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ABSTRACT OF THE DISSERTATION 

INNOVATIVE TWO-STAGE FUZZY CLASSIFICATION FOR UNKNOWN 

INTRUSION DETECTION 

by 

Xueyan Sharon Jing 

Florida International University, 2016 

Miami, Florida  

Professor Hai Deng, Major Professor 

Intrusion detection is the essential part of network security in combating against illegal 

network access or malicious cyberattacks. Due to the constantly evolving nature of cyber 

attacks, it has been a technical challenge for an intrusion detection system (IDS) to 

effectively recognize unknown attacks or known attacks with inadequate training data. 

Therefore in this dissertation work, an innovative two-stage classifier is developed for 

accurately and efficiently detecting both unknown attacks and known attacks with 

insufficient or inaccurate training information.  

The novel two-stage fuzzy classification scheme is based on advanced machine learning 

techniques specifically for handling the ambiguity of traffic connections and network 

data. In the first stage of the classification, a fuzzy C-means (FCM) algorithm is 

employed to softly compute and optimize clustering centers of the training datasets with 

some degree of fuzziness counting for feature inaccuracy and ambiguity in the training 

data. Subsequently, a distance-weighted k-NN (k-nearest neighbors) classifier, combined 

with the Dempster-Shafer Theory (DST), is introduced to assess the belief functions and 

pignistic probabilities of the incoming data associated with each of known classes to 
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further address the data uncertainty issue in the cyberattack data. In the second stage of 

the proposed classification algorithm, a subsequent classification scheme is implemented 

based on the obtained pignistic probabilities and their entropy functions to determine if 

the input data are normal, one of the known attacks or an unknown attack. Secondly, to 

strengthen the robustness to attacks, we form the three-layer hierarchy ensemble classifier 

based on the FCM weighted k-NN DST classifier to have more precise inferences than 

those made by a single classifier. The proposed intrusion detection algorithm is evaluated 

through the application of the KDD’99 datasets and their variants containing known and 

unknown attacks. The experimental results show that the new two-stage fuzzy KNN-DST 

classifier outperforms other well-known classifiers in intrusion detection and is especially 

effective in detecting unknown attacks. 
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CHAPTER 1 

1.INTRODUCTION 

 

The security-related issues of computers and networks have become exceptionally 

significant. The rapidly growing use of computer systems and the internet has 

emphasized the need to guaranteeing secure accessibility of billions of computer users to 

internet information. How to insure legitimate access to privileged information has been a 

major area of concern for information processing technology in computer networks. 

Defense mechanisms against malicious attacks must be able to protect the network before 

the system becomes compromised [1].  

The protection policies being investigated since the last three decades, to date, have also 

addressed the problem of information security. Security denotes the property of 

protection against compromised: unauthorized dissemination of information. The security 

policy defines access domains of subjects based on considerations derived from the 

manufacturers of computer systems.  Detection mechanisms are passive policy 

enforcement devices that are different with prevention mechanisms.  Prevention 

mechanisms attempt to intercept potential violations, detection mechanisms monitor 

system activities, often maintaining records to aid in damage assessment, limitation, and 

recovery.  However, a detection mechanism may include only very simple journaling 

programs that have no logic whatsoever regarding the significance of the events they 

record. Conceivably, certain violations could only be recognized after the fact through 

complex logical and statistical analyses. 
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One method of a computer security mechanism is intrusion detection.  Its purpose is to 

monitor and identify malicious behavior, unauthorized access, or any other types of 

unfaithful forces that attempt to access information.    On the other hand, if any attacks 

occur, intrusion detection should have the potential to undermine any safeguards that 

might have been built into computer programs or application systems. An intrusion 

detection system [2] (IDS) was proposed to provide maximum protection to systems with 

sensitive information. Unlike a traditional security mechanism such as firewalls, time-of-

use stamps, audit trails, flow control, or authentication, IDS monitors these detection 

systems for both malicious and normal connections, which make IDS an imperative 

player in the computer network security process.  

Cyber-crimes have happened seriously and continuously in many computer networking, 

because the attackers keep on developing new forms of attacks where current IDS tools 

failed to detect or stop these new attacks, and also the patterns of normal traffic will be 

changed.  

1.1 General Approaches to intrusion detection 

About fifty years ago, IDS was first brought out as a security mechanism for monitoring 

and deciding the allowability of all access by information processors to information 

repositories. An IDS must satisfy the following properties: 

• It is wide-ranging: all computer network access from internal or external, both 

novel or known malicious intrusion are monitored and enforced 

• It is safeguarded: the function of IDS may not be maliciously or accidently 

modified by unauthorized forces 
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• Its well-timed: IDS may analysis and make a decision in a timely manner to 

respond for the abnormal behaviors. 

• It has provably proper performance: IDS must faithfully enforce the specified 

protection strategy with higher detection rate and lower error rate.  

Basically, there are mainly two types of IDS techniques: anomaly detection [5] and 

misuse detection [6] techniques.  

Misuse method builds up the attack signature and looks for known attacks. Misuse 

detection model compares the incoming traffic connections with previously stored known 

attack patterns. If there is deviation that exists then these connections are declared as 

attacks. The primary modes of building up abnormal profiles are auditing and 

surveillance. Auditing keeps the records of activities include users logging in and out, the 

granting and revoking of access rights, and access violations, both attempted and 

successful. Surveillance is the active monitoring of both normal and abnormal activities 

on the system in real-time and useful to commands in charge of security. The majority 

techniques in IDS are using this type of detection.  The disadvantage of misuse detection 

is that it can only detect known attacks and fail to detect unknown attacks. Another 

shortcoming of misuse detection is that it spends time on creating the profile of the new 

attack signature and updates it manually into the IDS model.  

While anomaly methods build up normal patterns and can detect abnormal access that 

deviates from the normal patterns in profiles.  Whenever a possible mismatch happens, it 

implies that unauthorized intruders attack and sneak into the computer system. These 

normal pattern profiles are built through any computer system behaviors, such as access 

command lines, data audit logs, network packets, and thread calls, etc. Data mining 
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techniques and machine learning methods are often used to help to identify the network 

connection as normal connection or malicious attacks. Anomaly techniques can indicate a 

potential threat both known and unknown whenever there is a significant deviation from 

anomaly model of reference. Anomaly techniques also have their disadvantages. It 

suffers from the high false alarms generated from the IDS models by misclassification 

normal behavior into attacks [7]. Both of these methods aims to provide the solution that 

can offer more accurate detection rate while keeping low false positive rate.   

Numerous researches have been realized in IDS. Some classical IDS methods like 

decision trees and variants of Bayes are adopted to detect attacks in computer network 

connections, and still have the problem of poor detection performance to classify 

malicious attacks (especially unknown attacks) from normal traffic connections. 

1.2 Problem Statement  

No matter using which IDS methods, many challenging issues have grown in designing 

IDS models. Both misuse detection and anomaly detection are suffering from these issues: 

1.2.1 Feature Selection 

A large amount of computer network data needs to be collected for analysis to identify 

the abnormal behaviors from normal behaviors.  These collected network data is 

described with many features such as protocol type, connection duration, destination 

port#, source port#, and other features.  Thus in turn, the large dimension of these 

features makes the IDS process more difficult and complex with higher error rates. Some 

features are irrelevant and redundant to the attack patterns and it could slow the 
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identification process. Therefore, Using feature selection or feature extraction is 

necessary to the performance of the detection techniques adopted.  

1.2.2 Supervised Learning and Unsupervised Learning 

In supervised learning the algorithm is trained with predefined opinions based on labeled 

data to help with predictive model testing. In some way, supervised learning is similar 

with learning with experts because the answer (labels in IDS) is offered. The 

unsupervised learning scenario would not use the labels at all to help IDS model 

understand the data, also similar with learning without experts because the answer is not 

offered. Supervised learning costs time, and require experts and measurements, while 

unsupervised learning function well with noisy data containing corrupt data that cannot 

be analysis or interpreted correctly. Semi-supervised learning is a method that employs 

both labeled (usually small amount) and unlabeled data (usually large amount) for 

training. Semi-supervised learning sometimes helps predictive model testing to reduce 

the cost and improve the performance. 

1.2.3 Ambiguity and Uncertainty Classification 

Many researches in IDS have been dedicated to solve the ambiguity of traffic data and 

need to be able to acknowledge and handle with ambiguity. That is, to some degree the 

connections are too ambiguous to be assigned to malicious classes or normal class. It is 

difficult to completely distinguish certain types of attacks, which often embedded in the 

packets and is hard to be separated from normal connections. The problem could be the 

patterns of these types of attacks is alike the patterns of normal connections or the 

boundary between normal connection and attack are blur.  We really hope to find out how 
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ambiguity issues related to network data effect the security of computer systems and to 

offer a better interpretation of ambiguity as a concept of fuzziness in IDS, which can help 

researchers to deal with the ambiguity problem.  

1.2.4 Unknown Attack Detection 

Cybercrimes have happened seriously and continuously in many computer-networking 

systems, because the attackers keep on developing new form of attacks. The malicious 

unknown attacks arise from the requirements for open use and sharing information 

system. Present day computer systems require largely open sharing systems. The major 

threat to these systems is that of external penetration. In the case of open use and sharing 

systems there is an implication of unprotected communications lines for subscribers not 

performing classified processing that increases the exposure to outside penetration. The 

external penetration threat could be countered by using combinations of different 

communication security techniques, but still missed in many cases. These techniques, 

some highly advanced, are the bulk of the present state-of-the-art in computer security.  

The technical issue of novel attack detection is concerned with the concept of unknown 

attack classification methods. By this we recognized that the nature of shared use 

computer systems present to a malicious users a unique opportunity for attempting to 

subvert through programming the mechanism upon which security depends.  In effect, the 

defense against new types of attacks should surround the system and its user environment 

with a solid barrier that must be breached before the system can be compromised.  

While we emphasize the threat both known and unknown from a malicious users, we are 

not unmindful of other security threats and risks. The problems of accidental spillage of 
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classified information, physical penetration of system sites, interference with or intercept 

of communications, mishandling of classified material and the like are serious.  To a 

large extent, these problems are common to any information system processing classified 

information including mobile network and wireless sensor works, and can be solved by 

well-understood techniques.  However, the hackers in the context of a resource shared 

system always presents new type of threats, control of which is necessary before the 

objective of full use of shred computer systems can be realized.  

1.2.5 Penetration of systems 

There is little question that contemporary commercially available systems do not provide 

an adequate defense against malicious threat. Although current IDS models have improve 

the detection rate and lower the error rate, most of these systems are known to have 

serious design and implementation flaws that can be exploited by individuals with 

programming access to the system. As an instance of this, we note that the current 

computer system has a number of major flaws that would permit hackers to subvert the 

nominal security controls that exist in the system. The IDS designs still face the 

challenges of implementation flaws in most contemporary systems permit intruders to 

seize unauthorized control of the system, and thus have access to any of the information 

on the system. While the techniques for defense the vulnerability on contemporary 

systems vary, they ultimately boil down to graining either directly or indirectly, an 

authorized access capability to classified data.  
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1.2.6 Operational Cost and Economic Consideration 

Each IDS method the consequences of the inadequate security mechanisms in current 

computer network systems are both the potential for loss of information critical to 

information security by malicious attacks and higher cost of operation. It means how 

effective or in what degree the IDS models can protect the system and identify malicious 

attacks from traffic connections. Operational requirements for intrusion detection 

mechanism are based on the need for rapid access to and dynamic sharing of information. 

At present, these requirements cannot be met without great risk of penetration and 

compromise. Higher costs of operation include costs due to separate computers for 

separate applications, restricting use of remote terminals, costs of physical protection of 

remote terminals and associated crypto devices, and the costs of clearing all user 

personnel to the highest level of classified information processed by a system. Pursuing 

the methods recommended in IDS will have significant effect in reducing these costs 

perhaps yielding a high reduction of the cost of network systems that handle the classified 

data.  

It would be simpler if the single user had complete control over his processing 

environment, including his data and programs. After a few years users began demanding 

better utilization of the resources. The response to this demand for more efficiency gave 

birth to multiplexing techniques,  

1.3 Research Hypotheses  

• Ambiguity and uncertainty problem can be solved by Fuzzy C-means (FCM) 

weighted k-NN reasoning Dempster-Shafer theory (DST) method.  
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• Unknown malicious attacks can be correctly classify by entropy function to 

improve the overall detection rate involving unknown abnormal behaviors in 

discovering intrusive behaviors. 

• Semi-supervised learning is used to help predictive model testing to reduce the 

cost and improve the performance by using both labeled data (usually small 

amount) and unlabeled data (usually large amount) for training.  

1.4 Proposed Approach 

We develop a novel soft computing method based on the fuzzy belief [21] in this paper 

for the classification of computer network traffic connections to detect unknown attacks 

efficiently and effectively in the IDS process. Our work is based on the fuzzy belief IDS 

structure, which combines the fuzzy set theory and DS theory to search for intrusive 

behaviors in network traffic connections, and then classify the intrusive behaviors into 

normal class or attack class. Nevertheless, the fuzzy belief classifier using combination of 

evidence under fuzzy environments can only recognize the normal and attack traffic 

connections that previously collected in the training data set.  

To overcome this drawback, we developed Fuzzy C-means (FCM) weighted k-NN 

reasoning DST classifier for detection of previously unknown intrusions when the 

available information is imperfect and ambiguous to be specifically defined as normal or 

attacks. One novel aspect of this classifier is that it can correctly classify novel malicious 

attacks by entropy function to improve the overall detection rate involving unknown 

abnormal behaviors in discovering intrusive behaviors. In addition, the other novel aspect 

of this classifier is that the decision rules generated by fuzzy reasoning weighted k-NN 
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method for probability assignment of focal element are treated as evidences which 

strengthen the deviation knowledge of unknown attacks from normal instances and 

known attacks. The combination of all the fuzzy k-NN focal elements is then combined 

using the generalized Dempster’s rule. The FCM rules generation process is similar to 

[14] and this classifier is to classify a network traffic connection into three categorize of 

normal access, one of known attacks or unknown attacks.  

1.5 Dissertation Organization 

The dissertation is organized as follows.  

The dissertation is organized as follows. Chapter II we review existing literature related 

to the issues involved in implementing IDS in computer networks. We begin by 

discussing evolutions of Intrusion Detection Mechanisms then followed by the current 

techniques used to improve the performance of IDS design of computer networks. 

Chapter III initially explains we propose fuzzy belief k-nearest neighbors (k-NN) 

classifier to solve intrusion detection uncertainty problems caused by ambiguous and 

limited data. This single classifier incorporates fuzzy clustering technique along with 

Dempster-Shafer theory into our intrusion detection scheme to handle the ambiguity of 

traffic connections. Also, the k-NN technique is applied to further speed up the intrusion 

detection process.   

Chapter IV introduces the DARPA KDD 99 data sets as our benchmark in our 

experiment to present the comparison results. 

Chapter V we propose an innovative fuzzy classifier for effectively detecting both 

unknown attacks and known attacks with insufficient or inaccurate training information.  
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Chapter VI we improve the overall network intrusion detection rate by proposing and 

using an innovative three-layer hierarchy multi-classifier detection scheme called 

ensemble classifier. 

Chapter VII draws the conclusions, presents the contribution of this dissertation, and lists 

future research directions.  
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CHAPTER 2 

2.BACKGROUND AND RELATED WORK 

In this chapter, we review existing literature related to the issues involved in 

implementing intrusion detection systems (IDS) in computer networks. We begin by 

discussing evolutions of Intrusion Detection Mechanisms in Section 2.1. The current 

techniques used to improve the performance of IDS design of computer networks are 

described in details in Section 2.2.  

2.1 Evolutions of Intrusion Detection Mechanisms 

Because the problem of information security in computer-based systems became visible 

only with the development of and acceptance of resource sharing systems, there is long 

history of previous work started in 1967 on the Defense Science Board Task Force. The 

computer security was first convened that this Task Force would analyze the problem and 

recommends a research and development program that would provide solutions to the 

extant problems of that time. During the course of that work it was discovered that the 

problem was not well understood and as a consequence the final report prepared by the 

Task Force contained less in the way of a recommended R&D program than had 

originally been thought possible. The report did, however contain and extensive 

discussion of the scope of the problem as well as definitions of terminology that were 

sadly lacking at that time.  

There has been some efforts made by “tiger team” that have expended a moderate amount 

of energy in demonstrating the security inadequacy of both standard commercial systems 

and those modified to provide security controls. The value of “tiger teams” in testing 
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computer security is questionable because the results of the effort are highly dependent 

on the quality and experience of the personnel assigned to the teams. Even if corrections 

are made as a result of flaws found by a team, there is no assurance that all flaws have 

been found and corrected. The activities of the tiger team can only reveal system flaws 

and provide no basis for asserting that a system is secure in the event their efforts are 

unsuccessful. In the latter event, the only thing that can be stated is that the security state 

of the system is unknown.  

There has been some efforts made by “tiger team” that have expended a moderate amount 

of energy in demonstrating the security inadequacy of both standard commercial systems 

and those modified to provide security controls. The value of “tiger teams” in testing 

computer security is questionable because the results of the effort are highly dependent 

on the quality and experience of the personnel assigned to the teams. Even if corrections 

are made as a result of flaws found by a team, there is no assurance that all flaws have 

been found and corrected. The activities of the tiger team can only reveal system flaws 

and provide no basis for asserting that a system is secure in the event their efforts are 

unsuccessful. In the latter event, the only thing that can be stated is that the security state 

of the system is unknown.  

Various members of the Defense and Intelligence communities have funded a number of 

independent projects concerned with various aspects of computer security. In addition, a 

fairly major effort to provide security controls to a system that existed within a benign 

environment in the Intelligence community has taken place over the past four decades. 

While these controls are of interest and provide a certain degree of implementation of 



14 
 

security procedures, they did not address the question of providing technical security 

against malicious attack. 

Given the problems of current hardware and operating systems some users (SFGWC, 

AFLC) have been driven to the development of large software packages that mediate 

between applications programs and operating systems. Such packages are capable of 

providing a degree of security in a benign environment but exact a very large price for 

storage space and execution time. These packages seem to offer little protection against a 

hostile programmer or possible underlying trapdoors and may be employed to protect a 

small amount of classified data. Thus, their cost-effectiveness, at least, is subject to 

question.  

Anderson stated in 1980 that security audit trials can plan an important role in a security 

program for a computer system. As audit trails are presently structured on most machines, 

they are only useful primarily in detecting unauthorized access to files. For those 

computers, which have no access control mechanisms built into the primary operating 

systems, the audit trail bears the burden of detecting unauthorized access to system 

resources. As access control mechanisms are installed in the operating system, the need 

for security audit trail data will be even greater. It will not only be able to record 

attempted unauthorized access, but will be virtually the only method by which user 

actions which are authorized but excessive can be detected. 

In 1982, the Advance Research Projects Agency (ARPA) has funded work at Rand 

Corporation, Information Systems Institute (USC) and Livermore Research Laboratories 

to analyze the security adequacy of selected commercial operating systems and to 

develop methodologies of security assurance. These programs have not been sufficiently 
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developed to provide any assessment of this potential contribution to the solution of some 

of the problems perceived by the computer security requirement at that time. Finally, the 

problem of computer security achieved major recognition from IBM’s announcement of 

their intention to spend 40 million dollars on the problem and it directed to the 

enhancement of IBM product, Resource Security System (RSS).  

Denning in 1987 proposed an intrusion detection model based on the hypothesis that the 

vulnerabilities of computer include abnormal behavior of authorized user. This represents 

a milestone in the research in the area of intrusion detection model. The model is rule-

based pattern matching model with the basic idea of monitoring the standard behavior on 

a computer system and searching for deviations in all the behaviors. There are no special 

features in this model. This IDES model can detect malicious attacks in real time with 

better performance. 

A trend pointed out with considerable emphasis by the Requirements Working Group is 

the movement towards the establishment of large dispersed networks of related computer 

systems. A F Global Weather Center, for example, will interconnect several of its own 

computer systems. In addition, this interconnected complex will be tied to other weather 

processing centers and to the command control system of SAC and MAC. SAC plans to 

tie several command control computers together, and may also interface intelligence 

processing systems. The MAC command control system, MACIMS, will be implemented 

as a network of WWMCCS computes. Plans are being formulated for a network to 

interconnect all of the WWMCCS computer installations. As networks of the types 

mentioned are developed, computer security problems, already difficult, become much 

more complex. For example, there is a possibility of untrustworthy processor in a 
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network collecting classified data from other processors by making apparently legitimate 

requests. Computer networks that have one or more nodes that can be accessed by users 

with clearances below the highest level of information in the network constitute 

multilevel networks. The security threat posed by such operation is that in general the 

compute to computer communications are accepted as valid on the questionable basis that 

the other computer has a high security reliability. However, if a malicious user can 

exercise control of a node, the entire network may be compromised. In a network, it is 

essential that there be reliable security controls, that the nature of these be understood, 

and the network does not inadvertently provide the means to bypass these controls. While 

there are growing requirements for interconnecting computer systems into networks the 

dimensions of the security problem are unknown. Much more information is needed on 

both the networks and their security requirements.  

2.2 Intrusion Detection Techniques 

In research area, there are many classifying algorithms used in IDS models. These 

techniques are typically based on the naïve Bayesian method [6,7], Support Vector 

Machine [8-11], Particle Swarm Optimization [12,13], Generic Algorithm [14], neural 

networks [15-18], k-nearest neighbor (KNN) methods [19,20], fuzzy c-means (FCM) 

methods [21,22], Dempster-Shafer Theory Of Evidence [23-26] or other decision-tree 

based ad-hoc methods [27]. These techniques are introduced in details in the following 

section. In particular, these techniques are developed as classifiers, which are used to 

classify or recognize whether the incoming Internet access is the normal access or an 

attack. 
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2.2.1 Naïve Bayesian  

The Naïve Bayesian classifier is based on conditional probabilistic to perform decision of 

a classification problem. It uses Bayes' Theorem [1] with independence assumptions, 

which assumes a set of features are conditionally independent of one another given a 

class. In this case, the Naïve Bayes classifier has only one single parent node and several 

children nodes with unknown class labels, and these nodes represent each variables or 

attributes in data.  When a set of classes are observed in the training data, the naive bayes 

classifier then assign an observed data to one of classes with highest probability. By 

applying Naïve Bayesian classifier to an intrusion detection task, a set of training network 

traffic data is given to find the prior probabilities for normal or a known class of attacks. 

As unseen network traffic arrives, the classifier then uses Bayes Theorem to decide which 

class the traffic should belong to. 

There are basically two types of classification model, the most widely used methods are: 

Decision trees model and Naïve Bayesian Model, NBC). The Naïve Bayesian Model is 

stemmed from the classical mathematics with strong mathematics background and stable 

classification results. At the same time, NBC needs less parameter and is less sensitive to 

insufficient and incomplete data.  Theoretically, NBC has lower error rate than other 

classifiers.  Yet in reality, Domingos and Pazzani [2] found NBC suffers from the 

consumption of each attribute is independent from each other.  This consumption is 

impossible in real life which effects the classification performance results in some degree. 

Under the circumstances of high dimensional attributes and more correlation attributes, 

NBC tends to have less detection rate than Decision trees classifier.   
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Kononenko [3] developed Semi-Naïve Bayesian classifier by dividing all the attributes 

into different groups where attributes in one group have no correlation to other groups.  

This means the attribute in one group is less independent to one on other groups.  He 

applied this classifier in 4 medical domains. In two domains, the performance of Semi-

Naïve Bayesian classifier has similar output with Naïve Bayesian classifier, and in other 

two domains, the Semi-Naïve Bayesian has better performance than Naïve Bayesian.  

Langley and Sage [4] decribed a revised algorithm called the selective Bayesian 

Classifier especially to solve the problem of high correlation data. This algorithm only 

select certain features to use for the final decision making process.  The forward selection 

method is used to modify the data by deleting less informative or redundant features to 

improve the detection rate, lower the error rate, and at the same time better worst-case 

time complexity.  

2.2.2 Neural Networks  

A backpropagation neural network uses a feedforward structure to solve classification 

problems by its supervised learning algorithm. It consists of a collection of processing 

units that are highly interconnected, and it also consists of one hidden layer like black 

box [5-9]. Tamura [10] stated that four-layered feedforward neural network with two 

hidden layers will reduce the hidden neurons to (N/2)+3 given N input-target relations 

exactly. He approved that four-layered feedforward neural network performs better than 

the three-layered feedforward network with less neurons and error rate.  

Razavi [11] provides a framework with computational budget dependent to mimic the 

real world computational optimization problem for testing the algorithm of Neural 



19 
 

Networks.  For the purpose of efficient and effective optimization, using more than one 

hidden layer in Neural Networks could be confusing, interference and time consuming.   

The single hidden layer Neural networks could clearly demonstrate that an efficient 

performance over multi layer Neural Networks without metamodels.  

The network weights are updated by using gradient-based optimization algorithm during 

the training period [12-14].  Single layer Neural Networks can improve the classification 

performance with exceptionally training speed, because the training in Neural Networks 

requires complex optimization with local minima. When the network converges to the 

local minima of error, the output layer of the network will show the result when data is 

fed into the input layer.  

Based on the data given for training, neural networks has the ability to learn how to 

process intrusion detection tasks. It acts as a computational model to process the network 

traffic information. By the use of training procedure, the neural network gains the 

knowledge to extract the normal and attack signatures from the provided data 

automatically. With its ability to generalize from learned data, the neural network 

performs generalization of attacks and fault tolerance to imprecise and uncertain 

information. At the end of the training procedure, the future network traffic are then 

identified as whether malicious attacks or normal usage behavior.  

2.2.3 Fuzzy Logics 

Fuzzy logics mimicking the human brain show a new way of inference and determination, 

and it tries to describe the uncertainty of some models to explain the powerful non-linear 

objects.  in 1965, Zadeh [15]described fuzzy sets as new concepts for fuzzy logics in 
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information and control area.  Fuzzy sets allow each element belong to more than one set 

of normal or attack with a belonging membership degree which breaks the traditional 

crisp binary belongings “yes” or “no”. It is also used in the alarm generation process to 

reduce the false alarms.  The membership degree is continuous value between 0 and 1, 

when the membership degree is 0 or 1 the fuzzy set has only two elements as the classical 

binary sets.  

In 1974 Mamdani [16] applied fuzzy logics on the control of steam machine and pot, 

which validate the performance of fuzzy control.  In 1977 Pappis [17] applied fuzzy 

logics into traffic control on cross road transportation area, and it reduced the average 

waiting car period by seven percent.  

Owen [18] created fuzzy rules to perform fuzzy logics as an adaptive expert intrusion 

detection system in computer networks. He categorized the input features as five 

membership grades: LOW, MEDIUM-LOW, MEDIUM, MEDIUM-HIGH, and HIGH, 

which are represented by numeric values.  There are many ways to define fuzzy rules, for 

example 

IF condition THEN consequent 

A probabilistic model was founded by Hooper’s using rule of combination of evidence as 

a non-Bayesian approach. This neutral zone classifier is very similar to the intuitionistic 

fuzzy logics (IFL) in concept [19], and the three partition including truth, falsehood, and 

indeterminacy first mentioned by J. H. Lambert [20] with the credibility of one evidence 

influenced by the opposite evidence of another. Then it was further investigated by 

Lukasiewicz to divide it into 0. ½, and 1 values. Koopman [21] originally presented the 

concept of upper and lower probability, and was followed by Shafer (1976) [22], who 
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extended it to the Dempster-Shafer Theory of Belief Functions (DST) by proposing the 

Belief and Plausibility equations and applying the rule to combine two evidences. 

Lambert states three chances: chance p of accurate, chance q of mendacious and chance 

1-p-q of careless, whereas three components: accurate, mendacious, careless sum up to 1. 

Fuzzy logics with infinite levels between the intervals of [0, 1] are introduced by Zadeh 

[23]. 

2.2.4 K-Nearest Neighbor  

Non-parametric methods such as the voting k-nearest neighbor (k-NN) rule [3] have been 

used. However, one of the problems encountered when using this rule is the challenge of 

handling uncertainty due to insufficient and incomplete knowledge in identify network 

traffic into the normal or abnormal patterns.  Due to the uncertainty of intrusive belief 

value, the use of common approaches can potentially limit the capability of these 

techniques. For this reason, Keller [8] have incorporated some concepts of fuzzy sets 

theory into the voting k-NN procedure, and developed a fuzzy k-NN rule which has been 

used heavily for many years. In his fuzzy k-NN algorithm, the membership in each class 

of a traffic connection to be classified is determined by combining the membership 

values of its k nearest neighbors rather than a crisp class as in voting k-NN. In addition of 

ensuring more informative content of the classification results, this rule yields a lower 

error rate than voting k-NN. 

The k-NN classifier is simple but effective in many pattern classification applications. 

For an input to be classified, a number of k nearest training patterns are obtained based 

on the Euclidean distance measurement between the input and every training pattern. The 
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input is then simply assigned to the class by majority voting, i.e., the input is classified to 

the most frequent class label among the k nearest training patterns. However, a major 

drawback of k-NN algorithm is that the precision of classification may decrease if all 

selected k nearest training patterns are equally important without considering the 

differences of distances [7]. Furthermore, while processing an intrusion detection task, 

some of the intrusive patterns are similar to those of normal activities. The boundaries 

between those attacks and the normal behavior are always unclear. To eliminate this 

drawback, fuzzy k-NN classifier is proposed and fuzziness is introduced into it. It assigns 

multiple membership grades to classes rather than a single class by the use of the distance 

differences from the k nearest training patterns. The confidence values are in proportion 

to the correspondent membership grades that the input network traffic belongs to certain 

classes 

2.2.5 Dempster-Shafer Theory  

The Dempster-Shafter Theory (DST) [9] [10] [11] [12] has been used to resolve 

uncertainty of information in a decision process. In the combination process, data fusion 

and evidential reasoning methods have been used to achieve a better performance [3]. In 

[9], the classification problem was addressed from the point of view of the Dempster-

Shafer theory of evidence. In this approach, each of the k nearest neighbors of a pattern to 

be classified is considered as an item of evidence supporting certain hypotheses 

concerning the class membership of that pattern. This information is provided in the form 

of a belief structure, defined as a function of the distance between the pattern under 

consideration and its neighbor. In [13], Shafer’s theory was developed under the 
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condition that each belief structure mass function is defined over fuzzy subsets instead of 

crisp subsets. Yager [13] represented the evidence of each training pattern by a belief 

structure with fuzzy focal elements. The combination of the different structures is then 

performed using the generalized Dempster’s rule. Thus, if the the available information is 

imperfect and ambiguous, soft computing techniques such as evidential reasoning, and 

fuzzy logic must be adapted to handle such uncertainty and imprecision in classification 

process. To a large extent, intrusions are common to any computer network systems 

processing classified information and may be solved by well-understood techniques [4] 

2.2.6 Multiple Classifiers Systems 

Besides the notability of multiplicity among the base classifiers, the right choice of a 

combination method is also an important issue in creating a supreme performance. A 

variety of combination methods have been reported for combining the outputs of the base 

classifiers into an ensemble result. According to their characteristics, they can be 

classified as linear combination methods, non-linear methods, statistical-based methods, 

and computationally intelligent methods. Linear combination method is the simplest 

method to fuse base classifiers’ outputs together. Summation and average are the popular 

ways for the combination. Non-linear method such as majority voting is used when the 

output of classifier is ranked list of classes in accordance with the degree of belief on 

classes the input pattern belongs to.  

There are three topologies for ensemble classifier: cascading ensemble classifier, parallel 

ensemble classifier, and hierarchical ensemble classifier as shown in figure. The 

cascading ensemble classifier in figure 2.1 will pass on the first classifier result to the 
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second classifier to form the final output. The data flow looks like a chain in this 

cascading process.  

 

FIGURE 2.1 LAYOUT OF CASCADING STRUCTURE OF ENSEMBLE 
CLASSIFIER 

 

FIGURE 2.2 LAYOUT OF PARALLEL STRUCTURE OF ENSEMBLE CLASSIFIER 

 

FIGURE 2.3 LAYOUT OF HIERACHICAL STRUCTURE OF ENSEMBLE 
CLASSIFIER 

 
Usually it is very difficult to select the second classifier to compensate the errors 

produced by the first classifier.  The parallel ensemble classifier in figure 2.2 is formed 
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by several paralleled base classifier and a combination method.  The final result is 

produced by combining these base classifier outputs through the combination method.  

Selecting the base classifier is very important in this parallel structure model so that each 

base classifier should compensate each other’s output.  A careful delicate combination 

method will improve the detection performance greatly in ensemble classifier. The 

hierarchical ensemble classifier in figure 2.3 is basically the combination of cascading 

and parallel structure.  
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CHAPTER 3 

3.SINGLE CLASSIFIER FOR INTRUSION DETECTION 

In this chapter, we propose fuzzy belief k-nearest neighbors (k-NN) classifier to solve 

intrusion detection uncertainty problems caused by ambiguous and limited data. This 

single classifier incorporates fuzzy clustering technique along with Dempster-Shafer 

theory into our intrusion detection scheme to handle the ambiguity of traffic connections. 

Also, the k-NN technique is applied to further speed up the intrusion detection process.   

First, we introduce uncertainty problems that exist in the IDS process and its influence on 

the IDS design. Then we describe the integration of the fuzzy-C-mean clustering 

techniques by grouping similar traffic connections together, and D-S theory by 

combining evidences from class labels and distances of its k nearest neighbor pairs into 

our proposed single classifier to solve the uncertainty problem. 

3.1 Reasoning about Uncertainty is a Necessity 

Uncertainty exists in every event and happens unpredictably. For example, the police 

department does not get involved with every residence’s personal life. Whenever there 

are accidents or criminal events happened, the corresponding department or police officer 

would start to investigate the events or outlaws. That is to say, the accidents or criminal 

events only happen occasionally and unpredictably in some of the places in the world.  

Police officer could pay more attention to certain suspects and judge the criminal 

committers by his appearance or actions.  With the similar function of the police 

department, the intrusion detection mechanism would have to deal with uncertainty 

caused accordingly by the computer activities. The IDS identify the traffic connection as 



27 
 

normal or abnormal activities by the symptoms and effects of these activities. It could 

happen that the IDS identify the attack as normal activities by mistakes when there is no 

clear distinction between normal and abnormal activities for a computer user.  When the 

IDS identify the connection as normal or attack activities, the uncertainties exit in every 

step of the detection process.   

There are two types of uncertainty: aleatory and epistemic. Aleatory means the 

uncertainty that inherently exists in events and is stochastically irreducible. While 

epistemic uncertainty happened due to the fact of lack of enough information of the 

system or environment. If more information or knowledge is collected about the system, 

it is possible to reduce the uncertainty degree. The problem of uncertainty in intrusion 

detection could be both of these types. There is no clear distinction between normal and 

abnormal activities for a computer user because sometimes activities seem similar to 

those of normal activities. Besides, there are inadequate and limited information observed 

by the monitoring tools and detection mechanisms.  

3.2 Fuzzy Belief k-NN Classifier Modules 

The machine learning techniques are just trying to copy the human brain by the machines. 

Classification becomes very important steps in machine learning techniques, whose goal 

is to identify which part of the data are normal or attacks by using advanced algorithm to 

classify the crucial information automatically into two groups in this chapter. The 

proposed fuzzy belief k-NN classifier is to identify which traffic connections are normal 

connections or intrusion attacks.   
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By choosing the right methods to get the data subsets can greatly decrease the 

classification time and improve the detection rate of the malicious attacks. During 

selecting the data subsets, the decision rules are generated from the incoming traffic data 

sets. These rules are also used later on to the classification phase to help to test the 

selected data from the attacks. Then we map the result features of the data fusion steps of 

final decision.   

There are basically four models are described in the proposed ID platform. Through these 

models we can detect the incoming traffic from malicious attacks.  The incoming datasets 

we use the DARPA KDD 99 to mimic the normal activities and abnormal activities. 

There are so many different kinds of data sets in the whole world. But how to select the 

right purpose oriented datasets is the main task in the intrusion aware architecture. The 

following step would be how to abstract the features from all these interrelated data sets. 

In other words, the subsets of data play an important role for the following classification 

phase.  

Intrusion detection in fact is a classification task. In our work, the goal is to identify 

Denial of Service (DoS) attacks, Probe attacks, User to Root (U2R) attacks, and Remote 

to Local (R2L) attacks from the intrusion detection benchmark data set, i.e. DARPA 

Intrusion Detection Evaluation data set KDD99. This chapter applies an intrusion 

detection technique, called fuzzy belief k-nearest neighbors (k-NN) anomaly detection by 

using k-NN technique to reduce the computation time in application to the computer 

networking system. The approach uses a combination of fuzzy clustering technique and 

Dempster-Shafer theory. Since both of them have merit of resolving the uncertainty 

problems caused by limited and ambiguous information during a decision process.  
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FIGURE  3.1 PROPOSED INTRUSION DETECTION STEPS 

There are two phases in our intrusion detection system: training phase and classification 

phase shown in figure 3.1.  

In the training phase, the fuzzy decision rules are generated from the training data. Then 

in the classification phase the network connection would be classified as normal or 

attacks based on this decision rule. Figure 3.2 shows the general four modules of the 

architecture of the proposed system.  
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Figure 3.2 FOUR MODULS 

 

• The first module is the Fuzzy Decision Rule module. The fuzzy decision rules are 

generated from the training data by using fuzzy c mean clustering algorithm. This 

can be used in the future work in the classification phase. 
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• The second module is Calculating Belief module. By calculating belief of each 

sub data sets, we assign each incoming traffic with the belief results using Mass 

function for each rule set. Also the distance from all the traffic connection in the 

training data sets are calculated by using k-NN rules.  

• The third module is the Classification module where Dempster Shafer Theory is 

used. It computes the probability to automatically extract evidences including 

normal or attack class from training network traffic data. Then we mingle the 

normal evidence and attack evidence together to one belief equation. Here two 

independent evidences can be fused into a single belief function Z. 

• The last module is the Decision Making module. We adapt Pignistic probability 

function here to classify attack behavior from network traffic data. 

3.3 Fuzzy Clustering  

3.3.1 General Formulation 

Let’s assume the available information in the training set from either USB or Wi-Fi 

contains N network traffic connections, and each of them is composed of n distinct 

features with positive numeric values. We denote the training set as T, the training 

connection as x,  

},,,,{ 321 nxxxxT =          (3.1) 

and the set of features in each connection as F.  

},,,,{ 321 nffffF =          (3.2) 

Data Clustering is trying to collect the same feature of attacks in one cluster, and obvious 

different with other features in other clusters. Fuzzy C-means clustering algorithm is the 
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soft partition of K-means clustering algorithm. Each membership is assigned to determine 

a certain degree of clustering which each data belongs to. Basically the main idea is to 

divide the n into c fuzzy groups and update the clustering center till reach some 

spectation.  

The class set is L and it includes a number of p possible classes. 

},,,,{ 321 nllllL =           (3.3) 

Because a training connection sometimes could not be crisply defined as normality or 

abnormality in classification, we apply fuzzy c-Means clustering technique to deal with 

the above uncertainty. When the clustering operation is finished, we can obtain a set of 

cluster centers C and a membership partition matrix U. within each row of U, i is the 

connection number of the training set. 

},,,,{ 321 pccccC =          (3.4) 
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Within a vector (connection) of U, pU iij ,,2,1];1,0[ =∀∈  the degree of membership of 

vector  ix  is in the cluster j. The membership grades are treated intuitively to be our 

degrees of confidence on classes that a connection can belong to. Consequently, we can 

build p decision rules from a connection and each one consists of a number of feature 

values F, a class label l, and a confidence value α. 

{ } α,,: qiUUU lFrwhererR =        (3.6) 
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In the training phase, the summation of the degrees of confidence on rules generated from 

a trainining data sets equals to 1.  

1
1

=∑
=

p

q
iqα           (3.7) 

where i is the connection number and j is the class number. The confidence values are in 

proportion to the correspondent membership grades that connection belongs to certain 

classes. 

In addition to the rules created from membership partition matrix U, a number of p rules 

are generated from the cluster centers. In each rule, the antecedent part includes n values 

of a cluster center and the corresponding class label. The degree of confidence is 

designated to 1 because we have full confidence that the cluster center should belong to 

that partitioned class without any doubt.  

{ } 1,,: == αqqCCC lcrwhererR           (3.8) 

Using equations 3.6 and 3.8, we generate (N+1) X p rules in rule set R. The evidence is 

used to assign beliefs to the result of training data. 

uU RRR ∪=               (3.9) 

Equation 3.10 shows the function of Fuzzy C-Means algorithm. The gaol is to minimize 

the the function j.  

∑∑
= =

−=
N

i

p

q
qiiq cxuCUJ

1 1

2
),( β        (3.10) 

• ix is the i connection of the training set,  qc  is the center of cluster q, and iqu  is 

the membership grade of ix  in the cluster j with a value between 0 and 1.  
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•  denotes norm expressing the distance or similarity between any measured data 

and the cluster center.  

• qi cx − represents the deviation of data ix  with qc . And it shows the dissimilarity 

between ix and qc  of in cluster j. 

• The parameter β is a weighting exponent on fuzzy membership and ],1[ ∞∈∀β . β 

is the degree of fuzziness and it control the degree of membership grades. When β 

is 1 which is the minimum number, the Fuzzy C-Means is actually a hard c-

Means algorithm. Normally, its value is between 1.25 to 2. 

In order to get the minimum of j, we have the following equations 3.11&3.12. The 

membership grades iju  and cluster centers jc are calculated by the following expressions.   
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Fuzzy C-Means upgrade the cluster center to certain values by changing the cluster 

centers and membership grades. This upgrading stops when ε<−+ k
iq

k
iqiq uu 1max   where ε 

is a selected threshold between 0 and 1, and k is the number of iterations.  
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Class with a higher membership grade belongs to the certain class (closer to the cluster 

center), and the class with a lower membership grade doesn't belong to the certain class 

(further to the cluster center). The fuzzy C mean algorithm is shown as below.  

 

FIGURE 3.3 FCM EXAMPLE 

Algorithm: Fuzzy C Means 

Step1: Generate U and V 

Step 2: At k-iteration, obtain centers vectors ][ q
k cC =   
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Step 3: Update 1+kk andUU  
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Step 4: if then STOP;  

Otherwise return to step 2 
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3.3.2 An Example 

For example:  There are the following node of 2, 3, 4, 7, 9, 10, and 11 shown in figure 3.3. 

And we have initial centroid 3 & 11. Here we let σ=2 in equation 3.12, and the following 

equation 3.13 should be held.  
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For node 2 which is the 1st element, we use the equation to calculate the membership of 

1st node to 1st cluster which is: 
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Then we have the membership of 1st node to 2nd cluster which is  
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For node 3 which is the 2nd element, we use the equation again to calculate the 

membership of 2nd node to 1st cluster which is: 

%100
1
1

01
1

113
33

33
33

1

12
2

12
221 ==

+
=









−
−

+







−
−

=
−−

U      (3.16) 

Then the membership of 2nd t node to 2nd cluster which is %022 =U  

For node 4 which is the 3rd element, we use the equation again to calculate the 

membership of 3rd node to 1st cluster which is: 
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Then we have the membership of 3rd node to 2nd cluster which is 
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For node 7 which is the 4th element, we use the equation again to calculate the 

membership of 4th node to 1st cluster which is: 
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Then we have the membership of 4th node to 2nd cluster which is 
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For node 9 which is the 5th element, we use the equation again to calculate the 

membership of 5th node to 1st cluster which is: 
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Then the membership of 5th node to 2nd cluster which is 
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For node 10 which is the 6th element, we use the equation again to calculate the 

membership of 6th node to 1st cluster which is: 
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FIGURE 3.4 NODES WITH DISTANCE TO THE CENTROID AND NEW 

CENTROIDS 
 

Then the membership of 6th node to 2nd cluster which is 
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For node 11 which is the 7th element, we use the equation again to calculate the 

membership of 7th node to 1st cluster which is:  

%071 =U  

Then the membership of 7th node to 2nd cluster which is:  

%10072 =U  
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Then we have all the nodes with distance to the centroid node 3 and 11 in the figure 3.4. 

We update the new Centroids: new centroid: 7.25 and new centroid: 6. 

3.4 Dempster-Shafer Theory 

The evidence of incoming traffic is unavaible for attacks or normal behaviors. Also, the 

training set data is not efficient enough to provide accurate information. Thus, the D-S 

theory is used into this classification phase to solve the limited information for training 

data. We don’t need to classify the traffic based on the previous consumption of the 

training data sets. The probability is calculated through this theory. Usually the attacks 

are hiding in the traffic data and are not easy to find out. This D-S theory can make 

decisions on data whether its normal or attack with limited information provided. In this 

phase, the pieces of evidences will be derived from the decision rules of the training 

phase. Here, we apply k-NN rule to find the most informative k nearest training 

connections of v. By using these k connections, we then can find the corresponding 

decision rules. Also, we use weighted k-NN rule to assign different weights w to these 

rules in order to differentiate the degrees of importance. 

3.4.1 K Nearest Neighbor Rule 

Now let’s assume v be an incoming connection to be classified. In order to classify it into 

the correct class, D-S theory is used to measure and combine pieces of evidence derived 

from the set of decision rules. This theory starts by defining the set of class labels L as the 

frame of the problem domain. The possible subset A of L represent hypothesis that one 

could present evidence. To classify v means to assign it to one of members in L.  
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For classifying v into the correct class, we treat the set of decision rules as pieces of 

evidence that alters our degrees of belief on which class v should belong to. If the 

distance is large between v and a decision rule, it implies that the rule only has a little 

influence on v. On the other hand, we have stronger belief that v should belong to the 

same class of the rule if v is “close” to it, which means the distance has a smaller value.  
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All the distances are calculated from v to all rules. ix is the thi  rule, kx  is the farthest rule, 

1x is the nearest rule of v, d is the Euclidean distance from v and to decision rule. The 

influence is assigned to each v. The factor is bigger means the rule is closer to v, and the 

factor is smaller means the rule is further to v. We try to find out the nearest neighbor of 

v with the weight value of 1. And the furthest neighbor of v with weight value of 0. So 

this factor value is between 0 and 1.  

3.4.2 Dempster Shafer Theory 

Dempster-Shafer theory describes the sample space as evidence or belief functions. We 

use class labels L as the length of the sample space domain. The subset A of L is the 

hypothesis supporting evidence. So A and null set φ  is a power set and denoted as 2L. Let 

v be the classification traffic data. We try to classify v to one of the  p classes in levels L. 

qlv∈ , q = 1, 2, …, p.  We use the mass function denoted as ( )m ⋅  as mapping function for 

m: 2L→ [0, 1], so we have  

∑
⊆

=
LA

Am 1)(           (3.26) 
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0)( =φm           (3.27) 

where A⊆L is a focal element of m if m(A) > 0. The quantity m(A) is probability which is 

a portion of evidences.  

By adapting Dempster-Shafer theory, the degree of belief is quantified by mass function 

which is denoted as m.  

α⋅= wlm q )(           (3.28) 

where q is the class number. Up to this stage, each rule creates a belief assignment 

indicating the degree that v belongs to a certain class. Nevertheless, we need to notice 

that a belief should also be designated to the frame (with every class labels). The reason 

is that only part of our beliefs is committed to single classes for a given training 

connection, and the rest of our belief should be assigned to the whole class set. According 

to Dempster-Shafer theory, the summation of all mass functions inferred from one 

training connection is equal to 1. Thus, the belief belonged to the frame becomes one 

minus the summation of beliefs of all single classes.  

∑
=

−=
p

i
qi lmLm

1
)(1)(             (3.29) 

Generally speaking, the mass function is a piece of evidence that supports certain 

hypothesis concerning to the class member of a rule. When more evidences appear with 

same class label, these evidences can be integrated to generate a single belief function 

which represents the total support for the same class. Now assume that there are two mass 

functions m1 and m2 induced by distinct items of evidences X and Y. By using Dempster 

Rule of Combination, these two independent evidences can be fused into a single belief 
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function that expresses the support of the hypotheses in both evidences. The combination 

result is called orthogonal sum of m1 and m2 and noted as m = m1 ⊕ m2. 
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Based on the equation 3.28, the belief function Bel and plausibility function Pl are used 

to show hypotheses. We have 

 

FIGURE 3.5 FUNCTION OF BELIEF AND PLAUSIBILITY 

)()( qq lmlBel =                                     (3.30) 

and 

)(1)( qq lbellpl −=                              (3.31) 

where q is class number and ql  is the hypothesis. Belief function can be regarded as a 

lower bound of the evidence. Plausibility is an upper bound on the belief. We can see the 

bel is the lower boundary and the pl is the upper boundary of hypothesis. The gap 

between is the uncertainty part of evidence in Figure 3.5. 
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Function of Believe and Plausibility 

Two mass functions m1 and m2 can be fused into a single belief function. The 

combination result is noted as m = m1 ⊕ m2 
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The factor 1k −  is the renormalization constant. We use the equation 3.32 to generate the 

final belief of a single class. The two belief functions Bel(N) and Bel(A) can be generated 

through the above evidence.  

3.4.3 Decision Making 

After having all the fused mass functions, the final decision is made by introducing the 

pignistic probability function. It is illustrated as follows: 

p
LmlmlBp qq

)()()( +=           (3.34) 

where q is the class number and p is the number of classes. The function quantifies our 

beliefs to individual classes with pignistic probability distribution. For making an optimal 

decision, v is assigned to a class with the highest pignistic probability. Hence, the 

incoming patterns of information can be classified as intrusion or non-intrusion activities. 
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3.4.4 An Example 

The mass functions is 0.15 for normal class, and the mass function is 0.2 for attack class. 

According to equations 3.30 and 3.31, the belief for normal class is 0.15, and the 

plausibility for normal class is 0.8. For the attack class, the belief is 0.2 and the 

plausibility is 0.85. 

Let 15.0)(1 =Nm   and 2.0)(1 =Am   

According to equations )()( qq lmlBel =   and )(1)( qq lbellpl −= , we calculate the belief 

and plausibility.  

15.0)()( 1 == NmNBel         (3.35) 

2.0)()( 1 == AmABel          (3.36) 

8.02.01)(1)(1)( =−=−=−= ABelNBelNPl      (3.37) 

85.015.01)(1)(1)( =−=−=−= NBelABelAPl      (3.38) 

65.001580.0)()()( =−=−= NPlNBelNUn      (3.39) 

65.020.085.0)()()( =−=−= APlABelAUn       (3.40) 

The frame is  

{ } { }ANllL ,, 21 ==          (3.41) 

Then we add two more pieces of evidence mass functions are 0.25 and 0.7 for normal 

class and attack class, respectively.  Let 2 ( ) 0.25m N =  and 2 ( ) 0.7m A =  

Table 3.1 shows the Connection where normal  is denoted by N and attack is denoted by 

A.  The gap between belief and plausibility is denoted as U.  
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First, the factor 1k −  is calculated. Then the fused mass functions can be calculated by 

using Equation 3.43. Equations 3.44 to 3.46 are the final results.   
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The plausibility and gap between belief and plausibility for both normal and attack 

classes can be derived using Equations 3.47 to 3.52. 

25.0)()( 2 == NmNBel         (3.47) 

73.0)()( 2 == AmABel         (3.48) 
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02.0
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)()()(

=
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−= NPlNBelNUn
        (3.51) 

02.0
73.075.0

)()()(

=
−=

−= APlABelAUn
        (3.52) 

The gap between belief and plausibility is 0.08. Now we can see when we add two more 

evidence to it, the gap reduced from 0.65 to 0.08, which shows that this connection 

should be attack.  

The degrees of final belief on normal and attack classes are shown in equation 3.53&3.54. 

Table 3.2 is the final result. 
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Table 3.1 CONNECTION 

    

    

    

    

 
 

Table 3.2 RESULTS 

 {N} {A} {N,A} 

 0.15 0.2 0.65 

 0.15 0.2 1 

 0.8 0.85 1 

 0.25 0.7 0.05 

 0.25 0.7 1 

 0.3 0.75 1 

 0.25 0.73 0.04 

 0.25 0.73 1 

 0.27 0.75 1 

 0.02 0.02  

 0.27 0.75  
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CHAPTER 4 

4.EVALUATION OF FUZZY BELIEF K-NN SINGLE CLASSIFIER 

 

In this chapter, we introduce the DARPA KDD 99 data sets as our benchmark in our 

experiment.   

4.1 DARPA KDD99 Data Set 

It is very hard to generate large amount of computer networking data to test our classifier. 

Therefore, we use the existing data set to train and test our system. In order to compare 

with other researchers result, we choose not to simulate the data by ourselves. As we 

know it needs a lot of work to simulate the attacks within a network environment. 

DARPA KDD99 Intrusion Detection Evaluation data are used in my dissertation as a 

benchmark for analyzing the performance of the proposed classifiers. It was first 

generated by MIT lab to monitor the network traffic for two weeks. It has been used by 

many researchers to test their IDS and its open to public with large number of network 

traffic activities including attacks and normal. There are three sets in KDD99 data: whole 

KDD, 10% KDD, and corrected KDD. In this dissertation, the 10% KDD data is used as 

training set, and the corrected KDD data is used as testing set.  The patterns the 

classification use to detect attacks are basically the features of the data. We can select less 

correlated feature subsets to strengthen the patterns distinguishing in the machine 

learning process.  Mapping is also an important step to link the input data to the 

corresponding features. 
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TABLE 4.1 CONNECTION DISTRIBUTION 

Data Set Normal DoS R2L U2R Probe Total 

Training Set 97,277 391,458 1,126 52 4,107 494,020 

Testing Set 60,593 229,853 16,189 228 4,166 311,029 
 

TABLE 4.2 THIRTY NINE ATTACKS 
 

DoS R2L U2R Probe 
apache2, back, ftp_write,guess_passwd, buffer_overflow, ipsweep, mscan, 

land, mailbomb, imap, multihop, named, httptunnel, nmap, portsweep, 

netpune, pod, phf, sendmail, loadmodule, perl, saint, satan. 

processtable, snmpgetattack, ps, rootkit,  

smurf, teardrop, snmpguess, spy, sqlattack, xterm.  

udpstorm. warezclient, warezmaster,   

 worm, xlock, xsnoop.   

4.2 Data Sets Selection 

The KDD99 data set that is made up of a large number of network traffic connections. 

Each connection is represented with 41 features plus a label of either normal or a type of 

attack. Totally 39 attack types are included and are fall into four main classes, DoS, 

Probe, U2R, and R2L. There are 22 types of attacks in training set and 17 types of attacks 

in testing sets. Table 4.1 shows the training set and testing set connection respectively. 

Table 4.2 shows the 22 types of attacks in training set are marked underline. Figure 4.1 

shows the distributions of DoS, Probe, U2R, and R2L attacks. As we can see here the 

DoS and Probe attacks are very common in computer networking traffic connections, 

while U2R and R2L attacks are very rare in computer networking traffic connections. 

The distribution of these four attacks are not even in Darpar KDD 99 data sets.  
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FIGURE 4.1 DISTRIBUTIONS OF FOUR KDD99 ATTACK CATEGORIES: 
                                      : Training Sets                     : Testing Sets  

4.3 Data Sets Preprocessing  

The fuzzy belief experiments are performed on the binary (normal/attack) classification. 

Our two-stage classifier and ensemble classifier experiments are performed on multi-

label classification. To minimize the inaccuracy and variation factor of experiment results, 

10 trials are performed in every detection task. In each trial, only a very small amount of 

connections are randomly selected from reduced training and testing sets. It not only 
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speeds up the classification process but also simulates the uncertainty caused by lack of 

network traffic information. 

For the binary classification, the four training sets have 545 DoS attacks, 213 Probe 

attacks, 52 U2R attacks, and 99 R2L attacks, respectively and each set has a number of 

878 normal connections. The four testing sets have 235 DoS attacks, 268 Probe attacks, 

215 U2R attacks, and 291 R2L attacks, respectively and each set has 479 normal 

connections. The sizes of the original training and testing sets are reduced by removing 

the duplicated connections in Table 4.3.  

4.4 Features in Data Sets 

The set describes each connection in terms of 41 features plus a label of either normal or 

a type of attack as shown in table 4.4. The features is the same with the attributes to 

describe each connections in the networking traffic. The content of these features are 

continuous, discrete, or symbolic with vary scales and ranges. These features can be 

classified into four classes, basic, content, time-based, and host-based features. Features 

1 to 9 are basic features that are derived from packet header without inspecting the 

payload. Features 10 to 22 are content features that are obtained by analyzing the payload 

of the original TCP packets. Features 23 to 31 are time-based traffic features that capture 

properties of connections in the past 2 seconds. Features 32 to 41 are host-based traffic 

features that examine a number of connections using a window of 100 connections 

instead of a 2-second time window. For example, the protocol_type feature shows the 

traffic connection belongs to Ethernet, local talk, token ring, FDDI, or ATM. The 

duration feature shows the period that the connection last.  
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TABLE 4.3 REDUCED TRAINING AND TESTING SETS 

 Total  Normal  DoS Probe U2R R2L 

Training Sets  1787 878 545 213 52 99 

Testing Sets 1488 479 235 268 215 291 

 

TABLE 4.4 41 FEATURES IN KDD 99 DATA SETS 

Feature# + Feature Name Feature# + Feature Name 

1 duration  22 is guest login 

2 protocol type  23 count 

3 service  24 serror rate 

4 src byte  25 rerror rate 

5 dst byte 26 same srv rate 

6 flag  27 diff srv rate 

7 land  28 srv count 

8 wrongfragment  29 srv serror rate 

9 urgent  30 srv rerror rate 

10 hot  31 srv diff host rate 

11 num failed logins 32 dst host count 

12 logged in  33 dst host srv count 

13 num compromised  34 dst host same srv count 

14 root shell  35 dst host diff srv count 

15 su attempted  36 dst host same src port rate 

16 num root  37 dst host srv diff host rate 

17 num file creations  38 dst host serror rate 

18 num shells 39 dst host srv serror rate 

19 num access shells  40 dst host rerror rate 

20 num outbound cmds  41 dst host srv rerror rate 
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4.5 Experimental Result Expression 

For detecting the attacks, training and testing are performed in each trial. In the training 

phase, our proposed method and other methods are constructed using the limited and 

ambiguous training data. The testing data are then fed into the trained classifier to 

identify intrusions in the testing phase. We evaluate the performances using false positive 

rate (FPR) and detection rate (DR), and Receiver Operating Characteristics (ROC) graphs. 

The false positive rate is the percentage of normal connections that are incorrectly 

identified as attacks. The detection rate is the percentage of attacks that are correctly 

identified.  The ROC graphs that plot FPRs on the X axis and DRs on the Y axis. In the 

tasks of detecting attacks, the differences in both FPRs and DRs are very slight for 

different kinds of classifiers. Since DoS and Probe attacks usually have frequent 

sequential patterns that are different from the normal connections, they can be easily 

separated from normal activities and thus all of three classifiers can achieve low FPRs 

and high DRs. On the contrary, U2R and R2L attacks do not have any intrusion only 

frequent sequential patterns. They are embedded in the data portions of the packets and 

normally involve only a single connection. Therefore, most machine learning approaches 

would fail to achieve high DRs in U2R and R2L attacks. Although some classifiers have 

very low FPRs, it is because they treat most network traffic data as normal connections 

either they are normal or malicious activities.  
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CHAPTER 5 

5.TWO-STAGE FUZZY KNN-DST CLASSIFIER FOR UNKNOWN ATTACKS 

 

In this chapter, an innovative fuzzy classifier is proposed for effectively detecting both 

unknown attacks and known attacks with insufficient or inaccurate training information. 

The motivation for two-stage fuzzy classifier is introduced in section 5.1. Section 5.2, 

describes the proposed two-stage fuzzy KNN-DST IDS in detail. Firstly, a fuzzy C-

means (FCM) algorithm is employed to softly compute and optimize clustering centers of 

the training datasets with some degree of fuzziness counting for inaccuracy and 

ambiguity in the training data. Subsequently, a distance-weighted k-NN (k nearest 

neighbors) classifier, combined with the Dempster-Shafer Theory (DST), is introduced to 

assess the belief functions and pignistic probabilities of the incoming data associated with 

each of known classes. Finally a two-stage intrusion detection scheme is implemented 

based on the obtained pignistic probabilities to determine if the input data are normal, one 

of the known attacks or an unknown attack. At second stage both neutral zone and 

entropy function are applied to detect unknown attacks. The experimental results show in 

section 5.3 that the new algorithm with entropy function outperforms algorithm with 

neutral zone and other intrusion detection algorithms and is especially effective in 

detecting unknown attacks. Section 5.4 draws some conclusions on our proposed method 

of two-stage classifier for detection unknown attacks. 
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FIGURE 5.1 TWO-STAGE CLASSIFYING SCHEMES FOR UNKNOWN ATTACK 
DETECTION 

5.1 Introduction 

Basically, there are mainly two types of IDS: anomaly intrusion detection and misuse or 

signature-based intrusion detection. Anomaly intrusion detection tries to identify if the 

data traffic pattern is abnormal by comparing it with previously obtained normal traffic 

profiles; while the misuse methods detect intrusions by matching the data signature or 

feature vector to that of one of the known attacks.  Although theoretically capable to 

detect unknown attacks, anomaly IDS are generally inefficient, time-consuming and very 

difficult to implement with poor performance due to the lack of training data.  On the 

other hand, misuse IDS are very efficient in data classification, but they can only detect 

known attacks and suffer from high error detection rate especially when the attacks are 

unknown or the classifier is not properly or sufficiently trained. Most of current IDS 

algorithms are based on modern classification methods.  

Training data

Find the error-tolerant “soft” 
centers of each known 

classes using semi-
supervised FCM algorithm 

Test data

Evaluate the belief values of 
the data on each of known 

classes using a “soft” KNN-
DST classifier 

Stage 1 classification:
normal data/attack

Stage 2 classification:
known/unknown attack
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The current classifying algorithms used in IDS are typically designed based on the naïve 

Bayesian method [6,7], support vector machine [8-11], particle swarm optimization 

[12,13], generic algorithm [14], neural networks [15-18], k-nearest neighbor (KNN) 

methods [19,20], fuzzy c-means (FCM) methods [21,22], Dempster-Shafer theory of 

evidence [23-26] or other decision-tree based ad-hoc methods [27]. However, the 

detection performance of the current IDS are generally sensitive to the mismatching 

between the training and test data; and they could perform very poorly in the case of 

slight deviation of intrusive data pattern from known patterns or of an unknown attack. It 

is well-known that the forms of cyber attacks and internet hacking tactics are constantly 

changing and evolving and new internet “viruses” are created almost every day. 

Therefore, it is imperative that the performance of IDS is not markedly degraded when a 

known intrusion is morphed into a different form of attack or a new intrusion has a 

completely different profile.  In this work, we will introduce an innovative two-stage 

fuzzy classifier embedded with “soft” and error-tolerant classification mechanism for 

effective detection of various malicious intrusions including unknown attacks.  Fuzzy 

classifiers are known for tolerating training or test data errors or variations due to “soft” 

clustering and classification techniques involved, but none of the current fuzzy classifiers 

is capable to effectively detect both known and unknown attacks simultaneously. In 

addition, with this proposed IDS, the Dempster-Shafer Theory (DST) [28] is seamlessly 

combined with a distance-weight k-NN algorithm by fusing multiple “soft” independent 

evidences in order to assess the belief value of the input data belonging to each of the 

known classes. The two-stage classification in the algorithm is set firstly to determine 

whether the incoming traffic is normal or an attack and subsequently to determine 
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whether it is an unknown attack if the first stage detection is positive as abnormal 

connections.  

5.2 A  New Fuzzy KNN-DST Classifier for Unknown Intrusion Detection 

The framework of the proposed fuzzy KNN-DST classifier is shown in Figure 5.1. Since 

the new classifier should be capable to detect unknown intrusions and mutated versions 

of known intrusions, we choose to use the k-nearest neighbor (k-NN) algorithm for its 

robust performance and its tolerance for inaccuracy and random errors in the input data. 

In our developed new algorithm, a belief value of a test connection associated with a 

known class is softly measured based on the distance between the input data and the 

centroid of the class, and the Dempster-Shafter Theory (DST) is incorporated into the 

framework to fuse multiple evidences generated from a weighted k-NN algorithm to form 

a pignistic probability of a test connection belonging to a known class.  The centers of 

known classes are softly defined and computed using a semi-supervised fuzzy c-means 

(FCM) algorithm from the training data.   

Stage one classification in Figure 5.1 determines if a connection is normal data or an 

intrusion. If it is an abnormal intrusion, stage-two classification is needed to determine if 

it is one of known attacks or unknown attack. The details of the new classifier are given 

in the next two subsections. 

5.2.1 Semi-Supervised Fuzzy C-Means Learning Algorithm 

Let us assume the training set { }NxxxxX ,...,,, 321=  contains N network traffic 

connections, and each of them is either normal connection or known attack. Each 

connection is represented by a distinct feature vector with positive numeric values. 
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Normally for computer network connections, the extracted feature vector consists of the 

source and destination bytes, the connection type, or the duration of a connection, and etc. 

The set of features generated from all data connections are assumed to be: 

{ }NffffF ,...,,, 321=          (5.1) 

We denote the set } ,...,,{ 21 Plll=L as P possible data classes, which include known attacks 

and the normal data stream. To avoid the crisp definition of a connection belonging to 

one of the classes, we employ the FCM algorithm allowing one traffic connection to 

belong to more than one class/cluster with varying membership values.  

Firstly, we will try to divide the N traffic connections into P clusters/classes and each 

cluster is represented by its centroid, which is an element of { }PcccC ...,,, 21= . In addition, 

a membership partition matrix U of size (N×P) is used to measure the closeness of a data 

connection to each of the class centers. The membership matrix elements are defined by: 
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where  of a value between 0 and 1 is the membership grade of the input data 

connection i in the cluster q, β (β >1) is the weighting exponent representing the degree 

of the fuzziness for the membership grades, and ||,|| qi cf  represents the Mahalanobis 

distance between the data feature vector if  and the centroid qc of cluster q and is defined 

as: 

)()(||,|| 1
qiq
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where qΣ is the covariance matrix of the centroid vector of cluster q. Equation 5.3 

becomes the Euclidean distance when qΣ  is the unity matrix.  

The centroid of cluster q is further defined as:  

Pq
u

u

N

i
iq

N

i
iiq

q ,,2,1   

1

1 =∀=

∑

∑

=

=

β

β f
c         (5.4) 

The cluster centroids are iteratively optimized by minimizing the following dissimilarity 

function J(U,C): 
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With the FCM algorithm, we keep on upgrading qc and  iteratively until the 

dissimilarity function J(U,C) is minimized.  The optimal cluster centroids qc  for the 

fuzzy classifier are found when the iteration stops with εηη <−+ )()1(

,
max iqiqqi

uu , where ε is a 

pre-selected threshold between 0 and 1, and is the number of iterations.   The initial 

values of the cluster centroids in (5.2) are obtained from the labelled training data directly. 

Therefore, the iterations in (5.2)-(5.5) normally can converge quickly. Since the class 

information of the labelled training data is used in the FCM algorithm, the learning 

process is considered to be semi-supervised. 
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5.2.2 A Two-Stage KNN-DST Classifier  

With the centroids of the known clusters found through the Fuzzy C-means algorithm, we 

try to employ a weighted k-NN approach in our classifier by considering the k-nearest 

neighbors of a new test data connection xv in the training dataset. Let us associate the test 

data connection xv with the class lq of one of the k-nearest neighbors fq by defining a 

fuzzy membership function based on the distance between the test data and the class 

centroid cq that is similar to (5.2).   

However, the association between the test data and class lq also should be affected by the 

distance between the test data xv and the training neighbor fq.  If there is a large distance 

between vx  and one of the k-nearest training records, the probability of vx  and the 

training record belonging to the same class is small. Therefore, the membership grade of 

a test data record belonging to a class should be weighted based on the distance between 

the test data and its nearest neighbors in the k-NN algorithm.  

We assume that  the K nearest neighboring training data records of vx are represented by 

the set of their feature spaces },,,{ 21 KK fffF =  and },,,,,,{ 21 Kvvv ffffff   is the set 

of the corresponding distances between the test data feature vf  and the K nearest training 

samples kf  in ascending order. Hence, the membership grade of a test data record 

belonging to a class in the weighted k-NN algorithm should be weighted with the 

following coefficient.  
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where 1f is the first nearest neighbor of vf  and kf is the  nearest neighbor of  and  the 

weight  is assigned to modify the association between the connection vf  and the class of  

its  nearest neighbor. The closer the neighbors are, the greater weights they are 

assigned to. In the weighted k-NN algorithm, each of the k nearest neighbors and its class 

designation contribute to the classification by providing an independent piece of evidence. 

Since DST is an evidence theory that can be used to combine separate pieces of evidence 

to determine the probability of an incident [24], we will use the DST in our classifier to 

fuse the class information obtained from all k-nearest neighbors to facilitate the intrusion 

detection work.  The goal is to try to classify the new connection vf  into one of the 

members in class label set },,2 ,1{ PL = .  

DST describes the probability of a test data sample belonging to a class using belief 

functions and the degree of belief is quantified by a mass function denoted as m. The term 

 of γf  can be treated as a piece of evidence that contributes to our belief that vf  

belongs to class .  Since only a part of our belief is committed to  and represented by

, the rest of the belief is assigned to the whole frame of discernment represented 

by .  Specifically, the belief functions of the input data connection vf  belonging to 

class  and the whole frame L due to the evidence from one of its neighbor γf  are 

defined, respectively, as: 
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where q is the class number, vqu is the fuzzy membership grade of vf  associated with 

class and is used to measure the belief of vf  belonging to class , and ζ is a fixed 

factor used to normalize the total mass function. 

Since there are K nearest neighbors },2 ,1,{ K=γγf of vf , each of them can be treated as 

a piece of evidence supporting our belief that vf belongs to class lq. By using the 

Dempster Rule of Combination [28], we can fuse the mass functions of all k-nearest 

neighbours γf  belonging to the same class  to form a combined mass function through 

orthogonal sum of the mass functions, represented as

)()()()( 21 qKqqqq lmlmlmlm ⊕⊕⊕=><  . Based on the mass functions that are assigned 

to class q for all training data connections },,2 ,1,{ K=γγf in the K nearest neighbors, 

the combined mass functions for the data sample assigned to class q and the whole frame 

L  are given, respectively, by: 
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The difference between our work and the classifying algorithm in [24] is that, as shown 

in (5.9) and (5.10), all K neighbors rather than a subset of the K neighbors contribute to 

the belief that the test sample belongs to class lq, making the classification more tolerable 

to training/test data variations.  
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A global mass function is further defined by considering all possible classes for the test 

data sample vf  in estimating the belief value of the sample belonging to class lq. Hence, 

the global mass functions )()()( 1 Pvqvvv lmlmlmm ⊕⊕=  of the test sample belonging 

to class lq and the whole frame L are modified as: 
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where H is the normalizing factor, given by: 
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The belief function Bel is widely used to measure the credibility of a hypothesis in 

classifying a test data sample. One can assign the mass function in (11) to )( qv lBel as the 

probability of the input data sample vx belonging to class ql . In this work, considering the 

inaccuracy and randomness in test/training data, we will apply the pignistic probability, 

which includes a measure of plausibility for more tolerance of test/training data 

inaccuracy in the classification.  The pignistic probability BetP for an input sample vx  

belonging to class  is defined as: 

Pq
P

LmlmlBetP v
qvqv ,,2,1 ,)()()( =+=       (5.14) 
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6.2.2.1 Second-Stage Classification for Unknown Attacks by Neutral Zone 

There may have a case where none of the belief values have a confident possibility of 

belonging to any of the existing class labels.  In other words, some of the connections are 

too ambiguous to be assigned to any of the existing classes. In this situation, we may 

want to classify these connections into a new class label by using neutral zone [16].  

After our FCM k-NN DST classifier process, the ideal classification for belief value to 

the correct corresponding class set is further defined. When the maximum pignistic 

probability of   of the sample connections is more close to value 1, it means 

these connection samples are definitely belonging to the class . Those values of 

 that are more close to value 0 might not belong to any of the class labels . 

Those values of  that fall between 0 and has more possibility of 

not being a member of any of the existing class but that of a new type of unknown attack 

class.  The  value of 0.5 is the crossover point of neutral zone data set. Any 

 value greater than 0.5 implies that the connection definitely is the member of 

the class label . As the  value goes below 0.5, it is less likely that the 

connection is a member of any of the existing class label . 

In order to further evaluate the quality of DST belief assignment, the difference between 

the two maximum belief values of each network traffic 

connection to the certain class can be considered. If the value of this difference is large a 

connection can be assigned clearly to one of the class. If the value of this difference is 

small a connection belongs to both classes to the same degree and its assignment is very 
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ambiguous. In this case, new network traffic connections with ambiguous class 

distribution need further classification to get a better result. Neutral zone concept is 

applied here to separate these connections as unknown attacks from the attacks result of 

output data from the FCM Weighted k-NN DST classifier.  

For example, A={(a 0), (b 0.5), (c 0.7)} and B={(a 1), (b 0.5), (c 0.3)} are fuzzy sets in 

which a, b, and c have membership degrees in the set of A of 0, 0.5, and 0.7, and B of 1, 

0.5, and 0.7 respectively. So it’s absolutely true that a belongs to class B. But b and c are 

only partial members in the class A or B. Especially b with the same membership to class 

A and B which will cause the vagueness and insufficient of evidence of the classification.  

Note that the output classifier defined by our classifier is ambiguous if for two different 

output classes belief value for has the same value or very close value. 

To avoid this ambiguous classification in a case where the belief values are not equal but 

very close to each other, the uncertainty margin can be explored here. This 

ambiguous belief values of new connections to all classes indicate that this connection 

does not belong to any of the existing known classes, and it belong to unknown attack 

classes.  Let  and  denote the two largest belief values of 

the sample traffic connection v. If the two largest memberships of some vectors are close 

to each other, we group these vectors to the neutral zone as the class of unknown attacks. 

Mathematically, instances for a single vector v can be characterized by the following 

condition in the flowing equation.  

      (5.15) 
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We use  as user-defined threshold to further determine the output data of FCM 

Weighted k-NN DST classifier belongs to the neutral zone subset (where unknown 

attacks class has been classified).  It might not be desirable to mix all the output vectors 

from the result of our classifier by using different classifier just to decrease the detection 

rate or generate false alarms. The problem is how to obtain the threshold . In this paper 

is specified through a fixed percentage of the neutral zone traffic connections by our 

FCM K-NN DST classifier. For example the first classifier only passes with 35% of the 

data for further classification of unknown attacks. In order to avoid the problem of 

imbalanced data sets in KDD 99, Difference threshold is assigned to different classes (in 

our case, five different  for five classes).  

6.2.2.2 Second-Stage Classification for Unknown Attacks by Entropy Function 

Unlike regular intrusion detection algorithms in which the incoming data are classified as 

either the normal data or one of the known attacks based on the maximum likelihood of 

all known classes, in this work we will introduce another second-stage intrusion detection 

mechanism to identify the input data as either normal data, one of known attacks or 

unknown attack to compare with the Neutral Zone method as the second-stage classifier. 

The first stage detection is the same with last section to identify if the input data are the 

normal data or an attack based on the pignistic probability of each class hypothesis. If the 

class type of the maximum pignistic probability is the normal data ( norml ) or the following 

equation holds,  

)(maxarg)( qvqvnorm lBetPl =x
        

(5.16) 
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the input data connection vx is considered to be a normal data connection. Since the 

classifier is fully and reliably trained with the labelled normal data, if (5.16) is true, the 

classification result becomes final and no further test is needed. However, if (5.16) is 

false, the input data are either one of the known attacks or a novel attack with unknown 

features and the following second-stage entropy-based test is needed to determine the 

attack type of the incoming data. 

µ≤=∑
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q qv
qvv lBetP
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1

2 )(
1log)(        (5.17) 

where µ is predetermined threshold between (0, 1).  If the hypothesis in (5.17) is true, i.e. 

the entropy of the generated pignistic probabilities is relatively small, the input data 

connection vx  is strongly correlated to one of known attacks. Therefore, vx  is considered 

to be one of the known attacks, and its class index q* in the class set is given by: 

)(maxarg)(* qvqv lBetPq =x         (5.18) 

However, if (5.17) is not true, the classification result is not credible and the input data 

are an unknown attack. The decision tree of the two-stage fuzzy classifier for known and 

unknown intrusion detection is shown in Figure 5.2. 

5.3 Experimental Results 

We still used DARPA KDD99 [29] Intrusion Detection Evaluation dataset as a part of the 

benchmark for evaluating the performance of the proposed IDS in detecting known 

intrusions. In addition, we have generated an unknown attack dataset from Software 

Wireshark [30] to test the performance of the new algorithm for detecting unknown 

attacks.  
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FIGURE 5.2 DECISION TREE OF TWO-STAGE CLASSIFIER  

5.3.1 Dataset Selection  

In this experimental work, the 10% KDD dataset were used as the training dataset to train 

the FCM algorithm and finalize the optimal feature space centers of the known classes.  

Subsequently, the two-stage fuzzy classifier is built based on the training results.  Finally 

the corrected KDD 99 dataset and the unknown attack data generated from Wireshark are 

employed to evaluate the performance of our new classifier.   
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We add 5074 novel attack connections in this chapter to test our classifier. We use Mac 

OS X version 10.7.5 as the victim machine to hit malicious web sites running exploit kits 

such as Blackhole, which will probe our victim computer and attempt to infect it. Other 

methods we use are to visit malicious web sites either by offering of free or to click on 

spam e-mail messages. After being infected by these attacks, the Wireshark software 

installed on our victim machine is then used to manage and monitor malware activity.  

5.3.2 Data Sets Pre-processing 

Besides the normal data class, the KDD 99 datasets contain four types of known attacks, 

including the denial of service attacks (DoS), the user to root attacks (U2R), the remote to 

local attacks (R2L), and the probing attacks (Probe).  However, even for the concise 

10%KDD dataset, as its attack distribution statistics shown in Table 5.1, the data sizes are 

still overwhelmingly large for practical training and test applications.  In addition, the 

data records in KDD 99 for different attacks are not equally represented and those in the 

same class are unbalanced for training dataset (10%KDD) and the test dataset (Corrected 

KDD). For instance, the percentages of U2R and R2L attacks in the training dataset are 

0.105% and 2.279%, respectively, while those in the testing dataset are 0.733% and 

5.204%. The discrepancies in data sizes and class distributions could make the 

classification results unreliable.  

Furthermore, in the original KDD datasets, there are invalid and duplicated data records 

that need to be pre-processed and removed for algorithm training and testing.  Therefore, 

the cleaned and rebalanced KDD 99 datasets with a reduced and manageable size have 

been created for our experimental work by randomly sampling the 10% KDD and 



70 
 

Corrected KDD datasets, in which the redundant and invalid data records are removed. 

The statistics of the size-reduced KDD datasets we generated for this work are listed in 

Table 5.2.   In addition to the data records generated from the KDD datasets, we used 

additional 5074 data records containing unknown attacks in the testing phase to test the 

performance of our classifier. The types of the unknown attacks are summarized in Table 

5.3 and they include some of the recently created Internet viruses including adware, 

spyware and their variants. The features of the unknown attacks may or may not be 

represented by those of the known attacks in KDD datasets. The unknown attack data 

records are used to test the proposed classifier and evaluate its performance in detecting 

unknown intrusions without any training.  

The feature space of each connection in the KDD99 datasets and the unknown attack 

dataset we generated is composed of 41 feature components. For the KDD training data 

and unknown attack dataset, there is additional labelling information indicating which 

type of class the connection belongs to.  

5.3.3 Performance Evaluation  

To minimize the variations of our experimental results, we randomly divide both our 

training and test datasets into 10 subsets of equal sizes, and then we apply the new 

classifier to each pair of 10 training-testing subsets to evaluate its performance. We 

measure the performances of classifiers based on false positive rate (FPR), detection rate 

(DR) and overall error rate (OER).  FPR, DR and OER for detecting one of the known 

intrusions or an unknown attack (Class l) from a batch of validation connections are 

defined as follows. 
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where lFP  is the number of the connections that are incorrectly classified as Class l and 

lTN is the number of the connections that are correctly classified as a class other than 

Class l. 
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where lTP  is the number of the connections that are correctly classified as Class l and 

lFN  is the number of the connections that are incorrectly classified as a class other than 

Class l. 
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To compare the performance of the new classifying algorithm with those of the existing 

classifiers, we also apply several popular classifiers including the basic k-NN, evidence-

theoretic k-NN, naïve Bayes, and neural network classifiers [31, 32] to the same dataset 

used by the proposed classifier. The classification results are displayed with the receiver 

operating characteristics (ROC) plots, i.e. DR vs. FPR for all classifiers. Specifically, 

ROC plots are shown in Figures 5.3-5.12, respectively, for detecting DoS, Probe, U2R, 

U2L and unknown attacks (UA) by using existing classifiers as well as the our proposed 

new classifier.  

Figure 5.3-5.7 show the new fuzzy DST classifier with neutral zone can almost compete 

other existing classifier in Probe, U2R, and R2L attacks, while it failed to achieve 

competitive detection rate with other classifiers in DoS attack. Figure 5.8-5.12 show that 
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the new fuzzy DST classifier with entropy function we are proposing almost outperforms 

all other existing classifiers by achieving higher DR and lower FDR for all known and 

unknown attacks.  Since DoS and Probe attacks usually reveal a sequential pattern that is 

different from normal connections, they can be relatively easily be differentiated from 

normal data records.  

However, U2R and R2L attacks do not possess a similar sequential pattern, and they are 

embedded in the data portions of the packets and normally only appear in a single 

connection. Therefore, the detection of U2R and R2L attacks from normal connections is 

more challenging than identifying DoS and Probe attacks; the detection rates of U2R and 

R2L intrusions with existing classifiers have been mostly unsatisfactory. However, using 

the new classifier, as shown our experiments, the detection rates of U2R and R2L attacks 

are significantly improved.  

Table 5.4 lists the overall error rates (OER) in detecting different known and unknown 

attacks by using our new classifier with entropy function and other existing classifiers. 

OER, as defined in (20), includes the effects of both DR and FPR for a classifier, 

therefore, is a better indicator of classification performance. The results in Table 5.4 

show that the OER of the new algorithm with entropy function is significantly lower than 

those of other existing classifiers in detecting the known and unknown intrusions.  

In implementing the two-stage fuzzy KNN-DST classifier we choose the predetermined 

threshold µ to be 0.85 in the second-stage entropy-based classification.  The second-stage 

detection is used to determine if an attack is unknown or one of known attacks, and it is 

only needed if the first-stage detection result is an attack.  The experimental results 
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demonstrate that the new classifier with entropy function is effective in identifying 

unknown attacks as well as detecting typical known attacks from normal data traffic.  

5.4 Conclusions 

An innovative two-stage fuzzy k-NN DST classifier has been developed for effective 

detection of unknown intrusions and the variants of known intrusions. The new algorithm 

overcomes the rigid requirement of feature vector similarity between the training data and 

the test data in current IDS by introducing fuzziness, “soft” distance-based neighbouring 

concepts, and the DST-based evidence fusion method into the learning and classification 

schemes.   

Furthermore, the two-stage entropy-based classification approach is employed to identify 

unknown attack in the incoming connections without any pre-training data or labeled 

information for the attack.  The robustness and effectiveness of the new approach are 

demonstrated by the application results of the new classifier to the traditional KDD99 

intrusion data and the newly simulated data containing both known and unknown attacks.  

The experimental results also show that the new classifier outperforms the existing 

classification algorithms in identifying known and unknown attacks from network traffic.  
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TABLE 5.1 DATA RECORD CLASS DISTRIBUTION IN KDD 99 DATASETS 

Data Class  Training Set Testing Set Training % Testing % 

Normal 97,277 60,593 19.69% 19.48% 

DoS 391,458 229,853 79.24% 73.90% 

Probe 4,107 4,166 0.83% 1.34% 

R2L 1,126 16,189 0.23% 5.21% 

U2R 52 228 0.01% 0.07% 

Total 494,020 311,029 100%  100%  

 

TABLE 5.2 REDUCED TRAINING AND TESTING DATASETS (UA: UNKNOWN 
ATTACKS) 

Data Class  Total Normal DoS Probe U2R R2L UA 

Training Sets 145,585 87,831 54,572 2,131 52 999 0 

Testing Sets 51,041 47,913 23,568 2,682 215 2913 5074 

 
TABLE 5.3 UNKNOWN ATTACKS (UA) USED IN TESTING DATASETS FOR 

THIS WORK 
UA type Number of connections Percentage 

ZeroAccess botnet 1988 39.18% 

Adware 875 17.24% 

Spyware 869 17.13% 

Backdoor 412 8.12% 

Hijacker 275 5.42% 

Trackware 181 3.57% 

Downloader 187 3.69% 

Trojan 287 5.66% 

All UA types 5074 100% 

 



75 
 

TABLE 5.4 THE OVERALL DETECTION ERROR RATES OF OUR METHOD AND 
OTHER IDS  

 
(ET k-NN: evidence-theoretic k-NN; NN: Neural Networks; NB: Naïve Bayes) 

 

Class Ours Method ET k-NN k-NN NN NB 

DOS 5.22% 6.87% 11.18% 8.39% 6.57% 

Probe 3.90% 7.01% 12.07% 7.80% 6.21% 

U2R 8.12% 20.47% 35.06% 8.33% 13.13% 

R2L 9.98% 19.31% 24.60% 10.29% 10.45% 

UA 11.25% 40.68% 47.94% 44.88% 44.90% 

      

 

 

 
FIGURE 5.3 ROC GRAPH OF DOS ATTACKS USING THE NEUTRAL ZONE  
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FIGURE 5.4 ROC GRAPH OF PROBE ATTACKS USING THE NEUTRAL ZONE  
 

 

 

FIGURE 5.5 ROC GRAPH OF U2R ATTACKS USING THE NEUTRAL ZONE  
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FIGURE 5.6 ROC GRAPH OF R2L ATTACKS USING THE NEUTRAL ZONE  

 

 

FIGURE 5.7 ROC GRAPH OF UNKNOWN ATTACKS USING THE NEUTRAL 
ZONE  
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FIGURE 5.8 ROC PLOT OF DETECTING DOS ATTACKS USING ENTROPY  

 

 

FIGURE 5.9 ROC PLOT OF DETECTING PROBE ATTACKS USING ENTROPY  
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FIGURE 5.10 ROC PLOT OF DETECTING U2R ATTACKS USING THE ENTROPY  
 

 
 

FIGURE 5.11 ROC PLOT OF DETECTING R2L ATTACKS USING THE ENTROPY 
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FIGURE 5.12 ROC PLOT OF DETECTING UNKNOWN ATTACKS USING THE 

ENTROPY  
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CHAPTER 6 

6.THREE-LAYER HIERARCHY ENSEMBLE CLASSIFIER 

 

In this Chapter, we improve the overall network intrusion detection rate by proposing and 

using an innovative three-layer hierarchy multi-classifier detection scheme called 

ensemble classifier. In addition, combinational methods are used to fuse the outputs from 

the classifiers are studied. Experiments show that ensemble-classifier using a diverse soft 

computing technique and different feature subset as a combination of multiple classifiers 

can obtain a much more precise inference result than a single classifier. 

6.1 Introduction 

Ensemble is to combine the outputs of a set of base classifiers together in a proper way 

when classifying input data. The fused result is expected to perform a better outcome 

than that of any individual base classifier within the ensemble. However, it is important 

to understand that individual base classifiers should be independent of each other. If the 

base classifiers provide similar outputs, then no significant improvement of the ensemble 

result can be obtained through the combination process. It is critical to notice the 

diversity among base classifiers in order to get effective and correct classification result. 

Hence, two major categories have been proposed in the ensemble classifier design. One 

uses different feature subset in every base classifier and the other uses different soft 

computing technique. 

The former technique consists of a set of base feature selecting classifiers and each uses 

partial feature space. By choosing dissimilar feature subsets for various base feature 
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selecting classifiers, the diversity among these classifiers is expected to be maximized to 

achieve a better result. Example is the work of Giacinto and Roli [1]. In their research, 

they restricted the problem domain in the ftp service of the DARPA KDD99 data set and 

selected 30 out of the 41 available features from the data set features from the data set. 

They built three neural networks using 4 intrinsic features, 19 traffic features, and 7 

content features, respectively. Also, they built one neural networks using all of the 30 

selected features for the sake of comparison. All of the networks were three layers fully-

connected multilayer networks, which each had 5 output neurons (for normal and four 

attack classes), a number of input neurons that equal to the number of features, and a 

hidden layer made up of 5 neurons for the networks using distinct features and 15 

neurons for the network trained using 30 selected features. The results showed that the 

ensemble technique improved the overall detection performance compared with those of 

individual classifiers and the classifier using 30 features. However they only performed 

their experiments on ftp service instead of all of the services KDD99  data set provided. 

In the work of DeLooze [3], he created three 20X20 Self-Organizing Maps (SOM) using 

content, time, and connection features extracted from 41 features of KDD99  data set. 

The results of individual SOMs were then combined using both majority ensemble 

method and belief ensemble method. Here, the difficulty is how to configure a network 

with proper size. The configuration plays an important role in the detection performance 

and the granularity of the network nodes, which training a SOM with a large amount of 

neurons needs long computational time and a SOM with a small volume of neurons may 

loss some important information. 
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The work of Borji [4] is an example using different soft computing technique in every 

individual base classifier. He used KDD99 training data set in both training and test 

procedures as well as performed five-class (normal, DoS, Probe, U2R, and R2L ) 

classification. He firstly used four base classifiers (neural networks, SVM, k -nearest 

neighbor (k -NN) and decision trees) to advance classification individually and then fused 

their inferences using three combination strategies: majority voting, average rule and 

belief function. He claimed his ensemble model overall got 99.68% detection rate (DR) 

and 0.87% false positive rate (FPR). However, he did not mention DR and FPR in each 

class. Also, we argue that if his experimental result still performed so well if KDD99 

testing set was included in his experiment. The reason is that the testing set has extensive 

new types of attacks that are not correlated with attacks shown in the training set. 

Another example can be found in the work of Mukkamala et al. [5]. They designed two 

ensemble models: one consisted of three multilayer feedforward neural networks and the 

other was made up of neural networks, Support Vector Machine (SVM) and Multivariate 

Adaptive Regression Splines (MARS). By using the majority voting technique, the 

outcomes from individual base classifiers were then combined together. The 

experimental result showed that the ensemble approach produced a better result than that 

of each base classifier. In one of their experiments, they fused three base classifiers’ 

outputs with 48%, 0%, and 16% accuracies together and get 56% ensemble accuracy. 

However, Hansen and Salamon [6] had proved that multi-classifiers will only work when 

it is possible to build individual classifiers which are more than 50% accurate. 

Furthermore, they used the same data set in both training and test procedures, which the 

experimental result cannot explain the detection ability of novel attacks. 
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FIGURE 6.1 TOPOLOGIES OF PROPOSED INTRUSION DETECTION SYSTEM 

6.2 Three-Layer Hierarchy Ensemble Classifier Approach 

For a successful ensemble intrusion detection scheme, each classifier used in the system 

should be independent to others to achieve the best fusion result. Hence, we propose 

three-layer hierarchy multi-classifier intrusion detection architecture as illustrated in 

Figure 6.1.   

In the first layer, three groups are constructed and each of them consists of a set of three 

base feature-selecting classifiers. In order to improve the diversity of three classifiers, 

different soft computing techniques as well as feature spaces are carefully selected and 

applied to the base feature selecting classifiers. In the second layer, the inferences derived 

from three base feature-selecting classifiers in a group are integrated and optimized. 
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Finally, the outputs from three groups are fused together to draw a final conclusion of the 

ensemble in the third layer. 

There is often no clear boundary between normal and abnormal of a computer user’s 

activity. Patterns of attacks are sometimes similar to those of normal activities. Therefore 

in the kernel of base feature selecting classifiers we select a variety of supervised learning 

techniques that can provide capability of dealing with vagueness: two-stage Fuzzy KNN 

DST classifier (proposed in chapter 5), naive bayes classifier, and backpropagation neural 

network classifier. All of them are capable of providing a dynamic decision boundary of 

network traffic instead of only assigning network traffic to a member of normal category 

or a member of abnormal category. During the entire course of work, the same data set 

KDD99 is used for training and testing those different soft computing models. For 

maximizing the diversity of the ensemble, three partial feature subsets, 9 basic features 

(1-9), 13 content features (10-22), and 19 traffic features (23-41), of the original KDD99 

41 features are applied to three base feature selecting classifiers, respectively. 

The major threats to sensor networks are the external attack and internal attack [2]. The 

malicious user concept arises originally from the requirements for open use systems. 

These unauthorized intruders are not uniformly cleared both for reasons of operational 

need and economy. The external attack is countered by using combinations of physical, 

procedural and communications security techniques. These techniques, some highly 

advanced, are the bulk of the present state-of-the-art in security issues.  The internal 

attack is countered by using wormholes, sinkholes, select forwarding, and HELLO 

FLOOD attacks mostly through the routing process [3].  
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While we emphasize the threat from the malicious user, we are not unmindful of other 

security threats and risks.  The problem of accidental leaking classified information, 

physical penetration of system sites, interference with or interrupt of communication, 

mishandling of classified material and the like are serious. To a large extent, these 

problems are common to any information system processing classified information and 

can be solved by well-understood techniques. But the intrusion prevention techniques (1st 

line of defense) like encryption/decryption, key management, and authentication alone 

cannot sufficiently protect the sensor networks from these attacks. In effect, the defence 

against these attacks surrounds the system and its user community with a barrier that 

must be breached before the system can be compromised. By adopting an effective 

intrusion detection system (IDS) as 2nd line of defence, the threat attacks can also be is 

eliminated before they get into the system [4]. Total cost of recovery from network 

epidemics like Nimda, Bagle, Code Red, SQL Slammer, and Mpvars attacks [6] are 

ginormous to the whole society. Especially in some circumstances, the accuracy of the 

classifiers is so crucial that a wrong prediction of attacks may result in extraordinarily 

high costs. Misclassifications [7] may come from the high similarities of the feature set 

between two objects, which make it difficult to distinguish them precisely. 

6.3 Three Base Classifier For Three-Layer Ensemble Approach 

We choose three base classifier for three-layer ensemble approach. Having finished the 

process of base feature selecting classifiers’ derivations, all the decisions from multiple 

ones are combined into a fused result for each group. Finally, the predictions of three 

groups are then integrated to produce an ultimate conclusion of the ensemble.  
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6.3.1 Backpropagation Neural Network Classifier  

A backpropagation neural network uses a feedforward structure to solve classification 

problems by its supervised learning algorithm. It consists of a collection of processing 

units that are highly interconnected. The network weights are updated by using gradient-

based optimization algorithm during the training period. When the network converges to 

the local minima of error, the output layer of the network will show the result when data 

is fed into the input layer. Based on the data given for training, neural networks has the 

ability to learn how to process intrusion detection tasks. It acts as a computational model 

to process the network traffic information. It has the ability to generalize from learned 

data, and performs generalization of attacks and fault tolerance to imprecise and 

uncertain information. At the end of the training procedure, the future network traffic are 

then identified as whether malicious attacks or normal usage behavior. 

6.3.2 Two-Stage Fuzzy KNN DST Classifier 

The two-stage fuzzy KNN-DST classifier is proved to be capable to detect unknown 

intrusions and mutated versions of known intrusions. We choose to use the k-nearest 

neighbor (k-NN) algorithm for its robust performance and its tolerance for inaccuracy 

and random errors in the input data. 

In this developed new algorithm, a belief value of a test connection associated with a 

known class is softly measured based on the distance between the input data and the 

centroid of the class, and the Dempster-Shafter Theory (DST) is incorporated into the 

framework to fuse multiple evidences generated from a weighted k-NN algorithm to form 

a pignistic probability of a test connection belonging to a known class.  The centers of 
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known classes are softly defined and computed using a semi-supervised fuzzy c-means 

(FCM) algorithm from the training data.   

Stage one classification determines if a connection is normal data or an intrusion. If it is 

an abnormal intrusion, stage-two classification is needed to determine if it is one of 

known attacks or unknown attack. We choose this classifier as our one of base classifiers 

to detect the unknown attacks especially. 

6.3.3 Naive Bayes Classifier 

The naive bayes classifier is based on conditional probabilistic to perform decision of a 

classification problem. It uses Bayes' Theorem with independence assumptions, which 

assumes a set of features are conditionally independent of one another given a class. 

When a set of classes are observed in the training data, the naive bayes classifier then 

assign an observed data to one of classes with highest probability. By applying naive 

bayes classifier to an intrusion detection task, a set of training network traffic data is 

given to find the prior probabilities for normal or a known class of attacks. As unseen 

network traffic arrives, the classifier then uses Bayes Theorem to decide which class the 

traffic should belong to. 

6.4 Combination Methods For Three-Layer Ensemble Approach 

In order to evaluate the result of different combination methods, we carried out four 

fusion techniques: the majority voting rule, the average rule, Dempster-Shafer technique, 

and Bayesian combination method. We discover our proposed approach to compare with 

classical ensemble models, such as boosting and stacking. Freund & Schapire 

demonstrate the use of boosting ensemble classifier to produce series of classifiers based 
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on their performance. The examples predicted incorrectly by previous classifier are 

chosen more often for a new classifier to learn. While our method will pass on the 

connections which are classified with low confidence for further classification and label 

classified connections with high confidence with correct class. Stacking is a technique by 

using meta-learner, which chooses more reliable classifier to get higher accuracy.  

Grading is another technique by using grading classification as meta-classes. Both 

arbitrating and grading use disagreements from references to select a new training set 

without generating new attributes.  

Besides the notability of multiplicity among the base classifiers, the right choice of a 

combination method is also an important issue in creating a supreme performance. A 

variety of combination methods have been reported for combining the outputs of the base 

classifiers into an ensemble result. According to their characteristics, they can be 

classified as linear combination methods, non-linear methods, statistical-based methods, 

and computationally intelligent methods. Linear combination method is the simplest 

method to fuse base classifiers’ outputs together. Summation and average are the popular 

ways for the combination. Non-linear method such as majority voting is used when the 

output of classifier is a ranked list of classes in accordance with the degrees of belief on 

classes the input pattern belongs to. Statistical-based methods are Dempster-Shafer 

techniques and Bayesian combination methods. The computationally intelligent method 

is based on computational intelligence techniques such as fuzzy logic, neural networks, 

and Naïve Bayes algorithms.  

For comparing the performance of different combination operations in our intrusion 

detection task, we carry out four fusion techniques: the majority voting rule, the average 
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rule, Dempster-Shafer technique and Bayesian combination method to combine the 

outputs together. With equal posterior estimation distribution of classifiers’ output, the 

majority voting rule assigns the input network traffic to the majority class among the 

outputs of classifiers. The average rule assigns the input network traffic to the maximum 

value of the posterior probability summation divided by the number of classifiers we 

implemented. As for the Dempster-Shafer and Bayesian combination methods, both 

assign the input network traffic to the class with highest belief value. The difference 

between them is that the Bayesian combination method involves the computation of the 

prior probability of each class but Dempster-Shafer technique does not, while it computes 

the probability that evidences support the attack or normal classes we consider.  

6.5 Experimental Methodology  

6.5.1 The Data Set 

In our experiment, 10% KDD is taken as our training set and corrected KDD and 5074 

novel attacks are taken as our testing set, respectively. KDD 99 data sets are made up of a 

large volume of network traffic connections describing TCP connections and each 

includes 41 features plus a label of either normal or a type of attack. The training set 

includes 494,020 connections that are distributed as 97,277 normal connections, 391,458 

DoS attacks, 4,107 Probe attacks, 52 U2R attacks, and 1,126 R2L attacks. The testing set 

has two parts 311,029 KDD connections and 5027 novel attacks. The 311,029 KDD is 

made up of 60,593 normal connections, 229,853 DoS attacks, 4,166 Probe attacks, 228 

U2R attacks, and 16,189 R2L attacks.  The 5074 novel attack connections is added to test 

our classifier. We use Mac OS X version 10.7.5 as the victim machine to hit malicious 
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web sites running exploit kits such as Blackhole, which will probe our victim computer 

and attempt to infect it. Other methods we used are to visit malicious web sites either by 

offering of free or to click on spam e-mail messages. After being infected by these attacks, 

the Wireshark software installed on our victim machine is then used to manage and 

monitor malware activity. 

6.5.2 Preprocessing  

In the beginning of the experiment, we reduce the sizes of the original KDD 99 training 

and testing sets by removing the duplicated connections. The new training set has 

145,585 connections that are distributed as 87,831 normal connections, 54,572 DoS 

attacks, 2,131 Probe attacks, 52 U2R attacks, and 999 R2L attacks. The new testing set 

has 51,041 connections that are distributed as 47,913 normal connections, 23,568 DoS 

attacks, 2,682 Probe attacks, 215 U2R attacks, and 2,913 R2L attacks.  

For each connection, features represented by symbolic values are replaced by numeric 

values. For example, the values of icmp, tcp, and udp of feature protocol_type are 

replaced by values 1, 2, and 3, respectively. Values of each feature are normalized from 0 

to 1 in order to offer equal importance among features. Class labels, normal, DoS, Probe, 

R2L, U2R, and novel attack are replaced by 1, 2, 3, 4, 5, and 6 respectively. In addition, a 

class label with values 1 and 2 is added to indicate normal traffic and attacks (DoS, Probe, 

R2L, and U2R), respectively. 

6.5.3 Data Selection  

Although the KDD99 data set includes 39 different types of attacks, the problem of 

uncertainty exists caused by limited information of network traffic data. In real world 
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modern computer systems and networks, hackers constantly develop new attack codes to 

exploit security vulnerabilities of organizations every day. It is impossible to cover all 

intrusive behavior space especially unknown attacks in the collected data set.  

Accordingly, in order to simulate the problem of uncertainty, only a small amount of 

normal and attack connections are randomly selected from training and testing sets in 

each experiment. In the training set, all the 52 U2R attacks and 999 R2L attacks are 

included. For balancing the distribution of normal traffic and each attack group, 999 

connections are randomly selected for normal class and each attack group (DoS, Probe, 

and U2R). In the testing set, all the 215 U2R attacks are included. Also, 215 connections 

are randomly selected for normal class and each attack group (DoS, Probe, and R2L).  

6.6 Experimental Results  

For detecting the attacks, training and testing are performed in each trial. In the training 

phase, three classifiers, two-stage fuzzy k-NN DST classifier, backpropagation neural 

network classifier, and naive bayes classifier, are constructed using the training data. The 

testing data are then fed into each trained classifier to identify normal behavior and 

intrusions in the testing phase. For two-stage fuzzy k-NN DST classifier, three nearest 

neighbors are selected for each testing connection. For the backpropagation neural 

network classifier, numbers of hidden neurons within each neural network is decided by 

the number of input features, which is equal to the square root of number of input 

features multiply by two.  

We evaluate the performances of intrusion detection tasks by using standard 

measurements such as detection rate (DR), false positive rate (FPR), and classification 
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rate (CR). To minimize the inaccuracy and variation factor of experiment results, 10 trials 

are performed in every detection task and then the average of those trials is recorded. 

Table 6.1 shows the averaged DR and FPR performances of three classifiers in each 

group of the first layer, which classifiers 1, 2, and 3 represent two-stage fuzzy k-NN DST 

classifier, backpropagation neural network classifier, and naive bayes classifier, 

respectively. The groups 1 stands for 9 basic features, and the group 2 stands for the 13 

content features, and the group 3 stands for 19 traffic features are used, respectively.  

The results indicate that the two-stage fuzzy k-NN DST classifier using content feature 

set has the best performance compared with those of other classifiers using partial feature 

set. It has very low FPR (1.33%) and DR (92.55%), which implies only few normal 

connections or malicious attacks are classified into normal behavior. By using group 1 of 

basic features set, two-stage fuzzy k-NN DST classifier again has the best overall 

performance, which its CR reaches 89.03% and its FPR is only 6.23%. By using group 3 

of traffic features set, two-stage fuzzy k-NN DST classifier compete with other two base 

classifier with its CR of  90.07% and FRP of 4.33%.  

For the backpropagation neural network classifier using basic feature set, it has both high 

FPR (93.21%) and DR (94.16%), which represents most of the connections are classified 

into attack group. For the Naïve Bayes classifier using content feature set, it has both 

high FPR (88.50%) and DR (13.44%), which represents most of the connections are 

classified into attack group. In general, the performances of two-stage fuzzy k-NN DST 

classifier using three diverse partial feature sets are equally well compared with those of 

the other two classifiers. 
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TABLE 6.1 THE PERFORMANCE OF THREE FEATURE SELECTING 
CLASSIFIERS 

  Group 1  Group 2  Group 3 

  DR FPR CR  DR FPR CR  DR FPR CR 

 Classifier 1 96.59 6.23 89.03  92.55 1.33 94.57  94.21 4.33 90.70 

Layer 1 Classifier 2 94.16 93.21 76.69  85.98 13.72 86.04  83.49 10.28 84.73 

 Classifier 3 63.53 3.35 70.16  88.50 13.44 88.11  65.47 1.07 72.16 

 

 TABLE 6.2 THE PERFORMANCE USING MAJORITY VOTING AND AVERAGE 
RULE 

  Majority Voting Average Rule 

  DR FPR CR DR FPR CR 

Layer 2 

Combiner 1 85.70 16.56 85.25 89.02 16.74 87.87 

Combiner 2 88.74 13.58 88.28 52.79 7.16 60.80 

Combiner 3 80.35 5.44 83.19 80.00 4.74 83.05 

Layer 3 Final Result 87.21 5.26 88.72 85.03 2.19 87.59 

 

TABLE 6.3 THE PERFORMANCE USING DEMPSTER-SHAFER AND BAYESIANS 

  Dempster-Shafer Bayesian 

  DR FPR CR DR FPR CR 

Layer 2 

Combiner 1 88.60 16.74 87.53 90.55 17.95 88.85 

Combiner 2 15.14 0.37 32.04 90.12 13.81 89.33 

Combiner 3 77.17 4.93 80.75 86.74 11.53 87.09 

Layer 3 Final Result 83.49 1.91 86.41 93.35 9.63 92.75 

 
Table 6.2&6.3 shows the performances of combiners on layers 2 and 3 using different 

combination methods. The results show that all of the four fusion techniques improve the 

overall performances in FPRs, DRs, and CRs compared with those of individual 

classifiers using partial feature sets shown in Table 6.1. For evaluating the performance 
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of the proposed ensemble model, the experiments of three classifiers using the entire 41 

features are also done and the results are demonstrated in Table 6.4  

The result indicates that all of the three classifiers using full feature set have equivalent 

CRs. All of their FPRs are below 11% and all the DRs do not reach to 85%. It also shows 

all of the four combination methods outperform the three classifiers using full feature set. 

Especially, the Bayesian combination method achieves the best outcome, which FPR, DR, 

and CR are 9.63%, 93.35% and 92.75%, respectively.  Table 6.3 shows a comparison of 

three classifiers using full feature set and approaches using four different combination 

methods.  

Consequently, we further analyze its detection accuracies of five attack groups with other 

classifiers and Table 6.5 shows the result. From the values we observe, the ensemble 

approach using the Bayesian combination method performs well in detecting DoS, Probe, 

U2R, and unknown attacks that each one has over 93.5% DR, R2L attacks with over 

83.24% DR. 

6.7 Summary 

Ensemble-classifier technique has been applied to the intrusion detection task. We 

developed a three-layer hierarchy structure that includes three groups and each of them 

consists of three base feature selecting classifiers. In each base feature selecting classifier, 

we apply different machine learning algorithms and feature subsets to solve detection 

uncertainty problem and maximize the data diversity to achieve the best fusion result. 

During the experiments, we use a very small amount of network traffic data to simulate 

the limited information for the network embedded systems. Also, we compared the 
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performances of different combination methods in fusing the outputs derived from first 

and second layers in the proposed model. The experimental results have demonstrated 

that this hierarchy-structure method can achieve a better detection performance than that 

of a single classifier using either partial feature subsets or the full feature set. The result 

also shows that the Bayesian combination method achieves the best detection accuracy 

among the four diverse combination techniques. In addition the unknown attacks have 

been detected with good performance by using our proposed three-layer ensemble 

classifier. 

TABLE 6.4 THE PERFORMANCE OF THREE FEATURE SELECTING 
CLASSIFIERS 

  Group 1  Group 2  Group 3 

  DR FPR CR  DR FPR CR  DR FPR CR 

 Classifier 1 95.47 6.26 90.48  92.23 3.08 88.82  92.31 5.27 89.45 

Layer 1 Classifier 2 92.75 89.37 74.52  80.40 14.02 81.28  80.71 11.05 80.25 

 Classifier 3 59.32 4.48 64.32  80.41 12.89 78.61  67.52 3.07 69.21 

 

TABLE 6.5 COMPARISION RESULT 

Method Normal Probe DoS U2R R2L Unknown 

3 layer Ensemble (DR%) 99.85 99.36 99.79 93.50 83.24 95.24 

3 layer Ensemble (FP%) 0.05 0.36 0.04 12.73 11.58 11.13 

DT (DR%) 98.77 78.68 94.72 51.43 2.84 35.70 

DT (FP%) 14.96 0.57 2.85 0.10 0.03 14.23 

ID3 (DR%) 99.93 97.85 99.51 49.21 62.75 18.46 

ID3 (FP%) 0.10 0.55 0.04 0.14 10.03 3.15 

C4.5 (DR%) 98.3 99.7 76.3 21.1 30.2 42.90 

C4.5 (FP%) 0.07 0.01 0.01 0.02 0.01 6.25 



97 
 

NB (DR%) 98.08 83.32 94.53 51.43 9.54 27.38 

NB (FP%) 14.22 0.62 0.84 0.24 0.60 4.40 

MLP (DR%) 99.6 75.5 99.71 14.3 32.7 33.15 

MLP (FP%) 0.04 0.32 0.02 0.82 5.31 1.49 

ESC (DR%) 98.2 84.1 99.5 14.1 31.5 27.32 

ESC (FP%) 0.12 0.67 0.01 0.02 0.01 0.09 

Boosting (DR%) 99.22 82.48 95.36 35.71 5.51 22.57 

Boosting (FP%) 15.01 0.46 0.44 0.01 0.03 7.26 

Bagging (DR%) 98.74 80.03 94.72 42.86 3.46 31.84 

Bagging (FP%) 14.18 0.41 4.64 0.02 0.30 2.39 

CFC (DR%) 99.03 97.46 88.24 60.00 21.47 16.22 

CFC (FP%) 10.46 1.45 0.75 0.04 0.03 8.54 
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CHAPTER 7 

7.CONCLUSION AND FUTURE WORKS 

 

In this chapter, we summarize the research and then review the thesis contributions. At 

last, we discuss important future work. 

7.1 Summary  

This thesis describes an intrusion detection system for detecting computer intrusions from 

network traffic data. It consists of classification programs and rules, ensemble classifiers 

model, and two-stage classifiers.   

We start with our research on studying the work in the field of intrusion detection 

systems. We describe the techniques used in designing intrusion detection systems as 

well as examine several representative approaches that have been implemented in 

intrusion detection systems. We then indicate that the data sources used by intrusion 

detection systems do have some problems, which are problem of irrelevant and redundant 

features, problem of uncertainty, and problem of ambiguity. These problems not only 

hinder the speed of detection but also decline the detection performance of intrusion 

detection systems.  

We study the problem of uncertainty and ambiguity in audit network traffic data. The key 

idea is to imitate ambiguous of users’ activities by fuzzy clustering technique, and to 

simulate uncertainty caused by limited information by incorporating only a small amount 

of network traffic data for analysis. Then, we identify future network traffic by fusing 

evidences found in clustering development by the use of Dempster-Shafer theory. Also, 
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we employ k-NN technique to speed up the detection process. We compare our result 

with those derived from three k-NN based unsupervised classification algorithms. The 

experimental results demonstrate that our approach has a superior performance to the 

other three algorithms. The results also demonstrate that our approach is capable of 

solving network traffic data which contain degrees of uncertain information.  

We propose an ensemble intrusion detection model. We believe that the system is a 

preferable solution to achieve a higher detection performance with a combination of a set 

of base classifiers, which are built on the top of different feature subsets. In the ensemble 

intrusion detection model, In this paper, the ensemble-classifier technique is applied to 

the intrusion detection task. We develop a three-layer hierarchy structure that includes 

three groups of classifiers and each consists of three base feature selecting classifiers. In 

each base feature selecting classifier, we apply different machine learning algorithm and 

feature subset to solve uncertainty problem and maximize the diversity. During the 

experiments, we only include a very small amount of network traffic to simulate 

uncertainty caused by limited information. Also, we compare the performances of 

different combination methods in fusing the outputs derived from the first and second 

layers of proposed model. The experimental results demonstrate that this hierarchy 

structure obtain a better detection performance than that of a single classifier using either 

partial feature subset or full feature set. The result also shows that the Bayesian 

combination method achieves the best detection accuracy among those four diverse 

combination techniques. In the future, we will continue the research of further improving 

detection performance of both normal and malicious activities, especially in promoting 

the detection accuracy in R2L attacks 
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At last, An innovative two-stage fuzzy k-NN DST classifier has been developed for 

effective detection of unknown intrusions and the variants of known intrusions. The new 

algorithm overcomes the rigid requirement of feature vector similarity between the 

training data and the test data in current IDS by introducing fuzziness, “soft” distance-

based neighbouring concepts, and the DST-based evidence fusion method into the 

learning and classification schemes.  Furthermore, the two-stage entropy-based 

classification approach is employed to identify unknown attack in the incoming 

connections without any pre-training data or labelled information for the attack.  The 

robustness and effectiveness of the new approach are demonstrated by the application 

results of the new classifier to the traditional KDD99 intrusion data and the newly 

simulated data containing both known and unknown attacks.  The experimental results 

also show that the new classifier outperforms the existing classification algorithms in 

identifying known and unknown attacks from network traffic.  

7.2 Thesis Contributions  

We recap the thesis contributions as follows. 

• We design a supervised machine learning algorithm that combines k-nearest 

neighbors technique, fuzzy clustering technique, and Dempster-Shafer theory. We 

apply this algorithm to intrusion detection task and successfully solve the uncertainty 

problems caused by deficient incomplete and ambiguous network traffic information.  

• We propose an ensemble intrusion detection model that combines ensemble feature 

selection classifier and data mining classifier. It is a three-layer hierarchy structure, 

which each base classifier acts as an independent intrusion detector. By combining 
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these decisions from multiple base classifiers, this framework improves the detection 

performance.  

• Unknown malicious attacks can be correctly classify by entropy function to improve 

the overall detection rate involving unknown abnormal behaviors in discovering 

intrusive behaviors. 

• Semi-supervised learning is used to help predictive model testing to reduce the cost 

and improve the performance by using both labeled data (usually small amount) and 

unlabeled data (usually large amount) for training.  

7.3 Future Work  

Up to now, this dissertation has developed a network intrusion detection system based on 

ensemble of multiple base detectors. However, there are several interesting and important 

topics that need to be future explored. 

• False alarms: In the design of anomaly intrusion detection systems, not only a high 

detection rate is necessary but also a low false alarms rate is required. However, it is 

not easy to control the false alarm rate because many unusual events sometimes are 

classified to hostile activities and most of these unusual events are actually normal 

behavior. In our research, we use data mining technique to extract decision rules from 

training set to reduce the number of false alarms. We believe that the false alarm rate 

can be further reduced in the future if a more dedicated rule set can be built. The 

solution could be achieved by applying a better data mining algorithm. 

• Respond to the intrusions: In our work we focus on developing a detection method 

which can efficiently and effectively differentiate intrusive activities from large 
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volume of network events. We believe that the respond to the intrusions is also 

equally important. Once an intrusion is happened, it is necessary to properly present 

the alarm in order that system administrator can make correct and prompt decision. In 

a word, to find a method to integrate the intrusion detection system with the intrusion 

response system deserves further research. 

• Feature selection: Feature selection plays an important role on both speed and 

accuracy of intrusion detection. It selects the most informative features that cover 

normal and intrusive activities by analyzing large quantity of network traffic data. In 

this dissertation we have developed a feature selection algorithm based on 

symmetrical uncertainty measure to remove the worthless information from the 

original high dimensional database. However, we think there are still some issues that 

can be explored in order that a better performance of our designed intrusion detection 

system can be obtained, e.g., relevant and redundant features analysis and 

discretization methods and correlation based methods implementation and 

comparison.  

• Multiple identification ability: The KDD99 data set includes four groups of attacks 

and each uses diverse skill to explore system’s vulnerabilities. In our work we use 

binary classification technique to identify a network event as either normality or 

abnormality. The future direction could upgrade our system with multiple 

identification ability, i.e., the system can classify a network traffic data to normal 

activity or one of four attacks. 
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