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ABSTRACT OF THE THESIS 

PATTERNS IN BELOW GROUND PRIMARY PRODUCTIVITY AND 

BELOWGROUND BIOMASS IN MARSHES OF THE EVERGLADES' 

OLIGOHALINE ECOTONE 

by 

Gregory M. Juszli 

Florida International University, 2006 

Miami, Florida 

Professor Daniel-L. Childers, Major Professor 

This study quantified and assessed patterns in belowground primary productivity 

(BPP) and belowground biomass in Cladium jamaicense marshes of the oligohaline 

ecotone, a transition zone between the two dominant ecosystems (freshwater marsh and 

mangrove forest) in the Everglades. A 2x2x2 factorial design was used with transect 

(Shark River Slough/Taylor Slough), site (estuarine/freshwater), and season (dry/wet) as 

factors. BPP and belowground biomass were measured using root ingrowth and soil 

cores, respectively. Across all sites, BPP was significantly greater in the dry season. BPP 

peaked in Taylor Slough from April-July, the decrease likely due to oxygen saturation in 

the soil during marsh dry-down. BPP stayed constant in Shark River Slough, which 

remained inundated almost year-round. These results indicate that Everglades restoration 

efforts may negatively impact C. jamaicense marshes. Belowground biomass increased 

with nutrient availability, though the effects of hydroperiod were unclear. Future research 

should include root decomposition and mortality as they are crucial to understanding 

belowground processes in Everglades marshes. 
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I. INTRODUCTION 

Primary production is the accumulation of energy or biomass by pnmary 

producers. Similarly primary productivity is the rate at which energy, usually measured in 

terms of biomass, is accumulated in plants by photosynthetic processes (Ricklefs & 

Miller 2000). The main factors that influence primary productivity in wetlands are: 

nutrient concentrations, water level, hydroperiod, salinity, temperature, and oxygen 

availability in soils (Miao & Sklar 1998; Daoust & Childers 1999; Mitsch & Gosselink 

2000; Lorenzen et al. 2001; Childers et al. 2006). However, the effect ofthese factors on 

aboveground primary productivity (ANPP) may be different than their effects on 

belowground primary productivity (BPP). To understand the effect an environmental 

factor, such as nutrient availability, has on both ANPP and BPP, a plant's resource 

allocation needs to be considered. 

Resource allocation theory suggests that energy is allocated within a plant such 

that all resources are concurrently and equally limiting (Tilman 1985, Gleeson & Tilman 

1992). Plants face a resource allocation trade-off, in that they optimize the exploitation of 

a limiting resource in exchange for a reduction in energy expenditure onto other 

processes or on acquiring non-limiting resources. To acquire the most limiting resource, 

plants will allocate more energy, and therefore more biomass. to the structures involved 

in obtaining that resource. If light is the limiting resource, plants will allocate more of 

their biomass to aboveground structures. Similarly, plants will allocate more of their 

biomass to belowground structures if nutrients are more limiting. In nutrient poor soils. 

plants allocate a larger fraction of their biomass to root structures than do those growing 

in nutrient rich soils (Chapin 1980) and often exhibit reduced size and growth rate. a 



higher root to shoot ratio, and reduced decomposition (Rubio & Childers 2006) and 

turnover rates (Schubauer & Hopkinson 1984; Vogt et al. 1998; West et al. 2004). 

The Florida Everglades is an oligotrophic, phosphorus (P) limited wetland 

ecosystem with a subtropical climate that has two seasons: wet (June-Nov.) and dry 

(Dec.-May). Once quite expansive (historically covering over 1 million ha), the 

remaining Everglades is a compartmentalized system of hydrologic units managed by an 

intricate network of canals, levees, and water control structures. Approximately 65-70% 

of the remaining freshwater Everglades is sawgrass (C/adium jamaicense) marsh, 

interspersed with wet prairies, tree islands, and deeper-water sloughs (Davis & Ogden 

1994 ). C. jamaicense has an extremely low nutrient requirement and is the dominant 

plant species in freshwater Everglades wetlands (Steward & Omes 1983 ). C. jamaicense 

allocates more biomass to its roots as P concentrations decrease (Miao & Sklar 1998; 

Lorenzen et al. 2001; Daoust & Childers 2004; Brovold unpub.). Hence, the more 

oligotrophic an Everglades wetland system, the higher the BPP of C. jamaicense should 

be relative to ANPP. Because belowground production is greatly affected by nutrient 

availability (Vogt et al. 1998), oligotropic Everglades sawgrass marshes are ideal for 

studying wetland belowground productivity dynamics because a small variation in 

nutrient availability usually results in visible differences in ANPP and BPP. 

ANPP is easily estimated in wetland ecosystems using a number of methods (see 

Knapp et al. 2006 for a review). None of these approaches. however, apply to estimating 

BPP. Establishing a universally accepted method for measuring BPP has been a problem, 

and there is no consensus on how belowground production should be sampled and 

estimated (Vogt et al. 1998; Hertel & Leuschner 2002). However. knowledge of BPP is 
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crucial to understanding a variety of ecosystem properties, such as soil carbon storage 

and flux (Scurlock et al. 2002), changing soil environments, and overall ecosystem 

productivity (Bloomfield et al. 1993 ), because a sizable proportion of total biomass and 

production often occurs belowground (Jones et al. 1996). Roots, specifically fine roots, 

often contribute the largest component to BPP (Nadelhoffer 2000), with only a small 

portion of annual BPP occurring in rhizomes or subterranean culms (Grier et al. 1981 ). 

Researchers have difficulty estimating BPP due to problems visibly monitoring root 

growth and classifying fine root material as living or dead. These difficulties may be one 

reason that ANPP studies greatly outnumber belowground studies in the literature. This is 

especially true for wetland ecosystems, for which very few data on BPP have been 

published. 

Wetlands are some of the most productive ecosystems in the world (Mitsch & 

Gosselink 2000). In general, the most productive environments are located at the ecotone 

of ecosystems (Neilson 1993 ). An ecotone may be defined as: 1) a habitat created at the 

boundary of two or more distinctly different ecosystems; 2) an edge of a habitat or 

ecosystem, or; 3) a zone of transition between two ecosystem types (Ricklefs & Miller 

2000). Notably, wetlands have been referred to as biome ecotones (Gosz 1993), in that 

they are the transitional zones between terrestrial and aquatic ecosystems. Within a biome 

ecotone, smaller-scale landscape ecotones exist (Gosz 1993), with ecological processes 

that distinguish them from their adjacent ecosystems (Naiman et al. 1989; Gosz & Sharpe 

1989). Wetland ecotones are metastable (O'Neill et al. 1989), however a change in 

system state can take place as environmental drivers approach critical threshold levels 

(Gosz 1993 ). In the Everglades, there is an expansive landscape ecotone in the southern 
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areas of Taylor Slough (TS) and Shark River Slough (SRS), at the interface of freshwater 

ecosystems (sawgrass marsh and wet prairies) and estuarine ecosystems (mangrove 

forest). This marine-freshwater interface is the oligohaline estuarine zone. Over the past 

50-100 years, rising sea level and decreased freshwater flow caused by anthropogenic 

hydrologic modifications has resulted in a northerly inland shift (an alteration of system 

state) of the oligohaline zone (Ross et al. 2000; Gaiser et al. 2006). Therefore, studying 

primary productivity in this region will enhance our understanding of ecotone dynamics 

and responses to altered environmental drivers that may ultimately lead to a change in 

ecosystem state (as evidenced by an oligohaline zone spatial shift or expansion). 

The oligohaline estuarine zone often exhibits the area of maximum pnmary 

production in estuarine ecosystems (Sharp et al. 1984 ). Primary production in estuarine 

ecotones may be enhanced due to dilution of seawater by freshwater inputs, as well as 

biotic and abiotic processes, such as dissolution of particulates, chemical precipitation, 

biological assimilation, and mineralization (Mitsch & Gosselink 2000). The geographic 

location of the Everglades oligohaline zone, and its corresponding plant communities, is 

affected primarily by the amount of freshwater entering into the area (Steward & Omes 

1983 ). Current and future restoration efforts may allow more freshwater into this wetland 

ecotone, either shifting it south toward its marine end-member or causing a spatial 

expansion of the oligohaline zone. 

Aboveground NPP in the Florida Everglades has been routinely estimated using 

plant biomass (Davis, 1989; Daoust & Childers, 1999; Childers et al. 2006). However, no 

estimate of ecosystem level primary productivity can be complete without accounting for 

belowground production. Very few BPP estimates are available for Everglades 
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ecosystems, and no such estimates have been documented for the ecotone regions of 

Taylor and Shark River Sloughs. 

In this study, I quantified belowground biomass and BPP at four sites in the 

oligohaline ecotone of the two main drainage systems of the Florida Everglades: Shark 

River Slough and Taylor Slough. Salinity in the ecotone is driven mainly by the amount 

of water released from water management structures. In the wet season, when the water 

control structures are open or pumping and freshwater is abundant, salinity is negligible 

in both slough ecotones. However, in the dry season, salinity levels increase with the 

decreased freshwater inputs from canals and rainfall. Salinity in the Taylor Slough 

ecotone is seasonally driven, while the Shark River Slough ecotone has both seasonal and 

tidal salinity pulses (Childers et al. 2006b ). Occasional small wind-driven tidal events do 

occur in Taylor Slough but these are rare (Davis et al. 2004). In these areas, freshwater 

flowing from canal and rain inputs into the oligohaline zones have very low levels of P 

and moderate nitrogen (N) concentrations. In contrast, waters having relatively higher 

concentrations of P and less N enter the oligohaline zones from marine sources (Childers 

et al. 2006b). In the Taylor Slough ecotone, most P from coastal waters is sequestered by 

Florida Bay before it reaches the ecotone (Fourqurean et al., 1993), decreasing the P 

availability of the nutrient into the region. This P sequestration does not occur in the 

Shark River Slough ecotone, because of its direct connectivity to the Gulf of Mexico 

(Childers et al. 2006b). 

I utilized destructive harvesting, soil conng, and ingrowth core techniques to 

quantify belowground biomass and productivity for C. jamaicense, a dominant 

macrophyte species in the Everglades oligohaline estuarine zone. I had four objectives: 1) 
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to estimate and investigate the effects of spatially varying environmental drivers, i.e., P 

availability and salinity, on belowground biomass and BPP; 2) to estimate and investigate 

the effects oftemporally varying environmental drivers, i.e., hydroperiod and water level, 

on belowground biomass and BPP; 3) to estimate an aboveground:belowground (A:B) 

biomass ratio for saw grass marshes in the ecotone; and 4) to estimate root turnover for C. 

jamaicense in the ecotone area. Based on these objectives, I hypothesized that: A) C. 

jamaicense BPP will be relatively lower in SRS compared to TS due to the increased 

nutrient availability in SRS; B) C. jamaicense BPP in the estuarine ecotone marshes will 

be relatively lower than in the freshwater marshes because of the increased salinity in the 

estuarine areas ; C) C. jamaicense BPP will be relatively higher in the dry season due to 

the decreased water levels and the possibility of increased oxygen availability in the soil; 

D) C. jamaicense belowground biomass will be relatively lower in SRS and at the 

estuarine sites (similar to what was described for BPP), but will not show seasonal 

variation because of the relatively slow decomposition rates throughout the ecotone (as 

per Rubio & Childers 2006); E) C. jamaicense A:B biomass ratios will be relatively 

higher in SRS compared to TS due to increased nutrient availability in SRS, and; F) C. 

jamaicense root turnover will be higher in SRS in response to the increased P availability 

in the slough. 

II. METHODOLOGY 

Site Description 

All experimental sampling was performed at four pre-established Florida Coastal 

Everglades Long-term Ecological Research Program (FCE L TER) sampling sites: Two in 
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the oligohaline ecotone region of Taylor Slough (TS), TS-3 & TS-6 and two in the 

similar region of Shark River Slough (SRS), SRS-3 & SRS-4, (See Figure I). These sites 

were chosen because they delineate the northern and southern boundaries of the ecotone 

regions for both sloughs, with TS-3 & SRS-3 representing the northern, freshwater­

boundary sites and TS-6 & SRS-4 the southern, estuarine boundary sites. Hydroperiod in 

TS varies from about 8 months at TS-3 to nearly 12 months at TS-6. SRS has a 

hydroperiod that ranges from 9-12 months at each site. C. jamaicense is the dominant 

vegetation at the two northern sites, with Rhizophora mangle and Eleocharis spp. being 

the common secondary vegetation. At the southern sites, R. mangle is dominant while C. 

jamaicense and Eleocharis spp. comprise the secondary vegetation. Other distinguishing 

site characteristics are summarized in Table 1. 

Belowground Standing Stock Biomass 

Belowground standing stock biomass was measured using standard soil conng 

techniques. In order to capture seasonal variability, soil cores were collected from each 

study site in January 2004 and again in July 2004 (Table 2). A sample size of 5 cores per 

site was used. This sample size derived from the following power analysis: In November 

2003, belowground biomass was quantified in 10 soil cores randomly extracted from a 25 

m2 C. jamaicense marsh area at TS-3 (for method details see below). From the biomass 

data, a coefficient of variation (CV) was calculated for each of the 10 possible sample 

sizes (n=1-1 0). The standard error was then calculated around the CV of the maximum 

replication scenario (I 0 cores), resulting in the target variation. Five was the minimum 

number of soil cores that met the target variation, which suggested that sampling five 

cores at TS-3 would sufficiently capture the spatial heterogeneity in belowground bio-
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Figure 1: Study area ofthis experiment showing the locations ofthe four sampling sites, 
Taylor and Shark River Slough, & the approximate location of the Everglades oligohaline 
ecotone. 

mass across the entire marsh and provide an accurate measure of ecosystem belowground 

biomass. 

After establishing that optimal replication was five cores, soil cores were 

randomly extracted from each study site by tossing a 15 em diameter PVC ring into a 25 
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m2 area of C. jamaicense marsh. The soil cores were extracted by inserting a 15 em 

diameter PVC pipe with bowsaw-blade edge 30 em into the soil directly below where the 

PVC ring landed. The PVC corer had a screw-top lid, which created suction and allowed 

fully intact core removal. Because maximum C. jamaicense root depths range from 15-30 

em (Chabbi et al. 2000), soil cores taken to 30 em effectively sampled all roots and 

rhizomes. Upon removal from the ground, each soil core was divided into three 10 em 

sections in order to determine biomass differences along the root profile. Soil and detritus 

were washed from the roots and rhizomes of all 10 em deep root sections using standard 

I mm brass soil screens. This wet-sieving was carried out in the field. All material 

remaining in the sieves was then bagged and transported to the lab for separation and 

analysis. 

In the lab, living roots and rhizomes were separated from the necromass (dead 

roots and unidentifiable organic matter) visually. This visual separation was completed 

with the aid of a self-created classification key based primarily on root and rhizome color 

and friability. Dead roots and rhizomes tend to be less elastic, more brittle, and darker in 

color compared to living roots and rhizomes (Nadelhoffer et al. 1985). In the case where 

certain roots/rhizomes could not be visually categorized as living or dead, they were 

considered living. After separating all the living roots and rhizomes in the sample, they 

were rewashed, dried at 70°C, and weighed. An average dry mass for each sampling site 

was calculated from the total dry mass of the five collected cores. In addition, mean dry 

mass was calculated for the upper, middle, and bottom I 0 em soil core sections for each 

site. Root biomass was reported as the mean dry mass divided by the surface per unit area 

of each soil core. 
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TABLE 1: GENERAL SITE CHARACTERISITICS FOR THE FOUR EXPERIMENTAL SAMPLING SITES 

TS/PH-3 TS/PH-6 SRS-3 SRS-4 
Watershed Taylor Slough Taylor Slough Shark River Slough Shark River Slough 

Physiography Flat wetlands 
Flat estuarine 

Flat wetlands 
Flat estuarine 

weUands wetlands 

Hydroperiod About 10 months About 12 months 
Varying between 9-12 Varying between 9-12 
months months 

Seasonally driven Seasonally driven 

Hydrography 
Seasonally driven freshwater inputs and Seasonally driven freshwater Inputs and 
sheetflow wind-driven estuarine sheetflow tidally driven oceanic 

Inputs in~uts 

Topography Flat 
Flat, with tidal creek Flat, w/ ridge & slough Flat, w/ tidal creek 
topography microtopography topography 

Geoloav Limestone bedrock Limestone bedrock Limestone bedrock Limestone bedrock 

Soil 
Wetland marly peat, Wetland peat,> 1m 

Wetland peat, > 1m thick 
Wetland peat, > 1m 

1m thick thick thick 

Sparse sawgrass 
Mangrove forest Sawgrass dominated Mangrove forest 

Vegetation interspersed w/ marsh interspersed w/ interspersed w/ 
marsh 

sawgrass stands Eleocharis sawgrass stands 

Habitat Freshwater wetland 
Mangrove weUand, 

Freshwater weUand 
Mangrove wetland, 

low/dwarf stature low/dwarf stature 
•At/ site characteristics taken from Florida Coastal Everglades L TER website (http:llfcelter.fiu.edulmaps/) 

It should be noted that many different root separation techniques were applied to 

preliminary field samples in order to determine the method that most effectively sorted 

the belowground C. jamaicense material into living or dead. First, two commonly used 

biological stains, Congo Red and Thionin, were tried. When Congo Red was applied to 

the C. jamaicense roots, the stain was absorbed into the living roots turning them a bright 

red color. In theory, dead roots do not absorb the stain, however some roots that were 

clearly dead absorbed the stain and turned a pale red color while others did not. This 

inconsistency made the Congo Red staining method a poor choice for classifying C. 

jamaicense roots. Roots stained with Thionin were similarly ambiguous: Living roots 

stained with Thionin turned a purple color, while dead roots turned black. However, the 

difference between purple and black, and the corresponding living and dead roots, was 

often difficult to discern under normal magnification and lighting conditions. The 

additional labor and equipment needed for this biological stain did not result in a more 

10 



accurate biomass estimate than the visual inspection method and therefore dye techniques 

were not used. 

Ludox is also often used to separate living from dead root material. In this 

method, belowground plant material is placed in a series of two increasingly diluted 

concentrations ofLudox solution, 10% and 6% respectively (Robertson and Dixon 1993). 

The living roots separate from the necromass by floating to the surface of the solution, 

while the dead material sinks. Ludox is a colloidal silica solution that, when used on 

mangroves, effectively separated 94% of dead roots from living roots (Robertson and 

Dixon 1993). However, I found that this separation never occurred with my C. 

jamaicense roots. The roots failed to separate despite the concentration of Ludox solution 

used, the amount of root material added to the Ludox, or the ratio of living to dead roots 

placed in the solution. I tried a number of varying solution concentrations, but none of 

these efforts allowed Ludox to be used for viable root classification. 

After calculating average belowground biomass, a random subsample of dried 

root and rhizome biomass from each 1 0 em section of core sample was used to determine 

total P (P) content. These samples were ground in a Wiley Mill, weighed, and analyzed 

(Sharp & Solorzano 1980). P was calculated by multiplying the dry mass per each given 

site and collection event and the tissue P concentrations in each corresponding subset 

sample. 

Aboveground:Belowground Biomass Ratio 

Aboveground biomass was also collected with each belowground biomass 

sampling from all cores in the field (Table 2). As described previously, a 15 em diameter 

PVC ring was randomly positioned on the marsh surface to mark where a soil core would 
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be extracted. All C. jamaicense culms located within this 15cm diameter area were 

clipped at the base of their meristems (as per the accepted destructive method), bagged, 

and taken back to the lab. There, live leaves were separated from dead leaves, then dried 

at 70°C and weighed. All dried C. jamaicense shoots were then ground in a Wiley mill 

and analyzed for tissue P concentrations, as described above. Aboveground biomass at 

each site was recorded as the average dry shoot mass divided by 0.01824m2 (the surface 

area of the 15cm ring per unit area). The aboveground biomass was then divided by the 

belowground biomass, to establish aboveground to belowground biomass ratios for each 

site. 

Estimating Belowground Primary Productivity 

Belowground productivity was estimated using the ingrowth core method (Vogt 

and Persson 1991 ). Ingrowth cores were "incubated" for 3 different time intervals to 

quantify BPP: 3 months, 6 months, and 12 months. These time-steps were selected in 

order to provide an annual BPP estimate, detect seasonal variability (6-month cores), and 

identify seasons with significantly high or low BPP (3 month cores). In January 2004, 20 

ingrowth bags were randomly deployed in a 4m x 5m grid at TS-3, SRS-3, & SRS-4 (one 

bag located in one of twenty 1m2 plots within each grid, similar arrangement at each site) 

(Figure 2). This grid design could not be used at TS-6 because of the sparse distribution 

of C. jamaicense at the site. At TS-6, 20 bags were set into four separate smaller marsh 

patches of varying size which had a total area of 20m2 (Figure 3). At all sites, five 1m2 

plots were allocated to 3-month ingrowth bags, five 1 m2 plots given to 6-month ingrowth 

bags, five to 12-month bags, and the final five were designated as back-up locations, 

which would be used if any of the other bags were lost or damaged. The 3 and 6-month 
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ingrowth bags were collected and replaced after each respective time interval, with final 

retrieval of all bags in January 2005 to complete the experiment at each site (Table 2). 

To measure root ingrowth, soil cores were extracted as described previously and 

each replaced with an individual mesh bag filled with a mix of commercially available 

sphagnum moss and humus peat. The nylon mesh bag was sewn to be approximately 30 

em long and measure approximately 15 em in diameter, with a 5 mm mesh size. The bags 

were sewn closed at their bottom and were open at the top. Upon core extraction, the 

mesh bags were placed into the void. At the end of each sampling interval, the bags were 

retrieved by cutting the bag away from the surrounding soil, carefully including all 

roots/rhizomes that had grown into the bag. Once this was completed, the bags were cut 

into three equal I Ocm long sections. The content of each bag section was washed in the 

field. The roots/rhizomes were then bagged and taken back to the lab for separation as 

live or dead using the same visual inspection method as described previously. This 

separation procedure involved differentiating C. jamaicense roots from other pre-existing 

roots found within the humus peat/sphagnum moss substrate. All living material was 

dried at 70°C and weighed. The dry mass from each sample was divided by the surface 

area of the soil core to obtain a biomass. BPP is defined as the subsequent growth of 

roots/rhizomes into each ingrowth core (as measured by the accumulated biomass) during 

each time-step (3-months, 6-months, or 12-months) (Vogt and Persson, 1991). The mean 

of the five 12-month biomass samples was calculated to provide the average annual BPP 

at each site (expressed as gdw/m2/yr). Average monthly estimates of BPP were obtained 

from the 3-month and 6-month biomass samples (expressed as gdw/m2/mo) by dividing 

the respective samples by 3 or 6, then taking the average from each site and "incubation" 
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Table 2: The collection dates of all ingrowth bags, belowground standing stock biomass 
soil cores and aboveground destructive sampling events at each ecotone site. The 
experiment ran for one year, beginning in January 2004 and ending in January 2005. 

Collection Type January April July October January '05 

Soil Core X X 

Aboveground X X 

3-month Ingrowth Bag X X X X 

6-month Ingrowth Bag X X 

12-month Ingrowth Bag X 

Figure 2: Diagram of the experimental design used at TS-3, SRS-3 & SRS-4 for the BPP 
component of this study. Circles with the number "3" indicate the locations of the 3-
month ingrowth bags within the grid; circles with the number "6" show the placements of 
the 6-month ingrowth bags; circles with the number "12", the 12-month ingrowth bags; 
and circles with the letter "B" exhibit the locations of all back-up bags. 
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Figure 3: Diagram of the experimental design used at TS-6. The design at TS-9 differs 
from that of the other sites because C. jamaicense stands were typically not large enough 
to support a 4x5m grid at the site. Again, circles with the number "3" indicate the 
locations of the 3-month ingrowth bags within the grid; circles with the number "6" show 
the placements of the 6-month ingrowth bags; circles with the number "12", the 12-
month ingrowth bags; and circles with the letter "B" exhibit the locations of all back-up 
bags. The dark squares represent 1m2 of C. jamaicense marsh, and the white squar.es 
represent 1m2 of either mangrove or aquatic habitat. 
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period. Means were calculated from the entire ingrowth core and from each 1 0 em core 

section. A subset of dried C. jamaicense roots and rhizomes taken from each ingrowth 
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core was then ground in a Wiley mill and analyzed for their tissue P content, as described 

previously. 

Turnover 

Root and rhizome turnover were estimated by taking the mean annual BPP value 

per site and dividing it by the mean standing stock biomass value from the two seasonal 

sampling events at each site (Annual BPP I Biomass). Turnover is expressed per year. 

Hydrology and Water/Soil Nutrient Content 

Macrophyte biomass and productivity m the Everglades are often related to 

nutrient availability, both in the water column and in the soil (Chen & Twilley 1999; 

Coronado-Molina et al. 2004; Childers et al. 2003; Daoust & Childers 2004), and to 

water depth (Childers et al. 2006). As part of the Florida Coastal Everglades L TER 

program, water quality and water levels were measured continuously at each of the four 

sites in this experiment (see Childers et al. 2006b for a description of the water quality 

methods used). Hydroperiod was calculated as the number of days the average daily 

water level was above 0. 

To assess soil quality, three 60 ml syringe cores were inserted 10 em into the soil 

at each site in August 2004. Upon soil extraction, the syringe cores were capped and 

stored on ice until laboratory analysis could be performed. The samples were dried, 

weighed, ashed, and analyzed for P using the ascorbate method (Chambers & Pederson 

2006). Phosphorus concentrations were calculated per unit dry weight of soil, and 

converted to bulk P content per unit area by normalizing to soil bulk density. Bulk 

density was calculated by dividing the dry mass of each sample into the known volume of 

each syringe core. 
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Statistical Analysis 

A priori statistical analyses were conducted to ensure normality, independence, 

and equal variance in the distribution of the data, allowing the use of parametric tests. A 

2x2x2 factorial ANOVA design was used for this experiment. The factors were transect 

(n=2), ecotone site (freshwater or estuarine; n=2), and season (n=2). The only exception 

to this design was in the 12-month BPP experiment, which used a 2x2 factorial design 

because there were no seasonal samples. All analyses were conducted using SAS version 

9.1 (SAS Institute Inc 1989), with all results significant at a=0.05, unless otherwise 

stated. All data were analyzed using one way ANOVA, with the exception ofthe 3-month 

BPP data, which were interpreted using repeated measures ANOVA. Repeated measures 

was chosen because the ingrowth bags were being replaced into the same location after 

each 3-month incubation period. Post-hoc comparisons were made using Tukey's HSD 

(Zar 1996). A stepwise regression was performed on the belowground biomass data to 

determine which, if any, of the measured environmental parameters (water level, 

hydroperiod, salinity, water column P, and water column N) most-affected belowground 

biomass. 

III. RESULTS 

Belowground Standing Stock Biomass 

C jamaicense marshes of the oligohaline ecotone showed seasonal and spatial 

patterns in belowground biomass. Belowground biomass ranged from 420 gdw/m2 in July 

at TS-6 to 1963 gdw/m2 at SRS-4 in January (Figure 4) with an average of I 038 gdw/m2 

across all sites. The SRS sites had significantly higher values (F u 3=12.89, P=0.002) 
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compared with TS. The data also showed significantly more biomass (FJ,33=14.52, 

P=O.OOI) in the January sampling event compared to the July sampling. Belowground 

biomass was similar between the estuarine and freshwater sites. There was a significant 

interaction of site and sampling event (F 1,33=5.47; P=0.032). Belowground biomass in 

January at SRS-4 & TS-6 was significantly higher than in July. The same was true for the 

freshwater sites, but the difference in belowground biomass between sampling events was 

not as great (Figure 4 ). 

Across all sites, roots comprised 4 7% of the belowground biomass ( 486 gdw/m2
) 

(rhizome biomass= 553 gdw/m2
). This nearly equal proportion of mean rhizome to root 

biomass was not seen at all sites. In fact, the four sites exhibited considerable variability 

in root-rhizome partitioning of total belowground biomass (Figure 4 ). In the January 

SRS-3 belowground biomass sampling, roots accounted for 39% ofthe total belowground 

biomass. This percentage was unchanged in the July sampling. TS-6 showed a similar 

trend in that the proportion of roots and rhizomes that comprise total belowground 

biomass did not change over the two sampling events. Roots accounted for 55% and 57% 

of the total belowground biomass in the January and July samplings, respectively. SRS-4 

and TS-3 showed substantial variation in root-rhizome ratios between the two sampling 

events, with roots greatly increasing their proportion of total belowground biomass. The 

proportion of root biomass increased from 44% to 71% of the total belowground biomass 

from January to July at SRS-4. TS-3 showed a similar trend, though not as dramatic, with 

the proportion of root biomass increasing from 28% to 46%, between January and July. 

SRS had significantly higher root biomass than TS (FI.33=12.07, P=0.003) and the 

estuarine ecotone sites exhibited significantly higher (FuJ=l6.55, P=O.OOl) root biomass 
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Figure 4: Mean C. jamaicense belowground biomass at each sampling site in the January 
(A) and July (B) sampling events of 2004. Roots and rhizomes contribute different 
proportions of biomass to the total belowground biomass at each site in the oligohaline 
ecotone marshes. 
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than the freshwater ecotone sites. However, no difference in root biomass between the 

January and July samplings was found . As w ith root biomass, rhizome biomass was 

significantly hi gher in SRS (F 1.33=4.1 2, P=0.058). Rhi zome biomass varied between 
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sampling events as well, with significantly less biomass in July (F=11.76, P=0.003). No 

significant differences were present in rhizome biomass between the freshwater and 

estuarine ecotone sites. 

Vertical profiles of root and rhizome biomass were created and analyzed. Across 

the four sites, 57% of the mean root biomass was found in the top 10 em of soil, 30% in 

the middle 10-20 em depth range, and the remaining 13% at the bottom 20-30 em of soil. 

Individual sites varied in these profiles. The proportion of root biomass in the top 1 0 em 

of soil to total core root biomass (0-30 em) ranged from 34% (TS-3) to 65% (SRS-3) in 

January and 40% (SRS-4) to 84% (TS-6) in July. In the middle 10 em, mean root biomass 

ratios had similar ranges between sampling events, I8% (SRS-3) to 45% (TS-3) of the 

total root biomass in January and 13% (TS-6) to 45% (SRS-4) in July. Average root 

biomass proportions of the bottom I 0 em of soil ranged from 9% (SRS-4) to 21% (TS-3) 

in January and from 3% (TS-6) to 16% (TS-3) in July (Figure 5a & 5b). 

Root biomass in the top I 0 em and 10-20 em of soil showed significantly higher 

mean biomass in SRS compared toTS (Top: F1•33=9.19, P=0.008; Middle: Ft,33=7.94, 

P=O.OI2), with significant site differences: the estuarine ecotone sites had greater mean 

biomass than the freshwater ecotone sites (Top: F t,33=II.03, P=0.004; Middle: 

Fu3=I9.56, P=O.OOI). At 20-30 em of soil, SRS had significantly higher average biomass 

than TS (Fu3=4.29, P=0.054). There were no differences between sampling events in any 

of the soil layers but a sampling date-site interaction effect was found in the top 10 em 

section (F u 3=5.28, P=0.035). Mean root biomass at 0-10 em depth in January at SRS-4 

& TS-6 was significantly higher than in July. In contrast, root biomass in the freshwater 

sites at the same depth range was greater in July. 
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Rhizome biomass profiles were quite different from the root profiles. On average, 

78% of all rhizome biomass was found in the top 10 em of soil at all sites, with16% in the 

10-20 em depths, and the remaining 6% from 20-30 em (Figure 5c & 5d). In six of the 

eight biomass samplings, at least 80% of the total mean rhizome biomass was found in 

the top I 0 em of soil. The only exceptions to this were at SRS-3 in July and at TS-3 in 

January, where 54% and 34% oftotal mean rhizome biomass was found in the top 10 em, 

respectively. The proportion of total mean rhizome biomass found at 10-20 em ranged 

from 3% (SRS-4) to 53% (TS-3) in January and from 0% (TS-6) to 20% (SRS-3) in July. 

This range was much smaller at 20-30 em depth, with proportions of total mean rhizome 

biomass from 0% (TS-6) to 12% (TS-3) in January and 0% (TS-6) to 25% (SRS-3) in 

July. Half of the 20-30 em deep samples lacked rhizome biomass altogether. Because 

such a large proportion of rhizome biomass occurred in the top 1 0 em of soil, statistics 

were not run on the separate soil depths. 

For whole-core root biomass, P content showed significant differences between 

sampling events, transects, and sites (Table 3). Root P concentrations were considerably 

higher in January (F 1, 17=52.44, P<O.OOI), in SRS compared with TS (F1,n=250.46, 

P<O.OO 1 ), and at the estuarine ecotone sites compared with the freshwater sites 

(FJ. 17=11.85, P=0.003). A sampling event-transect interaction effect was also evident 

(F 1,17=8.95, P=0.008). Paralleling the standing stock root P data, rhizome P content was 

significantly higher in January (FI,I7=8.55, P=0.010) and in SRS (Fu7=141.61, P<O.OOI). 

No significant site difference in P concentrations was evident, however there was a strong 

transect-site interaction effect (F 1, 17=46.67, P<O.OOI ). Because a majority of the rhizome 
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Figure 5: Graphs showing the proportion of total mean C. jamaicense root and rhizome 
biomass in each 10 em section of the soil cores. The summation of the three sections 
yields total mean root or rhizome biomass for each site and sampling event. A) Root 
biomass profile from the January sampling; B) Root biomass profile (July); C) Rhizome 
biomass profile (January); and D) Rhizome biomass profile (July) . 
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biomass was in the top 10 em of soil, statistical comparisons were only examined for this 

portion of the soil profile. 

A stepwise regression was run using four environmental variables (hydroperiod, 

salinity, water column P, & water column N) to determine if any one or combination of 

these could accurately predict the variability in the belowground biomass data. Although 

hydroperiod explained the variation in belowground biomass better than any other 

variable, it was only marginally significant (P=0.068). Aboveground biomass was then 
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Table 3: Average P concentrations (~g P/gdw) of shoot, root, and rhizome standing 
stock biomass sampled in January and July 2004. "x" denotes either an absence of 
biomass material in a soil core section or an insufficient amount of dry biomass needed to 
obtain a tissue P content. 

Aboveground Below round 
Sample Shoot Root Rh izome 

0- 10- 20- 0- 10- 20-
10cm 20cm 30cm 10cm 20cm 30cm 

SRS-3 Jan. 284.02 243.07 320.46 308.70 279.14 203.42 200.33 
Ju ly 381.52 208.51 199.53 216.88 210.60 181 .77 208.10 

SRS-4 Jan. 326.68 464.42 270.21 227.55 178.45 148.16 198.46 
July 314.97 293.75 177.43 166.07 156.85 109.75 76.1 5 

TS-3 Jan. 292 .68 60.14 119.82 131 .50 53.65 31 .91 30.53 
July 219.22 31.42 106.77 72.35 42 .71 83.45 X 

TS-6 Jan. 260.06 220.26 129.96 120.51 125.31 27 .52 X 

Ju ly 240.23 115.40 113.35 82.03 103.55 X X 

Figure 6: Graph showing mean C. jamaicense aboveground biomass at each sampling 
site in January and July samplings (2004) . 
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Aboveground Standing Stock Biomass 

Aboveground biomass of C. jamaicense marshes in the oligohaline ecotone 

showed considerable variation (Figure 6). Mean aboveground biomass estimates ranged 

from 106 (TS-3) to 870 gdw/m2 (SRS-4). Across all four sites, the average aboveground 

biomass was 463 gdw/m2
• SRS had significantly larger aboveground biomass than TS 

(FJ,32=7.74, P=0.009). No site differences or differences between January and July 

samplings were present. Shoot tissue P content was similar among all sites. 

Aboveground:Belowground Biomass Ratio 

As with aboveground biomass, there was a great deal of variability in the 

aboveground:belowground biomass ratios (Figure 7). Mean A:B ratios ranged from 0.11 

at TS-3 in January to 0.82 at SRS-3 in July, with the average A:B ratio across all four 

sites of 0.45. Again, the mean A:B ratio in SRS was significantly greater than that of TS 

(F1,32=8.80, P=.009). A transect-site interaction effect indicated that the patterns between 

sites within a slough were different between the sloughs (F u 2=9.75, P=0.007). In SRS, 

the mean A:B ratio was significantly higher at the freshwater site, while the biomass ratio 

was significantly higher at the southern site in TS. Mean A:B ratios were similar between 

January and July samplings. 

Belowground Primary Productivity 

1. Belowground Primary Productivity from 12-month Ingrowth Cores 

In the oligohaline ecotone of the Everglades, the annual BPP in C. jamaicense 

marshes ranged from 229 (SRS-4) to 549 gdw/m2/yr (TS-6) (Figure 8) with an average of 

448 gdw/m2/yr across all sites. BPP had no significant differences between transect or 

site. Partitioning these data into root productivity and rhizome productivity, however, 
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Figure 7: Graph of mean C. jamaicense aboveground:belowground biomass ratios at 
each sampling site in the January and July sampling events of2004. 
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Figure 8: Mean annual BPP for C. jamaicense at the four sampling sites within the 
oligohaline ecotone. In general , annual root production greatly exceeds annual rhizome 
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produced different patterns of variability. Annual root productivity ranged from 206 

(SRS-4) to 453 gdw/m2/yr (TS-6) (Figure 8), with an average of 314 gdw/m2/yr across 

the sites and no significant differences among the sites. Rhizome productivity averaged 

134 gdw/m2/yr and ranged from 24 (SRS-4) to 229 gdw/m2/yr (TS-3) (Figure 8). 

Rhizome productivity varied significantly among sites, with higher rates at the freshwater 

ecotone sites compared with the estuarine sites (F 1,16=4.63 , P=0.047). On average, root 

productivity comprised 72% of the total annual productivity. At the estuarine sites, the 

annual BPP root fractions were much greater than at the freshwater sites. In the estuarine 

sites 86% of total production was roots and 14% was rhizomes, while the ratio at the 

freshwater sites was 59% to 41%. 

The annual root productivity profile differed from the annual rhizome 

productivity profile. Only one ingrowth bag produced rhizomes below I 0 em. This bag 

was incubated at TS-3 and the rhizomes grew into the 10 - 20 em layer. On average, 65% 

of roots were produced above 10 em deep, 27% grew at 1 0 - 20 em, and the remaining 

8% were found in the 20-30 em soil depth range (average of all sites). All four sites were 

relatively consistent in the amount of root productivity that occurred at each soil depth. 

The ratio of root to total BPP at 0-10 em, 10-20 em, and 20-30 em depths ranged from 

61 % (SRS-3) to 69% (TS-3 ), 25% (TS-3 ) to 30% (SRS-3 ), and 6% (TS-3 ) to 9% (SRS-

3), respectively. Root productivity showed no significant transect or site differences in 

any of the soil depth ranges , but both the 10-20 em and 20-30 em depths showed a 

transect-site interaction (F 1,16=4.42, P=0.052; F 1,16=4.41 , P=0.052 relatively) . At these 

soil depths, root productivity in SRS was significantly greater at the fresh water site (SRS-
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Table 4: Average P concentrations (J.tg P/gdw) of C. jamaicense roots and rhizomes that 
were produced over the 3, 6, or 12-month productivity intervals. No rhizomes were found 
below 20 em deep. The Shoot column corresponds to C. jamaicense shoots that 
originated from within the ingrowth cores. "x" denotes either a complete absence of 
roots/rhizomes/shoots in a sample or an insufficient amount of dry plant material needed 
to obtain tissue P content. 

Aboveground Belowground 
Interval Shoot Root Rhizome 

12-month Ingrowth 10- 20-
Cores 0-10cm 20cm 30cm 0-10cm 10-20cm 
SRS-3 Annual 783.11 439.04 1218.06 892.21 1027.29 X 

SRS-4 Annual 1203.65 424.67 452.40 696.33 1324.57 X 

TS-3 Annual 508.34 379.14 801.18 1292.35 1383.89 579.31 
TS-6 Annual 831 .28 540.27 1447.08 1147.62 1127.55 X 

6-month Ingrowth Cores 
SRS-3 Dry 2652.59 832.05 1029.00 416.53 1620.80 1500.21 

Wet X 1462.96 1558.09 568.53 X X 

SRS-4 Dry . X 908.93 1250.86 2054.03 629.42 X 

Wet X 1848.55 1739.72 1379.86 1069.21 X 

TS-3 Dry 807.79 561 .17 656.64 818.01 1163.28 X 

Wet 1070.50 1516.64 1689.66 897.26 1802.99 X 

TS-6 Dry X 1753.15 1422.13 752.05 1494.11 X 

Wet 1040.17 759.74 749.70 633.17 X X 

3-month Ingrowth Cores 
SRS-3 Feb-Apr X 743.1 8 1020.02 613.71 . 1016.23 X 

May-Jul X 1616.08 1205.37 670.67 913.74 X 

Aug-Oct 542.12 2059.96 X 1750.27 X X 

Nov-Jan'05 X 1260.63 X 605.85 X X 

SRS-4 Feb-Apr X 3620.64 3222.48 X 837.77 794.78 

May-Jul X 1883.26 1752.05 636.56 X X 

Aug-Oct X 876.95 X X X X 

Nov-Jan'05 X 1138.88 947.94 1127.27 657.69 X 

TS-3 Feb-Apr X 2978.99 4236.72 1386.81 X X 

May-Jul 1767 .35 1193.14 1027.29 1143.49 1967.60 X 

Aug-Oct X X X X X X 

Nov-Jan'05 X X X X X X 

TS-6 Feb-Apr X 2908.00 3262 .39 1340.05 X X 

May-Jul 1193.81 1204.59 22 15.22 708.44 424.56 X 

Aug-Oct X 1211 .99 X X X X 

Nov-Jan'05 X 1931.47 1882.91 X X X 
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3>SRS-4 ), while the estuarine site in TS had significantly greater root productivity (TS-

6>TS-3). 

The mean root P content (whole core) showed a significant transect difference 

(Ft,s=l3.96, P=0.006), with TS having a higher root P content than SRS (Table 4). The 

transect-site interaction was also significant (F1,8=16.99, P=0.003), demonstrating that 

root P content in the two sloughs responded differently based on location in the ecotone. 

In SRS, root P content was significantly higher at the freshwater site compared with the 

estuarine site, while the opposite was true in TS. No significant differences in rhizome P 

content were seen. 

2. Belowground Primary Productivity from 6-month Ingrowth Cores 

The six-month C. jamaicense belowground productivity data provided strong 

evidence of seasonal variation. Across the four sampling sites, total belowground 

productivity averaged 56.30 gdw/m2/mo in the dry season and 14.76 gdw/m2/mo in the 

wet season. Mean dry season productivity ranged from 42.22 (SRS-4) to 71.51 

gdw/m2/mo (TS-6), whereas this range spanned from 8.86 (SRS-4) to 18.69 gdw/m2/mo 

(TS-6) in the wet season (Figure 9). This seasonal difference was significant (F t,33=31.14, 

P<0.001) with more productivity occurring in the dry season. No transect or site 

differences existed. 

Root productivity and rhizome productivity showed seasonal trends similar to the 

total 6-month belowground productivity. Dry season root productivity significantly 

exceeded that of the wet season (Fu3=30.05, P<0.001). Average dry season root 

productivity was 47.32 gdw/m2/mo compared to 13.12 gdw/m2/mo in the wet season. Dry 

and wet season production had respective ranges of 35.80 (SRS-3) to 68.15 gdw/m2/mo 
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(TS-6) and 8.29 (SRS-4) to 18.60 gdw/m2/mo (TS-6). Rhizome productivity in the dry 

season was significantly greater than in the wet season (F 1,33=5.56, P=0.025). Mean dry 

season productivity ranged from 19.59 (SRS-3) to 1.571 gdw/m2/mo (SRS-4) with an 

average of 8.99 gdw/m2/mo. The corresponding wet season average was 1.64 

gdw/m2/mo, ranging from 0 (SRS-3) to 5.91gdw/m2/mo (TS-3). The 6-month rhizome 

productivity data also showed site differences, with significantly more production at the 

freshwater ecotone sites (F l,n=6.32, P=O.O 17) (Figure 9). On average, root productivity 

comprised 84% of total belowground productivity in the dry season and 82% in the wet 

season. 

In the dry and wet seasons, 66% and 64% of total root productivity occurred in 

the top 10 em of soil, 26% and 24% in the 10-20 em soil range, and 8% and 12% in the 

20-30 em core section, respectively (Figure 1 0). The most variation in root productivity 

was in the top 1 Ocm. Root productivity in the top 1 Ocm of soil was significantly greater 

in the dry season (F 1,33=46.46, P<O.OO 1 ). No significant transect or site differences 

existed, but all interaction effects at the 0-1 0 em soil depth were statistically significant. 

The sites responded differently between the sloughs (Fu3=6.69, P=O.Ol4). In TS, root 

productivity was significantly higher at the estuarine ecotone site (TS-6>TS-3), whereas 

in SRS, the freshwater site had higher root productivity (SRS-3>SRS-4). In the transect­

season interaction, the root productivity in the sloughs responded differently to season 

(Fu3=5.42, P=0.026). In the top 10 em of soil, the difference in root productivity 

between seasons in TS was more drastic than in SRS. Root productivity in the estuarine 

sites was significantly greater than the freshwater sites in the dry season (S>N), where the 

opposite occurred in the wet season (S<N) (Fu3=3.86, P=0.058). Root productivity in the 
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Figure 9: Mean seasonal BPP for C. jamaicense at the four sampling sites within the 
oligohaline ecotone. These data are based on the 6-month ingrowth cores and distinctly 
show seasonal variation in BPP among roots and rhizomes at all sites. 
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Figure 10: Breakdown of how much root productivity in each 10 em section of ingrowth 
core contributes to total root productivity for C. jamaicense of the oligohaline ecotone. 
The graph displays mean monthly BPP derived from the 6-month ingrowth cores. 
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10-20 em section was significantly higher in the dry season (F 1,33=11.22, P=0.002). As 

with the annual productivity data. 95% of rhizome production occurred in the top 10 em 

of soil. Therefore, no statistical analysis of the partitioned sections of the soil profile was 

performed. 

Root P content showed significant site differences (F1,10=9.57, P=0.011), as well 

as significant transect-site (Fuo=7.67, P=0.020) and site-season (F~,~ 0=10.60, P=0.009) 

interactions (Table 4). Roots from the estuarine ecotone sites had significantly higher P 

content relative to those from the freshwater sites. The freshwater sites showed greater P 

concentrations during the dry season, whereas the seasonal root P levels were similar at 

the estuarine ecotone sites. The P content of the rhizomes varied significantly by season 

(FJ,s=l6.80, P=0.003) and site (FJ,s=6.92, P=0.030), also showing a transect-site 

interaction effect (F~,s=27.73, P=O.OOI). Rhizome P concentrations were greater in the 

dry season and at the freshwater ecotone sites. P content of rhizomes from SRS-3 greatly 

exceeded that of SRS-4, whereas the rhizome P content from the two TS sites were 

similar. 

3. Belowground Primary Productivity from 3-month Ingrowth Cores 

Belowground data from the 3-month ingrowth cores provided a better 

understanding of when the highest rate of BPP was taking place in the oligohaline 

ecotone. From the 3-month ingrowth cores, total BPP among the four sampling sites 

averaged 27.06 gdw/m2/mo from February through April (Dry season), 58.58 gdw/m2/mo 

from May through July (Dry-Wet Transition), 4.70 gdw/m2/mo from August through 

October (Wet season), and 14.23 gdw/m2/mo from November through January 2005 

(Wet-Dry Transition) (Figure lla). Roots contributed 91% (24.58 gdw/m2/mo), 87% 
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(51.45 gdw/m2/mo), 91% (4.28 gdw/m2/mo), and 94% (12.94 gdw/m2/mo) to total BPP 

during these intervals, respectively (Figure 11 b). Rhizome productivity accounted for the 

remaining BPP (Figure lie). 

The greatest amount of root and total BPP across all sites occurred in the Dry-Wet 

Transition period (May-July; Figures II a & b). During this three month time interval, I 

also found significant differences in root and total production between the two transects 

(FJ,64=I2.55, P<O.OOI), with TS showing higher BPP than SRS. Seasonal differences in 

productivity were driven by root growth during this time period. 

Significant variations in BPP from the 3-month ingrowth cores are shown in 

Table 5. In general, the greatest variation in BPP occurred when data from the Dry-Wet 

Transition period were compared to other 3-month time-steps. Transect effects and a 

transect-season interaction were also apparent. The Tukey's post hoc comparisons for the 

transect-season interaction effect illustrate how TS root productivity and total BPP in the 

Dry-Wet Transition period drastically exceed the BPP from any other 3-month sample in 

either slough (see Table 5 for comparative post-hoc p-values). Rhizome productivity, 

which did not demonstrate as much variability as the root productivity data, showed no 

significant transect, site, or temporal differences in the 3-month ingrowth cores (Table 5). 

The majority ofthe root productivity in the 3-month ingrowth cores was in the top 10 em 

of soil (Figure 12). Across all four sites in the Dry-Wet Transition period, the top 10 em 

of roots contributed to 68% of total core root productivity and roots grown in the 10-20 

em range accounted for 20%. Transect and seasonal differences are apparent, with TS 

having significantly more root productivity than SRS in the Dry-Wet Transition period. A 

site difference is also present in roots from the top 10 em of soil and in the entire core (0-
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Figure 11: Mean C. jamaicense BPP at the oligohaline ecotone sites over each 3-month 
interval in 2004. From May-July (Dry-Wet Transition), a peak in productivity occurred in 
TS that was not evident in SRS . Rhizome productivity, which showed a large peak at TS-
6 from May-July, did not exhibit significant differences in the 3-month ingrowth cores. 
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Table 5: Significant vanatton in BPP from the 3-month ingrowth cores in the oligohaline 
ecotone. The table lists the F & p-values for each significant effect. The Tukey ' s post-hoc 
comparisons for the transect-season effect are also given. In the "Interaction" column: TS = 
Taylor Slough, SRS = Shark River Slough, I = Feb-Apr (Dry season), 2 = May-July (Dry-Wet 
Transition), 3 =Aug-Oct. (Wet season), & 4 =Nov-Jan ' 05 (Wet-Dry Transition). 

Significant Effects F-value P-value Interaction Tukey's P-value 

Total (Root+Rhizome) 

Transect 12.05 (1 .&<) 0.001 SRS1-TS2 <0.001 

Site 6.89 (1.&<) 0.011 SRS2-TS2 <0.001 

"Incubation" time 16.3 (3.&<) <0.001 SRS3-TS2 <0.001 

Transect-Site 4.11 (1 &C) 0.046 SRS4-TS-2 <0.001 

Transect-Incubation time 12.55,,~, <0.001 TS1-TS2 <0.001 

TS3-TS2 <0.001 

TS4-TS2 <0.001 

Root (0-30cm) 

Transect 17.19 (1 .&0) <0.001 SRS1-TS2 <0.001 

Site 13.86 1.&< <0.001 SRS2-TS2 <0.001 

"Incubation" time 19.20 3.&<] <0.001 SRS3-TS2 <0.001 

Transect-Site 10.39 (1 .&<) 0.002 SRS4-TS-2 <0.001 

Transect-Incubation time 13.82 (3 .~) <0.001 TS1-TS2 <0.001 

Transect-Site-Incubation 13.03 (3.&0) <0.001 TS3-TS2 <0.001 

TS4-TS2 <0.001 

Rhizome (0-30cm) 

No Significant Interactions X X X X 

Root (0-10cm) 

Transect 13.75 [1 .61) 0.001 SRS1-TS2 <0.001 

Site 12.77 (1.61) 0.001 SRS2-TS2 <0.001 

"Incubation" time 13.42 (361) <0.001 SRS3-TS2 <0.001 

Transect-Site 9.80 (1.61 ) 0.003 SRS4-TS-2 <0.001 

Transect-Incubation time 10.87 {3,61) <0.001 TS1-TS2 <0.001 

Transect-Site-Incubation 3.42 (3.61) 0.023 TS3-TS2 <0.001 

TS4-TS2 <0.001 

Root (11-20cm) 

Transect 6.63 (1.61) 0.013 SRS1 -TS2 0.015 

"Incubation" time 11 .50 (3,61 <0.001 SRS2-TS2 <0.001 

Transect-Incubation time 5.96 (3 61) 0.001 SRS3-TS2 <0.001 

SRS4-TS-2 <0.001 

ITS1-TS2 0.004 

ITS3-TS2 <0.001 

ITS4-TS2 <0.001 

Root (21-30cm) 

"Incubation" time 9.56 (3,61) <0.001 SRS1-TS2 0.003 

Site-Incubation time 2.91 (3,61 ) 0.042 SRS2-TS2 0.592 

SRS3-TS2 0.004 

SRS4-TS-2 0.015 

TS1-TS2 0.141 

TS3-TS2 <0.001 

TS4-TS2 0.003 
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30 em), with the estuarine ecotone sites showing significantly more productivity than the 

freshwater sites (see F & p-values in Table 4). 

As with the productivity data, the root P concentrations from the 3-month 

ingrowth cores exhibited significant transect variation (F1,15=120.03, P<O.OOl), with TS 

roots having higher P content than SRS roots (Table 4). Significant seasonal variation in 

BPP was also evident (F3, 15=20.10, P<O.OOl). Tukey's post-hoc comparisons showed root 

P content varied the most between the Dry (Feb-April) and Dry-Wet Transition (May­

July) samplings. Significant transect and site differences were present, with the rhizomes 

from TS and the northern sites having higher P content than SRS and the southern sites. 

No significant seasonal effects were evident. 

Turnover 

I calculated turnover rates from the annual productivity values and the root and 

rhizome biomass estimates. Using the mean belowground biomass data from the January 

and July sampling events, the average root turnover rate for C. jamaicense in the 

oligohaline ecotone was 0.84 yr-1
• SRS-4 had a relatively low mean turnover rate 

compared to the other three sites (0.25 yr-1
). All other sites showed mean root turnover 

rates of about one per year (SRS-3: 0.76 yr-1
; TS-3: 1.03 yr- 1

; and TS-6: 1.29 yr-1
). 

Mean rhizome turnover was substantially lower than mean root turnover, 

averaging 0.30 yr- 1
• As with root turnover, SRS-4 had a substantially lower mean rhizome 

turnover rate than the other sites (0.05 yr-1
). Rhizome turnover among the other three sites 

averaged: SRS-3: 0.30 yr- 1
; TS-3: 0.49 yr-1

; and TS-6: 0.36 y( 1
• 

Water Level & Hydroperiod 
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Figure 12: Graphs comparing the mean root productivity over 3-months for each 10 em 
section of ingrowth core. Root productivity in the top 10 em of soil greatly exceeded that 
of the rest of the core and much of the May-July Taylor Slough productivity peak 
originated from root growth in this upper soil layer. 
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Throughout the year, water level at the TS estuarine ecotone site exceeded that of 

the freshwater site (Figure 13). In SRS, water levels in the freshwater marsh exceeded 

those in the estuarine marsh for about 8 months, but were lower during the late dry 

season and Dry-Wet Transition (April-July) . In TS, water levels rose shortly after the 

onset of the wet season precipitation, in June, and quickly decreased with the approach of 

the dry season in November. This seasonal pattern was not as clear in SRS. SRS-3 

exhibited seasonality in water levels much like those observed in TS; however, at SRS-4 
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measured water levels showed both seasonal and tidal influence. Bi-monthly peaks in 

water level were associated with spring tides. Water depths were greater and 

hydroperiods were longer in SRS marshes, particularly at SRS-4 where the tidal influence 

was greatest. 

Hydroperiod for the four ecotone sites was estimated ·at: TS-3: 281 days, TS-6: 

300-330 days, SRS-3: 347 days, & SRS-4 365 days. No data were available for TS-6 

from mid-May through early August as the water level gauge experienced some technical 

difficulties. However, on-site observations from other LTER researchers using TS-6 

during this time span verified that this site was dry from about early May to mid June in 

2004. In TS, the marsh dried down completely, for a period of about 30-90 days. In 

comparison, SRS-4 was inundated all year while the marsh dried-down for about 20 days 

in mid-to-late May at SRS-3 (at the peak of dry season). 

Water & Soil Quality 

Water column P m SRS was relatively higher than in TS (Figure 14). Water 

column P was also relatively higher at the estuarine ecotone sites. There was also a trend 

showing relatively higher P levels, specifically at the estuarine ecotone sites, in the late 

dry season (late Mar to mid June). Similarly, soil P content in SRS soils was considerably 

higher than in TS soils (Figure 15). In both sloughs, mean annual soil P was also 

relatively higher at the estuarine ecotone sites. 

The freshwater sites exhibited negligible surface water salinity, with no salinity 

recorded in any point during the experiment at TS-3 and mean salinity readings of 2.8 ppt 

over 15 days in June at SRS-3 (Figure 16). Salinity at the estuarine ecotone sites was 

higher than at the freshwater sites, and reached a maximum in SRS much earlier in the 
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Figure 13: Average daily water levels measured at the four sites across the oligohaline 
ecotone. At all sites, the highest recorded water levels occurred in the middle of the wet 
season (Sept-Oct), with the lowest levels occurring at the end of the dry season (Apr­
July). Values below 0 em represent a dry-down in the marsh soils. 
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Figure 14: P content of oligohaline ecotone waters at each of the four sampling sites. 
Breaks in the trend lines indicate missing samples caused by either a lack ofwater (marsh 
dry-downs) or technicalities with the automatic water sampler. Each point is the mean of 
a three-day composite sample. 
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Figure 15: Average annual soil P content for each sampling sites in the oligohaline 
ecotone. TS soils are generally characterized as marl, which have a much higher bulk 
density than SRS peat soils. If bulk density is incorporated (as P per unit volume of soil), 
the difference in P content between the two transects is much less dramatic. 

1000 
900 
800 -·a 700 

(/) 
0) 600 .._ 

Q.. 
0) 500 ::s -Q.. 400 
·a 300 
en 

200 
100 

0 
SRS3 SRS4 TS3 TS6 

Site 

Figure 16: Water column salinity at each of the four ecotone sites. Breaks in the trend 
lines represent salinity readings of zero or result from a lack of water (marsh dry-downs). 
Each point is the mean of a three-day composite sample. 
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year than in TS: mid-July for TS-6 and late-March for SRS-4. TS-6 exhibited particularly 

high salinity from June-August. 

IV. DISCUSSION 

Hydrology and P availability control processes in the Everglades more than any 

other environmental factor (Steward & Omes 1983; Gunderson 1994). In the oligohaline 

ecotone, water level, P concentrations, and salinity are all controlled· primarily by the 

relative effects of marine and freshwater influences (Davis and Ogden 1994, Childers et 

al. 2006). Large-scale changes to any of these factors, such as increased freshwater flow 

into the ecotone as a result of Everglades restoration efforts) could drastically alter marsh 

ecosystem function. It seems that in the oligohaline ecotone, hydroperiod controlled the 

observed patterns in BPP, while P availability had the most pronounced effect on 

belowground biomass trends. 

At the onset of the dry season, water management reduces or stops canal inflows 

to both SRS and TS and local rainfall decreases. At this time, water levels decline and the 

oligohaline C jamaicense marshes begin to dry down. During this time, BPP, root 

productivity, and rhizome productivity all increased to their maximum levels, which 

occurred in the late dry season. With the onset of the wet season, marsh water levels 

slowly rise and BPP decreased, suggesting that soil anoxia limitation may have been 

responsible. Often, as marsh water depths increase, wetland macrophytes become limited 

by hypoxia, and BPP decreases (Grace 1989; Morris et al. 2002; Sorrell et al. 2002). 

Water management impacts were more apparent in TS, which dried down for 

durations varying from about 30-45 (TS-6) to 90 days (TS-3). This timeframe would be 
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sufficient for aerobic saturation of the marsh soils. Release from soil anoxia during this 

period may have caused the observed peak in BPP during the Dry-Wet Transition (May­

July). SRS, on the other hand, is a larger watershed with greater local precipitation effects 

and canal inflows. Water management practices generally don't reduce canal inflows into 

the system until January or even February and marsh dry down events are far less 

frequent than in TS (roughly decadal compared with every year) (Childers et al. 2006). In 

SRS, the greatest BPP and root productivity also occurred in the Dry-Wet Transition 

period, which corresponded to the lowest measured water levels of the year. However the 

SRS marshes showed no long-duration dry-down event (a maximum of about 15 days at 

SRS-3), which may explain the lack of a substantial peak in BPP. Kludze and Delaune 

( 1996) found an inverse relationship between root productivity and duration of 

inundation, supporting the observed variation in BPP and root productivity between the 

two sloughs. 

Salinity was measurable much of the year in the estuarine marsh waters. Rhizome 

productivity in the oligohaline ecotone appeared to be driven more by salinity than 

hydroperiod as both the annual and 6-month BPP estimates were significantly lower at 

the estuarine sites. Salinity in the estuarine marshes exceeded the freshwater marshes, 

likely resulting in the decreased rhizome productivity observed. This claim may be 

supported by Whigham et al. (1989), who showed that rhizome growth in Typha 

angustifolia was reduced and restricted to a smaller growing area along a salinity 

gradient. 

P content in SRS waters and soils exceeded those of TS because of the slough's 

direct connectivity to the relatively more P rich Gulf of Mexico waters (Chambers & 
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Pederson 2006; Childers et al. 2006). Total belowground biomass, root biomass, and 

rhizome biomass were all greater in the SRS transect, as a result of the relatively greater 

P availability observed in the slough. Although these results seem to contradict resource 

allocation theory (Tilman 1985) as both aboveground and belowground biomass were 

greater in a more nutrient available area, they are in agreement with recent studies which 

found C. jamaicense belowground biomass to increase with nutrient enrichment in 

northeast SRS marshes (Daoust and Childers 2004), and in Water Conservation Area 2A 

(Miao and Sklar 1998). I suspect that because the ecotone is so oligotrophic, any 

additional P available in the marsh will be utilized by the plant for root or rhizome 

expansion or shoot elongation. The difference in soil P levels between the two transects 

becomes much smaller if soil bulk densities are considered (P per unit volume of soil 

instead of P per gram of soil). Tilman's resource allocation theory is applicable when 

nutrient availability between systems is great, and hence may not apply to comparisons 

between SRS and TS. 

Marine water P content is relatively higher than the freshwater flowing into the 

oligohaline ecotone (Childers et al. 2006), therefore, due to their proximity to marine 

sources, the estuarine ecotone marshes exhibited higher water P concentrations than the 

freshwater marshes. A similar trend was found in the marsh soils of SRS, agreeing with 

the results of Chen & Twilley (1999). Chambers & Pederson (2006) found that soil P was 

constant between the ecotone sites in SRS, however per soil volume, higher P levels were 

found at the estuarine site. In TS, soil P was slightly greater at the estuarine site 

(Chambers & Pederson 2006). The greater P availability in the estuarine marsh yielded 

increased root biomass, however total belowground biomass and rhizome biomass were 
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similar between freshwater and estuarine sites. This was likely the result of salinity. 

Increased salinity adversely affects belowground biomass in freshwater marsh and salt 

marsh macrophytes (Howard and Mendelssohn 2000; Morris et al. 2002). Rhizome 

biomass has also been shown to decrease with increased salinity (Whigham et al 1989). 

In the late stages of the dry season, freshwater inflows to the ecotone were low to 

non-existent and the impact of the marine P was more apparent. The ecotone marsh 

waters experienced the highest P concentrations of the year during this time frame, 

agreeing with the findings of Childers et al. (2006). This could support the idea that P 

availability drove the increased BPP observed in the late dry season. However, annual 

BPP and root productivity showed no significant spatial variability in the ecotone (SRS = 

TS and freshwater = estuarine) and thus no nutrient effects. These results correspond to 

the literature which has shown that nutrient addition had no effect on belowground 

productivity in a temperate freshwater marsh (Bayley et al. 1985), and that there is no 

clear relation between C. jamaicense growth rate and P availability (Lorenzen et al. 

2001). If nutrient availability was driving BPP, I would expect the roots found in SRS 

marshes to have a relatively higher P content compared to roots from TS as a result ofthe 

increased P available in the transect. Yet, C jamaicense root P content was less in SRS. 

These results are supported by Shaver and Melillo ( 1984 ), who found that when P 

availability increases, the proportion of available P taken up by marsh plants decreases. 

Soil P levels display low variability over long time scales (Noe & Childers 2003), 

therefore, one soil P measurement was sufficient to capture the nutrient concentration at 

each site. As a result, I was unable to test whether soil P levels mimicked the observed 

seasonal patterns in water column P or controlled seasonal patterns in BPP. 
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Annual BPP estimates from this study are consistent with those published for 

freshwater marshes (Brinson et al. 1981; Birch & Cooley 1982; Symbula and Day 1988; 

Chimner & Ewel 2005), and with those found in a C. Jamaicense marsh in northern SRS 

(Daoust & Childers 2004 ), but generally lower than those published for coastal salt 

marshes (Valieta et al. 1976; Schubauer & Hopkinson 1984 ). This latter resul.t is expected 

as salt marshes generally have greater nutrient availability than oligotrophic Everglades' 

marshes, and species occurring in oligotrophic systems have lower production per unit P 

than species common to more nutrient rich systems (Chapin 1980). Comparisons 

between the BPP results of this study and others in the literature must be interpreted with 

caution, as a number of different methodologies are currently being used to estimate BPP 

(Vogt et al. 1998). As an example of the variability among sampling techniques, BPP 

estimates in undisturbed Georgia coastal marsh ecosystems have varied by more than 

2500 g/m2/yr under various sampling methodologies (Schubauer & Hopkinson 1984). 

The ingrowth core method was selected for this experiment because it is widely used, 

allows a clear idea of the time period in which root growth occurs (Neill 1992), and is 

very effective in wet tropical ecosystems (Vogt et al. 1998). However, the literature 

suggests that the ingrowth core method may overestimate BPP in some systems (Neill 

1992; Vogt et al. 1998; Hendricks et al. 2006). For this reason, this study focused more 

on understanding the observed BPP trends in the oligohaline ecotone marsh and less on 

how BPP of this system compares to others. 

Root productivity accounted for approximately 72% of total annual BPP. This 

makes sense because a plant must invest energy to obtain nutrients (root expansion) 

before it can store the nutrients in the rhizomes. This is better exemplified by the 3-month 
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and 6-month productivity data which showed a time lag between root and rhizome 

productivity. Roots accounted for (on average) 92% and 86% of BPP in the respective 3-

month and 6-month "incubation periods". Hence, the greater the duration between 

sampling events, the closer to "one" the root:rhizome BPP ratio will become. If 

productivity estimates are derived from biomass samples, which measure accumulated 

material over a long time period, a root:rhizome BPP ratio of about "one" would be 

expected. Gallagher et al. (1984) found a similar ratio in Spartina alterniflora using 

sequential biomass cores. 

A majority of the root productivity occurred in the top 10 em of soil, similar to the 

findings summarized by Good et al. (1981 ). Oxygen becomes less available further down 

the soil column and Kludze and Delaune (1996) showed that reduced oxygen availability 

reduced root productivity. Chambers and Pederson (2006) found that P availability was 

highest at the soil surface and decreased exponentially with depth at these sites, which 

could also explain the high amount of root growth near the top of the soil column. Almost 

all rhizome productivity occurred less than 10 em below the soil surface. Rhizomes are 

horizontal stems and the primary nutrient storage structures in the plant (Gallagher et al. 

( 1984 ). In terms of energy expenditure of the plant, rhizomes are best located just below 

the soil surface so new meristems can easily sprout from the rhizome nodes. Similarly, 

because rhizomes do not actively uptake nutrients or water, resources are better allocated 

to roots which penetrate deep into the soil column to obtain these limiting agents. 

Total belowground biomass estimates from this study are consistent with those 

from previous research on salt marsh and freshwater marsh ecosystems throughout the 

world (Shafer and Streever 2000; Van Wijnen and Bakker 2000; Miller and Zedler 2003; 
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Turner et al. 2004). Closer to home, two previous Everglades marsh studies found C. 

jamaicense belowground biomass values either similar to (Daoust and Childers 2004) or 

substantially lower (Miao and Sklar 1998) than the results of this study. Miao and Sklar 

(1998) sampled belowground biomass along a nutrient transect in Water Conservation 

Area 2A, an area in the northern Everglades with relatively deeper water levels, longer 

water retention times, and considerably higher soil P content (Davis & Ogden 1994). The 

relatively longer hydroperiod and P availability in their study sites could result in 

decreased BPP (as the seasonal BPP results suggest) and over the course of time cause 

relatively lower belowground biomass. 

On average, C. jamaicense allocated slightly more biomass to rhizomes than to 

root structures (53% to 47%). Saunders et al. (2005) showed a similar rhizome to root 

biomass allocation ratio in a salt marsh, however Miao and Sklar (1998) again provided a 

substantially lower result in the northern Everglades. A simple explanation for this 

discrepancy may be that shoot bases and rhizomes were classified together in this 

experiment, yet were differentiated in the previous study. 

The most unexpected trend in this study was the seasonal variation m total 

belowground biomass. No variation between the sampling events was expected. The 

basis of this hypothesis derived from oligohaline Everglades marshes being peat building 

systems, where belowground biomass accumulation rates exceed decomposition rates, 

creating a dense layer of living and partially decomposed root and rhizomes (Brinson et 

al. 1981 ). Any increase in annual belowground biomass (or BPP) would contribute little 

to the pool of belowground biomass already present. If anything, a slight increase in 

belowground biomass should have been observed in the July sampling based on the 
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increased productivity that occurred in the dry season (as described above). The biomass 

data, however, did not show this trend. Mean total belowground biomass and rhizome 

biomass were significantly less in the July sampling event. Root biomass estimates were 

statistically similar between sampling events, yet the July sample yielded less biomass at 

all sites except TS-3. January rhizome biomass was, on average, about two times higher 

than in the July sampling across all sites, driving the trends seen for total belowground 

biomass. This cannot be explained by the rhizome BPP data. Even under periods of 

marsh dry down, it is unlikely that decomposition could have such an impact as to 

decrease rhizome biomass by half. The lack of relation between BPP and belowground 

biomass shows that further research is needed, particularly involving root mortality and 

decomposition, to understand the controls on belowground processes in oligohaline 

marshes. 

Aboveground biomass estimates from this experiment were lower than previous 

studies on C. jamaicense marsh aboveground biomass (Newman et al. 1996; Miao and 

Sklar 1998; Daoust and Childers 2004). Subsequently, the A:B biomass ratios were also 

comparatively lower than previous studies (Miao and Sklar 1998; Lorenzen et al. 2001; 

Daoust and Childers 2004). P availability was relatively higher at the experimental sites 

of these comparative studies, which could translate to more aboveground biomass 

(Chapin 1980). This greater P most likely explains the relatively greater aboveground 

biomass and A:B biomass ratios. My aboveground estimates were consistent with mean 

long-term estimates at TS-3, TS-6 (Childers et al. 2006), and SRS-3 (Childers unpub.). 

Both aboveground biomass and A:B biomass ratios seemed to increase with P availability 

as each were significantly greater in SRS. However, previous studies have found no clear 
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relationships between C. jamaicense A:B biomass ratio and P availability (Miao and 

Sklar 1998; Lorenzen et al. 2001) nor oxygen availability (Lorenzen et al. 2001). It seems 

that further research is again needed in order to better understand the impacts of P 

availability and oxygen on biomass allocation. 

On average, root turnover estimates from this study more than doubled the rates 

reported for other tropical wetlands (Gill and Jackson 2000). Root turnover at SRS-4 was 

a quarter of that measured for the other sites. SRS-4 was the only site with continuous 

inundation, likely maintaining anoxic soil conditions throughout the year. Decomposition 

rates tend to be slower in anaerobic soils (Brinson et al. 1981 ), which would increase root 

longevity and thus biomass. This could explain why SRS-4 biomass exceeded all other 

sites, resulting in the substantially lower root turnover estimate. If SRS-4 is not taken into 

account, root turnover rates average just under a year. This mean is still about 50% higher 

than other tropical wetland turnover rates (Gill and Jackson 2000). A possible 

explanation for the greater turnover in this study could be an underestimation of root 

biomass caused by inherent problems with the live root separation technique 

(categorizing too few partially-living roots as live biomass). An underestimation of root 

biomass, rather than an overestimation of root productivity, is suggested because the 

classification of living versus dead roots was much more difficult in the standing stock 

soil cores. It should be noted that considerable variability exists in root turnover 

estimates, based on inherent faults in the methodology and a lack of methodological 

concurrence in the literature. Applying different root turnover assessment methods to the 

same site in the same year has resulted in turnover rates varying by one order of 
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magnitude (Gill and Jackson 2000). Not until the methods are refined will turnover 

comparisons between systems or biomes be meaningful. 

Root turnover rates in SRS were relatively lower than those of TS. Previous 

research has found root turnover rates to be highest where nutrient availability is greatest 

(Nadelhoffer et al. 1985; Bouma et al. 2002; West et al. 2004), which contrasts the 

observed trend. Bouma et al. (2002) demonstrated greater turnover in salt marsh 

macrophytes occurring in reduced hydroperiod areas, which could support the greater 

turnover observed in TS. Rhizome turnover trends showed relatively lower rates in 

estuarine marshes, which could potentially be caused by salinity. Like root turnover, 

substantially less rhizome turnover was found at SRS-4. Unfortunately, the literature 

lacks studies containing rhizome turnover data, thus, no comparisons to other systems 

could be made. Due to this study's slightly higher root turnover rates compared to the 

literature and the extremely low mean turnover estimated at SRS-4, the accuracy of these 

turnover rates can be questioned. For this reason, the turnover estimates of this study 

should be used as a basis of comparison for future work, and not held as fact. Research 

on belowground decomposition is crucial to advancing our understanding of 

belowground ecosystem processes and not until this research is performed will an 

adequate estimation of turnover be available for oligohaline marshes. 

The two most prevalent theories regarding nutrient controls on net pnmary 

productivity (NPP) and biomass allocation in terrestrial systems are: 1) NPP increases 

with greater nutrient availability accompanied by an increase in the proportion of NPP 

allocated to aboveground structures, and decrease in the proportion of NPP allocated to 

roots; and 2) NPP increases with greater nutrient availability, but the proportion of NPP 
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allocated to aboveground structures and roots remains constant (Hendricks et al. 2006). 

Although this experiment showed constant root productivity in response to increased 

nutrient availability, the relationship between nutrient availability and total productivity 

(aboveground + belowground) in Everglades oligohaline marshes is currently unclear. 

Future research assessing both productivity and turnover along nutrient gradients or 

between SRS and TS would provide further insight as to how C. jamaicense marshes fit 

into the theories described above. However, nutrient availability may not be the primary 

driver of wetland NPP. 

In this experiment, nutrient availability had no clear affect on BPP. It seems that 

in studies at scales larger than individual plants, there is no consensus as to whether root 

productivity increases or decreases with increased nutrient availability (Nadelhoffer, 

2000). BPP did show a negative response to water level and hydroperiod, agreeing with 

the conclusions of Childers et aL (2006), who found a decrease in C. jamaicense marsh 

aboveground net primary productivity with water level and hydroperiod. The coupling of 

both reduced aboveground and belowground productivity with increased water level, as a 

result of Everglades Restoration efforts, could result in substantial changes to a landscape 

that has already changed considerably in the last 50-100 years. Reinforcing the notion of 

Childers et al. (2006) that reduced C. jamaicense productivity, in response to increased 

hydroperiod and water level, will lead to a reduction in C. jamaicense abundance, and 

replacement by deeper water-tolerant species (such as Eleocharis spp. and Nymphaea 

odorata), in areas impacted most by Everglades restoration. In the oligohaline ecotone, 

not only would Eleocharis and Nymphaea become more abundant, but mangroves may 

also replace the C. jamaicense under deeper and longer hydrologic conditions. 
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Sea level rise will also act to create deeper water levels and longer hydroperiods 

in oligohaline C. jamaicense marshes, though at a much slower rate. Decreased accretion 

rates, and the subsequent lowering of the peat elevation, will be a direct result of reduced 

BPP caused by increased water and salinity inputs associated with sea level rise (Morris 

et al. 2002). Over the past fifty years, reduced freshwater levels in combination with sea 

level rise has allowed saltwater to intrude further into the Everglades, creating a landward 

expansion of the mangrove zone (Ross et al. 2000; Gaiser et al. 2006) and a spatial 

decline in freshwater marsh ecosystems. I suspect that Everglades restoration will 

counteract sea level rise by shifting the oligohaline ecotone seaward, however, C. 

jamaicense will become less abundant as it will be out-competed by deeper water and/or 

more salt-tolerant species. 

Conclusion 

Belowground biomass and BPP in C. jamaicense marshes of the oligohaline 

ecotone may be controlled by different environmental drivers. While water level and 

hydroperiod were shown to negatively affect C. jamaicense BPP, these drivers had no 

clear effect on belowground biomass or biomass allocation. The literature suggests that 

belowground biomass is driven by the availability of the limiting nutrient, increasing 

when nutrient limitation increases, as per resource allocation theory (Tilman 1985). In 

contrast to this theory, the results of this study showed that both belowground biomass 

and A:B biomass ratios increased with greater nutrient availability, suggesting that 

oligotrophic systems are at the low end of the nutrient availability range necessary for 

resource allocation theory to be applicable. However, the interactions and influence of 
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hydrology and salinity on belowground biomass need to be better understood in the 

system. 

Further research is needed in order to adequately characterize belowground 

biomass and BPP in the C. jamaicense marshes of the oligohaline ecotone. Incorporating 

alternative methods, such as minirhizotrons, nitrogen budget, and carbon budget, may 

provide a more accurate estimation of belowground biomass and BPP. Root mortality and 

decomposition were not incorporated into this study, yet are crucial to establishing 

accurate BPP estimates (Vogt et al. 1998; Hendricks et al. 2006). Future research needs 

to focus on understanding these processes, particularly in response to nutrient availability 

and hydroperiod. Only then will we have a sufficient comprehension of the patterns and 

controls of BPP and belowground biomass allocation and, hence the structure and 

function of marsh ecosystems. 
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