compromised by the quest for energy capping

or carbon neutrality. Some initial efforts have been made to achieve energy capping and

carbon neutrality for data centers [64, 94, 117]. However, they require accurate predic-

tion of long-term future information (e.g., workloads, renewable energy availability) that

is typically unavailable in practice due to unpredicted traffic spikes and the intermittent

supply of solar and wind energies heavily depending on weather conditions. Thus, the

lack of accurate long-term future information suggests the use of online algorithms that

can be applied based on the currently available information.

With the deregulation of electricity markets, electricity prices in many regions vary

over time (e.g., every hour or 15 minutes), as determined by local utility companies based

on supply-demand curves [107]. Recently, leveraging the technological advancement of

two-way communications, smart grid has enabled an automated management and distri-

bution of electricity to balance the demand and supply intelligently. A unique character-

istic of the smart grid is demand response: customers adjust their energy consumption

in response to real-time pricing signals, while utility companies set their prices based on

the aggregated demand. Thus, the electricity price is also called demand-responsive elec-

tricity price [107]. While individual households or other small energy consumers do not

have the capability of altering the electricity price, the power consumption of a large-scale

26

data center is often so significant that its impact on the real-time electricity price cannot

be neglected. While spatial-temporal-diversities of electricity prices have been exten-

sively explored, most of the existing research on data center cost minimization optimizes

server capacity provisioning decisions by taking the real-time electricity price as is with-

out considering the impact of data center operation on electricity prices [64, 68, 93]. Re-

cent work [107,117] has shown that using geographical load balancing while considering

demand-responsive electricity prices that may be affected by load dispatching decisions

can decrease the electricity cost by approximately 5% in large data centers. Nonethe-

less, it remains unclear whether and by how much demand-responsive electricity prices

contribute to electricity cost saving for a data center with a long-term carbon-neutrality

constraint.

In this part of the dissertation, we propose an efficient online algorithm, called CNDC

(optimization for Carbon-Neutral Data Center), to control the number of active servers

for minimizing the data center operational cost under carbon neutrality. While carbon

neutrality is clearly a long-term goal, CNDC does not require the far future information

(which is often difficult to obtain). To our best knowledge, CNDC takes the first step

towards carbon neutrality while explicitly incorporating demand-responsive electricity

prices as well as multiple data center energy sources (e.g., electricity, on-/off-site renew-

able energy, and RECs). Leveraging and also extending the recently-developed Lyapunov

optimization technique [87], we conduct a rigorous performance analysis and prove that

CNDC can achieve a parameterized operational cost (incorporating both electricity and

delay costs), which is arbitrarily close to the minimum cost achieved by the optimal algo-

rithm with lookahead information, while bounding the maximum carbon deficit for almost

any workload and energy availability trajectories. We also perform trace-based simulation

and experiment studies to complement the analysis. The results are consistent with our

theoretical analysis and show that CNDC reduces cost by more than 20% while achieving

27

a less carbon footprint in an online manner, compared to prediction-based methods. Com-

pared to taking the electricity price as is without incorporating demand responses, CNDC

further decreases the average cost by approximately 2.5%, translating into hundreds of

thousands of dollars per year.

3.2 Model

In this section, we present the modeling details for workloads, data center, electricity

price and renewable energy. We consider a discrete-time model by dividing the entire

budgeting period (e.g., 6 months or a year) into K time slots. Each time slot has a dura-

tion that matches the timescale of prediction window for which the data center operator

can accurately predict the future information (including the workload arrival rate, renew-

able energy supply, and electricity price). In the following analysis, we mainly focus on

hour-ahead prediction for the convenience of presentation, while noting that the model

applies as well to longer-term prediction. For example, if the operator can only predict

the hour-ahead future information, then each time slot corresponds to one hour and the

operator can update its resource management decisions at the beginning of each hour.

Nevertheless, if the operator is able to perform a longer-term prediction (e.g., day-ahead

prediction), then each time slot corresponds to the prediction window, at the beginning of

which the operator needs to select a sequence of decisions that will be used throughout

the prediction window. Throughout the chapter, we also use environment to collectively

refer to electricity price, on-site/off-site renewable energy supplies and workloads. Key

Notations are summarized in Table 3.1.

3.2.1 Workloads

We consider J types of workloads (or jobs, as interchangeably used in the chapter). Dif-

ferent types of jobs differ in terms of the relative importance in the total cost function as

28

Table 3.1: List of key Notations for CNDC Model.
Notation Description
λ j(t) Arrival rate of type- j jobs
m j(t) Number of servers for type- j jobs
p(t) Power consumption
r(t) On-site renewable energy
f (t) Off-site renewable energy
u(t) Electricity price
e(t) Electricity cost
d(t) Delay cost
g(t) Total cost
V Cost-carbon parameter
q(t) Carbon deficit queue length

well as their service rates (i.e. a server may process one type of jobs faster than another

type). We denote by λ j(t) ∈ [0,λmax, j] the arrival rate of type- j jobs and by µ j the service

rate of a server for type- j jobs. We assume that λ j(t) is accurately available at the begin-

ning of each time slot t, as widely considered in prior work [23, 64, 68], while simulation

studies show that CNDC is robust against workload prediction errors. In our study, we

focus on delay-sensitive interactive jobs (as in [68,93]), whereas delay-tolerant batch jobs

can be easily maintained by a separate batch job queue as in [46, 97, 112].

To quantify the overall delay performance, we denote delay cost for type- j jobs by

d j(λ j,m j), which is intuitively increasing in λ j and decreasing in m j where m j is the

number of (homogeneous) servers allocated to type- j jobs [68]. As a concrete exam-

ple, we model the service process at each server as an M/M/1 queue, which provide a

reasonable approximation for the actual service process [33, 68, 93], and use the aver-

age response time (multiplied by the arrival rate) to represent the delay cost. Specifi-

cally, the total delay cost at time t can be written as d(λ (t),m(t)) = ∑
J
j=1 w j ·

λ j(t)

µ j(t)−
λi(t)
m j(t)

,

where w j ≥ 0 is the weight indicating the relative importance of type- j jobs (i.e., a larger

weight means the delay performance is more important), λ (t) = (λ1(t), · · · ,λJ(t)), and

m(t) = (m1(t), · · · ,mJ(t)). Note that we ignore the network delay cost, which can be

29

approximately modeled as a certain constant [68] and added into the delay cost without

affecting our approach of analysis. In addition, our analysis is not restricted to any specific

delay cost, and we will also use the actual delay measured on a real system to calculate

the cost.

3.2.2 Data center

As in prior work [66], we consider a data center with M homogeneous servers, while

noting that heterogeneous servers can also be easily incorporated. The service rate of

a server for processing type- j jobs is µ j (quantified in terms of the average number of

processed jobs). We denote by m j(t) the number of servers allocated to type- j jobs at time

t. In our study, we focus on server power consumption, while the power consumption of

other parts such as power supply and cooling systems can be captured by the power usage

effectiveness (PUE) factor which, multiplied by the server power consumption, gives the

total data center power consumption [67]. Mathematically, we denote the total power

consumption1 during time t by p(λ (t),m(t)), which can be expressed as

p(λ (t),m(t)) = γ ·
J

∑
j=1

m j(t) ·
[

e0 + ec
λ j(t)

m j(t)µ j

]
, (3.1)

where γ > 1 is the PUE, e0 is the static server power regardless of the workloads (as long

as a server is turned on) and ec is the computing power incurred only when a server is

processing workloads.

We consider that the data center participates in smart grid using (hourly) time-varying

demand-responsive electricity prices [107, 117]. Assuming that the amount of available

on-site renewable energy is r(t) as specified in the next subsection, we can express the

incurred electricity cost during time t as

e(λ (t),m(t)) = u(t) · [p(λ (t),m(t))− r(t)]+ , (3.2)

1This is equivalent to energy consumption, since the length of each time slot is the same.

30

where [·]+ = max{·,0} indicating that no electricity will be drawn from the power grid

if on-site renewable energy is already sufficient, and u(t) is the demand-responsive elec-

tricity price specified as follows.

3.2.3 Demand-responsive electricity price

In smart grid, electricity prices are updated periodically based on the total energy de-

mand, including the energy consumption of both the data center and other energy con-

sumers (e.g., households) in the local electricity market. As in [107,117], we assume that

the data center operator knows the total energy demand of non-data-center consumers,

denoted by b(t), which may be obtained by accessing the public data provided by the

utility company or learnt based on history traces. Then, the data center can estimate

the demand-responsive electricity price (by considering the impact of its server capac-

ity provisioning decisions) and communicate its energy consumption signal to the utility

company, which will then set the electricity price accordingly.2 While small energy con-

sumers (e.g., households) may also re-adjust its energy demand based on the electricity

price, we assume for simplicity that the total energy demand of non-data-center con-

sumers is known at the beginning of each time slot and does not change within each time

slot [107, 117]. Note that considering strategic energy consumption decisions made by

non-data-center consumers requires a game-theoretic approach [84] and may be a poten-

tial area to explore in the future. Next, we provide a concrete example to explain how to

model the impact of data center energy consumption on the electricity price.

We first plot in Figs. 3.1(a) and 3.1(b) the energy demands and hourly electricity

prices during the first 15 days of 2012 for one of three electricity zones serving Mountain

2With a large energy consumer such as data center whose energy demand has a significant
impact on electricity generation and distribution, it is likely that the electricity price is determined
by taking into account the (dynamic) decisions by the large energy consumer, as corroborated
by [107,117]. Thus, in this part of the dissertation, we take the liberty of using demand-responsive
electricity prices for the data center.

31

50 100 150 200 250 300 350
200

220

240

260

280

300

320

340

Hour

D
em

an
d

(M
W

h)

(a) 15-day scaled energy demand

50 100 150 200 250 300 350
20

30

40

50

60

70

Hour

P
ric

e
($

 /M
W

h)

(b) 15-day electricity price

200 250 300 350 400 450 500
0

50

100

150

200

Demand (MWh)

P
ric

e
($

 /M
W

h)

(c) Price versus scaled demand

200 250 300 350 400 450 500
0

50

100

150

200

Demand (MWh)

P
ric

e
($

 /M
W

h)

Price and Demand
Fitted Price and Demand

(d) Fitted electricity price model

Figure 3.1: Electricity trace data

View, California. Due to the lack of access to exact data, we obtain the hourly electricity

demand by scaling the total demand of California in proportion to the population ratio

of Mountain View (divided by three, due to three electricity zones serving the city) to

California [3]. As intuitively expected, the general trend is that a higher demand leads to

a higher electricity price, as further corroborated by Fig. 3.1(c) that contains the 6-month

data from January to June, 2012. Then, by applying mean square error data fitting to the

6-month data in Fig. 3.1(c), we can approximate electricity price using a piecewise linear

32

function as

u(t) =

0.15 [a(t)+b(t)]−15.6, if 200≤ a(t)+b(t)≤ 420,

0.98 [a(t)+b(t)]−364.2, if a(t)+b(t)> 420,
(3.3)

where a(t) is the total energy demand of non-data-center consumers and

b(t) = [p(λ (t),m(t))− r(t)]+ is the electricity usage by the data center. The fitted func-

tion and original data are shown in Fig. 3.1(d). Note that, despite having different pa-

rameters, similar piecewise linear electricity price functions have also been reported in

[107, 117]. From Fig. 3.1(d), we notice that a cloud-scale data center with a peak power

of 50MW and an average utilization of 40% can increase the electricity price by more

than 10%, highlighting the importance of incorporating demand-responsive electricity

price in data center operation. While the fitted electricity function may not fully char-

acterize the demand-price relation, we will show using extensive simulations that even

with inaccurate knowledge of non-data-center energy demand b(t) (with 10% errors), the

data center can leverage the demand-responsive electricity price to reduce its operational

cost by more than 2%, translating into a significant cost saving in practice. Finally, we

note that our demand-responsive price model can also be applied to enforce peak demand

shaving, which is usually employed to reduce peak power usage charge [69]. Specifically,

if the price function is appropriately modified such that a very high price is charged when

the data center’s electricity usage exceeds a certain threshold (as similarly considered

in [69]), then the peak power usage fee can be effectively mitigated.

3.2.4 Renewable energy

We consider the following three representative types of renewable energy sources that

have been increasingly adopted by large data centers [27,41]. Note that we ignore the DC-

AC energy conversion loss and hence, the values in this chapter denote the net available

renewable energy for powering the data center.

33

On-site renewable energy: Renewable energy generators such as solar panels and

wind turbines can be easily installed on-site and directly provide green energy to power

data centers. Typically, on-site renewable energy supplies are highly dependent on weather

conditions, exhibiting an intermittent nature. We denote the available on-site renewable

energy supply during time t by r(t) ∈ [0,rmax], which may follow an arbitrary trajectory

throughout the budgeting period. While energy storage devices such as batteries can be

utilized as a complementary solution for preventing power outages [42] and storing the

unused renewable energy to smooth the electricity usage for cost saving [104, 106], we

do not consider it in our model because: (1) these devices are quite expensive to install at

a large scale [82]; and (2) our main focus is on making resource management decisions

rather than charging/discharging batteries.

Off-site renewable energy: As the best locations for renewable energy production

may not be good for building a data center, large data center operators are now us-

ing off-site renewable energy to achieve carbon neutrality [27, 41]. One important and

widely-used type of off-site renewable energy is through PPAs. For example, Google has

invested in and signed PPAs with several renewable energy plants such that the gener-

ated renewable energy will be directly fed into the local electricity grid and then used to

indirectly offset the brown energy (i.e., electricity) usage of Google’s data centers [41].

We denote the supply of the off-site renewable energy generated via PPAs for time t as

f (t) ∈ [0, fmax].

REC: As a complementary source, RECs may be used to offset data centers’ brown

energy usage. Two popular approaches are available to obtain RECs: (1) purchase a large

amount of RECs at the beginning of a budgeting period; and (2) dynamically purchase

RECs for each time slot from the REC market. We focus on the first approach and denote

the (fixed) amount of RECs available for the data center throughout the budgeting period

by Z. While some companies may purchase RECs at the end of a budgeting period to

34

offset the remaining brown energy usage, this approach is orthogonal to our study: re-

maining brown energy, if any, may still be offset by purchasing additional RECs at the

end of a budgeting period.

3.3 Algorithm Design and Analysis

In this section, we present the offline problem formulation and develop an online algo-

rithm, CNDC, which explicitly incorporates demand-responsive electricity prices and is

provably efficient in terms of cost minimization compared to the optimal algorithm with

lookahead information. CNDC builds upon yet extends the recently developed Lyapunov

optimization technique [87].

3.3.1 Problem formulation

This subsection presents an offline problem formulation for capacity provisioning under

carbon neutrality.

We first define operational cost as the objective function. Specifically, both electricity

cost and delay cost are important for data centers, as the former takes up a dominant

fraction of the operational cost while the later affects the user experiences and revenues

[66]. Our study incorporates both costs by considering a parameterized cost function as

follows3

g(λ (t),m(t)) = e(λ (t),m(t))+β ·d(λ (t),m(t)), (3.4)

where β ≥ 0 is the weighting parameter adjusting the importance of delay cost relative to

the electricity cost [68]. The objective is to minimize the long-term average cost expressed

3Although off-site renewable energy supplies are not free, the payment is often subject to PPAs
and not affected by data center resource management decisions [27,41]. Thus, we do not consider
it as the data center’s operational cost.

35

as

ḡ =
1
K

K−1

∑
t=0

g(λ (t),m(t)) , (3.5)

where K is the total number of time slots over the entire budgeting period. Next, we

formulate the offline capacity provisioning problem below.

P11 : min
A

ḡ =
1
K

K−1

∑
t=0

g(λ (t),m(t)) (3.6)

s.t., λ j(t)≤ θ ·µ j ·m j(t), ∀ j, t, (3.7)
J

∑
j=1

m j(t)≤M, ∀t, (3.8)

1
K

K−1

∑
t=0

b(t)≤ α

K

[
K−1

∑
t=0

f (t)+Z

]
, (3.9)

where b(t) = [p(λ (t),m(t))− r(t)]+ is the electricity usage and A represents a sequence

of capacity provisioning decisions, i.e., m(t), for t = 0,1, · · · ,K− 1, which we need to

optimize. The constraints (3.7) and (3.8) to imposed to avoid server overloading and over-

provisioning, respectively, where θ ∈ (0,1) is the maximum utilization constraint for each

server (i.e., λ j(t)
µ j·m j(t)

≤ θ). The constraint (3.9) specifies the long-term carbon neutrality:

following the current industry practice [27,41,68], we say that a data center achieves car-

bon neutrality as long as its electricity usage is completely offset by the off-site renewable

energy plus RECs. While we express carbon neutrality as a hard constraint, it is actually

a desired target/goal: even though carbon neutrality cannot be possibly satisfied (e.g.,

due to persistently high workloads), the data center still continues processing workloads

rather than dropping them. The parameter α > 0 in (3.9) indicates the desired offsetting

of electricity usage relative to the total off-site renewable energy plus RECs: the less α ,

more aggressive the data center is in achieving carbon neutrality.

It is natural that optimally solving P11 requires complete offline information (i.e.,

workload arrivals, renewable energy supplies, and electricity prices) that is very difficult,

36

even impossible, to accurately predict in advance, especially in view of the unpredictabil-

ity of weather conditions that heavily affect the renewable energy availability [67]. In

what follows, we propose an online algorithm in which capacity provisioning decisions

are made based on the hour-ahead information only.

3.3.2 CNDC

We note first that the long-term carbon neutrality constraint couples the capacity pro-

visioning decisions across different time slots. Thus, eliminating the carbon neutrality

constraint will lead to an online solution. Towards this end, as the foundation of CNDC,

we construct a (virtual) carbon deficit queue that replaces the long-term constraint (3.9)

and decouples the decisions for different time slots. Specifically, assuming q(0) = 0, we

construct a carbon deficit queue whose dynamics evolves as follows

q(t +1) =
{

q(t)+ [p(λ (t),m(t))− r(t)]+−α · f (t)− z
}+

, (3.10)

where q(t) is the queue length indicating how far the current electricity usage deviates

from the carbon neutrality constraint, and z = α

K · Z is the average RECs per time slot

scaled by α . Intuitively, a large queue length implies that the data center has drawn more

electricity than the total off-site renewable energy plus RECs provided thus far, and it

needs to reduce the electricity usage for carbon neutrality. Leveraging this intuition, we

develop our online algorithm, CNDC, as presented in Algorithm 1.

In Algorithm 1, we use V0,V1, · · · ,VR−1 to denote a sequence of positive control pa-

rameters (also referred to as cost-carbon parameters) to dynamically adjust the tradeoff

between cost minimization and electricity usage over the R frames, each having T time

slots. Lines 2-4 reset the carbon deficit queue at the beginning of each frame r, such that

the cost-carbon parameter V can be adjusted and the carbon deficit in a new time frame

will not be affected by its value resulting from the previous time frame. Line 5 defines an

37

Algorithm 1: CNDC
Input: Input λ (t), r(t) and a(t) at the beginning of each time t = 0,1, · · · ,K−1.

1 if t = rT , ∀r = 0,1, · · · ,R−1 then
2 q(t)← 0 and V ←Vr

3 Choose m(t) subject to (3.7)(3.8) to minimize

V ·g(λ (t),m(t))+q(t) · [p(λ (t),m(t))− r(t)]+ (3.11)

4 Update q(t) according to (3.10).

optimization problem to decide m(t) based on online information: minimizing the orig-

inal cost scaled by V plus q(t) · [p(λ (t),m(t))− r(t)]+. By considering the perturbing

term q(t) · [p(λ (t),m(t))− r(t)]+, the data center operator places a higher weight on the

electricity usage while making capacity provisioning decisions if the queue length q(t) is

larger: as a consequence, when q(t) increases, minimizing the electricity usage is more

critical for the data center operator due to the carbon neutrality constraint. In essence,

the carbon deficit queue maintained without foreseeing the future guides the data center

decisions towards carbon neutrality.

Now, we explain the impact of the cost-carbon parameter V on online decisions, as

will be formalized in the next subsection.

•When V becomes larger, the data center tends to minimize the cost, while the carbon

neutrality constraint plays a less important role and the carbon queue length makes a

significant impact on online decisions only when the electricity usage has deviated too

much from carbon neutrality (i.e., q(t)/V cannot be neglected).

• When V becomes smaller, the data center tends to follow carbon neutrality more

closely while caring less about the cost, as the carbon deficit queue length plays a more

significant role when the data center makes decisions (i.e., q(t)/V will easily become

large).

38

3.3.3 Performance analysis

This subsection presents the performance analysis of CNDC: it achieves a long-term av-

erage cost arbitrarily close to that achieved by the optimal algorithm with lookahead in-

formation while the deviation from carbon neutrality is bounded.

We first introduce an offline algorithm with lookahead information as a benchmark.

Specifically, we divide the entire budgeting period into R frames, each having T ≥ 1 time

slots, such that K = RT . Then, at the beginning of the r-th frame, for r = 0,1, · · · ,R−1,

offline decisions are chosen to solve the following problem:

P12 : min
m(t)

1
T

(r+1)T−1

∑
t=rT

g(λ (t),m(t)) (3.12)

s.t., constraints (3.7), (3.8), (3.13)
(r+1)T−1

∑
t=rT

[p(λ (t),m(t))− r(t)]+ ≤ α · fr, (3.14)

where fr = ∑
(r+1)T−1
t=rT f (t)+ Z

R is the total amount of available off-site renewable energy

supplies during the r-th frame plus the total RECs evenly distributed over the R frames. In

essence, P12 encapsulates a family of offline algorithms parameterized by the lookahead

information window size T . Next, to ensure there exists at least one feasible solution to

P12, we make the two assumptions that are very mild in practice.

Boundedness assumption: The workload arrival rate λ (t), electricity price u(t), as

well as renewable energy supplies r(t) and f (t) are finite, for t = 0,1, · · · ,K−1.

Feasibility assumption: For the r-th frame, where r = 0,1, · · · ,R− 1, there exists at

least one sequence of capacity provisioning decisions that satisfy the constraints of P12.

The boundedness assumption ensures that the cost function is finite, while the fea-

sibility assumption guarantees that the oracle can make a sequence of feasible deci-

sions to solve P12. We denote the minimum average cost for the r-th frame by G∗r , for

r = 0,1, · · · ,R, considering all the decisions that satisfy the constraints (3.13)(3.14) and

that have perfect information over the frame.

39

Next, building upon yet extending the recently-developed Lyapunov optimization

technique [87], we formalize the performance analysis of CNDC in Theorem 1, whose

proof outline is available in the appendix.

Theorem 1. Suppose that boundedness and feasibility assumptions are satisfied. Then,

for any T ∈ Z+ and R ∈ Z+ such that K = RT , the following statements hold.

a. The carbon neutrality constraint is approximately satisfied with a bounded devia-

tion:

1
K

K−1

∑
t=0

[p(λ (t),m(t))− r(t)]+

≤α

K
·

[
K−1

∑
t=0

f (t)+Z

]
+

∑
R−1
r=0

√
C(T)+Vr (G∗r −gmin)

R
√

T
,

(3.15)

where C(T) = B+D(T − 1) with B and D being finite constants, G∗r is the minimum

average cost achieved over the r-th frame by the optimal offline algorithm with T -slot

lookahead information, for r = 0,1, · · · ,R−1, and gmin is the minimum hourly cost that

can be achieved by any feasible decisions throughout the budgeting period.

b. The average cost ḡ∗ achieved by CNDC satisfies:

ḡ∗ ≤ 1
R

R−1

∑
r=0

G∗r +
C(T)

R
·

R−1

∑
r=0

1
Vr

. (3.16)

We prove Theorem 1 following three key steps:

1. We present Lemma 1 that relates the carbon queue length to approximate constraint

satisfaction.

2. We define a quadratic Lyapunov function for the carbon deficit queue length and

derive upper bounds on the one-slot as well as T -slot Lyapunov drift plus cost.

3. We minimize the derived upper bounds using CNDC and then compare with the

optimal offline algorithm with T -step lookahead information to complete the proof.

40

Lemma 1. For any 0≤ r≤R−1, any carbon deficit queue length q(rT), and any feasible

decision satisfying (3.7)(3.8), we have

1
T

(r+1)T−1

∑
t=rT

[p(λ (t),m(t))− r(t)]+

≤α

T

[
(r+1)T−1

∑
t=rT

f (t)+
Z
R

]
+

q(rT +T)−q(rT)
T

.

(3.17)

Proof. Following the carbon deficit queue dynamics specified by (3.10), we have for any

t ∈ [rT,rT +T −1] and any r = 0,1, · · · ,R−1:

q(t +1)−q(t)≥ [p(λ (t),m(t))− r(t)]+−α · f (t)− z, (3.18)

where z = α

J · Z is the average RECs per time slot scaled by α . By summing over t =

rT,rT +1, · · · ,rT +T −1, we obtain

q(rT +T)−q(rT)

≥
rT+T−1

∑
t=rT

{
[p(λ (t),m(t))− r(t)]+−α · f (t)− z

}
.

(3.19)

Then, (3.17) is proved by rearranging the terms and dividing both sides of (3.19) by T . �

Lemma 1 shows that the carbon neutrality constraint can be approximately satisfied

over the r-th frame if the carbon queue length difference q(rT +T)−q(rT) is sufficiently

small. Next, we define for notational convenience

y(t) = [p(λ (t),m(t))− r(t)]+ , (3.20)

z(t) = α · f (t)+ z, (3.21)

g(t) = g(λ (t),m(t)). (3.22)

Thus, (3.10) can be rewritten as q(t +1) = [q(t)+ y(t)− z(t)]+. As an alternative scalar

measure of all the queue lengths, we also define the quadratic Lyapunov function

L(q(t)),
1
2

q2(t), (3.23)

41

where the scaling factor 1
2 is added for the convenience of analysis. Let 4T (t) be the

T−slot Lyapunov drift yielded by some control decisions over the interval t, t+1, · · · , t+

T −1:

4T (t), L(q(t +T))−L(q(t)). (3.24)

Similarly, the 1-slot drift is

41(t), L(q(t +1))−L(q(t)). (3.25)

Based on q(t+1) = [q(t)+ y(t)− z(t)]+, it can be shown that L(q(t+T)) = 1
2q2(t+1)≤

1
2 [q(t)+ y(t)− z(t)]2. Then, it can be shown that the 1-slot drift satisfies

41(t)≤B+q(t) · [y(t)− z(t)], (3.26)

where B is a constant satisfying, for all t = 0,1, · · · ,J−1,

B≥ 1
2
[y(t)− z(t)]2 , (3.27)

where is finite due to the boundedness assumption.

Based on the inequality in (3.26), we can easily show

41(t)+V ·g(t)≤B+V ·g(t)+q(t) · [y(t)− z(t)]. (3.28)

The online algorithm described in line 5 of Algorithm 1 actually minimizes the upper

bound on the 1-slot Lyapunov drift plus a weighted cost shown on the right hand side of

(3.28). Following (3.28), we can show that, for r = 0,1, · · · ,R− 1, the T -slot drift plus

42

weighted cost satisfies

4T (rT)+Vr

rT+T−1

∑
t=rT

g(t)

≤BT +Vr

rT+T−1

∑
t=rT

g(t)+
rT+T−1

∑
t=rT

q(t) · [y(t)− z(t)]

≤BT +Vr

rT+T−1

∑
t=rT

g(t)+
rT+T−1

∑
t=rT

(t− rT)qdi f f · |y(t)− z(t)|

+q(rT)
rT+T−1

∑
t=rT

[y(t)− z(t)]

≤BT +Vr

rT+T−1

∑
t=rT

g(t)+DT (T −1)+q(rT)
rT+T−1

∑
t=rT

[y(t)− z(t)],

(3.29)

where qdi f f = maxt=0,1,··· ,J−1{y(t),z(t)} and D is a finite constant satisfying D≥ 1
2qdi f f ·

max{y(t),r(t)}. Note that CNDC explicitly minimizes the term BT +Vr ∑
rT+T−1
t=rT g(t)+

∑
rT+T−1
t=rT q(t) · [y(t)− z(t)]. Thus, by applying CNDC on the left-hand side and consid-

ering the optimal T -step lookahead policy on the righ-hand side of (3.29), we obtain the

following inequality

4T (rT)+Vr

rT+T−1

∑
t=rT

g∗(t)

≤BT +VrT G∗r +DT (T −1)+q(rT)
rT+T−1

∑
t=rT

[y(t)− z(t)]

≤BT +VrT G∗r +DT (T −1),

(3.30)

where g∗(t) is the cost achieved by CNDC at time t and the second inequality follows

from the constraints in (3.14) satisfied by the optimal T−slot lookahead policy. Note

that q(rT) is reset to zero, for r = 0,1, · · · ,R− 1, as enforced by Algorithm 1, whereas

4T (rT) = q2(rT + T)− q2(rT) = q2(rT + T) in (3.30) is the T -step Lyapunov drift

calculated after the r-th reset but before the (r+ 1)-th reset of the carbon deficit queue.

43

Thus, before the (r+1)-th reset of the carbon deficit queue, we obtain from (3.30)

q(rT +T)≤

√
BT +DT (T −1)+VrT G∗r −Vr

rT+T−1

∑
t=rT

g∗(t)

≤
√

BT +DT (T −1)+VrT (G∗r −gmin)

=
√

T ·
√

B+D(T −1)+Vr (G∗r −gmin),

(3.31)

where gmin is the minimum cost that can be achieved by any feasible decisions throughout

the budgeting period. Then, by Lemma 1, we derive

1
T

(r+1)T−1

∑
t=rT

y(t)≤= 1
T

(r+1)T−1

∑
t=rT

z(t)+

√
C(T)+Vr (G∗r −gmin)√

T
, (3.32)

where we define

C(T) = B+D(T −1). (3.33)

Therefore, by summing (3.32) over r = 0,1, · · · ,R− 1 and dividing both sides by R, we

obtain

1
J

J−1

∑
t=0

y(t)≤ 1
J

J−1

∑
t=0

z(t)+
∑

R−1
r=0

√
C(T)+Vr (G∗r −gmin)

R
√

T
, (3.34)

which proves part (a) of Theorem 1.

Next, by dividing both sides of (3.30) by Vr and considering q(rT) = 0 as enforced by

Algorithm 1, it follows that

rT+T−1

∑
t=rT

g∗(t)≤ BT
Vr

+T G∗r +
DT (T −1)

Vr
−4T (rT)

Vr

≤ BT +DT (T −1)
Vr

+T G∗r .

(3.35)

Finally, by summing (3.35) over r = 0,1, · · · ,R− 1 and dividing both sides by RT , we

have

ḡ∗ ≤ 1
R

R−1

∑
r=0

G∗r +
B+D(T −1)

R
·

R−1

∑
r=0

1
Vr

, (3.36)

44

which shows that the online algorithm can achieve a cost within O(1/V) to the minimum

cost achieved by the optimal offline algorithm with T -step lookahead information. This

proves part (b) of Theorem 1. �

Theorem 1 shows that, given a fixed value of T and R, CNDC is O(1/V)-optimal with

respect to the average cost against the optimal T -step lookahead policy, i.e., CNDC incurs

no more than O(1/V) additive cost than the minimum value, while the carbon neutrality

constraint is guaranteed to be approximately satisfied with a bounded “fudge factor” of
∑

R−1
r=0

√
C(T)+Vr(G∗r−gmin)

R
√

T
. With a larger V , the cost is closer to the minimum but the potential

deviation of electricity usage from carbon neutrality can be larger, and vice versa.

Next, we discuss how the performance result is affected by the value of T . Con-

sidering K = RT in (3.15), CNDC incurs an average electricity usage closer to carbon

neutrality as T increases, which can also be formally shown by rewriting the fudge factor

in (3.15) but the details are omitted due to space limitations. This is because the car-

bon deficit queue length is reset to zero less frequently (i.e., lines 2–4 in Algorithm 1)

and hence, the carbon deficit queue is more likely to be non-empty, thereby giving the

data center a higher pressure on reducing its electricity usage. On the other hand, when

T becomes smaller, the carbon deficit will be cleared more frequently, and accordingly

CNDC uses electricity more aggressively with less restriction imposed by the carbon

deficit queue. Meanwhile, as T increases (i.e., the oracle can further look into the future

and thus can make a better decision), the bounded gap between the average cost achieved

by CNDC and that achieved by the optimal T -step lookahead policy also increases.

While Theorem 1 strictly holds under boundedness and feasibility assumptions that

are very mild in practice, CNDC applies to an arbitrarily changing environment even

though the two assumptions are not satisfied. To derive tighter analytical bounds, addi-

tional assumptions on the environment dynamics (e.g., i.i.d./Markovian workload arrival

45

rate, renewable energy supply and electricity price [46,87]) are required which, however,

may not hold in practice.

3.4 Simulation Study

This section presents trace-based simulation studies of a large data center to validate our

analysis and evaluate the performance of CNDC. We first present our data sets and then

show the following sets of simulations:

• The impact of V : We show how cost minimization and satisfaction of carbon neu-

trality varies with different values of V as well as the impact of dynamically changing V

over the course of operation.

• Comparison with prediction-based method: We compare CNDC with the state-of-

the-art prediction-based method and show that CNDC reduces the average cost by more

than 20% while resulting in a less carbon footprint.

• Comparison with non-demand-responsive electricity price: We compare CNDC

with an algorithm that does not incorporate demand-responsive electricity prices and show

that CNDC achieves more than 2.5% cost saving.

• Sensitivity study: We show that CNDC still yields a satisfactory performance in

terms of the operational cost while satisfying carbon neutrality: (1) in the presence of

workload prediction errors or inaccurate knowledge of non-data-center energy demand;

and (2) when using measured real server power consumption, workload delay, and tog-

gling energy consumption.

3.4.1 Data sets

We consider a data center with a peak power of 50MW and an average PUE of 2.0.4 The

data center consists of 100,000 servers in total, each with a maximum power of 250W

4State-of-the-art techniques have reduced this value of around 1.12 [41].

46

0 100 200 300 400 500 600

0.4

0.5

0.6

0.7

0.8

Hour

N
or

m
al

iz
ed

 A
rr

iv
al

 R
at

e

(a) Total workloads

50 100 150 200 250 300 350
20

30

40

50

60

70

Hour

P
ric

e
($

 /M
W

h)

(b) Electricity price

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hour

N
or

m
al

iz
ed

 O
n−

S
ite

 R
en

ew
ab

le

(c) On-site renewable energy

0 100 200 300 400 500 600
0.2

0.3

0.4

0.5

0.6

0.7

Hour

N
or

m
al

iz
ed

 O
ff−

S
ite

 R
en

ew
ab

le

(d) Off-site renewable energy

Figure 3.2: Trace data for January 1–25, 2012.

and idle power of 150W. As in the existing work [68,93], we only model the server power

consumption for delay-sensitive workloads as our main focus without considering delay-

tolerant batch jobs. The parameter converting the delay cost into monetary cost is set as

β = 0.03, while CNDC is applicable for any value of β ≥ 0.. The budgeting period in our

study is 6 months.

•Workloads: We use three different types of workloads with equal weights in the de-

lay cost (i.e., w1 = w2 = w3 = 1). We profile the server usage log of Florida International

University (FIU, a large public university in the U.S. with over 50,000 students) from

January 1 to June 30, 2012. We also plot workload traces for Microsoft Research and

47

Hotmail shown in [66] and repeat the traces for 6 months by adding random noises of up

to ±40%. The normalized service rates of each server for these three workloads are 0.95,

1.00 and 1.05, respectively. Due to the lack of access to workloads of large commercial

data centers, we scale these workloads and show in Fig. 3.2(a) the trace of January 1–25,

2012, normalized with respect to the total service rates provided by the data center. Note

that our trace exhibits a similar pattern with those of large commercial data centers (e.g.,

Facebook trace shown in [94]).

• Renewable energy: We obtain from [3] the hourly renewable energies (generated

through solar panels and wind turbines) for the city of Mountain View as well as the

state of California during the first six months of 2012. We scale the data proportionally

such that on average on-site and off-site renewable energies satisfy 15% and 35% of the

peak power consumption, respectively. Figs. 3.2(c) and 3.2(d) show the available on-site

and off-site renewable energies during January 1–25, 2012, respectively, normalized with

respect to the peak power of the data center (50MW). We set the available RECs as ap-

proximately 16% of total energy demand.

• Electricity price: With demand-responsive electricity prices, we use the fitted piece-

wise linear function shown in (3.3), while the non-data-center energy demand is obtained

by subtracting the scaled demand (as illustrated in Fig. 3.1(a)) by 50MWh. As a compari-

son, if demand-responsive electricity price is not incorporated, we directly use the hourly

electricity price for a trading node in Mountain View, California, obtained from [3].

Since the access to commercial data centers is unavailable, we obtain the trace data

from various sources, but it captures the variation of workload, renewable energy supply

and electricity prices over the budgeting period. Thus, it serves the purpose of evaluating

the performance and benefits of CNDC. Next, we present simulation results using the

above trace data.

48

0 20 40 60 80 100
1200

1400

1600

1800

2000

2200

2400

V

A
ve

ra
ge

 C
os

t (
$)

CNDC
Carbon−Unware

(a) Cost versus V

0 20 40 60 80 100
−4

−2

0

2

4

V

C
ar

bo
n

D
ef

ic
it

(M
W

h)

CNDC
Carbon−Unware

(b) Carbon deficit versus V

0 20 40 60 80 100
650

700

750

800

850

900

950

V

E
le

ct
ric

ity
 C

os
t (

$)

CNDC
Carbon−Unware

(c) Energy cost versus V

0 20 40 60 80 100
400

600

800

1000

1200

1400

1600

V

D
ea

ly
 C

os
t (

$)

CNDC
Carbon−Unware

(d) Delay cost versus V

Figure 3.3: Impact of V .

3.4.2 Impact of V

We now show how the carbon-cost V affects the performance of CNDC.

Constant V . We first consider a constant V throughout the budgeting period. Fig. 3.3(a)

and Fig. 3.3(b) show the impact of V on the average hourly cost (i.e., ḡ) and average hourly

carbon deficit (i.e., average hourly electricity usage minus the available carbon budget

consisting of both off-site renewable energy and RECs), respectively. Note that carbon

deficit may be either positive or negative, depending on the amount of off-site renewable

energies plus RECs: negative deficit means off-site renewable energies plus RECs exceed

the electricity usage. The result conforms with our analysis that with a greater V , CNDC

49

is less concerned with the carbon deficit while caring more about the cost. The reason

is that, with a large value of V , the weight of carbon deficit in the optimization objective

(5.9) is relatively smaller, thereby equivalently making the carbon neutrality constraint

less stringent. This can also be seen from Fig. 3.3(c) and Fig. 3.3(d) that show the aver-

age hourly electricity cost and delay cost, respectively: when V increases, the data center

turns on more servers, leading to a better delay performance while resulting more car-

bon footprint as well as electricity cost. In the extreme case in which V goes to infinity,

CNDC reduces to a carbon-unaware algorithm that minimizes the cost without consider-

ing carbon neutrality. Clearly, carbon-unaware algorithm achieves a cost that is a lower

bound on the cost that can be possibly achieved by any algorithm satisfying the carbon

neutrality constraint. Nonetheless, the carbon-unaware algorithm is likely to violate the

carbon neutrality constraint due to the insufficient supply of off-site renewable energies

or RECs.5 It can be seen from Fig. 3.3(a) and Fig. 3.3(b) that the cost achieved by CNDC

is fairly close to the lower bound on the cost achieved by the carbon-unaware algorithm

when V exceeds 30, whereas CNDC satisfies the carbon neutrality constraint for V ≤ 30.

This indicates that, with V ≈ 30, CNDC achieves a close-to-minimum cost while still

satisfying the carbon neutrality constraint.

Varying V . We show in Fig. 3.4 the impact of dynamically changing V over the

course of operation. Specifically, we change V every 1.5 months and present the moving

average hourly cost and carbon deficit (averaged over the past 360 hours) in Fig. 3.4(a)

and Fig. 3.4(b), respectively. The fluctuation of moving average values is mainly due

to the large variation of workloads. We observe from Fig. 3.4 that, by choosing a small

V initially, the average cost is quite big whereas it can be significantly reduced later by

increasing the value of V (at the expense of increasing the carbon deficit). This indicates

5If there are always sufficient off-site renewable energies or RECs, carbon neutrality constraint
in (3.9) can be safely removed. Thus, the data center can use any amount of electricity that will be
offset by off-site renewable energies or RECs, which makes the problem trivial.

50

1000 2000 3000 4000
800

1000

1200

1400

1600

1800

2000

2200

2400

Hour

A
ve

ra
ge

 C
os

t (
$)

V=30
V= 1, 10, 50, 200

(a) Cost versus V

1000 2000 3000 4000
−10

−5

0

5

10

Hour

C
ar

bo
n

D
ef

ic
it

(M
W

h)

V=30
V= 1, 10, 50, 200

(b) Carbon deficit versus V

Figure 3.4: Impact of time-varying V .

the flexibility of dynamically tuning V to adjust the tradeoff between cost minimization

and the potential violation of carbon neutrality.

In Figs. 3.3 and 3.4, we do not show the optimal offline algorithm with T -step looka-

head information, because it cannot possibly achieve a cost less than the optimal carbon-

unaware algorithm, compared to which CNDC already achieves a close-to-minimum cost.

3.4.3 Comparison with prediction-based method

We now compare the performance of CNDC with the best known existing solution studied

in [64,94,117]. However, since none of these research considered both the nonlinear delay

cost and intermittent off-site renewable energy supplies, we incorporate these factors to

the existing prediction-based method [64, 94, 117] and consider the following heuristic

variation.

• Perfect hourly prediction heuristic (PerfectHP): The data center operator predicts

the next-day workload perfectly and allocates the daily carbon budget in proportion to the

hourly workloads.

In PerfectHP, the daily carbon budget are obtained by dividing the total RECs evenly

across each day and then adding the total next-day off-site renewable energy supplies

51

1000 2000 3000 4000
1000

1500

2000

2500

3000

Hour

A
ve

ra
ge

 C
os

t (
$)

CNDC
PerfectHP

(a) Average hourly cost.

1000 2000 3000 4000
−4

−2

0

2

4

6

Hour

C
ar

bo
n

D
ef

ic
it

(M
W

h)

CNDC
PerfectHP

(b) Average hourly carbon deficit.

Figure 3.5: Comparison with PerfectHP.

perfectly predicted in advance. Day-ahead prediction of on-site renewable energy is not

considered, since it exhibits a high volatility due to its relatively smaller-scale generation.

When operating online, the operator minimizes the cost subject to the allocated hourly

carbon budget; if no feasible solution exists for a particular hour (e.g., workload spikes),

the operator will minimize the cost without considering the hourly carbon budget. We

consider day-ahead prediction in the comparison, because prediction beyond 24 hours

will typically exhibit large errors [68], especially for solar and wind energy supplies that

are commonly used for data centers but heavily depend on weather conditions.

Figs. 3.5(a) and 3.5(b) show the comparison between CNDC and the prediction-based

PerfectHP in terms of the average hourly cost and carbon deficit, respectively.6 The fluc-

tuation of average values is due to the large variation of workloads as well as renewable

energy supplies. Figs. 3.5(a) and 3.5(b) demonstrate that CNDC is more cost-effective

compared to the prediction-based method with a cost saving of more than 20% over six

months. The cost saving mainly comes from the fact that CNDC can focus on cost min-

imization even though the workload spikes and the carbon neutrality is temporarily vi-

6The average at time t in Fig. 3.6 is obtained by summing up all the values from time 0 to time
t and then dividing the sum by t +1.

52

1000 2000 3000 4000
1000

1200

1400

1600

1800

Hour

A
ve

ra
ge

 C
os

t (
$)

CNDC
PriceUn

(a) Average hourly cost.

1000 2000 3000 4000
−2

0

2

4

6

Hour

C
ar

bo
n

D
ef

ic
it

(M
W

h)

CNDC
PriceUn

(b) Average hourly carbon deficit.

Figure 3.6: Comparison with PriceUn.

olated, since the carbon deficit queue will only penalize the data center for overusing

electricity in later time slots while guaranteeing a bounded deviation from the carbon

neutrality. By contrast, without foreseeing the long-term future, short-term prediction-

based PerfectHP may over-allocate the carbon budget at inappropriate time slots and thus

have to set a stringent budget for certain time slots when the workload is high, thereby

significantly increasing the delay cost. Note that if day-ahead prediction is leveraged,

CNDC can naturally further reduce the cost. In addition to cost saving, CNDC also satis-

fies the desired carbon neutrality constraint better, as shown in Fig. 3.5(b). Interestingly,

Fig. 3.5(b) also shows that prediction-based PerfectHP violates the carbon neutrality con-

straint. This is because short-term prediction cannot possibly predict the workload spikes

in the far future and in such events, more electricity power beyond the carbon budget is

required to process the workloads.

3.4.4 Comparison with price unaware methods

We now consider a variant of CNDC but without considering demand-responsive elec-

tricity prices. The new algorithm is referred to as PriceUn described as follows.

53

• Price-unaware CNDC (PriceUn): While using the carbon-deficit queue as in CNDC,

the data center operator assumes a fixed electricity price (given hourly) without explicitly

considering the impact of its energy consumption over the electricity price. At the end of

the hour, the data center is charged at a higher price.

Figs. 3.6(a) and 3.6(b) compare CNDC to PriceUn in terms of the average hourly

cost and carbon deficit, respectively. The improvement is more than 2.5%, highlighting

the importance of incorporating demand-responsive electricity prices in cloud-scale data

center operation. While the percentage of cost saving is not too large, it still translates

into hundreds of thousands of dollars saving each year. In addition, prior work [107]

shows that considering geographical load balancing with demand-responsive electricity

prices may further strengthen the cost reduction, pointing to a potential future research

direction.

3.4.5 Sensitivity Study

This section presents the sensitivity study. We show that CNDC still yields a satisfactory

performance in terms of the operational cost while satisfying carbon neutrality: (1) with

inaccurate price prediction; (2) with workload prediction errors; and (3) when using mea-

sured real server power consumption, workload delay, and toggling energy consumption.

Price prediction error

The hour-ahead information of non-data-center energy demand may contain errors, af-

fecting the price prediction based on our modeled electricity price function. We include

10% noise in the prediction of non-data-center energy demand when forecasting the hour-

ahead demand-responsive electricity price, while everything else is the same as CNDC.

We refer to the new algorithm with imperfect knowledge of non-data-center energy de-

mand as RobPrice. Figs. 3.7(a) and 3.7(b) show the comparison of CNDC and RobPrice

54

1000 2000 3000 4000
1000

1200

1400

1600

1800

Hour

A
ve

ra
ge

 C
os

t (
$)

CNDC
RobPrice

(a) Average hourly cost.

1000 2000 3000 4000
−2

0

2

4

6

Hour

A
ve

ra
ge

 C
ar

bo
n

D
ef

ic
it

(M
W

h)

CNDC
RobPrice

(b) Average hourly carbon deficit.

Figure 3.7: Robustness against price prediction errors.

in terms of average hourly cost and carbon deficit, respectively. We see that, even there

is 10% error in the knowledge of non-data-center energy demand, the average cost only

increases by less than 0.5%, demonstrating the robustness of CNDC against errors in mod-

eling demand-responsive electricity prices. Considering the 2.5% cost saving compared

to PriceUn in the absence of price prediction errors, we note that CNDC still outperforms

PriceUn even though price prediction errors exist.

1000 2000 3000 4000
1000

1200

1400

1600

1800

Hour

A
ve

ra
ge

 C
os

t (
$)

CNDC
RobOP

(a) Average hourly cost.

1000 2000 3000 4000
−2

0

2

4

6

Hour

C
ar

bo
n

D
ef

ic
it

(M
W

h)

CNDC
RobOP

(b) Average hourly carbon deficit.

Figure 3.8: Robustness against workload prediction errors.

55

Workload prediction error

In practice, the hour-ahead workload prediction may not be accurate. To cope with pos-

sible workload spikes, we slightly modify CNDC and introduce a new variant, called

RobOP, in which the data center operator overestimates workloads by 10% more than the

actual values. For both CNDC and RobOP, we choose the carbon-cost parameter V in

such a way that the resulting carbon deficit is zero. It can be seen from Fig. 3.8(a) and

Fig. 3.8(b) that the performance of RobOP is quite close to that of CNDC (i.e., approxi-

mately 0.5% additional cost on average), demonstrating that CNDC can be successfully

applied even though the workloads are conservatively overestimated to accommodate po-

tential traffic spikes. Interestingly, even with workload overestimation, carbon neutrality

can still be achieved by RobOP. The reason is that, even though RobOP tends to turn

on more servers at the beginning, it will actually turn on fewer servers as the data center

operation proceeds, since the carbon deficit queue will pressure the data center operator

to use less electricity (which is still sufficient to process the workloads but causes a larger

delay cost). Thus, even in the presence of workload overestimation, the carbon deficit

queue can still effectively guide the online resource management decisions towards car-

bon neutrality, while achieving a satisfactory operational cost.

3.5 System Experiment

In this section, we present the experiment study of running CNDC on a real system em-

ulating our considered environment. The experimental results further demonstrate the

effectiveness of CNDC in achieving carbon neutrality with satisfactory performance. We

first describe our experiment setup and then present the results.

56

3.5.1 Setup

We use a HP Elitepc with a Core i7-3770 CPU (running at 3.4GHz) and 16GB of RAM

as the test server. XenServer 6.1 with free license is used to create a virtualized environ-

ment with 6 virtual machines (VMs), and each VM is assigned one V-CPU and 512MB

of RAM. Each VM emulates a “cluster of physical servers” in our model. In other words,

the capacity provisioning knob in our experiment is the number of active VMs: the more

VMs, the more power consumption and the better delay performance. Ubuntu Linux

server 12.04 32-bit is installed as the VM operating system. Each VM hosts an Apache

web server (version 7.0.40), serving a single-tier HTTP web services. Workloads are

generated from a separate machine with a Core i7 860@2.8GHz CPU with 4GB of RAM,

running Windows 7. The workload generator sends html requests to the VMs. Each html

request triggers a random CPU-intensive arithmetic operation embedded in a webpage

hosted on the Apache server, where the service time of a single request follows a bounded

Pareto distribution (the same as the one used in [95]). In our experiment, we only con-

sider one type of workloads: we use the same I/O trace of MSR [66] that is used in our

simulation and scale it to have a maximum VM CPU utilization of 70%. We use network-

enabled Watts Up? .Net power meter to measure the power consumption. Several trial

runs are performed with different workload arrival rates to model the delay and power

consumption of the server. Duration of each time slot in our experiment is 1 minute and

the total budgeting period is 192 time slots. For factors that cannot be captured by our

system (e.g., demand-responsive electricity price, renewable energy), we use real-world

trace data as presented in the simulation section.

Note that we subtract the server idle power from the measurements such that the total

power consumption is roughly in proportion to the number of active VMs. Although our

experiment setup differs from our simulation study and it is a rather small-scale system, it

captures the online capacity provisioning problem subject to a long-term constraint with

57

20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slot

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

CNDC (Simulation)
CNDC (Experiment)

(a) Total operational cost versus time

20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slot

N
or

m
al

iz
ed

 T
ot

al
 D

el
ay

CNDC (Simulation)
CNDC (Experiment)

(b) Delay versus time

Figure 3.9: Comparison between simulation and experiment results.

demand-responsive electricity prices, which is our main contribution in this work. More-

over, the result is consistent with our analysis, thereby further increasing our confidence

in the simulation studies modeling a large data center.

3.5.2 Results

In this subsection, we present two sets of results as follows.

Instantaneous value

In Figs. 3.9(a) and 3.9(b), we show the instantaneous total operational cost and delay for

the first 100 time slots. The reported values are normalized with respect to the maximum

value observed in the simulation. We see that the experimental results closely follow the

simulation, validating our theoretical analysis and simulation. We believe that the differ-

ence between the experiment and simulation is mainly due to measurement errors and the

fact that only a finite number of requests are served (which will inevitably introduce errors

in terms of the average delay performance). The comparison between the experiment and

simulation in terms of the electricity cost is similar and thus omitted for brevity.

58

Average value versus V

We normalize the reported values with respect to the carbon-unaware algorithm for the

convenience of presentation. Figs. 3.10(a) and 3.10(b) show the impact of V on the av-

erage cost (i.e., ḡ) and total electricity consumption versus V , respectively. Under car-

bon neutrality, the total allowed (normalized) electricity usage is 0.94 compared to that

of carbon-unaware algorithm. The carbon-unaware algorithm that minimizes the cost

without considering carbon neutrality violates carbon neutrality, whereas CNDC satisfies

carbon neutrality by appropriately choosing V (e.g., V ≤ 30). The result conforms with

our analysis that with a greater V , CNDC is less concerned with the carbon deficit while

caring more about the cost. This can also be seen from Fig. 3.10(c) and Fig. 3.10(d) that

show the average hourly electricity cost and delay cost, respectively: when V increases,

the data center turns on more VMs, leading to a better delay performance while resulting

more carbon footprint as well as electricity cost. In the extreme case in which V goes to

infinity, CNDC reduces to the carbon-unaware algorithm, which clearly achieves a cost

that is a lower bound on the cost that can be possibly achieved by any algorithm satis-

fying the carbon neutrality constraint. It can be seen from Fig. 3.10(a) and Fig. 3.10(b)

that the cost achieved by CNDC is fairly close to the lower bound on the cost achieved

by the carbon-unaware algorithm when V exceeds 30, whereas CNDC satisfies the car-

bon neutrality constraint for V ≤ 30. This indicates that, with V ≈ 30, CNDC achieves a

close-to-minimum cost while still satisfying the carbon neutrality constraint.

Finally, we see from Fig. 3.10 that our experimental result nicely matches the simu-

lation result, validating our simulations and demonstrating the effectiveness of CNDC in

real systems.

59

10 20 30 40 50 60 70
0.95

1

1.05

1.1

1.15

V

N
or

m
al

iz
ed

 A
ve

ra
ge

 C
os

t

CNDC
Carbon−Unaware
CNDC (Experiment)
Carbon−Unaware (Experiment)

(a) Total cost versus V

10 20 30 40 50 60 70
0.85

0.9

0.95

1

1.05

V

N
or

m
al

iz
ed

 E
le

ct
ric

ity
 U

sa
ge

CNDC
Carbon−Unaware
CNDC (Experiment)
Carbon−Unaware (Experiment)

(b) Total electricity usage versus V

10 20 30 40 50 60 70
0.85

0.9

0.95

1

1.05

V

N
or

m
al

iz
ed

 E
le

ct
ric

ity
 C

os
t

CNDC
Carbon−Unaware
CNDC (Experiment)
Carbon−Unaware (Experiment)

(c) Electricity cost versus V

10 20 30 40 50 60 70

1

1.2

1.4

1.6

1.8

V

N
or

m
al

iz
ed

 D
el

ay
 C

os
t

CNDC
Carbon−Unaware
CNDC (Experiment)
Carbon−Unaware (Experiment)

(d) Delay cost versus V

Figure 3.10: Average value versus V .

3.6 Summary

In this part of the dissertation, we proposed a provably-efficient online capacity provision-

ing algorithm, CNDC, to dynamically control the number of active servers for minimizing

the data center operational cost while satisfying carbon neutrality. We explored demand-

responsive electricity price enabled by the emerging smart grid technology and demon-

strated that it can be incorporated in the data center operation to reduce the operational

cost. It was rigorously proved that CNDC achieves a close-to-minimum operational cost

compared to the optimal offline algorithm with future information, while bounding the

60

potential violation of carbon neutrality, in an almost arbitrarily random environment. We

also performed trace-based simulation and experiment studies to complement the anal-

ysis. The results show that CNDC reduces the cost by more than 20% (compared to

state-of-the-art prediction-based algorithm) while resulting in a smaller carbon footprint.

In addition, we showed that incorporating demand-responsive electricity price reduces the

average operational cost by more than 2.5%. Next, we extend this work for a hybrid data

center infrastructure.

61

CHAPTER 4

SUSTAINABILITY IN A HYBRID DATA CENTER INFRASTRUCTURE

While numerous studies have investigated geographic load balancing to minimize car-

bon emissions of data centers, these studies have primarily focused on self-managed data

centers. In this part of the dissertation, we consider a practical hybrid data center infras-

tructure (including both self-managed and colocation data centers) and propose a novel

resource management algorithm based on the alternating direction method of multipliers,

called CAGE (Carbon and Cost Aware GEographical Job Scheduling) to reduce carbon

footprints.

4.1 Background

Reducing an organization’s IT carbon footprint heavily depends on its underlying data

center architecture. As illustrated in Fig. 4.1, large organizations often use two major

types of data centers for housing their servers: self-managed and multi-tenant colocation

data centers [12, 55]. Self-managed data centers are owned and operated by the organi-

zation. Typically, it requires a huge initial construction cost and dedicated workforce to

manage the facility. Meanwhile, to achieve global presence for improving latency per-

formance, these organizations need to deploy servers in many locations where it is not

feasible or economical to build and manage an entire data center facility on their own.

In such scenarios, colocation data centers play a very crucial role. In a colocation data

center, multiple organizations (a.k.a. tenants) rent the space, power and cooling from a

third party (colocation operator) who owns/manages the data center facility [55]. Tenants

house their servers in designated areas and have full control over their own servers. Un-

like self-managed data centers, tenants do not completely control the facility-level power

consumption, which depends on the tenants’ server power usage as well as the colocation

62

Organization

Servers
Power

Management

Self-Managed Data Center

C
o

lo
c

a
ti

o
n

 O
p

e
ra

to
r

Servers

Energy Management

Colocation Data Center

Power

Grid
On-site

Renewables
Power

Grid

On-site

Renewables

G
eo

g
ra

p
h

ic
al

 S
e
p

ar
at

io
n

Other Tenant’s

Server

Figure 4.1: Hybrid data center infrastructure.

operator’s facility management (e.g., cooling system, renewable generation). A recent

study shows that the global colocation market is rapidly expanding, projected to grow to

US $43 billion by 2018 [81]. The combined electricity consumption of colocation data

centers is four times higher than that of hyper-scale self-managed data centers altogether

(e.g., Apple data center in North Carolina) [88]. Large organizations, like Akamai and

even Apple and Amazon, leverage colocation solutions for many of their geographic lo-

cations [12, 55].

Although hybrid data center infrastructure is very common in practice and pro-

sustainability tenants (e.g., Apple) have already committed to making their servers greener

in partnering colocation data centers [12], the existing studies on reducing carbon foot-

print have primarily been focused on self-managed data centers. For example, numerous

studies have leveraged both temporal and/or spatial workload scheduling to minimize the

energy consumption, electricity cost, and/or carbon footprint in self-managed data cen-

ters [36,65,68,90,92,93]. While these studies are promising, they neglect the key differ-

ence between self-managed data centers and colocation data centers: in a self-managed

data center, all the renewables belong to the organization, whereas in a colocation, the

63

limited renewables are shared among all the tenants (in proportion to their individual

power usage).

Sharing renewable energy. In recent years, colocation operators have also been ag-

gressively looking for ways to reduce their carbon footprint by installing on-site renew-

able energy facilities [12, 119]. In colocations, however, it is not possible to distinguish

the source of energy (whether produced from renewables or directly supplied by the util-

ity) because they are distributed by a common power infrastructure. Thus, the renewable

energy is considered to be shared among the colocation tenants in proportion to their en-

ergy consumption [43,56]. For example, at a certain time in a colocation with 1MW total

IT power consumption and 500KW renewable generation, a tenant that consumes 200KW

(20% of the total IT power by all tenants) can only claim 100KW of the renewable en-

ergy, whereas the remaining 400KW renewable energy is attributed to the other tenants in

that facility. Hence, an organization that does geographical load balancing (GLB) among

different geo-distributed data centers for minimizing its carbon footprint should not only

consider its self-managed data centers (where all the renewables belong to itself), but also

take into account the sharing of renewables in its colocations where it only claims part of

the available renewables.

While carbon footprint is an important metric for sustainability, GLB decisions also

need to consider electricity cost efficiencies at different locations. Prior studies [36, 68]

have shown that there is little correlation between electricity cost and carbon efficiency,

resulting in an inherent trade-off between electricity cost and carbon reduction. The trade-

off is particularly prominent in the hybrid data center infrastructure: in contrast to self-

managed data centers where the electricity consumption from the utility is offset by the

on-site renewable, tenants are typically billed based on their actual electricity consump-

tion regardless of the renewable generation in a colocation [28, 55]. Furthermore, the

colocation operator may elevate the utility electricity price to account for the cooling

64

and power infrastructure cost [55], and hence, there is a greater cost impact for increased

power consumption in colocation than in the self-managed data center. On the other hand,

as described above, to seize a larger portion of the renewable generation in a colocation,

the organization needs to increase its servers’ power consumption. Therefore, GLB de-

cisions need to incorporate both electricity price for cost saving and carbon footprint for

sustainability.

Distributing workloads over a hybrid infrastructure for carbon footprint minimization

is challenging, as large organizations (e.g., Google and Microsoft) have hundreds of dif-

ferent interactive services and tens of geographically distributed data centers to process

those workloads. A centralized solution suffers from severe performance issues in such

scenario. In this part of the dissertation, we propose a distributed resource management

algorithm CAGE, based on the alternating direction method of multipliers (ADMM), that

optimizes GLB decision for a hybrid data center to minimize carbon emission, electric-

ity cost, and revenue loss while meeting performance requirements. CAGE leverages

the geographical variation of carbon usage effectiveness (CUE) of electricity production,

renewable energy, electricity cost, and cooling efficiency for each data center location.

Next, we perform both trace-based simulations and scaled-down prototype experiments

to validate CAGE. Our study shows that CAGE can reduce carbon emission by 6.35%,

9.4%, and 37% compared to the algorithm that ignores colocation data centers, minimizes

cost, and maximizes performance, respectively.

4.2 Model and Problem Formulation

We consider a discrete time model where the organization updates its resource manage-

ment decisions at the beginning of each time slot.1 The duration of each time slot may

1We interchangeably use power and energy, since energy is the product of power and the
duration of each time slot.

65

Data center #1

Data center #2

Data center #j

L
o

ad
 B

al
an

ce
r

#
1

…

L
B

 #
2

L
B

 #
 i

Internet

Internet

Job Requests (type 1) Job Requests (type 2) Job Requests (type i)

λ1

D1
Dj

λiλ2

D2

α11 αij

α1j αi1

L
B

 s
el

ec
ts

d
at

a
ce

n
te

rs
D

at
a

ce
n
te

r

se
le

ct
s

se
rv

er
s

Figure 4.2: Geographically distributed load balancer and data center model. Jobs first
arrive at a load balancer, and then distributed to the data centers.

vary from a few minutes to one hour depending on the decision time granularity. We omit

the time index in our model for notational convenience.

4.2.1 Data center and propagation delay

We consider an organization (e.g., eBay and Facebook) that uses a hybrid data center

infrastructure and hosts its servers in N data centers at geographically distributed loca-

tions. The organization has a set of front-end load balancers or gateways L where the

job requests first arrive and then routed to the data centers for processing. For nota-

tional simplicity, we assume that each load balancer i ∈L routes a specific job type Ji.

However, a load balancer routing multiple types of job can be viewed as multiple vir-

tual load balancers each routing a single type of jobs. The data centers are indexed by

j ∈ {1,2, · · · ,N}, where D j indicates the jth data center. We denote by Dsel f and Dcolo

the set of self-managed and colocation data centers, respectively. In the special case, the

66

organization uses only self-managed data centers (as studied by prior studies) or coloca-

tion data centers. As standard in prior research [68, 92, 93], we focus on delay-sensitive

workloads, while delay-tolerant batch workloads are orthogonal to our decisions.

We denote by λi the workload (number of job requests) arrival at the ith load balancer

per unit time. The scheduling algorithm needs to decide the amount of workload to be

routed from load balancer i to data center D j, denoted by αi j. Intuitively, the scheduling

decision must satisfy the workload conservation constraint expressed as, λi = ∑
N
j=1 αi j.

Each job from load balancer i has a known average resource demand of dik, k ∈R, where

R is the set of all computing resources (e.g., CPU, memory and I/O) [68, 121]. For mod-

eling simplicity, we assume that each data center has homogeneous servers. Nonetheless,

a data center which has heterogeneous servers can be added to our model by considering

it as multiple virtual data centers each having homogeneous servers. Each server at data

center D j has a limited set of resources S j = {s jk} for workload processing, where k ∈R.

The resource constraint for each data center can be expressed as follows:

∑
i∈L

αi j ·dik ≤ η ·M j · s jk ∀ j,∀k ∈R, (4.1)

where M j is the maximum number of servers available in data center D j, and η ≤ 1 is the

maximum utilization factor. As service response delay increases with higher utilization of

computing resources [68,92,93], the utilization factor η ensures a safety resource margin

to compensate for workload and resource demand estimation error.

Latency is arguably the most important performance metric for an interactive cloud

service application [36, 68, 121]. A small increase in service latency may cause substan-

tial revenue loss/cost for the organization due to user dissatisfactions. We incorporate

revenue cost in our model by mainly focusing on the network propagation latency Li j be-

tween front-end load balancer i and data centers D j while the other latency factors such as

queuing and processing delays are essentially captured by Eqn. (4.1) [70,121]. Following

67

the existing literature [70, 121], we model the revenue cost (loss due to poor latency) at

each front-end load balancer i as an increasing and convex utility function Ui, expressed

as follows:

Ui = ζ ·λi ·

(
N

∑
j=1

αi j ·Li j

λi

)2

=
N

∑
j=1

ζ ·
(
αi j ·Li j

)2

λi
, (4.2)

where ∑
N
j=1

αi j·Li j
λi

is the mean propagation latency, and ζ is the factor that converts latency

into monetary terms.

The background data required to process a specific job type Ji may not be available

at every data center. Thus, scheduling a specific type of jobs to a data center where data is

not available, incurs additional data distribution cost due to the transfer of data from other

(nearest) data center. Considering prior studies [37, 121], we model the data distribution

cost for job type Ji at data center D j as follows:

b(αi j) =

0, if background data required to process job

type Ji is in data center D j,

ζ ·(αi j·Fi j)
2

λi
+Hi ·Cband, otherwise,

(4.3)

where Fi j is the network propagation latency to bring the data to data center D j from

nearest place of availability, Hi is the average data transfer size required for job type Ji,

and Cband is the bandwidth cost for unit data transfer.

4.2.2 Power consumption and carbon footprints

The major source of data center electricity cost and carbon emission is the energy con-

sumption by the data center while in operation. We consider that the organization turns

off idle servers at each location to reduce energy consumption while active (turned on)

servers process incoming workloads. Following prior studies, we model the server power

consumption p j at data center D j as an affine function of the average utilization of the

68

computing resources [66,70,93]. The average utilization of a resource type k ∈R in data

center D j can be expressed as follows:

U jk(α∗ j) =
1

m js jk
∑

i∈L
αi jdik,

where α∗ j = ∑i∈L αi j is the number of requests coming to data center D j, and m j is the

number of active servers in D j. Thus, we have

p j(α∗ j) = m j · (PI +PD · ∑
k∈R

wkU jk(α∗ j)),

= m jPI +PD · ∑
k∈R

wk

s jk
∑

i∈L
αi jdik,

(4.4)

where PI is the server idle power consumption, PD is dynamic power consumption, and

wk is the weight of resource k on the power consumption of a server. Using Eqn.

(4.1), the minimum number of servers m j required for data center D j can be computed

as m j = maxk∈R

(
∑i∈L αi j·dik

η ·s jk

)
. Our power model is consistent with existing stud-

ies [66, 74, 96], and only requires prior knowledge on per task resource demands, not

per task energy consumption. Furthermore, multiplying p j(α∗ j) with PUE (power us-

age effectiveness) factor γ j yields the data center’s total power consumption that includes

power consumptions due to cooling, power distribution loss, etc. [74].

To become sustainable, there is a growing trend of using on-site renewable energy

(e.g., solar and wind) in both colocation and self-managed data centers. Typically, a data

center can be operated partially with such on-site green energy, while consuming the

rest of the power from grid. We denote by r j the amount of on-site renewable energy

available at data center D j. In self-managed data centers, the organization can claim all of

the renewable energy to offset its carbon footprint. However, in case of a colocation data

center, the renewable energy is proportionally distributed among the tenants according

to their total power consumption. Thus, in a colocation data center, available renewable

69

energy share of the organization can be expressed as follows:

r j ·
p j(α∗ j)

p j(α∗ j)+ p j,other
, ∀D j ∈Dcolo (4.5)

where p j,other is the aggregated power consumption of other tenants at colocation data

center D j. Thus, data center D j’s total amount of power consumption from grid is:

e j(α∗ j) =

γ j · p j(α∗ j)− r j, if D j ∈Dsel f

γ j · p j(α∗ j)− r j ·
p j(α∗ j)

p j(α∗ j)+p j,other
, if D j ∈Dcolo.

(4.6)

Note that our study focuses on only one organization, while considering the other tenants’

power usage as an externally-determined factor independent of our focused tenant’s deci-

sion. This is reasonable since there are multiple tenants in a colocation and one tenant’s

decision will not significantly alter the aggregate power of the other tenants. We denote

by φ j the amount of carbon emitted for each unit of electricity generation at jth data center

location. Note that, φ j can be obtained by averaging the carbon emission of electricity

fuel sources (e.g., oil, and gas) [36]. Thus, the organization’s total carbon footprint is
N
∑
j=1

φ j · e j(α∗ j).2

4.2.3 Electricity Cost

In self-managed data centers, the organization is responsible for setup and maintenance

of the facility operation (e.g., cooling, networking, and servers). The organization pays

the electricity bill incurred due to the energy consumption from the grid. In colocation

data centers, on the other hand, the organization acts as a tenant and only manages its

servers while the colocation operator maintains cooling, power distribution, etc. There

are two widely adopted pricing models for tenants in a colocation data center: power-

based (where tenants are charged based on power subscription regardless of actual energy
2Carbon footprint of on-site (solar/wind) renewables is typically negligible [36, 68] and hence

omitted from our study, but it can be added to our model without affecting our formulation and
solution approach.

70

usage) and energy-based [28,55]. We consider energy-based pricing model where a tenant

is charged based on its total energy usage (including renewable energy). Total electricity

cost at data center D j can be expressed as:

c j(α∗ j) =

u j ·
[
γ j · p j(α∗ j)− r j

]+ if D j ∈Dsel f

u j · γ j · p j(α∗ j) if D j ∈Dcolo,

(4.7)

where u j is the unit electricity price at the data center’s location, and [x]+ = max(0,x).

Note that, u j = 0 in a colocation means power-based pricing, where tenants pay upfront

for their power reservation, and not for their energy usage.

4.2.4 Problem formulation

As revenue and electricity cost are always a major concern for data center operation, it is

not practical to aim exclusively at carbon footprint minimization while being unaware of

the cost. Hence, we incorporate revenue cost, carbon footprint, and electricity cost into

our problem formulation using a parameterized objective function as follows:

P21= min
αi j

∑
i∈L

N

∑
j=1

(
ζ ·
(
αi j ·Li j

)2

λi
+b(αi j)

)

+
N

∑
j=1

(
σ ·φ j · e j(α∗ j)+ c j(α∗ j)

)
, (4.8)

where σ ≥ 0 is set by the organization that determines the relative weight of carbon foot-

print reduction to cost minimization. A high σ indicates that reducing carbon footprint

has more importance than saving cost (electricity and revenue) and vice versa. For very

large σ , the optimization objective becomes cost oblivious and only minimizes carbon

71

footprint. P21 is subject to the following constraints,

λi =
N

∑
j=1

αi j, ∀i ∈L , (4.9)

αi j ≥ 0, ∀i ∈L ,∀ j, (4.10)

∑
i∈L

αi j ·dik ≤ η ·M j · s jk, ∀ j,∀k ∈R, (4.11)

where (4.9) represents the workload conservation constraint for each load balancer, (4.10)

indicates that the amount of workload scheduled to a data center has to be non-negative,

and (4.11) ensures that a data center has adequate resources to process scheduled work-

loads.

4.3 Algorithm Design and Analysis

In this section, we first discuss the practical challenges of solving the optimization prob-

lem P21 and present background information on the ADMM optimization technique.

Then, we show how ADMM can be leveraged to provide an efficient and distributed

solution for P21.

4.3.1 Solution to P21

In practice, large organizations (e.g., Google and Microsoft) have hundreds of different

interactive services and tens of geographically distributed data centers to process those

workloads. Thus, following our discussion in Section 4.2.1, the number of decision vari-

ables (αi j) for a large organization is in the order of thousands, even more if heteroge-

neous servers are considered. A centralized solution may suffer from performance issues

in such scenario. Dual decomposition can be used to convert P21 into many indepen-

dent sub-problems for a distributed solution. However, for large-scale problems, such

approach often suffers from slow convergence and performance oscillation issues [70].

72

To avoid such drawbacks, we are motivated to design a distributed algorithm based on the

alternating direction method of multipliers (ADMM) which we discuss next.

ADMM has received increasing interest recently in solving large-scale distributed

convex optimization problems in the areas of machine learning and statistics [18,70,111,

121]. It combines the decomposability of dual ascent with the fast convergence of method

of multipliers [18]. ADMM is best suited for the problems whose objective function and

constraints can be separated into two individual optimization sub-problems with non-

overlapping variables. Specifically, given a problem in the form:

min f (x)+g(z), (4.12)

s.t. Ax+Bz =C, (4.13)

x ∈C1,z ∈C2, (4.14)

with variable x ∈ Rh and z ∈ Rv, where A ∈ Rl×h, B ∈ Rl×v, C ∈ Rl , and f : Rh→ R,

g : Rv→ R are convex functions. Furthermore, C1 and C2 are nonempty polyhedral sets.

Thus, the objective function is separable over variables x and z, which are coupled through

equality constraint (4.13).

Using the method of multipliers [18], the augmented Lagrangian of problem (4.12)

can be formed by introducing an additional L2 norm as follows:

Lρ(x,z,y) = f (x) + g(z) + yT (Ax + Bz − C) + (ρ/2)‖Ax + Bz − C‖2
2, (4.15)

where ρ > 0 is the penalty parameter and y is the Lagrange multiplier for the equality

constraint (4.13). Thus, the augmented Lagrangian can be viewed as the unaugmented

73

Lagrangian with a penalty term ρ , associated with the problem:

min f (x)+g(z)+(ρ/2)‖Ax+Bz−C‖2
2, (4.16)

s.t. (4.13), (4.14).

This is clearly equivalent to the original problem (4.12), and hence minimizing Lρ(x,z,y)

is also equivalent to (4.12). The ADMM algorithm solves the dual problem by updating

x,z and y at iteration t as follows:

xt = argmin
x∈C1

Lρ(x,zt−1,yt−1), (4.17)

zt = argmin
z∈C2

Lρ(xt ,z,yt−1), (4.18)

yt = yt−1 +ρ(Axt +Bzt−C). (4.19)

where each optimization step to compute x and z can be performed in a distributed fashion.

The penalty parameter ρ acts as the step size for updating the Lagrange multiplier while

the iterations continue until convergence.

4.3.2 Applying ADMM to solve P21

ADMM cannot be applied directly to solve P21 because its constraints are not separable

for each set of variables. Specifically, the load balancer workload conservation constraint

(4.9) couples the decision variable α across data centers while the data center capacity

constraint (4.11) couples α across load balancers. To address this challenge, we reformu-

late P21 by introducing a set of auxiliary variable β = α as follows:

P22= min
αi j,βi j

∑
i∈L

N

∑
j=1

(
ζ ·
(
αi j ·Li j

)2

λi
+b(αi j)

)

+
N

∑
j=1

(
σ ·φ j · e j(β∗ j)+ c j(β∗ j)

)
, (4.20)

74

s.t. λi =
N

∑
j=1

αi j, ∀i ∈L (4.21)

αi j = βi j ≥ 0, ∀i ∈L ,∀ j, (4.22)

∑
i∈L

βi j ·dik ≤ η ·M j · s jk, ∀ j,∀k ∈R (4.23)

Clearly, P22 is equivalent to P21 while the formulation of P22 conforms to the ADMM

structure described in (4.12). Specifically, considering

f (αi j) = ∑i∈L ∑
N
j=1

(
ζ ·(αi j·Li j)

2

λi
+b(αi j)

)
, and g(β∗ j) =

N
∑
j=1

(
σ ·φ j · e j(β∗ j)+ c j(β∗ j)

)
,

the objective function of P22 is now separable over α and β . α determines the revenue

cost due to network propagation delay between the load balancers and data centers, and

β controls the carbon emission and electricity cost of the data centers. The augmented

Lagrangian of P22 can be formed as follows:

Lρ(α,β ,y) = ∑
i∈L

N

∑
j=1

(
ζ ·
(
αi j ·Li j

)2

λi
+b(αi j)

)
+

N

∑
j=1

(
σ ·φ j · e j(β∗ j)+ c j(β∗ j)

)
+ ∑

i∈L

N

∑
j=1

(
yi j · (αi j−βi j)+

ρ

2
(αi j−βi j)

2
)
, (4.24)

α-minimization: According to (4.17), the α minimization step at iteration t requires

solving the following problem for each load balancer i ∈L , :

min
αi j

N

∑
j=1

(
ζ ·
(
αi j ·Li j

)2

λi
+b(αi j)

)
+

N

∑
j=1

αi j

(
yt−1

i j +
ρ

2
(αi j−2β

t−1
i j)

)
, (4.25)

s.t. λi =
N

∑
j=1

αi j,αi j ≥ 0, ∀i.

The objective function of (4.25) is derived from (4.24) after discarding the irrelevant

terms. Thus, the α minimization step is decomposable over |L | sub-problems where

each load balancer can solve their own sub-problem independently using standard convex

optimization techniques.

75

Algorithm 2: CAGE
Input: at the beginning of each decision period, take input carbon efficiency φi,

unit electricity price ui, renewable generation ri for each data center
location. Input workload λi for each load balancer and other tenants’ power
pi,other for colocation data centers.

Result: workload scheduling decision αi, j, ∀i ∈L ,∀ j.

1 Initialize α0
i j = 0,β 0

i j = 0,y0
i j = 0, ∀i ∈L ,∀ j.

2 α-minimization: At tth iteration, each load balancer solves the sub-problem (4.25)
to obtain α t

i j, ∀i ∈L ,∀ j and sends it to all the data centers.
3 β -minimization: Each data center solves the sub-problem (4.26) to obtain

β t
i j, ∀i ∈L ,∀ j and sends it to all the load balancers.

4 Following (4.19), dual variable y is updated as follows:
yt

i j = yt−1
i j +ρ(α t

i j−β t
i j), ∀i ∈L ,∀ j.

Updated values are propagated to all load balancers and data centers.
5 Return αi j, ∀i ∈L ,∀ j if convergence criteria is satisfied, else begin next iteration

by returning to step 2.

β -minimization: After the α minimization step, each load balancer propagates cor-

responding α values to the data centers. At iteration t, each data center performs β

minimization step by solving the following problem:

min
βi j

(
σ ·φ j · e j(β∗ j)+ c j(β∗ j)

)
+ ∑

i∈L
βi j

(
ρ

2
(βi j−2α

t
i j)− yt−1

i j

)
, (4.26)

s.t. ∑
i∈L

βi j ·dik ≤ η ·M j · s jk, ∀k ∈R,

βi j ≥ 0, ∀i ∈L .

The β minimization step is also decomposable over N sub-problems where each data

center can solve it independently. Finally, the dual variable y is updated according to

(4.19). Key steps and iterations of our proposed distributed solution are summarized in

Algorithm 2.

76

4.3.3 Performance of CAGE

Compared to the original problem P21 presented in (4.8), the α and β minimization steps

of CAGE are of a much smaller scale, with only N and |L | decision variables per sub-

problem, respectively. CAGE enables each load balancer and data center to solve their

own sub-problems independently, providing an efficient and fast distributed solution for

carbon awareness in hybrid data center infrastructure. The computational time for a

decision in our simulation study (consisting of 8 data centers and thousands of servers) is

less than three seconds. We expect similar computational time for even large scale settings

since each sub-problem can be solved independently. The optimality and convergence of

CAGE can be guaranteed under very mild practical assumptions [18].

Limitations of CAGE. One key aspect of the solution provided in CAGE is that

while determining the load distribution and resource allocation decisions, the organiza-

tion needs to know the renewable generation of all the data center locations as well as

the power consumption of other tenants pother at the colocation data centers. While re-

newable generation at the self-managed data center can be easily measured/predicted for

the next decision period [55], the organization does not have a direct approach to acquir-

ing information regarding renewable generation and/or pother in colocations. However, in

today’s colocations, the operator can easily communicate the renewable energy informa-

tion to tenants. Furthermore, the colocation operator can also inform the organization of

the total colocation-level power usage, from which the organization can obtain pother by

subtracting its own power usage. This approach eliminates the privacy concerns for other

tenants who may not want to share their individual power consumption.

77

C
o

lo
c
a
ti

o
n

 O
p

e
ra

to
r

Energy Distribution

C
o
lo

c
a
ti

o
n

 D
a
ta

 C
en

te
r

G
eo

g
ra

p
h

ic
al

 S
ep

ar
a
ti

o
n

O
th

e
r

T
e
n
a
n
t’
s

S
e

rv
e
r

Resource

Optimizing

Algorithm

Workload

Performance requirements

Server

Control

Module

S
el

f-
M

a
n

a
g
e
d
 D

a
ta

 C
en

te
r

Cooling

Control

Module

W
o
rk

lo
a

d
s

Power Grid Renewables

Monitor

Colocation Operator

Interface

Load Balancers

Shared renewable

energy information

Power Grid Renewables

Server

Control

Module

M
o
n
it
o
r

Application performance

monitoring data

W
o
rk

lo
a
d
s

Decision Decision

Power consumption, cooling,

renewable energy and application

performance monitoring data

Cooling

Control

Module

Outside temperature and

cooling efficiency data

Electricity price

Electricity load and fuel mix

data

Figure 4.3: CAGE solution overview. This block diagram shows the input, output and the
flow of decision for CAGE.

4.4 Simulation Study

In this section, we present our simulation study to evaluate the performance of CAGE. We

first describe trace data and simulation settings. Finally, we present benchmark algorithms

and compare their performance with CAGE.

78

0.0

0.2

0.4

0.6

0 12 24 36 48

N
o

rm
.

W
o

rk
lo

a
d

Hour

Wikipedia

Gmail

Terremark

(a) Normalized workloads.

0

4

8

12

16

20

0 12 24 36 48

E
le

ct
.

P
ri

ce
 (

ce
n

t/
k

W
h

)

Hour

VA IL

TX CA

(b) Electricity price.

0.0

0.2

0.4

0.6

0.8

1.0

0 12 24 36 48

N
o

rm
.

R
e

n
e

w
.

E
n

e
rg

y

Hour

VA IL TX

(c) Normalized renewables.

0.0

0.4

0.8

1.2

1.6

0 12 24 36 48

Te
n

a
n

ts
 p

o
w

.
(M

W
h

)

Hour

NY SC

FL OR

(d) Tenants’ pw. consump.

Figure 4.4: Trace data used in simulation and system experiment.

IL

FLTX

CA

OR

NY

SC

VA

- Colocation Data Center

- Self-managed Data

Center

- Load Balancer

Figure 4.5: Location of the data centers and load balancers.

79

4.4.1 Data and settings

Data centers. We consider 3 load balancers, 3 self-managed and 5 colocation data cen-

ters, which are a reasonable fleet of data centers (even for Apple and Facebook) [12].

The locations of the load balancers and data centers are shown in Fig. 4.5. The PUE

factor for each data center is randomly set between 1.25 and 1.35 [55, 74]. We consider

a network latency of 1 milliseconds per 50 miles distance between a load balancer and

a data center [13]. We consider |R| = 3 computing resources for our simulation: CPU,

Memory, and I/O. Following prior studies [15], we set their respective weight (wk) for

power consumption as 0.65,0.15, and 0.2. For each type of resources, the capacity of a

server is randomly set between 100 to 150. Note that, all the servers in a specific data

center are homogeneous. We have 3 types of jobs where the resource demands for each

job type is randomly set between 1 to 5 on each resource dimension. We consider that

the data required to process a specific type of jobs is available at randomly selected 4

data centers. The data transfer size is 512KB, 1MB, and 2MB for these job types. We

use Wikipedia, Gmail and Verizon Terremark load trace data from [55] as the workload

traces for aforementioned 3 job types. We normalize the workload traces with respect to

the total capacity of the organization and show in Fig. 4.4(a). As other tenants’ energy

consumption in the colocation data centers (CA, NY, SC, FL and OR), we use server uti-

lization traces from Microsoft’s services Hotmail and MSN, Microsoft Research (MSR),

YouTube and FIU university workload traces. Microsoft and Youtube traces are obtained

from [55], and the university trace is collected from its web servers. Energy consump-

tion by other tenants at various colocation facility is shown in Fig. 4.4(d). We consider

each server has an idle and dynamic server power of 150 Watt and 100 Watt, respectively.

The organization’s peak IT power rating for self-managed and colocation data centers are

1000kW and 500kW, respectively.

80

Renewable energy and carbon footprints. On-site renewable energy generation is

usually proportional to the amount of ambient sunlight available. We obtain the solar

radiation at each data center location from [86] for June 2010 and scale the values such

that the peak solar energy is 80% of the peak IT power consumption. We show the on-site

solar energy generation for some data center locations in Fig. 4.4(c). We skip showing

similar trace data figures for others to improve visualization. The carbon footprints of

the grid electricity depend on the fuel mix (usage of different fuels) of the electricity

generation, often varies over time [36]. We obtain the hourly load and fuel mix data for

all the data center locations and derive the aggregated CUE for unit electricity generation.

Since more carbon-intensive fuels are used during peak hours, we derive hourly variation

of CUE from hourly electricity load data using the method described in [36].

Other settings. Electricity prices for the data center locations are taken from respec-

tive utility providers. Fig. 4.4(b) shows the unit electricity prices at self-managed data

center locations. For colocation data centers, we consider the operator sets electricity

price after multiplying it with the PUE and adding 20% to account for infrastructure cost.

After an empirical evaluation, the latency-cost parameter ζ and the carbon-cost parame-

ter σ are set to 7.5× 10−5 and 0.02, respectively. These values approximately translate

to 50% weight on the carbon emission, 25% weight on latency cost, and 25% weight on

electricity cost in optimization decision. The maximum utilization factor η is set to 0.7.

The simulation period is 1 week and the duration of each time slot is 15 minutes.

4.4.2 Benchmarks comparison

We first introduce the benchmark algorithms as follow:

• CoReUn (Colocation Renewable Unaware): variant of CAGE that does not con-

sider the availability of renewable energy at colocation locations while making workload

scheduling decisions. However, the renewable energy is considered in its carbon footprint

81

0

75

150

225

300

0 12 24 36 48

A
v

g
.

D
e

la
y

 (
m

s)

Time Slot

CAGE PerfMax

(a) Network and processing delays.

20

30

40

50

60

Carbon Cost Energy

R
e

d
u

ct
io

n
 (

%
) CAGE CoReUn CostMin

(b) Reduction compared to PerfMax.

0

20

40

60

80

100

VA IL TX CA NY SC FL OR

A
v

g
.

U
ti

li
za

ti
o

n
 (

%
)

CAGE CoReUn CostMin PerfMax

(c) Normalized weekly data center utilization at different locations.

Figure 4.6: Comparison among benchmarks. CAGE achieves 9.4% less carbon emission
while incurring 4.1% more in electricity cost compared to CostMin.

after the decision is made. This benchmark represents the current resource management

scenarios in sustainable hybrid data center infrastructure.

• CostMin (Cost Minimization): minimizes the electricity and revenue cost while

ignoring the organization’s carbon footprint. This benchmark represents a large number

of prior studies on self-managed data centers [90, 92, 93, 116, 120].

• PerfMax (Performance Maximization): maximizes the delay performance by keep-

ing all the servers on at every data center location. This is the current practice in most data

centers and serves as a benchmark to show how CAGE and other benchmark algorithms

are performing in terms of carbon emission reduction compared to an organization whose

highest priority goes to the performance [55, 68].

We now compare the performance of CAGE with the benchmarks and show the re-

sults in Fig. 4.6. The instantaneous per time slot average delay of CAGE and PerfMax

are shown in Fig. 4.6(a). The average delay consists of network propagation latency, job

82

queuing and job execution delay, as discussed in Section 4.2.1. For clarity, we only show

results for the first 48 time slots. As shown in Fig. 4.6(a), the weekly average delay of

CAGE is 21% higher than that of PerfMax. CAGE uses as few servers as possible to

reduce carbon emission, and hence, the job queuing and processing delays are mostly de-

termined by the maximum utilization factor η . Only network propagation latency varies

based on the job scheduling decision. A similar strategy is also used by CostMin and

CoReUn to reduce electricity cost and/or carbon footprint. Having almost similar delay

performance, these algorithms are omitted from Fig. 4.6(a). On the other hand, PerfMax

keeps all the servers on and incurs less delay than any other algorithms at the expense of

carbon footprint and electricity cost. Thus, its average delay varies based on the workload

amount. The weekly carbon emission, electricity cost and energy consumption of CAGE

is 37%, 43%, and 27% lower than that of PerfMax, respectively.

We now compare the electricity cost and carbon emission of CAGE with CoReUn

and show the results in 4.6(b). CAGE achieves 6.35% less carbon emission compared

to CoReUn while incurring 2.8% more in electricity cost. The carbon footprint reduc-

tion comes from the fact that CAGE considers renewable energy availability in colo-

cation locations before making the workload scheduling decision and allocates slightly

more workload to colocations (except CA where electricity price is higher) compared

to CoReUn. Normalized weekly average utilization of data centers are shown in Fig.

4.6(c). Our separate study with more colocation data centers shows that the improvement

in carbon emission becomes significantly higher if the organization has more servers in

the colocations than self-managed locations, which is becoming a growing trend in the

industry [22].

Finally, we compare the electricity cost and carbon footprints of CAGE with CostMin.

As shown in Fig. 4.6(c), CostMin dispatches more workloads to the data centers (e.g., VA

and IL) where the average electricity price is cheaper. While minimizing the electricity

83

0.20

0.22

0.24

0.26

0.28

0 0.02 0.04 0.06 0.08 0.1C
a

rb
o

n
 E

m
is

s.
 (

To
n

)

σ

CAGE CostMin

(a) Total carbon Emission.

35

40

45

50

55

0 0.02 0.04 0.06 0.08 0.1

C
o

st
 (

$
K

)

σ

CAGE CostMin

(b) Total electricity and revenue cost.

0

20

40

60

80

100

VA IL TX CA NY SC FL ORA
v

g
.

U
ti

li
za

ti
o

n
 (

%
)

σ = 1e10 σ = 0.02 σ = 0.0045

(c) Normalized weekly data center utilization.

Figure 4.7: Impact of carbon-cost parameter σ . For decreasing σ , workloads are shifted
from low-carbon (e.g., CA, OR) to low-cost (e.g., VA, IL) data centers.

cost, CostMin ignores the carbon footprint of a data center and assigns more workload to

a data center that has lower electricity price and possibly higher CUE factor (e.g., TX).

Thus, CostMin becomes a less sustainable solution by focusing only on the electricity

cost. The total electricity cost of CostMin is 4.1% less compared to that of CAGE while

the carbon emission is 9.4% higher. These results show the benefits of CAGE in terms

of carbon emission reduction and highlight the importance of renewable aware workload

scheduling in a hybrid data center infrastructure.

4.4.3 Impact of carbon-cost parameter σ

We now discuss how the performance of CAGE changes based on the carbon-cost param-

eter σ . As shown in Fig. 4.7(a) and Fig. 4.7(b), when σ is large, CAGE reduces to a

carbon usage minimizing algorithm, ignoring the electricity and revenue cost completely.

84

0

20

40

60

80

100

0 500 2000A
v

g
.

U
ti

li
za

ti
o

n
 (

%
)

Peak Renewable at Each Location (kW)

VA IL TX CA NY SC FL OR

Figure 4.8: Impact of peak renewable energy on CAGE’s weekly workload processing.
Workload is shifted from colocation (e.g., FL, OR) to self-managed (e.g., TX) data center
with increasing renewable.

When σ approaches infinity, CAGE has minimum carbon footprint and incurs maximum

electricity cost. Fig. 4.7(c) shows that the utilization of the data centers at CA, SC and OR

are very high for σ = 1×1010. This is mainly because the electricity generation of CA,

SC and OR are greener than that of other locations. Hence, CAGE dispatches maximum

amount of workload to those data centers to reduce carbon emission. As σ continues to

decrease, CAGE becomes cost aware and puts less weight on the carbon emission. When

σ = 0, CAGE reduces to CostMin algorithm, minimizing the electricity and revenue cost

while ignoring carbon footprints. Specifically, CAGE dispatches more workloads to the

data centers (e.g., VA and IL) locations where the average electricity price is lower. Thus,

using carbon-cost parameter σ , the organization can balance between carbon footprint

and cost to match its policy or desired target.

4.4.4 Renewable energy

In Fig. 4.8 we show the impact of peak renewable energy in the weekly average load

distribution among different data center. We see that as peak renewable energy increases

at each location, CAGE assigns more workloads to the self-managed data centers. This is

mainly because on-site renewable energy is free for the self-managed data centers while

the organization has to pay for it at colocation data centers. Moreover, the organization

85

can claim only a portion (Section 4.2.2) of the renewable energy at colocation locations

to offset its carbon emission. Thus, CAGE dispatches more workloads to self-managed

locations even if the renewable energy increases at each location equally.

Other simulation study. We also perform sensitivity study in terms of workload

prediction error and other tenants’ power usage estimation error, which are omitted for

brevity. In summary, the impact of±10%,±20% and±30% error in workload prediction

are 0.5%, 0.91% and 1.2% difference in carbon emission, respectively, compared to that

of perfect workload prediction. The variation in carbon emission are less than 2% for up

to ±30% of other tenants’ power usage estimation error, highlighting the robustness of

CAGE in wide range of adverse scenario.

4.5 System Experiment

In this section, we extend our simulation evaluation by designing and implementing a

scale-down test-bed to see how CAGE performs in real life scenario.

4.5.1 Test-bed setup

We consider an organization that has two self-managed and one colocation data center.

Each self-managed data center has 4 servers while the colocation data center has 8 servers

among which 5 belong to two other tenants. We consider that the self-managed data

centers are located in VA and IL States, respectively, and the colocation data center is

at NY State. We use two load balancers, virtually located at IL and NY state. We use

Dell PowerEdge R720 rack servers for each data center. Each server has 6-core Intel

Xeon E5-2620 CPU, 32GB RAM, 1 TB hard drive and Ubuntu 12.04 server version as

the operating system. The power consumption of each server is measured individually

by using CloudPOWER 4x power meter. We implement a data center control software in

86

0

150

300

450

600

0 20 40 60 80 100

9
5

%
 D

e
la

y
 (

m
s)

Server Utilization (%)

KVS

RUBiS

(a)

60

70

80

90

100

0 20 40 60 80

P
o

w
e

r
(W

a
tt

)

Server Utilization (%)

Fitted

Original

(b)

Figure 4.9: Modeling 95th percentile delay and power consumption.

Java that can read the power consumption data from power meters and turn the servers

on/off based on the algorithm’s decision.

We consider that the organization is running delay-sensitive RUBiS and key-value-

store (KVS) benchmarks [55, 89]. We use Wikipedia and Gmail traces as the workload

patterns for these benchmarks. RUBiS is a prototype auction site similar to eBay, im-

plementing the core functionalities such as bidding and buying of an item online. KVS

represents the internal processing of multi-tiered social network such as Facebook. The

RUBiS and KVS workload generators simulate the online activity of clients (users) where

the number of clients indicates the amount of load being generated for the server. We

consider 95th percentile delay as the performance metric. Fig. 4.9(a) shows how the

delay performance of one server changes based on the utilization. Note that, the 95th

percentile delay of both RUBiS and KVS benchmark increases exponentially as the uti-

lization increases from 70%. This validates our choice of 0.7 for the maximum utilization

factor η . We consider CPU as the primary resource for processing the jobs and im-

pacting the power consumption of the test-bed. Following our observation that at 70%

utilization, a server can process either 2000 RUBiS client or 35 KVS client, we set the

CPU resource demands accordingly for each job type. Now, to model the server power

consumption, we first vary the utilization (by varying number of clients from the load

87

100

150

200

250

300

0 6 12 18 24

9
5

%
 D

e
la

y
 (

m
s)

Time Slot

CAGE PerfMax

(a)

25

35

45

55

Carbon Cost

R
e

d
u

ct
io

n
 (

%
) CAGE

CoReUn

CostMin

(b)

Figure 4.10: Comparison among benchmarks for system experiments. CAGE achieves
4.4% lower carbon emission compared to CostMin, translating to huge potential emission
reduction for large organizations.

generator) of a server and obtain corresponding power consumption samples. We use

mean squared error fitting on the samples to find the server power model. Fig. 4.9(b)

shows both the original power samples and fitted power function which can be expressed

as p(utilization) = 71.5+21×utilization.

4.5.2 Settings and results

We consider 24 time slots and the duration of each time slot is 5 minutes. While mak-

ing resource provisioning decision, we consider a resource margin of 5% to cope with

unexpected system behavior. The combined peak IT power rating of two other tenants is

620 Watt and they are running Httperf and Hadoop workloads, respectively. Other system

experiment settings are kept same as the simulation. We show the system experimental

results in Fig. 4.10 which are consistent with our simulation study, and hence we skip

detailed discussion. As shown in Fig. 4.10(b), the carbon emission reduction achieved by

CAGE, CoReUn and CostMin is 38.7%, 34.3%, and 31.9% compared to that of PerfMax,

respectively. Furthermore, Fig. 4.10(b) shows that the electricity cost reduction of CAGE,

CoReUn and CostMin is 54.1%, 52.6%, and 50.8% compared to PerfMax, respectively.

88

In summary, the system experimental results strengthen our observations made by the

simulation study and show the effectiveness of CAGE in real life.

4.6 Summary

In this part of the dissertation, we proposed a novel and distributed geographical work-

load scheduling algorithm CAGE which reduces the carbon emission of a hybrid data

infrastructure consisting of both self-managed and colocation data centers. We leveraged

alternating direction method of multipliers to design a distributed algorithm and evaluated

the performance of our proposed solution by extensive trace-driven simulation studies and

real life system level experiments. Next, we address how a cloud service user can take

part in the sustainability.

89

CHAPTER 5

SUSTAINABILITY FROM A CLOUD SERVICE USER’S POINT OF VIEW

Many companies (e.g., Microsoft and Amazon) provide data center resources in the form

of cloud services to the users. Over the years, cloud services have evolved into various

computing models such as Platform as a Service (PaaS) and Infrastructure as a Service

(IaaS), which relieves users from the hassle of maintaining their own infrastructure and

cater to a broad spectrum of user needs such as scientific computing and web hosting.

In many cases, a user can purchase these services online and setup without requiring

any extensive technical knowledge about the computing platform. However, a user only

manages the acquired resources (e.g., virtual machines) and has no direct control over

the corresponding data center energy consumption or carbon emission. An intuitive ap-

proach to limit the energy consumption or carbon emission from a user’s side is to limit

the number of purchased resources. By limiting the spending on cloud resources, a user

can contribute to energy consumption capping indirectly and improve environmental sus-

tainability. At the same time, it is also an economical sustainability issue for the user. In

this part of the dissertation, we aim to develop a solution for cloud service users to cap

their spending on the cloud resources. Since users may have limited technical knowledge,

our motivation is to design an autonomous solution that requires less number user inputs.

5.1 Background

Elasticity and scalability are important features of the emerging cloud computing sys-

tems, where virtual machine (VM) instances are dynamically purchased/released using

autoscaling techniques in an automated fashion. While autoscaling VM instances, cloud

users seek two major benefits, i.e., good performance and low expenses. In particular,

they often have a cost budget in mind and desire the best performance within their bud-

90

get. Towards this end, we develop a novel autoscaling algorithm and full-fledged system

to optimize delay while satisfying user’s long-term budget constraint (e.g., monthly or

yearly budget). Our study focuses on delay-sensitive cloud applications, e.g., web ser-

vices, for which application performance is measured by the delay of responses.

Supporting budget constraint is essential for common business practice: as shown in a

recent survey [103] covering 1,000 data centers by Uptime Institute, over 80% data center

operators/managers are given budgets by business departments or higher-level executives

at the beginning of a budgeting period (e.g., typically, a month or a year). Such budget

constraints are also commonly applied to universities and governments, which typically

allocate annual IT operational budgets at the beginning of each fiscal year [105].

Meeting budget constraints while optimizing delay performance is challenging. Re-

questing more VMs at the current time will reduce the available budget for future uses,

which may significantly degrade performance and/or exceed budget in the event of high

future workloads. Hence, optimally scaling VM acquisitions requires the complete of-

fline information (e.g., workload demand) over the entire budgeting period, which is very

difficult, even impossible, to obtain in advance, especially considering highly dynamic

workloads and possible traffic spikes due to breaking events [31,66]. Default autoscaling

mechanisms offered by major cloud service providers, such as Amazon EC2 and Win-

dows Azure, typically scale VM instances based on resource utilization indicators such

as CPU and memory usage: e.g., adding a new VM instance or switching to a bigger

VM instance that has more virtual CPU cores when the current CPU utilization exceeds a

certain user-specified threshold [1, 9]. While autoscaling based on resource usage thresh-

old is easy to implement, it cannot optimize the performance while satisfying the budget

constraint. It suffers from the following limitations. A too low resource usage threshold

may incur an unnecessarily high cost, while a too high threshold reduces the cost, but

may result in an intolerable performance. It is difficult to decide optimal resource usage

91

thresholds a priori because their values depend on the user budget and the workloads

during the entire budgeting period, but the long-term future workload information is very

difficult to predict accurately. Recent efforts on autoscaling for optimizing the perfor-

mance under long-term budget constraints have primarily focused on evenly distributing

budgets across time or predicting the long-term future workloads, neither of which applies

to highly-dynamic delay-sensitive workloads in practice [78, 80, 99, 113].

In this part of the dissertation, in view of the practical difficulty in accurately predict-

ing long-term future workloads, we develop an online autoscaling system, called BATS

(Budget-constrained AuToScaling), that dynamically scales VM instances to optimize the

delay performance while satisfying user budget constraint in the long run. The core of

BATS is an online autoscaling algorithm we propose, which only requires the past and in-

stantaneous workload to make effective scaling decisions. The key idea of our algorithm

is to keep track of the budget deficit online and incorporate it into the online autoscaling

decision: if the actual VM expenses exceed the expected cost thus far, BATS will request

fewer and/or smaller VM instances subject to the minimum delay performance require-

ment, such that the budget deficit can be decreased. Leveraging Lyapunov optimization

technique, we formally prove that the BATS produces a close-to-optimal delay perfor-

mance compared to the optimal algorithm with offline information while satisfying the

budget constraint.

As a system, we build a fully-automated BATS autoscaler service on Windows Azure.

BATS autoscaler only requires user inputs on the desired delay performance and budget of

their applications. It manages the performance monitoring, resource planning, and scaling

of user applications automatically. We also combine BATS algorithm with a reactive

module that monitors runtime performance and handles workload burstiness. We show

that the modular design of BATS autoscaler makes its implementation easily adaptable to

other cloud platforms such as Amazon EC2.

92

Table 5.1: List of Notations for BATS Model.
Notation Description
λ Workload arrival rate
m j # of type- j VM instances
B Total budget
p j Price for type- j VM instance
g Delay
dmin Minimum (desired) delay
c Cost
dmax Maximum tolerable delay

We evaluate the performance of BATS by running RUBiS benchmark workloads [89]

on Windows Azure. The experimental results show that BATS achieves up to 34% less

delay compared to the algorithm that evenly divides users budget over all time slots.

Compared to the threshold-based scaling rules that are widely used by major cloud service

providers, BATS reduces user cost by 10% while achieving a better delay performance.

Moreover, the performance of BATS is very close to that of the optimal offline algorithm

that knows complete future information.

We also conduct extensive simulation study that complements the system implemen-

tation results. We evaluate BATS in terms of both average delay and 95th percentile delay,

showing the effectiveness of our algorithms on different performance metrics and its scal-

ability on managing applications with hundreds of VMs. We also show that BATS is truly

autonomous: it does not need users to select appropriate algorithm parameters or provide

additional application information. BATS decides its parameters through online learning

and adaptation.

93

5.2 Model and Problem Formulation

5.2.1 Model

We consider a discrete-time model by evenly dividing the budgeting period (e.g., typi-

cally a month or a year) into K time slots indexed by t = 0,1, · · · ,K− 1, each of which

has a duration that matches the pricing policy of cloud service providers (CSPs). For ex-

ample, each time slot can correspond to one hour if we subscribe to Windows Azure or

Amazon EC2, both of which charge users for VM instances on an hourly basis. Table 5.1

summarizes the key notations.

• Autoscaler: We now present the cloud resource and scaling decision models fol-

lowing the current practice adopted by commercial CSPs. Specifically, there are J types

of VM instances (e.g., small, medium, large) and each type- j VM instance is specified by

a set of N resource configuration parameters A j = {a j,1, · · · ,a j,N}, where each element

represents the provisioning of one resource type. For example, each small-type instance

has one virtual CPU and 1.75GB RAM, while each medium one has two virtual CPUs

and 3.5GB RAM on Azure [2]. An autoscaler scales VM instances over time. At time t,

the autoscaler requests m j(t) type- j VM instances, whose price is p j(t). For notational

convenience, we use the vectorial expression m(t) = [m1(t),m2(t), · · · ,mJ(t)] wherever

appropriate.1 Given the autoscaling decision m(t), the cost incurred by the user at time t

is expressed as

c(t) =
J

∑
j=1

[
p j(t) ·m j(t)

]
(5.1)

•Workloads: We use “workloads” to represent the demand that needs to be served by

the requested VM instances. In our study, we focus on web services and hence, workloads

are web requests. We denote by λ (t) ∈ [0,λmax] the workload arrival rate at time t, where

1Our model also supports acquiring VM instances through spot instance market (e.g., offered
by Amazon EC2 [10]).

94

λmax is the maximum possible arrival rate. Arrival rate can be measured by different

metrics, such as the number of clients, VM CPU/memory utilization. To quantify the

delay performance of web services, our work supports a variety of well-known metrics,

such as average delay and tail delay.2 In our study, we do not restrict the model to any

particular delay performance metric. Instead, we use the general notion of g(λ (t),m(t))

to represent the delay performance of interest during time t, which is jointly determined

by the workload arrival rate λ (t) and VM acquisition decisions m(t).

5.2.2 Problem Formulation

As workload arrival rate varies over time, the delay performance during high workloads

should naturally be given a higher weight than that during low workloads when we eval-

uate autoscaling algorithms. Hence, our objective is to minimize the long-term delay

performance over the entire budgeting period (i.e., K time slots), expressed as

ḡ =
K−1

∑
t=0

λ (t) ·g(λ (t),m(t))

∑
K−1
t=0 λ (t)

, (5.2)

where g(λ (t),m(t)) is the delay performance at time t given the workload arrival rate

λ (t) the scaling decision m(t). The term λ (t)/∑
K−1
t=0 λ (t) is a weight that scales the delay

at time t in proportion to the workload arrival rate. There may be a limit on the purchased

resources specified by the CSP, which we express as

J

∑
j=1

a j,n ·
[
m j(t)

]
≤ Ān, ∀t and ∀n = 1, · · · ,N, (5.3)

where a j,n is the provisioned resource n associated with each type- j VM instance and Ān

is the limit on resource n. For example, by default, a maximum of 20 virtual CPUs may

be purchased from Azure Cloud Service unless approved for instance increase [9] and, in

this case, (5.3) is the constraint on the virtual CPUs.
2Tail delay specifies high-percentile latency, e.g., 95th-percentile latency of T indicates 95%

of jobs should have its delay lower than or equal to T .

95

The scaling decisions need to satisfy a long-term budget constraint

K−1

∑
t=0

c(t)≤ B, (5.4)

where c(t) is the incurred cost given by (5.1). Note that the budget does not include

bandwidth charge, which only depends on the workloads and cannot be autoscaled. For

each time t, we also set the maximum and minimum delay constraints, denoted by

dmin ≤ g(λ (t),m(t))≤ dmax, ∀t, (5.5)

where the maximum delay constraint specifies the worst delay that can be tolerated subject

to service level agreement (SLA), while the minimum delay threshold indicates that user

experience improvement is negligible by letting the delay go below the threshold [68] and

hence there is no need to over-request VM instances.

Note that we can rewrite the delay in (5.2) as

ḡ = 1
K ∑

K−1
t=0 λ (t) ·g(λ (t),m(t)) · K

∑
K−1
t=0 λ (t)

, where, given workloads and budgeting period,

the term K
∑

K−1
t=0 λ (t)

is constant. Hence, we can omit it in the following analysis for nota-

tional convenience, and present the (offline) problem formulation for delay minimization

as follows:

P31 : min
M

1
K

K−1

∑
t=0

λ (t) ·g(λ (t),m(t)) (5.6)

s.t., constraints (5.3), (5.4), (5.5), (5.7)

where M denotes a sequence of scaling decisions over the budgeting period, which

we need to optimize.

5.3 Algorithm Design and Analysis

This section presents our autoscaling algorithm, BATS, and analyze its performance. We

first present how to the inputs of BATS and then show how to make effective autoscaling

96

decisions by using the information readily available at the current time step without re-

quiring hardly-accurate long-term prediction. We also formally prove that, for any work-

load arrivals, the performance of BATS is close to the offline optimal that assumes perfect

future information.

5.3.1 Obtaining Inputs to BATS

BATS requires two types of inputs:

•Workload arrival rate: BATS requires the workload arrival rate λ (t) as its input. In

practice, there is a workload predictor that can estimate the instantaneous load, the arrival

rate λ (t), prior to the beginning of time t using some well-studied learning techniques

(e.g., auto-regression analysis) [33, 68]. Note that this prediction is short-term, only for

the immediate next time slot, which is different from the long-term prediction of the entire

budgeting period required by an offline algorithm. Many prior studies show that such

instantaneous workload can often be predicated with a high accuracy [68]. Furthermore,

we discuss how to handle unpredictable workload spikes in Section 5.4.2 and quantify the

impact of inaccurate prediction in Section 5.6.8.

• Delay performance: Delay performance is our optimization objective. In general,

the delay increases with increase on arrival rate, decrease on the number or size of VM in-

stances. Nonetheless, the delay performance is also affected by a variety of other factors,

such as queuing discipline and load balancing decisions (which may not always be con-

trollable from users’ perspective). Thus, it is challenging, even impossible, to mathemati-

cally express the delay g(λ (t),m(t)) as an explicit function of λ (t), m(t). In practice, we

alternatively resort to a delay lookup table to empirically measure the delay g(λ (t),m(t)).

Specifically, we create a table whose row and column indexes indicate workload arrival

rates and scaling decisions, respectively, and whose entries are the corresponding delay

performance. The entries can be populated with some initial estimates (e.g., based on

97

queueing-theoretic models [91]) at the beginning and then updated in runtime (e.g., us-

ing weighted linear regressions) to reflect more accurate delay performance. We discuss

how to build such a delay lookup table by offline calibration (Section 5.5.1) and online

learning (Section 5.6.5).

5.3.2 BATS

Now, we present our online algorithm, BATS, for dynamically autoscaling VM instances.

Note first that to optimally autoscale VM instances (i.e., P31 formulated in Section 5.2.2),

complete offline information is required such that the long-term but limited budget can be

optimally split across the entire budgeting period, since otherwise performance may be

significantly degraded. For example, if more VM instances are requested in the current

time slot, less budget is available for future workloads which may potentially increase

dramatically. Nonetheless, accurate prediction of such long-term future workload in-

formation is quite challenging in practice and sometimes even impossible, considering

possible traffic spikes (e.g., due to breaking events) [35, 66]. Hence, autoscaling deci-

sions need to be made online without a priori knowledge of long-term future workloads.

To circumvent this practical challenge, we leverage the recently-developed sample-path

Lyapunov technique [87] to develop BATS.

The key idea is that we make autoscaling decisions using a feedback mechanism to

meet the desired long-term budget constraint. Specifically, we use the budget deficit at

runtime as the feedback information: if there is a temporary budget deficit (such as due

to unexpected high VM costs), we consider both reducing the expenses and managing

the delay, so that the budget deficit can be reduced/eliminated eventually. Otherwise, we

focus purely on performance optimization.

98

Mathematically, to track the runtime budget deficit, we construct a (virtual) budget

deficit queue which, starting with q(0) = 0, evolves as follows

q(t +1) = {q(t)+ c(t)− z(t)}+ , (5.8)

where c(t) is the cost at time t, q(t) is the budget deficit queue length and z(t) is the

reference budget for time slot t. The reference budget z(t) is not enforced as a constraint

for the allowed budget over time t; instead, it merely indicates how much money we plan

to spend for time t. For example, we can evenly divide the total budget by the total number

of budgeting days and obtain daily reference budget, which can be further split to each

hour based on the workloads during the prior day. The selection of reference budget z(t)

has a negligible impact on the delay performance under common choices of z(t), which

we verify by our empirical results in Section 5.6.8.

The budget deficit queue length indicates the deviation of the current cost from the

reference budget. Intuitively, with a larger budget deficit at runtime, the autoscaler needs

to request fewer VM instances to mitigate the budget deficit at later times for meeting

the long-term budget constraint. Thus, the queue length can be leveraged to indicate

how much weight we want to give to cost minimization compared to performance opti-

mization, when making autoscaling decisions. To reflect this intuition in our autoscaling

decisions, instead of optimizing the delay performance objective in P31, we choose to

minimize V · λ (t) · g(λ (t),m(t)) + q(t)∑
J
j=1 p j(t) ·m j(t), where we make autoscaling

decisions in an online manner based only on the current workload arrival rate, the bud-

get deficit queue length, and a delay-cost parameter V (which we discuss shortly after).

BATS follows the principle “if exceeding budget, then reduce cost,” by tracking the

budget deficit at runtime and using it as the feedback information to indicate the relative

weight/importance of cost minimization versus performance optimization when making

autoscaling decisions. The complete description of BATS is provided in Algorithm 1.

99

Algorithm 3: BATS
Input: Input λ (t) (and p(t) if applicable), at the beginning of each time slot

t = 0,1, · · · ,K−1.
1 Choose m(t) subject to (5.3), (5.4), and (5.5) to minimize

P32: V ·λ (t) ·g(λ (t),m(t))+q(t)
J

∑
j=1

p j(t) ·m j(t) (5.9)

2 Update q(t) according to (5.8).

5.3.3 Performance of BATS

The following theorem formally shows the performance of BATS.

Theorem 2. Suppose that the instantaneous workload arrival rate and delay performance

are perfectly known. Then, for any T ∈ Z+ and H ∈ Z+ such that K = HT , the following

statements hold.

a. The budget constraint is approximately satisfied with a bounded deviation:

1
K

K−1

∑
t=0

c(t)≤ B
K
+

√
C(T)+ V

H ∑
H−1
h=0

(
G∗h−dmin

)
√

K
, (5.10)

where C(T) = U +D(T − 1) with U and D being finite constants, G∗h is the minimum

delay achieved over t = (h−1)T, · · · ,hT −1 by the optimal offline algorithm with T -slot

lookahead information over t = (h−1)T, · · · ,hT −1, for h = 0,1, · · · ,H−1, and dmin is

the minimum delay given in (5.5).

b. The delay ḡ∗ achieved by BATS satisfies:

ḡ∗ ≤ 1
H

H−1

∑
h=0

G∗h +
C(T)

V
. (5.11)

Proof. Before presenting the proof, we first introduce the benchmark algorithm as follows

to compare BATS with. Specifically, we evenly divide the entire budgeting period K into

H frames where each frame has T ≥ 1 time slots. With perfect information over the entire

100

frame, a T -step lookahead algorithm solves

P33 : min
m(t)

1
T

(h+1)T−1

∑
t=hT

λ (t)g(λ (t),m(t)) (5.12)

s.t., constraints constraints (5.3), (5.4) (5.13)
(h+1)T−1

∑
t=hT

c(t)≤
(h+1)T−1

∑
t=hT

z(t). (5.14)

Essentially, P33 defines a family of offline algorithms parameterized by look-ahead win-

dow size T . In what follows, we assume that for the h-th frame, where h = 0,1, · · · ,H−1,

there exists at least one sequence of server provisioning decisions that satisfy the con-

straints of P33 such that P33 is solvable. We also specify the minimum value of the

objective function in the T -step lookahead algorithm by 1
H ∑

H−1
h=0 G∗h, which is the bench-

mark that we compare BATS with.

Now, we present the following lemma, whose proof can be found in [87].

Lemma 2. For any 0≤ τ ≤ K−1, any budget deficit queue length q(τ), and any feasible

decision, we have

1
τ

τ−1

∑
t=0

c(t)≤ 1
τ

τ−1

∑
t=0

z(t)+
q(τ)

τ
. (5.15)

Lemma 2 shows that the budget constraint can be approximately satisfied over the h-th

frame if the budget queue length difference q(τ)−q(0) = q(τ) is sufficiently small. Next,

we define for notational convenience

g(t) = λ (t) ·g(λ (t),m(t)). (5.16)

As an alternative scalar measure of all the queue lengths, we also define the quadratic Lya-

punov function L(q(t)), 1
2q2(t), where the scaling factor 1

2 is added for the convenience

of analysis. Let 4T (t) be the T−slot Lyapunov drift yielded by some control decisions

over the interval t, t + 1, · · · , t + T − 1: 4T (t) , L(q(t + T))− L(q(t)). Similarly, the

1-slot drift is 41(t) , L(q(t + 1))− L(q(t)). Based on q(t + 1) = [q(t)+ c(t)− z(t)]+,

101

it can be shown that L(q(t + T)) = 1
2q2(t + 1) ≤ 1

2 [q(t)+ c(t)− z(t)]2. Then, it can be

shown that the 1-slot drift satisfies

41(t)≤U +q(t) · [c(t)− z(t)], (5.17)

where U is a constant satisfying U ≥ 1
2 [c(t)− z(t)]2, for all t = 0,1, · · · ,K−1.

Based on the inequality in (5.17), we can easily show

41(t)+V ·g(t)≤U +V ·g(t)+q(t) · [c(t)− z(t)]. (5.18)

The online algorithm described in line 2 of Algorithm 1 actually minimizes the upper

bound on the 1-slot Lyapunov drift plus a weighted value shown on the right hand side of

(5.18). Following (5.18) and considering both BATS and the optimal T -step lookahead

policy (denoted by subscript “o”), we can show that, for h = 0,1, · · · ,H − 1, the T -slot

drift plus weighted cost satisfies

4T (hT)+V
hT+T−1

∑
t=hT

g∗(t) (5.19)

≤ UT +V
hT+T−1

∑
t=hT

g∗(t)+
hT+T−1

∑
t=hT

q(t) · [c(t)− z(t)] (5.20)

≤ UT +
hT+T−1

∑
t=hT

go(t)+
hT+T−1

∑
t=hT

q(t) · [co(t)− z(t)] (5.21)

≤ UT +V
hT+T−1

∑
t=T

go(t) (5.22)

+
hT+T−1

∑
t=hT

(t−hT)qdi f f · |co(t)− z(t)|

+q(hT)
hT+T−1

∑
t=hT

[co(t)− z(t)]

≤ UT +V T G∗h +DT (T −1), (5.23)

where g∗(t) is the delay achieved by BATS at time t, G∗h is the minimum delay achieved by

the T -step lookahead policy over the h-th frame, qdi f f =maxt=0,1,··· ,K−1{c(t),z(t)} and D

102

is a finite constant satisfying D≥ 1
2qdi f f ·max{co(t),r(t)}. Note that the inequality (5.21)

comes from the fact that BATS explicitly minimizes the term UT +V ∑
hT+T−1
t=hT g(t) +

∑
hT+T−1
t=hT q(t) · [c(t)− z(t)] given any q(t), and the last inequality follows (5.23) from the

constraints in (5.14) satisfied by the optimal T−slot lookahead policy. Thus, by apply

q(t) = 0 and summing up (5.19) over h = 0,1, · · · ,H−1, we obtain

q(HT)≤

√√√√UT H +DT (T −1)H +V
H−1

∑
h=0

T G∗h−V
K−1

∑
t=0

g∗(t)

≤

√√√√UT H +DT (T −1)H +V T
H−1

∑
h=0

(
G∗h−dmin

)

=
√

T H ·

√√√√C(T)+
V
H

H−1

∑
h=0

(
G∗h−dmin

)
,

(5.24)

where we define C(T) = U +D(T − 1). Thus, by recalling K = HT and Lemma 1, we

obtain

1
K

K−1

∑
t=0

c(t)≤ B
K
+

√
C(T)+ V

H ∑
H−1
h=0

(
G∗h−dmin

)
√

K
, (5.25)

which proves part (a) of Theorem 2.

Next, by dividing both sides of (5.19) by V and considering q(0) = 0, it follows that

hT+T−1

∑
t=hT

g∗(t)≤ UT
Vr

+UG∗h +
DT (T −1)

V
−4T (hT)

V
(5.26)

Finally, by summing (5.26) over h = 0,1, · · · ,H−1 and dividing both sides by K = HT ,

we have

ḡ∗ ≤ 1
H

H−1

∑
h=0

G∗h +
B+D(T −1)

V
, (5.27)

which shows that the online algorithm can achieve a cost within O(1/V) to the minimum

value achieved by the optimal offline algorithm with T -step lookahead information. This

proves part (b) of Theorem 2. �

103

5.3.4 Discussion

Theorem 1 provides the worst-case performance bound compared to a family of offline

algorithms parameterized by their lookahead capabilities characterized by T (i.e., a larger

T means the lookahead algorithm looks further into the future). The theorem shows

that BATS achieves delay close to offline optimal while approximately satisfying the

budget constraint given arbitrary workload arrivals.

The approximate satisfaction of budget constraint in (5.10) stems from the fact that

workloads may be persistently high: budget may be violated in order to satisfy high

workloads, even though budget constraint is satisfied in prior time slots. In practice,

however, the budget constraint can be strictly satisfied if it is appropriately set (i.e., given

workloads, it is feasible to achieve the required delay performance).

Delay-cost parameter V . As formalized in Theorem 1, the delay-cost parameter

V of BATS presents the tradeoff between delay performance optimization and budget

satisfaction. When V becomes larger, BATS tends to minimize the delay, while giving

less attention to the incurred cost, because delay carries more weight on the optimization

objective (at (5.9)). Thus, an appropriate selection of V is crucial, but such a value is hard

to decide without knowing complete offline information [87]. To address this practical

issue, we propose to dynamically update V as follows:

Vnew = max{Vold +β ×
[¯z(t)− ¯c(t)

]
,Vmin}, (5.28)

where Vmin is a sufficiently small positive number to ensure positive Vnew, β is a certain

positive scaling factor, and ¯c(t) = 1
t ∑

t
j=1 c j(t) and ¯z(t) = 1

t ∑
t
j=1 z j(t) are the cumulative

average cost and reference budget per slot up to time t, respectively. The intuition for

using Eqn. 5.28 to update V is as follows: if there is a budget deficit over quite a few

time slots (i.e., cumulative average cost exceeds average reference budget up to time t),

then we have high confidence that V needs to be reduced to place more emphasis on cost

104

minimization such that the long-term budget constraint can be satisfied; and vice versa.

Section 5.6.4 shows the desired V can be dynamically found using 5.28.

Complexity. While P32 in Algorithm 1 involves integer programming (i.e., autoscal-

ing decision m(t) can only take integer values), we note that BATS is practically realizable

because there are only a reasonably small number of VM types and autoscaling decisions

are made only once every time slot. Specifically, given a limit of M on the number of

purchased VM instances and J types of VM instances, the worst-case complexity is MJ ,

which is practically affordable (e.g., M = 20 and there are four basic types of VM in-

stances in Azure). Moreover, for some applications, there is usually only one type of VM

instances that are the most cost-effective (i.e., provides the best performance given the

same cost) [79], reducing the exponential complexity to linear complexity. In our experi-

ments in Section 5.5, the computation time of BATS spent on calculating the autoscaling

decision is just in the order of milliseconds, while scaling decisions are often made in the

order of minutes or a few hours.

5.3.5 Reserved Instances

In this section, we discuss how to incorporate reserved instance into our model. Reserved

instances typically require a long-term commitment (e.g., one year) that may even ex-

ceed users’ budgeting period [1, 2]. In other words, reserved instances cannot be easily

autoscaled in run-time. For completeness, we study how BATS can leverage the dis-

counted pricing of reserved instances although the focus of this chapter is on autoscaling

on-demand instances due to their elasticity. We present our simulation study by incorpo-

rating reserved instances in section 5.6.7. First, we discuss how to modify our model to

consider reserved instances, and then how to make VM reservation (purchase) decisions.

105

Incorporating reserved instances in model

Despite typically being offered at discounted prices, reserved instances incur upfront

reservation fees as well as long-term commitment (e.g., one year). We denote the up-

front reservation and fixed usage fees for a type- j VM instance by ur
j and u j, respectively.

Following the common practice, we consider that the autoscaler only updates its purchas-

ing decisions for reserved instances every Kr time slots, which corresponds to the required

commitment period. Specifically, the number of reserved type- j VM instances is r j(t) at

time t, where r j(t) may differ from r j(t−1) only when t is a multiple of Kr.

To incorporate the reserved instances into our model, we first change the delay notion

g(λ (t),m(t)) to g(λ (t),m(t),r(t)), the delay during time t, which is now determined by

the workload arrival rate λ (t) as well as VM acquisition decisions m(t) and r(t). Next,

we include the cost of reserved instances in Eqn. 5.1. Given the autoscaling decision m(t)

for on-demand instances and r(t) for reserved instances, the cost incurred by the user at

time t is expressed as

c(t) =
J

∑
j=1

[
p j(t) ·m j(t)+u j · r j(t)+1(t%Kr=0) ·ur

j · r j(t)
]

(5.29)

where the first two terms represent costs for on-demand and reserved instances, respec-

tively, the last term is the upfront reservation fee, and the indicator function 1(t%Kr=0)

is equal to 1 if t is a multiple of Kr (i.e., t%Kr = 0) and 0 otherwise. The limit on the

purchased resources specified by Eqn. 5.3, can be expressed as

J

∑
j=1

a j,n ·
[
m j(t)+ r j(t)

]
≤ Ān, ∀t and ∀n = 1, · · · ,N, (5.30)

where a j,n is the provisioned resource n associated with each type- j VM instance and Ān

is the limit on resource n.

106

Decisions for the reserved instances require commitment over Kr periods and thus

satisfy

r j(t) = r j(t +1), ∀(t +1)%Kr 6= 0 and ∀ j = 1, · · · ,J. (5.31)

With the changes discussed above, BATS can incorporate reserved instances into its

operation.

Purchasing reserved instances

While reserved instances cannot be autoscaled and hence are not our focus, we discuss

how to make VM reservation decisions for the completeness of study.

Although workloads vary over time, there is often a minimum baseline workloads:

workload arrival rates rarely fall below the baseline. Thus, one can leverage discounted

prices by purchasing reserved instances to serve the baseline workloads, which are of-

ten time-invariant. Nonetheless, optimally deciding the reservation of VM instances is

challenging: it involves jointly optimizing the decisions for both reserved and on-demand

instances as well as predicting the future workloads over a long timescale.

There have been some theoretical studies, e.g., [108], which jointly optimize the

purchasing decisions for reserved and on-demand instances. In these studies, a key as-

sumption that may not hold in practice is that users stay in the cloud market for a suf-

ficiently long period, compared to which the commitment period for reserved instances

is rather short [108]. However, in practice, users often have a monthly or yearly bud-

get, whereas the commitment period of reserved instances is typically one year or even

longer [10]. Thus, purchasing reservation instances is a longer-term decision, compared

to the timescale of our interest (i.e., satisfying the user’s monthly or yearly budget). In

other words, optimally purchasing reservation instances needs to be pre-determined and is

107

in parallel to our focus.3 Hence, we assume that the reservation instances are exogenously

given and may be determined using the following approach. Before using cloud services,

the users first make a projection of its long-term workloads based on its past workload his-

tory and/or its expected workload growth over the required commitment period. Then, the

user decides the minimum (expected) workload as its baseline and reserves VM instances

accordingly.

While clearly the above approach to purchasing reserved instances may not be opti-

mal, it matches the current practice that users’ budgeting periods are often shorter than or

equal to the commitment period required by the CSP. Hence, in this dissertation, we leave

the purchasing decisions for reserved instances as orthogonal to our focus of autoscaling

on-demand instances subject to the user’s budget constraint.

5.4 System Implementation

For evaluation, we build a fully-automated BATS autoscaling service on Windows Azure.

Our service allows users to autoscale VMs running their Azure applications, conveniently,

effectively and reliably. It provides a graphical user interface (GUI) for users to provide

the cost and performance requirements of their applications. Users specify the budgeting

period and the total budget as their cost requirement, and they also specify their per-

formance requirement: the maximum tolerable application delay dmax and desired delay

dmin, as illustrated at Equation 5.5. Note that if inappropriately set (e.g., budget is too

small), the budget and the maximum tolerable delay may not be possibly achievable at

the same time. One approach to avoid such inappropriate settings is that BATS provides

some general guidance to cloud users based on history data before BATS starts running.

Specifically, the minimum required budget can be calculated at the beginning of a bud-

3Some CSPs such as Azure Cloud Service currently do not support combination of reserved
and on-demand instances [9].

108

BATS

Workload
Predictor

Predicted workload

Scaler

Autoscaling
decision

Performance
Watcher

Monitor

performance
metrics

Scheduler

Scale
resources

budget,
price

Performance
requirements

BATS Autoscaler

Cloud Application

Resources

Figure 5.1: Architecture diagram of BATS autoscaler.

geting period based on the previous workloads (plus a certain margin) and the tolerable

delay performance given by the user. A warning will be prompted if the user provides

a budget below the required budget. Using a similar principle, run-time warning can

also be activated, if the current budget deficit (or money spent so far) is too large. The

GUI also requests application information that grants the autoscaler to access the man-

agement portal provided by the CSP, such as what metrics to be used for indicating the

workload arrival rate, and where to store/fetch the performance data. Once BATS is con-

figured, it autonomously monitors user application and dynamically scales VM resources

using BATS algorithm. It also reacts to runtime performance feedback, improving sys-

tem robustness on handling workload prediction inaccuracy and burstiness. This section

presents the system implementation of BATS autoscaler service.

109

5.4.1 Architecture Overview

Fig. 5.1 presents the software architecture of BATS, consisting of three main modules —

Monitor, Scheduler and Scaler.

Monitor gathers different performance metrics of the hosted cloud application and

provides the data to Scheduler. In Azure, a cloud application writes its performance met-

ric values to a specified Azure table storage periodically, which Monitor accesses them

to collect performance information of the application. To model performance of different

applications, Monitor supports using different performance metrics, such as CPU usage,

memory usage, and the number of web server connections. For example, for a CPU-

intensive application, monitoring CPU usage could be more appropriate than monitoring

network traffic. BATS allows users to select performance metrics suitable for their appli-

cations.

Scheduler decides the optimal number of VMs required by the cloud application based

on BATS algorithm with a goal of minimizing delay while meeting the budget constraint.

Scheduler is the core of BATS autoscaler service, which we describe in more details in

Section 5.4.2.

Scaler executes the scheduler’s decision and submits the scaling request to the cloud.

It handles the underlying details of connecting to the cloud, certificate management and

service status information retrieval. For example, Azure provides a service management

API to control the cloud resource configuration. To use this API, the users need to create

a management certificate in the cloud portal and import it through the GUI of BATS.

Whenever Scheduler issues a scaling decision, Scaler creates and uploads the new VM

configuration using the management certificate. Then, Azure scales the VM instances for

the hosted application accordingly.

We separate Monitor and Scaler from Scheduler to improve modularity: Monitor

and Scaler require usage of cloud-specific APIs, while Scheduler is cloud-independent.

110

This design allows BATS to support other CSPs with small modifications to Monitor and

Scaler only. For example, to apply BATS on Amazon EC2, Scaler connects to Ama-

zon EC2 using AWS credentials; Monitor periodically obtains performance metric values

using the APIs provided by Amazon EC2, i.e., CloudWatch service.

5.4.2 Scheduler

Scheduler is the core of our autoscaler service, which consists of three submodules —

performance watcher, workload predictor and BATS algorithm. Scheduler operates in

both proactive and reactive manner. Its proactive behavior is implemented at BATS algo-

rithm, which determines the VM scaling decision at the beginning of each time slot by

considering the estimated workload given by workload predictor. The reactive behavior

takes runtime performance feedback into consideration that is implemented by perfor-

mance watcher, handling workload prediction inaccuracy and burstiness.

Workload predictor predicts the upcoming workload by analyzing the past values.

As a key advantage, BATS does not require long-term workload prediction, which is

hardly accurate in practice. Instead, BATS only needs workload prediction for the next

time slot. Since the prediction model is not a contribution of this dissertation and many

other prediction models exist [30,38,39,115], we choose and implement an auto-regressive

model shown in [67]. This model predicts f (d, t), the value of a chosen performance met-

ric at time t of day d, by taking the moving average of the previous N days at the same

time t. Mathematically, the predicted value of a performance metric f at time t is given

by f (d, t) = 1
N ∑

N
i=1 ai ∗ f (d− i, t)+ c. The parameters ai and c are calibrated online us-

ing history data. We can also integrate other prediction algorithms into BATS, and as

discussed next, performance watcher helps us to readjust the scaling decision in the event

of prediction error.

111

Performance watcher monitors two types of events continuously: (1) the current

workload arrival and (2) the delay status. If there is a significant difference between the

predicted workload and observed workload or if the maximum delay cap dmax is violated,

performance watcher triggers BATS algorithm module to recalculate the scaling decision

for the current time slot. Performance watcher is designed to avoid persistent overloading

and recover from inaccurate prediction and/or bursty workloads reactively.

BATS algorithm implements BATS algorithm presented in Section 5.3, which deter-

mines the VM scaling decision based on the predicted workload arrival before each time

slot begins. As it takes about 10 minutes to acquire new VMs in Azure, BATS submits the

proactive scaling decision 10 minutes before each time slot begins. In addition, it takes

runtime feedback from performance watcher and recalculates the desired VM scaling de-

cision in the event of mis-predicted and/or bursty workloads.

5.5 System Experiment

This section presents experimental results of using BATS to autoscale VM instances host-

ing a RUBiS web application on Windows Azure. We first describe the application, the

cloud service and our experimental setup. Then, we compare BATS with other bench-

marks. Our results show that BATS achieves up to 34% less average delay compared to

the algorithm that evenly divides users budget over all time slots. BATS also reduces users

cost by 10% while achieving less delay compared to widely-used reactive scaling rules.

Moreover, the performance of BATS is very close to that of the optimal offline algorithm

that knows complete future information.

5.5.1 Experimental Setup

We deploy RUBiS web application, which implements the core functionality of an auc-

tion site: selling, browsing, and bidding. RUBiS is widely used to evaluate the perfor-

112

10 20 30 40
0

200

400

600

800

1000

Time Slot

N
um

be
r

of
 C

lie
nt

s

(a) MSR trace

200 400 600
0

0.2

0.4

0.6

0.8

1

Time Slot

N
or

m
. #

 o
f C

lie
nt

s

(b) FIU trace

Figure 5.2: Workload traces.

mance and scalability of application servers and virtualized environments [89]. It follows

a three-tier web architecture: a front-end web server tier, business logic tier and back-

end database tier. We run RUBiS on Windows Azure Cloud Services, which provides

a Platform-as-a-Service (PaaS) environment for hosting multi-tier scalable web applica-

tions [2].

Workload. We use RUBiS workload generator to send client requests to the cloud-

end servers. The workload generator creates user sessions (a.k.a clients) which simulates

the browsing of an auction site like eBay. The number of clients indicates the amount of

workload being generated for the target web site. The average execution time for each

web page varies based on the underlying computation. We generate workload arrivals

(Fig. 5.2(a)) based on a workload trace extensively used in prior work (e.g., [66]), repre-

senting the activity trace of a few thousand users on enterprise file servers at Microsoft

Research.

System configurations. We deploy the three-tier RUBiS application on Azure Cloud

Services. Our experiments scale the VM instances in the range of 1 to 20, where 20 is

the default limit set by Azure [9]. We choose to use extra-small VMs only because they

offer the most cost-effective way to execute RUBiS workload. For example, the price of

113

200 400 600 800 1000 1200
0

1

2

3

4

No of clients

A
vg

. R
es

p.
 T

im
e

(s
ec

)

m =4
m =6
m =8
m =10

2 4 6 8 10
0

1

2

3

4

No of VM instances (m)

A
vg

. R
es

p.
 T

im
e

(s
ec

)

cl=100
cl=200
cl=300
cl=400

Figure 5.3: RUBiS load response time correlation. m and cl denote the number of VM
instances and clients respectively.

a small VM is 4 times of the extra-small VM, but its throughput is only 3 times, while the

larger VMs are even worse in terms of the cost effectiveness. To avoid excessively long

experimentation time, the budgeting period in our study consists of 48 time slots and the

duration of each time slot is 1 hour. The default budget for our experiment is $8.5 while

the cost for one VM instance per hour is $0.02. In our experiment, we set the desired

average delay dmin = 520 ms, and the maximum tolerable average delay dmax = 1500 ms.

The delay settings for our RUBiS application are consistent with prior studies [51, 122].

Autoscaler inputs. To enable autoscaling for RUBiS, our autoscaler uses the number

of web connections to monitor incoming workload. We model the load delay correlation

of RUBiS workload using a delay lookup table, which is built at calibration phase by

varying the number of clients from the workload generator and obtaining delay for each

different scaling configuration (i.e., number of VM instances). We discuss how to build

the delay lookup table online in Section 5.6.5. Fig. 5.3(a) shows the average delay under

different numbers of clients: average delay increases slowly up to certain load, and then

it increases exponentially at heavy load (i.e., saturated). Fig. 5.3(b) shows that if we

increase the number of VM instances, average delay decreases down to around 400 ms,

114

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 10 20 30 40

A
v
e
ra

g
e
 D

e
la

y
 (

s
e
c
)

Time Slot

BATS

EqualSC

PerfOpt

ReactSC

OptOffline

(a) Average delay.

 0

 2

 4

 6

 8

 10

 10 20 30 40
T

o
ta

l
C

o
s
t
($

)
Time Slot

Budget

BATS

EqualSC

PerfOpt

ReactSC

OptOffline

(b) Total Cost.

Figure 5.4: Comparing BATS with other algorithms.

after which it becomes almost constant as the average delay is dominated by the request

execution time and there is no further delay reduction even if we add more VMs.

5.5.2 Experimental Results

We conduct three sets of experiments: (1) compare BATS with three well-known autoscal-

ing algorithms and offline optimal; (2) show the impact of user budget on the performance

of BATS; and (3) show the delay-cost tradeoff.

Comparison with other autoscaling algorithms

We compare the performance of BATS with three online autoscaling algorithms and the

optimal offline algorithm. We first describe the benchmark algorithms as follow:

115

10 20 30 40
0

10

20

T
ot

al
 In

st
an

ce
s

Time Slot

BATS
Workload

10 20 30 40
0

500

1000

N
um

be
r

of
 C

lie
nt

s

(a) BATS.

10 20 30 40
0

10

20

T
ot

al
 In

st
an

ce
s

Time Slot

OptOffline
Workload

10 20 30 40
0

500

1000

N
um

be
r

of
 C

lie
nt

s

(b) OptOffline.

10 20 30 40
0

10

20

T
ot

al
 In

st
an

ce
s

Time Slot

ReactSC
Workload

10 20 30 40
0

500

1000

N
um

be
r

of
 C

lie
nt

s

(c) ReactSC.

10 20 30 40
0

10

20

T
ot

al
 In

st
an

ce
s

Time Slot

PerfOpt
Workload

10 20 30 40
0

500

1000

N
um

be
r

of
 C

lie
nt

s

(d) PerfOpt.

Figure 5.5: Resource allocation comparison.

• EqualSC: The algorithm evenly divides the available budget across all the time slots

and obtains the number of VM instances that can be reserved for the entire budgeting

period based on discounted pricing (for reserved instances). We consider 20% discount

as offered by Windows Azure [9].

• ReactSC: Reactive scaling rules are widely adopted by both developers and third-

party solution providers [1, 4–6, 9]. Most reactive scaling rules are defined by comparing

a performance metric to a specific threshold. For example, add a new VM instance when

the average CPU utilization exceeds 85% , or terminate a VM instance when the average

CPU utilization falls below 45%. We implement a reactive autoscaler that can use more

complex rules rather than simple threshold-based comparisons. The autoscaler constantly

116

monitors the average workload arrival rates measured over the last 5 minutes. Then,

based on the monitored workload, ReactSC uses the delay lookup table to determine the

minimum number of VMs so the resulting delay is equal to the the desired delay dmin for

the upcoming time slot.

• PerfOpt: This algorithm knows (using perfect short-term prediction) the workload

arrival rate at the beginning of each time slot and uses the delay lookup table to deter-

mine the minimum number of VM instances such that the resulting delay is equal to the

desired delay dmin. It always optimizes performance while disregarding the desired bud-

get constraint. Compared with ReactSC and BATS, PerfOpt assumes perfect short-term

prediction information.

• OptOffline: The optimal offline algorithm has the perfect workload arrival infor-

mation for the entire budgeting period at the very beginning. Based on complete offline

information, the whole budget is optimally divided among time slots by solving P31

based on Lagrangian technique and choosing (through bisection search) the optimal La-

grangian multiplier to ensure equality for budget constraint [17]. Essentially, the optimal

Lagrangian multiplier corresponds to the budget deficit queue, but it is a fixed value,

which can only be obtained based on complete offline workload information. OptOf-

fline is not possible to implement in practice. It only serves as a reference of theoretical

optimal.

Fig. 5.4 shows the experimental results. Fig. 5.4(a) and 5.4(b) compare the cumulative

average delay and cumulative cost of BATS, respectively. The cumulative average for a

time slot t is the corresponding average value of time slot 0 to t.

Firstly, we compare BATS to EqualSC. As shown in Fig. 5.4(a), BATS reduces delay

by 34% compared to EqualSC while achieving the same budget constraint, even though

EqualSC receives discounted pricing. This is mainly because EqualSC evenly divides the

budget across each time slot and reserves VM instances without considering the workload

117

variation. The number of reserved instances is 11 for the whole budgeting period regard-

less of the workload variations. As a result, when there is a workload spike (e.g., in the

4th time slot), the delay becomes very large.

Secondly, we compare BATS with the widely-adopted ReactSC autoscaling mecha-

nism. Fig. 5.4(a) shows that the average delay reduction of BATS is 10% compared to

ReactSC. The degrading performance of ReactSC comes from the long lagging time: it

takes up to 5 minutes to detect the system status change (e.g., workload variation) and

even after detection, it takes up to 10 minutes to acquire a new VM instance. During the

lagging time, all the incoming workloads experience longer average delays. For example,

ReactSC experiences higher delay in the 25th and 42nd time slots because of its inabil-

ity to cope instantaneous traffic spikes, as shown in Fig. 5.5(c). This demonstrates the

importance of proactively predicting the near-future (e.g., hour-ahead) workloads as used

by BATS, thereby highlighting the limitations of reactive autoscaling rules. When using

ReactSC, keeping an additional resource margin/headroom (i.e., requesting more VM in-

stances than needed) may mitigate excessive temporal delays, but will result in an even

higher cost and more likely violate the budget constraint. Moreover, Fig. 5.4(b) shows

that the cost saving of BATS is 10% compared to ReactSC. It is mainly because ReactSC

ignores the budget constraint and always makes scaling decisions such that resulting av-

erage delay equals dmin. This shows that BATS outperforms ReactSC in terms of both

delay reduction and cost savings.

Thirdly, we compare BATS with PerfOpt. Fig. 5.4(a) shows that although PerfOpt

takes 4.4% lower average delay, its resulting cost is 16.8% higher than the user specified

budget. This is mainly because PerfOpt only focuses on minimizing the delay without

considering budget constraint. The achieved delays of BATS and PerfOpt are 520ms and

543ms, respectively. The additional 23 ms delay does not change the human perception

of the web performance, as shown in prior study [85]. Moreover, PerfOpt assumes perfect

118

0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Normalized Budget

A
ve

ra
ge

 D
el

ay
 (

se
c)

BATS
EqualSC
OptOffline

Figure 5.6: Impact of users budget.

short-term prediction information that may not be available in practice, while BATS only

requires a simple predictor as described in Section 5.4.2. In summary, BATS satisfies the

budget constraint while achieving a similar delay performance.

Finally, we compare BATS with the optimal offline algorithm OptOffline. Fig. 5.4(a)

shows that the average delay of BATS is very close to OptOffline (with a difference less

than 4%), while Fig. 5.4(b) shows that the cost is almost the same. The results demon-

strate the effectiveness of BATS: it only uses the estimated workload of the next time

slot, it already performs almost as well as the optimal offline autoscaler that requires the

complete future prediction.

Impact of user budget

We study how user budget affects the behavior of BATS and other benchmarks described

earlier. Results show that the delay produced by BATS is never more than 10% compared

to that of OptOffline for different users budget, and it is always smaller than EqualSC. We

do not show the results of ReactSC and PerfOpt since they are budget-unaware and their

performance is independent of the user budget.

We first describe the choice of our budget amount that will be used to benchmark

the comparison between BATS and other algorithms. The highest budget value is chosen

119

0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

V

A
ve

ra
ge

 D
el

ay
 (

se
c)

BATS(57 %)
BATS(77 %)
BATS(92 %)
PerfOpt

(a) Delay versus V

0.2 0.4 0.6 0.8 1
2

4

6

8

10

V

T
ot

al
 C

os
t (

$)

BATS(57 %)
BATS(77 %)
BATS(92 %)
PerfOpt

(b) Total cost versus V

Figure 5.7: Impact of V on the delay and total cost.

based on the incurred cost of PerfOpt (i.e., always selecting the minimum number of VMs

such that resulting delay for each time slot is no greater than the predetermined delay

threshold dmin). We normalize the actual budget by dividing it by the highest budget.

Now, we discuss the impact of user budget with three observations. (1) As shown in

Fig. 5.6, the less budget, the higher delay, which matches our expectation. (2) The delay

is reduced relatively more rapidly as the budget increases from 55% to 75%, and the de-

lay reduction slows down with further increase of user budget. Under a low budget, few

VM instances are used in most of the time slots, resulting in long request waiting time.

The long waiting time can be effectively reduced by adding more VM instances with ad-

ditional budget. However, when the budget increases further, the waiting time becomes

smaller and the request execution time dominates the total delay. At this stage, the delay

reduction by adding more VMs becomes smaller. (3) The delay produced by BATS is not

more than 10% compared to the offline optimal for any budget constraint in the experi-

ment, and it is always less than that of EqualSC. This shows the robust performance of

BATS for all budget levels.

120

Delay-cost tradeoff

This experiment discusses how the value of delay-cost parameter V affects BATS in terms

of the delay-cost tradeoff under various normalized budget constraints (indicated in the

parenthesis to right of “BATS” in Fig. 5.7). The result in Fig. 5.7 is consistent with our

analysis: with a greater V , BATS tends to minimize the delay and becomes less concerned

about the total cost. The weight of the budget deficit queue becomes less effective. If V

goes to infinity, BATS becomes purely performance-driven to minimize the average delay

while ignoring budget constraint, and hence reduces to budget-unaware PerfOpt. As a

result, the average delay becomes dmin. With a smaller V , the budget deficit queue plays a

more important role and BATS cares more about the cost. Fig. 5.7(b) shows that for very

small V , the delay becomes very large (close to dmax) and the cost is even less than the

specified budget. Note that the delay of the PerfOpt algorithm represents the minimum

delay that can be possibly achieved by any algorithm. As shown in Fig. 5.7, when V ≥

0.4, the average delay achieved by BATS is fairly close to dmin, while still satisfying

the budget constraint. At this point, BATS perfectly balances between performance and

budget constraint. Section 5.6.4 shows how BATS adapts V autonomously.

5.6 Simulation Study

This section presents simulation results of BATS, which complement the implementation

results and evaluate other important aspects of an autoscaling algorithm. We first validate

our simulator by comparing the simulation results with the implementation results. Sec-

ondly, we test the effectiveness and efficiency of BATS by scaling a workload requiring

a few hundred VMs, and evaluating both average and tail latency. Moreover, we show

that BATS (1) decides the delay-cost parameter V autonomously, (2) builds and adapts

121

10 20 30 40

0.5

1

1.5

Time Slot

A
ve

ra
ge

 D
el

ay
 (

se
c)

BATS
BATS(Sim)

(a) Avg. delay

10 20 30 40
0

2

4

6

8

10

Time Slot

T
ot

al
 C

os
t (

$)

BATS
BATS(Sim)

(b) Total cost

10 20 30 40

0.5

1

1.5

Time Slot

In
st

. D
el

ay
 (

se
c)

BATS
BATS(Sim)

(c) Inst. delay

10 20 30 40
0

0.2

0.4

0.6

0.8

Time Slot

In
st

an
ta

ne
ou

s
C

os
t (

$)

BATS
BATS(Sim)

(d) Inst. cost

Figure 5.8: Simulator validation.

the delay lookup table online, without requiring user inputs and with negligible impact on

performance and cost, and (3) is robust to prediction errors.

5.6.1 Simulator Overview and Validation

We develop a discrete-event based simulator based on CloudSim [20] that supports mod-

eling and simulation of large-scale cloud computing environments. Our simulator models

a set of virtual machines and arrival jobs, as well as the autoscaling algorithms that con-

nect them.

122

We validate our simulator against the system experiments and show the results in Fig.

5.8. We keep all the simulation settings and parameter values the same as the system

experiment for the validation purpose. Fig. 5.8(a) and Fig. 5.8(b) show that both the

average delay and cost of the simulated results are very close to the experimental results

(relative difference is less than 1%). Furthermore, even the instantaneous delay and cost

(Fig. 5.8(c) and Fig. 5.8(d)) are quite similar. Therefore, we conclude that the simulation

results closely follow the system implementation results, validating our simulator.

5.6.2 Experimental Setup

We create a virtualized data center, where each server has 6 CPU cores and 16GB of

RAM. Each VM has one core and 1024MB of RAM. Our simulator has a workload gen-

erator that mimics the RUBiS workload generator. We evaluate BATS using the workload

trace from Florida International University, shown in Fig. 5.2(b). We obtain this trace by

profiling the web server usage logs from January 1 to January 31, 2012.

Our simulation uses the following default settings unless specified otherwise. We

set the desired average delay dmin = 400 ms, and the maximum tolerable average delay

dmax = 1500 ms. The cost per VM is $0.02. We model a budget period of 1 month, and a

total budget of $764.

5.6.3 Optimizing Average and Tail Delay

We compare BATS to the benchmark algorithms defined in Section 5.5.2. Fig. 5.9(a) and

Fig. 5.9(b) compare the cumulative average delay and total cost of BATS, respectively.

The results in Fig. 5.9 show that BATS outperforms other online algorithms. These results

are rather consistent with the implementation results in Fig. 5.4, and hence, we skip the

detailed discussion.

123

200 400 600

0.5

1

1.5

Time Slot

A
ve

ra
ge

 D
el

ay
 (

se
c)

BATS
EqualSC
PerfOpt
ReactSC
OptOffline

(a) Average delay.

 0

 300

 600

 900

 1200

 1500

T
o
ta

l
C

o
s
t
($

)

Budget

BATS
EqualSC
PerfOpt

ReactSC
OptOffline

(b) Total cost.

100 200 300
0

50

100

150

200

Time Slot

T
ot

al
 V

M

(c) Total VM instances of BATS.

Figure 5.9: Average delay comparison with other algorithms.

200 400 600

1

2

3

Time Slot

95
th

 P
er

c.
 D

el
ay

BATS
EqualSC
PerfOpt
ReactSC
OptOffline

 0

 500

 1000

 1500

 2000

 2500

T
o
ta

l
C

o
s
t
($

)

Budget

BATS
EqualSC
PerfOpt

ReactSC
OptOffline

Figure 5.10: Tail delay comparison with other algorithms.

124

We also compare the performance of BATS in terms of 95th-percentile delay. Here we

set dmin = 600 ms and dmax = 1500 ms, both in terms of 95th-percentile delay. Fig 5.10

shows that BATS consistently outperforms the 3 online algorithms and achieves close-

to-optimal performance while satisfying budget constraint. The 95th percentile delay of

BATS is 96% and 5% lower than EqualSC and ReactSC, respectively. ReactSC and Per-

fOpt violate the budget constraint and incur 24% more cost than the specified budget.

Moreover, the simulation is conducted to autoscale an application using more than

100 VMs (Fig. 5.9(c)). BATS takes less than 3ms to compute the allocation at each time

slot. We also test BATS to solve problems with a few hundred VMs, and it takes less than

15ms, demonstrating the efficiency and scalability of BATS on solving large problems.

5.6.4 Choosing Delay-Cost Parameter V Autonomously

To evaluate the effectiveness of our proposed rule in Eqn. 5.28 for autonomously updating

the cost-delay parameter V , we introduce a variant of BATS algorithm called BATS-x

which starts with an initial V value of x. The adaptation rate β in Eqn. 5.28 is set to

15, and V is adjusted after every 6 time slot. Fig. 5.11(a) shows that even if BATS

starts with a very large or small value of V , it gradually converges and satisfies budget

constraint. For example, the desired value of V for this workload is around 5, which can

be measured empirically. Fig. 5.11(b) shows that when BATS-100 starts with an initial

V of 100, it self-adapts and eventually becomes close the desired V value. As shown

in Fig. 5.11(a), the corresponding delay till 360th time slot is less than that of BATS

because of higher V values. During these time slots, the incurred cost of BATS-100 is

higher than the reference budget. However, the V of BATS-100 continues to decrease

until average cost per slot becomes higher than average allocated budget per slot. Thus,

BATS-100 can dynamically adjust V without requiring any user input. While adapting V ,

the resulting delay of BATS-100 for the whole budgeting period is only 3.6% higher than

125

200 400 600

0.5

1

1.5

Time Slot

A
ve

ra
ge

 D
el

ay
 (

se
c)

BATS
BATS−100
BATS−1
BATS−0.001

(a) Average delay.

200 400 600
0

50

100

150

Time Slot

V

BATS
BATS−100

(b) BATS-100.

200 400 600
0

5

10

15

20

Time Slot

V

BATS
BATS−1

(c) BATS-1.

200 400 600
0

5

10

15

20

Time Slot

V

BATS
BATS−0.001

(d) BATS-0.001.

Figure 5.11: Adaptive V.

that of BATS. We also study the behavior of adaptive BATS in case a user starts with a

very small value of V . Fig 5.11(a) shows that the average delay of BATS-0.001 for the

whole budgeting period is 12% higher than that of BATS. These results show that BATS

dynamically adapts V , robust to the setting of the initial parameters.

5.6.5 Learning Delay Lookup Table Online

Delay lookup table is an important input to BATS, which maps load to delay (Section

5.3.1). This table can be calibrated offline, as shown in Section 5.5.1. Now, we show how

to learn the delay lookup table online.

126

200 400 600

0.5

1

1.5

Time Slot

A
ve

ra
ge

 D
el

ay
 (

se
c)

BATS
BATS−Queue

(a) Average delay.

20 40 60 80

0.5

1

1.5

Time Slot

In
st

an
ta

ne
ou

s
D

el
ay

 (
se

c)

BATS
BATS−Queue

(b) Instantaneous delay.

Figure 5.12: Delay performance with adaptive delay lookup table.

To populate initial values in the delay lookup table, we use queueing-theoretic models

as a widely-used good approximation for characterizing delay performance [66, 91]. For

example, we can approximate the VM service process as an M/M/1 queue, for which

average delay only depends on two inputs: (1) service rate, i.e., the number of requests

that can be processed by a VM in a unit time; and (2) request arrival rate. In our study, we

can obtain the service rate by pre-running the cloud service on a VM for a short period of

time and measuring the saturated throughput under heavy loads. Then, the delay lookup

table is fulfilled where each element corresponds to a different combination of arrival rate

and number of VM instances. At runtime, the table is updated continuously using the

observed delay.

Fig. 5.12(a) shows that the average delay of starting from a delay lookup table initially

populated with an M/M/1 queueing model (BATS-Queue) is only 1.5% higher than that

of BATS while satisfying the budget constraint. By using this simple approach to update

lookup table online, BATS learns the delay values autonomously and adapts to workload

variations during the budget period.

127

200 400 600

0.5

1

1.5

2

Time Slot

A
ve

ra
ge

 D
el

ay
 (

se
c)

BATS−All
BATS−ES
BATS−SM
BATS−MED

200 400 600
0

200

400

600

800

1000

Time Slot

T
ot

al
 C

os
t (

$)

BATS−All
BATS−ES
BATS−SM
BATS−MED

Figure 5.13: Impact of horizontal and vertical scaling.

5.6.6 Selecting Among Different Types of VMs.

We study how BATS performs with both vertical scaling (scaling up/down) and horizontal

scaling (scaling in/out). Vertical scaling means increasing (up) or decreasing (down) the

amount of resources (e.g., virtual CPU, memory and storage) allocated to a VM instance.

Horizontal scaling means adding (out) or reducing (in) the number of VM instances. In

practice, CSPs often offer multiple types and sizes of VMs to meet varying demand of

applications. This experiment shows that, using the delay lookup tables of the application

running on different types of VMs, BATS selects the proper VM instance type to mini-

mize cost and average delay. To build the delay lookup tables of using different types of

VMs, we can either calibrate the application performance offline or model the application

performance online as suggested by prior work [50, 61, 109].

We compare the performance of BATS-All — which can use any type of VMs, sup-

porting both vertical and horizontal scaling — with BATS-ES, BATS-SM and BATS-

MED, which use only extra small, small and medium VM instances respectively. Fig.

5.13(a) shows that the performance of BATS-All is exactly the same as the performance

of BATS-ES. This is because, for the modeled workload, the extra small VM instances

have the highest cost effectiveness: the cost of small VM instance is 4 time higher than

128

0 10 20 30 40

0.5

1

1.5

Number of Reserved Instance

A
ve

ra
ge

 D
el

ay
 (

se
c)

BATS−Res(80%)
BATS−Res(70%)
BATS−Res(65%)

Figure 5.14: Impact of Reserved Instances on Average delay.

that of an extra small VM instance while the performance gain for RUBiS workload is

only 3 times. Similarly, for medium VM instances, cost is 8 times higher while the perfor-

mance gain is 5 times. Because of the cost effectiveness of the extra small VM instances,

BATS-All always chooses it. The cost reduction of BATS-All is 82% and 100% com-

pared with the BATS-SM and BATS-MED, respectively. Thus by using the delay lookup

tables, BATS chooses the right type and number of the VM instances for the application,

supporting both vertical and horizontal scaling.

5.6.7 Supporting Reserved Instances.

We explore how reserve instances can be used to improve delay performance while sat-

isfying the budget constraint. We discuss how to incorporate reserved instances into our

model in section 5.3.5. Reserved instances are cheaper than on-demand instances. For

example, Azure provides 20% to 27% discounts depending on the purchase volume for 6

month purchase plans. Thus, users can leverage the lower price of reserve instances and

save costs while achieving delay reduction. We introduce a variation of BATS algorithm

BATS-Res which reserves Extra Small VM instances at the beginning of the budgeting

period and uses rest of the budget for autoscaling. We consider 3 budget levels for BATS-

Res: 80%, 70% and 65% of the reference budget.

129

200 400 600

0.5

1

1.5

Time Slot

A
ve

ra
ge

 D
el

ay
 (

se
c)

PredErr−0%
PredErr−10%
PredErr−20%
PredErr−30%

(a) Prediction error.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Total Max. Hourly

A
v
e
ra

g
e
 D

e
la

y
 (

s
e
c
) BATS

BATS-Hourly
BATS-Rem

(b) Reference budget z(t)

Figure 5.15: Sensitivity study.

Fig. 5.14 shows how the number of reserved instances affects average delay under

different budget levels. The main observation here is for any budget level, the average

delay is minimized if certain amount of VM instances are reserved. For example, when

the budget level is 70% of the reference budget, the maximum delay reduction is 13.5%

when 30 instances are reserved compared with that of no reserved instances. This reason

behind is intuitive. An appropriate number of reserved instances can save costs while

delivering the same computing power as on-demand instances. The saved costs can be

used by autoscaler when the workload is high. The challenge is to decide the amount of

reservation such that it becomes cost effective in the long run. If too many instances are

reserved, they may be under-utilized at the lightly-loaded interval of the budgeting period.

In such case, despite being cheaper, they are wasted. Determining an optimal number of

reservation requires long-term prediction information and studied in [16, 47, 108], which

is beyond the scope of our work. However, once the reserved instances and the remaining

budget are decided, BATS can incorporate these information and autoscale the dynamic

instances to meet the remaining budget and minimize average delay.

130

5.6.8 Sensitivity Study

Prediction errors: As BATS leverages the hour-ahead workload prediction, we evaluate

how BATS performs in the presence of prediction errors. We consider four cases where

the workload predictor introduces prediction errors of 0%,±10%, ±20% and ±30%.

Fig.5.15(a) shows that, compared to 0% prediction error, the resulting delay increases

by 0.9%, 2.8% and 12.3% for ±10%, ±20% and ±30% prediction errors, respectively.

Even with high prediction errors, the performance of BATS is still quite robust. More-

over, in practice, the reactive part of BATS also compensates for the prediction error and

ensure that the delay does not violate user requirements. Thus, BATS can be successfully

applied even when the workload prediction is not perfect.

Reference budget z(t): We explore the impact of different choices of reference bud-

get z(t) in Eqn. 5.8. In our above studies, the reference budget z(t) at time slot t in

BATS is obtained by dividing the whole budget evenly to each time slot. For compari-

son purposes, we consider two variants of BATS, where we set reference budget z(t) by:

(1)BATS-Rem: evenly dividing the remaining budget at time slot t; (2) BATS-Hourly:

dividing the budget to each time slot according to the average workload arrival rate ob-

tained from past data. Fig. 5.15(b) shows that while choosing z(t) differently, the delay

performance remains relatively the same with less than 2% difference. Intuitively, the

reference budget z(t) in Eqn. 5.8 only directly impacts the runtime budget deficit queue

dynamics, thereby not being enforced as runtime budget constraint or directly impacting

the autoscaling decision. Thus, in the long-term, as long as the total budget is the same,

z(t) has a negligible impact on the delay performance, demonstrating the robustness of

BATS against the choice of z(t).

131

5.7 Summary

This chapter provides a full-fledged autoscaling solution, BATS, to optimize delay per-

formance while meeting users’ long-term budget constraints using only past and instan-

taneous workload information. Analytically, we proved that the autoscaling algorithm of

BATS achieves a close-to-optimal performance even compared to the optimal solution that

has complete offline information. We implemented BATS autoscaler as an automated ser-

vice for cloud applications on Windows Azure, and we conducted extensive experimental

and simulation studies. The empirical results further demonstrate the effectiveness, effi-

ciency, autonomicity, and robustness of BATS on a wide range of scenarios with various

workloads and scaling capabilities.

132

CHAPTER 6

CONCLUSION

In this chapter, we provide a brief summary of the dissertation and present some possible

direction for future work.

6.1 Summary of the Dissertation

In the view of increasing data center carbon emission and energy consumption, this dis-

sertation proposes some novel approaches to improve sustainability of data center oper-

ation. In the first part of the dissertation, we present how to cap and reduce the carbon

emission of a self-managed data center to “net-zero” level. We design an online resource

management algorithm, CNDC, to minimize the operational cost of a data center with

demand-responsive electricity prices while achieving carbon neutrality for data centers,

in the presence of time-varying workloads and intermittent renewable energy supplies.

We extend the existing Lyapunov optimization technique by enabling dynamic adjust-

ment of the control parameter (which governs the tradeoff between cost minimization and

the potential deviation from carbon neutrality in our study) while still being able to offer

an analytical performance bound. We perform both trace-based simulation and system

experimentation to evaluate CNDC and demonstrate its effectiveness

In the next part, we extend our problem of carbon emission reduction for a hybrid

data center infrastructure that includes both self-managed and colocation data centers. We

identify the problem and challenges of minimizing the carbon emission in a hybrid data

center infrastructure (which are very common in practice for supporting large organiza-

tions’ computing needs). We propose a novel and distributed geographical job scheduling

algorithm to reduce carbon footprint and electricity cost of hybrid data centers. Our ex-

133

tensive simulation studies and system experiments show the effectiveness of our proposed

solution.

Finally, we discuss how to address sustainability from a cloud service user’s side.

We build a fully-automated BATS autoscaler as a user-friendly service for running ap-

plications on Windows Azure. BATS takes care of the performance monitoring, resource

planning, self-adjustment, and scaling automatically; it only needs user inputs on their de-

sired delay performance and budget, along with some basic application information. We

formally prove that the BATS autoscaling algorithm produces a close-to-optimal delay

performance compared to the optimal algorithm with offline information. We evaluate

the performance of BATS by running RUBiS benchmark workloads [89] in Windows

Azure Cloud Service, as well as using extensive simulations.

Many organizations (e.g., Apple, Facebook and Google) are continuously looking

forward to reduce their energy consumption and carbon emission to mitigate the pressure

from utility companies, qualify for government incentives, and improve their public im-

age. Our work has a potential to improve carbon emission by thousands of tons, reduce

energy consumption, and save millions of dollars by cutting the electricity cost of an IT

organization.

6.2 Future Direction

In the first part of the dissertation, we discuss how to reduce carbon emission and achieve

carbon neutrality for a self-managed data center using Lyapunov optimization technique.

Achieving carbon neutrality in geographically distributed data centers can be a challeng-

ing future work. It will be interesting to see how Lyapunov optimization works in a

distributed environment. Furthermore, our model in this part focuses on a single-tier web

application, and it will be a challenging future direction to extend it for a multi-tier web

application.

134

In the second part of the dissertation, we present how to reduce the carbon emission

of a hybrid data center infrastructure. Resource management and workload scheduling

in a hybrid data center infrastructure is largely an unexplored field. There are many

opportunities to extend the work presented in this dissertation from an organization’s

perspective.

1. Optimizing the organization’s bid collectively, in multiple colocation data centers

when participating in emergency demand-response program, is an interesting fu-

ture work. Note that, in emergency demand response (EDR) program, the utility

provider offers financial incentives to the businesses that reduce their electricity

consumption upon receiving a signal.

2. Achieving carbon neutrality in hybrid infrastructure is also a potential direction. It

involves modification and extension of Lyapunov optimization technique such for

a distributed environment.

3. Integrating emergency demand response program and temperature aware workload

placement in a hybrid data center environment is another possible direction. In

self-managed data centers, the organization can turn on idle servers and adjust the

cooling temperature to reduce energy consumption. On the other hand, the operator

manages the cooling system in the colocation facility and have no control over

the tenants server. The colocation operator may increase cooling temperature to

reduce energy consumption, but it will cause overheating of other tenant’s servers.

Thus, traditional approaches for temperature-aware workload placement can not be

applied to a hybrid data center infrastructure, mainly because of the colocation part.

4. Our study focuses on delay-sensitive interactive workloads. A possible extension is

to consider delay-tolerant batch workloads. Unlike interactive jobs, batch jobs can

be deferred as long as they complete before the deadline. This presents a unique

135

opportunity to reduce operational costs, carbon emission, and energy consumption

by delaying a batch job until a time slot which has lower electricity price, higher

carbon efficiency, and higher cooling efficiency, respectively. However, deferring

the batch job processing makes the resource management decision quite challeng-

ing as it couples multiple time slots together. Without knowing or predicting the

future information accurately, delaying batch jobs from the current slot to next may

overload subsequent slots.

In the final part of the dissertation, we address economical and environmental sus-

tainability issues from a cloud service user’s perspective. Our study focuses on a single-

tier web application. An exciting future work is to extend it for a multi-tier application

which presents significantly higher challenges for modeling delay and performance. Fur-

thermore, reducing carbon emission directly by predicting the CSP’s VM placement and

corresponding carbon emission can be another direction.

136

BIBLIOGRAPHY

[1] Amazon ec2. http://aws.amazon.com/autoscaling/.

[2] Azure cloud service. http://www.windowsazure.com/en-us/manage/

services/cloud-services/what-is-a-cloud-service/.

[3] California ISO, http://www.caiso.com/.

[4] Rackspace. http://www.rackspace.com/.

[5] Rightscale. http://www.rightscale.com/.

[6] Scarl. http://www.scalr.com/.

[7] What epa is doing about climate change. https://www3.epa.gov/

climatechange/EPAactivities.html.

[8] Where carbon is taxed. http://www.carbontax.org/

where-carbon-is-taxed/.

[9] Windows azure. http://www.windowsazure.com/.

[10] Amazon ec2 spot instances, http://aws.amazon.com/ec2/spot-instances/.

[11] Hrishikesh Amur, Ripal Nathuji, Mrinmoy Ghosh, Karsten Schwan, and Hsien-
hsin S Lee. Idlepower: Application-aware management of processor idle states. In
In Proceedings of MMCS, in conjunction with HPDC?08, 2008.

[12] Apple. Environmental responsibility report, 2014, http://images.apple.com/
environment/reports/docs/Apple_Environmental_Responsibility_

Report_2014.pdf.

[13] AT&T. Network latency. http://ipnetwork.bgtmo.ip.att.net/pws/

network_delay.html.

[14] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.
Computer, (12):33–37, 2007.

[15] W Lloyd Bircher and Lizy K John. Complete system power estimation using
processor performance events. IEEE Transactions on Computers, 61(4):563–577,
2012.

137

http://aws.amazon.com/autoscaling/
http://www.windowsazure.com/en-us/manage/services/cloud-services/what-is-a-cloud-service/
http://www.windowsazure.com/en-us/manage/services/cloud-services/what-is-a-cloud-service/
http://www.caiso.com/
http://www.rackspace.com/
http://www.rightscale.com/
http://www.scalr.com/
https://www3.epa.gov/climatechange/EPAactivities.html
https://www3.epa.gov/climatechange/EPAactivities.html
http://www.carbontax.org/where-carbon-is-taxed/
http://www.carbontax.org/where-carbon-is-taxed/
http://www.windowsazure.com/
http://aws.amazon.com/ec2/spot-instances/
http://images.apple.com/environment/reports/docs/Apple_Environmental_Responsibility_Report_2014.pdf
http://images.apple.com/environment/reports/docs/Apple_Environmental_Responsibility_Report_2014.pdf
http://images.apple.com/environment/reports/docs/Apple_Environmental_Responsibility_Report_2014.pdf
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

[16] Christian Bodenstein, Markus Hedwig, and Dirk Neumann. Strategic decision
support for smart-leasing infrastructure-as-a-service. ICIS, 2011.

[17] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[18] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends® in Machine Learning, 3(1):1–122, 2011.

[19] Ulrich Brenner. A faster polynomial algorithm for the unbalanced hitchcock trans-
portation problem. Operations Research Letters, 36(4):408–413, 2008.

[20] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1):23–50, 2011.

[21] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and
Feng Zhao. Energy-aware server provisioning and load dispatching for connection-
intensive internet services. In NSDI, 2008.

[22] Data Center Knowledge. Colos spend more on data centers as enterprises tighten
purse strings. http://www.datacenterknowledge.com/.

[23] Nan Deng, Christopher Stewart, Daniel Gmach, Martin Arlitt, and Jaimie Kelley.
Adaptive green hosting. In ICAC, 2012.

[24] Nan Deng, Christopher Stewart, Daniel Gmach, and Martin F. Arlitt. Policy and
mechanism for carbon-aware cloud applications. In NOMS, 2012.

[25] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F Wenisch, and Ricardo
Bianchini. Memscale: active low-power modes for main memory. ACM SIGARCH
Computer Architecture News, 39(1):225–238, 2011.

[26] Yixin Diao, Joseph L Hellerstein, Sujay Parekh, Rean Griffith, Gail E Kaiser, and
Dan Phung. A control theory foundation for self-managing computing systems.
JSAC, 23:2213–2222, 2005.

[27] Tamara DiCaprio. Becoming carbon neutral: How Microsoft is striving to become
leaner, greener, and more accountable. Microsoft Whitepaper, June 2012.

138

http://www.datacenterknowledge.com/

[28] Enaxis Consulting. Pricing data center co-location ser-
vices, 2009, http://enaxisconsulting.com/downloads/2/

67f7fb873eaf29526a11a9b7ac33bfac/1317636458_data_center_

pricing.pdf.

[29] ENERGY.GOV. Demand response. http://energy.gov/oe/

technology-development/smart-grid/demand-response.

[30] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and David Patter-
son. Statistics-driven workload modeling for the cloud. In ICDEW, 2010.

[31] A. Gandhi, Yuan Chen, D. Gmach, M. Arlitt, and M. Marwah. Minimizing data
center sla violations and power consumption via hybrid resource provisioning. In
IGCC, 2011.

[32] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. Adap-
tive, model-driven autoscaling for cloud applications. In ICAC 14, 2014.

[33] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. Optimal
power allocation in server farms. In SIGMETRICS, 2009.

[34] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch.
Autoscale: Dynamic, robust capacity management for multi-tier data centers. ACM
Trans. Comput. Syst., 30(4):14:1–14:26, November 2012.

[35] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch.
Autoscale: Dynamic, robust capacity management for multi-tier data centers. ACM
Transactions on Computer Systems (TOCS), 30(4):14, 2012.

[36] Peter Xiang Gao, Andrew R. Curtis, Bernard Wong, and Srinivasan Keshav. It’s not
easy being green. SIGCOMM Comp. Comm. Rev., 42(4):211–222, August 2012.

[37] Saurabh Kumar Garg, Chee Shin Yeo, Arun Anandasivam, and Rajkumar Buyya.
Environment-conscious scheduling of hpc applications on distributed cloud-
oriented data centers. Journal of Parallel and Distributed Computing, 71(6):732–
749, 2011.

[38] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, Guillaume Belrose, Tom Turic-
chi, and Alfons Kemper. An integrated approach to resource pool management:
Policies, efficiency and quality metrics. In DSN, 2008.

139

http://enaxisconsulting.com/downloads/2/67f7fb873eaf29526a11a9b7ac33bfac/1317636458_data_center_pricing.pdf
http://enaxisconsulting.com/downloads/2/67f7fb873eaf29526a11a9b7ac33bfac/1317636458_data_center_pricing.pdf
http://enaxisconsulting.com/downloads/2/67f7fb873eaf29526a11a9b7ac33bfac/1317636458_data_center_pricing.pdf
http://energy.gov/oe/technology-development/smart-grid/demand-response
http://energy.gov/oe/technology-development/smart-grid/demand-response

[39] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. Capacity
management and demand prediction for next generation data centers. In ICWS,
2007.

[40] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive elastic resource
scaling for cloud systems. In CNSM, 2010.

[41] Google. Google’s green PPAs: What, how, and why, http://static.

googleusercontent.com/external_content/untrusted_dlcp/www.

google.com/en/us/green/pdfs/renewable-energy.pdf.

[42] Sriram Govindan, Di Wang, Anand Sivasubramaniam, and Bhuvan Urgaonkar.
Leveraging stored energy for handling power emergencies in aggressively provi-
sioned datacenters. In ASPLOS, 2012.

[43] Greenpeace. Clicking clean: How companies are creating the green
internet. http://www.greenpeace.org/usa/global/usa/planet3/pdfs/

clickingclean.pdf.

[44] Greenpeace. How dirty is your data? a look at the energy choices that power cloud
computing, 2011.

[45] Brian Guenter, Navendu Jain, and Charles Williams. Managing cost, performance,
and reliability tradeoffs for energy-aware server provisioning. In INFOCOM, 2011.

[46] Y. Guo, Z. Ding, Y. Fang, and D. Wu. Cutting down electricity cost in internet data
centers by using energy storage. In Globecom, 2011.

[47] Yu-Ju Hong, Jiachen Xue, and Mithuna Thottethodi. Dynamic server provisioning
to minimize cost in an iaas cloud. In ACM SIGMETRICS, 2011.

[48] Chung-hsing Hsu and Wu-chun Feng. A power-aware run-time system for high-
performance computing. In Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 1. IEEE Computer Society, 2005.

[49] International Energy Agency. Global energy-related emissions of carbon dioxide
stalled in 2014. http://www.iea.org.

[50] Alexandru Iosup, Simon Ostermann, M Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick HJ Epema. Performance analysis of cloud computing services
for many-tasks scientific computing. TPDS, 22(6):931–945, 2011.

140

http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/green/pdfs/renewable-energy.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/green/pdfs/renewable-energy.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/green/pdfs/renewable-energy.pdf
http://www.greenpeace.org/usa/global/usa/planet3/pdfs/clickingclean.pdf
http://www.greenpeace.org/usa/global/usa/planet3/pdfs/clickingclean.pdf
http://www.iea.org

[51] Waheed Iqbal, Matthew N Dailey, David Carrera, and Paul Janecek. Adaptive
resource provisioning for read intensive multi-tier applications in the cloud. Future
Generation Computer Systems, 27(6):871–879, 2011.

[52] M. A. Islam, S. Ren, N. Pissinou, H. Mahmud, and A. Vasilakos. Distributed
resource management in data centers with temperature constraint. In IGCC, 2013.

[53] Mohammad Islam, Shaolei Ren, A. Hasan Mahmud, and Gang Quan. Online en-
ergy budgeting for cost minimization in virtualized data center. IEEE Transactions
on Services Computing, PP(99):1–1, 2015.

[54] Mohammad Islam, Shaolei Ren, Xiaorui Wang, et al. Greencolo: A novel incentive
mechanism for minimizing carbon footprint in colocation data center. In IGCC,
2014.

[55] Mohammad A. Islam, Hasan Mahmud, Shaolei Ren, and Xiaorui Wang. Paying to
save: Reducing cost of colocation data center via rewards. In IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA), 2015.

[56] Mohammad A Islam and Shaolei Ren. A new perspective on energy accounting in
multi-tenant data centers. In CoolDC 16, 2016.

[57] Mohammad A Islam, Shaolei Ren, Niki Pissinou, A. Hasan Mahmud, and Athana-
sios V Vasilakos. Distributed temperature-aware resource management in virtual-
ized data center. Sustainable Computing: Informatics and Systems, 2014.

[58] Mohammad A Islam, Xiaoqi Ren, Shaolei Ren, Adam Wierman, and Xiaorui
Wang. A market approach for handling power emergencies in multi-tenant data
center. In HPCA, 2016.

[59] Wonyoung Kim, Meeta S Gupta, Gu-Yeon Wei, and David Brooks. System level
analysis of fast, per-core dvfs using on-chip switching regulators. In IEEE 14th
International Symposium on High Performance Computer Architecture, HPCA.,
pages 123–134. IEEE, 2008.

[60] Data Center Knowledge. Special report: The world?s
largest data centers. http://www.datacenterknowledge.com/

special-report-the-worlds-largest-data-centers/.

[61] Sajib Kundu, Raju Rangaswami, Kaushik Dutta, and Ming Zhao. Application
performance modeling in a virtualized environment. In HPCA, 2010.

141

http://www.datacenterknowledge.com/special-report-the-worlds-largest-data-centers/
http://www.datacenterknowledge.com/special-report-the-worlds-largest-data-centers/

[62] Latisys. Is 2015 finally the year of the cloud? http://www.latisys.com/.

[63] Brian Lavalle. Undertaking the challenge to reduce the data center carbon footprint.
http://www.datacenterknowledge.com.

[64] Kien Le, Ricardo Bianchini, Thu D. Nguyen, Ozlem Bilgir, and Margaret
Martonosi. Capping the brown energy consumption of internet services at low
cost. In IGCC, 2010.

[65] Kien Le, Ricardo Bianchini, Jingru Zhang, Yogesh Jaluria, Jiandong Meng, and
Thu D. Nguyen. Reducing electricity cost through virtual machine placement in
high performance computing clouds. SuperComputing, 2011.

[66] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic right-sizing for
power-proportional data centers. In INFOCOM, 2011.

[67] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui
Wang, Manish Marwah, and Chris Hyser. Renewable and cooling aware workload
management for sustainable data centers. In SIGMETRICS PER, volume 40, pages
175–186, 2012.

[68] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan L.H.
Andrew. Greening geographical load balancing. In SIGMETRICS, 2011.

[69] Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Niangjun Chen.
Data center demand response: avoiding the coincident peak via workload shifting
and local generation. In SIGMETRICS, 2013.

[70] Xingjian Lu, Fanxin Kong, Jianwei Yin, Xue Liu, Huiqun Yu, and Guisheng
Fan. Geographical job scheduling in data centers with heterogeneous demands
and servers. In CLOUD. IEEE, 2015.

[71] A. Hasan Mahmud, Yuxiong He, and Shaolei Ren. Bats: budget-constrained au-
toscaling for cloud performance optimization. In ACM SIGMETRICS Performance
Evaluation Review, volume 42, pages 563–564, 2014.

[72] A. Hasan Mahmud, Yuxiong He, and Shaolei Ren. BATS: budget-constrained au-
toscaling for cloud performance optimization. In IEEE 23rd International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2015.

142

http://www.latisys.com/
http://www.datacenterknowledge.com

[73] A. Hasan Mahmud and S. S. Iyengar. A distributed framework for carbon and cost
aware geographical job scheduling in a hybrid data center infrastructure. In The
13th IEEE International Conference on Autonomic Computing (ICAC), 2016.

[74] A. Hasan Mahmud and Shaolei Ren. Online capacity provisioning for carbon-
neutral data center with demand-responsive electricity prices. ACM SIGMETRICS
Performance Evaluation Review, 41(2):26–37, 2013.

[75] A. Hasan Mahmud and Shaolei Ren. Online capacity provisioning for carbon-
neutral data centers with demand-responsive electricity prices. In IFIP Perfor-
mance, 2013.

[76] A. S. M. Hasan Mahmud and S. Ren. Dynamic server provisioning for carbon-
neutral data centers. In 42nd International Conference on Parallel Processing
(ICPP), 2013.

[77] A. S. M. Hasan Mahmud and Shaolei Ren. Online resource management for data
center with energy capping. In Feedback Computing, 2013.

[78] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Cost-and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds.
In SC, 2012.

[79] Ming Mao and M. Humphrey. Scaling and scheduling to maximize application
performance within budget constraints in cloud workflows. In IPDPS, 2013.

[80] Ming Mao, Jie Li, and M. Humphrey. Cloud auto-scaling with deadline and budget
constraints. In GRID, 2010.

[81] Markets and Markets. Global colocation market: Worldwide market forecasts and
analysis (2013 - 2018). http://www.marketsandmarkets.com.

[82] Stephen McCluer and Jean-Francois Christin. Comparing data center batteries,
flywheels, and ultracapacitors. APC Whitepaper, 2008.

[83] Nathan D. Mickulicz, Priya Narasimhan, and Rajeev Gandhi. To auto scale or not
to auto scale. In ICAC, 2013.

[84] H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia.
Autonomous demand side management based on game-theoretic energy consump-

143

http://www.marketsandmarkets.com

tion scheduling for the future smart grid. IEEE Trans. Smart Grid, 1(3):320–331,
December 2010.

[85] Fiona Fui-Hoon Nah. A study on tolerable waiting time: how long are web users
willing to wait? Behaviour & Information Technology, 23(3):153–163, 2004.

[86] National Renewable Energy Laboratory. National solar radiation data base.
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/hourly/

list_by_state.html.

[87] M. J. Neely. Stochastic Network Optimization with Application to Communication
and Queueing Systems. Morgan & Claypool, 2010.

[88] NRDC. Scaling up energy efficiency across the data center industry: Evaluating
key drivers and barriers. Issue Paper, 2014.

[89] OW2 Consortium. RUBiS: Rice University Bidding System. http://rubis.ow2.
org/.

[90] Darshan S. Palasamudram, Ramesh K. Sitaraman, Bhuvan Urgaonkar, and Rahul
Urgaonkar. Using batteries to reduce the power costs of internet-scale distributed
networks. In SoCC, 2012.

[91] N. U. Prabhu. Foundations of Queueing Theory. Kluwer Academic Publishers,
1997.

[92] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce
Maggs. Cutting the electric bill for internet-scale systems. In SIGCOMM, vol-
ume 39, pages 123–134, 2009.

[93] L. Rao, X. Liu, L. Xie, and Wenyu Liu. Reducing electricity cost: Optimization
of distributed internet data centers in a multi-electricity-market environment. In
INFOCOM, 2010.

[94] Chuangang Ren, Di Wang, Bhuvan Urgaonkar, and Anand Sivasubramaniam.
Carbon-aware energy capacity planning for datacenters. In MASCOTS, 2012.

[95] S. Ren, Y. He, S. Elnikety, and K. S. McKinley. Exploiting processor heterogeneity
in interactive services. In ICAC, 2013.

144

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/hourly/list_by_state.html
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/hourly/list_by_state.html
http://rubis.ow2.org/
http://rubis.ow2.org/

[96] S Ren and MA Islam. Colocation demand response: Why do i turn off my servers.
In ICAC, 2014.

[97] Shaolei Ren, Yuxiong He, and Fei Xu. Provably-efficient job scheduling for energy
and fairness in geographically distributed data centers. In ICDCS, 2012.

[98] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscaling in
the cloud using predictive models for workload forecasting. In CLOUD, 2011.

[99] Rizos Sakellariou, Henan Zhao, Eleni Tsiakkouri, and Marios D Dikaiakos.
Scheduling workflows with budget constraints. In Integrated Research in GRID
Computing, pages 189–202. 2007.

[100] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:
elastic resource scaling for multi-tenant cloud systems. In SoCC, 2011.

[101] Piyush Shivam, Shivnath Babu, and Jeffrey S Chase. Learning application models
for utility resource planning. In ICAC, 2006.

[102] Qihang Sun, Chuan Wu, Shaolei Ren, and Zongpeng Li. Fair rewarding in coloca-
tion data centers: Truthful mechanism for emergency demand response. In Inter-
national Symposium on Quality of Service, 2015.

[103] Uptime Institute. Data center industry survey, 2013, http://uptimeinstitute.
com/2013-survey-results.

[104] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam. Optimal power
cost management using stored energy in data centers. In SIGMETRICS, 2011.

[105] Steven VanRoekel. The FY14 President’s IT bud-
get: Innovate, deliver, protect. https://cio.gov/

the-fy14-presidents-it-budget-innovate-deliver-protect/.

[106] Di Wang, Chuangang Ren, Anand Sivasubramaniam, Bhuvan Urgaonkar, and
Hosam Fathy. Energy storage in datacenters: what, where, and how much? In
SIGMETRICS, 2012.

[107] Peijian Wang, Lei Rao, Xue Liu, and Yong Qi. D-pro: Dynamic data center oper-
ations with demand-responsive electricity prices in smart grid. IEEE Transactions
on Smart Grid, 3(4):1743–1754, December 2012.

145

http://uptimeinstitute.com/2013-survey-results
http://uptimeinstitute.com/2013-survey-results
https://cio.gov/the-fy14-presidents-it-budget-innovate-deliver-protect/
https://cio.gov/the-fy14-presidents-it-budget-innovate-deliver-protect/

[108] Wei Wang, Baochun Li, , and Ben Liang. To reserve or not to reserve: Optimal
online multi-instance acquisition in iaas clouds. In ICAC, 2013.

[109] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy. Pro-
filing and modeling resource usage of virtualized applications. In Middleware,
2008.

[110] Dan Xu, Xin Liu, and Bin Fan. Efficient server provisioning and offloading policies
for internet data centers with dynamic load-demand. Computers, IEEE Transac-
tions on, 64(3):682–697, 2015.

[111] Hong Xu and Baochun Li. Reducing electricity demand charge for data centers
with partial execution. In Proceedings of the 5th international conference on Fu-
ture energy systems, 2014.

[112] Yuan Yao, Longbo Huang, Abhihshek Sharma, Leana Golubchik, and Michael
Neely. Data centers power reduction: A two time scale approach for delay tolerant
workloads. In INFOCOM, 2012.

[113] Jia Yu and Rajkumar Buyya. Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms. Scientific Programming,
14:217–230, 2006.

[114] Liang Yu, Tao Jiang, and Yang Cao. Energy cost minimization for distributed inter-
net data centers in smart microgrids considering power outages. IEEE Transactions
on Parallel and Distributed Systems, 26(1):120–130, 2015.

[115] Qi Zhang, Ludmila Cherkasova, Guy Mathews, Wayne Greene, and Evgenia
Smirni. R-capriccio: A capacity planning and anomaly detection tool for enter-
prise services with live workloads. In Middleware. 2007.

[116] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Greenware: Greening cloud-scale
data centers to maximize the use of renewable energy. In Middleware, 2011.

[117] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Electricity bill capping for cloud-
scale data centers that impact the power markets. In ICPP, 2012.

[118] Jian Zhao, Hongxing Li, Chuan Wu, Zongpeng Li, Zhizhong Zhang, and Francis
Lau. Dynamic pricing and profit maximization for the cloud with geo-distributed
data centers. In INFOCOM. IEEE, 2014.

146

[119] Wenli Zheng, Kai Ma, and Xiaorui Wang. Exploiting thermal energy storage to
reduce data center capital and operating expenses. In HPCA, 2014.

[120] Z. Zhi, F. Liu, Y. Xu, R. Zou, H. Xu, J. C. S. Lui, and H. Jin. Carbon-aware load
balancing for geo-distributed cloud services. In MASCOTS, 2013.

[121] Zhi Zhou, Fangming Liu, Zongpeng Li, and Hai Jin. When smart grid meets geo-
distributed cloud: An auction approach to datacenter demand response. In INFO-
COM, 2015.

[122] Jun Zhu, Zhefu Jiang, and Zhen Xiao. Twinkle: A fast resource provisioning
mechanism for internet services. In INFOCOM, 2011.

147

VITA

A. S. M. HASAN MAHMUD

January 1, 1986 Born, Chandpur, Bangladesh

2003–2007 B.S., Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

2011–2014 M.S., Computer Science
Florida International University
Miami, Florida

2011–2016 Doctoral Candidate
Florida International University
Miami, Florida

PUBLICATIONS

A. Hasan Mahmud and S. S. Iyengar. A distributed framework for carbon and cost
aware geographical job scheduling in a hybrid data center infrastructure. In The 13th
IEEE International Conference on Autonomic Computing (ICAC), 2016.

A. Hasan Mahmud, Yuxiong He, and Shaolei Ren. BATS: budget-constrained au-
toscaling for cloud performance optimization. In IEEE 23rd International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2015.

Mohammad Islam, Shaolei Ren, A. Hasan Mahmud, and Gang Quan. Online energy
budgeting for cost minimization in virtualized data center. IEEE Transactions on Ser-
vices Computing, PP(99):1–1, 2015.

Mohammad A. Islam, Hasan Mahmud, Shaolei Ren, and Xiaorui Wang. Paying to
save: Reducing cost of colocation data center via rewards. In IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), 2015.

A. Hasan Mahmud, Yuxiong He, and Shaolei Ren. Bats: budget-constrained autoscal-
ing for cloud performance optimization. In ACM SIGMETRICS Performance Evalua-
tion Review, volume 42, pages 563–564, 2014. (Poster).

Mohammad A Islam, Shaolei Ren, Niki Pissinou, A. Hasan Mahmud, and Athana-
sios V Vasilakos. Distributed temperature-aware resource management in virtualized
data center. Sustainable Computing: Informatics and Systems, 2014.

148

A. Hasan Mahmud and Shaolei Ren. Online capacity provisioning for carbon-neutral
data centers with demand-responsive electricity prices. In IFIP Performance, 2013.

A. Hasan Mahmud and Shaolei Ren. Online capacity provisioning for carbon-neutral
data center with demand-responsive electricity prices. ACM SIGMETRICS Perfor-
mance Evaluation Review, 41(2):26–37, 2013.

A. S. M. Hasan Mahmud and S. Ren. Dynamic server provisioning for carbon-neutral
data centers. In 42nd International Conference on Parallel Processing (ICPP), 2013.

A. S. M. Hasan Mahmud and Shaolei Ren. Online resource management for data center
with energy capping. In Feedback Computing, 2013. (Best Paper Award).

M. A. Islam, S. Ren, N. Pissinou, H. Mahmud, and A. Vasilakos. Distributed resource
management in data centers with temperature constraint. In IGCC, 2013.

149

	Florida International University
	FIU Digital Commons
	6-15-2016

	Sustainable Resource Management for Cloud Data Centers
	A. S. M. Hasan Mahmud
	Recommended Citation

	Sustainable Resource Management for Cloud Data Centers

