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The purpose of this study was to determine the toxicity of the phototoxin, 

phenylheptatriyne (PHT) to acute lymphoblastic leukemia cells (ALL) under attenuated 

light condi ti ons and when exposed to ultraviolet-A light (UVA). The potential of PHT to 

increase sensitivity of ALL cells to the anti-cancer drug doxorubicin hydrochloride also 

was evaluated. An in vitro multi-drug resistance model was used consisting of the 

parental cell line CCRF-CEM and its p-glycoprotein (pgp-170) expressing variant 

CEM/VLBioo. Cytotoxicity was measured using the tetrazolium bromide (MTT) 

reduction assay and the annexin-V-FITC / propidium iodide (PI), flow cytometric assay. 

The results indícate that PHT is more toxic, when not photoexcited, to the CEM/VLBioo 

cell line (P = 0.006). There was a significant interaction between UVA dose and PHT 

concentration (P < 0 .001). Co-incubation of CEM/VLBioo cells with less than 10 //M 

doxorubicin and 60 ¿/M PHT, signifícantly decreased viability relative to doxorubicin 

alone (P = 0.007).
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EXTRACTION AND PURIFICATION OF PHENYLHEPTATRIYNE FROM
Bidens alba (L.) DC. var. radíala (Sch. Bip.) R.E. Ballard (ASTERACEAE)

ABSTRACT

The subtropical weed Bidens alba var. radiata (Sch. Bip) R.E. Ballard is rich in 

acetylenic compounds, most notably the potent phototoxin, phenylheptatriyne (PHT). 

Standards of PHT are not available on the market so it was first necessary to extract the 

compound from a botanical source. The purpose of this study was to extract and purify 

PHT from the leaves of B. alba and determine the percent (%) yield of PHT from weight 

of fresh plant material extracted in 95% ethanol.

Flowering B. alba plants were collected during the month of March, 2003, from 

the South Florida Ecosystem Preserve at Florida International University (FIU) in Miami, 

Florida. Fresh plant material was extracted ovemight in 95% ethanol, dried under 

vacuum, and partitioned between dichloromethane (CH2CL2) and water (H2O). The 

organic partition was fractionated using normal phase flash chromatography with an 

ultraviolet (UV) detector.

Fractions with the characteristic UV spectra of polyacetylenes (PAs) were pooled 

and dried under nitrogen (N2) gas. The PAs were further purified by extraction with 95% 

ethanol and subsequent separation using a reversed phase thin layer chromatography (RP- 

TLC) system composed of C2H3N (acetonitrile) and H2O. The purity of isolated PHT 

was determined by gas chromatography-mass spectrometry (GC-MS).
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INTRODUCTION

While the role of Phenylheptatriyne (PHT) as a plant defense compound has been 

well established, (Camm et a l , 1975; Towers et a l, 1987; Downum et a l , 1991), its 

bioactivity in mammalian systems is not well studied. PHT is a polyacetylene and a 

major component of some plant species in the Heliantheae tribe of Asteraceae. Bidens 

spp. are used extensively in traditional medical systems to treat symptoms of diabetes, the 

common coid and kidney and liver disorders (Cano et al., 2004; Simoes et al., 1999; 

Zamora-Martinez et a l , 1992; Alice et a l, 1991; Lin et a l, 1990). Bidens spp. are 

sources of PHT and many other polyacetylenic compounds. In recent years, 

polyacetylenes (PAs) have been isolated as the anti-cancer and anti-inflammatory 

constituents of plant species used in traditional medicine (Matsunaga et a l, 1990).

Polyacetylenes are fatty acid derivatives and show activity comparable to their 

essential fatty acid precursors. For example, PAs modulate the redox status of cells, 

inhibit eicosanoid production and alter membrane composition. As such, they have the 

potential to interfere with the process of carcinogenesis or potentiate the action of certain 

anti-neoplastic drugs (Rose et a l , 1999). In this study, for the effect of PHT on 

membrane integrity and metabolic activity of acute lymphoblastic leukemia cells (ALL) 

under controlled conditions of UVA irradiation was examined. Leukemia cell lines were 

chosen because organic and aqueous extracts of Bidens spp. have shown cytotoxicity to 

both murine and human leukemia cell lines but the specific constituents in these extracts 

responsible for the anti-leukemic activity have not been elucidated (Goun et a l, 

2002;Chang et a l  2001).
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In the first part of this study, I sought to extract and purify PHT and maximize 

percent yield for further bioassay work. This work is detailed below along with a brief 

review of the taxonomy, ethnomedical use, chemotaxonomy and bioactivity of Bidens 

spp.. It is hoped it will stimulate continued research into the potential medicinal use of 

plants in the genus Bidens.

Taxonomy.

Bidens alba var. radiata (L.) DC. is a variety of the pantropical annual weed, B. 

alba (Linnaeus) A. P. de Candolle (Asteraceae). The genus Bidens is in the subfamily 

Asteroideae, tribe Heliantheae and of the subtribe Coreopsidinae. Its range encompasses 

Southern Florida, Cuba, the tropical lowlands and mountains along the eastem coast of 

México, southward into Guatemala and Central America (Ballard, 1986). The species B. 

alba (L.) DC., according to Ballard, has two geographically overlapping varieties, B. alba 

var. radiata and B. alba var. alba., which are distinguished primarily by stem and leaf 

morphology. The stems of B. alba var. alba are decumbent, with glabrous leaves, while 

the stems of B. alba var. radiata are erect, with pubescent leaves.

Based on extensive field observations, examination of herbarium specimens, 

controlled greenhouse experiments, cytogenetic studies, leaf flavonoid analyses and 

hybridization studies, Ballard (1986) proposed the placement of the taxa in the Bidens 

pilosa complex, made up of three closely-related, exclusively neotropical species: B. 

alba, B. odorata and B. pilosa var. pilosa. The B. pilosa complex as proposed by Ballard 

was a systematic re-evaluation of the species B. pilosa L., sensu Sherff, which was 

hypothesized to contain six varieties-two of them pan-tropical. Ballard questioned the 

importance of the morphological characteristics used by Sherff (1937), such as leaf
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dissection and ray floret ligule color, to sepárate B. pilosa sensu lato Sherff into six 

varieties and many forms. Field and greenhouse observations showed these 

morphological variations to occur within a population and therefore cast doubt on the 

conclusions drawn by Sherff from solé study of herbarium voucher specimens. 

Traditional Medicine.

There are numerous reports of the ethnomedical use of the species Bidens pilosa 

L. by traditional healers in Asia, Africa, South America, Central America, North America 

(México, Hawaii), China and Taiwan for the treatment of acute and chronic 

inflammation, malaria and hepatitis. Zulus in South Africa chew the leaves of B. pilosa 

to treat headaches and inflammatory diseases (Jager et al., 1996) and traditional healers 

in Rwanda use the plant to treat infections and autoimmune disease (Cos et al., 2002). 

Peoples in Brazil, Perú, México and Taiwan treat hepatitis with decoctions and infusions 

of the entire plants and the leaf juice of B. pilosa (Alice et al., 1991; Simoes et al., 1999; 

Zamora-Martinez et al., 1992; Lin et a l, 1990). In Brazil and China the entire plant and 

leaf juice is used in extemal and intemal anti-inflammatory and anti-malarial medicines 

(Krettli et al., 2001; Akah et a l, 1995; Duke et al., 1985). Peoples in Tanzania and 

Rwanda use a preparation of the leaf and boiled root to treat malaria (Kokwar, 1976; 

Chhabra et al., 1994; Chagnon, 1984). The Haya in Tanzania wrap B. pilosa leaves in 

the leaves of bananas and roast them to a paste that is applied to wounds (Chhabra et al, 

1994).
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Chemotaxonomy.

The polyacetylenic compounds of Bidens species are useful chemotaxonomic 

markers (Bohlmann, 1973; Christensen et al., 1991). The genera in the Heliantheae 

subtribe, Coreopsidinae of which Bidens is a member, show the greatest diversity of 

polyacetylenic compounds of all the subtribes. Restricted to the Heliantheae and 

characteristic of the Coreopsidinae are polyacetylenic compounds with phenyl groups on 

either end of the molecule or aromatic PAs (Bohlmann, 1973). It is proposed that the 

acetylenes found in the tribe Heliantheae are derived from Cjg fatty acids in the sequence 

oleic acid to linoleic acid to crepenynic acid (Christensen et al., 1991). The C13 aromatic 

triynes are biosynthesized from Cjs acetylenes by double /?-oxidation followed by further 

oxidation steps and a ring closure. A Cis - triyne fatty acid is formed by subsequent 

dehydrogenation or desaturation of oleic acid and the polyacetylenic fatty acid, 

crepenynic acid. Double /0-oxidation of the Cis-triyne acid leads to the formation of a C14 

conjugated triyne-ol. The precursor of PHT is the polyacetylenic fatty acid, dehydro- 

crepenynic acid (Robinson, 1981).

Bioactivity.

Many species in the genus Bidens have been evaluated in in vitro and in vivo 

bioassays for anti-inflammatory, anti-malarial, anti-bacterial, anti-viral, anti-cancer, anti- 

diabetic and anti-hypertensive activity. The aqueous whole plant extract of the B. pilosa 

inhibits the growth of leukemia cell lines in vitro and methanolic leaf extracts inhibit the 

phytohemagluttinin (PHA) stimulated proliferation of human lymphocytes in vitro, and 

the altemative and classical activity of complement (Chang et al., 2001; Pereira et al., 

1999; Cos et al., 2001). In addition, the leaf ethanolic extract of B. pilosa inhibits
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cyclooxygenase (COX) activity and is significantly cytoprotective against indomethacin 

and ethanol-induced gastric lesions in rats (Jager et al., 1996; Tan et al., 2000). Leaf 

extracts of B. pilosa are also active against Mycobacterium tuberculosis (Van Puyvelde et 

al., 1994). Hot water extracts of B. pilosa inhibited the replication of Herpes simplex 

viruses Type I and Type II (Chiang et al., 2003). Aqueous ethanolic extracts of B. pilosa 

administered intraperitoneally, attenuated hyperglycemia in alloxan diabetic mice 

(Alarcon-Aguilar et a l, 2002). B. pilosa extracts also attenuated fructose hypertension in 

Wistar rats by lowering blood pressure and preventing hyperinsulinemia (Dimo et al., 

2002).

The acetylenic compounds typically found in Bidens spp. (Christensen et al.,

1991) may be responsible for the efficacy of preparations and extracts. Brandao et al. 

(1997) have shown that the polyacetylenic constituents of B. pilosa extracts contribute to 

the inhibition of in vitro Plasmodium falciparum growth. PAs isolated from B. 

campylotheca are potent inhibitors of cyclooxygenase and lipoxygenase (5-LOX) activity 

(Redi et al., 1994). PHT isolated from B. pilosa contributed to the anthelmintic and 

protozoacidal activity of methanolic extracts in in vitro and in vivo murine models 

(N'Dounga et al., 1983). A mixture of acetylenic glucosides from B. pilosa decreased 

blood sugar levels in type-2 diabetes mice models (Ubillas et al., 2000).

Because of the taxonomic confusión associated with the taxon B. pilosa L., many 

accounts of the use of Bidens spp. in traditional medical systems, along with the 

attributed bioactivity data, should be reexamined. If vouchers specimens were not made, 

the possibility should be considered that any one of the species in the B. pilosa complex 

could have been the referenced, studied or chemically characterized specimen. This is
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more likely the case for plants collected in México and Central America, but even 

possibly in northwestem Hong íCong where B. alba L. (DC) has been reported to occnr in 

the wetlands around the Mai Po Marshes and is often confiised with B. pilosa L. (Corlett,

1992).

MATERIALS AND METHODS

Collection.

Flowering Bidens alba var. radiata plants were collected from several sites within 

the South Florida Ecosystem Preserve on the main campus of Florida International 

University (FIU), Miami, Florida. Whole plants were harvested, including the above 

ground parts and roots. A voucher was prepared for deposit in the Fairchild Tropical 

Garden (FTG) herbarium. The collection number is Graham and Gray # 2831. The fresh 

plant material was brought to the laboratory immediately upon collection. Five samples 

were prepared; one consisting of the entire plant, and others made up of fresh 

inflorescences, leaves, stems and root material. They were immediately extracted 

following the method described below.

Chemicals and chromatography supplies.

The solvents used for purification and isolation procedures included HPLC grade 

dichloromethane (Acros, New Jersey, cat. # 61005-0040), HPLC grade acetone (Acros, 

New Jersey, cat. # 26831-0040), and Optima grade acetonitrile, (Fisher Scientific, 

Suwanee, GA, cat. # A9964). Chromatography procedures were performed using 

RediSep™ normal phase silica gel columns (Isco, Lincoln, NE, cat. # 68-2203-027), and
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octadecylsilane binded (PLKCig) preparative thin layer chromatography (TLC) plates 

(Whatman Maidstone, England cat. # 4800-840).

Extraction procedure andpercent yield.

The fresh plant parts were weighed and then homogenized in 95% ethanol, at a 

ratio of 10 grams of plant material for each 100 mi of ethanol, in a commercial blender. 

After 24 hours, the extracts were vacuum fíltered through Whatman filter paper (No.l) 

and concentrated using a rotary evaporator. The water bath temperature was maintained 

at a constant temperature of 30° C in order to prevent decomposition of heat sensitive 

acetylenic constituents. If samples still contained water after evaporation, they were 

lyophilized.

The bulk of the crude samples were partitioned between CH2CL2 and H2O, to yield 

organic and aqueous partitions, while a small amount of the crude, dried ethanolic 

extracts were retained for subsequent bioassay and spectrometric analyses. Stock and 

bioassay samples were stored at -20° C in amber vials or wrapped in aluminum foil to 

protect from heat and light.

To purify and determine the percent yield of PHT obtained by this method, 500 

grams of fresh leaf material were extracted as described above. The dried residue of the 

organic partition was weighed and then 1/15th, or 500 mg, of this residue was subjected 

to the purification procedure described below. The percent yield was calculated by 

multiplying the mass of the purified PHT by 15 and then dividing by the original mass of 

fresh leaves extracted (500 grams) and multiplying by 100.
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Isolation and purification o f Phenylheptatriyne.

PHT was isolated from the crude ethanolic extract of fresh B. alba leaves by first 

partitioning the dried extract between CH2CL2 and H20. The CH2CL2 partition was then 

fractionated using the ISCO CombiFlash, flash chromatography system, equipped with a 

210 nm UV absorbance detector. A RediSep™ normal phase silica gel column was used 

that contained 40 grams normal phase silica gel of 35-60 micron (//m) particle size (230- 

400 mesh). A 500 mg sample solubilized in 3 mi CH2CL2 was run through a solvent 

system composed of CH2CL2 and C3H6O (acetone). The method used was an initial 

isocratic gradient with 100% CH2CL2 held constant over 4 minutes and then a linear 

gradient with 100:0 - 0 :100, CH2CL2 to C3H6O over 16 minutes for a total run time of 20 

minutes. The flow rate was set at 25 ml/min.

The fractions containing PAs were identifíed using an Agilent 8453 UV-Visible 

ChemStation equipped with a tungsten and deuterium lamp. The first fraction to elute 

from the RediSep™ normal phase silica gel column had the characteristic UV absorbance 

spectrum of phenylheptatriyne and phenylheptatriyn-ol (ethanol). 238,251,275,291,310,332). 

The PA containing fraction was oily, orange colored and fragrant. This fraction also 

showed a strong absorbance in the 400-500 nm región. The fraction was dried under 

nitrogen at room temperature and then further extracted in 95% ethanol and fíltered 

through Whatman fllter paper (No.l). The sample was then run through a RP-TLC 

system consisting of a Cis octadecylsilane (ODS) stationary phase with a UV254 

fluorescent indicator and a mobile phase composed of Q H 3N: H20 (85:15). The PHT 

fraction was detected by quenched fluorescence. This fraction was scraped from the TLC
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píate and extracted in 95% ethanol and then concentrated under N2 gas. Molar 

concentration of PHT was determined using ultraviolet/visible spectrophotometry 

(UV/VIS). The molar extinction coeffícient used was 148,000 M' 1 CM"1 (E25inm )• The 

molecular weight of PHT is 164 grams.

Purity determina! ion.

Purity of the isolated product was determined by coupled gas chromatography- 

mass spectrometry (GC-MS). Analysis was performed using a Hewlett Packard (HP) 

6890 series GC system equipped with a HP5973 mass selective detector. Five jJL of a 20 

mM solution was introduced onto a HP-5MS 5 % phenyl methyl siloxane capillary 

column (30.0 m x 0.25 mm ID, film thickness 0.25 jum) through an injection port with a 

split ratio of 10:1, injection temperature 280° C. The initial temperature on the column 

was 100° C for 1.00 minute, which was then increased by 20° C/minute to a final 

temperature of 280° C with a run time of 12.00 minutes, and a helium flow rate through 

the column at 1 ml/min. Mass detection took place over a sean range of 33-450 atomic 

mass units (a.m.u). The sample was analyzed in the Advanced Mass Spectrometry 

Facility in the Department of Chemistry and Biochemistry at F.I.U.

RESULTS

Percent yield.

From 500 grams of fresh leaf material harvested from mature plants and extracted 

at room temperature in 95% ethanol, a residue with a mass of 17.84 grams was obtained. 

This residue was partitioned between CH2CL2 and H2O and the organic partition yielded
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7.584 grams. A 500 mg sample of the dried organic partition was then run through the 

normal phase chromatography system described under Materials and Methods. The first 

fraction to elute from the column had a mass of 29.2 mg when dried under N2 gas. A 

PHT sample was obtained after the subsequent run through a RP-TLC system, which had 

a mass of 2.9 mg when dried. Because the sample run through RP-TLC represented 

1/15th of the organic partition, the total amount of PHT isolated from 500 grams fresh 

leaf material was calculated as 43.5 mg. The percent yield by this method was thus 

0.0087 % PHT.

Isolation and purification o f PHT.

A fraction containing PHT was obtained using a normal phase flash 

chromatography system consisting of a silica gel column and a solvent system composed 

of C2H3N and C3H6O. The first fraction to elute from the column had the characteristic

polyacetylenic spectra of phenylheptatriyne and phenylheptatriyn-oi and also showed 

uncharacteristic absorbance in the 400-500 nm región. Further purification with Cig RP- 

TLC and 85:15 (acetonitrile: water), yielded a colorless polyacetylene with the 

characteristic PHT UV spectrum (Amax (ethanol)- 238,251,275,291,310.332) (figure 1.1). The 

fraction had a retention factor (Rf) of 0.46 in this system.

Purity determination.

The PHT isolate was analyzed by GC-MS. The total ion chromatogram of the 

isolate showed the presence of a single peak at a mass to charge ratio (m/z) of 164 (figure 

1.2). This indicates that the isolate was of the same molecular mass as PHT and of 

considerable purity.
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DISCUSSION

PHT was first isolated by Sórensen et al. (1958) from Coreopsis grandiflora 

Hogg ex Sweet. Because PAs are thermally unstable, a PHT standard is not available.

For this reason it was necessary to isolate and purify PHT from the leaves of B. alba var. 

radiata. By the methods used in this study, a PHT sample of considerable purity was 

obtained. PAs are found in Asteraceae species at 0.1% or less (McLachlan et al., 1986). 

My calculations show the percent yield of PHT from a 95% ethanolic extract of fresh B. 

alba var. radiata leaf material to be 0.0087%. Wat et al (1979) found PHT to be present 

as 400 - 600 of B. pilosa L. fresh weight or as much as 0.04-0.06%.

Cantonwine et al. (2001) reported PHT concentration in B. alba var. radiata to 

vary seasonally across its Florida range, being highest in October and lowest in January 

and April. The percent yield of PHT obtained from fresh leaves of this plant species 

collected in the fall should also be determined using this method. It is possible that the 

greatest percent yield of PHT could be obtained from plants collected in the fall months.
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Figure 1.1. Ultraviolet electromagnetic absorbance spectrum of the purified PHT isolate. 
The sample was solubilized in 95% ethanol and analyzed with an Agilent 8453 UV- 
Visible ChemStation equipped with a tungsten and deuterium lamp. Below is the UV 
absorbance spectrum from 220-400 nm of a 10 //M solution of PHT.
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Figurel .2. Total Ion Chromatogram (TIC) (A) and Electron Impact Mass Spectrum 
(EIMS) (B) of the purified PHT isolate.
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CYTOTOXICITY OF PHENYLHEPTATRIYNE (PHT) IN A MULTIDRUG 
RESISTANT (MDR) ACUTE LYMPHOBLASTIC LEUKEMIA CELL MODEL

ABSTRACT

The purpose of this study was to compare the cytotoxicity of the phototoxin 

phenylheptatriyne (PHT) in the presence and absence of light excitation in a multi-drug 

resistant (MDR) acute lymphoblastoid leukemia (ALL) cell model. Cytotoxicity was 

assessed by measurement of changes in the asymmetry and integrity of the plasma cell 

membrane and the metabolic activity of cells using quantitative flow cytometric and 

colorimetric assays, respectively. The extemalization of phosphatidylserine (PS), a 

marker of loss of phospholipid asymmetry, and the breakdown of plasma membrane 

integrity, were monitored in cells at 4 and 24 hours after exposure to PHT, using a dual 

parameter flow cytometric assay with the fluorochromes annexin -V- fluorescein 

isothiocyanate (FITC) and propidium iodide (PI). The tetrazolium bromide (MTT) 

reduction assay was used to determine the viability of cells after incubation with PHT for 

24 hours. For both assays, cells were irradiated with controlled doses of UVA light, 1 

hour into the incubation period.

The MDR, CEM/VLBioo cell line was more sensitive to the toxicity of PHT in the 

absence of light excitation, at the highest PHT concentrations tested, as assessed by the 

MTT assay. Results obtained from the annexin-V-FITC/ PI staining showed a 

considerable interaction between light level and concentration in both cell lines (P < 

0.005). After 4 hours, a complete loss in membrane integrity was observed at the greatest 

PHT x UVA combinations only. In addition, a considerable time-dependent effect on 

membrane asymmetry and integrity was observed without photo-excitation, only in the
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CEM/VLBioo cell populations (P = 0.040). Furthermore, the mínimum PHT 

concentration required to produce phototoxic effects was lower for the CEM/VLBioo 

populations than the CCRF-CEM populations.

Further work should involve elucidating the mechanism of toxicity of PHT in 

cáncer cell lines with defined levels of detoxifying enzyme expression and in the 

presence of exogenous antioxidants. In addition, the loss of membrane asymmetry 

should be monitored simultaneously with events associated with apoptosis induction 

including cell shrinkage, membrane blebbing, chromatin condensation and nuclear 

fragmentation. These results can then be compared with measurements of cell necrosis, 

such as increases in cell volume and rupture or lysis of the cell membrane and associated 

rapid ATP depletion.

INTRODUCTION

PHT is a polyacetylenic fatty acid derivative characteristic of plant species in the 

genus Bidens of the Asteraceae (Downum, 1992). The phototoxicity of PHT has been 

established in animal viruses, bacteria, fungi, nematodes, insects and human fibroblast 

cells (Wat et al., 1979; Amason et al., 1980; Hudson et al., 1982; McRae et al., 1985; 

Towers et al., 1987). Upon photoexcitation with UVA light, lipid peroxidation products 

are formed in liposomal models and enveloped (membrane-bound) DNA and RNA 

viruses are deactivated (McRae et al., 1985; Hudson et a l, 1982; Hudson et a l, 1986). 

Under the current model of PHT phototoxicity, the compound transfers excitation energy 

to oxygen to form singlet oxygen (l02) that reacts with the lipid and protein components 

of biological membranes to cause the oxidation of sterol and polyunsaturated fatty acids 

(PUFAs). PHT is a lipophilic, rigid and linear molecule that intercalates cellular
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membranes and modulates permeability and it has been speculated that under attenuated 

light conditions, it may directly or indirectly alter the conformation of membrane proteins 

(McRae et a i, 1985).

PAs have phototoxic activity if the structure contains a mínimum of 3 conjugated 

acetylenic bonds or at least 2 aromatic rings. The phototoxic reactions are powered by 

photon energy absorbed by extensivepi electrón systems (McLachlan et a l, 1986; 

Downum, 1992). Compounds with both cyclic and acyclic moieties need 2 or more 

conjugated acetylenic bonds to be phototoxic (Downum, 1992). The hybrid phototoxin, 

(PHT) has 3-conjugated acetylenic bonds and is conjugated to an aromatic ring (1- 

phenylhepta -1,3, 5-triyne).

PAs are bioactive both in the presence and absence of light excitation. Their dark 

mediated activity is similar to that reported for polyunsaturated fatty acids (PUFAs). 

PUFAs are also phototoxic though they are excited by UVB irradiation as opposed to 

UVA irradiation (Arita et a i, 2003). PAs cytotoxic to cáncer cell lines have been 

isolated from the marine sponge, Pellinia triangulata Desqueyroux-Faundez 

(Oceanapiidae), the stony coral genus Montipora (Acroporidae) and the medicinal plants, 

Panax ginseng C.A. Meyer (Araliaceae), Adenia gummifera (Harv.) Harms 

(Passifloraceae), Gymnaster koraiensis (Nakai) Kitamura (Asteraceae), and

CH'3

1-phenylhepta-l, 3, 5-triyne (PHT)

Figure 2.1. Chemical structure of PHT.
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Ochanostachys amentácea Mast. (Olacaceae) (Dai et al., 1996; Fullas et al., 1995; Alam 

et al., 2001; Jung et al., 2002; Ito et al., 2001).

PAs may have múltiple roles as anti-proliferative, immunosuppressive and anti- 

carcinogenic or cáncer chemopreventive agents. They inhibit the production of nitric 

oxide (NO) though the inhibition of inducible nitric oxide synthase (iNOS) expression 

(Choi et al., 2000) which suggests a possible immunosuppressive and cytoprotective 

affect because host cells kill pathogens with NO and NO may kill cells by energy- 

depletion-induced necrosis (Brown et al., 2002). NO can inhibit mitochondrial 

respiration thereby inducing necrosis (or excitotoxicity in neurons) but inhibit apoptosis 

through adenosine triphosphate (ATP) depletion. In fact, the polyacetylenic alcohol, 

panaxynol, isolated from Panax ginseng is toxic to cáncer cells but promotes 

neuritogenesis of cultured neurons and improves scopolamine-induced memory déficit in 

mice (Yamazaki et al., 2001). Immunosuppressive activity is further supported by the 

anti-proliferative effect of PAs from Bidens pilosa in phytohemagglutinin (PHA) 

stimulated human lymphocytes in vitro and anti-inflammatory activity in in vivo murine 

models (Pereira et al., 1999). In addition, PAs with in vitro inhibitory activity against the 

classical pathway of the complement system were isolated from Dendropanax morbífera 

Leveille (Araliaceae) (Park et al., 2004).

Anti-proliferative agents with the dual action of inhibiting the production ofNO 

and eicosanoid production have shown both cáncer preventive and apoptosis inducing 

activity (Narayanan et al., 2004). Cyclooxygenase enzymes catalyze the conversión of 

arachidonic acid to prostaglandins. The overexpression of the cyclooxygenase 2 isoform 

(COX-2) is implicated in the pathogenesis of malignancies, including lung cáncer and
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mammary cáncer. COX-2 is overexpressed in many non-small cell lung cáncer cases and 

COX-2 inhibitors chemosensitized COX-2 overexpressing lung cáncer cell lines and 

potentiated the effect of radiation (Saha et al., 2003). The polyunsaturated fatty acids 

(PUFAs), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid 

(AA) and c¿s-parinaric acid (CPA) potentiated the cytotoxicity of ̂ -irradiation in HL-60 

cells. Omega-3 fatty acids inhibited the growth of breast cáncer cells in culture and 

mammary carcinogenesis that was associated with their ability to diminish production of 

COX-2 (Stoll, 2002). Omega-3 fatty acids also induced apoptosis in HL-60 cells 

characterized by DNA fragmentation, and activation of the caspase cascade and was 

associated with increased generation of reactive oxygen species (ROS) and depolarization 

of the mitochondrial membrane (Kayo et al., 2001).

PAs have not been investigated for their ability to induce apoptosis though they 

are potent inhibitors of (lipoxygenase) 5-LOX and COX and interfere with the production 

of NO. Liu et al. (1998) investigated Angélica sp. (Apiaceae) for 5-LOX inhibition and 

found the most active compounds to be linoleic acid and two PAs, including the 

compound falcarindiol. Falcarindiol is also an anti-proliferative agent. It is produced in 

the Apiaceae and Araliaceae (Ginseng family) and was isolated from the roots of 

Heracleum moellendorffú Hance (Apiaceae) and Dendropanax arboreus (L.) Decne. & 

Planch (Araliaceae). It was cytotoxic to tumor cell lines in vitro, by MTT reduction and 

in vivo, in a LOX melanoma mouse xenograft model (Nakano et al. 1998; Bemart et al. 

1996). PAs isolated from Bidens campylotheca Sch. Bip. inhibited COX and 5-LOX 

(Redi et al., 1994). A PA isolated from Angélica gigas Nakai inhibited the production of 

NO in a lipopolysaccaride activated murine macrophage cell line (Choi et a l, 2000).
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Polyacetylene glucosides isolated from Bidens parviflora Willd. inhibited NO production 

in lipopolysaccharide and interferon-ystimulated RAW 264.7 murine macrophages 

(Wang et al., 2001).

Many reports suggest 5-LOX and COX inhibitors to have the ability to induce 

apoptosis. The LOX inhibitor nordihydroguaiaretic acid (NDGA) induced apoptosis 

characterized by mitochondrial membrane depolarization, release of cytochrome-c from 

mitochondria and activation of caspase-3 (Vondrácek et al., 2001). Indomethacin 

induced apoptosis, in both COX-2 overexpressing and non-expressing, non-small cell 

lung cáncer cell lines associated with cytochrome-c release, caspase activation, chromatin 

condensation and nuclear fragmentation (Sánchez-Alcázar et a l, 2003). NDGA induced 

apoptosis in a murine prolymphoid progenitor cell line that was attenuated by the 

nonenzymatic antioxidant defenses, glutathione (GSH) and N-acetylcysteine (NAC) (La 

et al., 2003). Interestingly, NDGA is also a phototoxin that generates ROS when excited 

by light (Downum, 1992).

As a phototoxin and fatty acid derivative, PHT may induce apoptosis that is 

associated with the formation of ROS and lipid peroxide end products (Das, 1999).

Many anti-cancer agents induce apoptosis by modulating the redox status of cells or 

inducing oxidative stress (Yamaguchi et al., 1994; Hedley et al., 1998). Generation of 

ROS may occur as part of the final common pathway resulting in apoptosis after 

exposure to the cytokine tumor necrosis factor - alpha (TNF-a), growth factor 

withdrawal, and different pro-oxidants, including anticancer agents such as doxorubicin 

(Tyurina et al., 2002). There may be many different upstream signaling pathways that 

can lead to the induction of apoptosis and the response of a cell to an upstream trigger
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may depend on its intracellular redox balance (Hedley et al., 1998; Óllinger et al., 2002). 

The antioxidant defense systems of cells can act at any stage in carcinogenesis and 

protect DNA from oxidative damage, but they may also have the paradoxical effect of 

protecting cáncer cells from apoptosis involving oxidative stress and thus aid in their 

proliferation (Anderson, 1996;Ruiz et a l, 2002). For example, when expression of 

manganese superoxide dismutase (MnSOD) is upregulated, cytotoxicity caused by ROS, 

TNF-a and ionizing radiation is inhibited (Cobbs et al., 1996).

The cytotoxicity of fatty acids and photoexcited PHT is inhibited in systems 

enriched with certain enzymatic and nonenzymatic antioxidants (Das, 1999; Aucoin et 

al., 1995). PHT phototoxicity is inhibited by increased superoxide dismutase (SOD) 

activity and exogenous or-tocopherol and fi-carotene (Aucoin et al., 1995). Insects that 

specialize on phototoxic host plants possess high constitutive levels of the lipid soluble 

antioxidants but also over-express enzymes involved in the detoxifícation of highly 

reactive, oxygen species. These include superoxide dismutase (SOD), catalase (CAT), 

glutathione reducíase (GR), and increased levels of reduced GSH. If GSH is inhibited, 

insects fed PHT and irradiated with UVA show effects of lipid peroxidation. Ascorbate 

and a-tocopherol attenuated arachidonic acid-induced cytotoxicity (Pompeia et al.,

2002). Moreover, the high susceptibility of lymphoid leukemias to PUFA-induced 

toxicity is associated with reduced activity of glutathione-S'-transferase (GST) and greater 

production of lipid peroxidation end producís in comparison to normal lymphocytes 

(Anel et al., 2002).

PHT may thus show selective toxicity in the presence and absence of light 

excitation that may be dependent on the antioxidant defenses of the cell model under
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study. A cell that is under oxidative stress may die by apoptosis or necrosis, depending 

on the degree of insult (Buttke et al., 1994). A biphasic effect may be observed with cells 

dying by apoptosis or necrosis depending on the PHT concentration and UVA irradiation 

dose. Treatment of cells with prooxidants, hydrogen peroxide (H2O2) and redox-active 

quiñones have revealed a dose-determined response in the mode of cell death. Low doses 

induce apoptosis, while higher doses trigger necrosis (Chandra et al., 2000). This 

phenomenon has been observed for both photodynamic agents and fatty acids. The plant- 

derived phototoxin hypericin induces apoptosis at low doses and necrosis at high doses 

for the same time interval, when light fluence rate is held constant, in the acute 

promyelocytic leukemia cell line HL-60 (Lavie et al., 1999). The fatty acid arachidonic 

acid (AA) induces apoptosis at concentrations between 10-400 //M and necrosis at 

concentrations abo ve 400 fJM. in the human leukemia cell lines HL-60, Raji, and Jurkat as 

assessed by electrón microscopy and flow cytometry (Pompeia et a l , 2002).

In order to determine if PHT cytotoxicity is selective in the presence and/or 

absence of UVA irradiation and if the mode of cell death induced is dependent on PHT x 

UVA dose combinations, a preliminary study was performed using two different assays 

and an acute lymphoblastic leukemia (ALL) cell model. A leukemia cell model was 

chosen for comparative purposes. Cytoxicity of PAs isolated from Gymnaster koraiensis 

and Panctx guinquefolium has been demonstrated in murine leukemia cell lines (L 1210) 

but not drug resistant human derived cell lines (Jung et al., 2002; Fujimoto et al. 1991).

The cell model used consisted of the CCRF-CEM pediatric acute lymphoblastic 

leukemia cell line and its multidrug-resistant variant CEM/VLBioo- The CCRF-CEM cell 

line and its p-glycoprotein (pgp-170) over-expressing variant CEM/VLBioo show
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different levels of expression of manganese superoxide dismutase (MnSOD), copper/zinc 

superoxide dismutase (Cu/ZnSOD) and catalase (CAT) (Jia et al. 1995). CCRF-CEM 

cell populations show higher levels of MnSOD activity and lower levels of Cu/ZnSOD 

and CAT activity than CEM/VLBioo cell populations. In addition, CEM/VLBioo cells are 

more susceptible to TNF-a mediated cytotoxicity than the wild type cells but, show 

decreased uptake of vinca alkaloids and anthracyclines due to the overexpression of pgp - 

170.

The MTT tetrazolium salt assay was used to measure metabolic activity 24 hours 

after treatment with a range of PHT concentrations (0-200 /JM) in combination with 4 

different light levels (0, 0.414, 1.4 and 2.5 joules/cm2). The loss in membrane integrity 

was monitored with a dual parameter flow cytometric assay using the fluorochromes 

annexin-V-FITC and propidium iodide (PI). In order to monitor the effects of a range of 

PHT doses (0-80 /JM) in combination with increasing levels of UVA light exposure on 

the loss of membrane integrity and cell viability over time, cells from treated populations 

were stained with annexin-V-FITC and PI at 3 hours and 23 hours after irradiation 

treatments were performed.

The MTT cytotoxicity assay is a microculture assay based on metabolic reduction 

of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) (Mosman et 

a l 1983; Denizot et al., 1986). When then yellow tetrazolium salt is reduced by active 

mitochondrial dehydrogenases (oxidoreductases), purple formazan crystals are formed. 

The product can be quantitated colorimetrically using a microplate absorbance reader. 

There is a positive correlation between MTT absorbance readings and metabolic activity.

A loss in phospholipid asymmetry is indicated by the translocation of the
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negatively charged aminophospholipid, phosphatidylserine (PS), to the outer leaf of the 

plasma membrane from the cytoplasmic side of the cell membrane. Annexin-V was 

initially discovered as a vascular protein with strong anticoagulant properties and high 

binding affinity in a calcium (Ca2+) dependent reaction with negatively charged 

aminophospholipid surfaces (Vermes et a l , 1995). Propidium iodide (PI) is a membrane 

impermeable cationic dye that intercalates with DNA and can be used to monitor the loss 

of membrane integrity in late apoptotic and necrotic cells by flow cytometric means.

Membrane integrity is lost in necrotic and late apoptotic cells in vitro; the loss of 

plasma membrane integrity occurs early during cell necrosis but is a late event of 

apoptosis (Darzynkiewicz, 1997). Because PS is exposed in many apoptotic cell models 

and serves as one of the signáis to phagocytes to digest them, this assay can be used in 

combination with morphological examinations to confirm the induction of apoptosis as 

the mode of cell death (Darzynkiewicz, 1997).

MATERIALS AND METHODS

Chemicals.

Camptothecin (Cat. # C9911), propidium iodide (Cat. # P4710), and annexin-V- 

FITC (Cat. # A9210) were all purchased from Sigma (St. Louis, MO). MTT (3-(4, 5- 

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) kits were purchased from ATCC 

(Manassas, VA. cat. #30-1010K) and Roche (Indianapolis, IN cat. #1465007). Annexin- 

V-FLOUS was also purchased from Roche (Indianapolis, IN cat. # 1828681). Cell 

culture materials were all purchased from Invitrogen (Carlsbad, CA). RPMI-1640 media 

(Cat. #11875-093); phosphate buffered saline (PBS), (Cat# 14200-075); penicillin-
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streptomycin (Cat# 15140-148); ¿-glutamine (Cat. # 25030-149); fetal bovine serum 

(FBS) (Cat# 10082-147); trypan blue (Cat. #15250-061).

Preparation o f fresh leaves extract o f B. alba var. radiata.

An ethanolic extract was prepared for bioassay by the methods outlined in 

Chapter 1 of this thesis.

Preparation o f PHT sample.

PHT (1-phenylhepta-l, 3, 5-triyne) was isolated and purified from an ethanolic 

extract of B. alba var. radiata according to the procedures described in Chapter 1 of this 

thesis. Stock Solutions were prepared in 95% ethanol to final concentrations ranging 

from 20-30 mM and stored in amber vials at -20 °C to protect from heat and light. Molar 

concentration of PHT was determined using ultraviolet/visible spectrophotometry with

the molar extinction coefficient (e) of 148,000 M' 1 CM' 1 (625inm )• The molecular weight

of PHT is 164 grams.

Cell lines and culture techniques.

The CCRF-CEM parental acute lymphoblastic leukemia cell line described by 

Foley et al. (1965) originated from ATCC strain # CCL-119, and its pgp-170 

overexpressing variant, CEM/VLBioo, cell line was drug selected for resistance to vinca 

alkaloids (Ramachandran et al., 2003). Both cell lines were a gift from Dr. Cheppail 

Ramachandran from the Miami Children's Hospital Research Institute, Miami, Florida. 

Using the flourochrome-conjugated monoclonal antibody MRK16 that reacts specifically
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with a surface epitope of human glycoprotein (pgp-170) the CCRF-CEM cell line was 

previously found to not express p-glycoprotein (pgp-170), while the drug resistant 

variant, CEM/VLBioo, overexpressed the protein (Ramachandran et a l, 2003).

Resistance to the vinca alkaloid, vinblastine, and the anthracycline, doxorubicin, 

was maintained by challenging the cells every 8 weeks in médium containing either 

0.1 pM vinblastine or 300 ng/ml doxorubicin. The stability of resistance, as measured by 

drug uptake or accumulation of doxorubicin, was monitored every 4 weeks by flow 

cytometric measurements of drug uptake in the absence and presence of the pgp-170 

inhibitor, verapamil.

CCRF-CEM and CEM/VLBioo cells were grown in suspensión in RPM I1640 

médium supplemented with 12% fetal bovine serum (FBS), Penicillin (100 I.U./pl), 

Streptomycin (100 pg/ml) and I-glutamine (2 mM). Cells were grown in an incubator 

set at 37° C in a humidified 5% CO2 atmosphere. Cells were maintained at 0.2 x 106 -

2.0 x 106 cells/ml, as determined by hemacytometer count, and fresh médium was added 

every 2-3 days.

Cells were harvested for bioassay work by centrifugation in the exponential 

growth phase (0.8 x 106-1.2 x 106 cells/ml). The cells were washed with phosphate 

buffered saline (PBS) and centrifuged at 250g (1115 rpm) for 5 minutes. Assays were 

performed only if cell viability was 95-99%, determined by trypan blue exclusión. Cells 

were suspended in fresh médium to a density of 1.0 x 106 cells / mi and seeded in 24-well 

plates at a density of 0.5 x 106 cells / mi to a final volume of 2 mi in each well, by diluting 

1:2 with médium containing drug or control treatments.
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Work was performed under attenuated light conditions by leaving the soft 

fluorescent lights off in the laminar flow hood and culturing during the nighttime hours or 

with all windows blinded.

UVA irradiation treatments.

Cell populations were exposed to controlled UVA light doses using a hand held 

Spectroline ® lamp equipped with a Longlife ™ fílter. The integrated lamp output from 

300 nm - 400 nm was 0.0046 watts/cm 2/second with peak output at 352 nm. Figure 2.1 

displays the emission spectra of the lamp. Cells were exposed to 3 different light levels 

by increasing time of exposure. The light treatments consisted of 1.5 minutes or 0.414

7 7 7joules / cm , 5 minutes or 1.4 cm and 9 minutes or 2.38 joules/cm .

After pre-incubation with PHT for 1 hour, cells in 24 - well plates were removed 

from the incubator and placed in a dark laminar flow hood. The lids of the 24-well plates 

were removed and cells were exposed with the lamp set at a distance of 1 cm from the 

cell suspensions. The cells were then placed back in the incubator for another 3 to 23 

hours.

Cytotoxicity assay.

Cytotoxicity of the organic partition of the 95% ethanolic extract of fresh B. alba 

var. radiata leaves and the purified polyacetylenic compound PHT (1-phenylhepta-l, 3, 

5-triyne) in the CEM and CEM/VLBioo cell lines was assessed using the 3-(4, 5- 

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) cell proliferation assay.

Cells were treated with a range of drug concentrations from 0-50 //g/ml of the 

organic partition (solubilized in 95% ethanol) or 0-300 /¿M (0-50 jug / mi) of PHT 

(solubilized in 95% ethanol). Negative Controls included untreated cells (no drug or
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vehicle), cells treated with 0.1-1.0 % vehicle (95% ethanol) and cells exposed to each 

UVA light irradiation level alone or in combination with 0.1-1.0 % vehicle. A médium 

control was also included which consisted of médium, MTT, and buffer.

Cells were treated with drug, in triplícate, for 24 hours before transferring to 96 

well plates with 6-12 replicates per treatment. MTT was added at 5 //g/ml and cell 

cultures were incubated for an additional 8 hours to allow sufficient time for formazan 

crystal formation. Formazan crystals were solubilized ovemight with buffer consisting of 

0.1 N HC1 in anhydrous isopropanol and then absorbance readings were taken at 570 nm 

with a reference wavelength of 655 nm, using a BioRad Microplate Reader. Each 

experiment was repeated independently 3-5 times.

Flow cytometric assay to monitor membrane integrity.

The membrane integrity of treated cells was monitored using annexin-V- 

fluorescein isothiocyanate (FITC) and propidium iodide (PI). Dual parameter analyses 

were performed on a Coulter Epics Elite ESP flow cytometer, using an argón láser 

emitting 15 mW at 488 nm. A 525 nm band pass filter was used to detect fluorescein 

(green fluorescence) and a 575 nm band pass filter was used for PI detection (red 

fluorescence). Electronic compensation of the instrument was required due to 

overlapping of the two fluorochromes emission spectras. At least 10,000 events/cells 

were acquired, and cell populations were displayed as a dot-plot of log PI vs. log FITC.

A quadrant marker was used to divide the two-parameter plot into four quadrants. 

Negative Controls (untreated cells) and positive Controls (cells treated with 4pg/ml 

Camptothecin) were used to set the boundaries.
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Cells were treated with concentrations of PHT ranging from 0-100 pM. Cells 

were assigned to dark or UVA treatments as described under UVA irradiation treatments. 

Negative Controls included: untreated cells (no PHT and no ethanol); cells treated with 

0.5-1% of the vehicle (95% ethanol); cells treated with 0.414,1.4 or 2.38 joules/cm2 

UVA; both UVA and 0.5-1% vehicle.

Cell cultures were monitored after 4 and 24 hours of drug treatment, in order to 

establish a minimum incubation time and concentraron, for loss of membrane integrity. 

At the end of the incubation periods, 5.0 x 105 cells were harvested by centrifugation 

from each treatment, washed in ice-cold Ca+ and Mg+ free phosphate buffered saline 

(PBS) and centrifuged for 5 minutes at 1400 rpm (350 g). The supematant was decanted 

and cells were resuspended in 100 ¡A annexin-V binding buffer or to a density of 5.0 x 

106/ml in 5 mi cell culture tubes. Cells were stained with 5 /¿I annexin-V-FITC (50 

/¿g/ml) and 10 fA PI (50 ¿/g/ml). After incubating in a dark laminar flow hood for 15-20 

minutes, 400 fA of annexin-V binding buffer was added to each sample and readings were 

taken within 1 hour. Each treatment was repeated independently 3-5 times.

Statistical Analyses.

MTT assay. The replícate absorbance readings for each treatment within an assay 

were averaged and then divided by the mean absorbance of the negative vehicle control 

and multiplied by 100. Valúes were expressed as percent of control mean absorbance. 

These valúes were averaged across each independent replicate to obtain the mean percent 

± standard error (SE) of control mean absorbance for each treatment.

Annexin- V-FITC/PI assay.
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Mean percent necrotic cells (annexin-V-FITC+/PI+), viable cells (annexin-V- 

FITC7PI*) or cells with disrupted membrane asymmetry (annexin-V-FITC+/Pr) were 

calculated as the mean percentage of 3-5 independent replicates. The data were 

expressed as the mean percentages of independent replícate samples where at least

10,000 events/cells were analyzed and represented as dot plots of log FITC versus log PI 

fluorescence.

Statistical analyses were performed by two-way and three-way analysis of 

variance (ANOVA) using SigmaStat for Windows, Versión 3.00.0. Results were 

considered significant if P < 0.05. Subsequently, pairwise múltiple comparison 

procedures were performed using the Holm-Sidak method.

MTT assay experimental design.

The experimental design for the MTT assay consisted of 3 independent variables, 

(the cell line, PHT concentration and light intensity). There were 2 levels within cell line 

(CEM and CEM/VLBioo), 6 levels of concentration (0 , 4,15,40,80,125 pM), and 4 light 

levels (0, 0.414, 1.4, 2.38 joules/cm2). The dependent variable was percent of vehicle 

control metabolic activity or percent of the MTT absorbance of the vehicle control 

expressed as 100%. Untreated cells (not dosed with PHT, vehicle, ñor irradiated with 

UVA) were cultured in parallel to monitor their viability and the effect of the vehicle 

(95% ethanol) on MTT reduction. Vehicle Controls showed at least 89% and at most 

110% of the metabolic activity of untreated Controls.

Annexin- V-FITC /  PI assay experimental design.

The experimental design for the annexin-V-FITC/ PI assay consisted of 4 

independent variables (the cell line, PHT concentration, light intensity and incubation
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time), and 3 dependent variables, (percentage of viable cells, percentage of cells with lost 

membrane asymmetry and percentage of cells without intact membranes). Initial 

statistical analyses involved sepárate three-way ANOVA tests with cell line, PHT 

concentration and light intensity as the independent variables for each incubation time 

and then PHT concentration, light intensity and incubation time as the independent 

variables for each cell line. These tests were performed separately for each dependent 

variable. The results reported only include those for which the data passed tests of 

normality and equal variances.

RESULTS 

Cytotoxicity o f B. alba ethanolic extract.

The ethanolic extract of B. alba var. radiata was initially screened by MTT for 

both dark and photomediated cytotoxicity in the parental CCRF-CEM cell line. A 50% 

decrease in MTT reduction compared to the negative vehicle control was observed after 

48 hour incubation with 50 pg/ml of the organic extracts in the dark treatment, or 5 /¿g/ml 

ofthe organic extract, in combination with 1.4 joules /cm2UVA irradiation, 1 hour into 

the incubation period (figure 2.2). A reduction in metabolic activity compared to the 

control (95% ethanol at 0.5% v/v) was observed with extract concentrations of at least 12 

/ig/ml under attenuated light conditions (P < 0.05), and 3 /¿g/ml in combination with 1.4 

joules /cm2 UVA irradiation (P < 0.05).

Across all extract concentrations tested, there was a considerable decrease in 

MTT reduction in populations irradiated with 1.4 joules/cm2 UVA 1 hour into the 

incubation period, compared to dark treatments (P = 0.014).
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Metabolic activity after 24 hour incubation with PHT,

To determine if PHT contributed to the cytotoxic effect of the ethanolic extract, it 

was isolated and tested for cytotoxic activity in the parental CCRF-CEM cell line and 

MDR, CEM/VLBjoo cell line. Cells were treated for 24 hours with varying concentrations 

of drug, ranging from 0-200 /JM, and assigned to 1 of 4 different UVA light intensity 

treatments (0, 0.414, 1.4 and 2.5 joules/cm ), to which they were exposed 1 hour after 

incubation with PHT.

The cytotoxicity of PHT was concentration and light dependent (P < 0.001) and 

the data revealed an interaction between light level and treatment concentration (P < 

0.001). A concentration dependent effect was observed across all light levels and both 

cell lines from 0-150 /JM but within the dark treatment, only at concentrations greater 

than 80 /JM (P<0.05) (figures 2.3 and 2.4).

UVA Treatments.

After incubation with PHT for 24 hours and exposure to UVA light, 1 hour into 

the incubation period, there was an observed concentration and light dependent effect on 

the mean percent of metabolically active cells, relative to the negative vehicle control in 

both cell lines (P < 0.001). Within populations of both the CEM/VLBioo and CCRF- 

CEM cell lines, metabolic activity decreased relative to the dark treatment in populations 

exposed to at least 0.414 joules/cm2 UVA and PHT concentrations above 4 /JM or at least 

15 /JM (P < 0.05). Within the UVA treatments, a concentration dependent effect was
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seen at 0.414 joules/cm2 below PHT treatment concentrations of 15 /JM (P < 0.001) and 

at 1.4 and 2.5 joules/cm2 (P < 0.001) below 4 /zM.

In other words, the toxicity of 4 /JM PHT is more dependent on light exposure 

than concentration at while the toxicity of PHT concentrations above 15 /JM does not 

increased with UVA exposure. At PHT concentrations above 15 /zM, the effect on 

cytotoxicity is not due to an increase in light level from 0.414 joules/cm - 2.5 joules/cm 

and at light levels of 1.4 joules/cm2 and above. Therefore, a decrease in mean percent 

metabolically active cells cannot be attributed to an increase in PHT treatment 

concentrations in the range of 4-150 /JM.

In conclusión, a PHT dose of at least 4 /M  is required to observe phototoxic 

effects on metabolic activity in response to photoexcitation with between 0.414 

joules/cm2- 2.38 joules/cm2 UVA. A light dose of 0.414 joules/cm2 is at most what is 

needed for a phototoxic effect on cell viability comparable to UVA doses of 1.4 

joules/cm2 and above when the PHT treatment concentration is 15 /zM and above.

Dark Treatments.

In cell cultures treated for 24 hours with PHT for 24 hours with PHT 

concentrations ranging from 0-150 /zM, a greater loss in metabolic activity was observed 

in CEM/VLBioo cell populations treated with PHT concentrations above 150 /JM than in 

CCRF-CEM cells (table 2 .1).

A possible selective metabolic toxicity was further evaluated by monitoring MTT 

reduction 48 hours after treatment with an expanded range of treatment concentrations (0- 

300 /zM). The CEM/VLBioo cell Une was more sensitive to PHT toxicity, under
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attenuated light conditions and across all concentrations, after a 48 hour incubation 

period (P = 0.003). Please see chapter 3 of this thesis for the presentation and discussion 

of these results.

Effect o f PHT on cell membrane integrity.

When measured by flow cytometry, cells defined as "viable" fell into the FITC' 

/PI' quadrant. Cells defined as "loss of membrane asymmetry" fell into the FITC+/PI' 

quadrant because PS was exposed on the outer plasma membrane. Cells defined as 

"necrotic" fell into the FITC'/PI+ or FITC+/PI+ quadrant because both dyes were taken up 

as membrane integrity was lost.

Interaction effects on viability.

A considerable interaction between light level and concentration was observed in 

both cell lines (P < 0.005). This interaction was represented by the following 

observations. A concentration-dependent effect on viability in populations dosed with 

0.414 joules/cm2 UVA in combination with 0-80 /JM PHT that intensifíed over time. A 

light-dependent effect that was most notable in populations dosed with less than 40 pM  

PHT after 4 hours, and less than 80 /JM. PHT after 24 hours.

Induction o f phosphatidylserine exposure across time in treated cultures.

After 24 hours, a concentration dependent effect on loss of membrane asymmetry 

is seen across both cell lines (P = 0.009). However, this effect was only seen in cultures 

treated with 0-4 /JM PHT and after photoirradiation with 0.414 joules/cm2 UVA. By 24 

hours into the incubation period, cell populations treated with greater light x
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concentration doses showed a considerable percentage with complete loss of membrane 

integrity.

Figures 2.6 and 2.7 show the log annexin-V-FITC versus log PI histograms 

obtained for CEM/VLBioo and CCRF-CEM cell populations, respectively, after 24 hour 

treatment with PHT (0-80 /JM) ± UVA (0.414 - 2.5 joules/cm2). A PHT concentration of 

4 /JM in combination with 0.414 joules/cm2 UVA was sufficient to induce a loss in 

membrane asymmetry after 24 hours (P = 0.004) in both cell lines. A concentration- 

dependent induction of PS exposure, in the absence of light excitation, was observed only 

in CEM/VLBioo cell populations (table 2 .2). Dense clusters are seen in the annexin-V- 

FITCVPT quadrants of histograms showing the populations treated with 40 /JM and 80 

pM PHT (figure 2.6).

The 4 hour CEM/VLBioo histograms and CCRF-CEM histograms show that a loss 

in membrane asymmetry was induced early in both cell lines (figures 2.4 and 2.5). Cell 

populations treated with 0.414 joules/cm2 UVA and at least 15 pM  PHT showed a loss in 

membrane asymmetry as early as 4 hours post exposure (P = 0.006). There was a 

considerable light dependent induction of PS exposure in populations of both cell lines 

treated with 4 pM  PHT and irradiated with 0.414 joules/cm2 UVA (P = 0.009) (figures

2.4 and 2.5).

Loss o f membrane integrity or percentage o f necrotic cells over time.

There was a time, PHT concentration, and light dependent effect on the mean 

percentage of necrotic cells observed in populations of both cell lines (P < 0.001). After 

as soon as 4 hours, a PHT concentration dependent effect on the mean percent necrotic
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cells was observed in both cell lines (P < 0.001). At 4 hours post-exposure, necrotic cells 

were observed in populations of both cell lines exposed to at least 15 /xM PHT and at 

least 1.4 joules/cm2 UVA (P < 0.001).

At 4 hours, dense clusters of CEM/VLBioo cells with complete loss of membrane 

integrity were observed by flow cytometry in populations treated with at least 0.414 

joules/cm2 UVA, in combination with at least 40 /xM PHT (figure 2.3). A comparable 

response was observed in the CCRF-CEM cell line after treatment with at least 1.4 

joules/cm2 UVA and at least 15 /xM PHT (figure 2.5).

After 24 hours, the mean percentage of necrotic cells increased in populations of 

both cell lines and the effect was concentration and light dependent at PHT 

concentrations of 4 /xM and above in combination with irradiation doses of 0.414 

joules/cm2 and above (P < 0.001). Dense clusters of necrotic cells were observed after 24 

hours in CEM/VLBioo populations treated with at least 80 /xM PHT in the absence of 

light excitation and in those dosed with at least 4 /xM PHT and 0.414 joules/cm2 UVA 

(figure 2.6). Dense clusters of cells with complete loss of membrane integrity could be 

observed in CCRF-CEM populations treated with at least 4 /xM PHT in combination with

1.4 joules/cm2 UVA or at least 15 /xM PHT and 0.414 joules/cm2 UVA (figure 2.7).

After 4 hours, the mean percentage of necrotic cells observed in both CCRF-CEM 

and CEM/VLB ioo populations treated with 2.5 joules/cm2 UVA compared to those treated 

with either 0.414 joules/cm2 UVA or in the dark were considerably greater (P < 0.05). In 

fact, almost 100 % of the cells treated with at least 40 /xM PHT and 2.5 joules/cm2 UVA 

could be defined as necrotic after 4 hours (figures 2.3 and 2.4). After 24 hours, from 80-
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100 % of the cells in populations of both cell lines treated with at least 0.414 joules/cm2 

UVA in combination with 80 /iM PHT or at least 1.4 joules cm2 and at least 40 /¿M PHT 

showed complete loss of membrane integrity (figure 2.3).

DISCUSSION

In this study the effects of PHT on metabolic activity and membrane integrity 

were evaluated, in a MDR ALL cell model, in the presence and absence of UVA 

irradiation. PHT demonstrated selective toxicity in the dark to the MDR cell line and this 

cell line was also slightly more sensitive when dosed with PHT and photo-irradiated. In 

addition, a notable interaction between concentration and UVA light intensity was 

observed. A mínimum PHT concentration required for photo-excitation was established 

in these cell lines as well as a mínimum level of UVA light intensity for phototoxicity.

At the mínimum PHT concentration required for photoactivation, light dependent 

cytotoxicity was evident and at the mínimum irradiation level required for 

photoexcitation, concentration-dependent toxicity was evident. Phototoxin induced 

membrane integrity loss was observed very early in the incubation period at the highest 

PHT x UVA combinations, indicative of primary necrosis. However, cell populations 

treated with lower dose combinations lost plasma membrane asymmetry before integrity, 

suggesting secondary necrosis or late apoptosis.

The results of the MTT assay and annexin-V-FITC/PI flow cytometric assay 

correlated well. The selective toxicity of PHT in the dark to CEM/VLBioo cells was 

demonstrated in both assays. The data indicate that after 24 hours, a loss in membrane
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asymmetry is accompanied by disfunction of cellular metabolism, as measured by the 

ability of mitochondrial dehydrogenases to reduce the tetrazolium salt, MTT.

PAs show potent anti-proliferative activity, independent of their phototoxicity, but 

their mechanisms of action and structure activity relationships are poorly understood. 

Studies with fatty acids and derivatives have shown the degree of unsaturation or the 

number of double bonds (alkenes) positively correlates with cytotoxicity and formation 

of lipid peroxides in many cell types. Examples include pancreatic cáncer cells and HL- 

60 acute promyelocytic leukemia cells (Hawkins et al., 1998). In addition, analogs of 

ceramide, which is synthesized from Iong chain fatty acids, possessing double bonds 

(alkene) and triple bonds (alkyne) show greater relative potency to induce apoptosis, as 

assessed by nuclear chromatin condensation and DNA fragmentaron, in HL-60 cells than 

analogues lacking these structural characteristics (Kishida et al., 1997). The presence of 

an aromatic group on the fatty acid butyrate confers anti-proliferative activity (Shack et 

al., 1996). The aromatic fatty acid phenylbutyrate has been evaluated in phase I and II 

clinical triáis, in combination with other anti-cancer agents, for the treatment of 

nonresponsive hematologic, small intestine, and advanced colorectal cancers (Gore,

2001; Carducci, 2000; Sung, 2002). Comparative studies with PAs of vaiying structure 

are needed to further understand the effects of aromatic groups and conjugation and 

number of acetylenic bonds on the bioactivity attributed to these compounds under 

attenuated light conditions.

While CEM/VLBioo populations show greater sensitivity to PHT toxicity, a loss 

in viability was observed in both cell lines under attenuated light conditions at 

concentrations greater than 200 fjWÍ. At the greatest PHT concentrations and PHT x
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UVA combinations tested, cytotoxicity may be due to nonspecific membrane disruption 

rather than induction of a specific apoptotic signaling pathway. By contrast, at the lowest 

PHT concentrations required for loss of metabolic activity and membrane asymmetry in 

CEM/VLBioo populations, a specific cell death pathway may be induced by PHT. This 

cell death pathway may involve the production of reactive oxygen species such as 

superoxide anión and lipid peroxidation end products.

Previous work with PHT demonstrated phototoxicity in insect models to be 

inhibited by increased activity of endogenous superoxide dismutase (SOD) and when 

supplemented with the lipid soluble antioxidants, a-tocopherol and /Lcarotene (Aucoin et 

al., 1995). Insects also show effects of lipid peroxidation if glutathione (GSH) is 

inhibited before administering PHT and irradiating with UVA. The greater sensitivity of 

CEM/VLB100 cell populations relative to CCRF-CEM cell populations to PHT, both 

under attenuated and controlled UVA light conditions, may thus involve differences 

between the two cell lines in levels of expression of endogenous antioxidant defenses.

This suggests that the toxicity of PHT is associated with the production of 

superoxide anions and lipid hydroperoxides (LOOHs) and the depletion or down 

regulation of antioxidant enzyme expression. PHT reacts with molecular oxygen upon 

photoexcitation with UVA light to produce oxyradicals such as superoxide anión. 

Altematively, singlet oxygen is produced upon photoexcitation of PHT with UVA light 

that reacts with PUFAs in cell membranes to form LOOHs. Human breast cáncer cells 

(MCF-7) overexpressing phospholipid hydroperoxide glutathione peroxidase (Ph-GPx) 

are able to rapidly remove phototoxin produced LOOHs and preserve membrane integrity 

(Wang et al., 2001). Superoxide is produced by mitochondria during the mitochondrial
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route of apoptosis induction but overexpression of MnSOD causes reduced levels of 

intracellular reactive oxygen species and prevenís cell death. MnSOD removes 

superoxide radicáis in mitochondria and thus protects mitochondria from oxidative injury 

(Cai et al. y 1998). Polyunsaturated fatty acid derivatives medíate toxicity through an 

increase in the generation of ROS and rate of lipid peroxide formation and depletion of 

endogenous antioxidant defenses (Das, 2002). Phenylacetate and phenylbutyrate induced 

time dependent decreases in GSH levels, SOD activity, catalase (CAT), glutathione 

peroxidase (GPx), glutathione reducíase (GR), and glutathione-S-transferase (GST) 

(Shack et al.y  1996). MDR ovarían and colon carcinoma cell populations were also more 

sensitive to growth arrest by phenylacetate and phenylbutyrate than those of the parental 

cell line. Treatment with these compounds chemosensitized the MDR cells to 

doxorubicin toxicity.

Jia et al. (1995) showed the CEM/VLBjoo cell line to be more sensitive to TNF-a 

induced apoptosis than the parental CCRF-CEM cell line. This selective toxicity was 

associated with decreased MnSOD activity. The apoptosis-inducing activity of TNF-ais 

mediated by the production of reactive oxygen intermediates (ROI) and inhibited by the 

over-expression of SOD (Siemankowski et al.y 1999, Gaur et al., 2003). The 

CEMA/LB ioo cells are also more sensitive than CCRF-CEM cells to cytosine J3-D- 

arabinofiiranoside induced apoptosis (Alien et al., 1995). This anti-cancer drug targets 

the mitochondria and stimulates the production of ROS (Cai et al.y 1998).

PHT may modulate the expression of antioxidant enzymes and may depending on 

the dose used and whether it is tested in combination with UVA irradiation or other 

prooxidant drugs. Subtoxic doses of prooxidants may stimulate the upregulation of
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enzymatic antioxidant defense and intracellular SOD may be involved in the resistance of 

cáncer cells to oxidative stress (Sen et al., 2003; Matés et al., 2000). Ionizing radiation, 

anthracyclines, and cytokines such as TNF-a, produce free radicáis that aid in their anti- 

cancer activity (Das, 2002). TNF-a induces apoptosis in the MCF-7 human breast 

adenocarcinoma-derived cell line but increases MnSOD expression by northem blot 

hybridization analyses (Siemankowski et al., 1999). A correlation was found between 

elevated serum levels of MnSOD and recurrence of disease in human epithelial ovarían 

carcinoma patients and decreased levels after chemotherapy with combinations of 

cyclophosphamide, doxorubicin and cisplatin (Ishikawa et al., 1990). Patients with high- 

grade central nervous system (CNS) tumors show increased levels of MnSOD in their 

cerebrospinal fluid (Cobbs et al., 1996). Malignant gliomas with high constitutive 

expression of MnSOD are resistant to endogenous TNF-a mediated toxicity, ionizing 

radiation induced cytotoxicity and DNA damage, and chemotherapeutic agents that may 

induce TNF-a. Ionizing radiation also causes increases in MnSOD expression that can 

confer resistance to TNF-a mediated cytotoxicity (Lin et a l, 1993). Lymphocyte 

samples from pediatric ALL patients recently diagnosed and prior to treated with anti- 

cancer drugs, showed lower levels of the antioxidant enzymes, GPx, CAT, and SOD than 

those from control groups (Sentüker et al., 1997). These reports illustrate the 

contribution of endogenous antioxidants to drug resistance.

The increased sensitivity of CEM/VLBioo cells to PHT toxicity may also involve 

differences in the expression of apoptosis regulating genes. In addition to the protection 

provided by antioxidant defense mechanisms, cell death induced by pro-oxidants can be 

prevented by cáncer associated, or oncogenes, that regúlate apoptosis. The bel-2 gene
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family members encode for the expression proteins that act as either pro-apoptotic (bax 

and bcl-xs) or anti-apoptotic (bel-2 and bcl-xl) (KJasa et al., 2001). The TNF-a sensitive

CEM/VLB100 cell line showed increased expression of the pro-apoptotic bel-^s, bad, and

bax genes in the mitochondria than cells from CCRF-CEM populations (Jia et al., 1999). 

Treatment with TNF-a increased bel-2 gene expression in mitochondria of CCRF-CEM 

cells but decreased levels in CEM/VLBioo cells. Mitochondrial apoptosis can be 

inhibited by overexpression of bel-2 and bcl-xl. The expressed of bel-2 protein is 

believed to inhibit the induction of apoptosis by functioning as an antioxidant to attenuate 

drug induced hydrogen peroxide and lipid peroxide formation or to induce the production 

of endogenous antioxidants (Cai et al., 1998). Fatty acids and derivatives have shown the 

ability to modulate the expression of these genes. The butyric acid derivative, AN-9, 

induces apoptosis in cultured B-chronic lymphocytic leukemia (B-CLL) cells from 

patients alone and in combination with doxorubicin (Rabizadeh et a l, 2001). This 

compound also downregulated bel-2 and upregulated bax gene expression alone and in a 

supra-additive manner when cells were coincubated with doxorubicin. The PUFA, 

eicosapentaenoic acid (EPA) was shown to induce apoptosis of HL-60 cells and 

downregulate bel-2 expression (Chiu et al., 1999).

In this study, PHT was shown to induce the extemalization of the negatively 

charged aminophospholipid, phosphatidylserine (PS) from the inner plasma membrane to 

the outer plasma membrane. Under attenuated light conditions, the effect was selective 

to the CEM/VLBioo cell line. After photoexcitation, PS extemalization was observed in 

populations of both cell lines treated with all but the highest PHT x UVA combinations.
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PS, when extemalized to the outer membrane indicates a loss in plasma 

membrane asymmetry. PS exposure is common in many cell systems as a response to a 

variety of apoptotic stimuli (Verhoven et al., 1999). In apoptotic lymphocytes (DO 11.10 

T lymphocyte hybridoma cells), DNA fragmentation and membrane blebbing may occur 

after PS extemalization. Furthermore, PS exposure is required for phagocytosis by 

macrophages (Verhoven et a l, 1999). An asymmetric distribution of phosphoiipids is 

maintained in lymphocytes by an ATP-dependent translocase called aminophospholipid 

translocase (APT). The extemalization of PS to the outer leaflet of the plasma membrane 

requires the inactivation of APT and the activation of an enzyme called scramblase 

(Verhoven et al. 1999). APT activity has been shown to be sensitive to oxidation and it 

has been proposed that oxidized PS fails to be intemalized by APT (Kagan et al., 2000). 

Kagan et al. (2003) demonstrated that oxidation of PS occurs early during the execution 

of apoptosis and prior to DNA fragmentation and PS extemalization. In addition, PS 

peroxidation is blocked in cells overexpressing bel-2 and is sensitive to broad-spectrum 

caspase inhibitors. The family of aspartic acid specific cysteine proteases (caspases) is 

implicated in the initiation and execution of apoptosis. The naturally derived phototoxin 

hypericin, (from Hypericum perforatum L., Clusiaceae), induced extemalization of PS 

which in tum was prevented by specific caspase-3 inhibitors and broad-spectrum caspase 

inhibitors (Ali et al., 2001). However, data are not conclusive as to whether APT and 

scramblase are direct targets of caspases (Verhoven et al., 1999). The molecular 

mechanisms that lead to the extemalization of PS remain unresolved (Kagan et al., 2000).

Apoptosis was induced in leukemic cells from newly diagnosed pediatric ALL 

patients by the drugs, prednisolone, vincristine, Z-asparaginase, and the anthracycline,
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daunorubicin (Hollemán et a l.y  2003). Apoptosis induction was characterized by early PS 

exposure and mitochondrial membrane depolarization followed by caspase-3 activation 

(Holleman et a l.y  2003). The investigators found that the leukemic cells of patients that 

were resistant to these structurally unrelated drugs showed decreased PS extemalization 

and mitochondrial transmembrane depolarization compared to drug sensitive cells.

The increased sensitivity of CEM/VLBioo to PHT- induced loss in membrane 

asymmetry may be related to the increased activity of the mitochondrial electrón 

transport chain (ETC) activity of this cell line compared to the CCRF-CEM cell line (Jia 

et al.y  1997). The increased sensitivity of CEM/VLBioo cells to TNF-a was demonstrated 

to involve its higher ETC activity. By contrast, the resistance of this cell line to high 

dose vinblastine-induced apoptosis was increased when the ETC was depleted with 

ethidium bromide. The susceptibility of CEM/VLBioo cells to TNF-a was also related to 

a depolarized mitochondrial State that primes cells for apoptotic induction. Mitochondrial 

depolarization occurs as an early event in apoptosis of CEM/VLBioo cells exposed to 

TNF-a and but not in CEM cells (Matarrese et al., 2001).

High dose PHT x UVA combinations seemed to cause cell lysis shortly after 

photoirradiation, without an apparent initial loss of membrane asymmetry. Cell death 

may have occurred in these populations via necrosis or through major homeostatic failure 

rather than by apoptosis. Extreme oxidative stress can disrupt mitochondrial energy 

production and lead to a rapid depletion of ATP that would shunt cells to a necrotic death 

because the apoptotic program is an energy dependent process (Raffray et al.y  1997). 

Sufficient ATP reserves are required for caspase activation, PS extemalization and 

formation of apoptotic bodies.
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One of the means by which cáncer cells medíate drug resistance is through 

upregulating the expression of detoxifying enzymes and anti-apoptotic proteins. Drugs 

that can modulate the expression of these enzymes may be valuable in cáncer treatment 

protocols (Kong et al., 1998).

Further work should involve elucidating the mechanism of toxicity of PHT in 

cáncer cell lines with defined levels of detoxifying enzyme expression and in the 

presence of exogenous antioxidants. The ability of PHT to modulate the expression of 

these enzymes along with that of anti and pro-apoptotic proteins should be investigated. 

In addition, morphological examination of cells for the hallmarks of apoptosis such as 

cell shrinkage, membrane blebbing, chromatin condensation and nuclear fragmentation 

should be performed. The possible route of apoptosis induced by PHT, whether extrinsic 

(death-receptor associated) or intrinsic (mitochondrial route) also needs to be elucidated.

In this study, selective toxicity of PHT was demonstrated in a MDR, ALL cell 

line that overexpressespgp-\70. The potential for PHT to work additively or supra- 

additively with the anti-cancer drug doxorubicin was investigated and the results are 

reported in Chapter 3 of this thesis.
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Figure 2.2. Emission spectra of lamp used for UVA irradiation treatments. The figure 
shows the spectra from 300 -  500 nm with a lambda máximum at 352 nm. The 
integrated output from 300 -  400 nm was 0.0046 watts/cm 2/second.
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Figure 2.3. Metabolic activity of CCRF-CEM cells after incubation with B. alba 
ethanolic extract. Cells were treated under attenuated light conditions or with 1.4 
joules/cm2 UVA, 1 hour into the incubation period. The vehicle control was 0.5% ethanol. 
Data points represent the mean of 4-6 replicates within an independent replícate assay 
averaged across 3-5 independent assays. Errors bars represent the mean ± SE.
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Figure 2.4. Metabolic activity and membrane integrity of CCRF-CEM and CEM/VLBioo 
cells after 24 hour incubation with PHT ± UVA. Graph A shows the MTT assay results 
as percent vehicle control versus varying PHT concentration. Each data point represents 
the mean ± SE of 3-5 independent replicate treatments performed in quadruplicate.
Graph B shows the percentage of cells with complete loss of membrane integrity 
(annexin-V-FITC+/PI+) versus PHT concentration. Each bar represents the mean ± SE of 
3-5 independent replicate treatments.
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Table 2.1. Metabolic activity of CCRF-CEM and CEM/VLBioo cells after 24 hour 
incubation with PHT ± UVA irradiation.1

____________________________ CCRF-CEM________________________
UVA

Concentration (^M) Dark 0.414 joules/cm2 1.4joules/cm2 2.4 joules/cm3
0 100 100 100 100
4 88.3 ±7.6 56.9 ± 5 9 21.4 ± 7  6 18.0 ±3.4
15 89 7 ± 10 33.8 ± 8.3 10.9 ± 1 8 12.2 ±5.2
40 91 7 ±6 3 17.3± 5 1 11.4± 17 It 8 ±3 2
80 90 8 ±2 2 14.6± 12 13.4 ± 2 4 11 7 ±4.0
100 89.1 ± 6.4
150 90.8 ±2.2
200 61.9 ±4.2

CEMA/XBinrt
UVA

Concentration (a«M) Dark 0 414 joules/cm2 1.4 joules/cm2 2.4 joul es/cm2
0 100 100 100 100
4 88.8 ±6.9 42.7 ±3.9 23.2 ± 7 3 22.9 ± 53
15 92.8 ±7.9 22.(5± 6 5 15.4 ±4.4 15 6 ±3.8

40 77.6 ±5.7 16.9 ± 6 5 11.6 ± 3  9 14 6 ±5.4

80 82 4 ±2 9 15.4± 5 4 12.8 ± 4 3 15 8 ±6 3
100 78 6 ±10 8
150 63.9 ±12.1
200 26.8 ±8.1

1. Valúes represent percent (%) vehicle control (ethanol) ± SE of the mean.
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Table 2.2. Percentage of cells with loss in membrane asymmetry after 24 hour incubation 
with PHT ± UVA exposure.1

____________________________ CCRF-CEM_________________________
UVA

Concentration (/¿M) Dark 0.414 joules/cm2 1.4 joules/cm2 2.4 joules/cm2
0 6.2 ±2.0 7 1 ±2.8 6.8±4.1 97 ± 3.4
4 6.6 ±1.4 16 0± 3.5 31 6±3.0 26 2±4.4
15 10.6 ±2.2 20.1 ±0.4 26.0 ±5.6 18.3 ± 11
40 9.1 ±1.1 27.1 ±8.2 15.4 ±9.0 3.5 ±2.9
80 12.8 ±3.1 9.8 ±4.1 9.7 ±5.7 1.8 ±1.7

CEM/VLBim
UVA

Concentration Dark 0414 joul es/cm2 1.4 joules/cm2 2.4 joul es/cm2
0 5 8 ± 3.5 5 7±4.9 6 4 ±4.6 7.3±4.7
4 4 9 ± 1.2 42.3 ±2.4 40 5 ±6.3 35.5 ±9.2
15 8.7 ±3.4 37.8 ±1.7 23.6 ±7.4 2.2 ±0.4
40 23.3 ±5.5 17.9 ±0.4 1.8 ±0.4 0.7 ±0.1
80 42.5 ±6.5 6.0 ±2.8 0.9 ±0.6 0.4 ±0.2

1. Valúes represent the mean percentage of 10,000 cells that were annexin-V-FITC7pr ± SE of 3-5 
independent replicates.

54



Dark 0.414 joufesfcm* 1.4 joules/cm1 2.4 joules/cm1

0»*<

4uM

1$**M

i

2

k ' 4
.1 1999

£  ■ 

l i

2

■ i*
4'

: j í _
i«w .i

3s
i * ii»  i ia <

40*M

i  • 2
1 1 1 2 1 1 1 1 s l 

¡. % £

y-.  ^

4

i i nfCt i ji-J

i
^  ;

¡ - M -  
^  *

* t ¡

j — TT” 2

 ̂1 -- - ^

^ 4 ■

SO^m

FITC LOG

Figure 2.5. Membrane integrity of CEM/VLBjoo cells after 4 hour incubation 
with PHT ±UVA irradiation. At least 10,000 cells were collected and displayed 
as dot plots of PI log vs. FITC log. The 4 quadrants of each histogram are: 1. 
annexin-V-FITC7PI+ 2. annexin-V-FITC+/PI+. 3. annexin-V-FITC'/PI', 4. 
annexin-V-FITC+/PF. The histograms shown are representative of the 3-5 
independent replicates performed for each treatment.
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Dark 0.414 joufesfcm2 1.4 joules/cm1 2.4 joules/cm*

FITC UDG

Figure 2.6. Membrane integrity of CEM cells after 4 hour incubation with PHT ± UVA 
irradiation. At least 10,000 cells were collected and displayed as dot plots of PI log vs. 
FITC log. The 4 quadrants of each histogram are: 1. annexin-V-FITC'/Pr; 2. annexin-V- 
FITCVPf; 3. annexin-V-FITC'/PF ; 4. annexin-V-FITC+/PT. The histograms shown are 
representative of the 3-5 independent replicates performed for each treatment.
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Figure 2.7. Membrane integrity of CEM/VLBioo cells after 24 hour incubation 
with PHT in combination with UVA irradiation. At least 10,000 events were 
collected and displayed as dot plots of PI log vs. FITC log. The 4 quadrants of 
each histogram are: 1. annexin-V-FITC*/PI+; 2. annexin-V-FITC+/PI+; 3. annexin- 
V-FITC'/PT ; 4. annexin-V-FITC+/PI'. The histograms shown are representative 
of the 3-5 independent replicates performed for each treatment.
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Figure 2.8. Membrane integrity of CEM cells after 24 hour incubation with PHT in 
combination with UVA irradiation. At least 10,000 events were collected and displayed 
as dot plots of PI log vs. FITC log. The 4 quadrants of each histogram are: 1. annexin-V- 
FITC7PI+; 2. annexin-V-FITC+/P f ; 3. annexin-V-FITC*/PI'; 4. annexin-V-FITC+/PI\
The histograms shown are representad ve of the 3-5 independent replicates performed for 
each treatment.
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DRUG POTENTIATING EFFECT OF PHENYHEPTATRIYNE (PHT) IN THE 
MULTI-DRUG RESISTANT (MDR) CELL LINE CEM/VLB,oo

ABSTRACT

The purpose of this study was to determine the relative toxicity and evalúate the 

chemosensitizng potential of the phototoxin phenylheptatriyne (PHT) in the CCRF-CEM 

and CEM/VLBioo acute lymphoblastic leukemia (ALL) cell lines, under attenuated light 

conditions. The tetrazolium dye (MTT) assay was used to assess the metabolic activity 

of cells after incubation for 48 hours with doses of PHT ranging from 0-300 /¿M and 

doses of doxorubicin from 0-20 /¿M alone or in combination with 60 /¿M PHT. The 

multi-drug resistant (MDR) CEM/VLBioo cell line was more sensitive to PHT toxicity 

than the parental CEM cell line (P = 0.006). The combination of PHT and doxorubicin 

was more toxic than doxorubicin alone (P = 0.007).

The multi-drug resistant (MDR) variant CEM/VLBioo cell line expresses the 

mdr-1 gene product, P-glycoprotein (pgp-170), a 170 kD protein present in the plasma 

membrane and is cross-resistant to vinblastine and doxorubicin. PHT may work 

additively or synergistically with doxorubicin by a mechanism that involves changes in 

plasma membrane fluidity. As a fatty acid derivative that intercalates plasma 

membranes, PHT could affect physical membrane properties and thus modify the uptake 

of doxorubicin. Further work should focus on examination of the chemosensitizing 

activity of PHT in cell lines expressing the 190 kD multi-drug resistance associated 

protein (MRP-1) and in combination with anti-tumor drugs, including 

epipodophyllotoxins and camptothecin.
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INTRODUCTION

The increased morbidity and mortality associated with the multidrug resistant 

(MDR) phenotypes of cáncer cells and microbes has prompted the need for new 

medicines and treatment modalities with the ability to chemosensitize cells or interfere 

with resistance mechanisms (Liscovitch et al., 2002). Múltiple drug resistance involves 

the insensitivity of cáncer cells to a diversity of anti-tumor agents with varying structures 

and different mechanisms of action (Bosch et al., 1996). Chemotherapeutic agents 

associated with the acquired MDR phenotype include the vinca alkaloids (vinblastine, 

vincristine and vinorelbine), epidophyllotoxins (etoposide, teniposide), taxanes (taxol, 

paclitaxel and docetaxel), and anthracyclines (doxorubicin, daunorubicin, idarubicin) 

(Baggetto et al., 1998).

Decreased cellular drug influx and increased cellular ability for drug extrusión are 

the main mechanisms involved in MDR (Bosch et al., 1996). Tumors may be 

intrinsically resistant to chemotherapeutic drugs or acquire resistance after exposure to 

drugs. In both cases, chemotherapy may fail because the patient does not respond either 

initially or after relapse (Liscovitch et al., 2002). In order to achieve high complete 

remission rates with pediatric ALL patients, intensive multiagent chemotherapy, or 

induction therapy, is often necessary (Silverman et al., 1999). Unfortunately, patients 

may not respond to therapy even though they are treated with combinations of highly 

toxic and immunosupressive drugs such as doxorubicin, dexamethasone, vincristine, 

methotrexate, prednisolone, and cytosine arabinoside.
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MDR is mediated by the ATP binding cassette (ABC) transporters p-glycoprotein 

ipgp-170) and the multidrug resistance associated protein-1 (MRP-\). It is an ATPase - 

dependent multidrug transponer potentially responsible for MDR in many tumors. MRP- 

1 transports cationic and neutral compounds only in the presence of glutathione, or as 

glutathione-S-conjugates (Kolk et a l , 2000). MRP1 is a 190-kDa protein that shares 15% 

amino acid homology with Pgp-170.

Pgp-l70 is a target for modulation by pharmacological inhibitors because its 

expression can be increased at diagnosis or after chemotherapy. Its expression confers a 

poor prognosis in elderly adults with acute myeloid leukemia (AML) (Kolk et a l , 2000). 

Pgp-170 expression has been detected in children with AML and less commonly in 

children with ALL (Lacayo et al., 2002). The administration of pgp-170 inhibitors can 

increase the accumulation of cytotoxic drugs in the cáncer cells of leukemia patients or 

conversely, result in increased toxicity.

MDR can be partially reversed with drug resistance modulators, also called 

chemosensitizers, by increasing intracellular drug accumulation. Compounds with 

chemosensitizing activity include the calcium antagonists (verapamil), calmodulin 

inhibitors, phenothiazines, anti-malarial (mefloquine) and anti-arrhythmic drugs 

(quinidine), immunosuppressants (cyclosporin-A) and steroid hormones (Hill et al 

1994). Unfortunateíy, these chemosensitizers are highly cardiotoxic, neurotoxic, or 

otherwise intolerable at their effective doses and thus have limited use (Kutlay et a l, 

1997).

The drug extrusión function ofpgp-\70 might also be compromised through 

changes in the composition and fluidity of the plasma cell membrane. The more
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lipophilic a compound, the faster it will diffuse through a lipid membrane and 

chemosensitizers show faster permeation kinetics through model membranes than pgp- 

170 substrates (Ferté, 2000). Moreover, the efficiency ofpgp-170 to reduce intracellular 

drug accumulation decreases as the lipophilicity of the drug increases and 

chemosensitizing activity increases as the lipophilicity of the modulator increases. 

However, it is still uncertain if pgp-170 is inhibited directly interaction or indirectly, 

through its effects on the membrane (Ferté, 2000).

The alteration of membrane transport as a mechanism of drug resistance may 

involve changes in the fluidity, composition and/or asymmetry of the plasma membrane. 

Fatty acids and their derivatives and even fatty acid derived pro-drugs of anti-cancer 

agents serve as valuable models for increasing understanding of this phenomenon 

(Bergman et al., 2004).

Fatty acids and their derivatives show structure dependent cytotoxicity in cáncer 

cell lines and are able to potentiate the effect of certain anticancer drugs when used in 

drug combinations (Das et al., 1998). Considerable data support the hypothesis that the 

ability of fatty acids to modify the fluidity of the plasma membrane contributes to their 

efficacy as chemosensitizers or resistance modulators. Doxorubicin sensitivity has been 

found to increase with the degree of unsaturation of fatty acids in enriched cellular 

phospholipids (Bums et al., 1986). Enrichment of murine leukemia cells with the omega 

- 6 PUF A, linoleic acid, modifíed the phospholipid fatty acid composition of the plasma 

membrane and sensitized the cells to doxorubicin-induced toxicity (Bums et a l , 1987). 

The omega-3 fatty acid, docosahexaenoic acid (DHA) increased the cytotoxicity of 

doxorubicin in human glioblastoma cells (Rudra et al., 2001). The omega-6, gamma-
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linoleic acid (GLA) and the omega -3 fatty acid, eicosapentaenoic acid (EPA), 

potentiated the cytotoxicity of vincristine, cisplatin and doxorubicin in human cervical 

carcinoma cells in vitro (Das et al 1998). Nontoxic concentrations of EPA diester 

increased the intracellular drug accumulation and retention and sensitivity oipgp-MO 

expressing multi-drug resistant breast carcinoma cells to doxorubicin as monitored by 

doxorubicin auto fluorescence and MTT tetrazolium salt reduction (Abulrob et al., 2000).

As a fatty acid derivative that intercalates plasma membranes, PHT could affect 

physical membrane properties and thus modify the uptake of doxorubicin. The 

anthracycline, doxorubicin (Adriamycin®), is a naturally derived quinoid compound 

produced by Streptomyces that has potent antibiotic and anti-neoplastic activity. 

Doxorubicin effícacy is severely compromised by the overexpression of pgp-170 

(Thomas et al., 2003). However, anthracycline analogues have been developed to have 

higher affmity for lipid membranes, and in vitro and in vivo data demónstrate their ability 

to overeóme pgp-170 mediated drug resistance. These compounds are not without side 

effeets though and like doxorubicin cause cardiotoxicity.

In this study, the toxicity of suboptimal doses of PHT in combination with 

doxorubicin was evaluated in thepgp-UQ overexpressing MDR, CEM/VLBioocell line 

that shows cross resistance to vinca alkaloids and anthracyclines. The MTT tetrazolium 

assay was used to assess toxicity of PHT alone after a 48 hour incubation period in the 

parental CCRF-CEM cell line and the CEM/VLBioocell line. A suboptimal 

concentration of PHT was chosen for toxicity testing in combination with doxorubicin.

The MTT assay has shown to be reliable for in vitro study of drug interactions in 

ALL bone and peripheral blood samples (Kaspers et al., 1995). Moreover, the use of

72



tetrazolium salt assays for the in vitro screening of drug combinations in pediatric ALL 

bone marrow specimens, is recommended for identifying the combinations with the 

greatest likelihood of success in induction therapy (Silverman et al., 1999). The 

combination of PHT and doxorubicin was more toxic than either drug alone. The two 

drugs may act supra-additively in this cell line. Further data are needed to determine if 

PHT potentiates doxorubicin toxicity by disturbing pgp-170 drug extrusión and/or though 

modulating membrane permeability to cause increased doxorubicin uptake.

MATERIALS AND METHODS

Chemicals and reagents.

Viability was assessed by reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide (MTT) purchased from either ATCC (Manassas, VA. cat. 

#30-1010K) or Roche (Indianapolis, IN cat. #1465007) and trypan blue exclusión 

(Invitrogen, cat. #15250-061). Cell culture media, supplements and drugs included the 

following, all of which were purchased from Invitrogen (Carlsbad, CA). RPMI-1640 

médium (cat. #11875-093), phosphate buffered saline (PBS) (cat. #14200-075), 

penicillin-streptomycin (cat. #15140-148), L-glutamine (Cat. # 25030-149), fetal bovine 

serum (FBS) (Cat. # 10082-147), doxorubicin (Cat. # D I317).
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Sample preparation.

Dilutions of doxorubicin hydrochloride were prepared using phosphate buffered 

saline (PBS) to final concentrations of 0 -  20 pM. PHT was extracted and purified from 

the fresh leaves of B. alba var. radiata according to the procedure described in Chapter 1 

of this thesis. PHT was solubilized in 95% ethanol and dilutions were prepared in culture 

media to final concentrations ranging 0-300 >uM.

Cytotoxicity o f PHT in the absence o f controlled UVA irradiation.

CCRF-CEM and CEM/VLBioo cells were harvested from 75 cm2 tissue culture 

flasks by centrifugation when they reached in the exponential growth phase (8 * 105-  1.2 

x 106 cells/ml). Cells were washed in PBS warmed to 37 °C and then centrifuged at 250g 

(1115 rpm). The were then resuspended in médium to a density of 1 x 106 cells/ml and 

cultured in 24-well plates with 1 mi of cell suspensión in each. Médium containing 

negative Controls (cells alone and cells + 0.5 % ethanol), positive Controls (4 /yg/ml 

Camptothecin) or drug treatments was then added to a final volume of 2 mi, for a final 

cell density of in each well of 5 x 105 cell/ml.

Cell cultures were treated in triplícate with concentrations of PHT ranging from 0- 

300 /yM for 48 hours, and then transferred to 96-weíl assay plates with 4-8 replicates per 

treatment. MTT was added to a final concentration of 5 /yg/ml in each well. After giving 

the cells 6-8 hours to reduce the tetrazolium salt, a solubilizing solution containing 0.1 N 

HCL and anhydrous isopropanol was added to solubilize the formazan crystals. After 

dissolving the formazan crystals for 12 hours, the absorbance was read at 570 nm with a 

reference wavelength at 655 nm. The mean absorbance of wells containing media, MTT
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and solubilizing solution only was subtracted from the mean absorbance of the treatment 

wells. Data is expressed as the mean percent absorbance of the vehicle control (0.5% 

ethanol). At least 3-5 independent experiments were performed.

Cytotoxicity o f doxorubicin and PHT.

Assay conditions were as described above. Viability of cells was assessed by 

MTT reduction after 48 hour incubation with media containing different concentrations 

of doxorubicin in combination with 60 //M PHT. Each treatment was replicated 6 times 

within an assay and repeated independently 3 times.

Statistical Analyses.

Statistical analyses were performed by one and two-way analysis of variance 

(ANOVA) using SigmaStat for Windows, Versión 3.00.0. Results were considered 

signifícant if P < 0.05. Subsequently, pairwise múltiple comparison procedures were 

performed using the Holm-Sidak method. Tests of normality were performed on all data. 

If the data failed normality tests, a Kruskal-Wallis one-way ANOVA on ranks and a 

Mann-Whitney Rank sum test were performed.

RESULTS

Viability o f Cell Cultures after PHT Treatment.

The tetrazolium salt, MTT assay was used in order to determine the viability of 

CCRF-CEM and CEM/VLBioo cell lines, under attenuated light conditions, after 

incubation for 48 hours with drug concentrations ranging from 0-300 ¡JM. (figure 3.1 and 

table 3.1).
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After 48 hours incubation with PHT, the CEM/VLBioo cell populations showed 

less metabolic activity than CCRF-CEM cells, across the levels of concentration used (P 

= 0.003). There was also a concentration dependent effect on the mean percent of 

metabolically active cells, relative to control, across both cell lines (P = 0.007).

The median percent viable cells in CEM/VLBioo cell populations was 

considerably less than in the CEM populations (P = 0.006, Kruskal-Wallis one-way 

ANO VA; P = 0.007, Mann-Whitney Rank sum test).

Cytotoxicity PHT combined with Doxorubicin in CEM/VLBioo cells.

Cell cultures treated with both doxorubicin and 60 fTM. PHT were signifícantly 

less viable (P = 0.007) than to those treated with doxorubicin alone, across combination 

treatments tested. The results indícate additive or supra-additive effect on metabolic 

activity with combinations of 60 //M PHT and doxorubicin at less than 10 /¿M (figure 3.2 

and table 3.2).

DISCUSSION

PHT is a fatty acid derivative produced in the medicinal plant Bidens alba var. 

radiata. PAs are secondary metabolites of polyunsaturated fatty acids (PUFAs) 

occurring in many plant families, most notably the Asteraceae, Apiacae, and Araliaceae 

that particípate in defense against herbivores. In this study, the MDR cell line 

CEM/VLBioo showed greater sensitivity to the toxicity of PHT than the parental cell line 

CCRF-CEM across the concentrations tested. CEM/VLBjoo cells treated with a sub- 

optimal dose of PHT (60 /¿M) in combination with less than 10 juM doxorubicin showed 

a greater loss in viability than either drug alone after a 48 hour incubation period.
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PHT is an established phototoxin and studies using liposome models show its 

activity to be afFected by the fluidity or lipid composition of the membrane (Wat et al.,

1979; McRae et al., 1985). More data is needed to understand how PHT affects the 

biophysical properties of the plasma membrane in mammalian cell models when not 

photo-excited. It is a linear, rigid molecule that intercalates cell membranes due to its 

lipophilic nature and it is these characteristics that may contribute to its cytotoxic and 

chemosensitizing effect, in the absence of light excitation, in this MDR cell model. In 

chapter 2 of this thesis, it was reported that PHT induced changes in the asymmetry and 

integrity of the plasma membrane in CEM/VLBioo cells in a concentration-dependent 

manner, in the absence on light excitation, after 24 hours. This effect could be observed 

at concentrations of PHT as low as 40 p.M, after 24 hours.

Compounds that modulate multi-drug resistance represent a diversity of Chemical 

structures but they share the common property of lipophilicity. This property facilitates 

interactions with the lipid bilayer that result in biophysical modifications. Studies show 

these modifications to be highly correlated with the reversal of MDR. The biophysical 

parameters that accompany chemosensitization may include an increase or decrease in 

membrane fluidity (decrease or increase in membrane order, respectively) depending on 

the cell type. Cáncer cell membranes have altered membrane composition relative to 

normal cells and acquired resistance to chemotherapeutic drugs is often accompanied by 

changes in membrane order (Wilder et al., 1990). These changes may directly or 

¡ndirectly modify the function of drug transporters such as pgp-170 and MRP-1 

(Hendrich et al., 2003).
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It is not clear whether decreased order of the plasma membrane inferieres with 

resistance mechanisms of cáncer cells, either by altering the ñmction of the 

transmembrane glycoprotein pgp-170, or if membrane alterations alone are suffícient to 

impart decreased resistance (Liang et al., 2004). Other investigators (Alemán et al., 

2003) have concluded that expression of pgp-170 does not affect membrane order or 

membrane potential, as measured by fluorescent anisotropy probe or electrón spin 

resonance (HSR) probe or the fluorescent probe, oxonol. They discovered that cells 

expressing pgp-170 and selected for resistance by low-level exposure to drugs over time 

had more fluid (less ordered) membranes and increased membrane potential as opposed 

to cells created by transfection with mdrl gene cDNA.

Some studies report that reversal of drug resistance is accompanied by either an 

increase or a decrease in lipid order. The surfactants, Solutol HS-15, Tween 40, and 

Cremophore EL, decreased membrane fluidity as measured by steady-state fluorescence 

polarization experiments and increasedpgp-\10 substrate accumulation in colchicine 

resistance selected, KB-8-5-11 MDR human epidermoid carcinoma cells, through 

increased uptake of rhodamine-123 (Dudeja et al., 1995). Siegfried et al. (1983) studied 

the membrane properties of doxorubicin sensitive and resistant cell lines using ESR and 

found a significant difference in the order parameter, a measure of membrane fluidity, 

between the cell lines. A progressive decrease in the order parameter (or increase in 

membrane fluidity) was observed as resistance to doxorubucin increased.

Studies of the biophysical differences in plasma membranes of Cis- 

diamminodichloroplatinum II (cisplatin) sensitive and cisplatin selected, resistant 

epidermal carcinoma cells (KB-3-1 and KCP-20 cells) using ESR and fluorescence
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polarization studies showed that drug selected resistance to cispiatin increased membrane 

fluidity relative to sensitive cells and enrichment of cells with the C-17 saturated fatty 

acid, heptadecanoic acid, further increased fluidity (decreased the order parameter) of 

both cell lines (Liang et al., 2004). This change in the biophysical parameters of the cell 

membranes increased the resistance of KCP-20 cells to cispiatin toxicity but did not 

affect the sensitivity of the parental cell line. In this case, an increase in fluidity was 

accompanied by an increase in drug resistance in the MDR cell line. Further data were 

needed in order to determine if the fluidity change was directly responsible for the 

modified resistance or if it could be attributed to differences in fatty acid composition.

The drug sensitive MCF-7 and doxorubicin resistant MCF-7/ADR breast cáncer 

cell line also represent an acquired MDR model. In this study, the MCF/ADR cell line 

was selected for doxorubicin resistance. These cells were pretreated for 24 hours with 

EPA diester in 0.1% ethanol and then incubated in the presence of both doxorubicin and 

the fatty acid. EPA diester potentiated the activity of the pgp-170 blocker, verapamil, by 

increasing the accumulation and retention of the model pgp-170 substrate rhodaine-123 

(Abulrob et al., 2000).

Callaghan et al. (1993) studied the biophysical properties of the drug sensitive 

AB1 and vinblastine resistant CHRC5 cell lines by monitoring the uptake of rhodamine 

dyes after enrichment with heptadecanoic acid and treatment with vinblastine or after 

treating the cells with rigidiíying agents such as stearic acid and cholesterol derivatives or 

with the membrane order decreasing PUF As. The uptake of vinblastine increased in the 

resistant but not the sensitive cell line and the uptake of rhodamine dyes increased in 

response to both rigidifícation and fluidization (decreased membrane order).
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The drug resistant Chínese hámster ovary cell line had higher plasma membrane 

structural order as compared to the sensitive cell line and treatment with the pgp-170 

inhibitor, verapamil, and the bile salt, taurochenodeoxycholate (TCDC), resulted in lower 

membrane order (or increased membrane fluidity) as demonstrated using ESR and 

consequent sensitization to the pgp-170 substrates mitomycin and doxorubicin (Shuldes 

et al., 2001).

Using fluorescence spectroscopy and microcalorimetry for measurements of 

biophysical effects on membranes, and flow cytometry with the fluorescent pgp-170 

substrate DÍOC2 to evalúate intracellular drug accumulation, Hendrich et al (2003) 

demonstrated that intercalation of the most hydrophobic phenothiazine derivatives in the 

plasma membrane caused a perturbation in the bilayer structure or lipid matrix, in 

addition to inhibition of pgp-170 activity.

The effects of in vitro development of resistance to fluconazole on membrane 

fluidity and asymmetry of Candida albicans isolates were monitored by Kohli et al 

(2002) using fluorescent polarization measurements and detection of 

phosphatidylethanolamine (PE) on the outer leaflet of the membrane. The drug resistant 

strains showed enhanced membrane fluidity compared to the sensitive strains and 

decreased membrane asymmetry demonstrated by greater exposure of PE on the out layer 

of the plasma membrane (Kohli et al., 2002).

These studies demónstrate that membrane changes in the order, asymmetry and 

composition are associated with drug resistance. The selectivity of PHT toxicity in the 

CEM/VLBjoo cell line was proposed to be due to differences in the endogenous 

enzymatic antioxidant defenses of cells and in need of further study (see chapter 2). In
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addition, a selective membrane level effect was observed under attenuated light 

conditions as shown by a loss in membrane asymmetry. Because redox status and 

membrane alterations are believed to be involved in the evolution of drug resistance, 

furtherevaluation of the chemosensitizing potential of PHT should be performed. 

Electron paramagnetic spin resonance (ESR) studies may help to elucídate the effect of 

PHT on membrane order. PHT may show selective toxicity that is determined by the 

antioxidant status of the cell and composition and henee relative fluidity of the 

membrane. In addition, PHT might disturb the lipid matrix of cell membranes to inhibit 

membrane efflux pumps such as pgp-170.
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PHT C onctnnaüQii (pM)

Figure 3.1. Metabolic activity of CCRF-CEM and CEM/VLBioo cells after 48 hour 
incubation with PHT. Data points represent the mean percent of the vehicle control 
(0.5% ethanol) absorbance of reduced MTT at 570 nm, for each treatment concentration. 
Error bars represent the SE of the mean for 3-5 independent experiments. Each treatment 
was replicated 4-8 times within each experiment.
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CCRF-CEM CEMiVLBmt
PHT Coreentra1ion(/iM) % Control_______% Control________

Table 3.1. Metabolic activity of CCRF-CEM and CEM/VLBioo cell line cultures after 48
hour PHT treatment with varying concentrations.1

0 100 100
10 102 9 ±0 4 89.9 ± 6.3
20 100.1 ± 0.3 89.4 ± 0.5
40 99.6 ± 0.8 80.4 ± 6.2
60 100.9 ± 5.8 81.8 ± 7.9
100 104.9 ± 3.0 70.7 ± 12.6
150 103.1 ± 5.5 61.8 ± 6.5
200 905 ± 12.9 31.9 ± 9.5
300 37.8 ± 10.4 16.0 ± 5.6

1. Valúes represent percent (%) vehicle control (0.5 % ethanol) ± SE of the mean.
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Concentration (JIM)

Figure 3.2. Metabolic activity of CEM/VLBjoo cells after 48 hour incubation with either 
Doxorubicin, or Doxorubicin + 60 /JM PHT. Each data point represents the mean percent 
absorbance at 570 nm, of the negative vehicle control. The vehicle control was 0.5 % 
ethanol. Error bars represent the SE of the mean of 3 independent experiments. Each 
treatment was replicated 4-8 times within each experiment. A greater loss in viability, as 
measured by MTT reduction, was observed in the cells treated with both doxorubicin and 
60 /JM PHT (P=0.007, two-way ANOVA Holm-Sidak method) as compared to those 
treated with doxorubicin alone.
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Table 3.2. Metabolic activity of CEM/VLBioocell line cultures after treatment with
doxorubicin (DOX) ± PHT for 48 hours.1

DOX Concentratfan (pM) % Control<DOX Afane) %Control(DOX + PHT 60 ÜM)
0 100 100

0.5 913 ±2.5 75.8 ±2.1
1.0 89.7 ± 4.6 66.2 ±1.9
2.0 82.8 ±6.2 59.1 ±3.6
3.0 88.3 ±2 .4 55.1 ±2.2
4.0 75.6 ±0.6 51.4 ± 6.1
7.5 58.1 ±0.9 43.4 ±0.9

1. Valúes represent percent (%) of vehicle control (0.5% ethanol) ± SE of the mean.
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