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ABSTRACT OF THE THESIS 

CHARACTERIZING THE MOLECULAR STRUCTURE AND REACTIVITY OF 

NATURAL ORGANIC MATTER IN THE EVERGLADES 

by 

Wenxi Huang 

Florida International University, 2016 

Miami, Florida 

Professor	Rudolf Jaffé, Major Professor 

 Mangroves are the dominant vegetation in Everglades estuarine environment and 

are known to contain polyphenols such as tannins, which present similar fluorescence 

properties as some amino acid fluorophores. In the present study, gas chromatography–

mass spectrometry (GC/MS) was used to quantify gallic acid, which is a normal 

monomer of polyphenols. The quantitative GC/MS analytical method was developed 

using gallic acid and tannic acid standards to quantify the false ‘protein-like’ fluorescence 

in DOM.  

The present study also compared the optical properties, reactive species (RS) 

production and radical scavenging ability of DOM from different regions of the 

Everglades and a correlation was observed between DOM composition and its photo-

productivity. In general, the reactive species quantum yield decreased with increased 

DOM redox potential. The RS formation rates were controlled by the DOC and CDOM 

abundace. Normalized RS formation rates were shown to be influenced by DOM 

aromaticity and molecular weight characteristics.  
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CHAPTER I 

Abstract 

‘Protein-like’ fluorescence has been used as a bio-reactivity proxy in many 

estuarine studies, under the assumption that amino acids are easily bioavailable to 

bacteria. However, polyphenols including tannins present similar fluorescence properties 

to some amino acid fluorophores. This potential interference is rarely considered in the 

literature related to ‘protein-like’ fluorescence. Mangroves, a major vegetation type of 

tropical estuarine environments contain significant amounts of tannin. Since tannins are 

primarily composed of gallic acid monomers, the goal of this study is to re-evaluate the 

contribution of such polyphenols to ‘protein-like’ fluorescence in natural organic matter. 

Besides dissolved organic carbon concentration and optical properties, gas 

chromatography–mass spectrometry (GC/MS) was used to quantify gallic acid, which is a 

normal monomer of polyphenols. A quantitative GC/MS analytical method was 

developed using gallic acid and tannic acid standards. Mangrove floc was collected from 

an estuarine mangrove forest in the Everglades to serve as an environmental sample. 

Advances and difficulties during the development of this method for environmental 

samples measurement are described in the thesis. 

Introduction 

Photo-reactivity and bio-reactivity are important focus areas of natural organic 

matter (NOM) research. Natural organic matter, which is comprised of dissolved organic 
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matter (DOM) and particulate organic matter (POM), is defined as detrital material 

derived from plants and animals, and their degradation products occurring in aquatic 

systems (Riley and Chester, 1971). Historically, NOM has been divided into DOM and 

POM depending on filtration (Figure 1-1) usually using 0.7 µm glass fiber filters (Morel 

and Gschwend, 1987; Lead and Wilkinson, 2007; Aiken et al., 2011). ‘Protein-like’ 

fluorescence is often observed both in DOM (Coble et al., 1990; Maie et al., 2007) and 

base-extracts of POM (Osburn et al., 2012; Brym et al., 2014). 

Our study of NOM focused on the Everglades ecosystem. Everglades National 

Park (ENP) is the largest subtropical wetland in the United States (Davis and Ogden, 

1994). It comprises one of the largest freshwater marshes on the North American 

continent and contains the largest single body of organic soils in the world (Stephens 

1956). Surface waters naturally drain to Florida Bay and Florida Shelf through a 

landscape of broad shallow sloughs (Gooselink and Turner, 1978). The seasonal climate 

in the Everglades is divided into clear wet (between June and November) and dry seasons 

(December to May) with about 80% of total annual precipitation occurring during the wet 

season. In the dry season, freshwater in-flows are reduced and the estuarine residence 

time increases, altering processes responsible for nutrient availability and water quality 

(Childers, et al., 2006). The seasonal changes affect DOM residence times and its 

reactivity. One of the primary drainages of the Everglades National Park (ENP) is Shark 

River Slough (characterized as a long hydroperiod region). The Shark River Slough 

estuary is connected to the Gulf of Mexico and receives significant tidal influence 

(Fourqurean et al. 1993).  
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Figure 1-1. Size distribution diagram of natural organic matter (Aiken et al., 2011) 
 

Dissolved organic matter characterization studies have used a wide variety of 

techniques, including optical properties (Twardowski et al., 2004; Helms et al., 2008), 

nitrogen and carbon stable isotopes (Banner et al., 1997), and radioisotopes (Benoit et al., 

2001). For characterization of the molecular constituents of DOM, such as amino acids, 

proteins, carbohydrates and lignins, methods including nuclear magnetic resonance 

(NMR) and mass spectrometry have been applied (Gélinas, et al., 2001; Kujawinski, et al., 

2002; Maie et al., 2005; Hertkorn et al., 2015). Fluorescence has been used as a 

qualitative and semi-quantitative method for characterizing optical properties for decades 

(Kalle, 1949; Godshalk et al., 1978). Excitation emission matrix fluorescence with 
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parallel factor analysis (EEM-PARAFAC) makes fluorescence spectroscopy a more 

efficient method to study the dynamics of bulk DOM in aquatic ecosystems (Stedmon, et 

al., 2003). Coble, et al. (1990) characterized dissolved organic matter as ‘humic-like’ and 

‘protein-like’ fluorophores. While the former are mainly derived from soil OM and plants, 

the latter may be plankton-derived and positive correlation between the ‘protein-like’ 

fluorescence and DOM bioavailability have been reported (Hood et al., 2009; Fellman et 

al., 2011). Therefore, ‘protein-like’ fluorescence has been applied as a proxy for 

bioavailable DOM (Fellman et al., 2009) and an indicator for biological reactivity of 

DOM (Parlanti, et al., 2000). Natural DOM with ‘protein-like’ fluorophores has been 

further classified as ‘tryptophan-like’ (with an emission wavelength peak around 350 nm) 

and ‘tyrosine-like’ (with an emission wavelength peak around 300 nm) (Coble, 1996) and 

fluorescence intensities have been shown to correlate significantly with tryptophan and 

tyrosine concentrations as hydrolyzable  amino acids (Yamashita, and Tanoue, 2003). 

‘Protein-like’ fluorescence peaks have also been observed in base-extracted POM 

(Osburn et al., 2012; Brym et al., 2014). 

  While it is usually assumed that the ‘protein-like’ fluorescence is mainly due to 

amino acids, Maie, et al. (2007) determined via size exclusion chromatography that the 

tryptophan-like peak was composed of two compounds with distinct molecular weights 

(MW) and suggested that one of them might be composed of polyphenols and not amino 

acids. In addition, only a weak correlation between ‘protein-like’ florescence intensity 

and the hydrolyzable  amino acid concentrations in the Everglades has been reported 

(Chen and Jaffe, personal communication), which suggests reconsidering use of the 
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‘protein-like’ peak florescence intensity as a proxy for bioavailable dissolved organic 

nitrogen at least in ecosystems where polyphenols such as tannins are abundant.  

Tannins (polyphenols) are polymeric plant derived phenolic compounds with high 

molecular weight (Robinson, 1980). The term ‘phenolic’ indicates any compound with a 

hydroxyl-substituted benzene ring. Tannins are a ubiquitous group of plant phenols and 

present in significant amounts in the wood, bark, and leaves of woody plants (Brouillard 

et al., 1994).  Tannins are generally classified as hydrolyzable tannins and condensed 

tannins (Figure 1-2). The hydrolyzable tannins contain gallic acid or 

hexahydroxydiphenic acid and their derivatives. The condensed tannins consist of 

flavonoid polymers (Roux et al., 1975).  Hydrolyzable tannin is more soluble than the 

latter and could be hydrolyzed to gallic acid (Gross et al., 2012). Gallic acid (GA) 

consists of a benzene ring directly bonded to a carboxyl group and three hydroxyl groups 

and has been reported to feature ‘protein-like’ fluorescence. 

‘Protein like’ fluorescence, with an excitation / emission wavelength maximum of 

275nm / 310 or 340 nm corresponds to tyrosine-like or tryptophan-like DOM 

fluorescence peaks respectively (Coble, 1996). Gallic acid and tannic acid both exhibit an 

excitation wavelength maximum around 275nm and emission wavelength maximum 

around 340 nm (Figure 1-3). The EEM spectra of diagenetic products of tannins were 

detected to have fluorescence signals. Tannins were estimated to account for about 20 wt% 

of mangrove (Rhizophora mangle) leaf tissues using solid-state ¹³C nuclear magnetic 

resonance (Benner et al., 1990).  
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It is therefore critical to characterize the molecular composition of the ‘‘protein-

like’’ fluorescence in DOM to quantitatively assess the actual contributions of amino 

acids and polyphenols. While polyphenols such as tannins have been linked with 

‘protein-like’ fluorescence (Maie et al., 2008), in samples with high abundance of these 

compounds, the ‘protein-like’ fluorescence should be considered carefully before using 

as a DOM bioavailability proxy. Many measurements of ‘protein-like’ fluorescence could 

be wrongly assumed to be tyrosine and tryptophan protein, leading to erroneous 

interpretation. However, little is known about this topic. Therefore, this thesis aims to 

provide a critical evaluation of this traditionally defined fluorescence EEM component.  

 

Figure 1-2. Chemical structures of typical condensed and hydrolyzable tannins (Hernes et al., 
2001) 
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Figure 1-3. Excitation emission matrix fluorescence spectra of Gallic acid (left) and tannin acid 
(right) 

 

Sampling  

Floc samples, i.e, unconsolidated surface sediments were collected at FCE-LTER 

(Florida Coastal Everglades Long Term Ecological Research) SRS6 site (Figure 1-4). 

Hydrology at the site is seasonally driven by freshwater inputs and tidal inputs. The SRS6 

site is located close to the mouth of the Shark River with peat soils over 1 m thick at the 

site overlaying karstic bedrock. The riparian mangrove forests lining the Shark River are 

a mixture of white (Laguncularia racemosa), black (Avicennia germinans) and red 

mangroves (Rhizophora mangle). (see http://fcelter.fiu.edu/research/sites/). Organic 

matter in floc at SRS6 consists almost entirely of mangrove detritus. 

Floc samples were collected according to Pisani et al. (2013). Briefly, loose 

particles overlaying sediments in a small tidal creek adjacent to SRS6 were collected with 

a turkey baster. While collecting the floc, excess water was decanted and the floc was 

placed in pre-rinsed 1 L Teflon jars (Nalgene). After transport to the lab, samples were 
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frozen, and then freeze-dried to remove water. The freeze-dried floc samples were 

grinded and sieved through a 0.5-mm sieve to remove large particles and then stored 

frozen in combusted glass jars (Ichem) prior to analysis.  

 

 

Figure 1-4. Sampling site SRS6 location in the Everglades National Park 
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Materials and methods 

Materials 

Gallic acid monohydrate standard (GA) (ACS reagent, ≥ 98.0%), 3,4-Dihydroxy-

5-methoxybenzaldehyde (DMBA) (96%) and tannic acid (TA) (PURISS., USP, powder) 

were purchased from Sigma-Aldrich Co. (St. Louis, MO). Working solutions of gallic 

acid and DMBA were prepared in ethanol (EtOH) and ethyl acetate solution (EtAc) 

(v:v=95:5) and stored at 4⁰C. Ethanol (EtOH) (99.5%, ACS reagent, absolute, 200 proof) 

was purchased from ACROS Organics. Ethyl acetate was purchased from Fisher 

Scientific Inc. The derivatization agent N, O-Bis(trimethylsilyl) trifluoroacetamide 

(BSTFA) (98 to 100% N, O-bis-trimethylsilyl-trifluoroacetamide) and pyridine (ACS 

reagent, ≥ 99.0%), was purchased from Fisher Scientific Inc. Varian Bond Elut PPL 

cartridges were purchased from Agilent Technologies. 

Stock solution was prepared as follows: 5.258 mg GA standard, 4.877mg DMBA 

standard and 5.257 mg TA standard were dissolved in 25ml EtOH + EtAc (v:v=95:5) 

solution respectively. The stock solutions were stored in ambient glass vials and kept in 

the freezer at -18°C. 
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Methods 

Derivatization 

Derivatization of –OH and –COOH groups present in gallic acid can be 

accomplished through silylation, acylation, or alkylation to improve its volatility for 

GC/MS analysis. Silylation is sufficient for compounds containing active hydrogen atoms, 

e.g. acids, alcohols, thiols, amines, amides, etc. Therefore, silylation was selected as the 

derivatization method for this experiment to enhance detection.  

The most common silyl derivatives are TMS (Trimethylsilyl) derivatives. BSA 

(N,O-Bis(trimethylsilyl)-acetamide) and BSTFA are widely used reagents to introduce 

the TMS group. They can be used directly or in the presence of a catalyst, such as, TMCS 

(Trimethylchlorosilane), TFA (Trifluoroacetamide), hydrochloric acid, potassium acetate, 

piperidine or pyridine. In the experiment, because of the three –OH groups and one –

COOH group that gallic acid contains, its volatility is limited and it must first be 

derivatized for better GC/MS detection and resolution. Therefore, BSFTA and pyridine 

(v:v=10:3) were used to form silyl derivative analytes via the reaction presented below: 

Equation 1-1. 

 

 

	 

TMS 

TMS 

TMS 

TMS 

BSTFA	

Heat 
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For the gallic acid silyl derivative, the molecular ion is m/z 458 and the major 

fragmentation ion is represented by m/z 281 because of the loss of two TMS groups (Tor 

et al., 1996). 

In the present experiment, BSFTA and pyridine (v:v=10:3)  were used as 

derivatization reagents to convert analytes to silyl derivatives. Different derivatization 

reagent concentrations and reaction times were performed in the present study. The 

procedure of derivatization is described as follows: The gallic acid sample was placed in 

a 4ml glass vial and subsequently dried with N₂. BSTFA and pyridine solution were 

added to the dried sample and the glass vial was immediately capped. Next, the vial was 

agitated for 10 seconds and then placed in an oven set at 70°C for 30 minutes.  

Internal standard 

An internal standard (IS) is a substance added to a sample in a known quantity as 

a reference to correct for certain factors such as analyte loss during sample preparation, 

volume differences in injection, chromatographic analysis differences and response factor 

change. For GC/MS, a good internal standard should contain the following characteristics: 

-Not present in the original sample 

- Stable and non-reactive with any compounds in the sample (or the stationary or mobile 
phases) 

-Easily identifiable either by time in the chromatogram or by mass in the mass spectra 

-Contain similar chemical properties to the target analyte to minimize the bias throughout 
the sample preparation steps including extraction and derivatization 
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Therefore, 3,4-Dihydroxy-5-methoxybenzaldehyde (DMBA) was selected as the 

internal standard for the analysis of gallic acid as it matches these criteria. Its silylation 

reaction formula is presented as follows: 

Equation 1-2. 

 

 

 

For the internal standard DMBA–TMS, the molecular ion is m/z 400 and the 

major fragmentation ion is represented by m/z 223 because of the loss of two TMS 

groups (Experiment data). 

A standard curve was prepared by the analysis of known amounts of gallic acid 

and internal standard (IS). Concentration of the target compound can be calculated 

through this equation: 

Equation 1-3.  

Concentration of compound = (Concentration of IS × area of compound peak) / 

Area of IS peak 

 

TMS 

TMS 
TMS 

BSTFA		

HEAT
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Hydrolysis 

Hydrolysis of tannin to gallic acids could be achieved by acid hydrolysis (Tor et 

al., 1996) and enzyme hydrolysis (Seth and Subhash, 2000). However, enzyme hydrolysis 

has been rarely reported in the literature and is precluded to avoid complex background 

of GC/MS measurement. The hydrolysis method used in this study is on the basis of the 

research of Tor et al. (1996), using 3% HCl reacting with hydrolyzable tannin at 110°C 

for 4 hours. The reaction was  carried out in a 15mL screw cap hydrolysis tube, which 

was filled with N₂ to replace air and limit the oxidation process while reacting in the 

oven. The chemical reaction of tannic acid hydrolysis is provided in Figure 1-5. (tannic 

acid structure was downloaded from Wikipedia): 
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Tannic	
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(TA) 

Gallic	acid 

(GA)	 

10	X 
3%	HCl		 

Heat 

Figure 1-5. The chemical reaction of tannic acid hydrolysis 



15 

Extraction 

Liquid-liquid extraction using ethanol (EtOH) and ethyl acetate solution (EtAc) 

(v:v=95:5) (Tor et al., 1996) was performed in a glass separatory funnel. The upper 

solution was collected into a round bottom flask after passing through a funnel loaded 

with sodium sulfate to remove any remaining water. Funnels were rinsed three times with 

5% EtOH + EtAc solution and the rinse solution was collected into the same round 

bottom flask. After extraction, excess solvents were removed using a rotary evaporator 

and the concentrated extract was transferred to clean 4 ml vials for derivatization.  

GC/MS  

Chromatography is a process used for separating compounds in a complex 

mixture (Golay et al., 1958; Simmons et al., 1961). In order to quantify the polyphenol 

concentration in NOM, chromatography was chosen for the selective analysis of gallic 

acid. The appropriate and sensitive detector for this study is mass spectrometry. Thus, the 

analyses described in this chapter were performed by GC/MS, which is an analytical 

method that combines the features of gas-chromatography and mass spectrometry to 

identify different substances within a test sample.   

The GC/MS analysis was performed using a Hewlett-Packard 6890 GC with a 

Restek Rtx-5MS column (30 m, 0.25 mm inner diameter), linked to a HP 5973 MS 

system. The GC oven temperature was programmed as follows: 60°C (hold 1 min), ramp 

to 300 °C at a rate of 10°C/min, then held at 300 °C for 5 min. Identification of gallic 
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acid was confirmed by comparing spectra from the NIST (National Institute of Standards 

and Technology) library with the gallic acid standard mass spectra and retention time. 

Analytical measurements of UV-vis, EEMs (Emission Excitation Matrix), DOC 

In order to quantify the real protein induced ‘protein-like’ fluorescence, the gallic 

acid induced ‘protein-like’ fluorescence needs to be substracted from the mass ‘protein-

like’ fluorescence. The proposed approach is that the gallic acid concentration would be 

measured through GC/MS and then knowing the fluorescence quantum yield of gallic 

acid, the fluorescence intensity of the gallic acid induced ‘protein-like’ fluorescence 

could be deduced. The fluorescence quantum yield of gallic acid was calculated as 

follows (Birks, 1970 and Valeur, 2012). 

Equation 1-4. 

ɸ"#
ɸ$%&

=
("# )*+ ,)*-.

/
0"# )*+

× 0$%& )*+23456-
($%& )*+23456- ,)*-.

/
 

Where I represents the integrated fluorescence intensity at a single excitation 

wavelength )*+ across a range of emission wavelengths	)*-. ɸ$%&=0.14 ()*+=276 nm) 

(Chen, 1967). 

Therefore, fluorescence and UV absorbance measurements of gallic acid and 

tyrosine were performed on Aqualog (Horiba) spectrofluorometer. The UV spectra were 

measured from 240 nm to 621 nm at an increment of 3 nm. The fluorescence was 
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measured from excitation 240 nm to 621 nm at an increment of 3 nm along with emission 

from 241 nm to 622 nm at an increment of 1.5 nm.  

The DOC concentration was used to calculate solid phase extraction (SPE) 

recovery rate. It was measured by high-temperature catalytic combustion using a 

Shimadzu TOC-5000A analyzer. Briefly, samples were acidified with 3 M HCl and 

purged with CO₂ free air in order to remove inorganic carbon prior to analysis. Then 

samples were purged to a reactor where the temperature is 680ºC or higher in order to 

convert the carbonates to CO₂ gas for detection. 

Solid phase extraction  

Solid phase extraction using Varian Bond Elut PPL cartridges (PPLs) was proved 

to be one of the most efficient methods to isolate DOM and the DOC recovery rate on 

average reaches 62% (Dittmar et al., 2008). Prior to extraction, floc extracts were 

acidified to pH=2 using HCl and then passed through Varian Bond Elut PPL cartridge 

(1g). After N₂ air drying the cartridge, the DOM was eluted with methanol. 

Freeze drying 

Freeze-drying is an alternative method for DOC concentration other than SPE. 

This method could preserve the high polarity and / or low molecular weight compounds 

that may be missed out through extractions with PPLs. In the present study, the DOC 

with ‘protein-like’ fluorescence was not retained by PPLs and the explanations are 

present in the following (results and discussion) section. In order to better preserve all the 
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DOM, floc extract was freeze dried at -50°C to remove water. Unlike PPL cartridges, 

which used sorption to retain DOM, freeze-drying sublimated water and left behind all 

the DOM, as such they should be more representative and quantitative. 

Overview 

 The experimental process in the present study is concluded in Figure 1-6. This 

experiment was first carried out using a gallic acid standard to establish the calibration 

curve (Figure 1-6 Step 1). Then internal standard was introduced to determine the 

precision of detection (Figure 1-6 Step 2). Later, recovery of polyphenol hydrolysis was 

calculated using gallic acid and tannic acid standard (Figure 1-6 Step 3). After method 

development, environmental samples were tested (Figure 1-6 Step 4; 5; 6). 
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Figure 1-6. Flow diagram of the overall analytical procedure. Numbers in the scheme indicated 
the beginning of an independent experiential procedure. 
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Results and discussion 

Quantification of gallic acid standard 

In order to quantify the gallic acid in GC/MS, a set of gallic acid standard was 

prepared. One ml gallic acid stock solution was diluted to 25ml and stored in a glass vial 

as gallic acid solution. 100, 200, 400 and 600 µL of gallic acid solution was spiked into 

the sample and blow dried under N₂. The experiment was first performed using 200µl 

derivatization reagent (BSTFA and pyridine solution) with a reaction time of 60 min. The 

total ion chromatogram (TIC) of gallic acid major fragment ion m/z=281showed two 

separate peaks which were formed by incomplete derivatization of gallic acid on the basis 

of the MS information obtained (Figure 1-7). A fully derivatized gallic acid MS spectrum 

from the literature is shown in Figure 1-8. On the basis of the fragmentation information 

from the MS, the 16.86 min peak in Figure 1-7 is an incomplete gallic acid derivative 

where the –COOH group was not fully derivatized (Figure 1-9). The 16.97min peak in 

Figure 1-7 represented fully derivatized gallic acid (Figure 1-10).  
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Figure 1-7. Total ion chromatogram spectrum of gallic acid using fragment ion m/z=281 
 
 
 

 

Figure 1-8. Standard MS spectrum of gallic acid from literature (Tor et al.,1996) 
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Figure 1-9. MS spectrum of peak 16.86 min in Figure 1-7 (MS spectrum of incomplete 
derivatized GA) 
 
 

 

Figure 1-10. MS spectrum of peak 16.97 min in Figure 1-7 (MS spectrum of complete derivatized 
GA) 
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The ‘BSTFA Product Specification’ from Supelco suggested that if derivatization 

is not complete a higher reagent concentration and/or longer time should be evaluated. In 

order to reduce the incomplete derivatization, the experiment was first repeated by 

increasing the amount of derivatization reagent to 300µl. A paired t-test of incomplete 

and complete derivatized gallic acid peak area ratio was performed to determine if the 

derivatization agent amount change would affect the derivatization efficiency. The p-

value = 0.26 > 0.05, providing evidence that no significant difference is caused due to the 

change of derivatization reagent. Therefore, a longer reaction time (120 min) was applied 

for a final reaction method of 200µl of BSFTA and pyridine (v:v=10:3) at 70°C for 120 

min. Significant improvement of derivatization was achieved and all the gallic acid was 

fully derivatized (Figure 1-11).  

 

Figure 1-11. Total ion chromatogram spectrum of gallic acid using fragment ion m/z=281 
 



24 

 

 

Table 1-1. Peak area of complete and incomplete derivatized gallic acid TIC 

Gallic acid 

concentration  

(ppm) 

Compelete derivatized Incomplete derivatized 

Peak imcomplete / Peak 

complete 

200µl 

BSTFA 

300µl 

BSTFA 

200µl 

BSTFA 

300µl 

BSTFA 

200µl 

BSTFA 

300µl 

BSTFA 

 10 9.71E+05 1.34E+06 1.48E+05 7.17E+05 1.52E-01 5.37E-01 

 20 5.16E+06 1.49E+07 1.64E+06 3.72E+06 3.18E-01 2.50E-01 

 40 5.72E+07 1.32E+08 3.71E+06 6.57E+06 6.49E-02 4.96E-02 

 60 3.75E+08 3.78E+08 2.26E+06 4.64E+06 6.05E-03 1.23E-02 
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Quantification of gallic acid standard using internal standard 

Although the gallic acid standard was successfully derivatized and detected by 

GC/MS, the precision of this method decreased as gallic acid concentration increased 

(Figure 1-12). To improve the precision and accuracy of the results, the internal standard 

was spiked into the sample before derivatization. One ml DMBA stock solution was 

diluted to 25ml and was stored in a glass vial in the freezer. A set of gallic acid standards 

were prepared again with 100µl DMBA solution spiked in them. The TIC of gallic acid 

and DMBA is showed in Figure 1-13. On the basis of the fragmentation information from 

MS, the 16.25min peak in Figure 1-13 represents DMBA (Figure 1-14) and the 16.52min 

peak in Figure 1-13 represents gallic acid (Figure 1-15). 

A new calibration curve was formed using the internal standard (Figure 1-16). 

50µl, 100 µl, 200 µl and 400 µl GA solution was spiked with 100 µl DMBA solution in a 

4 ml screw cap vial followed by N₂ dry and then silyl derivatized by BSTFA. The new 

calibration curve with internal standard (DMBA) showed a R² = 0.981 and a significant 

increase of sample reproducibility compared to the calibration curve with internal 

standard (R² = 0.954). 
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Figure 1-12. The calibration curve of gallic acid using external standard. The blue line is a linear 
prediction and the blue shade is its 95% confidence zone. 
 
 
 

 

Figure 1-13. Total ion chromatogram spectrum of DMBA and gallic acid 
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Figure 1-14. MS spectrum of the peak at 16.25 min in Figure 1-13 (MS spectrum of DMBA) 
 
 

 
 

 

Figure 1-15. MS spectrum of the peak at 16.52 min in Figure 1-13 (MS spectrum of GA) 
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Figure 1-16. The calibration curve of gallic acid using internal standard. As and Ai stand for peak 
area of gallic acid and DMBA respectively. Cs and Ci stand for concentrations of gallic acid and 
DMBA respectively. The blue line is a linear prediction and the blue shade is its 95% confidence 
zone. 
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Sample loss quantification 

Sample loss during hydrolysis was back calculated using the gallic acid standard. 

Briefly, 200µl gallic acid solution was placed in a 15ml screw cap hydrolysis tube, blown 

dry with N₂ and then hydrolyzed by 3%HCl in the oven for 4 hours. The solution was 

transferred to a separatory funnel and was extracted using an EtOH and EtAc solution 

(v:v = 5:95). The extract passed through sodium sulfate to eliminate water and was 

collected in a round bottom flask for concentration via rotary evaporation. The sample 

was then transferred to a 4 ml screw cap vial and spiked with 200 µl of the DMBA 

standard solution. After being dried with N₂, 200µl BSTFA solution was added to the 

vials which were then sealed and derivatized. The average percent recovery of gallic acid 

after hydrolysis was 78%, which indicated a 22% sample loss during the hydrolysis 

process. 

Tannic acid (hydrolyzable  tannin) standard 

After quantifing the sample loss of the hydrolysis step, a hydrolyzable  tannin 

standard, tannic acid was used to evaluate the recovery rate, assuming that tannic acid is a 

representative proxy for NOM polyphenols. One mole of tannic acid can be hydrolyzed 

to ten moles of gallic acid. One ml tannic acid stock solution was diluted to 25ml and 

200µL aliquot was treated using the same protocol as the sample loss quantification 

experiment. Tannic acid showed an average present recovery of 57%.  
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Floc sample (Environmental sample) 

Fluorescence quantum yield and DOC 

Fluorescence quantum yield is usually calculated as absolute fluorescence 

quantum yield or relative fluorescence quantum yield (Würth et al., 2013). In the present 

research, the relative fluorescence quantum yield of gallic acid is calculated using 

tyrosine as a reference standard. The tyrosine quantum yield ɸTyr=0.14 (λex=276 nm) 

(Chen, 1967). The gallic acid quantum yield is 0.033 and was calculated as follows: 

Equation 1-5. 

ɸ#$ =
&#$(()*),()-.

/
0#$(()*)

× 0234(()*56789-)
&234(()*56789-),()-.

/
×ɸ234 

The DOC concentration of the floc extract is 68.02 ± 6.73 ppm. The DOC 

concentration of the floc extract after SPE is 37.98 ± 12.11 ppm. Therefore, DOC 

recovery rate of the PPL could be calculated by using the difference between DOC 

concentration of floc extract and DOC concentration of floc extract after SPE over the 

original DOC concentration and the average recovery rate is 44.17%. Compared with the 

reported PPL DOC recovery rate (Dittmar et al., 2008), the DOC recovery rate in the 

present study is lower than average. A possible explanation is that PPL is not very 

efficient while retaining the type of DOC from site SRS6.  
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GC/MS 

After the gallic acid and tannic acid standards were successfully quantified by 

GC/MS, the next step was to quantify gallic acid in an environmental floc sample. Base 

extract is a common method for particulate organic matter (POM) extraction (Kuwatsuka 

et al., 1992; Santin et al., 2009; Osburn et al., 2012). Therefore, 0.1 M NaOH solution 

was used to extract organic matter from sedimentary organic matter pools.  

Briefly, 2.583 g floc were weighted and placed in a 500 mL polycarbonate bottle 

with 500 mL 0.1 M NaOH solution. The extract was filtered through GF/F filters and 

neutralized to pH = 7 with concentrated hydrochloric acid (HCl). A small portion was 

saved for DOC measurements and the rest was acidified to pH = 2 for SPE. After SPE, 

the samples were treated the same way as tannic acid standard. Surprisingly, no gallic 

acid signal was detected. Possible explanations were that gallic acid was absent in the 

floc sample or the gallic acid was lost during sample preparation. Therefore, the 

experiment was repeated using 750.2 mg gallic acid standard to check the recovery. 

However, the gallic acid peak was still not detected. A color change of gallic acid 

solution was observed in the process of dissolving gallic acid in the alkali solution, which 

indicated a possible chemical reaction.  The literature reports sugguest that gallic acid is 

not stable at a high pH condition (0.1 M NaOH has pH=13) (Friedman and Hella, 1993). 

Therefore, in place of a base extraction, the gallic acid standard and the floc samples 

were re-extracted in Milli-Q water.  
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Figure 1-17. Fluorescence EEMs of floc extract before (left) and after (right) Varian Bond Elut 
PPL cartridges 
 

 

Figure 1-18. Fluorescence EEMs of gallic acid before (left) and after (right) Varian Bond Elut 
PPL cartridges 
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Gallic acid was detected in the water extracted gallic acid standard (one of the 

triplicate samples) using this method, but the recovery rate of the gallic acid standard was 

only 0.74%. The gallic acid peak was not detected in floc samples. The fluorescence of 

the floc extract and gallic acid before and after SPE were measured on the Aqualog to 

investigate what portion of DOM was not retained by the Varian Bond Elut PPL 

cartridges respectively. The fluorescence EEMs are presented in Figure 1-17 and Figure 

1-18. By comparing the 3D fluorescence EEMs of the floc extract and gallic acid before 

and after SPE, the DOC with ‘protein-like’ fluorescence was left out by PPL which 

indicated that the PPL cartridge does not appear to be efficient at retaining ‘protein-like’ 

fluorescence compounds.  

Therefore, freeze-drying of floc water extract was used for maximum retention of 

DOM.A 2.5794g floc sample was extracted with 500mL Milli-Q water and then filtered 

through combusted GF/F filters. All filtered extracts were transferred to a 500 mL glass 

vial and freeze-dried at -50°C. Solid brown powder (0.386g) was collected from the vial 

after freeze-drying. Freeze-dried floc extract was preserved in a glass amber vial at -18°C 

freezer prior to analysis. However, the gallic acid signal was not detected in the freeze-

dried samples. 

On the basis of these environmental experiment results, gallic acid is difficult to 

detect in water samples. Therefore, in order to eliminate the uncertainty that happened in 

the extraction process, direct hydrolysis was also attempted on the floc sample. Briefly, 

0.007g floc sample was placed with 3% HCl in the hydrolysis tube and reacted at 110 °C 

for 4 hours and then processed through liquid-liquid extraction using EtOH + EtAc 
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solution followed by rotary evaporation and derivatization. Gallic acid was detected in 

the floc sample (Figure 1-19 and 1-20). However, the detected gallic acid recovery was 

low and highly variable (0.15%-0.19%) in the repeated trials.  

 

Figure 1-19. GC/MS of hydrolyzed floc sample (TIC) 
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Figure 1-20. GC/MS of hydrolyzed floc sample (MS) 
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Conclusion  

In this study, GC/MS was used to quantify gallic acid in an attempt to quantify the 

polyphenol contribution to ‘protein-like’ fluorescence. The method is sensitive for 

measuring the gallic acid standard directly and the one-step derivatization is convenient 

and efficient. Hydrolysis followed by liquid-liquid extraction has an average percent 

recovery of 78%. However, when applied to environmental samples, some difficulties 

were encountered.  

Overall, several possibilities could lead to the absence of gallic acid in the field 

sample. Solid phase extraction (SPE) through Varian Bond Elut PPL cartridges was less 

efficient for extracting ‘protein-like’ fluorescence compounds than other DOM. The 

alternative concentration method, freeze-drying, is time consuming and actually took 

about a week per sample in the present study. Tannins are photo-reactive in water and can 

change significantly in chemical structure over a short period of time (Maie et al., 2008). 

Small polyphenols from mangrove-derived DOM have a half-life of less than one day 

(Scully et al., 2004). In the present experiment, amber glassware was used to minimize 

photoreaction and samples were stored in a freezer for better preservation. However, the 

sample preparation for environmental water samples is time consuming and shade limited. 

Therefore, tannins may degrade before detection can occur. For future research, other 

analytical methods, such as LC/MS that has been applied for several polyphenols analysis, 

could be an alternative option. The LC/MS could simplify the sample pre-treatment 

process, therefore shorten the storage time, and minimize the sample degradation (Kiehne 

et al., 1996; Weingerl et al., 2009).  
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Another possible explanation is that gallic acid is a limited proxy and GC/MS is a 

conditional method for tannins quantification. At SRS6, a mean annual litterfall rate of 

3.12 ± 0.26 g m² d⁻¹ were estimatedusing monthly collections of litter fall material in 

litter baskets ( Jaffe et al., 2007).  The average monthly Rhizophora mangle leaves 

litterfall collected in SRS6 is 4.5g in average (Data set available atLTER website).  The 

gallic acid could only be produced by hydrolyzable tannin which is less abundant than 

condensed tannin in plants (Hernes et al., 2001). In addition, hydrolyzable tannin other 

than tannic acid might produce less counts of gallic acid after hydrolysis. Many questions 

remain with regards to the potential contribution of polyphenols like gallic acid to 

‘‘protein-like’’ fluorescence in NOM. Unfortunately, as a result of analytical difficulties 

combined with the high reactivity of tannins, the present study was inconclusive.  Further 

research efforts are needed to advance the field.  
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CHAPTER II 

Abstract 

Dissolved organic matter (DOM) optical properties (using on the basis of UV 

absorbance and fluorescence measurements), reactive species (RS) generation (including 

singlet oxygen, hydroxyl radical, and excited triplet states of dissolved organic matter) 

and radical scavenging ability (DOM redox potential) were studied for a broad range of 

Everglades water samples with distinctly different DOM compositions in order to better 

understand DOM photo-reactivity. The samples ranged from fresh-water marsh to 

mangrove estuary and seagrass-dominated marine waters. Samples were subdivided into 

three categories through hierarchical cluster analysis: ocean, estuary and terrestrial which 

match with different vegetation characteristics. Halides or ionic strength influence on RS 

generation upon solar irradiation was estimated to be minor for Everglades DOM, while 

DOM aromaticity was found to be the critical factor in determining the photoproduction 

of RS from DOM. The higher DOM aromaticity (SUVA), the lower RS quantum yields, 

but the higher the photoproduction rate of these species. The redox potential of DOM can 

also alter the photoproduction rates by quenching the formation of RS. The RS quantum 

yield decreased with the increase of DOM redox potential, indicating a quenching of the 

singlet oxygen RS. The RS formation rates were controlled by the DOC and CDOM 

concentration. Normalized RS formation rates appeared to be influenced by the degree of 

humification (HIX) of the DOM and by molecular weight characteristics (SR), both 

related to the DOM composition. In general, DOM photoreactivity as defined by RS 

production correlated well with a combination of DOM compositional features including 

aromaticity, molecular weight and redox potential.  
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Introduction 

Natural organic matter (NOM) in aquatic systems plays an important biochemical 

role in the ecosystem. Natural organic matter is defined as detrital material derived from 

plants and animals, and their degradation products occurring in aquatic systems (Riley 

and Chester, 1971). It is classed as dissolved organic matter (DOM) and particulate 

organic matter (POM) on the basis of filtration using 0.7 µm glass fiber filters (Aiken et 

al., 2011; Morel and Gschwend, 1987; Lead and Wilkinson, 2007). Dissolved organic 

matter is a heterogeneous mixture of aliphatic and aromatic organic compound (Cooper et 

al., 1989). 

Dissolved organic matter is known as a photosensitizer and its photosensitizing 

properties are a consequence of production of reactive species (RS) including hydroxyl 

radical (•OH), singlet oxygen (¹O₂) and excited triplet states of dissolved organic matter 

(³DOM*) (Balakrishnan et al., 1970; Warneck et al., 1988; Vione et al., 2006). Nitrate, 

nitrite (Mack et al., 1999; Ji et al., 2012; Dong et al., 2012) and photo-Fenton reaction 

(Voelker et al., 1997; Fukushima et al., 2001) are well-known •OH radical sources. 

However, in natural water environments with limited nitrate, nitrite and hydrogen 

peroxide concentration, chromophoric dissolved organic matter (CDOM) becomes a 

significant hydroxyl radical source (Takeda et al., 2004). Moreover, ³DOM*is known to 

be an important precursor for singlet oxygen (Zepp et al., 1977; Haag et al., 1984). 

Therefore, CDOM may be an important proxy for RS formation. Moreover, studies in 

fresh-water and estuarine water showed that estuarine samples are more photo-reactive 

and have higher RS formation rates along with higher organic carbon content than fresh-
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water samples (Takeda et al., 2004; Housari et al., 2010). Another finding demonstrated 

that increasing humic concentration could also enhance •OH photoproduction rates 

(Mopper et al., 1990) and the main source of ¹O₂ are the moieties that are present in the 

terrestrial humic substances (Timko et al., 2014). Alternatively, halide radicals such as 

bromide or chloride could contribute to the photoproduction of RS from DOM as well 

(Glover et al., 2013). 

While many studies have examined the RS produced from DOM using humic 

standards (Parker et al., 2013; Cawley et al., 2015) or organic contaminants (Canonica et 

al., 2008; Wenk et al., 2012; Mostafa et al., 2013), limited information is available on the 

effect of NOM character on RS formation. As the largest subtropical wetland in the 

United States, the Everglades not only maintains a diversity of vegetation, but is also 

unique in its low iron, phosphate and nitrate / nitrite concentration (Chambers et al., 

2006). Because of the high variation in DOM character (i.e., composition) in the 

Everglades (e.g. Maie et al., 2005), it would be of interest to understand how RS 

production is coupled to such DOM diversity. Timko et al (2014) studied the formation 

rates and steady-state concentrations of singlet oxygen, hydroxyl radical and triplet 

excited-state DOM and how these species corresponded to the optical properties of DOM 

during the late dry season of the Everglades. Their study suggested that DOM quality and 

quantity is coupled to the production of RS. 

Moreover, DOM not only plays a role as a photosensitizer but can also act as a 

radical scavenger in the natural aquatic environment. Its radical scavenging ability, which 

are mainly attributed to hydroquinone and phenol moieties (Wenk et al., 2012; Page et al., 
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2014). Some DOM components such as polyphenols are known for their radical 

scavenging ability (Halliwell et al., 1990; Rice-Evans et al., 1996). Free radical 

scavengers can interrupt radical chain reactions, or even prevent the reactive oxidants 

from being formed in the first place (Huang et al., 2005). Radical scavenging ability of 

DOM was studied in the Everglades and showed a strong relation with mangrove DOM 

(Romera-Castillo et al., 2015), which is known to produce a significant amount of tannin-

like polyphenols (Maie et al., 2006). 

The current study took place at two major drainages, Shark River Slough (SRS) 

and the Taylor Slough (TS) together with a marine site -- Florida Bay (FB) in the 

Everglades National Park (ENP). Surface waters in the ENP drain into Florida Bay and 

Florida Shelf naturally and create a salinity gradient along SRS and TS (Gooselink and 

Turner, 1978). The seasonal climate variations in the Everglades represent clear wet 

(between June and November) and dry seasons (December to May) with about 80% of 

total annual precipitation occurring in the wet season. In the dry season, freshwater 

inflows are reduced and estuarine residence time increases. These altering processes are 

responsible for nutrient availability and water quality (Childers, et al., 2006) which 

including changes in DOM residence times, with potential effects on its reactivity. The 

Shark River Slough estuary is strongly connected to the Gulf of Mexico and receives 

significant tidal influence (Fourqurean et al. 1993). Therefore, in the present study, a 

broad range of DOM samples were compared in equal basis using RS parameters and 

redox potential along with optical properties to understand the DOM photo-activity in the 

Everglades. 
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The compositional features of DOM also vary on spatial scales in the Everglades, 

in part as a result of source changes (Maie et al., 2005; Chen et al., 2013). In the upstream 

SRS and TS, the freshwater marsh is dominated by sawgrass (Cladium) and periphyton. 

The TS sites dry more frequently and for a longer duration compared to SRS sites, 

therefore, containing marl soils rather than peat. Further downstream, in TS and SRS, the 

primary producer biomass is dominated by mangroves. Compared to mangrove-

dominated sites located in TS and SRS, TS sites have significantly shorter trees, lower 

rates of litterfall and root production than SRS sites. In FB, biomass is dominated by 

seagrass. These vegetation and hydrological patterns result in a highly variable DOM 

character imprint in this ecosystem. 

This study is the first study where a broad range of DOM samples, with 

significant compositional differences were compared on the basis of DOM organic matter 

optical properties, RS generation, and radical scavenging ability in order to better 

understand the DOM photo-reactivity. We hypothesize that RS productivity would be 

directly related to the aromaticity of DOM samples. At the same time, we assume that 

redox potential would have a significant impact on the generation of RS and thus the 

overall photo-reactivity. 

Experimental methods 

Chemicals 

The FFA was purchased from TCI America. Phenol was purchased from Sigma 

Aldrich. The TMP and Benzene were purchased from Alfa Aesar. Methanol (HPLC 
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grade) was purchased from BWD (VWR Analytical) or Honeywell. Phosphoric acid was 

purchased from J.T. Baker. Varian Bond Elut PPL cartridges were purchased from 

Agilent Technologies.  

Sampling 

Water samples were obtained from the Everglades National Park, Florida, USA 

(Figure 2-1). Samples were collected from long-term monitored FCE-LTER sites located 

in Shark River Slough (SR2, SR4, and SR6), Taylor Slough (TS2, TS3, and TS7) and 

Florida Bay (FB21). Samples were collected as surface water in pre-rinsed polyethylene 

bottles and transported back to the lab on ice.  Samples were then filtered through 0.7 µm 

filters (Gelman GF/F) and stored in polyethylene bottles at 4 °C. 
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Figure 2-1. Sampling sites along Shark River Slough (SRS-2/4/6), Taylor Slough (TS-2/3/7) and 
Florida Bay (FB21). Sub-environments: freshwater marsh (peat; SRS-2/3), freshwater marsh 
(marl; TS-2), mangrove estuarine (peat; SRS-4/6), mangrove estuarine (marl; TS-7), and Florida 
Bay (FB) estuary (FB-21).  
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Methods 

Reactive species measurement 

Reactive species (RS) measured in the present study include: hydroxyl radicals 

(•OH), singlet oxygen (¹O₂) and excited triplet states of dissolved organic matter (³DOM*) 

using the following probe: benzene (Balakrishnan  et al., 1970; Warneck et al., 1988), 

Furfuryl alcohol (FFA) (Haag et al.,1984a; 1984b) and 2,4,6-trimethylphenol (TMP) 

(Cawley et al., 2009; Rosado-Lausell et al., 2013), respectively.  

Benzene serves as a common probe for hydroxyl radicals (•OH) measurements 

and is converted to phenol (Warneck et al., 1988). 

Equation 2-1.  

 

The formation of singlet oxygen (¹O₂) is via energy transfer from excited triplet 

states of dissolved organic matter (³DOM*) to ground state O₂ (Zepp et al., 1977; Zepp et 

al., 1981). Detection of singlet oxygen (¹O₂) is usually performed by using the probe 

furfuryl alcohol (FFA), which is easy to employ because of its high water solubility and 

low volatility (Haag et al.,1984a; 1984b).  
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Equation 2-2.  

 

Excited triplet state dissolved organic matter (³DOM*) was measured using probe 

2,4,6-trimethylphenol (TMP), which is selectively reactive toward this photo-transient 

species. The methyl groups on TMP act as electron donors to the conjugated ring, which 

stabilizes the TMP cation after oxidation by ³DOM (Cawley et al., 2009). 

The RS quantum yields determined in this experiment were well documented 

elsewhere (Mostafa et al., 2013, Dong et al., 2012).A Cary 100 UV/Vis 

spectrophotometer was used to measure absorbance scans. Samples were measured in 

triplicate using deionized water as a 100% transmittance blank. Samples for irradiation 

were placed in clear borosilicate glass HPLC vials positioned on their side to chill in 

20 °C water bath under the Oriel Solar Simulator (Model 1429A). The specific rate of 

light absorbance (KDOM) was calculated using the following equation for summing 

λ=290-400nm. 

Equation 2-3. 

#$%&'( =
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And ∆@  is set at 1 nm. The variable *+,-
.  represent the near surface photon 

irradiance,	/+,- is the apparent molar absorptivity,  The quantum yield could then be 

calculated using the following equation: 

Equation 2-4. 

		
Φ =

RROS
IDOM

=
RROS

kDOM−a[DOM]  

The term RROS stands for the rate of ROS formation [M s-1] and IDOM represents the rate 

of light absorption by DOM [Ein s-1]. The RROS was measured through the loss of ROS 

probe 2-furan methanol (FFA), benzene and 2,4,6-trimethylphenol (TMP) which were 

detected by HPLC.  

Take ¹O₂ as an example: 

Equation 2-5. 

H¹J₂ = HKKL
#KKL,¹%₂MMN. + #P
#KKL,¹%₂MMN.

 

Where FFA₀ is the FFA concentration at time zero and #KKL,¹%₂ stands for the reaction 

rate between FFA and ¹O₂. 

 All RS measurements repeated here were determined by colleagues at the 

University of Colorado through a collaborative effort. 
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Antioxidant activity measurement 

An efficient method of DOM radical scavenging ability evaluation is using 2,2-

diphenyl-1-picrylhydrazyl (DPPH•) to react with DOM in a methanol solution (Brand-

Williams et al., 1995; Wei et al., 2010; Romera-Castillo et al., 2015). The DPPH• has a 

characteristic wavelength absorbance at 515 nm which would be reduced or eliminated 

by a radical scavenger (AH) or a radical species (R•) (Brand-Williams et al., 1995).  

Equation 2-6. 

 

Therefore, a sample’s radical scavenging ability could be quantified by measuring 

its UV absorbance reduction after DPPH• reaction at wavelength 515 nm.  

The radical scavenging ability measurements in the experiment have been 

described in detail previously (Brand-Williams et al., 1995; Wei et al., 2010) and recently 

adapted specifically to DOM (Romera-Castillo et al., 2015). Briefly, Varian Bond Elut 

PPL cartridges were used to isolate DOM extracts. Then methanol was used to elute the 

DOM. The methanol extracts were then mixed with DPPH• reagent, shaken and left to 

react in the dark at room temperature for 15 minutes. The UV absorbance at 515nm 

decreased after reaction and was measured in a Varian Cary 50 biospectrophotometer. 

The radical scavenging ability (AxA) is expressed as: 
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Equation 2-7.   

AxA = [1−(AA-AC)/AB] ×100  

Where AA is the absorbance of the antioxidant sample at the end of the reaction time; AC 

is the absorbance of the sample blank at the beginning of the reaction time (t=0); and AB 

is the absorbance of the methanol blank at the beginning of the reaction time (t=0). 

The radical scavenging ability of samples in the present study is determined as 

IP100 value, which is the antioxidant activity for 100 mg/L methanol extracted DOC 

using the calibration curve. The larger IP100 value stands for higher DOM radical 

scavenging ability.  

Dissolved organic carbon and optical properties measurements 

The DOC concentrations were measured with a Shimadzu TOC-5000 analyzer 

through high temperature combustion. The DOC concentration of water samples was 

measured directly from the filtered water samples. An aliquot (200µl) of each methanol 

DOM extract was dried with N2 gas and was also subject to vacuum in a freeze dryer for 

2 h to ensure the complete dryness of the samples. Once dried, all the samples were re-

dissolved with 10ml Milli-Q water for DOC measurement.  

The UV absorbance spectra and fluorescence spectra were obtained for each 

natural water sample using the Aqualog (Horiba) spectrofluorometer with a 1 cm quartz 

cuvette. The excitation wavelength was scanned from 240 nm to 621 nm with an 

increment of 3 nm. The emission wavelength was scanned from 241 nm to 622 nm in 1.5 
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nm steps. The UV-Vis spectra were collected from 240 nm to 621 nm with an increment 

of 3nm simultaneously. The optical parameters used in the present study include HIX 

(humification index) (Senesi et al., 1991; Zsolnay et al., 1999; Huguet et al., 2009); a₂₅₄ 

(m⁻¹), SUVA₂₅₄ (L/mgC m) (Weishaar et al., 2003); Slope Ratio (SR) (Helms et al., 2008) 

and E3:E3 (Peuravuori et al., 1997).  

The humification index is a fluorescence index that assessed the relative degree of 

humification and was calculated as the ratio of the peak area under the emissions 434–

480 nm and 300–346 nm from excitation 255 nm (Zsolnay et al., 1999). High HIX values 

correspond to the presence of complex molecules like high molecular weight aromatics 

(Senesi et al., 1991). The a₂₅₄	value is the absorption coefficient at wavelength 254 nm 

and the more aromatic OM correspond to a higher absorbance at wavelength 254nm 

(Weishaar et al., 2003). Because of the instrument limitation, the UV absorbance in this 

study was performed at wavelength 255 nm instead. a₂₅₅=2.303*A₂₅₅/d, where d is the 

length of the cuvette which is 1cm; A₂₅₅ is the UV absorbance value at wavelength 255; 

a₂₅₅ is the absorption coefficient at wavelength 255nm; 2.303 is a conversion factor from 

a decimal to natural log. SUVA₂₅₅ (L/mgC m) = a₂₅₅ (cm-1) / DOC (mg/L) × 100 (cm/m). 

Slope Ratio in this study was calculated out of slopes of two narrow wavelength intervals, 

275–295 nm and 350–400 nm. E2:E3 is the ratio of a sample’s absorbance at 254 nm to 

that at 365 nm and in the present study is the ratio of a sample’s absorbance at 255 nm to 

that at 366 nm due to equipment limitation. Slope Ratio (Helms et al., 2008) and E3:E3 

(Peuravuori et al., 1997) are both inversely related with the molecular weight of DOM.  
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Results and discussion 

General observations 

In this study, multiple descriptors were investigated in an attempt to find 

correlations between RS and DOM optical or chemical parameters. This would benefit 

the RS prediction from readily measured parameters.  All the detailed data are listed in 

the appendix (Table S1). 

Spatially, samples in this study can be divided into three groups on the basis of 

their environmental characteristics. The first group is comprised of marine water samples, 

corresponding to the seagrass dominated Florida Bay location (FB21), characterized by 

low absorption coefficient values (a₂₅₅ = 0.12-0.16cm⁻¹) and low DOC concentration 

(5.5-7.5ppm). The second group contained all of the fresh-water marsh samples (SRS2, 

TS2, TS3), with high DOC concentration (8.5-22.7ppm) and UV absorbance (a₂₅₅ = 

0.34-1.17cm⁻¹). The third group contained estuarine samples (SRS6, TS7) which are 

associated with mangrove forests and had intermediate absorption coefficient values (a₂₅₅ 

= 0.44-1.43cm⁻¹) and DOC concentrations (9.0-19.0 ppm). Moreover, on the basis of soil 

type, the Shark River Slough, characterized by peat soil, is much more organic matter 

enriched compared to Taylor Slough, which features marl soil. Therefore, the DOC 

concentration in SRS fresh-water marsh site (SRS2) is the highest. Besides, the fringe 

mangrove environment has been reported to have significant contributions of highly 

aromatized CDOM (Jaffe et al., 2004; Chen et al., 2013). Therefore, the higher 

absorption coefficient value and DOC concentration of site TS7 compared to TS2 and 
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TS3 is not unexpected. Combined with salinity value, the TS7 November sample was 

strongly influenced by saltwater intrusion from Florida Bay and shared more similarity to 

FB21 samples than the other TS7 samples.  

Cluster analysis 

To identify specific relationships between the DOM samples studied here, 

hierarchical cluster analysis was used as a common multivariate statistical method. 

Cluster analysis was performed on the basis of RS quantum yields (•OH_QY, ¹O₂_QY, 

³DOM*_QY), antioxidant activity (IP100) and optical properties (E2:E3, a₂₅₅, HIX) 

information. As previously observed (Maie et al., 2005; Chen et al., 2013), a clear spatial 

cluster was perceived, likely driven by soil type and plant cover characteristics (Figure 2-

2). The cluster clearly separated the dataset (data reorganized into monthly averages) into 

sub-environment types as follows: Taylor River mangrove estuary site (TS7), Shark 

River mangrove estuary sites (SRS6), Shark River mangrove ecotone (SRS4), Taylor 

River fresh-water (FW) marsh sites (TS2,TS3), Shark River FW marsh site (SRS2) and 

estuary-FB site (FB21). In order to get more details, cluster analysis using monthly data 

was also performed (Figure 2-3). The samples generally grouped into similar sub-

environments as bay DOM, fresh-water marsh DOM and mangrove DOM. The 

November samples from site TS7 fell out from the general mangrove group. The salinity 

value of that sample is 25.3 PSU which is about three times higher than the other two 

month (Avg. = 9.6) indicating that TS7 site was strongly influenced by Florida bay water 

intrusions at that time. November is the beginning of the dry season in the Everglades. 

Reduced freshwater discharge at this site was previously shown to lead to a shift from 
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estuary DOM to marine DOM (Chen et al., 2013). Thus, TS7 November sample showed 

a low a₂₅₅ and DOC value which is similar to FB samples. 

 

 

Figure 2-2. Cluster analysis with RS quantum yields, antioxidant activity and optical properties 
data reorganized into monthly averages of each site. 
 
 

Bay 

FW Marsh 

Mangrove 
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Figure 2-3. Cluster analysis with monthly data. Sample name is a combination of sampling site 
and month. e.g. FS stands for Florida Bay September sample and T7N stands for TS7 November 
sample. 
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FW 
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Reactive species  

RS and DOC 

On the basis of previous reports, the DOC concentration in the SRS decreased 

from the upstream to downstream while the TS showed an opposite trend (Chen et al., 

2013; Timko et al., 2014; Romera-Castillo et al., 2015). Peat based fresh-water marsh 

sub-environment (SRS2) showed a significantly higher concentration of DOC (Avg. = 

18.9 ppm) compared to the marl-based freshwater sub-environment (TS2-3) (Avg. = 9.3 

ppm). SRS and TS have similar vegetation but TS sites are subject to frequent dry-down 

duration during the peak of the dry season, resulting in reduced OM preservation. 

DOC concentrations were found to inversely related with RS quantum yields in 

the present study (Figure 2-4). ³DOM* and ¹O₂ quantum showed very similar trends and 

are both linearly related with DOC as expected. However, the Shark River freshwater 

marsh site SRS2 samples appear to be outliers. Although DOC concentration for the SR2 

site sample is significantly higher than TS2 and TS3, the fresh-water marsh sites all have 

similar RS quantum yield value and are higher than mangrove sites in general. Therefore, 

instead of DOC being the controlling variable here, DOC may be acting as a surrogate for 

a reactive component. Alternatively, a possible explanation for SRS2 photoproductivity is 

that soil derived DOC which has not previously been exposed to light is more photo-

reactive (De Laurentiis et al., 2013; Cory et al., 2015). Moreover, DOC from SRS2 site 

has a lot of phenolic DOC from periphyton because periphyton was characterized to be 

abundant in phenolic compounds through TMAH (Tetramethylammonium hydroxide) 
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thermochemolysis (Maie et al., 2006) which indicates that DOM composition may be a 

stronger influence for RS photoproductivity. Besides RS quantum yields, RS formation 

rates were also linearly correlated with DOC (Figure 2-5). The linear relationship 

between the •OH radical formation rate and the DOC concentration confirmed that DOM 

instead of nitrite or nitrate is the main source of •OH production in this system. Besides, 

these N-species are known to be not concentrated in the Everglades (Davis et al., 2003). 

Samples from SRS2 showed the highest ³DOM* and ¹O₂ formation rate. This result is 

expected because of their high DOC concentration and quantum yields. Moreover, ¹O₂ 

formation rate was found linearly related with ³DOM* formation rate which confirmed 

that ³DOM* is a precursor of ¹O₂ (Zepp et al., 1977; Zepp et al., 1981; Dong et al., 2012) 

(Figure 2-6). The mechanism of singlet oxygen formation includes the formation of an 

excited triplet state DOM from the absorbance of specific chromophores and quenching 

by molecular oxygen (Zepp et al., 1977; Cooper et al.,1988).  
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Figure 2-4. Reactive species quantum yields versus DOC concentration. The blue line is a linear 
prediction excludes SRS2 samples and the blue shade is its 95% confidence zone. A) Singlet 
oxygen; B) Hydroxyl radical; C) Excited triplet state DOM. 
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Figure 2-5. Reactive species formation rates versus DOC concentration. Fitting model was linear 
and the blue region represents the 95% confidence zone. A) Singlet oxygen; B) Hydroxyl radical; 
C) Excited triplet state DOM. 
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Figure 2-6. Scatter plots showing significant correlation between ³DOM* and ¹O₂ formation rate. 
R²=0.747. Fitting model was linear and the blue region represents the 95% confidence zone. 
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RS and CDOM (chromophoric dissolved organic matter) 

CDOM is directly related to the light-absorbing fraction of the DOM pool. The 

more aromatic DOM has a higher absorbance at 254nm (Weishaar et al., 2003). Because 

of the equipment limitation, the UV absorbance was performed at wavelength 255 nm 

instead.  

Compared with the RS-DOC correlations shown in the last section (Figure 2-4), 

use of absorbance coefficient resulted in a better correlation for RS quantum yields with 

higher R² values (Figure 2-7) due to the fact that non-light absorbing components from 

the DOC pool are not considered in CDOM. However, the a₂₅₅-based correlations still 

showed a bias for the SRS2 samples. Therefore, SUVA value was calculated to normalize 

the DOC concentration influence. The SUVA value of SRS2 is similar to the other 

freshwater marsh sites (TS2 and TS3) which is in agreement with the previous hypothesis 

that DOM composition is a stronger influence for RS photoproductivity. The SUVA 

values were observed to be significantly higher for the mangrove sites suggesting highly 

aromatized DOM contribution from the mangrove environment (Figure 2-8). The 

correlation between SUVA₂₅₅ and RS quantum yield showed a better correlation than 

a₂₅₅ which indicated that aromaticity of DOM is the dominant variable. In general, 

mangrove sites had the highest SUVA value and lowest RS quantum yield.  The TS7 

outlier is from the November sample.  
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For RS formation rate, for both a₂₅₅ and SUVA₂₅₅ values were compared (Figure 

2-9). The a₂₅₅ showed the best correlation which indicated that for RS formation rate, 

DOM aromaticity by itself is a statistically less significant variable. Combined with the 

data depicted in Figure 2-5, DOC and CDOM concentration both play important roles in 

the RS formation. 
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Figure 2-7. Reactive species quantum yields versus absorbance coefficient. Fitting model was 
linear and the blue region represents the 95% confidence zone. A) Singlet oxygen; B) Hydroxyl 
radical; C) Excited triplet state DOM. 
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Figure 2-8. Reactive species quantum yields versus SUVA value. Fitting model was linear and 
the blue region represents the 95% confidence zone. A) Singlet oxygen; B) Hydroxyl radical; C) 
Excited triplet state DOM. 
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Figure 2-9. Reactive species formation rate versus a₂₅₅ and SUVA value. Fitting model was 
linear and the blue region represents the 95% confidence zone. A) Singlet oxygen formation rate 
versus a₂₅₅; B) Singlet oxygen formation rate versus SUVA value; C) Hydroxyl radical formation 
rate versus a₂₅₅; D) Hydroxyl radical formation rate versus SUVA value; E) Excited triplet state 
DOM formation rate versus a₂₅₅; F) Excited triplet state DOM formation rate versus SUVA value. 
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RS and HIX 

In the present study, the relationship between HIX (humification index) value and 

RS quantum yield was observed (Figure 2-10). Compared with SUVA₂₅₅ which is 

limited to single wavelength UV absorption, the CDOM was better characterized using 

fluorescence measurement. HIX is a fluorescence index which assessed the relative 

degree of humification (Senesi et al., 1991; Zsolnay et al., 1999; Huguet et al., 2009). 

Higher HIX values corresponded to higher DOM aromaticity (Senesi et al., 1991). ROS 

quantum yields are linearly and inversely related with the HIX value. In general, 

mangrove sites had the highest HIX value and lowest ROS quantum yield. This result 

agrees with the findings using SUVA₂₅₅ value. Previous study using another fluorescence 

method, PARAFAC analysis, was performed in the same ecosystem and showed a 

positive correlation between RS formation and terrestrial humic-like DOM abundance 

(Timko st al., 2014). In the present study, the negative correlation between HIX and RS 

formation rate agrees with the previous study.  

The formation rates of RS are expected to be higher in the estuarine sample than 

freshwater because of the higher intrinsic absorption of radiation (Housari et al., 2010). 

The irradiated CDOM is known to be the precursor of RS. Therefore, in the present study, 

both ¹O₂ and •OH showed a higher RS formation rate in the estuarine samples as 

predicted (Figure 2-11 A and C). However, for ³DOM* formation rate, mangrove sites 

showed lower values than prediction (Figure 2-11 E). Applied DOC normalization, the 

samples with the highest HIX, namely the Shark River freshwater peat samples and the 
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mangrove region samples (estuarine samples), also showed the ³DOM* normalized 

formation rates were lower than expected from the linear correlation formed by other 

freshwater marsh DOM samples (Figure 2-11 F). A possible explanation is that DOM 

molecular weight (MW) affects the RS production. Mangrove DOM has higher 

aromaticity but a smaller average molecular weight compared with fresh-water marsh 

DOM which has lower aromaticity but larger molecular weight. Bay DOM has the lowest 

aromaticity and smallest MW (Chen et al., 2013). Another possible explanation is that the 

mangrove DOM, which is known to have higher radical scavenging ability, may affect its 

RS reactivates. These two hypotheses are discussed in the following sections. 
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Figure 2-10. Reactive species quantum yields versus HIX value. Fitting model was linear and the 
blue region represents the 95% confidence zone. A) Singlet oxygen; B) Hydroxyl radical; C) 
Excited triplet state DOM. 
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Figure 2-11. Reactive species formation rate and DOC normalized formation rate versus HIX 
value. Fitting model was linear and the blue region represents the 95% confidence zone. The 
linear prediction in E and F was formed deprived of mangrove sites samples. Graph A, C, E 
represented singlet oxygen, hydroxyl radical, and excited triplet state DOM formation rate versus 
HIX value respectively. B, D, F represented singlet oxygen, hydroxyl radical, excited triplet state 
DOM normalized formation rate versus HIX value respectively.  
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RS and MW (Molecular weight) 

Molecular weight is known to be an important RS predictor.  Several studies 

associated with RS and molecular weights showed that quantum yields are inversely 

related with MW. (Lee et al., 2013; Mostafa et al., 2014; Cawley et al., 2015). Size 

fractions of low MW DOM are considered as the best ¹O₂ sensitizers (Cooper et al., 

1988). 

Both SR and E2:E3 were introduced in the methods section and are known as 

indicators of molecular weight (MW) (Peuravuori et al., 1997; Helms et al., 2008). They 

are inversely related with the molecular weight of DOM and E2:E3 value also indicates 

the loss of aromatic groups (Peuravuori et al., 1997). Comparing SR and E2:E3 ratio, 

mangrove DOM has smaller E2:E3 value compared with freshwater marsh DOM but the 

SR value showed an opposite result (Figure 2-12). Slope Ratio in this study was 

calculated out of slopes of two narrow wavelength intervals, 275–295 nm and 350–400 

nm. E2:E3 is the ratio of a sample’s absorbance at 254 nm to that at 365 nm. Therefore, 

SR contains more optical information and Helms et al. (2008) reported E2:E3 to be a less 

robust indicator for molecular weight of marine CDOM. The slope ratio pattern in the 

present study also matches with previous research (Chen et al., 2013). Therefore, a 

possible explanation is that E2:E3 ratio is not only influenced by molecular weight but 

also DOM aromaticity. When the quotient E2:E3 increased the aromaticity and molecular 

size of aquatic humic solutes both decreased (Peuravuori et al., 1997).  Therefore, in the 

present discussion, SR was chosen to be the proxy of molecular weight. Alternatively, 

E2:E3 ratio was plotted with RS parameters in the appendix (Figure S1 and S2). 
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Generally, positive correlations between the slope ratio and the RS quantum yield 

were observed in the present study (Figure 2-13) from which we conclude that higher 

MW DOM components are less photoreactive. However, mangrove DOM has lower RS 

quantum yields than predicted which indicated that MW is not the only control variable 

for RS photoproduction.  Inverse relationships between SR and ¹O₂ and ³DOM* 

formations were observed. The same trend for •OH appeared after excluded the 

mangrove sites. However, comparing with Figure 2-5 and Figure 2-9, RS formation rates 

are more dependent on the DOC and CDOM concentration (Figure 2-14 A, C, E). After 

DOC normalization, the inverse relationship between the normalized ¹O₂ and ³DOM* 

formation rate still remains (Figure 2-14 B, F). However, the mangrove DOM has a much 

higher RS normalized formation rate than other samples. Combined with the information 

in Figure 2-5 B and Figure 2-9 C and D, DOM composition seems to be a strong 

influence of •OH formation. Therefore, the formation of •OH is more dependent on DOM 

composition while the formation of ¹O₂ and ³DOM*are more dependent on DOC 

concentration or the presence of solution scavengers. 
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Figure 2-12. Scatter plots showing significant correlation between DOM slope ratio and E2:E3 
ratio. R²=0.619. Fitting model was linear and the blue region represents the 95% confidence zone.  
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Figure 2-13. Reactive species quantum yields versus slope ratio. The linear predictions were all 
formed deprived of mangrove sites samples. Fitting model was linear and the blue region 
represents the 95% confidence zone. A) Singlet oxygen; B) Hydroxyl radical; C) Excited triplet 
state DOM. 
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Figure 2-14. Reactive species formation rate and DOC normalized formation rate versus slope 
ratio. Fitting model was linear and the blue region represents the 95% confidence zone. The linear 
prediction in C and D was formed deprived of mangrove sites samples. Graph A, C, E 
represented singlet oxygen, hydroxyl radical, and excited triplet state DOM formation rate versus 
SR value respectively. B, D, F represented singlet oxygen, hydroxyl radical, excited triplet state 
DOM normalized formation rate versus SR value respectively. 
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RS and redox potential (IP100) 

As discussed in the previous section, the radical scavenging ability of DOM may 

affect RS production (Cory et al., 2009; Wenk et al., 2012; Page et al., 2014). The IP100 

is an indicator of DOM free radical scavenging capacity. Comparing RS quantum yields 

and IP100 showed an inverse correlation between IP100 and ¹O₂ and ³DOM*quantum 

yield (Figure 2-15 A and C). The inverse relationship indicates that higher radical 

scavenging ability inhibits RS production which agreed with previous research about the 

inhibition of excited triplet-induced transformation by phenolic compounds with 

antioxidant character (Wenk et al., 2012). 

A possible explanation for the negative correlation between ¹O₂ and ³DOM* 

quantum yield with IP100 is that the DOM which features the higher IP100 (free radical 

scavenging capacity) may have quench the ¹O₂ in its microenvironment and lead to a 

lower ROS apparent quantum yield (Latch et al., 2006). Another possible explanation is 

that the DOC from methanol extract used in the IP100 method is different from the 

aqueous DOM. To answer this question, RS measurements using the DOC from methanol 

extract were performed in order to evaluate potential differences after SPE. Samples were 

prepared from the antioxidant activity measurement methanol DOM extract. An aliquot 

(3 ml) of each methanol DOM extract was dried with N2 gas and was also subject to 

vacuum in a freeze dryer for 2 h to ensure the complete dryness of the samples. Once 

dried, all the samples were re-dissolved with 40ml Milli-Q water. All the extracts 

presented a neutral pH (pH=7) after methanol evaporation and re-dissolution in Milli-Q 



83 

water. The results showed no significant difference between SPE-DOM and NDOM 

(Table S2 and S3). Therefore, the RS production profile seems indeed dependent on the 

presence of free radical scavenging activity of the DOM. Moreover, the SPE-DOM does 

not contain halides or other ionic ions and proved that halides or ionic strength influence 

on RS in this study were minor. 

Comparing RS formation and IP100, no clear trend was observed except for the 

•OH normalized formation rate (Figure 2-16 D). SRS2 samples showed similar radical 

scavenging capacity as other freshwater marsh samples indicated that its normalized 

formation rate is mainly affected by molecular weight instead of radical scavenging 

ability. In general, samples from mangrove sites have high RS formation rate and DOC 

normalized formation rate. However, •OH quantum yield is independent of IP100 (Figure 

2-15 B).Therefore, in the natural aquatic environment, RS formation rates increased as 

DOC concentration increased which showed that the main role DOM plays is as a 

photosensitizer instead of a quencher. However, RS quantum yield would be affected by 

DOC composition and its redox potential. Thus, in the DOM microenvironment, DOM 

self-quenching for high aromatic compounds is a possible mechanism and needs 

additional research. 
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Figure 2-15. Reactive species quantum yields versus IP100. Fitting model was linear and the blue 
region represents the 95% confidence zone. A) Singlet oxygen; B) Hydroxyl radical; C) Excited 
triplet state DOM. 
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Figure 2-16. Reactive species formation rate and DOC normalized formation rate versus IP100. 
Graph A, C, E represented singlet oxygen, hydroxyl radical, and excited triplet state DOM 
formation rate versus HIX value respectively. B, D, F represented singlet oxygen, hydroxyl 
radical, excited triplet state DOM normalized formation rate versus HIX value respectively. The 
blue line in graph C and D is the linear fit and the blue shade is its 95% confidence zone. 
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Conclusion 

Quantum yield, formation rate and DOC normalized formation rate of singlet 

oxygen, triplet excited-state DOM and hydroxyl radical were determined in different sub-

environments of the Florida Everglades. RS quantum yields were directly related to 

CDOM, SUVA, HIX, MW and IP100, and were clearly driven by the aromaticity of 

DOM which correlated with the relative abundance of humic-like DOM components. RS 

formation rates were directly related to DOC concentration, SUVA, HIX and molecular 

weight but were clearly driven by the DOC concentration. DOC concentration 

normalized RS formation rates showed more influence from HIX and molecular weight 

which related with DOM composition.  

 For singlet oxygen quantum yield, stronger correlations were observed with 

SUVA (R²=0.85), and IP100 (R²=0.67). Therefore, DOM with high aromaticity and high 

radical scavenging ability, the mangrove DOM, have low singlet oxygen quantum yield. 

The triplet excited-state DOM which is a precursor of singlet oxygen followed a similar 

trend for its quantum yield. Hydroxyl radical quantum yield showed the highest linear 

relation with E2:E3 value (R²=0.80) which indicated that molecular weight is the best 

proxy for •OH production.  

This study also proved that in the natural aquatic environment, although self-

quenching for high aromatic compounds is a possible mechanism, DOM in general is a 

photosensitizer controlled by DOC or CDOM concentration instead of a quencher 

because the DOM formation rate has a more robust relation with DOC or CDOM 
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concentration than with RS quantum yields. Moreover, halides or ionic strength have a 

minor influence on RS in the Everglades. 
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Table S2. Reactive species quantum yields for surface water (whole water) and surface 
water extract (isolates) 

 

Table S3. Linear Fit of Data in Table S2 (w/ intercept = 0) 

 

  

Sample E2/E3 SO TMP OH E2/E3 SO TMP OH
FB21_1030 12.90 8.12E-02 2.27E+02 4.61E-05 15.34 1.19E-01 3.62E+02 4.67E-05
SRS2_1015 7.16 7.73E-02 1.49E+02 2.56E-05 7.30 7.34E-02 1.61E+02 2.43E-05
SRS4_1007 5.49 4.94E-02 6.23E+01 2.10E-05 5.55 5.32E-02 8.04E+01 1.93E-05
SRS6_1007 5.04 4.08E-02 7.29E+01 2.05E-05 5.33 3.93E-02 8.07E+01 1.79E-05
SRS6_1104 5.04 5.57E-02 7.89E+01 2.43E-05 5.83 4.26E-02 8.77E+01 1.91E-05
TS2_1015 7.85 8.19E-02 2.06E+02 2.26E-05 8.34 7.53E-02 2.53E+02 2.38E-05
TS3_1016 7.79 7.64E-02 2.05E+02 1.79E-05 7.98 8.25E-02 2.25E+02 2.29E-05
TS7_1009 5.05 3.36E-02 4.25E+01 1.94E-05 5.27 2.93E-02 4.15E+01 1.90E-05

Isolates	QY's Whole	Water	QY's

E2/E3 ¹O₂ ³DOM* OH
Slope 1.10 1.06 1.28 0.98
R² 1.00 0.96 0.97 0.99
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Figure S1. Reactive species quantum yields versus E2:E3 ratio. Fitting model was linear and the 
blue region represents the 95% confidence zone. A) Singlet oxygen; B) Hydroxyl radical; C) 
Excited triplet state DOM. 



98 

 

Figure S2. Reactive species formation rate and DOC normalized formation rate versus E2:E3 
ratio. Fitting model was linear and the blue region represents the 95% confidence zone. Graph A, 
C, E represented singlet oxygen, hydroxyl radical, and excited triplet state DOM formation rate 
versus E2:E3 value respectively. B, D, F represented singlet oxygen, hydroxyl radical, excited 
triplet state DOM normalized formation rate versus E2:E3 value respectively. 
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