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ABSTRACT OF THE DISSERTATION

ANALYSIS AND MODELING OF ADVANCED POWER CONTROL AND

PROTECTION REQUIREMENTS FOR INTEGRATING RENEWABLE ENERGY

SOURCES IN SMART GRID
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Amirhasan Moghadasiriseh

Florida International University, 2016

Miami, Florida

Professor Arif I. Sarwat, Major Professor

Attempts to reduce greenhouse gas emissions are promising with the recent dramatic

increase of installed renewable energy sources (RES) capacity. Integration of large inter-

mittent renewable resources affects smart grid systems in several significant ways, such

as transient and voltage stability, existing protection scheme, and power leveling and en-

ergy balancing. To protect the grid from threats related to these issues, utilities impose

rigorous technical requirements, more importantly, focusing on fault ride through require-

ments and active/reactive power responses following disturbances. This dissertation is

aimed at developing and verifying the advanced and algorithmic methods for specifica-

tion of protection schemes, reactive power capability and power control requirements for

interconnection of the RESs to the smart grid systems.

The first findings of this dissertation verified that the integration of large RESs become

more promising from the energy-saving, and downsizing perspective by introducing a

resistive superconducting fault current limiter (SFCL) as a self-healing equipment. The

proposed SFCL decreased the activation of the conventional control scheme for the wind

power plant (WPP), such as dc braking chopper and fast pitch angle control systems,

thereby increased the reliability of the system.

vi



A static synchronous compensator (STATCOM) has been proposed to assist with the

uninterrupted operation of the doubly-fed induction generators (DFIGs)-based WTs dur-

ing grid disturbances. The key motivation of this study was to design a new computation-

al intelligence technique based on a multi-objective optimization problem (MOP), for the

online coordinated reactive power control between the DFIG and the STATCOM in order

to improve the low voltage ride-through (LVRT) capability of the WT during the fault,

and to smooth low-frequency oscillations of the active power during the recovery.

Furthermore, the application of a three-phase single-stage module-integrated convert-

er (MIC) incorporated into a grid-tied photovoltaic (PV) system was investigated in this

dissertation. A new current control scheme based on multivariable PI controller, with a

faster dynamic and superior axis decoupling capability compared with the conventional

PI control method, was developed and experimentally evaluated for three-phase PV MIC

system.

Finally, a study was conducted based on the framework of stochastic game theory

to enable a power system to dynamically survive concurrent severe multi-failure events,

before such failures turn into a full blown cascading failure. This effort provides reli-

able strategies in the form of insightful guidelines on how to deploy limited budgets for

protecting critical components of the smart grid systems.
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CHAPTER 1

INTRODUCTION

This introductory chapter contains five sections. The first section describes the back-

ground of the problem. The second section introduces motivations and research purposes

of the dissertation. The third section articulates objectives and contributions of this re-

search. The summary of the literature search of the problem is presented in fourth section.

Finally, the fifth section presents the general organization of this dissertation.

1.1 General Statement of Problem Area

It has been very clear from recent studies and documentations that the fossil fuels would

last only a few more decades. The cost of fossil fuel has become a major challenge for

all of human kind. Not only the economic value but the environmental impacts of fossil

fuels have clearly made us move toward alternatives [1]. The greatest alternatives that can

really make a difference for sustainability, such as reducing greenhouse gases and long

term economics, are the renewable energy sources (RES) like wind and solar power.

Integration of the large RESs affects the network in several significant ways, such

as transient and voltage stability, short circuit ratings, existing protection schemes, pow-

er leveling and energy balancing, and power quality [2]. To protect the network from

threats related to these issues, utilities and other electric energy entities imposed rigor-

ous technical requirements and grid code regulations, which are classified into four major

categories: (i) fault ride through requirements, (ii) active and reactive power responses

following disturbances, (iii) active power control or frequency regulation support and (iv)

reactive power control or voltage regulation capability [3, 4].

RESs were traditionally tripped with circuit breakers once the voltage at their ter-

minals reduced below 80% because the penetration level of wind power was extremely

lower compared with the conventional generation systems and their impact on the grid
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(a) (b)

Figure 1.1: Danish grid codes. (a) LVRT requirement. (b) Reactive power support re-

quirement.

was low. The trend toward the integration of more RES plants contributes to the increase

in fault current levels, as well as voltage reductions at the terminals of RES resources,

which lead to disconnection a large RES and consequently serious effects on the power

system operation. Thus, new grid code requirements concerning the grid voltage support,

which is called as low voltage ride-through (LVRT) capability, are regularly being devel-

oped [1–4]. This LVRT requirement implies that wind and solar generation facilities need

to stay connected through a fault scenario to provide active and reactive power support to

the distribution or transmission network.

Figure 1.1(a) shows a practical example of the LVRT curve defined by the Danish sys-

tem operator for wind turbines (WTs) connected to the grid [5]. Based on this regulation,

if the voltage remains at the level greater than 20% of nominal for a period less than 0.5

s, the WT should be connected to the grid. WTs are only stipulated to disconnect from

the grid when the voltage profile falls into the Area B. Besides the LVRT requirements,

some grid codes require large WTs to contribute to the voltage restoration of the power

system by injecting the reactive power during the fault and the recovery period [3], while

maintaining the operating point above the area of Figure 1.1(b).
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Furthermore, many power system operators in Europe and other regions of the world

enforce strict rules on the active and reactive power responses of large wind farms, which

are connected to the weak grids, during and even after faults in the network [3, 4]. These

strict rules are set to secure the voltage and frequency system stability following various

types of disturbances. Indeed, regulations on the active power response of wind farms

assist the grid to dampen the low-frequency oscillations of the grid, while the reactive

power provided by wind farms can improve the voltage stability of the grid. According

to the active/reactive power responses of WTs for regional grid codes discussed in [3],

there are various possible conditions when the WTs are forced to meet both active and

reactive current requirements. In some regional grid codes, such as in Australia, Denmark

and Germany, the reactive current component has higher priority under fault conditions

to guarantee voltage support; hence it is allowed to reduce the active current injection

during the fault. While grid codes of Ireland, Spain and the UK devote more portion of

the current to the active power component under fault conditions to guarantee frequency

support; thus it is allowed to retain the active power generation during the fault in pro-

portion to the remnant voltage. Therefore, the active and the reactive current components

must be prioritized in proportion to each other based on the specific regional grid code,

keeping the output current of the wind generator within the design limits [3].

Wind Power Generation

Wind turbines with the grid-connected mode of the operation play a significant role to-

ward in sustainable energy development in the future. In 2007, 20,000 MW wind power

was installed all over the world, bringing world-wide installed capacity to 94,112 MW.

This is an increase of 31% compared with the 2006 market, and represents an overall

increase in the global installed capacity of about 27% [6]. The present target is to achieve

12% generation of the world’s electricity from wind power by 2020. The ability of WTs to

meet the international grid codes is greatly influenced by the technology used in the wind
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Figure 1.2: Different wind generator technologies.

farm. Figure 1.2 shows three topologies that have been widely used in wind generation

systems [7].

The most conventional wind farms are based on a fixed-speed induction generator

(FSIG)-type directly connected to the grid, which is considered as the simplest and most

cost-effective technology among various wind generators [3, 8, 9]. Since this generator

type draws the reactive power during the fault period and even after fault clearance; it

not only can meet the grid code requirements, but also it exacerbates the voltage sag

condition by absorbing reactive power. In order to improve LVRT capability of the FSIG-

based wind turbine, several methods have already been deployed. The comprehensive

review of LVRT capability improvement of this type of the wind germination has been

accomplished in chapter 2.
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Permanent magnet synchronous generators (PMSGs) with a full-rating converter of-

fers a number of advantages for WTs, including low maintenance requirements, more

reactive power supply and better ride-through capability because power electronic con-

verters are decoupled completely from the grid [10, 11]. However, there is a strong in-

teraction between the turbine control system and the mechanical loads that the turbine

experiences. The mechanical loads are divided into two distinct types: extreme and fa-

tigue loads. Extreme loads are loads that a given component needs to be able to withstand

once; while fatigue loads are accumulating over time and threaten to damage the turbine

after several years of operation. An important source of extreme loads may occur during

fault events. At the beginning of the fault, the maximum power injected into the grid

reduces proportional the voltage sag amplitude, while power injected from the wind gen-

erator remains relatively constant. Due to unbalance power between the mechanical-input

power and the electrical-output power, the dc-link voltage, as well as rotor speed exceed-

s their safety limits, which can potentially force the WT to disconnect from the grid.

The quickly growing power ratings of the WTs simply exacerbate these problems. Thus,

PMSG suffers from large variations of the dc-link voltage during and after the grid fault

and extreme loads occurring either prior or during the shut-down process [3, 12]. Any

control system that helps to avoid unnecessary faults or that improves the behavior during

the shut-down process will reduce turbine loads or contribute to turbine availability.

Recently, the majority of the WTs in power systems have been equipped with doubly

fed induction generators (DFIGs) [13–16]. This technology offers the advantages of the

variable speed operation with active and reactive powers control using both the rotor-side

converter (RSC) and grid-side converter (GSC), which are rated for only a small fraction

(25% ∼ 30%) of the rated power generators. One of the technical problems related to the

DFIG-based WTs is the grid disturbances or low voltage ride-through (LVRT) capability.

This sudden grid voltage reduction leads to a high current in the rotor circuit and the
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converter, resulting in damage to the DFIG converters [13]. The traditional solution is to

use a crowbar system to short-circuit the rotor and protect the rotor-side converter from

over current [13,15]. However, WTs equipped with active crowbars do not fulfill the latest

grid codes, as the machine draws a large amount of reactive power from the power grid,

which can exacerbate the voltage sag condition. Moreover, the power unbalance during

the fault may excite low-frequency oscillations in the WT shaft system, which results in

oscillations of the shaft speed and the output active power [15]. These oscillations are

very slowly damped if there is no damping control system, clearly designed for the WT

generation system.

Photovoltaic System

Attempts to reduce greenhouse gas emissions are promising with the recent dramatic in-

crease of installed photovoltaic (PV) capacity, which is predicting a 25% growth over

the next 10 years [17]. Power electronic interface circuit as an inseparable and costly

part for utilizing the PV system is required to guarantee the power exchange from the

PV source to the grid without violating the grid codes and standards such as CSA-C22.2,

UL 1741, IEEE 1547, and IEC 62109-1 [18]. Practically, the grid-connected PV system

architectures can be classified as three basic types: centralized inverter, string or multi-

string inverter, and AC module-integrated converter (MIC) (also called micro-inverter),

as shown in Figure 1.3, [19].

Although the centralized inverter can operate at high efficiency with one dc/ac pow-

er conversion stage, there are some disadvantages in this structure, such as: 1) each PV

module cannot operate at its maximum power point, which results in less energy harvest-

ed; 2) additional losses are introduced by string diodes and junction box; and 3) single

point of failure and mismatch of each string or PV panel affects the PV array efficiency

greatly. The string inverter is a modified version of the centralized inverter. however, it

still suffers some of the disadvantages of the centralized inverter, such as high-voltage
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Figure 1.3: Grid-connected PV system architectures. (a) Centralized inverter. (b) Multi-

string inverter. (c) AC module-integrated converter (MIC) or also called micro-inverter.

hazard, single-point failure, and difficulty in maintenance. Among these types, the MIC

concept is the most recent method for the grid-tied PV system development on the market.

There is a growing propensity to use this concept for future solar PV deployment due to

its superior advantages, such as the low cost of mass production, high efficiency, easier

installation, and improved energy harvest [19]. The PV MIC systems are commercially

used in both single-phase and three-phase distributed PV generation, with a power rating

range of 150−400 W and an input dc voltage variation of 25−50 V.
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Protection of Smart Grid Based RES

The connection of a large number of wind and solar farms to existing distribution net-

works leads to an increase in the short-circuit capacity of the power system. Due to

disturbing the protection coordination, traditional protection methods based on distance

and over-current protection will not work successfully. It is thus required to develop s-

mart protection and control actions for ensuring highly reliable and healthy electric pow-

er infrastructure by increasing resiliency against component failures or natural disasters,

i.e. self-healing ability. Novel superconducting fault current limiter (SFCL) technologies

have been launched and introduced into the network as a possible solution to eliminate

or largely minimize fault currents [20]. RSFCL is considered as self-healing technology

since it eliminates the need for any control action or human intervention due to its auto-

matic excessive current detecting and automatic recovering from non-superconducting to

superconducting states. The first-cycle suppression of a fault current by an SFCL results

in an increased transient stability of the power system carrying higher power with greater

stability. Due to the recent development of lower cost second-generation high temperature

superconducting (HTS) wires, the SFCL has become more viable [21].

Among different SFCL devices, the resistive-type SFCL has a simple structure that

consists of a lengthy superconductor wire inserted in series with the transmission lines

or distribution feeders [22], as shown in Figure 1.4. A parallel resistance to the super-

conductor is necessary to protect the superconductor from destructive hot spots during

the quench. In the United States, development teams and the U.S. Department of En-

ergy (DOE) are developing SFCL prototypes for grid deployment within the next few

years [23]. A survey was conducted by Economic Policy Research Institute (EPRI) in

2004 that involved 28 U.S. utility companies. In this report an effort to better under-

stand the level of interest utilities is documented to show progress toward novel FCL

devices [22]. Several projects have been conducted by European companies in recen-
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Figure 1.4: Resistive superconducting fault current limiter [22].

t years. A 12 kV/16 MVA Nexans SFCL was installed into the auxiliary power supply

system of a large power plant in Boxberg, Germany, in September 2009 [22].

The smart grid is considered as one of the most critical infrastructures of any nation.

The interconnection of RESs to the smart grid makes it vulnerable to widespread failures,

in which the failure of one node (e.g., substation, transmission line, and communication

device) can lead to a cascading failure that propagates to many other interdependent com-

ponents [24]. One notable example of such propagating failures is the well-known North-

east blackout in 2003 that affected 55 million people and caused an estimated economic

loss between 7 and 10 billion [25]. Growth and development of the smart grid has raised

serious concerns about the protection of existing power networks. There are an enormous

number of such failure events. Although each of them can be analyzed as a causal chain

of events after it occurs, it is not feasible to describe all possible causes before happening

a severe disturbance. An illustrative example of the smart grid with RES along with its

abstracted undirected graph is shown in Figure 1.5, where red stars represent several fail-

ure scenarios occur in the smart grid system. Combinations of several types of failures,

including failures of protection equipment, transient instability, reactive power problems
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Figure 1.5: An illustrative example of the smart grid with RES and its abstracted undi-

rected graph, where red stars represent several failure scenarios occur in the smart grid

system.

and voltage collapse, communication, operational error, and etc, might generally hap-

pen in cascading failures. Most works in the power system protection analysis have so

far focused on only one of these aspects of failures. Although this way of approach has

made possible impressive advances in understanding of each aspect, it does not provide a

framework for understanding the overall phenomenon. Since an exhaustive computation

of all possible combinations of failures is infeasible, and making a very detailed model of

all possible failures and their interactions is beyond the state-of-the-art, compromises are

needed in modeling and analyzing the effect of severe multi-failure events on the elements

of a smart grid system.

Traditionally, power grid planning techniques encompass N-1 contingencies for pro-

tection analysis, in which a single failure event occurs in the grid [26]. However, signifi-
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cant failures might be triggered if concurrent adversarial events are launched to compro-

mise multiple parts of the power grid. Compared with a single failure, multiple failures

can have not only serious physical impacts on the smart grid, but they can also potential-

ly deactivate the effect of the operator (decision maker) action mechanisms. In a recent

report by the North American Electric Reliability Corporation (NERC) [26], the speci-

fied multiple contingencies was identified as one of the three representative high-impact,

low-frequency (HILF) threats for power systems.

1.2 Motivation and Purpose of Research

The aforementioned technical challenges can be classified into the two major groups. The

first group of concerns is related to the interconnection issues between the RES technolo-

gies and local networks, addressing active and reactive power support requirements. The

second group of concerns is related to the protection issues in the smart grid system with

high level of the RESs. The goal of this research is to develop transformative approaches

and provide implementable models to enhance technical requirements in terms of pro-

tections and power control for integrating of the RES onto the smart grid. In this effort,

the advanced and algorithmic methods for specification of the protection scheme, reactive

power capability and power control requirements for interconnection of the PV and wind

power plants have been proposed. The research was accomplished by utilizing optimiza-

tion algorithms via multi-objective heuristic optimization techniques and multi-criteria

decision making methods to achieve a full penetrative approach in the optimal design for

a robust power system.

The research has also proposed the application of superconducting devices, such as

superconducting fault current limiters (SFCLs) and superconducting magnetic energy s-

torage (SMES), into the design and optimization of bulk level of renewable resources.

The work presented in this dissertation is expected to provide results that can be used
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to explore and develop superconducting technology for integrating very high levels of

renewable resources. The SFCL is one unique technology that drew interest after the dis-

covery of high-temperature superconducting (HTS) materials. Moreover, SMES is new

equipment that stores electricity from the grid within the magnetic field of a coil con-

taining of superconducting wire with near-zero loss of energy. Recent progress in power

electronics technology and the cryogenic systems have made the SMES system more out-

standing than any other energy storage systems (ESS), uch as high efficiency (up to 90%)

fast response capability and no deteriorations.

1.3 Literature Review

The U.S. government has set up a regional grid code requirement and technical regu-

lations for large renewable power plants. The pros and cons of such regulations have

been studied in several publications [3, 27]. Integration of a huge number of the RES

to existing distribution networks leads to an increase in the short-circuit capacity of the

power system. Several studies proposed various protection schemes based on differential

protection, such as communication-assisted digital relays [28], agent-based paradigm for

self-healing protection systems [29] and Distributed Wide Area Differential Protection

(DWADP) scheme [30]. In [21], the authors proposed SFCL as a self-healing method to

control the fault current levels in utility distribution and transmission networks.

Due to the recent development of cheaper second-generation high high-temperature

superconducting (HTS) wires, the SFCL has become more viable [21, 30] . A SFCL

is an appliance installed in the electric power system for limiting the excessive current

by switching into a high-impedance state during a fault event. It has been documented

that the SFCL has many advantageous features, such as current detecting and recovering

automatically, and faster excessive current damping performances.
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In order to improve LVRT capability of the FSIG-based wind turbine, several meth-

ods have been already deployed, such as fast pitching of the turbine blades [31], using

commercially available Flexible AC transmission system (FACTS) devices [32], and im-

plementing energy storage systems [33]. Authors in [34] have conducted a comparative

study on various transient stability enhancement methods proposed for fixed-speed wind

generation systems . It was shown that the pitch control system is the cheapest solution,

but it has very slow dynamic response due to the mechanical constraints of the system. Al-

so, the capital cost involved in the installation of the FACTS devices and energy storages

is relatively high because of uses of power conditioner systems.

Several studies have been proposed in the literature to limit the dc-link voltage varia-

tions and improve the LVRT capability of PMSG-based wind turbines [35–38]. Fast pitch

control can help to reduce the input-mechanical power by rotating the blades about their

longitudinal axis, also called pitching, and consequently curbs dc-link voltage fluctuation-

s. In [35], a logical fast pitch controller along with fuzzy logic controller (FLC) for back

to back converters has been proposed in order to enhance the transient performance of

WTs during severe network disturbances. Another solution is to permit the excess wind

energy to be temporarily stored in the turbine-generation shaft inertia during the grid fault-

s [36, 37]. Although, the above techniques are the cheapest solutions for enhancing the

LVRT capability of PMSG-based wind turbines, these have a very slow dynamic response

due to the mechanical constraints of the system, (the speed of the pitch actuator is slow

to contribute alone to LVRT support). The well-known method that is being used for the

PMSG-based WT systems is the braking chopper (BC) with the low cost advantage and

the simple control performance to consume this surplus power [31, 38]. However, in the

large wind power plant, including many single wind turbines, the overall cost of using the

BCs will be dramatically increased. Moreover, it is difficult to improve the power quality

at the output of the wind turbine systems since the BC can just dissipate the power.
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Various control methods are also proposed to ensure proper converter operation for

PMSG during fault conditions. The formerly analyzed converter control solutions [37,

39], are based on the classical approach of using the linear proportionalintegral (PI) reg-

ulators and pulsewidth/space vector modulation (PWM/SVM). The particular problem is

that a linear PI controller is designed for normal network voltage levels, resulting in ex-

cessive currents at reduced voltage levels during the fault. The nonlinear control methods

are introduced to improve the classical current control method [37, 40], but most of these

methods are complex and very sensitive to system parameters for practical applications,

and need proper tuning of control [41].

Due to intermittent nature of the wind, the power generated cannot follow the load de-

mand effectively, thus few additional energy storages are required to improve the power

system stability [42]. The superconducting magnetic energy storage (SMES) system is a

new technology that has been recognized as most reliable and effective option to regulate

power fluctuations and maintain the stability of the voltage in power system [43]. SMES

systems store energy in a magnetic field created by DC current flowing through a super-

conducting coil that has been cryogenically cooled. Recent progress in power electronics

technology and the cryogenic systems have made the SMES system more outstanding

to any other energy storage systems (ESS). Generally speaking, the SMES system has a

number of superior performances over the DC microgrid, such as high efficiency (up to

90%), fast response capability and no deteriorations [44]. In recent year, several efforts

have been documented on different operational modes and control strategies of VSWT-

PMSG based DC microgrid along with energy storage system [45, 46]. The SuperPower

Inc., in partnership with ABB Inc., Brookhaven National Laboratory (BNL) and the Texas

Center for Superconductivity (TcSUH) at the University of Houston, are currently devel-

oping an advanced SMES device with demonstrator specifications of 20 kW ultra-high

field (capacity up to 2.5 MJ), field of up to 25 T at 4.2K and capable of flexible and direct
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deployment in medium voltage distribution networks at 15-36 kV. This project is funded

in part by an award from the Advanced Research Projects Agency-Energy (ARPA-E) [47].

The majority of the WTs in power systems have been recently equipped with doubly

fed induction generators (DFIGs) [13–16]. Since many WTs have been electrically in-

tegrated into a weak power grid, the DFIG converters are not able to provide adequate

reactive power and voltage support, due to their limited capacity, and thus, there can

be a risk of voltage collapse [15]. Therefore, the applications of the static synchronous

compensators (STATCOMs) are being increasingly proposed to provide a rapid and con-

trollable reactive power compensation, helping with the uninterrupted operation of WTs

under disturbances [13, 15]. However, a DFIG has a complicated structure including sev-

eral components, and the inclusion of a STATCOM makes this layout more problematic

for the optimal and real-time control of the power system.

The stability analysis and optimal control of the DFIG-based WTs have been studied

by many researchers using optimization-based approaches [14,48–53]. In [48], the bacte-

rial foraging algorithm (BFA) is used for the optimal control of a DFIG system. Authors

in [49] described a new modified model of the genetic algorithm (GA) for optimal control

design of a large offshore wind farm. The particle swarm optimization (PSO) algorithm

was proposed for the DFIG-based WT systems to find optimal values of both converter

and active damping controllers [14, 50]. An optimal coordination of the DFIG convert-

ers through a fuzzy controller, which is designed using the GA was proposed in [51] to

enhance the LVRT capability of WTs. Other advanced coordinated control approaches,

such as adaptive dynamic programming (ADP) based methods have shown promising re-

sults for such a challenging problem [52, 53]. Also, the application of a STATCOM to

improve the capability of a wind farm (equipped with DFIGs) to ride through grid faults

in a multi-machine power system has been reported in [13]. However in [13], there is no

coordination between the wind farm and the STATCOM for the reactive power control.
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In [15], authors proposed a heuristic dynamic programming (HDP) based on the coordi-

nated reactive power control of a large wind farm and a STATCOM to reduce the level

of the voltage dip during the fault and improve the post-fault power oscillation damping

of the system. Although these optimization-based techniques have shown promising re-

sults for the proper optimal operation of the system, there are some deficiencies, mainly

addressing single-objective optimization problem. In a multi-objective optimization prob-

lem (MOP), since several objectives of the system can be simultaneously optimized based

on their priority; Pareto-optimal solutions can be obtained instead of a single optimal so-

lution, which represents the best possible trade-off between the objectives [54, 55]. A

decision maker can select any of the Pareto-optimal solutions based on his/her own pref-

erence. A breakthrough in obtaining Pareto solutions has been realized by the application

of stochastic methodologies, such as GA, PSO, and normalized simulated annealing (N-

SA) algorithm [21]. Among these algorithms, NSA has the major advantage to avoid

becoming trapped at a local minima [21, 54].

Practically, the grid-connected PV system architectures can be classified as three ba-

sic types: centralized inverter, string or multistring inverter, and AC module-integrated

converter (MIC), as shown in Figure 1.3. Among these types, the MIC concept is the

most recent method for the grid-tied PV system development on the market. There is a

growing propensity to use this concept for future solar PV deployment due to its superior

advantages, such as the low cost of mass production, high efficiency, easier installation,

and improved energy harvest [56]. The PV MIC systems are commercially used in both

single-phase and three-phase distributed PV generation, with a power rating range of

150−400 W and an input dc voltage variation of 25−50 V. Since the low PV voltage

needs to be boosted to match the utility grid voltage, several MIC topologies based on the

number of conversion stages and the design requirements have been studied and presented

in the literature [19, 57–59]. Figure 1.6 summarizes the most commonly used configura-
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Figure 1.6: Four options for connecting PV MIC systems. (a) MIC with line-frequency

transformer. (b) MIC with high-frequency transformer. (c) Single-stage z-source MIC.

(d) Single-stage current source MIC.

tions in the presence of PV MIC industry. In Figure 1.6(a), a line-frequency transformer

is employed to boost the voltage after the voltage source inverter (VSI). However, a low-

power transformer is bulky with load acoustic noise and may not be very efficient. In

Figure 1.6(b), a high-frequency transformer is introduced to obtain the voltage amplifica-

tions. Since high switching frequency is essential to achieve the compact inverter size, the

switching loss of the semiconductor devices and the transformer loss are the dominated

limitations for the efficiency improvement [57]. Figure 1.6(c) shows the z-source inverter

as another solution which has the capability of boosting and inverting the dc voltage in a

single stage with few solid-state switches. However, this topology has relatively high in-
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put current ripples, resulting in high stresses on the dc-link inductors and capacitors [58].

A single-stage topology based on the current source inverter (CSI) is depicted in Figure

1.6(d). The single-stage CSI topology is an alternative method to achieve the dc voltage

boost capability without additional stages which will reduce the circuitry complexity and

the overall system losses, as discussed in [59]. Although the CSI has been well document-

ed for high-power drive and rectifier applications, but it is rarely considered in low power

ranges (up to 500 W) especially in PV MIC industry [60–62]. Recently, development of

the three-phase MIC concept to large-size PV installations is introduced where each MIC

is integrated directly into each PV panel [63]. This architecture will reduce the cost per

watt, improve system reliability, and eliminate the single-point failure. Assuming further

expansion of the three-phase MIC system, it would be required for MIC to be equipped

with real-time active and reactive power control capability to fulfill the upcoming grid

requirements.

The previously analyzed control schemes are focused on the current regulation of the

two-stage VSI-based MIC systems, which are mostly based on the concept of the dq rotat-

ing synchronous reference frame with the conventional linear proportional−integral (PI)

regulators and PWM technique. The PI-based current regulation approach was originally

proposed in [64] and was extensively studied and adopted for the current control of both

single- and three-phase systems in various applications [65–67]. In the design of the PI

controller, two distinct d- and q-axis currents must be extracted in order to be independent-

ly regulated. However, due to the poor disturbance rejection capabilities, the d and q axes

are not fully decoupled, and the step changes in one axis generate transients in the other,

which might lead to power quality and performance deterioration. To completely decou-

ple d- and q-axis currents, a multivariable PI controller with a faster dynamic response

and superior axis decoupling capability was proposed and experimentally evaluated for a

three-phase VSI [68].
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After a large blackout occurs, considerable efforts, based on optimization methods

and simulation tools, are made to analyze the detail of that particular cascade and im-

prove the power system protection in order to minimize the chance of a similar cascade

happening. However, severe multi-failure events are a challenge to analyze and simu-

late in a predictive way due to the huge number of possible interactions and the diversity

and complexity of these interactions. At the same time, it is recognized that the current

methods for directly understanding and mitigating severe multiple failures are not well de-

veloped. In the literature, several approaches for analyzing critical multiple contingencies

have been recently proposed based on simulation methods and optimization theories to

determine vulnerabilities of the power system to worst-case scenarios [69–74]. A dynam-

ic decision tree along with fast simulation was developed in [69] to practically compute

high-risk contingencies. In [70], a fast simulation of hidden failures was presented to

identify critical relays, which contribute to many possible cascades. A hidden failure is

undetectable during normal operation but will be exposed as a direct consequence of other

system disturbances, which might cause a relay system to incorrectly and inappropriately

disconnect circuit elements. Optimizations methods in [71,72] were used to minimize the

blackout due to contingencies caused by a failure with finite resources. Authors in [73]

presented a graph theoretic method in order to find critical lines and cutlets by consider-

ing load-generation mismatch. The work in [74] proposed a partitioned multi-objective

risk scheme to access tradeoffs between N-1 security and survivability under catastrophic

failure events, considering various levels of resiliency from low to high damage severity,

while minimizing the cost. Although the above quantitative studies provide some good

insights, generally, fast simulation and random analysis of the power systems cannot pre-

cisely explore the critical multiple contingencies as worst-case scenarios, due to the huge

number of possible interactions and the diversity and complexity of these interactions.

More recently, the application of game-theoretic approaches for the power grid protec-
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tion, such as in [75–78], have attracted attention due to the ability of such frameworks to

model and analyze the decision making processes involved in power system protection.

In [75], the potential of applying game theory for the power grid was proposed in three

merging areas including: microgrid systems, demand-side management, and communi-

cations. A Markov game model was introduced in [76] to analyze the resource allocation

for transmission lines protection of the smart grid. In [77], the risk assessment of cyber

failure against the smart grid was proposed based on the noncooperative game theory. A

static game model was proposed in [78] to achieve optimal responses for power grid op-

erators in a game against nature that performs severe component failures. However, [78]

relies on a static game formulation, in which the dynamics of the power grid are ignored

and the interactions between the failure events and the operator responses are assumed

to be one-shot events. Thus far, to our best knowledge, there have been no reports, ful-

ly considering the power system survivability scheme under severe multi-failure events,

using stochastic game theory.

1.4 Research Objectives and Original Contributions

The research reported in this dissertation conducted analysis and modeling of the ad-

vanced power control and protection requirements for reliable RES integration onto a

smart grid system. The thesis has completed the following five major activities:

1) Investigation of the low voltage ride-through (LVRT) improvement methods for

fixed-speed induction generator (FSIG)-based wind turbines (WTs)

Since a non-negligible 20% of the existing wind energy is still employing FSIGs due to

their simple structure and lower maintenance cost, the fault-ride through characteristics

of FSIG-based wind turbines still need to be analyzed. Through review of the existing

LVRT improvement methods for FSIG-based WT, it was determined that there is no valu-
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able review studies, which fully consider LVRT enhancement strategies of this type of

wind generation. This dissertation fills this void by providing a comprehensive analy-

sis of existing LVRT methods in terms of dynamic performance, controller complexity,

and economic feasibility. A new feature of this effort is to categorize LVRT capability en-

hancement approaches into three main groups depending on the connection configuration:

series, shunt, and series-shunt (hybrid) connections, and then discuss their advantages and

limitations in detail.

2) Application of superconducting devices for optimal performance of renewable

energy sources (RES)

There have been few reports on the application of superconducting devices into the de-

sign and the optimization of bulk level of renewable resources. This effort has presented

the application of superconducting technologies into the body of the thesis. This was

achieved by developing accurate mathematical electro-thermal derivations for the super-

conducting fault current limiter (SFCL) and superconducting magnetic energy storage

(SMES), which are validated via simulation results. It included three sub-objectives:

2-1) LVRT enhancement of permanent magnet synchronous generator (PMSG)-

based WTs using SFCL

This research has demonstrated that the resistive SFCL is a promising solution for the WT

controller performance with respect to dc-link fluctuations and extreme loads happening

to electrical and mechanical parts, respectively, during the severe disturbances. The fur-

ther effort has been centralized on the most-widely decision-making technique based on

the analytic hierarchy process (AHP), for the optimal performance of the combinatorial

RSFCL and PMSG-based WT.
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2-2) Power management of DC grid involving PMSG-based WTs and SMES

A power balance management between loads, a micro-SMES system and a nondetermin-

istic wind generation based on PMSG has been maintained via presenting the supervisory

control architecture. For this purpose, an optimal design scheme based on simulated an-

nealing (SA) algorithm has been modeled for micro-SMES solenoid coil to ensure the

desired energy storage capacity with least volume.

3) Implementation of the multi-objective optimization model for designing a new on-

line coordinated reactive power control between DFIG-based WT and STATCOM.

The key motivation of this study is to design a coordinated reactive power controller for

combinatory DFIG-based WT and a static synchronous compensator (STATCOM) that is

formulated as a multi-objective optimization problem (MOP). The proposed MOP model

is solved by using the stochastic normalized simulated annealing (NSA) algorithm in

order to find the Pareto-optimal solutions, according to the assigned priorities (weights)

for each objective. A fuzzy logic controller (FCL), which is properly tuned by the NSA

algorithm, has been introduced for the online application.

4) Development of the simplified power control approach with reliable axis decou-

pling capability for three-phase current source inverter (CSI)-based MIC system

This objective includes two original contributions. First, a current source inverter (CSI)

with dc voltage boost capability, namely the single-stage power conversion system, has

been proposed for a three-phase PV MIC system. A switching pattern based on the phasor

pulse-width-modulated (PPWM) technique has been employed to produce the switching

signals through introducing the modulation index and the modulation angle. Furthermore,

a current control strategy based on multivariable-proportional-integral (PI) regulators with

structural simplicity and fast dynamic response has been designed to control the proposed

22



CSI-based MIC system. The performance of the proposed control system has been exper-

imentally verified through a 300-VA laboratory prototype.

5) Development of the new game-theoretic framework to provide reliable strategies

for protecting smart grid components under concurrent multiple failures.

The main contribution of this objective is to introduce and develop a new game-theoretic

framework to analyze how a smart grid can dynamically survive concurrent severe multi-

failure events. This has been accomplished by proposing a new learning algorithm to

obtain the operator’s Nash equilibrium strategies that provide insightful guidelines on

how to deploy limited budget for protecting critical components of the power grid.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 presents a comprehensive

review of various techniques, which are employed to improve the low voltage ride through

(LVRT) capability of the fixed-speed induction generators (FSIGs)-based wind turbines

(WTs). The reviewed methodologies are classified into the three main groups, namely,

(i) series-connected solution; (ii) shunt-connected solutions; (iii) hybrid-connected solu-

tions. A comparative study in terms of dynamic performance, controller complexity, and

cost evaluation of these LVRT methods is then carried out. Finally, simulation results of

several LVRT methods are illustrated to compare the dynamic performance of the wind

turbine equipped with auxiliary devices.

Chapter 3 introduces the application of the superconducting fault current limiters (S-

FCLs) and superconducting magnetic energy storage (SMES) into the smart grid system

based on RES. This chapter includes three sections. Section 3.2 explores a FSIG-based

WTs in an effective combination with a UPQC and a resistive SFCL. Section 3.3 presents

a positive approach using a SFCL for the LVRT enhancement of the PMSG-based large

wind power plant (WPP). Finally, Section 3.4 presents a combinatorial standalone PMS-
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G based variable speed wind turbine (VSWT) and small-size SMES system into the DC

microgrid system.

Chapter 4 proposes a computational intelligence technique for optimal coordinated

reactive power control between a WT equipped with DFIG and a STATCOM, during

faults. The proposed coordinated reactive power control is formulated as a multiobjec-

tive optimization problem (MOP) model to minimize the voltage deviations at the WT

terminal during and after the faults and active power oscillations after clearing the faults.

A normalized simulated annealing (NSA) algorithm is employed to find pareto-optimal

solutions of the MOP model. Next, a fuzzy logic controller (FLC), which is is properly

tuned by the NSA algorithm, is proposed for the online application. Finally, the perfor-

mance of the proposed control approach is successfully validated with simulation results.

Chapter 5 discusses the application of a three-phase module-integrated converter(MIC)

incorporated into a grid-tied photovoltaic (PV) system. A current source inverter (CSI)

with dc voltage boost capability, is proposed for a three-phase PV MIC system. A switch-

ing pattern based on the phasor pulse-width-modulated (PPWM) technique is employed

to produce the switching signals. Then, the state-space averaging method is utilized to

derive the large- and small-signal models in order to study the dynamic behaviors of the

CSI-based MIC system. Finally, the performance of the proposed multivariable PI con-

trol method has been simulated in MATLAB/Simulink software and then experimentally

verified through a 300-VA laboratory prototype.

Chapter 6 develops a new game-theoretic framework to explore reliable strategies

for power grid operators in order to protect the smart grid under multi-failure events,

by restoring some links before the failures spread to other parts of the system. First,

The stochastic game framework is described and analyzed. The two algorithms to obtain

Nash equilibrium strategies for power system operators are presented in next, while some

illustrative examples and case studies are given in this chapter.
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Chapter 7 summarizes the dissertation outcomes, concludes the significance of this

research, discuss the results, and finally makes recommendations for the future works.
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CHAPTER 2

A COMPREHENSIVE INVESTIGATION OF LVRT IMPROVEMENT

METHODS FOR FIXED-SPEED WIND POWER GENERATORS

2.1 Overview

This chapter presents a comprehensive review of various techniques, which are employed

to enhance the low voltage ride through (LVRT) capability of the fixed-speed induction

generators (FSIGs)-based wind turbines (WTs). The main contributions of this chapter

are organized into the following sections: after describing the operation of the FSIG-

based WT under normal and faulty conditions in Section 2.2, the comprehensive review

of the recently LVRT capability improvement approaches is discussed in Section 2.3,

2.4, 2.5. The reviewed methodologies are classified into the three main groups, namely,

(i) series-connected solutions (e.g., thyristor-controlled series compensation (TCSC), dy-

namic voltage restore (DVR), series dynamic braking resistor (SDBR), magnetic energy

recovery switch (MERS), and fault current limiter (FCL)); (ii) shunt-connected solutions

(e.g., static var compensator (SVC), static synchronous compensator (STATCOM), and

superconducting dynamic synchronous condenser (SDSC); (iii) hybrid-connected solu-

tions (e.g., unified power quality conditioner (UPQC), and unified compensation system

(UCS). A comparative study in terms of dynamic performance, controller complexity,

and cost evaluation of these LVRT methods is carried out in Section 2.6. In Section 2.7,

simulation results of several LVRT methods are illustrated to compare the dynamic per-

formance of the wind turbine equipped with auxiliary devices.

2.2 FSIG-based wind turbine

A non-negligible number of WTs, which are equipped with induction generators, are still

in the operation at an almost fixed speed due to wide usage of early wind turbine systems.

These were the first Danish wind turbines, which completely dominated the market up to
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Figure 2.1: The main components of the wind turbine based on FSIG.

Figure 2.2: The output power of a wind turbine as a function of the wind speed.

the mid-1990s (the reason why this technology is named the Danish concept [79]. The

basic configuration of the WT based on FSIG is shown in Figure. 2.1, including a tur-

bine rotor, gearbox, squirrel-cage induction generator, soft-starter, mechanical-switched

capacitors (MSCs), and a transformer for grid connection.

2.2.1 Steady-state operation

WTs extract the power from the wind via aerodynamically designed blades and convert

it to mechanical power. Under high wind speed conditions, the power delivered by a

WT may exceed its rated value. Thus, an effective approach must be applied to reduce

a portion of the wind power so as to avoid turbine damage. The aerodynamics of fixed-
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Figure 2.3: Conventional pitch angle control used in FSIG-based wind turbine.

speed wind turbines can be controlled by passive stall, active-stall, and pitch control

approaches, which have been developed for low, medium, and large WTs, respectively

[80]. An example of the relationship between the wind speed and the power generated by

the wind turbine is shown in Figure 2.2 [81]. The blades start to move around 4 m/s, while

an optimal aerodynamic efficiency is achieved at the wind speed rated about 15 m/s. The

extra power obtained from wind speed between 15 and 25 m/s may be smoothly curtailed

by spinning the blades using either active stall or pitch control to avoid overloading the

wind turbine system. Over the cutout wind speed, the turbine has to be disconnected in

order to avoid damage. It has been reported that the pitch control has become dominant

in the wind power market (used four times more than the stall control) [82].

Many methods of WT pitch control have been documented, such as the classical

proportional-integral-derivative (PID) control [83], gain-scheduling control [84], or ro-

bust control [85], among other nonlinear controllers [86]. Figure 2.3 depicts the conven-

tional pitch angle regulator in which the input and output of the model are the generated

power Pout and blade angle β, respectively.

The gearbox plays an essential role in the fixed speed WTs to adapt low-speed, high-

torque rotation of the turbine rotor into the faster rotation of the electrical generator [82].

The critical issue in implementing the gearbox technology is the wind gusts and turbu-

lence, which may lead to misalignment of the drive train and a gradual failure of the

gear components, consequently increasing the capital and operating cost of the WTs. In-

duction generators with a squirrel-cage rotor can be used in the fixed-speed WTs at low
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cost and with low maintenance due to rugged brushless construction [79, 87]. Neverthe-

less, it has some important drawbacks, as it requires a stiff power grid to enable a stable

operation, and may also require a more expensive mechanical construction in order to

absorb the high mechanical stress, since wind gusts can cause torque pulsations on the

drive train [81]. Moreover, the induction generators tend to draw a large amount of the

reactive power from the grid in their steady-state operation for self-excitation because s-

tator windings are directly connected to the grid with no power electronics [88]. Thus,

the low-cost mechanically switched capacitor (MSC), which generally includes a bank

of shunt capacitors, are connected to the terminal of the wind generator to achieve a unit

power factor and to provide a voltage regulation in normal operation conditions [89].

The high starting inrush currents generated by the connection of induction generators

to the power system may cause disturbances to both the grid voltage and high torque

spikes in the drive train of WTs. Thus, current limiters or soft-starters based on thyristor

technology are used to typically limit the rms value of the inrush currents to a level below

two times of the generator rated current [81]. Further, the soft-starters effectively dampen

the torque peaks associated with the peak currents, and hence reduce the loads on the

gearbox.

2.2.2 Transient-state operation

When the fault starts, the voltage at the terminals of the WT drops down, thus leading to

the significant reduction in the electromagnetic torque and the electric-power output of

the induction generator. However, the mechanical-input torque remains constant during

the fault, causing the rotor speed to increase beyond its safety limits in order to mechan-

ically store the energy excess. Therefore, it is important to keep the balance between

the mechanical-input power and the electrical-output power for enhancing the fault ride-

through capability of the FSIG-based WT.
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After the fault clearance, since the rotor speed increases during the fault period, a

large amount of reactive power is absorbed by the induction generator from the grid. As

a consequence, not only the induction generator is unable to fulfill the reactive power

injection requirements along the fault, but also it exacerbates the voltage sag condition by

absorbing the reactive power, so that it creates difficult situations to restore the terminal

voltage within the acceptable level. As illustrated in Figure. 2.3, if Pout exceeds its rated

value, the pitch angle β increases to limit the generated wind power to its rated value.

Under fault conditions, the generated power abruptly falls and it is unable to perfectly

contribute in the LVRT improvement.

To overcome these drawbacks, the modified pitch angle controllers are proposed in

the literature based on the wind generator speed, so that these can immediately increase

the pitch angle to reduce the mechanical-input torque, as shown in Figure 2.4. [31, 90] .

Although the pitch control system is the cheapest solution for enhancing the LVRT ca-

pability of the FSIG-based wind turbine, it has a very slow dynamic response due to the

mechanical constraints of the system [91]. Also, MSCs represent relatively weak per-

formance during fault conditions, owing to the decrease of their reactive power injection

capability following voltage drops. Furthermore, the excessive switching of the capacitor

bank provokes failures, applying the inherent voltage steps stress on the wind turbines,

and increases the required maintenance of the system [81].

The above discussions have covered the symmetrical grid faults, but in general the

majority of the grid faults result in an asymmetrical voltage dip with both positive and

negative sequence components. When the grid voltage is unbalanced, i.e. it contains a

fundamental negative sequence component, the stator current of the induction generator

becomes unbalanced as well. As stated in [92], a slight amount of negative-sequence

voltage causes higher amounts of negative-sequence currents, and consequently creates

the additional torque oscillations of the double grid frequency. It also results in heating
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Figure 2.4: Modified pitch angle control used in FSIG-based wind turbine.

of the stator windings, and thus reduces the life span of the gearbox, blade assembly, and

other components of a typical WT [93, 94]. The magnitude of the negative and positive

sequences of the torque can be calculated, as follows

T+ ≃ 3× p

2ωs

× V +
s × I+s (2.1)

T− ≃ 3× p

2ωs

× V +
s × I−s (2.2)

where T+ and T− are the positive and negative torque sequences, p is the number of

poles, ωs is the sliding angular frequency, V +
s is positive-sequence voltage, I+s and I−s are

positive and negative current sequences, respectively. It is clear from (2.1) and (2.2) that

the average torque is reduced due to the decrease of the positive-sequence voltage, which

leads to the acceleration of the induction generator, mechanical vibrations, and acoustic

noise. The response of WTs based on the FSIG during asymmetrical faults have been

investigated in the literature, while several control methods, injecting negative sequence

current, have been proposed to balance the grid voltage by reducing the negative sequence

voltage [94–97]. As discussed previously, the LVRT performance of FSIG-based wind

turbines is a problematic issue because the stator windings are directly coupled to the grid,

and the induction generator consumes reactive power during and after a fault. Therefore,

it fails to fulfill some of the important grid integration requirements, such as the reactive

power compensation or the terminal voltage control. Thus, the induction generators need

the external supporting devices to avoid their tripping during the voltage reduction.
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Figure 2.5: Classified LVRT capability enhancement methods.

There are many auxiliary devices reported in the literature to provide an adequate

dynamic voltage support and enhance the LVRT capability of WTs. The major categories

of LVRT methods for the FSIG-based wind turbine are depicted in Figure 2.5. Depending

on the connection configuration, these methods can be classified into the series-connected

solutions, shunt-connected solutions, and hybrid-connected solutions.

2.3 Review of series-connected solutions

Series-connected auxiliary technologies have been successfully implemented to alleviate

grid congestion, defer construction of new transmission lines, and improve system capac-

ity. These types of technologies, as a relatively simple solution, with a smaller current

injection compared to shunt-connected technologies, are effectively used to regulate volt-

age or limit fault current, resulting in a significant increase in the transient and voltage

stability in transmission systems. A brief explanation of series-connected solutions is

presented in the following subsections.

2.3.1 Thyristor-controlled series compensation (TCSC)

The essential principle of the TCSC is to control the power flow of the grid lines, to in-

crease the dynamic stability of power transmission, and to effectively limit the power os-
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Figure 2.6: TCSC module installed outside the wind farm with the basic control scheme.

cillations [98–100]. These features have been effectively proven by existing installations

of TCSCs described in the literature, such as the Western Area Power Administration’s

Kayenta site [100], or the Bonneville Power Administration’s Slatt substation [101]. Re-

cently, the abilities of this technology have particularly been realized where inconstancy

in the transmission lines for delivering the huge WT generated power into the grid, which

led to the voltage collapse and cut off the fixed speed WT [102, 103]. Moreover, the

ability of TCSC to limit the fault current and control the voltage unbalance of wind far-

m systems is discussed in [104]. Figure 2.6 illustrates a typical TCSC module installed

outside the wind farm along with the basic control scheme. A TCSC consists of three

components: capacitor banks C, bypass inductor L, and forward-biased thyristors T1 and

T2. The control scheme has been well-documented in the literature [98, 99]. The func-

tion of the control block is to generate the appropriate gate drive signals for the thyristors

when the fault is initiated. Basically, thyristors are fired with respect to zero crossing

of the line current in order to inject the additional current into the capacitor through the

bypass inductor, and increase the capacitive reactance value, typically up to a factor of

three times the original reactance. Thus, a variable capacitive reactance can be obtained

to compensate the reactive power absorbed by the induction generator and improve the
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Figure 2.7: Principle operation of the dynamic voltage restorer and power flow during the

voltage dip compensation.

fault right through of the WTs. This technology may be useful for wind farms, which are

located far away from the PCC, such as offshore wind farms [81].

2.3.2 Dynamic voltage restorer (DVR)

A promising approach to effectively overcome the grid-fault-derived problems with WT

generators is to control the connection-point voltage by compensating voltage fluctuations

during the fault. This can be accomplished by using a series-connected power electronic

compensator, called the dynamic voltage restorer (DVR), which injects an appropriate

voltage into the grid bus in order to keep the generator voltage constant at PCC with

the same phase as the network, as shown in Figure 2.7. Depending on the time frame

assumed by the regional grid code (e.g. in the Danish electrical system, 80% three-phase

voltage-dips should be ride-through for up to 30 grid-cycles), a DVR might has a sufficient

energy storage capacity to generate the missing voltage at the WT terminal during the

dips. There are several efforts that demonstrate the utilization of a DVR for voltage dip

mitigation and the voltage recovery, in which DVR restores the WT’s terminal voltage to

the operating point within the shaded area of the LVRT curve [105, 106]. However, using
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Figure 2.8: Single-phase vector diagram. (a) Voltage dip compensation with DVR. (b)

Voltage dip compensation once the phasor has been rotated.

a DVR for voltage sag mitigation in fixed-speed wind generators has certain technical

challenges [107]. According to the voltage vector diagram shown in Figure 2.8(a), the

voltage dip is causing not only a reduction in the voltage magnitude, but also a change in

the phase, which is described as a phase angle jump δ (phase angle difference between

the voltage phase during the sag and the one before the sag)

δ = arctan(
XF

RF

)− arctan(
Xs +XF

Rs +RF

) (2.3)

where, Zs = Rs + jXs and ZF = RF + jXF are gird impedance and fault impedance,

respectively.

The phase-angle jump reveals itself as a shift in zero crossing of the instantaneous

voltage, causing a large transient at the beginning and the end of the sag because the in-

ternal generator flux is out of phase with the voltage [106]. Moreover, the DVR is require

to absorb the part of the extra active power, which is generated by the wind generator

during the fault in order to keep dc-link voltage (Vdc) at the desired level. Thus, it must

have energy dissipation capabilities which is the main drawback of the DVR.

To address the aforementioned problems, some successful control schemes are dis-

cussed in the literature [106–109]. In the work described in [106], the energy dissipation

was accomplished by using a resistor, which is connected to the dc link through a pow-
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er electronic switch, when the dc-link voltage exceeds its safety limits. The decoupled

control of d− and q−axis voltages have been reported in [107, 108] for the DVR inverter

to improve the LVRT capability of the FSIG based WTs. In [109], the authors propose

an adaptive control system based on the proportional resonant (PR) controller to provide

the voltage and current decoupling in order to improve the DVR output voltage tracking

capability. In [106], Dionisio et al. carried out a control scheme based on a two-step s-

trategy. First, the DVR compensated the voltage sag to maintain the magnitude and phase

of the wind generator voltage at 1 p.u and second, the control system gradually rotated

the series voltage supplied by the DVR, VDV R, in order to inject the reactive power into

the grid, while the magnitude of the wind generator voltage was kept at 1 pu (see Figure

2.8(b)).

2.3.3 Series dynamic braking resistor (SDBR)

The concept of series-connected dynamic braking resistors (series-DBRs) in the wind

power application was introduced early by the authors in 2004-2005 [110]. DBRs have

been developed to contribute directly to the balance of active power between the mechani-

cal and electrical side of the WT system during a fault, potentially reduce or eliminate the

need for the pitch angle control or the reactive power compensation (RPC) devices [110].

This is performed by dynamically installing a resistor in series between the WT and the

grid, in order to boost the voltage at the terminals of the generator, and thereby alleviate

the instability concerns on electrical torque and power during the fault period [111].

The typical schematic layout of SDBR may incorporate one or two stages of resis-

tor/switch units, as shown by Figure 2.9(a) and (b), including the static bypass switch,

allowing sub-cycle response and smooths variable control. Under normal conditions, the

dynamic braking resistor must be cut off by closing the bypass switch. At the beginning

of the fault, the current starts the passing through the resistor, Rsh, and continues in oper-
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Figure 2.9: Various types of SDBR; (a) Single-stage scheme. (b) Two-stage switching

scheme. (c) Variable resistor scheme using soft-starter.

ation in the initial post-fault recovery. Once the voltage recovered above a minimum set

point level and met the grid code compliance, the bypass switch is closed and the circuit

is returned to its normal state. Figure 9(c) also displays a possible arrangement, using a

thyristor based soft-starter that is already utilized for a grid connected FSIG-based wind

turbine [112]. Also, ABB represented an additional feature for the SDBR scheme, in

which the resistors were independently controlled in each of the three phases, enhancing

the scheme’s performance during unbalanced fault condition. The effect of SDBR on

stator voltage is displayed by the phasor diagram of Figure 2.10, where the stator volt-

age is increased across SDBR. Since the mechanical torque generated by the induction

generator changes with the square of the voltage, the presence of SDBR can increase the

mechanical power extracted from the drive train, therefore reducing its rotor speed during

a voltage dip. This action can also enhance the post-fault recovery of a WT system.
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Figure 2.10: Single-phase vector diagram for voltage dip compensation with SDBR.

Figure 2.11: Circuit configuration of the MERS for controlling the series-injected voltage.

2.3.4 Magnetic energy recovery switch (MERS)

The MERS has recently been proposed as a variable series compensator between the

main transformer of the wind farm and the power grid to improve the LVRT capability of

fixed-speed WTs by compensating the reactive power and controlling the terminal voltage

of the WT [112–115]. The circuit configuration of the MERS is shown in Figure 2.11,

including four reverse conductive semi-conductor switches and a dc capacitor. As it is

obvious from Figure 2.11, it has a similar topology with respect to a single-phase full-

bridge inverter with the exception that dc-link capacitor is several times smaller than that

of a single-phase full bridge inverter, due to the capacitor voltage being permitted to alter

considerably and to become zero during each fundamental cycle (50 or 60 Hz) [115].

Moreover, this scheme possesses fewer losses compared to the PWM converters so that
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Figure 2.12: Switching patterns for one current cycle. (Left part) voltage and curren-

t waveform of MERS; (Right part) the flow of the current through the MERS for the

different areas illustrated on the left.

semiconductors in MERS are switched synchronously to the line frequency, which is

extremely important for high-power wind applications.

The principal results of switching patterns and waveforms for one fundamental cycle

are illustrated in Figure 2.12 based on two main set-points control, i.e. minimum capacitor

voltage, VC,min and the length of the zero injected voltage period, 2γ. By adjusting the

VC,min and the γ reference, the current passing through the device can be regulated to

provide the variable series-injected from zero to the rated voltage for all currents within

the device rating. Wiik et al. developed in [113] a control method suitable for the LVRT

application in transmission systems shown in Figure. 2.11 for injecting series voltage

based on MERS equivalent compensating reactance expressed as

XM =
1

ωC
(1− 2γ

π
− sin 2γ

π
) +

4VC,min cos γ√
2πIgrid

(2.4)
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Figure 2.13: Fault current limiter topology. (a) Bridge-type FCL (BFCL). (b) Modified

configuration of BFCL.

where, Igrid is the line current and C in the capacitance of the dc capacitor.

2.3.5 Fault current limiter (FCL)

The need for FCL is increased by the rising fault current levels due to integration of the

high penetration of WTs into the power grids. In recent years, various types of FCL,

such as solid state FCL, resonant circuit, transformer coupled bridge-type fault current

limiter (BFCL), and superconducting fault current limiter (SFCL), have been proposed

and developed [116, 117]. Previous studies have proven that the ability of SFCL and

BFCL technology to improve LVRT capability and enhance the transient stability of the

wind generator systems. By using these types of FCL during the fault, the stator current

of induction generator has been effectively limited and the voltage reduction level of the

generator terminals has been decreased, resulting in fulfilling the international grid codes.

Once the FCL is adopted in the WTs system, the peak value of the short circuit current

can be limited to a level within the switchgear rating.

Bridge-type fault current limiter (BFCL)

As shown in Figure 2.13(a) and presented in [118, 119], the bridge-type FCL with dis-

charging resistor (Rdc) requires the coupling transformer to be connected to the power

grid. A resistor in parallel with a semiconductor switch has been connected in series
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with the dc reactor (Ldc) of the conventional bridge-type FCL in order to control the fault

current level by controlling the dc reactor current. The increase of the fault current is

curbed by the dc reactor without any delay. This characteristic of the bridge-type FCL

suppresses the instantaneous voltage drop and it is able to improve the transient behavior

of WTs in the fault instant, which is the main advantage of the bridge-type FCL to other

FRT enhancement techniques.

Moreover, Rdc in the bridge-type FCL was used to increase the terminal voltage of the

generator, thereby smoothing the electrical torque and the active output power fluctuations

during the fault. However, this topology needs a special and costly transformer to connect

the three-phase diode bridge in series into the system, in which primary voltage rating of

the transformer must be almost equal to the transmission line voltage to maintain the

desired level of voltage within the fault duration [120].

In [120], the authors proposed a new modified configuration of BFCL, including

the four-diode bridge part and shunt resistive path, shown in Figure 2.13(b), in order to

achieve the LVRT of fixed speed wind generator system. In normal conditions, the switch

must be kept closed, as its gate signal, S1 is at a high level, in which a line current through

the dc reactor placed within the diode bridge flows in the same direction, charging the Ldc

to the peak current.

Once the fault occurs, the sudden rise of fault current would be instantaneously limited

by the reactor. Hence, abrupt voltage reduction at generator terminal is prevented during

the fault, providing the improved transient behavior. Once the line current in dc side idc,

exceeds a predefined threshold ith, the IGBT switch must be turned off via sending the

low level signal to S1. In this case, the diode bridge is cut off and the line current passes

through the shunt resistor Rsh in order to suppress fault current and consumes excess

energy from the wind generator. By controlling the duration of ON and OFF periods

of IGBT switch, control system provides a manageable resistor in order to control the
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Figure 2.14: Modified configuration of BFCL installed outside the wind farm with the

control scheme.

terminal voltage of induction generator, leading to a reduction in the rotor acceleration

and stabilizing the system. The controller used for the BFCL was developed in [120] and

shown in Figure 2.14.

Superconducting fault current limiter (SFCL)

The SFCLs have been launched and introduced into the network to restrict the prospective

fault currents immediately to a manageable level by suddenly raising the resistance value

[21]. SFCL is considered as self-healing technology since it eliminates the need for any

control action or human intervention due to its automatic excessive current detecting and

the automatic recovering from non-superconducting to superconducting states. By using

the SFCL, the fault current is suppressed effectively and the voltage dip level of the WTs

terminals is diminished, leading to the enlarging of the voltage safety margin of the LVRT

curve [121, 122]. The first-cycle suppression of a fault current by an SFCL results in

an increased transient stability of the power system carrying higher power with greater

stability. This innovating device introduces an exclusive feature that cannot be obtained

by conventional current limitations.
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Figure 2.15: Operation of resistive SFCL installed in transmission line including fault

current and voltage profile at the wind turbine terminal.

Generally speaking, high temperature superconducting fault current limiters (SFCLs)

have been classified into the resistive, inductive, and hybrid types [21]. Amongst di-

verse SFCL devices, resistive SFCL has a simple structure with a lengthy superconductor

wire inserted in series with the transmission lines. To preserve the superconductor from

detrimental hot spots during the operation, the shunt resistance, Rshunt is essential. This

parallel resistance must be contacted all over the length of the superconductor, and it reg-

ulates the controlled current to elude over-voltages likely occurring when the resistance

of the superconductor increases much quicker. With the recent breakthrough of economi-

cal second-generation high-temperature (HTS) wires, the SFCL has become more viable

and is eventually expected to be at least a factor of ten lower in cost than the presently

available HTS conductor [43]. The structure of FSIG-based WT with resistive SFCL is

schematically shown in Figure 2.15. The current limiting behavior of the RSFCL can be

modeled by the resistance transition of HTS tapes in terms of temperature and current

43



density as defined by the following equation [122].




0 if J < Jc and T < Tc Superconducting state

f([ I
Jc
]n) if J > Jc and T < Tc Flux flow state

f(T ) if T > Tc + Normal state

(2.5)

2.4 Review on shunt-connected solutions

Among the external topologies, the shunt-connected devices have been widely utilized

to provide smooth and fast steady state and transient voltage control at the point of con-

nection. Since the output current of these devices is adjusted to control either the nodal

voltage magnitude or reactive power injected at the voltage terminal, the shunt-connected

topology proved to be the most effective solution in the wind power application in or-

der to fulfill the recent international grid codes. A brief explanation of shunt-connected

solutions is presented in the following subsections.

2.4.1 Static var compensator (SVC)

Thyristor-controlled SVCs, reported in [123, 124], have been applied for the voltage sup-

port of the critical loads, reactive power compensation, and the transient stability im-

provement in the electric power transmission systems. The SVC is a combination of a

thyristor-controlled reactor (TCR) with a thyristor-switched capacitor (TSC) or MSC as

one compensator system, which is practically connected to the PCC bus (or the wind tur-

bine terminals) in order to provide fast voltage support and fulfill LVRT of WTs with

induction generators [125–128].

Based on new grid codes, this is a supplementary feature now for wind turbines to sup-

ply variable reactive power depending on network demand and actual voltage level, while

the crucial problem of SVC is to inject an uncontrollable reactive current dependently on

the grid voltage [128]. Thus, the current injected by the SVC reduces linearly with the
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Figure 2.16: Shunt compensation system for wind driven induction generator using SVC

along with the basic control system.

voltage sag and consequently the injected reactive power diminishes quadratically. The

basic control of the SVC was applied in [128] and shown in Figure 2.16 as a PI controller

to control the firing angle of the thyristors of the TCR and TSC, keeping VPCC at 1 p.u

during and immediately after the fault. One key issue for designing of an SVC for proper

operation is to tune the PI controller, which does not achieve in a simplistic method.

A fast response from the closed loop voltage control of the SVC can cause severe

voltage oscillations under week grid operating, in which reduction of transient gain was

proposed as a possible solution in order to diminish the SVC’s response. However, tuning

down the transient gain of SVC leads to a slower voltage recovery after the fault, thereby

exceeding the LVRT requirements [129]. In [129], the authors implicitly promoted the

idea of using several small distributed SVCs compared to a large central SVC for bet-

ter voltage response with stable voltage oscillations. A Fuzzy controller was designed

in [125] for the SVC to significantly prove an improved dynamic response in terms of

overshoot and settling time, as compared to a conventional PI controller.
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Figure 2.17: The structure of the FSIG-based WT along with STATCOM connected to

wind turbine terminal.

2.4.2 Static synchronous compensator (STATCOM)

Unlike SVC, the STATCOM, also named SVC Light by ABB [81], can continuously and

independently provide a controllable reactive current in response to the voltage reduction,

supporting the stability of the grid voltage. The prospect of the STATCOM application

in the wind power system emerged in the 1990s, where its significant contribution was

power quality improvement during the normal operation. The most important component

of STATCOM is the modular voltage source converter (VSC), equipped with insulated

gate bipolar transistors (IGBTs), that are controlled by pulse width modulation (PWM).

Figure 2.17 displays the basic STATCOM, which can be used in LVRT capability for

fixed-speed wind turbines.

STATCOM is connected to the grid to inject or absorb reactive power through a three-

phase transformer. This system is appropriate to alleviate the effects of both steady-state

and transient contingencies [81]. Various efforts have been documented in the literature

[16, 128, 130–133] to prove the ability of STATCOM for the LVRT enhancement of the

FSIG-based WT. In [128], Molinas et al. conducted a comparison between the STATCOM
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and SVC in terms of the LVRT improvement. They found that STATCOM could be the

economical solution in more situations (15% cheaper than SVC) if the same rating is

assumed for the devices. A modified STATCOM controller was proposed in [16] based

on the series combination of a power factor and a voltage regulation loop, which allows

an optimized behavior of the fixed-speed WT, both in normal and fault conditions.

The feasibility of incorporating SDBR with STATCOM to fulfill the LVRT require-

ment of FSWT was investigated in [134], where results showed that the lower STATCOM

rating was required compared to utilizing only STATCOM for the same effective per-

formance. Since STATCOM is able to provide only reactive power, application of the

energy storage system (ESS) with STATCOM has emerged as a promising solution for

the wind power system applications [131]. The new robust decentralized control system

for the large interconnected wind power system was introduced in [135] based on the lin-

ear quadratic (LQ) output-feedback control method to demonstrate that STATCOM/ESS

structure can be an effective device for the grid-code compliant. Another alternative was

to simultaneously control both the reactive power and active power via the STATCOM

and the pitch angle of the WT to ameliorate the LVRT capability of induction generators

in wind farms. It was proved that the combined strategy makes the system ride-through

the fault without having to disconnect the generators from the system. However, utilizing

the STATCOM for enhancing the LVRT capability augment the torque capability of the

induction machine during the recovery process after the fault, causing higher maximum

torque, and correspondingly higher stresses on the drive-train. Therefore, authors in [132]

suggested a solution based on indirect torque control (ITC) to temporarily set the voltage

for the STATCOM controller to limit the maximum torque during the recovery.
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Figure 2.18: The HTS DSC Concept (a) Structure of the SDSC. (a) Var curve for conven-

tional synchronous and HTS DSC machines.

2.4.3 Superconducting dynamic synchronous condenser (SDSC)

One possible solution of integrating large-scale wind farm in the power system com-

prehensively presented in [136–138], is the superconducting dynamic synchronous con-

denser (SDSC), shown in Figure 2.18(a), so that rotor windings entailed of HTS wires.

Compared with a conventional synchronous condenser, SDSCs provide up to 45% more

dynamic reactive compensation in order to boost the bus voltage during a severe fault sit-

uation with power losses and maintenance (Figure 2.18(b)). Since the SDSC machine has

a relatively low synchronous reactance relatively low compared with other synchronous

machines with the same rating, the machine can respond significantly to transient changes

in voltage by injecting or absorbing reactive power. The SDSCs are able to perform with

a very high field current (up to 2.0 p.u) for a long period of time, allowing the machine

to release the reactive power up to three-times rated output during a transient low-voltage

event. Thus, the SDSC can assist a wind farm to meet the interconnection agreement

with the utility by providing voltage regulation and improving the stability of a power

system [137].
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Figure 2.19: The structure of the proposed system: FSIG-based wind turbine with UPQC

and SFCL connected to the grid.

Figure 2.20: The structure of the proposed system: FSIG-based wind turbine with current

source UPQC and SFCL connected to the dc link.

2.5 Review on hybrid-connected solutions

Reactive power and voltage compensation using series-shunt (hybrid) topologies has been

one of the effective techniques in improving the LVRT capability of the large scale of the

wind farm level at the point of common coupling. The unified power quality conditioner

(UPQC) demonstrates there may be a possible solution to the technical grid integration

problems coming from the wind-driven FSIG [8,9,139]. Fundamentally, UPQC, which is

an integration of series and shunt VSC, has been commonly studied by many researchers

as the ultimate device to improve voltage sag, voltage unbalance, harmonics, dynamic ac-

tive and reactive power regulation [140]. In [139], Jayanti et al. described the application
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of the UPQC systems to enhance low voltage ride-through capability of the FSIG-based

wind turbine. The results show that series VSC provides the lack of voltage to prevent

over-speeding of the FSIG while the shunt VSC injects additional VAR required during

the voltage reduction. However, the capital cost involved in the installation of this device

is higher than any other solutions devices because of its use of two converters. Therefore,

authors in [8] propose a novel combination of resistive SFCL and UPQC, illustrated in

Figure 2.19, in order to improve power quality problems and fulfill grid code require-

ments. The obtained results confirm that the SFCL cannot only reduce the volt-ampere

rating of the UPQC, thereby reducing the installation cost, but also aid the LVRT capabil-

ity of the wind turbine and improve dynamic performance of the induction generator for

additional support.

Moreover, the feasibility of resistive SFCL incorporated in series with the dc-link in-

ductance of the UPQC based on a current-source converter is proposed in [9] to limit

excessive current in the event of the generator side fault (see Figure 2.20) and increase

the voltage level at the generator terminal, leading to compliance with international grid

codes. Huang et al. introduce in [141] a novel topology based on combined shunt and se-

ries grid interface configuration, namely, unified compensation system (UCS), to improve

FRT capability for FSIG wind turbines. The system structure depicted in Figure 2.21 uti-

lizes one converter to provide both series and shunt compensation. In normal operation,

the UCS operates like a STATCOM and supports voltage or reactive power regulation

through the shunt connection. In faulty conditions, the UCS instantaneously switches

from the shunt to the series grid connection, compensates the voltage, and maintains the

stator voltage at its rated value.
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Figure 2.21: Configuration of unified compensation system (UCS) connected to wind

turbine terminal.

2.6 Technical-economical evaluation study of the LVRT methods

With regard to the above-described LVRT enhancement methods for the FSIG-based

WT, no comparative studies have been considered between the different configuration

schemes. In this section, a comparative study of these LVRT methods in terms of dynam-

ic performance and economic feasibility is performed.

2.6.1 Technical comparative study

Table 2.1 summarizes the advantages and limitations of applying the three categories of

the LVRT schemes discussed in Sections 2.3, 2.4, and 2.5. While the final aim of this

summary is not to prioritize the LVRT enhancement methods based on technical features,

it provides simple and clear metrics, which could be used for decision making purposes.

The contributions of SVC and TCSC to transient voltage stability of the FSIG-based

WT and power grid are presented in [102]. The comparative study verified that, in the

case of wind speed fluctuation randomly, SVC can offer better reactive power compensa-

tion to maintain the transient stability, while TCSC can effectively promote the terminal

voltage and enhance the LVRT capability in the case of severe three-phase fault currents.
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Table 2.1: Technical comparison of LVRT improvement methods for FSIG-based WTs.

Methods Main advantages Main limitations Notes(s)

TCSC
1- Variable capacitive reactance 1- Undesirable resonance 1- An effective solution for offshore

wind farm

2- Useful for voltage unbalance and

fault current limitation

2- Harmonic injection -

DVR
1- Fast voltage recovery 1- Phase angle jump 1- Compatible with a proper energy

storage capacity

2- Controllable reactive power supply 2- Active power absorption -

SDBR

1- Mechanical active power mitigation 1- Unable to control reactive power 1- 0.05 p.u SDBR is equivalent to

0.4 p.u of dynamic RPC for LVRT

enhancement

2- Reduction of pitch angle activation 2- Unable to damp voltage fluctua-

tions

-

3- High reliability and low maintenance 3- Useless in low power factor us-

age

-

BFCL

1-Useful for high voltage drops 1- Needs a large-scale coupling

transformer

1- Consumes more active power

than the SDBR

2- Minimizing rotor speed variations 2- Big reactance in huge application 2- Better performance than the SD-

BR in a sudden drop

3- No need to measure any parameters 3- Undesirable saturation of dc re-

actance

-

SFCL

1- Automatic fault current detecting 1- Unable to work at room temper-

ature

1- More feasible with second-

generation of HTS wires

2- Automatic recovering 2- Unable to control reactive power -

3- Fast fault current limiting action 3- High recovery time -

SVC

1- Reactive current injection 1- Voltage-dependent reactive con-

trol

1- Inject more reactive power com-

pared with SDSC with same capac-

ity

2- Voltage stability in weak system 2- Unstable voltage oscillations -

3- Continuous voltage control - -

STATCOM

1- Controllable reactive current 1- Needs to cut off in a high voltage

drop

1- Provide faster response com-

pared with SVC

2- Rapid response to disturbances 2- Unable to supply active power 2- provide less disturbances com-

pared with SVC

3- Negative-sequence voltage reduction - -

SDSC
1- Perform with a very high current for

a long time

1- Less effective for low voltage

drop

1- Adjust the voltage faster than

SVC

2- Low level of losses - 2- Provide 45% more reactive pow-

er compared to older types

UPQC

1- Both active and reactive control 1- Active power absorption 1- Share voltage control and reac-

tive power control into the two VSC

of the UPQC

2- Fast reactive power compensation 2- Needs a huge dc-link capacitor -

3- Long critical clearance time - -

UCS
1- Supporting both shunt and series

compensation with one converter

1- High conduction losses of series

bypass switch

1- Behave like STATCOM in nor-

mal operation

- - 2- Switch to the series grid interface

in faulty condition
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Although TCSC and SVC have some sophisticated components, such as thyristor, induc-

tors and capacitors, they have a relatively simple control structure.

Compared with SVC, STATCOM provides faster response, fewer disturbances, and

better performance at reduced voltage levels; as a result, it is the most extensively pro-

posed solution for the ride-through capability enhancement of wind turbines based on

FSIG. STATCOM may be rated for 75% of SVC rating for the same performance in re-

sponse to line fault [128]. STATCOM have a slightly smaller footprint than SVC because

they use power electronics instead of capacitors and reactors.

In [138], the authors studied a comparison between the SVC and SDSC in terms of

voltage regulation in the wind power applications. The results showed that the SVC has

better dynamic performance during the fault with minor voltage reduction on the wind

turbine terminal, while SDSC could adjust the voltage to the rated value faster during the

severe faults, such as three-phase to ground faults.

Among FATCS devices, although UPQC and UCS can exhibit superior performance

due to the fact that they provide both series and shunt compensation, the overall cost and

control complexity of these types of technologies are higher than other FACTS devices

because of using two converters. However, compared with UPQC, UCS has less control

complexity because only one converter is connected to the grid at the same time.

The SDBR can be considered a very simple and cost-effective solution for LVRT ca-

pability enhancement of the wind generator system since it uses a high power resistor

and fewer switches than other auxiliary methods. In [110], the direct comparison of SD-

BR and RPC for the fixed-speed WT was conducted, and demonstrated that a 0.05 p.u.

dynamic resistor is equivalent to 0.4 p.u. of dynamic RPC. However, the SDBR can dis-

sipate active power, but it cannot control reactive power; hence, it is unable to minimize

voltage and power fluctuations of wind generator.
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Amongst diverse FCL devices, BFCL and SFCL technologies with simpler control

structures have proven their ability to enhance LVRT capability and transient stability of

WTs. However, BFCL needs a special and costly transformer to connect the three-phase

diode bridge in series into the system.

2.6.2 Economical comparative study

This section further provides the economic study of all LVRT solutions to evaluate the

complexities and economic feasibility of different existing LVRT methods. Economic

considerations take into account the cost of the wind power integration and the cost of

allocated auxiliary devices for a range of operating conditions in terms of the cost per kW

or KVar of implementation.

Wind power generation cost

The installed cost of a commercial wind power project is dominated by the capital cost for

the wind turbines, including blades, towers and transformers and this can be in the range

of 65% to 84% of the total installed cost. The other installed costs of a wind technology

can be categorized into three groups, i.e., grid connection costs, including transformers

and substations (9% to 14%), civil works and construction costs (4% to 16%), and other

capital costs, including construction of buildings, control systems and project consultancy

with costs share of 4% to 10% of the total installed cost. The total installed capital costs

for wind technology vary significantly depending on the energy market and the local cost

structure. China and India have the lowest installed capital costs for new onshore projects

of between USD 1100/kW and USD 1400/kW in 2010 and in the range USD 1850 to

USD 2200 in the major developed country markets of the United States, Germany and

Spain.

Figure 2.22 presents the assumptions for onshore wind capital costs for typical projects

in Europe, North America and China/India for 2010 and 2011, as well as the predicted
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Figure 2.22: Installed cost of wind power projects in three area; 2010, 2011, and 2015.

values for 2015 [142]. Moreover, additional LVRT technologies impact the operation

of WT technology economically and technically. Although the actual costs of the aux-

iliary devices are not widely available, using existing reported data from commissioned

projects, the overall cost of these technologies can be roughly estimated. The overall cost

of LVRT solutions can be obtained based on their major components, such as number of

power electronic switches used, coupling transformer, magnetic inductance, high-power

resistance, capacitor, etc.

Economic feasibility of LVRT solutions

The growing integration of wind generation in power grids is expected to surge the de-

mand of FACTS in different geographies. The overall FACTS market is projected to reach

$1,386.01 million by 2018 from the $912.85 million that it accounted for in 2012 [142].

SVC is the most widely used solution in the global market, followed by the Fixed Se-

ries Capacitors (FSC); whereas devices such as STATCOM and UPFC are customized

solutions made for the special requirements of the power grids. Obviously, FACTS-based

methods are the relatively expensive because they consist of many components, such as

the power electronic devices, thyristors, reactors, capacitor banks, switchgear, protection

and the control systems, and so on. In this section, the cost range of the major FACTS
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Figure 2.23: An operating cost comparison between FACTS devices. (a) SVC, TCSC,

and UPFC. (b) SVC and STATCOM.

devices is mostly taken from the Siemens and electric power research institute (EPRI)

database reported in [143, 144], as shown in Figure 2.23(a) and (b).

Accordingly, the cost functions for TCSC, SVC, STATCOM and UPFC are developed

as follows:





CostTCSC = 0.0015s2 − 0.713s+ 153.75 US$/KV ar

CostSV C = 0.003s2 − 0.305s+ 128.38 US$/KV ar

CostSTATCOM = 0.003s2 − 0.233s+ 153.45 US$/KV ar

CostUPFC = 0.003s2 − 0.269s+ 188.22 US$/KV ar

(2.6)

where s is the operating range of FACTS devices in MVar. The marginal cost per installed

kVar of the FACTS devices decreases as the operating rate capability is increased.

An overall cost for a 100-MVar SVC and a 100-MVar TCSC varies from USD 60 to

USD 100 per kVar and USD 70 to USD 95 per kVar, respectively. Although TCSC and

SVC have some sophisticated components, such as thyristor, inductors and capacitors,
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they have a relatively simple control structure. Similarly, based on Figure 2.23, the overall

cost for STATCOM and UPFC varies from USD 100 to USD 130 per kVar and USD 130

to USD 170 per kVar at 100 MVar rating of the operation, respectively.

A cost analysis has been reported for the DVR in [145, 146], where the overall cost

including series transformers, VSC using IGBT, and the capacitor bank is estimated be-

tween around $130/KVar and $150/KVA at the operating rate of 100 MVar. This research

service provides revenue forecasts for the total DVR markets, as well as for low-voltage

and medium-voltage restorers. The demand for DVR equipment set the global DVR mar-

kets to grow at 6.9 percent between 2004 and 2011, the growth being more prominent in

North America and Asia Pacific. The Spanish company CONVERTDIP has successfully

put their related products into markets, which are called W2PS [147].

The 8-MVar SDSC machine, developed by American Superconductor, was demon-

strated at the Tennessee Valley Authority (TVA) in Gallatin in order to dynamically ab-

sorb or produce reactive power, costing between $1 million and $1.2 million [148]. Due

to its compact size and the low-cost design, the total cost of the SDSC can be reached up

to USD 100/kVar for the operating range of 100 MVar or more. Because of high efficien-

cy and the low maintenance cost of the new HTS dynamic synchronous condenser, it is a

very economic option for providing peak and dynamic reactive compensation to a power

system. Also, at the present time, the cost of superconducting materials and the cryogenic

cooling system of the SFCL are extremely high (up to $200,000@800 W/2.5kA [149]);

thus, to maintain economic feasibility of the final product, the market trend is to minimize

the amount of HTS material needed. With the recent breakthrough of economical second-

generation HTS wires, the SFCL has become more viable and is eventually expected to

be at least ten USD less in cost than presently available HTS conductors [150].

The average energy dissipated by SDBR determines its size and cost, so that the pow-

er rating of the SDBR is chosen to be greater than average energy dissipated. Once these
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Figure 2.24: Average and estimated overall cost of LVRT solutions for operating range of

around 100 MVar.

values are determined, the resistors can be chosen. ABB represented a multi-level struc-

ture and called their products Transient Booster. Multistage resistors increase the cost and

the complexity of the SDBR, while the single-stage mechanical switching as the lowest

cost and least complex option with high reliability and low maintenance and, as a result,

single stage SDBR in comparison with FACTS devices may be a preferred solution.

Although cost study of the SDBR, MERC and the BFCL is unreported, based on the

complexity of the controller and their configuration, SDBR can be easily considered as the

cheapest solution for LVRT improvement after the capacitor bank. The cost of MERC and

BFCL can also be estimated as LVRT solutions that are less costly than FACTS devices

because they do not require series transformers, sophisticated power electronic converters,

or energy storage. As stated in section 2.3.4, the dc-link capacitor of the MERS is several

times smaller than that of a regular single-phase full bridge inverter. Thus, between the

MERS and the STATCOM with the same topology, the MERC might be cheaper. Since

the economical scope of this section is to only compare the average and estimated overall

costs of all LVRT solutions for FSIG-based WT, the range of prices (US$) per KVar is

shown in Figure 2.24.
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Figure 2.25: Single-line diagram of the power network including a series-connected or

shunt-connected compensator.

2.7 Simulation results and performances comparison

As stated in Section 2.6 and shown in Table 2.1, the presented LVRT capability enhance-

ment methods for FSIG-based WTs hold some advantages and limitations. To verify

effectiveness of the described methods and also to compare them, some simulation stud-

ies using MATLAB/SIMULINK software were carried out in this section. The single-line

diagram of the proposed power system, including a large wind farm, a hydro power repre-

sented by a synchronous generator, and possible shunt and series connected compensators

is schematically shown in Figure 2.25. As arbitrary choices, the most common series and

shunt connected RPC devices, i.e., STATCOM, SVC, TCSC, and DVR, are applied at the

terminal of the wind generator. The parameters of the grid components, FSIG, and RPC

devices are given in Tables 2.2 to Table 2.4.

For comparison purposes, the dynamic performance of the combinatorial wind farm

and auxiliary devices were compared with the cases without the compensation scheme.

A three-phase symmetrical grid fault is considered, since the fault ride-through capability

of the regional grid codes mostly refer to this type of fault. Thus, a three-phase fault is

applied at t = 10 s and is cleared after 150 ms, resulting in 80% voltage dip at the PCC.

The responses of the terminal voltage (PCC), active and reactive power, stator current,

and rotor speed of the FSIG are shown in Figures 2.26 to 2.30.
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Table 2.2: FSIG-based WT parameters.

Wind turbine Parameters Values FSIG Parameters Values

Rated turbine power 3 MW Rated power 3 MW

Rated wind speed 10 m/s Rated voltage 0.69 kV

Blade radius 44 m Stator resistance 0.0048 pu

Optimal power coefficient 0.45 Rotor resistance 0.0044 pu

Optimal tip speed ratio 8.32 Stator inductance 0.125 pu

Rotor speed 1.2 p.u Rotor inductance 0.179 pu

Table 2.3: Synchronous generator parameters.

Parameters of the grid Values

Rated voltage 120 kV

Rated frequency 60 Hz

Transmission line 0.11+j0.001 pu

Load 2 MW

Rated SG power 5 MW

Rated SG voltage 25 kV

Table 2.4: Parameters of FACTS devices.

Parameters of STATCOM Values Parameters of TCSC Values

Rated power 3 MVar Rated power 3 MVar

Transformer voltage 2.5/25 kV Rated voltage 25 kV

DC-link voltage 2760 V Capacitance 21.91 uF

DC-link capacitance 0.02 F Reactance 0.043 H

Parameters of SVC Values Parameters of DVR Values

Rated power 3 MVar Rated power 3 MVar

Transformer voltage 2.5/25 kV Transformer voltage 2.5/25 kV

Rated capacitor power 3 MVar DC-link voltage 2700 V

Rated inductance Power 1.5 MVar DC-link capacitor 6 mF

Although all auxiliary devices can meet the LVRT capability requirements of the wind

generator, their performance varies with their behavior and capabilities. It is clear that

among the described methods, the performances of the STATCOM and DVR are the best

and can effectively stabilize the wind generator system, while TCSC exhibits the worst

performance; yet it can enhance the LVRT, compared with the ”No Compensation” case.

Figure 2.26 shows voltage at the PCC in different methodologies. Among the de-

scribed methods, the DVR method has the superior performance for diminishing the volt-

age dip during the fault, where voltage can be significantly retained to around 1 p.u, using

60



Figure 2.26: FSIG terminal voltage at PCC.

Figure 2.27: FSIG active power output at PCC.

STATCOM after clearing the fault. Since a quick voltage recovery is very important for

an FSIG-based WT wind turbine, the STATCOM is a very useful method to provide the

quick reactive power and voltage control.

The performance of TCSC and SVC methods are approximately similar and these

methods allow wind turbines to handle only a fraction of the total FSIG active power.

Figure 2.27 depicts the wind turbine active power during and after clearing the voltage

sag. During the fault, the machine output active power becomes almost zero with no

compensation. But STATCOM helps maintain more than half of the rated active power

at the PCC during the fault. Although the DVR method has the best performance in PCC

voltage regulation, when the DVR compensates for the voltage sag; some portion of the
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Figure 2.28: Reactive power absorbed by FSIG.

wind turbine active power is partly fed into the DVR system, resulting in lower active

power transferred to the grid.

Figure 2.28 illustrates the total reactive power absorbed by the FSIG from the network.

After the fault clearing (at t=10.15 s), the generator needs to draw a large amount of the

reactive power to re-establish the magnetic field, which leads to a lower voltage at the

terminal of the WT system. However, compared with the no compensation case, the

absorbed reactive power from the grid is significantly reduced with the STATCOM and

DVR, which helps to avoid other problems, such as voltage collapse and recovery process.

Machine speed response and stator current of the FSIG are shown in Figures 2.29 and

2.30, respectively. As it can be seen, the rotor speed and stator current increase during

the fault period, which may lead to a power system instability and it might be detrimental

for the turbine generator system if the fault duration is long, and proper auxiliary devices

are not used (no controller). Similarly, STATCOM and DVR can limit the rate of rising

of machine speed and the magnitude of the machine current in order to make the better

stability.
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Figure 2.29: Stator current of the FSIG.

Figure 2.30: FSIG rotor speed.

2.8 Summary

This chapter presented the comprehensive review of the state-of-the-art developments

for LVRT capability improvement of WTs based on fixed-speed wind turbines, which is

relatively a new concept in maintaining the voltage profile of the wind power generation.

First, the responses of the FSIG under steady-state and transient-state conditions were

extensively discussed. Then, all reviewed methodologies were categorized into three main

groups, i.e., series-connected solutions, shunt-connected solutions, and hybrid-connected

solutions; discussing the performance of the LVRT schemes including their advantages

and limitations in the detail. Also, a comprehensive analysis of these LVRT methods

in terms of dynamic performance, controller complexity, and economic feasibility was
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comparatively investigated and summarized in Table 2.1. It is found that the overall cost

and control complexity of the SFCL and UPQC schemes are higher than other types of

LVRT technologies. On the other hand, the SDBR and BFCL methods were relatively the

cheapest and simplest control structure among other LVRT solutions from the economic

feasibility point of view.

Finally, some selected case studies were simulated using the MATLAB/Simulink soft-

ware. Comparison of simulated methods indicated that DVR from series-connected solu-

tions and STATCOM from shunt connected solutions are the most reliable and effective

LVRT capability enhancement methods, while TCSC exhibited the worst performance;

yet it can enhance the LVRT compared with no LVRT controller employed with FSIG-

based WT. Although the market share in the conventional fixed-speed wind turbine con-

cept has diminished, nevertheless a non-negligible 20% of the existing wind energy in

Europe is still employing FSIGs due to their simple structure and lower maintenance

cost. Thus, this effort helps the researchers understand the relative effectiveness of the

proposed auxiliary equipment and provides a guideline for selecting a suitable technique

for the LVRT capability improvement of wind turbine generator systems.
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CHAPTER 3

APPLICATION OF SUPERCONDUCTIVITY DEVICES ON WIND POWER

SYSTEM

3.1 Overview

This chapter is organized as follows. Section 3.2 investigates a fixed-speed induction

generator (FSIG)-based wind turbines in an effective combination with a unified power

quality conditioner (UPQC) and resistive superconducting fault current limiter (RSFCL).

Section 3.3 presents a positive approach using a RSFCL for low voltage ride-through

(LVRT) improvement of the permanent magnet synchronous generator (PMSG) based

on a large wind power plant (WPP) of 50MW. Section 3.4 presents a combinatorial stan-

dalone PMSG based variable speed wind turbine (VSWT) and small-size superconducting

magnetic energy storage (SMES) system into the DC microgrid system. Finally, Section

3.5 presents the economic and practical testability of the RSFCL.

3.2 LVRT Improvement of FSIG WTs Using UPQC and SFCL

In this section, a cost-effective solution for the FSIG-based wind turbine is proposed to

fulfill grid code requirements. This work accomplished by installation of UPQC at the

wind farm terminal in order to ameliorate both power quality and LVRT capability of

the wind farm. The additional cost to integrate the UPQC can be decreased by utiliz-

ing the RSFCL as a self-healing equipment, which is the main motivation of this effort.

To ensure the validity of the proposed technique, the whole system is modelled using

PSCAD/EMTDC software.

3.2.1 FSIG-Based Wind turbine

A significant number of the wind farms in operation are equipped with fixed-speed squirrel-

cage induction generators and the capacitor banks providing the generator reactive power
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Figure 3.1: Structure of the proposed system: FSIG-based wind turbine with UPQC and

SFCL connected to the grid.

requirements. The nonlinear model of the wind turbine is commonly simplified to a static

model of the aerodynamic rotor, a two-mass model of the drive train and a third-order

model of the induction generator. The general framework of this study is illustrated in

Figure 3.1. The mechanical power extracted by a wind turbine from the wind is expressed

by the well-known formula

Pw = 0.5ρAv3wCp (3.1)

where ρ is the air density, A is the area of the rotor disk, vw is the wind speed and Cp

is the power coefficient. The power coefficient characterizes the rotor aerodynamics as a

function of both tip speed ratio and the blade pitch angle. The tip speed ratio is defined

as the relationship between rotor blade speed and the wind speed [151]. The drive train

of the wind turbine generator is designated by a two-mass model [152], which can be

represented by





2Hr
dωr

dt
= Twt − Tm

2He
dωe

dt
= Tm − Te

Tm = Dm(ωr − ωe) +Km

∫
(ωr − ωe)dt

(3.2)
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Figure 3.2: Pitch angle Control used in FSIG-based wind turbine.

where Twt, Tm and Te are the mechanical torque from the wind turbine rotor shaft, the

mechanical torque from the generator shaft and generator electrical torque, respectively.

Moreover Hr is wind turbine inertia, He is generator inertia and, Km and Dm are the

stiffness and damping of mechanical coupling.

Also, in power system stability studies, the third-order model of a FSIG can be achieved

by neglecting the stator flux transients in the voltage relations and eliminating the rotor

currents. However, the equations used for the squirrel cage induction generator model-

ing are described in [153]. Also, Figure 3.2 shows the control scheme of the pitch angle

regulator for the wind turbine. The inputs to the model are the mechanical speed of the

machine, ωm, and the power output of the machine, Pg.

3.2.2 Proposed UPQC System

In this study, the UPQC topology is composed of the integration of a series-active and a

shunt-active power filter (APF) connected back to back to a common DC-link, which is

recognized as the most complicated power quality improvement, and probably the most

expensive one. The major goal of the series APF is to isolate between a sub-transmission

system and a distribution system from a harmonic point of view. It is additionally able to

compensate voltage imbalance, voltage adjustment and harmonics at the utility-customer

at the PCC. On the other hand, the shunt-APF draws current harmonics, compensates for
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reactive power and negative-sequence current inserted by the load. It also controls and

manages the DC-link voltage of capacitor to the desired value. The passive filters are

also utilized for cancellation of the high switching frequency generated from the shunt

and series APFs. Figure 3.1 shows the configuration of the proposed system with UPQC

located between the grid bus and the wind turbine terminal.

The series APF operates as a controlled voltage source, keeping the load voltage si-

nusoidal and at the given constant voltage level. Furthermore, it inserts a voltage equal to

the difference of the grid voltage and the nominal load voltage. In order to suppress the

harmonic current and compensate the reactive power concurrently, the shunt active power

filter is proposed. The operation of the shunt APF is the same as a current source par-

allel with the non-linear load. In this study, a modified methodology with instantaneous

power theory (p − q theory) is introduced, as an efficacious approach to the non-linear

three-phase systems assessment, as well as the shunt APF control [31].


p

q


 =



vα vβ

−vβ vα






iα

iβ


 (3.3)



i∗α

i∗β


 =

1

v2α + v2β



vα −vβ
vβ vα






p̃− ploss

q


 (3.4)

The overall control scheme, including series APF and the shunt APF controller, is

shown Figure 3.3, where, VPCC = Vm sin(ωt + kπ/3), k = 0, 1, 2 is the reference PCC

voltage and VF is the generated voltage with series APF. Also, V ∗dc is the reference value

capacitor voltage and Ploss is converter’s switching losses.

3.2.3 Electro-Thermal Modeling of a Resistive SFCL

Practically, HTS fault current limiters (FCLs) have been classified into the resistive, in-

ductive, and hybrid types [154–156]. In the three mentioned types of SFCL, the resistive

type can protect the system against the fault current instantaneously by a considerable
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Figure 3.3: Proposed control structure of the UPQC to compensate voltage sag and current

harmonic.

increment in the resistance. This type of SFCL is not structurally intricate. Resistive type

SFCL also can be switched to the normal operation condition autonomously after barri-

cading the fault current. Hence, the damping performance of RSFCL is recognized as

multi-sided cooperation between the fault current magnitude values, thermal properties,

and the variable resistance of the HTS substrate.

The RSFCL is based on superconducting bars or double non-inductive spirals for

effective elimination of inductance [155]. YBCO-coated conductors are generally used

for the resistive type of SFCLs. The current limiting behavior of the RSFCL can be

modeled by the resistance transition of HTS tapes in terms of temperature and current

density, as defined by the following equation.

RSFCL =





0 if isc < Ic and T < Tc

ρf
Vsc

A2
sc
{Jc0|J | ( T−Tc

Tc−Tb
) + 1} if isc > Ic and T < Tc

ρn
Vsc

A2
sc
( T
Tc
) if T > Tc

(3.5)
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where Tc, Tb, Jc0, Vsc, and Asc are critical temperature, liquid nitrogen temperature, criti-

cal current density, superconductor volume, and cross section, respectively. Also, isc, Ic,

ρf , and ρn are short-circuit current, critical current, flux flow resistivity, and normal resis-

tivity, respectively. In Equation (3.5), three possible states for the superconductor are; 1)

the flux-creep state at a temperature and a current under the critical rate; 2) the flux flow

state at a current over the critical value, but temperature under the critical rate; and 3) the

normal conductive state at a temperature higher than the critical amount.

3.2.4 Numerical Simulation Analysis

In this section, in order to verify the effectiveness of the proposed structure shown in Fig-

ure 3.1, simulation studies were carried out using PSCAD/EMTDC. In the simulation, by

utilizing the proposed structure, the LVRT capability and dynamic stability of the FSIG-

based WT is enhanced. A 2-MW FSIG is directly connected to the PCC. For the reactive

power compensation purpose, a capacitor bank (Cbank) is connected to the terminal of the

induction generator. The value of the capacitor is chosen so that the power factor of the

wind generator during the rated operation becomes unity.

The total output power of a wind turbine is supplied to the resistive load (L2, 2 MW)

installed at the PCC. Moreover, the nonlinear and sensitive load of a three-phase diode

bridge (L1, 50 kVA) supplied by the grid was considered to affirm the ability of UPQC

in reducing current harmonics. Finally, the grid is represented as an infinite source with

the fixed frequency of 50 Hz and voltage of 380 V interconnected to the infinite bus via

the RSFCL. Tables 3.1 and 3.2 show wind turbine characteristics and RSFCL parameters,

respectively. The detailed information about UPQC parameters can be found in [21], in

which supply voltage is 380 V, and the resistance and inductances of the system are 0.006

Ω and 0.02 mH, respectively.
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Table 3.1: Characteristics of the wind farm induction generator.
Symbol Quantity Value

Prated Rated generator power 2 MW

Vrms Rated rms line-line voltage 0.38 kV

Rs Stator resistance 0.066 pu

Rr Rotor resistance 0.103 pu

Cbank Compensation capacitor 0.9 MVar

P Poles pairs 3

H Mechanical time constant 2.5 sec

Table 3.2: Parameters of SFCL.
Symbol Quantity Value

Tc Critical temperature for HTS 990 K

T0 Temperature of cooling system 770 K

Ic0 Critical current 5 kA

Cp Specific heat of HTS 3 MJm−3K−1

Pcool Power of cooling 0.9 MVar

Vsc HTS Volume 2e-3m3

Asc HTS Cross section 3e-5m2

ρn Normal resistivity 4e-9 Ωm
ρf Flux flow resistivity 1e-10 Ωm

Figure 3.4 shows the current waveform of: 1) the load and the grid and 2) the shunt ac-

tive filter, in which the load current can be compensated by the shunt active filter current,

keeping the grid current sinusoidal. To assess the operating characteristic and damping

performance of the RSFCL, simulations based on the sample parameters are carried out

for two scenarios: 1) without considering the SFCL, 2) with considering the SFCL. A

symmetrical fault was considered at the integration point with the grid, as illustrated in

Figure 3.1. The fault occurs at 1.1 s and cleared after 0.2 s. For the results in this section,

the wind turbine operates at a wind speed of 13 m/s. In the absence of the SFCL, voltage

sag of 50% occurs at grid bus. Figure 3.5(a) shows the grid voltage and voltage injected

by the series active filter and Figure 3.5(b) shows the PCC voltage, which is kept in 1 pu.

The expediency of the SFCL component for managing the fault current, as well as

resistance and temperature variations of the SFCL, is demonstrated in Figure 3.6. Before
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Figure 3.4: Current harmonics compensation. (a) Load and grid current. (b) Shunt active

filter current.

Figure 3.5: Voltage sags compensation without SFCL. (a) Grid voltage and series APF

voltage. (b) PCC voltage with compensation.

connecting the SFCL, the peak of the current signal reaches about 14 kA for phase A.

The installation of the SFCL on the main road of the wind farm can limit the maximum

fault current effectively to reach about 10 kA in the first peak, and was further reduced to

6 kA in the third cycle. A retrieval of Figure 3.6(b) and 3.6(c) will determine when a fault

takes place at t = 1.1 s, the quench time (a transition from promising its superconducting

mode to a resistive mode) is initiated by going through the flux-flow state during 0.1 s

and then to the normal state at a temperature rise of 900 K (critical temperature for HTS

tap). Notwithstanding, this temperature rise requires around 0.4 s (20 cycles) for the HTS
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Figure 3.6: Performance evaluation of the SFCL model. (a) Fault current without and

with SFCL in a single-phase system. (b) Resistance variation and temperature rise.

to reverse to its superconducting region, called restore time. Additionally, the limiting

resistance of the SFCL went up to 0.003 Ω in the flux flow state and reached its normal

state value of 0.023 Ω after ten cycles of the fault.

Figure 3.7 shows the evolution of voltages at the wind turbine terminal with and with-

out the SFCL. The impact of the installed SFCL on the voltage profile was significantly

demonstrated by comparison of the voltage waveforms. The voltage sag was efficaciously

improved by adding the SFCL, reaching 35% and 20% during the flux flow and normal

state, respectively. It was observed that the PCC voltages recovered immediately to the

nominal value upon clearing the fault.

Figure 3.8(a) shows the grid voltage and voltage injected by the series active filter and

Figure 3.8(b) shows the PCC voltage, which is kept in 1 pu with SFCL. Figure 3.9 shows

a section of the simulated output active and reactive power with and without connecting

SFCL. Before fault occurs, active power delivered to the grid is kept constant at the rated
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Figure 3.7: Voltage-dip characteristic at the generator terminal.

Figure 3.8: Voltage sags compensation with SFCL. (a) Grid voltage and series APF volt-

age. (b) PCC voltage with compensation.

power 2MW, with pitch angle control, and the reactive power absorbed from the grid is

kept at zero with capacitor bank. The active power drops to approximately 0.8 MW after

fault occurred, without connecting SFCL. After connecting SFCL, the drop in the active

power decreased, where it attained about 1.25 MW.

3.3 LVRT Improvement of PMSG WTs Using a Resistive SFCL

This section proposes an effective approach using resistive SFCL as the additional sup-

port along with conventional converter control strategy based on PI regulators to further
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Figure 3.9: Active and reactive power delivered to the grid at PCC.

increase the rated active power of the installation, thereby enhancing dc-link voltage s-

moothness as well as the LVRT capability of the 50MW WPP. By using the RSFCL, the

fault current is suppressed effectively and the voltage dip level of the WPP terminals is

diminished, leading to enlarge the voltage safety margin of LVRT curve. The first-cycle

suppression of a fault current by a RSFCL can also reduce the activation of pitch angle

control and can decrease the effect of the extreme loads on the turbine components. These

significant features of RSFCL can demonstrate that the proposed technique surpasses

aforementioned methods using BCs and complicated nonlinear control system. However,

a large WPP has a complicated structure using several components, and the inclusion of

RSFCL composes this scheme more problematic for optimal performance of the system.

Hence, the further effort in this study is centralized on the most-widely decision-making

technique based on the analytic hierarchy process (AHP) [157], for the optimal perfor-

mance of the combinatorial RSFCL and 50 MW WPP. The technique creates the Pareto

optimality for simultaneously optimizing 3-D alignment that rarely reported the power

system literatures. Effectiveness of the proposed approach, using the Pareto optimality

concept is verified by the numerical simulations. The optimization technique figures out

all the nondominated solutions on the Pareto front at the end of the optimization run.
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Figure 3.10: Proposed combinatorial PMSG-based WPP and RSFCL.

3.3.1 Modeling of the PMSG-Based Wind Turbine

The structure of the proposed system including a 50-MW PMSG WPP and resistive SFCL

is schematically shown in Figure 3.10. The constituents of the wind turbine are aerody-

namic, mechanical, and electrical parts. The generator is completely decoupled from the

grid by power electronic converters (grid-side VSC and generator-side VSC which are

connected back-to-back through the common dc-link capacitance). PMSG-based WTs

may be represented as a combination of subsystems. The framework shown in Figure

3.11 is typically used for modeling purposes, in which the relevant mathematical model

has been cited in the several literatures [10,11,36], and it is summarily considered here.

Aerodynamic Model

According to the Betz theory, the aerodynamic power generated by the rotor is given

by [10]

PA = 0.5ρπR2v3windCp(λ, β) (3.6)
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Figure 3.11: Subsystems model used in PMSG-based wind turbine.

Figure 3.12: Wind turbine characteristics.

where ρ is the air density (kg/m3), R is the radius of the blade (m), vwind is the free-

stream wind speed (m/s), and Cp(λ, β) is the rotor power coefficient. In the PMSG-based

WT, the obtained power depends on Cp, which is a function of both tip speed ratio (TSR)

λ and blade pitch angle β, in which the TSR is defined as

λ =
Rωrotor

vwind

(3.7)

where ωrotor is the rotational turbine speed. The numerical approximation of the power

coefficient is given by following non-linear equations [43]

Cp(λ, β) = 0.73(
151

λt
− 0.58β2.14 − 13.2)e

−18.4
λt (3.8)

λt =
1

1
(λ−0.02β) − 0.003

(β3+1)

(3.9)
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Figure 3.13: Conventional pitch angle control used in FSIG-based wind turbine.

The aerodynamic torque on the rotor Trotor, which is produced by the blades of wind

turbine can be calculated as PA/ωrotor. Also, Figure 3.12 illustrates the relation between

the rotational turbine speed and the aerodynamic power of the wind turbine PA for var-

ious wind speeds vwind with the blade pitch angle β = 00. For each wind speed, the

maximum power point can be acquired corresponding to determine the rotational speed

that is expressed as [43]

Pmax = 0.5ρπR2(
Rωrotor

λopt
)3Copt

p (3.10)

where λopt and Copt
p are the optimum values of the tip speed ratio and power coefficient,

respectively. For an average wind speed of 12 m/s, which is used in this section, the

maximum turbine power output 2 MW and rotational speed 1200 rpm are obtained.

The aerodynamic of wind turbines is controlled with pitch control approaches, which

have been developed for large WTs. The blades start to move around cut-in speed 4

m/s, while the optimal aerodynamic efficiency is achieved at the wind speed rated about

12 m/s. The extra power obtained from the wind speed between 4 and 12 m/s may be

smoothly curtailed by spinning the blades using a pitch control to avoid overloading the

wind turbine system. Figure 3.13 depicts the conventional pitch angle regulator in which

the input and output of the model are the rotational turbine speed ωrotor and blade angle

β, respectively.

The yaw system of a typical turbine is significantly slower than the pitch system and

the structural dynamics. Since the yaw rates are so slow, that there is very little interac-
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tion with the rest of the system behavior, it is often not considered at all. If yawing is to

be considered it can be modeled similar to the pitch system but with significantly lower

bandwidth and rate limits. The gearbox also plays an essential role in the WTs to adapt

low-speed, high-torque rotation of the turbine rotor into the faster rotation of the electri-

cal generator. The critical issue in implementing the gearbox technology is the extreme

loads, which may lead to misalignment of the drive train and a gradual failure of the gear

components, consequently increasing the capital and operating cost of the WTs.

PMSG Model

Based on the reference frame theory [6, 11], stator voltage equations in a d − q syn-

chronous frame are modeled:

vsd = Rsisd + Ls

disd
dt
− ωeLdisq (3.11)

vsq = Rsisq + Ls

disq
dt

+ ωeLdisd + ωeψr (3.12)

where vsd and vsq are the d− and q−axis stator voltages, isd and isq are the d− and q−axis

stator currents, Rs and Ls are the stator resistance and inductance, Ld and Lq are the d−

and q−axis inductance, ψr is the rotor flux, and ωe is the electrical angular speed.

For the generator with surface-mounted permanent magnets, d− and q−axis induc-

tances are the equal (Ld = Lq), resulting a simple interpretation of the electromagnetic

torque Telectrical and aerodynamic torque on the rotor Trotor expressed as

Telectrical =
3

2
pψrisq (3.13)

Trotor − Telectrical = J
dωrotor

dt
+ bωrotor (3.14)

where p is the number of machine pole pairs, J is moment of inertia for turbine-generator,

ωm is shaft mechanical speed, and b is friction coefficient.
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(a)

(b)

Figure 3.14: Proposed power control strategy for WPP. (a) Control block diagram of the

generator-side VSC. (b) Control block diagram of the grid-side VSC.

3.3.2 Power Control Strategy

Details of the proposed power control scheme for PMSG based on full-power converter

topology is illustrated in Figure 3.14. As it can be seen, it is schematically divided in

two main blocks. On the one hand, controlling the active and reactive power of PMSG is

obtained by generator-side VSC. Also, the management of the active and reactive power

released to the grid by the PMSG along with the dc-link regulation is accomplished via

the grid-side VSC. The active and reactive power references to be injected by the grid-

side VSC are obtained, so that the whole wind farm can fulfill the grid code requirements.
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Generator-Side VSC Control

The control block diagram of generator-side VSC is shown in Figure 3.14(a), which

is based on stator voltage equations (3.11) and (3.12) obtained in d − q synchronous

frame. Several maximum power point tracking (MPPT) algorithms have been reported for

PMSG-based WT. The outcome of MPPT provides the reference value of the rotational

turbine speed (ω∗rotor) for the generator-side VSC controller. This section mainly focuses

on the converter control, and hence, the MPPT control method was not discussed. The

speed reference ω∗m is acquired by the maximum power point tracking (MPPT) method

mentioned in (3.10) in order to extract the maximum amount of power with the actual

wind force, while the rotational speed error is given as the input to a PI controller in order

to generate the q−axis stator current command (i∗sq). Also, the reactive power produced

by the wind turbine is regulated at zero (i∗sd = 0) for unity power factor operation. The

error between the reference dq−axis currents and the actual dq−axis currents, isd, isq are

used as inputs to the linear PI controllers to produce dq−axis voltage commands, v∗sd, v∗sq

after the decoupling. The angle θe calculated from the rotational speed of the PMSG is

applied in park transformation to engender gate signals using the carrier wave of pulse

width modulation (PWM) operation.

Grid-Side VSC Control

The proposed grid-side converter controller is provided in Figure 3.14(b) to calculate the

current references to be inserted by the grid-side VSC in order to fulfill the grid code

requirements. Further, this controller preserves the dc-link capacitor voltage at the set

value 1.2 kV, which assures the active power swapping from PMSG to the grid. In the

steady state condition, the maximum capacity of the current, Imax is used to produce 2

MW active power (IV SC
R = 0). In the next stage, the both of the p∗, which is added

to the PI controller from the dc-link voltage regulator, and q∗, are transformed into the
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instantaneous power α− β method based on α− β − 0 reference frame [30]. It has been

mathematically formulated as



i∗α

i∗β


 =

1

v2α + v2β



vα −vβ
vβ vα






p̃− ploss

q


 (3.15)

The angle θs for the Park transformation is detected from the three-phase voltages

at the low-voltage side of the grid-side transformer by using a phase-locked loop (PLL).

Finally, gate signals are generated for grid side VSC switches using the Hysteresis module

[158] shown in Figure 3.14(b). Under a grid voltage dip, the reactive current, IV SC
R in

proportion to the voltage reduction should be provided during the fault in order to meet

the LVRT requirement according to the characteristic shown in Figure 1.1(b). As can

be seen in Figure 3.1(b), the injection of the reactive power has the highest priority in

area A, but free capacity of current, I∗A must also be utilized to retain the active power

production related to the voltage sag magnitude, while the generator continues to provide

active power at nominal value. In this case, dc-link voltage exceeds its safety limits,

leading a system malfunction or even component failure. However, the rapidly rising dc-

link voltage under system fault is difficult to be avoided by only using the PI controller.

For this reason, this section proposes a RSFCL installed in outside of the wind farm,

as shown in Figure 3.10. RSFCL makes it possible to suppress the dc-link voltage fluctu-

ations by limiting the magnitude of the fault current, thereby increasing the output active

power capacity and improving the LVRT capability of the wind farm. A further analysis

is accomplished in Section 3.3.4.

3.3.3 Electro-Thermal Modeling of a RSFCL

The resistive superconducting fault current limiters (RSFCLs) have been launched and in-

troduced into the network as a self-healing technology to curb prospective fault currents

immediately to a manageable level by suddenly raising the resistance value [30,122]. Fur-
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Figure 3.15: Equivalent circuit of proposed system in fault condition.

thermore, after the fault current is profitably repressed, the RSFCL can be restored to the

primary state without additional aid. Considering the superconducting material, BSCC-

2223, the conductor has commonly been utilized for most of the tentative RSFCLs. RSF-

CL has a simple structure with a lengthy superconductor wire inserted in series with the

transmission lines. With the recent breakthrough of second-generation high-temperature

superconductor (HTS) wires, the SFCL has become more viable. To preserve the super-

conductor from detrimental hot spots during the operation, the shunt resistance, Rshunt

is essential. This parallel resistance must be contacted all over the length of the super-

conductor, and it regulates the controlled current to elude over-voltages likely occurring

when the resistance of the superconductor increases much quicker. The current limiting

behavior of the RSFCL are presented in Equation (3.5).

According to the equivalent circuit of the proposed combination system, shown in

Figure 3.15, if the asymmetrical component of the fault current is ignored, the short-

circuit current through the RSFCL branch can be stated by the following equations

iRSFCL(t) =
Rshunt

RSFCL +Rshunt

× Vm√
R2 + (LTω)2

sin(ωt) (3.16)

whereR = Rtrans+Rshunt‖RSFCL, LT is the inductance of the transformer, and Vm is the

magnitude low voltage side of interfacing transformer. The total fault energy dissipated in

the HTS tapes for three phases, Qsc is calculated using (3.17), where ∆tsc is the duration
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of the fault [159].

Qsc = 3

∫

∆tsc

RSFCLi
2
RSFCL(t)dt (3.17)

Substituting (3.16) into (3.17) gives the following

Qsc =
3V 2

mRSFCL

R2 + (LTω)2
[
∆tsc
2
− sin(2ω∆tsc)

4ω
] (3.18)

The RSFCL model should be a reasonable approximation of transient SFCL behavior

during faults and, therefore, should consider thermal properties. The thermal model of

RSFCL has been generically estimated as follows [21]

T (t) = T0 +
1

Csc

∫
[Qsc(t)− Pcool(t)]dt (3.19)

where T0 is ambient temperature, Csc is the heat capacity of the superconductor, and Pcool

is the power cooling.

3.3.4 Numerical Simulation Analysis

The wind farm shown in Figure 3.10 consists of the 25 wind turbines rated at 2 MW,

which totally supply the maximum 50 MW to the grid, where the base wind speed is

designed as 12 m/s based on (p − ωrotor) characteristic curve (Figure 3.12). To perfor-

m a realistic design, all aspects of a WT need to be considered. Thus, a holistic wind

turbine model was utilized including detailed aerodynamics and structural, mechanical,

and electrical systems using MATLAB/SIMULINK file [160]. Indeed, this model cov-

ers a three-dimensional mechanical model of the tower, nacelle, and blades modeled in

SimMechanics, hydraulic pitch actuators, electrical yaw actuators, a full generator and

electrical grid model. The modeling of the RSFCL was also accomplished using the

MATLAB programming to combine its electrical and thermal properties as discussed in

Section 3.3.3. A top-level view of the model is shown in Figure 3.17. The characteristics

of the preferred wind farm and selected resistive RSFCL parameters are given in Table

3.3 and Table 3.4.
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Figure 3.16: Combinatorial PMSG-based WT and RSFCL model using SimPower Sys-

tems.

Effect of RSFCL on DC-Link Voltage Smoothness

For simplification proposes, in this section we only concentrate on details of turbine’s

electrical model in order to analyze the impact of RSFCL on dc-link voltage smoothness.

Suppose a symmetrical three-phase fault considered at the integration point with the

grid, is appearing at 4 s and cleared after ∆tsc = 0.2 s. To assess the damping behavior

of the RSFCL, simulations are carried out for without and with the presence of the RS-

FCL. The expediency of the RSFCL component for managing the fault current as well

as resistance and temperature variations of SFCL is demonstrated in Figure 3.18. The

peak current for phase a in the pre-fault value is 850 A and then exceeds 14.2 kA without

connecting RSFCL whereas with SFCL incorporated on the main road of the wind farm,

the fault current is limited effectively to reach about 5.1 kA (see Figure 3.18(a)). Figure

3.18(b) illustrates the limiting resistance of the SFCL, which went up to 7.1 Ω in the flux
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Table 3.3: Characteristics of the wind farm induction generator.

Symbol Quantity Value

Prated Rated generator power 2 MW

vwind Rated wind speed 12 m/s

R Blade radius 46 m

ρ Air density 1.225

Copt
p Optimal power coefficient 0.45

λopt Optimal tip speed ratio 8.32

Vrms Rated rms line-line voltage 0.69 kV

ψr Rated rotor flux 17 Wb

ωm Rated speed 1200 rpm

Rs Stator winding resistance 0.017 pu

Ls Stator winding inductance 0.064 pu

Rr Rotor winding resistance 0.103 pu

Ld, Lq d, q−axis synchronous inductance 8.75 mH

P Poles pairs 3

H Mechanical time constant 2.5 sec

Table 3.4: Parameters of SFCL.

Symbol Quantity Value

Tc Critical temperature for HTS 990 K

T0 Temperature of cooling system 770 K

Ic0 Critical current 5 kA

Cp Specific heat of HTS 3 MJm−3K−1

Pcool Power of cooling 700 kW

Vsc HTS Volume 3e-4m3

Asc HTS Cross section 1e-6m2

Rsh Shunt resistance of HTS 120Ω
ρn Normal resistivity 4e-8 Ωm
ρf Flux flow resistivity 1e-9 Ωm

flow state and rise to reach a normal stat value of 15 Ω after ten cycles of the fault. A

retrieval of the Figure 3.18(b) and 3.18(c) will determine, when a fault takes place at t

= 4s, the quench time (a transition from a superconducting mode to a resistive mode) is

initiated by going through the flux-flow state during of 0.1s and then to the normal state

at a temperature rise of 900 K (critical temperature for HTS tap).
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(a)

(b)

(c)

Figure 3.17: RSFCL model response. (a) Fault current waveform without and with RS-

FCL in a single-phase system. (b) Resistance variation in flux flow and normal state. (c)

Temperature rise.

Figure 3.19(a) shows the voltage profile on PCC in the proposed integration system

during a three-phase short circuit. In the absence of the reactive injection and RSFCL, the

voltage reduction of 70% occurs. In this case, the voltage at the PCC cannot be restored

to the nominal value because of an instability issue on the proposed system and WPP

must be disconnected from the grid. With the adoption of the reactive injection control,

the voltage dip is decreased, reaching 50% before recovering immediately to the nominal

value upon clearing the fault. Based on the reactive power support requirement (Figure

1.1(b)), for a 50% voltage reduction, all the capacity of the wind farm is occupied by

reactive power.
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(a)

(b)

(c)

(d)

Figure 3.18: Operation of the proposed combinatorial WPP and RSFCL during and after

fault (a) Voltage profile at wind farm terminal (b) dc-link voltage with and without RSF-

CL. (c) Active and reactive power at the PCC without the RSFCL. (d) Active and reactive

power at the PCC with the RSFCL.

As can be observed in Figure 3.19(c), the reactive power injected during the fault al-

lows the wind farm to satisfy the specifications of grid code requirements such as increas-

ing the LVRT capacity. However, due to the lack of output active power in the grid-side

VSC and consequently earlier-mentioned unbalanced power during the fault, the dc-link

voltage is significantly increased to about 1.14 pu, where a regular reactive power control

with no RSFCL is used i.e., 14.58% over voltage (Figure 3.19(b)). This effort proposes

the RSFCL as an additional supporting method besides the reactive power control to im-

prove the LVRT capability and dc-link voltage smoothness of the wind farm. This method
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(a)

(b)

(c)

Figure 3.19: Operational setting for proposed system. (a) Wind speed. (b) Wind Direc-

tion. (c) Nacelle yaw control performance.

increases the voltage stability margin with respect to the LVRT curve, in which voltage

sag is dramatically improved to 20%. Figure 3.19(d) illustrates the active/reactive power

output of the wind farm with the RSFCL, in which they are considerably kept at rated val-

ue 50 MW and 0 MVAr before the fault, respectively. After installing RSFCL, the drop

in the active power decreased from 0 MW to 32 MW and back to the normal operation

gradually as the fault is cleared. That is, the RSFCL presence gives rise to the retaining of

the active power production for the PMSG-WPP by approximately 60% during the fault

condition. The impact of the installed RSFCL (along with a regular reactive power con-

trol) on the dc-link voltage is effectively demonstrated by declining it to 1.05 p.u (only

5% over voltage).
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(a)

(b)

Figure 3.20: Power delivered to the grid at PCC with and without RSFCL. (a) Active

power output. (b) Reactive power output.

Effect of RSFCL on Extreme Load Reduction

In this section, in order to analyze the impact of RSFCL on WT extreme loads, a holistic

wind turbine model is utilized to simulate the detailed aerodynamics and mechanical as-

pects of a WT. It assumed that wind speed reaches to rated value of 12 m/s at t=5 s after

starting up the WT as shown in Figure 3.20(a). It also assumed that there is a fluctuant

trend in wind direction (see Figure 3.20(b)) in order to demonstrate the effective perfor-

mance of the yaw control system, in which the yaw system drives motor action to rotate

the turbine nacelle to encounter the wind and reduce the difference between the wind di-

rection and the turbine angle as show in Figure 3.20(c). It is notable that generator should

be connected to the grid when the rotational speed reaches a rated value of 1200 rpm. For

comparison purposes, the dynamic performance of the proposed system were carried out

for without and with the presence of the RSFCL. Similarly, a three-phase fault is applied

at t = 80 s and is cleared after 200 ms, resulting in 80% voltage dip at the PCC as shown

in Figure 3.19(a).

90



(a)

(b)

Figure 3.21: Dynamic performance of the turbine side with and without applying the

RSFCL. (a) Rotational turbine speed. (b) Aerodynamic rotor torque.

Figure 3.21 show the active and reactive power output of the wind farm with and

without the RSFCL, in which they are considerably kept at rated value 50 MW and 0

MVAr before the fault, respectively. The active power drops to approximately 5 MW after

fault occurred, without connecting SFCL. After connecting SFCL, the drop in the active

power decreased, where it is attained about 30 MW. Moreover, from these figures it is

seen that the grid-side VSC can provide necessary reactive power for LVRT improvement

during faults condition.

Rotational speed and aerodynamic torque responses of the rotor turbine and generator

are shown in Figure 3.22 and Figure 3.23, respectively. As it can be seen, the rotational

speeds and aerodynamic torque increase during the fault period which may lead to power

system instability and is detrimental for the turbine generator system if the fault dura-

tion is long and proper auxiliary devices are not used (no controller). However, RSFCL

can limit the rate of rising of machine speed and the aerodynamic torque imposed on

rotor/shaft in order to make better stability. Finally, the impact of the installed RSFCL
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(a)

(b)

Figure 3.22: Dynamic performance of the generator side with and without applying the

RSFCL. (a) Rotational generator speed. (b) Generator torque.

on pitch actuator force is effectively demonstrated by 50% reduction during the fault in

proportion to the case with no using RSFCL. Therefore, RSFCL can be a promising solu-

tion for wind turbine controller performance with respect to extreme loads happening to

mechanical part during the severe disturbances.

3.3.5 Optimal Scheme Performance

The obtained results in Section 3.3.4 for the proposed combinatorial 50-MW wind farm

and RSFCL confirmed that further improvements in dc-link smoothness, extreme load,

and LVRT capability of a wind farm can be achieved by increasing the SFCL resistance

as much as possible. However, as stated in (3.18), the high-resistance SFCL means a

substantial amount of energy is dissipated in the form of heat, resulting damage on SFCL

construction and cooling system. This large energy dissipation would lengthen the re-

covery time of the RSFCL (transition from resistive state to superconducting state) after

clearing the fault. Also, as stated in Section 3.3.2, for overcoming the unbalance power

between the generator and converter, the active power output of the wind farm, PWPP
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should be appropriately increased during the fault to diminish the fluctuations of dc-link

capacitor voltage. However, depending on the grid code, reactive power production has

highest priority during the fault, occupying some portion of the maximum capacity of

apparent power, and leading reduction in PWPP . Hence, there is a tradeoff between three

above mutually contradicting criteria, SFCL resistance, energy dissipation, and active

power output of the WPP in order to achieve an optimal design of combinatorial 50-MW

wind farm and resistive SFCL.

For optimization purposes, this section implements multi-criteria decision making

(MCDM) methodology based on analytical hierarchy process (AHP) detailed in [30]. One

of the outstanding characteristics of the MCDM technique is the creation of the Pareto op-

timality for simultaneous multiobjective optimization in which algorithm figures out all

the nondominated solutions on the Pareto front (optimality) at the end of the optimization

run. AHP is established as beneficial technique providing the promising solutions to the

complicated decision-making problems with different criteria. The proposed optimization

model contains three predefined criteria and two constraints that are expressed as

Min { 1

RSFCL

,
1

PWPP

, Qsc} (3.20)

Subject to





Tmax
SFCL − 423 < 0,

point (Vgrid,∆tsc) within Area A.

(3.21)

where the maximum RSFCL, the maximum PWPP , and the minimum Qsc are desirable.

The proposed system (combination of 50-MW WPP and RSFCL) should be designed in

such a way that the following criteria are satisfied: 1) Tmax
SFCL < 4320 for safe solder

melting; and 2) fulfill Danish grid code requirement including LVRT and reactive power

support requirement.
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Table 3.5: Limits of Variables for Optimization Problem.
Symbol Quantity Min Value Start Max Value

Vsc Volume of HTS 5e-4m3 5e-4m3 1e-3m3

Asc Cross section of HTS 1e-6m2 5e-6m2 1e-5m2

∆tsc Duration of the fault 0 s 0.2 s 0.8 s

Based on (3.5), any change in the dimensions of the superconducting wires as well as

fault durations may affect fault current limiting performance of RSFCL, and consequently

the optimum design of the proposed system. Therefore, in this optimization, variable

parameters are superconducting wire volume (Vsc), superconducting wire cross section

(Asc) and duration of the fault (∆tsc). The constraints of the selected variables for the

optimization problem are shown in Table 3.5.

Considerately, if each variable is changed in 10 steps, three variables would create

103 = 1000 alternatives when utilized in the electrical simulation model. The cases that

exceed the predefined optimization constraints must be omitted from feasible options,

which are 378 cases. The goal of AHP method is to find a best case (desired solution)

among the remnant number of 784 alternatives, which can maximize each criterion satis-

faction. Basically, for 784 alternatives (Ai, i = 1, 2, , 784) and 3 criteria (Cj, j = 1, 2, 3),

there are four steps considering decision problems by AHP as follows:

Step 1) Scrutinize the relation between objectives, criteria and alternatives to build the

multi-layers hierarchical structure. Figure 3.24 shows the multi-layers hierarchical struc-

ture for optimal combinatorial PMSG-based WT and RSFCL including optimal layer,

criterion layer, and alternative layer.

Step 2) Compose a pairwise comparison matrix by assigning each alternative/criterion

an optional number from 1/9 to 9. In this article, the three-point performance rating scale

is defined for the importance of criteria, 9 (high), 5 (medium), and 1 (low). Based on the

explanation in [30], if the importance of criteria C1, C2, C3 are ranked as high (C1 = 9),

medium (C2 = 5), and low (C3 = 1), respectively, the criteria pairwise comparison matrix

94



Figure 3.23: Hierarchy process for optimal combinatory PMSG-based WT and RSFCL.

C = [c]3×3 can be expressed by

C = [c]3×3 =




c11 c12 c13

c21 c22 c23

c31 c32 c33



=




C1/C1 C1/C2 C1/C3

C2/C1 C2/C2 C2/C3

C3/C1 C3/C2 C3/C3



=




1 9/5 9

5/9 1 5

1/9 1/5 1




(3.22)

A similar method is applied to estimate the value of alternative pairwise comparison ma-

trix Ai = [aij]784×784, (i = 1, 2, 3) with respect to each criterion.

Step 3) Compute the relative weight (priority) of the compared factor for the criterion

according to the judgment matrix C and A. The normalized criteria and alternatives

weight vector can be obtained by adding the array elements of each row of C and A

matrix and then dividing by the sum of the element of columns. Here, the weight vector

matrix of criteria wcj , (j = 1, 2, 3) can be estimated by




1 9/5 9

5/9 1 5

1/9 1/5 1



=⇒




1 + 9/5 + 9 = 11.8

5/9 + 1 + 5 = 6.56

1/9 + 1/5 + 1 = 1.31



=⇒




wc1

wc2

wc3



=

1

11.8 + 5.56 + 1.31



11.8

1.31


 =




0.60

0.334

0.066




(3.23)
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The analysis of the simulation results represents the degree of importance of alterna-

tive i in criterion j, i.e., dij , which is divided by its maximum value. This is followed by

splitting the alternation range to nine parts, allocating a proportional number from 1 to 9

into each alternative aij as

aij = Integer(
dij

0.11Maxi(dij)
) (3.24)

Since a pairwise comparison matrix of the alternativeAi is compatible, it can form the

calculation of the alternative weight vector simple via normalizing the elements of each

column, reaching to waij . These calculations can be formulated as

waij =
aij

Σ784
i=1aij

(3.25)

The sum of the entire alternative weight vector with respect to the each criteria waij

and the criteria weight vector wcj for j = 1, 2, 3 and i = 1, 2, , 784, forms a decision

matrix D = [d]784×3 as

D = [d]784×3 =




wa11 wa12 wa13

wa21 wa22 wa23

. . .

. . .

wa(784)1 wa(784)2 wa(784)3




(3.26)

Step 4) Calculate the best alternative, i.e., the highest priority value. Usually, the

criteria can be classified into the two opposite groups called the benefit and cost criteria

[160]. A benefit criterion means that the better alternative has the higher grade. The

inverse scenario is expressed true for the cost criteria. In this optimization study, the total

energy dissipated is cost and the other criteria, i.e., the resistance of SFCL and power

output of the WPP, are benefit. Thus, the optimization problem can be summarized as a

96



Figure 3.24: Multi-objective optimization using AHP, Pareto front for three criteria.

standard format for aggregating alternatives to rank them based on the ratio performance

approach detailed in [160], as given by

P ∗AHP = maxi(
(wai1 × wc1) + (wai2 × wc2)

wai3 × wc3

) for i = 1, 2, 3, . . . , 784. (3.27)

For three levels criteria comparison, this weight vector must be calculated 25 times

(32− 2) by changing the importance of the criteria with respect to each other. The run re-

sults of the algorithm are shown in Table 3.6. As earlier mentioned, the Pareto optimality

plays the significant role in choosing the best solution for optimization of all three crite-

ria: resistance of SFCL, energy dissipation in SFCL, and active power output of the WT.

However, for an approximate set of three-dimensional Pareto-optimal solutions, a search

is performed for the tradeoff values between the optimums of the objective functions,

using AHP, at the end of each optimization run, as shown in Figure 3.25.

The corresponding AHP optimization results are illustrated in Table 3.6. It is the

tradeoff values between the 25 given set of mutually contradicting criteria. Referring to

Table 3.6, if higher priority is given to the RSFCL, so case 9 (H-L-L) in which 26.15 Ω

must be chosen. Similarly, for the power output of the PMSG-WPP or total energy dis-

sipated priority selection, cases 20 and 24 (L-H-L and L-L-H) in which PWPP = 28.59
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Table 3.6: Achieved Optimal Alternatives Using AHP Method.

Case

No.

Priority wc1 wc2 wc3 Vsc(m3) Asc(m2) ∆tsc(s) R(Ω) P (MW ) Qsc(kJ)

1 H-H-H 0.33 0.33 0.33 5.00E-04 9.20E-07 0.26 44.59 41.35 143.43

2 H-H-M 0.39 0.39 0.22 4.30E-04 1.04E-06 0.32 29.54 44.75 200.95

3 H-H-L 0.47 0.47 0.05 1.85E-04 1.04E-06 0.38 12.72 25.53 252.17

4 H-M-H 0.39 0.22 0.39 4.65E-04 1.04E-06 0.38 31.94 40.94 234.51

5 H-M-M 0.47 0.26 0.26 1.85E-04 9.20E-07 0.44 26.23 32.19 252.17

6 H-M-L 0.60 0.33 0.07 1.85E-04 1.04E-06 0.44 19.72 20.82 291.99

7 H-L-H 0.47 0.05 0.47 3.60E-04 9.20E-07 0.80 31.63 41.71 492.73

8 H-L-M 0.60 0.07 0.33 3.25E-04 9.20E-07 0.74 27.53 31.31 466.48

9 H-L-L 0.82 0.09 0.09 2.90E-04 1.28E-06 0.68 26.15 16.35 448.68

10 M-H-H 0.22 0.39 0.39 3.95E-04 9.20E-07 0.26 34.67 43.42 155.92

11 M-H-M 0.26 0.47 0.26 3.60E-04 1.04E-06 0.26 24.73 38.92 168.14

12 M-H-L 0.33 0.60 0.07 5.00E-04 1.40E-06 0.32 18.95 23.22 211.95

13 M-M-H 0.26 0.26 0.47 2.55E-04 1.04E-06 0.38 17.51 40.74 252.17

14 M-M-L 0.45 0.45 0.09 3.25E-04 1.52E-06 0.5 10.45 29.36 331.38

15 M-L-H 0.33 0.07 0.60 2.90E-04 1.16E-06 0.62 16.01 29.72 409.45

16 M-L-M 0.45 0.09 0.45 3.60E-04 1.52E-06 0.68 11.57 25.89 448.68

17 M-L-L 0.71 0.14 0.14 5.00E-04 1.88E-06 0.62 10.51 18.26 409.45

18 L-H-H 0.05 0.47 0.47 4.30E-04 1.76E-06 0.2 10.31 39.31 131.39

19 L-H-M 0.07 0.60 0.33 2.20E-04 1.64E-06 0.2 7.07 22.31 131.39

20 L-H-L 0.09 0.82 0.09 1.50E-04 1.16E-06 0.26 8.28 28.59 231.62

21 L-M-H 0.07 0.33 0.60 4.30E-04 1.88E-06 0.32 9.04 34.76 211.97

22 L-M-M 0.09 0.45 0.45 2.90E-04 1.64E-06 0.38 8.01 25.25 252.17

23 L-M-L 0.14 0.71 0.14 2.90E-04 1.76E-06 0.38 6.95 20.37 252.17

24 L-L-H 0.09 0.09 0.82 5.00E-04 1.88E-06 0.74 10.51 30.22 128.92

25 L-L-M 0.14 0.14 0.71 3.95E-04 1.76E-06 0.62 9.47 25.96 207.13

MW and Qsc = 128.92 kJ must be selected, respectively. Moreover, the higher and lower

active power delivered during the fault are obtained in case 1 (82.7% of total capacity)

and case 9 (32.7%), respectively.

3.4 Power Management of DC grid Involving PMSG WTs and SMES

3.4.1 Motivation and related works

This section presents combinatory standalone VSWT-PMSG and micro-SMES system in

order to stabilize the dc-link voltage, thereby smoothing the output power simultaneously.

First, the desired energy storage capacity of the micro-SMES coil is precisely designated

by some considerations, such as wind deviations and practical restrictions. This work

was augmented by an optimization algorithm using the simulated annealing (SA) as a
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Figure 3.25: Combination of PMSG- based on VSWT and SMES system in dc microgrid.

conceivable technique for the optimized deign of the proposed SMES coil. Finally, this

section represents the real-time energy management strategy for close coordination be-

tween the wind power, loads, and micro-SMES system, according to power and current

measurement. For this purpose, the novel approach for the bi-directional DC-DC con-

verter is expatiated corresponding an optimized charging and discharging model of the

micro-SMES system.

3.4.2 Overall System Configuration

The proposed structure of the standalone dc microgrid system is schematically shown

in Figure 3.26. A wind turbine using PMSG-based VSWT, rated at 1 MW and 690 V,

is considered as a main source of the power generation. The generator-side converter

including the three-phase voltage source converter (VSC), namely, W-VSC connected

the PMSG to the dc network. The energy storage (ES) system, which is based on the

small-scale SMES technology, is incorporated into the dc network through a bidirectional

dc−dc converter, as shown in Figure 3.26.

An effective dump load is used to increase energy efficiency of the system by absorb-

ing the excess power during the over wind generation. The surplus energy is employed
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in charging the SMES until current reaches its upper limit. After that, the extra power is

supplied to a proper dump load for the heating purpose with the DC-DC converter. The

total output power of wind turbine is supplied to the variable dc loads including direct-

connected and sensitive loads. During the prolonged operation in low wind mode, an

appropriate load shedding must be considered in order to guarantee the system against

total collapse and to cater a secure power supply to high-priority loads (sensitive loads).

3.4.3 SMES System Description

In this study, the micro-SMES system is implemented as a promising energy storage

system for load levelling and power stabilizing in a standalone dc microgrid. Independent

of the capacity and size, a SMES system constantly consists of a superconducting coil,

which stores energy in the magnetic field generated by a circulating current, a cryogenic

refrigerator to keep coil at a low temperature required to maintain it in a superconducting

state, and a power conditioning system (PCS) in order to transfer the energy from the

SMES coil into the grid [161].

SMES System Capacity

Although the balancing performance of the SMES coil can be increased by selecting a

larger capacity, the cost installation of the SMES system will rise accordingly, making

the implementation of the SMES unviable. Conversely, choosing an inadequate capac-

ity for SMES system will most likely lead to an ineffective operation for minimizing

wind power fluctuations. Thus, the coil capacity, which depends on its application and

charging/discharging duration, must be carefully selected. For dc microgrid equipped by

VSWT-PMSG, if the micro-SMES balances the fluctuating power ±∆Pwind for a period

of ∆t seconds, the SMES is used to compensate the stored energy, ±∆Pwind × ∆t, duo

to the intermittent wind fluctuations.
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Figure 3.26: Estimated energy of the SMES according to lower and upper coil current

limits.

As stated in (3.6), the wind power is proportional to the third power of wind speed.

If the standard deviation of wind speed fluctuations is 20% of the average wind speed,

the output power fluctuations will be about 80% (∆Pwind = 800 kW for a period of 1

second) of the rated 1 MW from the wind power. Therefore, the capacity requirement of

the SMES system can be estimated as the following

Eest = ∆Pwind ×∆t = 800 kW × 1 s = 800 kJ (3.28)

In practice, in order to prevent the possibility of discontinuous conduction under un-

predicted disruptions, the SMES current Ismes, should not permitted to reach zero [45].

Figure 3.27 shows the relation between the stored energy of the SMES and the avail-

able energy for the wind turbine based on lower and upper coil current limits (0.3Imax <

Ismes < Imax ). Here, Emax can be calculated from (3.28) and Figure 3.27, which has a

relation as

Emax =
Eest

(1− 0.32)
= 880 kJ (3.29)
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Figure 3.27: Cross section of multi-layer solenoid coil.

Design of Micro-SMES Coil

The magnet for micro-SMES coil usually is based on a low temperature superconductor

(LTS) niobiumtitanium (NbTi) alloy. To reach the superconducting state, the coil has to

be cooled to less than 4.20 K by liquid helium [43]. In this research, the coil was made of

NbTi LTS tape, which was manufactured by the Furukawa Electric Co., Japan. The cross

area of one superconducting filament is 2.07 × 1.07mm2, including insulation [162].

However, a SMES coil has been constructed in many different shapes but one of the

most common kinds is the solenoid type winding, which are widely used because of their

simple structure, feasibility to manufacture, and high efficiency. In order to facilitate the

manufacturing a SMES coil with LTS tape, several turns of the coil arrangement can be

assumed in a cylindrical fashion, as shown in Figure 3.28, where h, r, and c are the height,

the mean radius, and the radial thickness of the solenoid coil, respectively.

Superconducting Coil Optimization

An optimal design of a solenoid coil volume will influence the cost and the size of the

overall SMES and thereby allow for the use of a smaller and more compact design. Thus,

the coil volume is set as the objective function of this study for the optimal micro-SMES

design. The considered objective function, i.e., minimum coil volume for the two con-
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straints, expected stored energy and allowable risk factor can be expressed as the follow-

ing

Min Vcoil = π{(r + c/2)2 − (r − c/2)2} × h (3.30)

Subject to





|Esmes−Emax|
Emax

≤ ε

Rf = J
Jc
≤ γ

(3.31)

where Esmes is the energy actually stored in the coil, Emax is the expected stored

energy (880 kJ). ε is the maximum relative error of Emax, which is set as 1%. J is the

current density in the coil, and Jc is the critical current density of LTS tape, which usually

depends on the maximum magnetic flux density Bmax at the given temperature. γ is

the maximum allowable risk factor value and is assumed to be 0.7. This optimization

is accomplished by an algorithm based on simulated annealing (SA), which is a feasible

method for an optimized design of the SMES solenoid.

SA is a method to obtain an optimal solution for a single-objective optimization prob-

lem. It is based on an analogy of thermodynamics with the way metals cool and anneal.

If liquid metal is cooled slowly, its atoms form a pure crystal corresponding to the state

of minimum energy for the metal. The metal reaches a state with higher energy if it is

cooled quickly. This algorithm has the ability to escape from local minima and can deal

with discrete variables [21, 43].

3.4.4 Control Scheme in Standalone Mode

The implemented control scheme used in the dc microgrid, including a W-VSC and DC-

DC chopper, is shown in Figure 3.29. The primary requirement for standalone operation

mode is to maintain the common dc bus voltage within an acceptable range (0.95 pu and

1.05 pu) under any condition. Indeed, a constant dc voltage designates balanced active

power flow among the wind power, SMES system and dc loads.
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Figure 3.28: Control diagram of PMSG-based variable speed wind turbine.

Figure 3.29: Generator side controller of PMSG.

3.4.4.1 VSC Converter Control

The voltage source converter consists of six IGBT switches interconnected as a full-bridge

converter that is directly connected to the stator of the PMSG. The control block diagram

for VSC converter, shown in Figure 3.30, is based on the synchronous d − q reference

frame. The active power reference, Pmax, is determined from MPPT in such a way, as

pointed out previously. Also, the reactive power produced by the wind turbine is regulated

at zero MVar (Qgref = 0) under normal operating conditions. In the W-VSC converter,

the triangle signal is used as the carrier wave of PWM operation. The carrier frequency

is chosen 10 kHz for the VSC converter. The dc-link capacitor value is 50000 µF , while

the rated dc-link voltage across the two capacitor legs is 1.2 kV.
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Two-Quadrant DC-DC Converter Control

The micro-SMES coil is interconnected onto the dc link through a dc-dc bi-directional

converter to facilitate an active power flow in both directions, as shown in Figure 3.29. It

is assumed to be fully charged at its maximum capacity of 880 kJ. The two IGBTs, GA

and GB, are controlled using the hysteresis band current control technique. The control

of the IGBTs is carried out by comparison of generating power with the wind turbine,

Pwind and power consumed by the load, Pload. In order to maintain system stability, the

micro-SMES system must be charged or discharged corresponding to the necessary power

balancing as

P ∗smes = Pwind − Pload (3.32)

where superscript ∗ represents the required (reference) value. For the acceptable operation

of the dc microgrid during the variations of wind generation, three regions of operation

can be identified for the dc-dc converter.

Standby mode: it takes place when output power of the wind turbine is equal to

the load power (P ∗smes = 0). The SMES coil current is kept constant at its rated value.

Consequently, there will be no energy transferred between the micro-SMES system and

dc microgrid.

Discharging mode: it will occur when output power of the wind turbine is smaller

than the rated power (P ∗smes < 0). In this case, the required power is being delivered to

the dc link capacitor with the dc-dc converter.

Charging mode: it will occur when output power of the wind turbine is greater than

the rated power (P ∗smes > 0). Under this condition, the surplus of the wind power is being

transferred to the SMES coil. For a dc microgrid system, required energy during power

imbalance and Ismes,1, SMES coil current at end of the exchanging period, T is given as

E∗smes =

∫

T

P ∗smes dt (3.33)
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Figure 3.30: Control diagram of dc-dc converter with SMES coil.

Ismes,1 =

√
I2smes,0 −

2E∗smes

Lsmes

(3.34)

where E∗smes is energy exchange between micro-SMES system and dc link (J), Lsmes

is the coil inductance (H) while Ismes,0 represents the coil current at the beginning of

the exchanging period. In this effort, it is assumed that the superconducting coil is being

charged or discharged based on an exponential function shown by the following equations

Irefdischarge = Ismes,0 × e−α(t−td) (3.35)

Irefcharge = −Ismes,1 × e−β(t−td) (3.36)

α = β =
1

T
× ln(

Ismes,0

Ismes,1

) (3.37)

The proper operation of the control system is occurring when coil current pursues

these reference currents during the charging/discharging operation mode. In order to

generate the gate signals for the GA and GB, the reference duty cycle signals must be

compared with the carrier with the frequency of 4 kHz. The schematic of the dc-dc

converter controller used to regulate the current of the SMES to maintain the dc bus

voltage constant is depicted in Figure 3.31.
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Figure 3.31: Energy management strategies for the standalone DC Microgrid.

Real-Time Energy Management System

A comprehensive load management strategy is introduced in wind power and photovolta-

ic are considered as smart agents, which are utilized for distribution network load man-

agement [163]. Another effective means for energy management is demand response

programs utilization considering the high penetration of plug-in hybrid electric vehi-

cles [164]. In order to optimize energy utilization specifically during a long-term low-

wind or high-wind period, an appropriate real-time power management must be incorpo-

rated into the control system to maintain the dc bus voltage constant. The flowchart for the

suggested energy management algorithm, which accounts for two scenarios, is annotated

in Figure 3.32.

Scenario 1: if the maximum available power from the VSWT-PMSG is greater than

demand, the excess power (P ∗smes) can be used to charge the SMES coil until current

reaches its upper limit (Imax). In this case, SMES system is set in standby mode and extra

power is supplied to a proper dump load. However, this condition is not considered in the
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study.

Scenario 2: In cases where power from the wind turbine is not enough to meet the

demand, the SMES needs to be discharged in order to prevent the total voltage collapse of

the dc microgrid. Similarly, if SMES coil current exceed lower limit (0.3Imax), the non-

sensitive load will be automatically disconnected and the micro-SMES system will switch

its control from discharging to charging mode to absorb extra wind power according to

latest reduced demand.

3.4.5 Simulation Results and Discussion

In this section, simulation studies are carried out to verify the effectiveness of the stan-

dalone dc microgrid using PMSG-based wind turbine and micro-SMES system, as shown

in Figure 3.26. The evaluation technique described in Section 3.4.4 is applied to the dc

microgrid to enhance system efficiency from viewpoints of cost cutting, energy savings,

and downsizing.

Optimal Scheme Performance

A simulated annealing (SA) method is employed for the design of an optimal SMES

solenoid coil. The optimization solution is obtained by performing a certain number of

iterations, leading to an optimal design. The constraints of the selected variables for the

optimization problem are expressed as the following





r ∈ [400, 600]mm

c ∈ [100, 200]mm

h ∈ [200, 400]mm

(3.38)

Figure 3.33 shows the progression of the solution of the optimization problem, where-

as the objective concentrates on an optimal point, Vcoil = 0.105m3, during cooling in the

annealing process. The optimized coil size and corresponding SMES coil inductance are
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Figure 3.32: Progress of the solution of the proposed optimization considering Vcoil as an

objective function.

Table 3.7: Optimization Results of The SMES Coil.

Parameter Quantity

Height of the coil h 265 mm

Mean radius of the coil r 438 mm

Radial thickness of the coil c 150 mm

Inductance of the coil L 7 H

shown in Table 3.7. According to the above results, the maximum current flowing through

the coil at a steady state can be obtained

Imax =

√
2Emax

Lcoil

= 500 A (3.39)

Simulation Case Studies

The proposed system is modeled and simulated by PSCAD/EMTDC software. As can

be seen from Figure 3.26, it is made up of the PMSG-based wind turbine rated at 1 MW

and 690 V and an 1 MW W-VSC with switching frequency 10 kHz. Ll and L2 are con-

stant power loads, both rated at 330 kW, while Ll (sensitive load) is the most important

load and cannot be switched out during operation. For a wind speed of 11 m/s, the wind
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(a)

(b)

(c)

(d)

Figure 3.33: System operation during normal charging/discharging mode (Case 1). (a)

Wind speed. (b) SMES coil current. (c) Power generated by the wind turbine and total

load. (d) DC-link voltage.

turbine delivers rated power 660 kW to the loads. The micro-SMES system, consisting

of the superconducting coil with capacity of 880 kJ and the bi-directional dc-dc convert-

er, is connected to the 1.2-kV bus via the dc-link capacitor. To ensure that the proposed

micro-SMES operates properly, the supervisory control architecture previously outlined

is analyzed by considering the following cases:

Case 1: Normal Charging/Discharging Operation

Figure 3.36 depicts simulation results for Case 1, including normal charging and dis-

charging operation. The simulation starts in wind speed of 11 m/s and L1, L2 are switched
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in (Pload = 660 kW), as shown in Figure 3.36(a) and Figure 3.36(c), respectively. The

micro-SMES coil fully charges at its maximum current of 500 A. At t = 6s, the wind

speed changes to 9 m/s and wind turbine power reduces to 290 kW, which is less than

demand, thus the required power, 370 kW, must be supplied by the micro-SMES system

to keep load power constant at 660 kW (discharging mode). The micro-SMES current is

reduced to approximately 282 A as a result of the discharging mode as shown in Fig. 11

(b).

At around t = 7.5s, wind speed comes back to 11 m/s and the SMES current remains

in standby mode, drawing no power for supplying power to the dc microgrid. At 10 s, the

wind speed goes up to 12 m/s and subsequently does the generated power, 900 kW, as seen

in Figure 3.34(c). The excess power, 340 kW, must be drawn by the micro-SMES system

to keep the dc voltage less than 1.05 p.u. Under this condition, coil current rises from

282 A to 485 A and the micro-SMES capacity will be again set at around the maximum

amount. The charging and discharging currents exactly track the reference currents, as

shown in Figure 3.34(b). Obviously, it is found that the performance of the proposed

control method is entirely acceptable.The output dc-link voltage at the constant load is

presented in Figure 3.34 (d), which is well controlled by the micro-SMES system.

Case 2: Long-Term Low-Wind Operation Simulation results of system control and

operation corresponding to Case 2 are shown in Figure 3.35. Similarly, at the first of

simulation, all the situations are the same with before case between 4 s and 6 s. At 6 s,

the wind speed drapes from 11 m/s to 10 m/s for a period of 2 s. In this condition, the

micro-SMES system increases its power output to compensate this in order to maintain

the dc-link voltage at 0.97 p.u. [Figures 3.35(a) and (d)]. At around 9 s, the micro-SMES

current is reduced to 150 A which is the equal to threshold value (0.3Imax). Under this

condition, the system tries to reserve energy for the most important load (i.e., L1 in this

example). Thus, L2 (330 kW) is tripped and the SMES can now start to get charged as
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can be seen from Figure 3.37(b) as the wind turbine generates more power than the latest

reduced demand (L1). After tripping L1 for 1 s, at 10 s, the wind speed increases to 12

m/s and the micro-SMES gradually gets charged to roughly 860 kW and L2 reconnect

to the microgrid, as shown in Figure 3.35(c), while at the end of this period coil current

reach 375 A [see Figure 3.35(b)].

At t=12 s, wind speed comes back to 11 m/s to provide total load (660 kW). Finally,

at 14 s, the wind speed decreases again to 10.5 m/s and wind turbine power reduces

to 545 kW, which is less than demand. Thus, the required power, 115 kW, must be

provided by the micro-SMES system. As seen from Figure 3.35(d), the dc-link voltage is

well controlled during various operating conditions, and the proposed control strategy is

satisfactory.

3.5 Economic and Practical Feasibility of the RSFCL

Since the discovery of high temperature superconductors (HTS) in 1987, their immense

potential to improve the way in which electrical energy could be efficiently generated,

transmitted, transformed, used, and stored has been well recognized. Abundant techno-

logical achievements have been made in developing brittle HTS materials in a tape/wire

form in lengths of about a kilometer to transport about three hundred times the current

of copper. HTS tape processing involves thin film deposition of a multilayer stack on

nickel alloy tapes. In order to achieve high critical currents, the superconducting film is

grown epitaxially in a single-crystalline-like form on buffer layers which provide a single

crystalline-like template even when deposited on a polycrystalline metal substrate.

The requirements for thin film HTS tapes in SFCLs are very stringent. A major factor

limiting a significant commercial deployment of SFCLs is the deficiencies in the thin film

HTS tape itself. One of the major challenges involved in realization of a practical FCL

device is the ability of the device to respond to thermal transients. The dilemma is that
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(a)

(b)

(c)

(d)

Figure 3.34: System operation during prolonged low-wind mode (Case 2). (a) Wind

speed. (b) SMES coil current. (c) Power generated by the wind turbine and total load. (d)

DC-link voltage.

the metallic constituents of the HTS conductor for providing good thermal conductivity

cannot be substantially increased for the sake of not drastically increasing the amount

of conductor needed to achieve a specified voltage drop (V/cm). So, there is a need for

modifying the thin film HTS structure to provide better heat dissipation during the thermal

transients without significantly altering the electrical properties of the device.

A major factor limiting a significant commercial deployment of SFCLs is the deficien-

cies in the thin film HTS tape itself. The following critical deficiencies in the thin film

HTS tape need to be eliminated: (i) Non-uniform quench (ii) Low voltage drop (iii) Slow

heat removal. Industries manufacturing thin film HTS tapes have made only incremental
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Figure 3.35: HTS wire cost. (a) Dollar per Kilo amp per Meter. (b) Dollar per Meter.

improvements in the tapes for SFCLs. A challenge has been a lack of understanding of

the processes during the very rapid transition from superconducting to a resistive state

during a fault and during recovery back to the superconducting state.

Several main factors affect for determining the actual size and cost of a resistive SFCL

such as the length of applied superconducting wire, cooling machinery, the geometry of

RSFCL module, and the rated power and voltage system where RSFCL must be installed.

Practically, the whole superconducting length is used in form of helix to shape the su-

perconducting tube. In reality, several tubes may be connected in parallel to achieve a

particular resistance in form of cylindrical geometry. The rough estimation for the RS-

FCL size can be achieved based on design details of RSFCL projects worldwide [165].

Accordingly in this section, the RSFCL module installed in transmission system with

voltage rate of 34.5 kV and power rate of 50 MVA would be much less than 4 m in both

diameter and height. After recent progress of economical second-generation HTS wires,

SFCLs are becoming more practicable, because of low manufacturing costs, low ac loss,

higher current density and better operational performance, and is eventually expected to

be at least a factor of ten lower in cost than presently available HTS conductor [36]. The

cost of HTS wire is generally described by two parameters: the maximum amount of cur-

rent that the HTS wire can conduct; and the manufacturing cost per meter of wire. Figure
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3.16 illustrates how the HTS wire cost of RSFCL is expected to decrease over the next two

decades as production increases. The impact of cooling system on the future competitive-

ness of RSFCL devices is critical. The 1999 benchmark cost of a medium-sized cryogenic

refrigeration unit was about $60,000/kWcold at 77K. Economies of scale typical of the

cooling refrigeration industry were applied to represent the expected decline in refrig-

eration costs. This declining cost model indicates that, as large numbers of cryogenic

refrigeration units are manufactured, the cost will drop to less than $20,000/kWcold.

3.6 Summary

This chapter has been divided into three major studies. Section 3.2 has described the

UPQC system to improve the power quality, thereby enhancing low voltage ride-through

capability of the FSIG-based wind turbine. UPQC has the advantages of series and shunt

APFs for compensating the distortions of grid voltages and load currents. Moreover, the

application of the RSFCL, in providing an additional low voltage ride-through support to

the wind-driven FSIG, has been investigated. By using the RSFCL, the grid current has

been limited effectively and the minimum voltage level at the generator terminal has been

increased, leading to a compliance with international grid codes. Additionally, the overall

dynamics of FSIG, represented by active and reactive power, have been improved by

RSFCL. The results show that the integration of the FSIG-based wind turbine and UPQC

system will become more promising from the energy-saving and downsizing perspective

by introducing the RSFCL as a self-healing limiter.

Section 3.3 has proposed an effective approach using RSFCL as the additional sup-

port, along with a conventional converter control strategy based on the PI controller to

further increase the rated active power of the installation, thereby enhancing dc-link volt-

age smoothness, as well as the LVRT capability of the 50 MW WPP. Moreover, it has

been demonstrated that the RSFCL can be a promising solution for improving the wind
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turbine controller performance with respect to extreme loads on the wind turbine struc-

ture. With this approach, it is expected that the activation of the dc braking chopper and

fast pitch angle control could be reduced in order to meet the international grid code

requirements. An important feature of the proposed method is that a conventional PI con-

trol can be used, performing the reactive and reactive current injection, while the dc-link

voltage never exceeds its safety limits. A further study is carried out to determine the

optimal performance of the combinatorial 50 MW PMSG-WPP and RSFCL. Therefore,

a simultaneous and transformative approach based on the AHP method for the multiob-

jective optimization of embedded system has been introduced. A reconciliation between

the three objecting functions, namely, resistive of SFCL, output power of PMSG, and en-

ergy dissipated in RSFCL was elicited by a 3-D alignment in the Pareto front, having 25

nondominated solutions. However, a designer would be capable of selecting any of the

solutions setting on the Pareto front without erratic problems on optimality.

Finally, Section 3.4 has studied the micro-SMES system embedded to the VSWT-

PMSG, that is interconnected to the standalone dc microgrid through the bi-directional

DC-DC converter. A power balance between loads, micro-SMES system and nonde-

terministic wind generation has been maintained via presenting the supervisory control

architecture. For this purpose, an optimal design scheme based on the SA algorithm has

been modeled for the micro-SMES solenoid coil to ensure the desired energy storage ca-

pacity (880 kJ) with the least volume. Moreover, this section presents an effective control

strategy to obtain a rapid response of the micro-SMES system to the wind speed fluctu-

ations in order to stabilize dc-link voltage, thereby smoothing the output power simulta-

neously. This penetrative approach allows researchers to find the optimized charging and

discharging model based on the exponential function. System simulations corresponding

to the aforementioned operational modes have confirmed the satisfactory manoeuvre of

the proposed dc microgrid.
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CHAPTER 4

IMPROVING OPERATIONAL RESILIENCE OF RENEWABLE ENERGY

SYSTEM USING A STATCOM

4.1 Overview

This chapter presents a computational intelligence technique for optimal coordinated re-

active power control between a wind turbine (WT) equipped with doubly fed induction

generator (DFIG) and a static synchronous compensator (STATCOM), during faults. The

key motivation of this study is to design a coordinated reactive power controller that is

formulated as a multi-objective optimization problem (MOP) model. By decreasing the

level of the voltage deviations at the WT terminal, the low voltage ride-through (LVRT)

capability of the WT can be significantly improved. Thus, one objective function consid-

ered in this study is the voltage deviations. This chapter also proposes an index called

transient power severity index (TPSI) to quantify the transient active power performance

of the system after the fault clearing time. The minimization of the TPSI for system buses

is considered as the second objective function. The proposed two-objective optimization

problem is solved by using the stochastic normalized simulated annealing (SNSA) algo-

rithm in order to find the Pareto-optimal solutions, according to the assigned priorities

(weights) for each objective. In order to minimize these two objective functions, it is

necessary to find the optimal value of control variables, which are the reactive power ref-

erences for both DFIG and STATCOM controllers. For the online coordinated reactive

power control, the obtained optimal signals of the reactive power references are used in

a fuzzy logic controller (FLC) for offline tuning the fuzzy model and fuzzy rules. To

validate the effectiveness of the proposed control strategy for online applications, a case

study including a 1.5-MW DFIG and a 1.5-MVar D-STATCOM were carried out with

MATLAB/SIMULINK.
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Figure 4.1: Wind turbine characteristics.

4.2 DFIG Wind Farm Model

4.2.1 Wind Turbine Model

According to the Betz theory, extractable mechanical power from the wind can be deter-

mined by the mathematical relation, as follows [13]

Pm =
1

2
ρAv3wCp(λ, β) (4.1)

where ρ is the air density, A is the blade swept area, vw is the wind speed, and Cp is the

power conversion coefficient, which is a function of both tip-speed ratio λ and the blade

pitch angle β, in which λ is defined by

λ =
ωtR

vw
(4.2)

where R is the radius of the blade and ωt is the rotational turbine speed. The Cp(λ, β)

curves depend on the blade design and are given by the wind turbine manufacturer. Based

on wind turbine characteristics shown in Figure 4.1, the blades start to move around 5

m/s at rotational speed 0.7 p.u (zone A-B, slip of the generator is s = +0.3). For base

wind speed of 12 m/s, the maximum turbine output power 1 p.u at rotational speed 1.2 p.u

are obtained (i.e. slip of the generator is s = −0.2). If the wind speed is below the rated

value (zone B-C), the wind turbine operates in the variable-speed mode, and the rotational
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speed is adjusted (by means of increasing slip in the DFIG) such that the maximum value

of Cp is achieved. The extra power obtained from rotational speed higher than 1.2 p.u

may be smoothly curtailed by spinning the blades using pitch angle control (zone C-D).

4.2.2 Drive Train Model

From the transient point of view, the drive train model must be presented to describe the

performance of the WT in active and reactive power generation. In this effort, the two-

mass lumped model is utilized to designate mechanical dynamics, as proposed in [14]





2Ht
dωt

dt
= Tt −Dtωt −Dsh(ωt − ωr)− Tsh

2Hg
dωr

dt
= Tsh −Dgωr +Dsh(ωt − ωr)− Te

dTsh

dt
= Ksh(ωt − ωr)

(4.3)

where ωt and ωr are the turbine and generator rotor speed; Tm, Te, and Tsh are the me-

chanical torque applied to the turbine, the electrical torque of the generator, and internal

torque of the model; Ht and Hg are the inertia constants of the turbine and the generator;

Dt,Dg, andDsh are the damping coefficients of the turbine, the generator, and the flexible

coupling (shaft) between the two masses; and Ksh is the shaft stiffness.

The low-frequency oscillations of the output active power due to power unbalance

during the fault can be lightly damped by the WT shaft system described by (4.3).

4.2.3 Generator Model

The equivalent electric circuit of the DFIG, in synchronously rotating d − q reference

frame can be presented by the following stator and rotor voltage equations [14]





vds = −Rsids − ωsλqs +
dλds

dt

vqs = −Rsiqs − ωsλds +
dλqs

dt

vdr = −Rridr − (ωs − ωr)λqr +
dλdr

dt

vdr = −Rriqr − (ωs − ωr)λdr +
dλqr

dt

(4.4)
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where λs and λr are the stator and rotor flux linkages; vs and vr are the stator and rotor

voltages; is and ir are the stator and rotor currents; Rs and Rr are the stator and rotor

resistance; ωs is the generator stator speed. The flux linkage in (4.4) is defined as





λds = −Lsids + Lmidr

λqs = −Lsiqs + Lmiqr

λdr = −Lridr + Lmids

λqr = −Lriqr + Lmiqs

(4.5)

where Ls, Lr, and Lm are the stator, rotor, and magnetizing inductances, respectively.

As the stator of a WT is directly connected to the grid, vs is fixed by the grid voltage.

Thus, the rotor voltage vr must be precisely determined by a converter and applied to

design the DFIG control. From equations (4.4) and (4.5), the voltages of the rotor can be

written as

vdr = Rridr + (Lr −
L2
m

Ls

)
didr
dt
− sωsσLriqr (4.6)

vqr = Rriqr + (Lr −
L2
m

Ls

)
diqr
dt
− sωsσLridr + s(

LmVs
Ls

) (4.7)

where σ is the leakage coefficient (σ = 1 − L2
m/(LsLr), s is the generator slip (s =

ωr/ωs, ωr = ωs − ωt), and vs is the stator voltage.

4.3 Description of the Control Systems

Detail of the proposed control scheme for combinatorial STATCOM and DFIG-based

WT is illustrated in Figure 4.2. As it can be seen, it is schematically divided into three

main blocks. Control of the DFIG is achieved by control of the RSC and control of the

GSC [13–15]. The vector control strategy is used for the active and reactive power control

of WT with DFIG system.
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Figure 4.2: Overall control scheme of the proposed system. vdr2 = −sωsσLriqr; vqr2 =
−sωsσLridr + svsLm/Ls.

4.3.1 Rotor side Converter (RSC) Controller

The RSC provides independent control of DFIG active and reactive power, PDFIG and

QRSC . During normal operation, the RSC is considered to be reactive neutral by setting

Q∗RSC = 0. The reactive power control can be applied during the fault to keep the stator

voltage vs within the desired level based on regional grid codes, when the DFIG feeds

into a week grid. In order to achieve independent control of them, the three-phase rotor

currents irabc are transformed into d− q components iqr and idr in the stator flux oriented

reference frame. The active power output PDFIG, measured at the grid terminals of the

DFIG is compared with the reference active power extracted from the WT characteristic
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(see Figure 4.1) and then error is given as the input to a PI controller to generate the

reference q-axis rotor current i∗qr. The error between i∗qr and the actual q-axis current iqr

is used as inputs to the linear PI controllers. In order to achieve good transient responses,

the output vqr1 is decoupled by vqr2 = −sωsσLridr + svsLm/Ls to produce the reference

q-axis voltage v∗rq.

Moreover, the reference DFIG reactive power Q∗RSC is compared with its actual mea-

surement at the grid side to generate the error signal, which is passed through a PI con-

troller to provide the reference d-axis signal i∗dr. Then, it is compared with its actual signal

idr to produce an error, which is then used to provide the required d-axis voltage signal

vdr1 using a PI controller after decoupling by vdr2 = −sωsσLriqr. These are then used by

the PWM module to generate the IGBT gate control signals to drive the rotor-side IGBT

converter. The maximum value of the reference rotor current i∗r is limited to 1 p.u. When

i∗dr and i∗qr are such that the magnitude is higher than 1 p.u the i∗qr component is reduced

in order to bring back the magnitude to 1 p.u.

4.3.2 Grid side Converter (GSC) Controller

The objective of the GSC is to maintain the dc-link voltage constant. In this effort, the

GSC control scheme is also designed to set the reactive current component at i∗qg = 0. This

setting is reasonable since the DFIG converters are rated for only 30% of the generator

rating, which are primarily used for transferring the active power from the rotor to the

grid.

The actual signal of the dc-link voltage Vdc1 is compared with its command value

V ∗dc1 to form the error signals, which is used as input to the PI controller to generate

the reference d-axis current i∗dg. The three-phase currents of the GSC are transformed

to d − q components iqg and idg by applying the synchronously rotating reference frame

transformation. Then, the error between the reference signals (i∗qg and i∗dg) and the actual
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d− q axis current (iqg and iqg) are used as inputs to the linear PI controllers. The obtained

voltage signals vdg1 and vqg1 are decoupled by vs − ωsLgiqg and ωsLgidg, respectively, to

produce the reference d − q axis voltage v∗dg and v∗qg. They are then used by the PWM

module to generate the IGBT gate control signals to drive the rotor-side IGBT converter.

4.3.3 STATCOM Controller

In this effort, a STATCOM is used to provide the desired amount of reactive power during

the fault to help the fault ride-through capability of the DFIG. Its control operation is

somewhat similar to the GSC: The actual signal of the dc-link voltage Vdc2 and the reactive

power QSTAT are compared with their reference values (V ∗dc2 and Q∗STAT ) and then error

signals are passed through the PI controllers to engender the reference d− q axis currents

i∗ds and i∗ds, respectively. The errors between these reference values and the corresponding

actual d− q current components of the STATCOM are passed through the PI controllers.

The voltage signals vds1 and vqs1 are compensated by the corresponding cross coupling

terms to obtain the d − q voltage signals v∗ds and v∗qs. They are then used by the PWM

module to generate the IGBT gate control signals to drive the rotor-side IGBT converter.

4.4 Coordinated Reactive Power Control

In this section, a multi-objective optimization problem (MOP) model, a stochastic normal-

ized simulated annealing (NSA) algorithm, and a fuzzy logic controller (FLC) are used to

design an external interface controller for the coordinated reactive power control between

the DFIG and the STATCOM, as shown in Figure 4.3. A DFIG-based WT technology

is used in this study, because the majority of WTs in power systems are equipped with

DFIGs, and a STATCOM is also employed due to its superior dynamic characteristics.

However, the proposed coordinated control method is applicable for other similar de-

vices, such as a permanent magnet synchronous generator (PMSG)-based WT and static

VAR compensator (SVC). The MOP model is first formulated in order to simultaneously
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Figure 4.3: Overall block diagram of the proposed PCRPC for online application.

minimize two conflicting objectives: 1) voltage deviations at the point of common cou-

pling (PCC) during and even after the grid faults and 2) low-frequency oscillations of the

active power after clearing the faults. In this study, the control variables of the proposed

MOP are the reactive power references of Q∗RSC and Q∗STAT for both RSC of the DFIG

and STATCOM controllers, respectively. The proposed MOP model is then solved by the

NSA algorithm in order to find the Pareto-optimal solutions, based on the assigned prior-

ities (weights) for each objective. Each of the Pareto-optimal solutions is used for offline

tuning the fuzzy model and fuzzy rules of the FLC. The reason for selecting a NSA-based

approach for tuning the FLC is that the derivation of rules from the simple fuzzy reason-

ing is totally complicated due to the complexity and nonlinearity of the power network.

For online applications, the main use of the FLC is that it can quickly change the Q∗RSC

and Q∗STAT during grid faults, it is possible to reduce the level of voltage reductions at

the PCC, and to rapidly dampen the low-frequency oscillations of the active power in the

system.

The overall block diagram of the proposed control approach is shown in Figure 4.3.

In this study, no effort will made to optimize the steady-state control system, as the goal

of the effort emphasizes only the encounter of the faults. Thus, switches S1 and S2 are
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kept in position 1 in the steady-state condition with fixed reactive power commands of

the Q0
RSC and Q0

STAT . Once the fault occurs, S1 and S2 switch to position 2 and the FLC,

as an external online controller, provides the coordinated reactive power control for the

STATCOM and the RSC.

4.4.1 MOP Model Formulation

In this section, the proposed coordinated reactive power control is formulated as a multi-

objective programming model with the following objectives and constraints.

Objectives

When a fault occurs at some points of the grid, the WT experiences a voltage sag situation

at the PCC and may disconnect from the grid due to a severe voltage stability issue.

This problem can be solved by supporting the reactive power during the fault in order

to decrease the level of voltage reductions, and thereby improve the fault ride-through

capability of the WT. In this effort, the voltage severity index (VSI) is defined to quantify

the deviation of the voltage at the PCC, given by

VSI =

∑T

t=Ts
∆V t

PCC

T − Ts
(4.8)

where T is the considered transient time frame, Ts is the fault starting time, and ∆VPCC

is the voltage deviation, calculated by

∆V t
PCC =





|V t
PCC−V 0

PCC |
V 0

PCC

, if
|V t

PCC−V 0

PCC |
V 0

PCC

≥ α

0, otherwise

(4.9)

where V 0
PCC is voltage magnitude at the PCC before the fault occurrence, V t

PCC is the

voltage magnitude of the PCC at time t obtained from time-domain simulation, and α is
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the threshold to define unacceptable voltage deviation level, which can be set according

to the international grid codes, e.g., 10% for Danish grid codes [3].

Also, the sudden lack of the active power generation, due to providing the reactive

power with the RSC of the DFIG, might cause a power imbalance during the fault. This

will excite the low-frequency oscillations on the generator rotor angle, resulting in fluctu-

ations of the active power. This study proposes a transient power severity index (TPSI) to

quantify the transient power performance of the system buses following the clearance of

the disturbance

TPSI =

∑N

i=1

∑T

t=Tc
(|P t

i − P 0
i |/P 0

i )

N × (T − Tc)
(4.10)

where N is the total number of buses in the system, Tc is the fault clearing time, P 0
i

is power magnitude of bus i before the fault occurrence, and P t
i is the power magnitude

of bus i at time t obtained from time-domain simulation.

Here, the first objective is minimization of the VSI, f1, and second objective is mini-

mization of the TPSI, f2, calculated by (2.8) and (2.10), respectively. It should be noted

that (4.8) and (4.10) cannot be explicitly calculated and they need a time-domain simula-

tion to achieve the post-disturbance voltage and power trajectories.

Constraints

In this study, the constraints of the MOP model are represented as the steady-state con-

straints and dynamic constraints. The steady-state constraints consist of power flow bal-

ance and steady-state operational limits for pre-contingency state





PG − PL − P (V, θ) = 0

QG −QL −Q(V, θ) = 0

(4.11)
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



S(V, θ) ≤ Smax

V min ≤ V ≤ V max

Pmin
G ≤ PG ≤ Pmax

G

Qmin
G ≤ QG ≤ Qmax

G

Qmin
STAT ≤ QSTAT ≤ Qmax

STAT

(4.12)

where (4.11) represents the active and reactive power balance for each bus, and PG and

QG represent the active and reactive power generations, PL and QG represent the active

and reactive power loads, P and Q represent the power flow equations, V is the volt-

age bus, and θ is the voltage angle. (4.12) represents the operational limits on line flow,

steady-state voltage magnitude, generators output capacity (including conventional gen-

erators and DFIG), and the STATCOM reactive power capacity.

Also, adding dynamic constraints such as the rotor angle stability constraint is im-

portant for the proposed optimization model to avoid the voltage instability. Generally,

the rotor angle stability is tested by examining the rotor angle deviation against a certain

threshold [166]. In this study, the following constraint is included to ensure the rotor

angle stability for any contingency

[max(∆δTij)] ≤ β (4.13)

where [max(∆δTij)] represents the the maximum rotor angle deviation between any two

generators during the transient period T and β is the threshold which can be set to π for

the extreme case [166].
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4.4.2 Solution Method

Pareto Optimality

The two-objective optimization problem presented in Section III-A requires to be solved.

Based on the priority of the objective functions, a MOP has multiple solutions, which can

form a Pareto-optimal set (set of all the Pareto optimal solutions) [166], where decision-

maker may select any of them depending on practical needs. Given the control variables

vector X = [x1, x2, . . . xn], a vector X∗ = [x∗1 x
∗
2 . . . x∗n] is the Pareto-optimal set,

or the non-dominated solutions, if any point in X satisfies fj(X) ≤ fj(X
∗) for all

j = 1, 2, . . . ,m (fj denotes to objective function, while m is the number of the objective

function).

Normalized Simulated Annealing (NSA)

When dealing with a MOP, stochastic methods are superior to classical strategies because

they can simultaneously find Pareto-optimal solutions [54]. The stochastic NSA algorith-

m has the ability to search in very large spaces of candidate solutions and avoid becoming

trapped in local minima, with lower computational time compared to other stochastic

methods. This technique was early introduced by Kirkpatrick et al. for finding a global

minimum of an optimization function [55]. It is based on an analogy between the way in

which a metal cools and freezes into a minimum energy crystalline structure (annealing

process). The algorithm employs a random search, where random moves are accepted

with a probability function pr = exp(−∆f/Tf ), where ∆f is increasing in f and Tf is

the system temperature during the cooling process [21].

Since two objective functions presented in Section III-A must be prioritized accord-

ing to the power system operator’s needs, a cooling schedule, taking into account the

prioritization of the these objective functions, is proposed by assigning a different initial

temperature for each objective, i.e., Tf1 and Tf2. If the initial temperature is given to

an objective in a high order (i.e. high priority), the probability of accepting a solution is
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higher than that objective with lower initial temperature (i.e. less given priority). More-

over, since these two objective functions are not coherent, these should be normalized

by dividing their initial values in order to make them comparable to each other. The rest

of the optimization parameters are the number of iterations, maxiter, upper and lower

bounds of the variables, Xmax and Xmin, which determine the search area and the rate

of the temperatures change rb, which is positive and less than 1. The detailed steps of the

NSA algorithm are shown in Table 4.1.

4.4.3 Tuning the FLC Model Using NSA

The FLC used in this effort is based for two inputs; i.e., the two initial temperatures Tf1

and Tf2 assigned to two objectives f1 and f2, respectively. The output of the FLC system

are defined with two optimal control variables, i.e. Q∗RSC and Q∗STAT , which are obtained

by the NSA optimization algorithm in form of Pareto-optimal solutions. Each of the two

input and two output variables is divided into the three fuzzy subsets corresponding to

meanings of “low” (L), “medium” (M ), and “high” (H). All fuzzy subsets are modeled

with sigmoid membership functions [167]. Fuzzy input subsets and fuzzy output subsets

are generated by selecting the parameters m and σ, as given in Table 4.2 and shown in

Figure 4.4.

In this study, the changes made to parameter of m are only taken into consideration

for tuning the output fuzzy subsets model. As shown in Table 4.3, the continuous vari-

ables y1 and y2 indicate adjustable parameters the output fuzzy subsets. The effects of

making changes on output fuzzy membership functions have been simultaneously stud-

ied by using the NSA algorithm. This optimization approach is presented for tuning the

fuzzy model (Figures 4.4(b) and (c)) by determining the suitable value of y1 and y2 and

also creating the fuzzy rules (or Pareto-optimal classification rules) using the obtained

Pareto-optimal solutions. The reason for selecting the NSA-based approach for tuning
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Table 4.1: Normalized Simulated Annealing (NSA) Algorithm

1 Define an initial Tfj for each objective and Set iter = 1
2 Create randomly an initial solution X = [x1, x2, . . . xn] for

Xmin ≤X ≤Xmax

3 Calculate objective values of {f1(X), f2(X), . . . , fm(X)}
4 Produce new random solutions using the nonuniform mutation

operator

for i = 1 to n
Create a uniformly distributed random number 0 < randi < 1
Generate a random binary number bin

if bin = 1 then

xnewi = xiteri + (xmax
i − xiteri ) · randi · exp(−iter/maxiter)

else

xnewi = xiteri + (xiteri − xmin
i ) · randi · exp(−iter/maxiter)

end if

end for

5 Normalized the objective functions for obtained solutions

fnorm
j (X) = fj(X

new)/fj(X
iter)

for j = 1, 2, . . . ,m
6 Calculate the probabilities of the new solutions

∆fj = fnorm
j (xnew1 , . . . , xnewn )− fnorm

j (xiter1 , . . . , xitern )
for j = 1, 2, . . . ,m

if ∆fj ≥ 0 then

prj = exp(−∆fj/Tfj) else prj = 1
end if

7 Produce m random numbers randj

if ∀randj < prj for j = 1, 2, . . . ,m then

xiter+1
i = xnewi else xiter+1

i = xiteri

end if

8 Set Tfj = rbTfj and iter = iter + 1
if iter < maxiter then goto step 3

else X∗ = Xmaxiter

The Pareto-optimal solutions are X∗ = [x∗1, x
∗
2, . . . , x

∗
n]

end if

Exit

the FLC is that the proposed combinatory DFIG-based WT and the STATCOM is a high-

dimensional multivariate time-varying system and the derivation of rules from the simple
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Figure 4.4: Fuzzy membership functions. (a) Fuzzy input subsets of the Tf1 and Tf2. (b)

Fuzzy output subset of the Q∗RSC . (c) Fuzzy output subset of the Q∗STAT .

fuzzy reasoning is entirely complicated. The procedure of fuzzy model and fuzzy rules

tuning is designed using the following five steps:

Step 1) Initialization

There are two control variables (QRSC and QSTAT ) for the NSA algorithm and also two

adjustable parameters (y1 and y2) for the FLC model, which can be formulated as the

vector X = [QRSC QSTAT ]
T and the vector Y = [y1 y2]

T . The upper and lower bounds,
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Table 4.2: Parameters Used to Generate Initial Sigmoid Membership Functions for Input

and Output Variables

Variables Variation Low subset Mid subset High subset

range ml σl mm σm mh σh
Tf1,2,3 [1, 2, . . . , 10] 4 3 5.5 3 7 3

Q∗RSC (0.3 1.5) 0.75 0.45 0.9 0.3 1.05 0.45

Q∗STAT (0.5 1.275) 0.75 0.225 0.9 0.3 1.05 0.225

Table 4.3: Parameters Used to Generate Tunable Sigmoid Membership Functions for

Output Variables

Variables Low subset Mid subset High subset

ml σl mm σm mh σh
Q∗RSC y1 0.45 y1+0.15 0.3 y1+0.3 0.45

Q∗STAT y2 0.225 y2+0.15 0.3 y2+0.3 0.225

Xmax and Xmin of the control parameters and the upper and lower bounds, Y max and

Y min of the fuzzy variables must be specified to determine the range of the searching

apace, given by 



0.3 ≤ QRSC ≤ 1.5MV ar,

0.5 ≤ QSTAT ≤ 1.27MV ar,

0.69 ≤ y1 ≤ 0.81, 0.69 ≤ y2 ≤ 0.81,

(4.14)

In this work, the limitations of the control variables for the optimization problem are

determined with two principles; 1) RSC of the DFIG should have the minimum contribu-

tion of 20% (0.3 MVar from 1.5 MVar) for fault ride-through requirement during the fault;

and 2) STATCOM must provide the minimum value of steady-state reactive power 0.5 M-

Var and the maximum 85% of its total capacity (i.e., 1.27 MVar from 1.5 MVar) for safe

operation during the fault. Hence, the upper and lower bounds for optimization process

are: Xmin=[0.3 0.5]T , Xmax=[1.5 1.27]T , Y min=[0.69 0.69]T , and Y max=[0.81 0.81]T .
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As an arbitrary choice, each objective of the MOP model f1(QRSC , QSTAT ) and

f2(QRSC , QSTAT ), where f1 and f2 denote to VSI and TPSI, respectively, is assigned an

initial temperature of Tf1 and Tf2 based on their priority selection, i.e., low (Tf1,2=1),

medium (Tf1,2 =5), and high (Tf1,2 =10). As mentioned before, two initial temperatures

Tf1 and Tf2 are considered for the input fuzzy system, which are divided into the three

fuzzy subsets. For three input fuzzy subsets, there are 7 possible cases that are needed to

convert into equivalent fuzzy rules after 7 optimization round, as shown in Table 4.4.

Step 2) Selecting initial temperature

At the first round of the optimization, the initial temperatures of Tf1=10 and Tf2=10 for

two objectives is selected with the corresponding initial fuzzy input High−High as the

rule number 1, while it is shifted to the next rule at the end of each optimization round,

until reaching the rule number 7 (i.e., updating the fuzzy rules). Moreover, the output

fuzzy subsets (Fig. 4.4(b) and (c)) are generated using initial values of y1=y2= 0.75 at the

first round of the optimization, and are then regenerated simultaneously at the next round

of the optimization based on the updated variables of y1 and y2 (i.e., updating the fuzzy

model). In the proposed NSA algorithm, 100 iterations (maxiter = 100) is considered

for each round of the optimization. Set iter = 1 and start the optimization process with

step 3.

Step 3) Generating new random solution

Create randomly an initial solution X iter = [Qiter
RSC Qiter

STAT ]
T inside the pre-defined

searching space. To produce new control variables Xnew = [Qnew
RSC Q

new
STAT ]

T based on the

current solutions, an update for each parameter is calculated at each iteration. If random

binary bin = 1, then

(4.15)Xnew = X iter + (Xmax −X iter) · rand(0, 1) · exp(−iter/maxiter)

else
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Table 4.4: Fuzzy Rules Generated by NSA

Fuzzy Input Fuzzy Output

Rule No. Tf1 − Tf2 Q∗RSC −Q∗STAT

1 IF High−High THEN Medi−High
2 IF High−Medi THEN Medi−High
3 IF High− Low THEN High−High
4 IF Medi−High THEN Low −High
5 IF Medi− Low THEN High−High
6 IF Low −High THEN Low − Low
7 IF Low −Medi THEN Low − Low

(4.16)Xnew = X iter + (X iter −Xmin) · rand(0, 1) · exp(−iter/maxiter)

Also, new adjustable parameters Y new = [ynew1 , ynew2 ] are computed based on a ran-

dom value between [-0.5, 0.5] and the current temperature of each objective by

(4.17)Y new = Y iter + rand(−0.5, 0.5) · [(Tf iter
1 + Tf iter

2 )/(Tf initial
1 + Tf initial

2 )]

As the temperature decreases, changes in parameters of y1 and y2 decreases propor-

tional to the temperature decrease.

Step 4) Selecting new solution for next iteration

The probability of selecting the new control variables Xnew for f1 and f2 are obtained

after normalizing the objective functions, as follows





∆f1 = fnorm
1 (Qnew

RSC , Q
new
STAT )− fnorm

1 (Qiter
RSC Q

iter
STAT )

∆f2 = fnorm
2 (Qnew

RSC , Q
new
STAT )− fnorm

2 (Qiter
RSC Q

iter
STAT )

(4.18)

prj =





exp(−∆fj/Tf iter
j ), if ∆fj ≥ 0

1, if ∆fj < 0

(4.19)
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for j = 1 and j = 2. If (pr1 > r1) and (pr2 > r2)





Then [Qiter+1
RSC Qiter+1

STAT ]
T = [Qnew

RSC Q
new
STAT ]

T

Else [Qiter+1
RSC Qiter+1

STAT ]
T = [Qiter

RSC Q
iter
STAT ]

T

(4.20)

where r1 and r2 are uniformly distributed random numbers in [0, 1]. The adjustable

parameters of Y for the next iteration of the optimization can be achieved as

If Qiter+1
RSC ∈ [0.45, 0.9] and Qiter+1

STAT ∈ [0.6, 0.9],





Then [yiter+1
1 yiter+1

2 ]T = [ynew1 ynew2 ]T

Else [yiter+1
1 yiter+1

2 ]T = [yiter1 yiter2 ]T
(4.21)

Step 5) Updating fuzzy model and fuzzy rules

In this step, the Pareto-optimal solutions for control variables X and optimal adjustable

parameters Y will be updated after each round (there is 7 round optimization).

Set Tf iter+1
1 = rbTf

iter
1 , Tf iter+1

2 = rbTf
iter
2 , and iter = iter+1. If iter < maxiter,

then go to step 3 to keep iterating. Otherwise, the search process will be terminated with

[Q∗RSC Q
∗
STAT ]

T = [Qmaxiter
RSC Qmaxiter

STAT ]T and [y1 y2]
T = [ymaxiter

1 ymaxiter
2 ]T .

The Pareto-optimal solutions X∗ obtained at each round of optimization process is

used to update fuzzy rules, as presented in Table 4.4. Also, the obtained Y values is used

to update the output fuzzy subset configurations, as shown in Figures 4.4(b), (c), based

on the tunable fuzzy model given in Table 4.2. If the round number of the optimization

process is 7, then stop optimization process(tuning the fuzzy model and fuzzy rules are

completed); otherwise, go to step 2.
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4.5 Computer Simulation Study

In previous sections, the mathematical formulations are derived in order to find the op-

timal values of the compensating reactive power for both the RSC of the DFIG and the

STATCOM controllers. It was achieved via the FLC, which is properly tuned using the

NSA algorithm. In this section, the simulations in MATLAB/SIMULINK are presented

to validate the effectiveness of the proposed control approach.

4.5.1 Power System Case Study

The original four-machine 12-bus benchmark power system in [168] was used as a plat-

form system to study the flexible ac transmission system (FACTS) device applications for

the transient stability analysis. In this study, the single-line diagram of the four-machine

12-bus power system is modified by placing a WT and a STATCOM at bus 6 (PCC), as

shown in Figure 4.5. The system covers three geographical areas; area 1 represents the

main generation area with two hydro power generation G1 and G2; area 2 represents the

main load center with a hydro power generation G3; and area 3 represents the proposed

combination of the 1.5 MW DFIG-based WT and the 1.5 MVar STATCOM. For dynamic

studies, in this work, the conventional generators of G1, G2, and G3 are modeled in detail,

in which the exciter and turbine governor dynamic models are taken into account. The

detailed dynamic specifications of the conventional generators, as well as 12-bus system

parameters are given in [168]. Table 4.5 shows the 1.5 MW DFIG parameters, which are

used in the simulation results.

A three-phase symmetrical grid fault is considered, since the fault ride-through capa-

bility of the regional grid codes mostly refer to this type of fault. Thus, a three-phase fault

is applied to the bus 1 end of line 1−6 at t = 40 s (Ts = 40) and is cleared after 150 ms

(Tc = 40.15), resulting in a 40% depth of voltage dip at the PCC. The offline tuning of
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Figure 4.5: Single-line diagram of the multi-machine benchmark power system including

a wind turbine and a STATCOM connected to the PCC.

Table 4.5: Parameters of the 1.5-MW DFIG

Parameters Value Parameters Value

Rated power 1.5 MW Stator inductance 0.171 pu

Rated voltage 0.69 kV Rotor inductance 0.156 pu

Rated frequency 60 Hz Magnetizing inductance 2.9 pu

Rated wind speed 12 m/s Rotational inertia 5.04 s

Stator resistance 0.007 pu dc-link voltage 1.2 kV

Rotor resistance 0.005 pu dc bus capacitor 50 mF

the FLC model, via proposed NSA algorithm, were accomplished by means of MATLAB

programming.

4.5.2 Validation of the NSA Algorithm

Table 4.6 shows 7 optimization round process results of the tuning algorithm due to the

temperature changes of the two objectives based on priority selection (i.e., low (1), medi-

um (5), and high (10)). The corresponding results are used to plot the variation of the ob-
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Table 4.6: Pareto Optimality Results Using NSA Algorithm.

Case Priority Q∗RSC Q∗STAT V SI TPSI

No. Tf1 − Tf2 (MVar) (MVar)

1 10− 10 1.02 1.06 0.236 0.336

2 10− 5 1.04 1.12 0.233 0.396

3 10− 1 1.42 1.15 0.227 0.486

4 5− 10 0.62 1.18 0.258 0.186

5 5− 1 1.13 1.08 0.230 0.408

6 1− 10 0.43 0.76 0.375 0.144

7 1− 5 0.56 0.86 0.298 0.168

Figure 4.6: Three dimensional representations of control variables versus objective func-

tion.

jective functions, V SI and TPSI versus the control variables Q∗RSC and Q∗STAT , shown

in Figure 4.6, which are interpolated for better visualization. It can be seen that increasing

the amount of Q∗DFIG and Q∗STAT is needed to minimize V SI . However, the large value

Q∗RSC increases the TPSI .

Figure 4.7 schematically depicts the progression of the control variables and objective

functions of the optimization problem after 100 iterations, considering the first objective

(V SI) as a high priority and the second objective (TPSI) as a low priority. The results

clearly show that the reactive power commands and objective functions rapidly converge
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Figure 4.7: NSA-based optimization progress of the reactive power commands (control

variables) and two objectives for the case 3; x-axis denotes to the number of iteration.

in an optimal point during the cooling (annealing) process.

For comparative purposes, the optimization process is verified by another algorithm,

i.e., the non-dominant sorting GA version II (NSGA-II) [43]. The NSGA-II approximates
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Table 4.7: Comparison of the NSA Performance with NSGA-II

Optimization Number of iteration Total Average Error

Algorithm iterations(s) time(s) time(s) error Variance

NSA 100 0.41 41 0.605 0.144

NSGA-II 100 1.55 155 0.121 0.017

the entire Pareto front, and no modification could be made to locate only the optimal

solutions corresponding to the multi-objectives problems. The best parameters of NSGA-

II optimization for the proposed problem are achieved with a population size of 60, a

crossover probability of 0.85, and a mutation probability of 0.15, resulting with the final

Pareto-optimal solutions after 100 iterations. Table 4.7 presents the total computational

times, using a PC with an Intel core i7-4770/3.5-GHz, the average errors, and the error

variances that were produced by the two methods.

Compared to the NSGA-II algorithm, the proposed method exhibits considerably low-

er computational times, which is reliable for online application, where the control system

needs to act in a very short period of time. The Figure 4.8 shows the Pareto front (set

of all the Pareto optimal objective values), which is produced by the tradeoff among the

7 sets of mutually contradicting control variables. These results are compared with 11

optimal objective values obtained by the NSGA-II algorithm.

All these solutions lying on the Pareto front are non-dominated solutions, so that they

can be selected with the individual decision makers based on his/her own preference. For

some regional grid codes, such as Australia, Denmark and Germany, which supporting the

reactive power under fault conditions has highest priority [3], the cases of 2, 3 and 5 in

Table 4.6 can be suitable choices. On the contrary, for some regional grid codes, such as

Ireland, Spain and the UK, where supplying the active power to the grid during and even

after the faults has higher priority compared with reactive power [3], more contribution
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Figure 4.8: Pareto front that was obtained with NSGA-II and NSA algorithm.

of the STATCOM should be taken into consideration in order to compensate required

reactive power for the stability improvement. Thus, in these grid reginal grid codes, the

cases the cases of 4, 6 and 7 can be proper candidates. The case 1 could be a proper

selection, when supplying the active and reactive power have the same importance.

It should be also mentioned that the concept of the proposed reactive control strategy

during the fault is applicable to various sizes of the WT and STATCOM. The only varia-

tion would be in the upper and lower bounds, Xmax and Xmin of the control variables in

order to determine the searching space for the proposed optimization problem.

4.5.3 Simulation Case Studies

For validation purposes, the dynamic performance of the combinatorial WT and the S-

TATCOM, were reinforced with the proposed control approach in case numbers of 1, 3,

and 6; compared with the case without the proposed control system, where all control

parameters under fault condition were the same with the steady-state condition.

Case No.1 from Table 4.6: in case number 1, the proposed control system was op-

timally designed to minimize both objective functions by assigning the highest priority

(Tf1 = 10 and Tf2 = 10) to the V SI and TPSI . In this case, both the RSC and the
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Figure 4.9: Dynamic response of the 12-bus system with and without proposed control

system considering case 1, case 3, and case 6. (a) Voltage at PCC. (b) Output active power

at the PCC. (c) Output reactive power of WT. (d) Output reactive power of STATCOM.
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STATCOM have almost a same contribution for generating the reactive powers during the

faults in order to improve transient behavior of the voltage and power at the PCC during

and after clearing the fault. Accordingly, reactive power commands of the RSC and the

STATCOM were quickly changed to high values ofQ∗RSC =1.02 MVar andQ∗STAT =1.06

MVar during the fault, as shown in Figures 4.9(c) and (d). In this case, the depth of the

voltage dip is about 24%, as shown in Figure 4.9(a). The post-fault active power oscilla-

tions in case number 1 are damped more rapidly than in case number 3, but this is still less

rapidly than in case number 3 (see Figure 4.9(b)). These results confirm that the proposed

control system enhances the LVRT capability of the WT and power oscillation damping

of the system during transient conditions.

Case No.3 from Table 4.6: in case number 3, the proposed control system was opti-

mally designed to minimize the voltage deviations at the PCC during the fault by assign-

ing the highest priority to the objective V SI . Thus, more contribution of the RSC and

STATCOM should be taken into consideration, in order to compensate required reactive

power for voltage stability improvement of the weak power system. As shown in Figure

4.9(a), the proposed control approach significantly reduces the magnitude of voltage sag

to around 15%. Accordingly, reactive power commands of the RSC and the STATCOM

were quickly changed to high values of Q∗RSC =1.42 MVar and Q∗STAT =1.15 MVar

during the fault, as shown in Figure 4.9(c) and Figure 4.9(d). After the fault clearing at

t = 40.15 s, reactive power values return to their predefined values in the steady-state

condition. As it can be noticed in Figure 4.9(b), the proposed control system in case 3 is

not able to reduce the active power oscillations at the PCC due to lower priority of TPSI

compared to V SI .

Case No.6 from Table 4.6: in case number 6, the proposed control system was opti-

mally designed to enhance power oscillation damping in power system after clearing the

fault, by assigning the highest priority to the objective TPSI . In Figure 4.9(a), it can be
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observed that this case is unable to improve the voltage deviation at the PCC due to lower

priority V SI compared to TPSI , where magnitude of voltage sag reaches approximately

30%. Accordingly, the reactive power commands of the RSC and the STATCOM were

both set at low values of Q∗RSC = 0.43 MVar and Q∗STAT = 0.76 MVar during the fault,

as shown in Figure 4.9(c) and Figure 4.9(d). The post-fault active power oscillations in

case 3 is damped more rapidly than other cases (Figure 4.9(b)).

4.6 Summary

Since, many WTs have been electrically integrated into a weak power grid with low short-

circuit ratios and significant voltage dips, the DFIG converters are not able to provide ade-

quate reactive power and voltage support, due to their limited capacity. Thus, the applica-

tion of huge STATCOMs have been increasingly proposed to help with the uninterrupted

operation of a wind farm technology equipped with DFIGs under disturbances, and im-

prove the resilience of the power system including the RES systems. The STATCOM can

provide rapid and smooth reactive compensation and voltage control under steady-state

and transient conditions. Reactive power coordination between the WT and the STAT-

COM is very important for improving the LVRT capability and thereby increasing the

resilient of the overall power system. This chapter has been presented a computational in-

telligence technique in order to design an external interface controller for the coordinated

reactive power control between the WT and the STATCOM, during the faults. The overall

problem is formulated as a multiobjective optimization model, minimizing two conflict-

ing objectives, and solved by stochastic NSA algorithm. This approach provides a Pareto

front for decision makers to determine the optimal tradeoff between reducing the voltage

deviations during and after the fault and damping the active power oscillations during

the recovery period. Compared to the NSGA-II method, it is clearly confirmed the NSA

exhibits considerably lower computational times (NSA is around 3.7 times faster than
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NSGA-II). The transient active power performance of the system after the fault clearing

time is quantified by the so-called TPSI. For online applications, the optimal commanded

values of the compensating reactive power for both RSC of the DFIG and the STATCOM

controllers have been achieved via an FLC which is properly tuned using the NSA algo-

rithm. Simulation results have shown that the proposed control approach can successfully

improve the LVRT capability and can operate as an external damping controller for the

WT, and therefore, improve the post-fault power oscillation damping of system.
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CHAPTER 5

ACTIVE AND REACTIVE POWER CONTROL OF THREE-PHASE

SINGLE-STAGE GRID-TIED PV MODULE-INTEGRATED CONVERTER

5.1 Overview

This chapter discusses the application of a three-phase module-integrated converter (MIC)

incorporated into a grid-tied photovoltaic (PV) system. A current source inverter (CSI)

with dc voltage boost capability, namely the single-stage power conversion system, is

proposed for a three-phase PV MIC system. A power control strategy based on syn-

chronous frame proportional−integral (PI) regulators with structural simplicity and fast

dynamic response is designed to control the proposed CSI-based MIC system. The prin-

ciple goal is to provide a very smooth and fast dynamic response to step jumps and falls

in the active and reactive power commands. It is demonstrated that the active and reactive

powers which are exchanged between the PV MIC and the grid can be obtained through

controlling the modulation index and the modulation angle introduced in the phasor P-

WM (PPWM) switching pattern. In the design of the PI controller, two distinct d- and

q-axis currents must be extracted in order to be independently regulated. However, due to

the poor disturbance rejection capabilities, the d and q axes are not fully decoupled, and

the step changes in one axis generate transients in the other, which might lead to power

quality and performance deterioration. Thus, a multivariable PI controller with a faster

dynamic response and superior axis decoupling capability is proposed, in which the ac-

tive and reactive powers are almost fully decoupled so that the step changes in one power

reference value negligibly affect the other.

Up to the present time, as far as the authors are aware, there have been no reports, that

fully consider the active and reactive power control of a CSI-based MIC system by using

a multivariable PI-based controller. Thus, this chapter attempts to fill this void by devel-

oping the multivariable PI current regulator for the three-phase single-stage grid-tied CSI
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topology. First, a switching pattern based on the phasor pulse-width-modulated (PPWM)

technique is employed to produce the switching signals through introducing the modula-

tion index and the modulation angle, namely control parameters. Then, the state-space

averaging method, in combination with the dq reference frame, is used to derive the large-

and small-signal models in order to study the dynamic behaviors of the CSI-based MIC

system. The control design procedure corresponding to the multivariable PI regulator is

presented, in which the active and reactive powers are almost fully decoupled so that the

step changes in one power reference value negligibly affect the other. Finally, the perfor-

mance of the multivariable PI control method has been simulated in MATLAB/Simulink

software and then experimentally verified through a 300-VA laboratory prototype. The

results are compared with that of the conventional PI regulation approach.

5.2 Configuration and Modulation Strategy

The system architecture for the PV MIC system based on the three-phase grid-tied CSI

topology is shown in Figure 5.1. The CSI circuit consists of a bridge with six reverse

blocking MOSFET switches (S1 − S6), each of them is in series with a diode, a dc-link

inductor Ldc as the main energy storage component with small resistance Rdc, and a PV

source emulator, representing the output voltage of the PV array (vpv). The system is

connected to the three-phase grid voltages vag, vbg, vcg through the RLC filter unit, which

smooths out the pulsed phase currents from the dc link. The voltages vaw, vbw, vcw and

currents iaw, ibw, icw represent the output voltages and currents of the converter, as shown

in Figure 5.1.

A CSI is typically operated using either a selected harmonic elimination (SHE) switch-

ing pattern or a space vector PWM (SVPWM) switching pattern. However, the boost ratio

β, which can be defined as Vm/Vpv (where Vm and Vpv are the magnitude of the rated phase

voltage and PV emulator voltage, respectively), is below 1.0 for SHE- and slightly above
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Figure 5.1: Three-phase single-stage grid-tied CSI test system.

(I)

Vba

Vcb

Vbc

Vac

Vca

(II)(III)

(IV)

(V) (VI) Vab

Figure 5.2: Six sections in line-to-line voltage phasors.

1.0 for SVPWM-based CSIs. To remedy this, a phasor PWM (PPWM) switching tech-

nique for a CSI topology formulated based on the voltage phasor quantities is proposed

in [169]. The boost ratio in the PPWM-based CSI, namely the boost inverter, can easily

be higher than 3.00, while the THD remains below 5%. Based on the PPWM modula-

tion strategy, there are six sectors separated by six line-to-line voltage phasors, Vab, Vbc,

Vca, Vba, Vcb, and Vac, according to the zero-crossing points of grid voltages, as shown in

Figure 5.2. The switching sequence of the boost inverter switches for all six sectors is

depicted in Figure 5.3, where V1 and V2 are different line-to-line voltage phasors in each

sector. Each of these sector is performed by three operating modes with switching cycle
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Figure 5.3: Switching sequence of all six sectors.

Ts, which includes three time intervals: tc is the time interval for charging the dc-link

inductor, and td1 and td2 are the time intervals for the discharging of the injection of the

current to the CSI output terminals, and Ts = tc + td1 + td2. At any instance, there are

only two active conducting switches, one from the upper MOSFETs (S1, S3, S5) and one

from the lower MOSFETs (S4, S6, S2), to form a flow pass for the inductor current, idc.

For instance, Sector I ( −π/6 ≤ α0 < π/6 ) can be performed in three time intervals

as shown in Figure 5.4 and described below.

Interval 1 [0− tc]:

S1 and S4 are turned on and others switches are off. The dc-link inductor is being charged

to boost the output voltage, while output currents are supplied by Cfa, Cfb, and Cfc (see

Figure 5.4(a)).

Interval 2 [tc − (tc + td1)]:

During this period of time, S1, S6 are closed, where the inductor current idc discharges

through Cfa, Cfb, and the grid voltages vag, vbg (see Figure 5.4(b)).
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Figure 5.4: Three intervals for proposed switching patterns for Sector I.

Interval 3 [(tc + td1)− Ts]:

S1, S2 are ON and idc discharges the throughCfa,Cfc, and vag, vcg, whereas ibg is supplied

by Cfb, Cfc (see Figure 5.4(c)). In principle, one of the switches is ON for the entire Ts

duration in a given sector, while other switches operate at the switching frequency.

Figure 5.5 shows the voltage and current waveforms of the dc-link inductor with the

assumption that the dc-link resistance Rdc can be negligible, and the PV input voltage

vpv remains constant over a switching cycle Ts (i.e., vpv = Vpv). Referring to this figure,

the dynamic equations of the dc-link inductor current over one switching cycle can be

obtained as
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Figure 5.5: Voltage and current of the dc-link inductor over one Ts in a CSI, while V1 and

V2 are line-line voltage output.





Idc(tc) − Idc(t0) =
Vpv

Ldc
tc, 0 < t ≤ tc

Idc(tc+td1) − Idc(tc) =
Vpv−V1

Ldc
td1, tc < t ≤ tc + td1

Idc(Ts) − Idc(tc+td1) =
Vpv−V2

Ldc
td2, tc + td1 < t ≤ Ts

(5.1)

where Idc(t0) and Idc(Ts) represent dc-link inductor currents at the beginning and the end of

one switching cycle, respectively. Summation of the above equations yields the equation

below

VpvTs − Ldc(Idc(Ts) − Idc(0)) = V1td1 + V2td2. (5.2)

In the steady-state and balanced conditions (i.e., Idc(Ts) = Idc(0)), the equation can be

further simplified as

VpvTs = V1td1 + V2td2. (5.3)

If the voltage Vab =
√
3Vm cos(ωt) is considered as the reference signal, the charging

and discharging intervals for all six sectors are considered as below [170]:
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



td1 = miTs cos(ωt− α0)

td2 = miTs cos(ωt− α0 − 2π
3
)

tc = Ts − (td1 + td2).

(5.4)

where 0 < mi ≤ 1 is the modulation index that can be utilized to adjust the level of dc

current at the dc-link inductor, and modulation angle α0 is the phase shift with respect

to the voltage vab that can be applied to control the power factor of the CSI-based MIC

system, and ω is the grid angular frequency.

The right-hand side of the equation (5.3) for Sector I (−π/6 ≤ α0 < π/6) with

V1 = Vab and V2 = Vac =
√
3Vm cos(ωt− π/3) can be expressed as





V1td1 =
√
3miTsVm

2
(cos(α0) + cos(2ωt− α0))

V2td2 =
√
3miTsVm

2
(cos(α0 + π/3) + cos(2ωt− α0))

(5.5)

Substituting (5.5) into (5.3) yields

VpvTs =
3

2
miTsVm cos(α0 + π/6) (5.6)

Since the boost ratio β = Vm/Vpv, mi can be obtained from (5.6)

mi =
2

3β cos(α0 + π/6)
(5.7)

The variation of the boost ratio β, as a function of modulation index mi and modu-

lation angle α0, is depicted in Figure 5.6 for Sector I, where −π/6 ≤ α0 < π/6 (see

Figure 6.4). The graph shows that the boost ratio of the PPWM-based CSI increases with

the reduction of the modulation index. Also, for a constant mi = 0.2, the boost ratio β

increases with the increase of the modulation angle.

5.3 State-Space Average Modeling of Grid-Tied CSI-Based MIC

In this section, the state-space averaging technique is applied to derive the large- and

small-signal models of the three-phase grid-tied CSI-based MIC system. These two mod-
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Figure 5.6: Variations of boost ratio β versus modulation index mi and the modulation

angle α0 (degree) for Sector I.

els are established in the following two steps. First, the averaging method is applied to

obtain the equivalent circuits of the three-phase grid-tied CSI. These circuits indicate the

dynamic behavior of the CSI in both charging and discharging times. A rotating reference

frame transformation is used to convert the large-signal model of six distinct sectors (i.e.,

Sector I to Sector VI in Figure 5.3) into a single state-space representation. Then, the lin-

earization method can be used on the large-signal model to obtain the CSI’s small-signal

model.

5.3.1 Large-Signal Model

The circuit diagrams, corresponding to the three possible switching states of the grid-tied

CSI for Sector I, are shown in Figure 5.7. By applying the periodic averaging technique

[171], the state-space model can be written as

dx/dt = AIx+Bu. (5.8)

where x is the approximate state vector x = [idc iag ibg v
w
ab v

w
bc]

T and u is the input vector

u = [vpv vgab vgbc]
T . In this model, the current icg and voltage vwca have been written in

terms of iag, ibg and vwab, v
w
bc, respectively. Thus, the state-space variables remain the same
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Figure 5.7: Circuit diagrams and state equation of the three-phase grid-tied CSI-based

MIC for Sector I. (a) Charging state, S1 and S4 on. (b) Discharging state, S1 and S6 on.

(c) Discharging state, S1 and S2 on.

for all six sectors. Also, it should be noted that the input matrices are the same at any

switching state: Bc = Bd1 = Bd2 = B. The input matrix, as well as the system matrices in

charging and discharging states, can be derived based on the circuit diagrams provided in

Figure 5.7, as given by
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B =




1
Lf

0 0

0 −1
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√
3

6Lf
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0 0 0
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


, Ac =




−Rdc

Ldc
0 0 0 0

0 2
3Lf

1
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(5.9)

Ad1 =




−Rdc

Ldc

−1
Ldc

0 0 0

0 2
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, Ad2 =




−Rdc

Ldc
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Ldc

−1
Ldc

0 0
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

(5.10)

The average state matrix of Sector I can be obtained from AI = [dcAc + d1Ad1 +

d2Ad2], where dc = tc/Ts, d1 = td1/Ts, and d2 = td2/Ts are the corresponding duty

ratios [172]. Similarly, the averaged system matrices for other sectors, AII , AIII , AIV ,

AV , and AV I can be obtained from their six sectors of PPWM and corresponding circuit

diagrams, respectively.

The averaged system matrix AI varies with time due to the fact that it is a function of

charging and discharging intervals (see Equation (5.4)). However, transferring Equation

(5.8) to the synchronously rotating dq reference frame results in a time invariant state-

space averaging model as follows

dxdq/dt = AdqIxdq +Budq. (5.11)

where xdq = [idc idg iqg vdw vqw]
T and udq = [vpv vdg vqg]

T are the approximate state

vector and input vector in the rotating dq-frame of reference.

It can be proved that the averaged matrices obtained for the six sectors in the dq-

reference frame are the same, i.e., AdqI = AdqII = · · · = AdqV I = Adq, in which the Adq
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represents the dynamic matrix of the large-signal model [172]. Therefore, the state-space

average representation of the three-phase grid-tied CSI-based MIC system in the rotating

dq-frame of reference can be written as

d

dt




idc

idg

iqg

vdw
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
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(5.12)

The 5th order state-space model in (5.12) can be divided into q-axis and d-axis equa-

tions on the ac side and dc side. The CSI’s dynamics of the dc-side input can be written

as

vpv = Ldc

didc
dt

+Rdcidc +

√
3

2
mi sin(α0)vdw +

√
3

2
mi cos(α0)vqw (5.13)

The dc voltage equation in (5.13) contains both d-axis and q-axis components, which

couple the dc input to the ac output. The d-axis dynamics at ac side can be expressed as

idg =
2
√
3

3
mi sin(α0)idc +

√
3

3
iqg +

2

3
Cfωvqw −

2

3
Cf

dvdw
dt

(5.14)

vdw = 2Lf

didg
dt

+ 2Rf idg − 2Lfωiqg −
√
3

3
vqw + vdg +

√
3

3
vqg (5.15)
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Both of the above equations contain the q-axis components. These terms can be modeled

as dependent current and voltage sources. Similarly, at the ac-side, the q-axis dynamics

including dependent sources can be obtained as

iqg =
2
√
3

3
mi cos(α0)idc −

√
3

3
idg −

2

3
Cfωvdw −

2

3
Cf

dvqw
dt

(5.16)

vqw = 2Lf

diqg
dt

+ 2Rf iqg + 2Lfωidg +

√
3

3
vdw + vqg +

√
3

3
vdg (5.17)

The average equivalent circuit model of the single-stage three-phase CSI in the sta-

tionary dq frame is shown in Figure 5.8. The equivalent circuits at dc-side, d-axis, and

q-axis are modeled by passive elements, as well as dependent voltage and current sources.

The stability and sensitivity of the three-phase grid-tied CSI-based MIC system can be s-

tudied using these equivalent models.

5.3.2 Small-Signal Model

As expressed in (5.12), u = [vpv vdg vqg]
T represents the system input for constant values

of mi and α0. While for the practical implementation of the proposed system, mi and α0

can be used to regulate the injected active and reactive powers to the grid, in grid-tied

conditions. Thus, (5.12) should be linearized around a steady-state operating point by

defining small perturbations for the system variables as

xdq = Xdq + δxdq, vpv = Vpv + δvpv, mi =Mi + δmi, α0 = A0 + δα0 (5.18)

where the symbol δ denotes small-signal perturbation, and the capital letters indicate their

steady-state components. The linearized (small-signal) model can be written as (5.19).

The stability studies of the small signal model in (5.19) can be performed by using several

different techniques. However, the eigenvalue analysis is one of the common techniques

to study stability of the system as explained in the following subsection.
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Figure 5.8: CSI-based MIC equivalent circuits. (a) dc-side equivalent circuit. (b) d-axis

equivalent circuit. (c) q-axis equivalent circuit.
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(5.19)
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Table 5.1: System Parameters

Parameters Value Parameters Value

Rated power 300 VA dc-link resistance Rdc = 0.2 Ω

Rated phase voltage 120 V dc-link inductance Ldc = 6 mH

Rated frequency 60 Hz Filter capacitance Cf = 15 µF

Switching frequency 3 kHz Filter inductance Lf = 2 mH

dc-link voltage 50 V Filter resistance Rf = 2 Ω

5.3.3 Open-Loop Stability Analysis

Herein, the stability of the proposed system, with respect to the variation in system matrix

parameters of the equation (5.19), is studied. This study is based on a 300-VA laborato-

ry prototype, in which parameters are summarized in Table 5.1. In addition, the grid

voltage frequency is assumed constant at ω = 120π and modulations are initially set at

mi = 0.2 and α0 = −π/6. Substituting these values into (5.19) results in the state vector

at equilibrium point as Xdq = [61.46 0.48 12.16 34.82 148.57]T , which represents the

steady-state values of the state vector xdq at a system operating point of about 300 W and

0 Var (rms grid current of 0.86 A). The eigenvalues of the system at this operating point

are λ1 = −101.6, λ2,3 = −867.1 ± j6065.9, and λ4,5 = −123.7 ± j4718.3. The real

parts of all five eigenvalues are negative, which signifies the linearized system’s stability.

However, the stability of the overall system cannot be guaranteed by system matrix pa-

rameters. Thus, for stability analysis, the eigenvalues of the system are plotted versus the

variation of one parameter at a time, while the other nominal parameters remain constant.

It is worth mentioning that the system matrix in (5.19) is independent of vpv and therefore,

the system eigenvalues remain constant with the variations of the dc-link voltage. In fact,

the variation of the dc-link voltage does not affect the stability of the proposed system.
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Figure 5.9: Location of eigenvalues of small-signal model. (a) Ldc varies from 5 mH to

20 mH. (b) Cf varies from 5 µF to 30 µF. (c) Lf varies from 0.5 mH to 2.5 mH. (d) Rf

varies from 2 Ω to 5 Ω. (e) mi varies from 0.2 to 1. (e) α0 varies from -π/6 to 11π/6.

1) Eigenvalues Movement for Variations in Ldc

The impacts of Ldc on the eigenvalues of the system are shown in Figure 5.9(a), when Ldc

varies from 5 mH to 20 mH. It can be observed that the eigenvalues of λ2, λ3, λ4, and

λ5, slightly change, while λ1 moves toward right, staying in the left-half of the s-plane.

Thus, the system is stable with variations in the dc-link inductance. It should be noted

that rising the Ldc, consequently increasing the Rdc, increases the losses at the dc side,

which is usually undesirable for PV MIC systems.

160



2) Eigenvalues Movement for Variations in Cf

The variation of system eigenvalues are shown in Figure 5.9(b), in which the filter ca-

pacitor value varies from 5 µF to 30 µF, with other nominal parameter values provided

in Table I. It is obvious that the complex eigenvalues λ2, λ3, λ4, and λ5 move toward the

real axis, whereas the impact of the Cf on the eigenvalue λ1 is almost negligible. This

reduces the system’s natural frequencies and increases the damping factor of the system.

However, the larger value of the filter capacitor might lead to a much lower power factor

in the system.

3) Eigenvalues Movement for Variations in Lf and Rf

The impact of the filter inductance and resistance on the location of the system eigenvalues

are demonstrated in Figure 5.9(c) and 5.9(d), respectively, as Lf varies from 0.5 mH to

2.5 mH, and Rf changes from 2 Ω to 5 Ω. It can be observed from Figure 5.9(c) that

the increase of the filter inductance displaces all complex eigenvalues toward the vertical

axis of the s-plan. It is expected that the overall system response becomes longer and

less oscillatory as Lf increases. However, since the filter inductance reduces the injected

current harmonics to the grid, it may not be a good idea to decrease its value to improve

the system’s stability, without first considering the quality of the current waveform.

On the contrary, as can be seen in Figure 5.9(d), increasing the resistance of the filter

moves all eigenvalues of the system toward the left, resulting in a faster response to any

step changes in the control signals. However, increase of the resistance increases the

power losses of the system, which is usually undesirable.

4) Eigenvalues Movement for Variations in mi

Figure 5.9(e) illustrates the small signal poles (eigenvalues) of the CSI-based MIC system

as modulation indexmi varies from 0.2 to 1. This range ofmi corresponds to the apparent

power variation from 0 to 300 VA. As can be seen, the imaginary part of λ4 and λ5
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increase, while the real parts decrease as mi increases. Unlike λ4 and λ5, the values of

the λ1, λ2, and λ3 move away from the real axis as mi increases. Since the eigenvalues

λ1, λ2, and λ3 are dominant than λ4 and λ5, it can be expected that the overall system

response becomes faster with less oscillatory. Nevertheless, it is obviously demonstrated

that all eigenvalues stay on the left half of the s-plane for the whole operating range,

which presents the stability of the CSI-based MIC system over the range.

5) Eigenvalues Movement for Variations in α0

The system eigenvalues, as the modulation angle α0 varies during one grid frequency

cycle (from -π/6 to 11π/6), are shown in Figure 5.9(f). Although the system matrix in

(5.19) is a function of α0, it is surprising that the eigenvalues of the system are only able to

rotationally displace as the modulation angle varies. Thus, it will never affect the stability

of the proposed system.

5.4 Power Control System for Three-Phase CSI-Based MIC

Several maximum power point tracking (MPPT) algorithms have been reported for the

PV inverter studies [173]. The outcome of MPPT provides the active power reference for

the CSI. This section mainly focuses on the converter control; hence, the MPPT control

method is not discussed. A multivariable PI-based dq current controllers with feedback

decoupling capability are proposed in which the step changes in one axis negligibly affect

the other. A PPWM switching pattern for the CSI-based MIC system is employed to

produce charging and discharging intervals to generate gating signals. The reactive and

active powers of the PV MIC system can be independently regulated by controlling the

modulation index mi and the modulation angle α0. Compared with other modulation

schemes, PPWM can provide more control flexibility and better dynamic performance

[169].
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5.4.1 Comparative Study of Conventional and Multivariable PI-Based

dq Current Control

The conventional dq current control strategy is well known and has been widely studied in

the literature [65–67]. In order to achieve the decoupled control of idg and iqg, the output

voltages of the converter should be controlled by adopting (5.15) and (5.17) in Section

5.3, as follows 



vdw = ucd − 2Lfωiqg + ve

vqw = ucq + 2Lfωidg + vf

(5.20)

where ucd and ucq are control signals in the d and q axes in the rotating reference frame,

respectively, and the voltages ve = −
√
3
3
vqw+vdg+

√
3
3
vqg and vf =

√
3
3
vdw+vqg+

√
3
3
vdg are

voltage feedforwards. According to (5.20), the structural diagram of the current regulator

based on conventional PI controllers is depicted in Figure 5.10(a), in which the voltage

feedforwards and the coupling terms are shown. A conventional PI controller can be

adopted in form of the Laplace transformation P(s), given by

P (s) =
kps+ kI

s
. (5.21)

where, kp and kI are the proportional gain and integral gain of the controller, respectively.

It should be noted that a fully decoupled system can be theoretically produced by

adopting the feedforward signals. If the feedforward signals can accurately neutralize the

effect of the coupling terms (i.e., ωLf idg and ωLf iqg), the complete decoupling can be

accomplished. However, due to measurement errors in a real system, it is not practically

possible to precisely determine the value of idg, iqg, and Lf . Furthermore, the sampling

process might produce a delay in the system, resulting in an imperfect cancellation. Thus,

implementing the conventional PI control strategy cannot fully decouple the axis in a

practical case. Compared with the conventional PI-based control method, which relies
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Figure 5.10: Structural diagram of dq current control. (a) Conventional PI-based control.

(b) Multivariable PI-based control with voltage feedforward.

on the feedforward signals to exclude the coupling effects, the proposed multivariable PI-

based technique employs the plant inversion approach to design a fully decoupled control

system. The multivariable PI controller can be defined as [68]

P (s) =
[kp(s+ jω) + kI ]

s
. (5.22)

where it has a complex transfer function. When separating the real and imaginary parts,

the controller can be rewritten as
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ucd + jucq = (
kps+ kI

s
+ j

kpω

s
)(iεd + jiεq) (5.23)

Therefore

ucd =
kps+ kI

s
iεd −

kpω

s
iεq (5.24)

ucq =
kps+ kI

s
iεq +

kpω

s
iεd (5.25)

where, iεd and iεq are the error signals of the d and q current axes in the rotating reference

frame, respectively. The control signals in both the d and q axes are described in (5.24)

and (5.25), including cross-coupling terms. However, dissimilar to the conventional PI

controller, the coupling terms (i.e.,
kpω

s
iεq and

kpω

s
iεd ) include integrators, which can

considerably decrease the coupling effect of the axis on each other. Figure 5.10(b) shows

a structural diagram of the proposed multivariable PI controller resulting in a practically

decoupled axis.

5.4.2 Active and Reactive Power Control Implementation

Details of the proposed power control scheme for the three-phase grid-tied CSI-based

MIC system are illustrated in Figure 5.11. The major control objectives include the fol-

lowing: 1) tracking of the reference dc-link current; 2) providing a certain amount of

active and reactive power; and 3) significantly decoupling the active and reactive powers

from each other, upon the step changes in command signals.

The controller is combined with two independent control loops for active and reactive

powers, respectively. In order to achieve independent control, the three-phase grid cur-

rents igabc are transformed into the dq components idg and iqg in the grid-voltage reference

frame. The grid-voltage phase-locked loop (PLL) is employed to obtain a synchronous

angle θg = ωt. With the dq synchronous frame, the grid voltages vgabc only have the d-axis

component vdg while the q-axis component vqg equals zero. Thus, the active and reactive
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Figure 5.11: Overall control block diagram of the three-phase grid-tied CSI-based MIC

system.

power exchanged from the PV MIC system to the grid can be independently controlled

by regulating the grid currents idg and iqg, respectively, as





Pg = 1.5vdgidg

Qg = 1.5vdgiqg.

(5.26)

By neglecting the loss in the system, the active power on the grid side is equal to the

active power of the dc-link in a steady-state operation, which is given by

Pg = PCSI = Pdc = VpvIdc. (5.27)

where Vpv and Idc are the dc-link voltage and current magnitude, respectively. The dc-link

current is controlled so that the CSI can supply the required active power to the grid. Thus,

the PI controller with a control speed of Ts/Ldc is used to generate the d-axis reference of

the grid current [174]. The magnitude of the dc-link current reference I∗dc, which can be

166



determined from (5.27), is compared with the measured dc-link current idc, and an error

signal is input to the PI regulator to generate a control signal of v∗Ldc. The dc voltages

of the PV side and converter side, along with the voltage across the dc-link inductance,

satisfy the equation v∗dc = Vpv − v∗Ldc. By neglecting the loss in the system, the grid

reference current i∗dg is derived based on the power-balance assumption, i.e.,

i∗dg =
P ∗g

1.5vdg
=
v∗dcidc
1.5vdg

. (5.28)

The grid reactive power can be adjusted through proper control of the q-component

current. The filter capacitor can be selected to inject a fixed amount of the reactive power

QCf
, which is about 0.25 p.u. of the rated power (in this study). The q-axis grid reference

current i∗qg can simply be obtained by using (5.26), where QCf
is added into the CSI

reactive power command Q∗CSI in order to find the total reactive power reference Q∗g

injected into the grid.

The measured signals of the grid’s active and reactive currents, idg and iqg, are com-

pared with their reference values, and then error signals are passed through the proposed

multivariable PI controller with voltage feedforward, shown in Figure 5.10(b), to derive

the converter output voltages.

The steady-state dq components of the capacitor currents, derived by using converter

output voltages, are idcf = −ωCfvqw and iqcf = ωCfvdw. Thus, the output reference

current provided by the converter is the subtraction of the grid reference current from the

capacitor current, which is written in the dq axes as





i∗dw = i∗dg − idcf = i∗dg + ωCfvqw

i∗qw = i∗qg − iqcf = i∗qg − ωCfvdw

(5.29)

Finally, the currents of i∗dw and i∗qw are applied to (5.30) and (5.31) to produce the value
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of the modulation index mi and the modulation angle α0, namely control parameters as

mi =

√
i∗dw

2 + i∗qw
2

idc
(5.30)

α0 = arccos(
2

3miβ
)− π

6
. (5.31)

To achieved all pre-defined control objectives, the three-phase grid-tied CSI-based

MIC uses the PPWM lookup table (discussed in Section II) to generate time intervals of

charging and discharging for each sector, i.e., tc, td1, td2 using (5.4), while these time

intervals must follow the angle θg = ωt.

5.5 Simulation and Experimental Verification

The proposed CSI-based MIC system with the multivariable-PI-based power control s-

trategy were first simulated in Matlab/Simulink. Then, to evaluate the performance of the

proposed control system, a 300-VA grid-tied prototype of the three-phase, single-stage C-

SI was built, as shown in Figure 5.12. The main system parameters used in experimental
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work have been listed in Table 5.1. A full-bridge inverter was constructed by Fairchild

MOSFETs with low Rds(on) and DSEP 30 diodes, including the snubber protection cir-

cuits. The input voltage of this module is provided by a 50-V power supply, connected

to the dc-link inductor with Ldc=6 mH and Rdc=0.2 Ω. The inverter is connected to

the grid (3ph, 208 V line to line, 60 Hz) through the RLC filter unit. The PPWM strat-

egy was applied with the switching frequency of 3 kHz. The switching frequency was

selected to meet the total harmonic distortion (THD) criteria based on IEEE STD 519-

1992. It is worth mentioning that the boost ratio in PPWM strategy was kept at about

3.4 (β = Vm/Vpv = 170/50 = 3.4). The proposed control strategy was implemented

by a dSPACE CLP1104 rapid prototyping board, in which the MATLAB/Simulink and

dSPACE Control Desk were used together to apply signal processing algorithms. The

PI controller for dc-link current was set at kp =0.005 and kI =0.03, while kp and kI

for PI active and reactive current controllers were set at 0.001 and 0.15, respectively.

The measurements were performed using a LeCroyWaverunner 64XI oscilloscope with a

bandwidth of 600 MHz and carried out to demonstrate the performance of the proposed

control system.

5.5.1 Simulation Results

In order to show the dynamic responses of the proposed control system, two scenarios

were considered based on the falls and jumps in the CSI-based MIC active and reactive

power commands: 1) a step-down in the active power reference value (P ∗CSI), and a step-

up in the reactive power command at the same time and 2) a step-up in the active power

command, while the reactive power reference value has a step-down at the same time.

It should be noted that the desired value of the P ∗CSI is normally dictated by the MPPT

algorithm, while the desired value of the Q∗CSI can be chosen according to the power

system needs.
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Figure 5.13: Performance of the proposed method in tracking active and reactive power

changes for scenario I. (a) active power step-up. (b) reactive power step-down. (c) dc-link

current. (d) voltage and current waveforms.
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Simulation results are shown in Figure 5.13(a)−(d) and Figure 5.14(a)−(d). In the

first scenario, the active power was assumed to have a step-down from 300 to 200 W

at t =3 s, while the reactive power command had a step-up from 50 to 100 Var at the

same time of the simulation, indicated in Figure 5.13(a) and 5.13(b). As can be seen, the

proposed controller has a promising tracking response to regulate the active and reactive

power independently. As displayed in Figure 5.13(c), the dc current is decreased from

around 6 A to 4 A due to the step change of the CSI active power command. It is observed

that the proposed multivariable PI controller has a faster dynamic response and superior

axis decoupling capability.

Figure 5.13(d) shows the phase-a waveforms of the grid voltage vag, CSI output

current iao, and the grid current iag for the first scenario. Initially, the CSI curren-

t magnitude and its phase angle with respect the vag, which can be obtained from the

ϕinv = arctan(Q∗CSI/P
∗
CSI), are 1.2 A and 130, respectively. At t =3 s the magnitude of

the CSI current steps down to 0.88 A while phase angle ϕinv increases to 280, as illustrated

in Figure 5.13(d).

As demonstrated in overall control system of Figure 5.11, it is expected that for first

scenario mi is slightly changed from 0.2 to 0.22 in order to reduce the delivered active

power to the grid, while α0 is adjusted accordingly to increase reactive power, changing

from -0.297 rad (−170) to -0.035 rad (−20). Based on (5.16), it should be note that there

is a phase shift 300 between the ϕinv and α0, i.e., α0 = ϕinv − 300. As was mentioned in

the previous section, the filter capacitor is selected to inject 25% of rated power (around

80 Var), therefore creating a fixed shift angle of 200 in the grid current iag. In the second

scenario shown in Figure 5.14, the active power command jumps simultaneously from

100 to around 280 W and reactive power command drops from 200 to 100 VAR at t =3 s.

As shown in Figure 5.14(c), the dc current is increased from 2 A to around 6 A due to the

step-up change of the CSI active power command. The proposed controller has shown
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Figure 5.14: Performance of the proposed method in tracking active and reactive power

changes for scenario II. (a) active power step-up. (b) reactive power step-down. (c) dc-

link current. (d) voltage and current waveforms.

172



a promising tracking response to regulate the active and reactive power with almost zero

coupling effect. Similarly, it is expected that for second scenario mi is slightly changed

from 0.43 to 0.21 in order to reduce the delivered active power to the grid, while α0 is

adjusted accordingly to increase reactive power, changing from 0.61 rad (350) to -0.122

rad (−70).

5.5.2 Experimental Results

Figure 5.15 and Figure 5.16 show the performance of power regulation schemes subse-

quent to step changes in the reference value of the active and reactive power. Description

of plots in these figures are the same as in Figure 5.13 and Figure 5.14. However, up-

on each step change, the dc-link current, active and reactive power commands change to

track the reference value changes in almost 20 ms with a zero steady-state error.

Decoupling Verification of Proposed Control System

In order to demonstrate the decoupling capability of the proposed control system, two

scenarios were considered based on the falls and jumps in the CSI’s active and reac-

tive power commands: 1) a step-down and a step-up in the active power reference value

(P ∗CSI), while the reactive power command was kept constant and 2) a step-up and a step-

down in the reactive power command (Q∗CSI), while the active power reference value was

kept constant.

In first scenario, the performance of both control regulation schemes is experimentally

evaluated for two step changes in the reference value of the CSI’s active power, as shown

in Figure 5.17. Hence, in this scenario, the active power was first assumed to have a

step-down from 300 W (the rated value) to about 100 W, and then after 0.2 s, it had a

step-up to 300 W, whereas the reference value for the reactive power was kept constant

at Q∗CSI = 0 during the whole process. As can be seen in Figure 5.17(a), corresponding
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Figure 5.15: Experimental performance of the proposed method in tracking active and

reactive power changes for scenario I. (a) active power step-down. (b) reactive power

step-up. (C) dc-link current. (d) voltage and current waveforms.

to the conventional PI controller, the reactive power reference signal experiences the non-

negligible transients upon each step change. The transients verify that the d and q axes are

not fully decoupled when the conventional PI-based control scheme was implemented for

the CSI-based MIC system. However, for multivariable PI-based controller, the reference
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Figure 5.16: Experimental performance of the proposed method in tracking active and

reactive power changes for scenario II. (a) active power step-up. (b) reactive power step-

down. (C) dc-link current. (d) voltage and current waveforms.

value of the reactive power sustains a much less amount of transients, subsequent to each

step change in the active power command, as shown in Figure 5.17(b).

Figures 5.17(a) and 5.17(b) clarify that the performance of the multivariable PI-based

controller in terms of tracking the step changes in the active power reference value is
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(a)

(b)

Figure 5.17: Experimental results for the transient response during step changes in active

power command P ∗CSI . (a) Conventional PI-based controller. (b) Multivariable PI-based

controller.

almost comparable to that of the conventional PI-based controller. However, contrary

to the conventional controller, upon the step changes in the active power command, the

proposed multivariable PI controller produces much less transients on the Q∗CSI signal.

As demonstrated in overall control block diagram, shown in Figure 5.11, the active

and reactive power exchanged between the PV MIC and the grid are obtained through

controlling the modulation index mi and the modulation angle α0. Thus, for this scenario

in order to regulate the active and reactive power independently, the value of the mi was
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Figure 5.18: Experimental results for the transient response of multivariable PI controller

during step changes in active power command. Description of plots: modulation index

mi on top and modulation angle α0 on bottom.

100 V

100ms

0.5 A 100ms

Figure 5.19: Experimental results for the transient response of multivariable PI controller

during step changes in active power command. Description of plots: phase-a waveform

of the grid voltage on top and grid current on bottom.
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Figure 5.20: Experimental results for the transient response of dc-link current during step

changes in active power command.

changed from 0.2 to 0.22 in the step-down mode and returned to the value of 0.2 in the

step-up mode, while the value of α0 was kept around its initial value of -0.52 rad by the

controller, as shown in Figure 6.19. Based on (5.31), it should be note that there is a

phase shift of π/6 rad between the CSI current phase angle ϕinv and modulation angle

α0, which can be obtained from the ϕinv = arctan(Q∗CSI/P
∗
CSI) and α0 = ϕinv − π/6,

respectively.

The phase-a waveform of the grid voltage vag, and the injected grid current iag, are

shown in Figure 5.19. As can be seen, the voltage remains unchanged during the step

changes. However, upon each step change, the magnitude and phase angle of the grid

current change to track the reference value with a zero steady-state error, as shown in

Figure 5.19. As was mentioned in the previous section, the filter capacitor is selected to

inject 25% of rated power (around 80 Var), therefore creating a fixed shift angle in the grid

current iag with respect to the vag. As displayed in Figure 5.20, the dc current is decreased

from around 6 A to 2 A due to the step change of the CSI active power command. It is

observed that the proposed multivariable PI controller has a promising tracking response

to regulate the active and reactive power.

In second scenario, in order to evaluate the performance of the multivariable PI con-

troller in terms of decoupling the axes during the step changes in the reactive power
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(a)

(b)

Figure 5.21: Experimental results for the transient response during step changes in re-

active power command Q∗CSI . (a) Conventional PI-based controller. (b) Multivariable

PI-based controller.

command, a similar test to that of the previous scenario was carried out. In this scenario,

the reference value for the active power was kept constant at P ∗CSI = 200 W during the

whole process, whereas the reactive power command first jumped from 0 Var to around

100 Var, then after 200 ms it was set back to 0 Var, as shown in Figure 5.21.

Comparing Figure 5.21(a) and 5.21(b) again demonstrates that the dynamic perfor-

mance of the multivariable PI-based controller in terms of tracking the step changes in

the reactive power command is comparable to that of the conventional PI-based con-
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Figure 5.22: Experimental results for the transient response of multivariable PI controller

during step changes in reactive power command. Description of plots: modulation index

mi on top and modulation angle α0 on bottom.

troller. However, the proposed multivariable PI controller generates less transients on the

P ∗CSI signal, upon the step changes in the reactive power reference value.

Similarly, as shown in Figure 5.22, it is observed that for second scenario, the value

of mi was adjusted around 0.2 by the controller, while α0 was regulated accordingly to

have a increase from -0.52 rad to about -0.3 rad in order to keep P ∗CSI constant and to

increase the delivered reactive power to the grid during the step changes.

Figure 5.23 (top plot) depicts the phase-a waveform of the grid voltage vag, which are

dictated by the grid. Subsequent to each change in the reactive power reference value, the

controller regulates the grid current at the desired level, as shown in Figure 5.23 (bottom

plot). As shown in Figure 5.24, the multivariable PI controller kept the dc-link current

at a constant value of 4 A, corresponding to the active power 200 W, due to the step-up

change of the CSI reactive power command. As can be seen, the proposed controller has

shown a promising tracking response to regulate the active and reactive powers.
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Figure 5.23: Experimental results for the transient response of multivariable PI controller

during step changes in reactive power command. Description of plots: phase-a waveform

of the grid voltage on top and grid current on bottom.

Figure 5.24: Experimental results for the transient response of dc-link current during step

changes in reactive power command.

5.6 Summary

In this chapter, a 300-VA three-phase single-stage CSI was proposed and experimentally

implemented as a testbed for grid-tied PV MIC systems. A multivariable PI-based cur-

rent control strategy with structural simplicity was presented to independently control the
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active and reactive powers, through regulating the control parameters of mi and α0 intro-

duced in the PPWM switching pattern. The experimental results show that the proposed

control system has a promising dynamic response in terms of tracking the step changes in

the active and reactive power reference values. Furthermore, the multivariable PI control

method represents a superior axis decoupling capability, so that the step changes in one

power command signal negligibly affect the other. The dynamic behaviors of the three-

phase grid-tied CSI-based MIC system were studied by using the open-loop eigenvalue

analysis of the small signal model. Surprisingly, it is concluded that the dc-link voltage

has never affected the stability of the proposed system. The results also reveal that the

proposed system stays stable as control parameters of mi and α0 vary within the CSI’s

operating limits.

Considering further expansion of the three-phase PV MIC system, it would be re-

quired for MIC to be equipped with the real-time active and reactive power control ca-

pability to fulfill the upcoming grid requirements. Thus, these investigations can pave

the path for the CSI-based MIC applications into photovoltaic energy generation systems.

This study has also presented the tools for further exploring the CSI-based MIC capabil-

ities for other case studies such as stability analysis of closed-loop control systems and

large-scale grid-tied PV applications.
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CHAPTER 6

EXPLORING RELIABLE STRATEGIES FOR PROTECTING SMART GRID

UNDER MULTI-FAILURE EVENTS

6.1 Overview

The main contribution of this chapter is to introduce and develop a new game-theoretic

framework to analyze how a power grid can dynamically survive concurrent severe multi-

failure events. In this study, instead of exploring the critical multiple contingencies by

creating the random failures via simulation approaches or optimization algorithms, the

multiple failures are generated in the game-theoretic framework, as the worst-case sce-

narios. More importantly, such events with low probability of occurrence, which might

cause serious damage to the power system, are considered in the proposed method. Ac-

cordingly, this approach provides reasonable decisions for power grid operators about

how to allocate the limited budgets on components of the grid network in order to reduce

the probability of a successful failure and maximize the power system survivability.

Thus, this work is first accomplished by utilizing a developed optimal load shedding

technology in order to calculate the amount of shed load under different types of failures,

which represents the physical impacts of the failures on the power grid. Using these

quantified physical impacts, a stochastic game for continual dynamic interactions between

the failure maker, which generates contingencies with the low and high probability of

occurrence, and the power grid operator, is formulated. Then, this chapter proposes a

novel learning algorithm to obtain the operator’s Nash equilibrium strategies that provide

insightful guidelines on how to deploy a limited budget for protecting critical components

of the power grid. Simulation results using the IEEE standard 14-bus and IEEE 39-bus

benchmark are presented to illustrate the feasibility of the proposed approach.
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The rest of this chapter is organized as follows. Section 6.2 presents the system mod-

el and problem formulation. The stochastic game framework is described and analyzed

in Section 6.3. The two algorithms to obtain Nash equilibrium strategies for power sys-

tem operators are presented in Section 6.4, while some illustrative examples are given in

Section 6.5. The conclusions are drawn in Section 6.6.

6.2 System Model and Problem Formulation

Consider a power system composed of NV buses (including Ng generation buses and Nl

load buses) and NE transmission lines. This system can be modeled using a graph G :=

(V , E) with NV vertices and NE edges. The set of vertices V = {v1, v2, ..., vNV} contains

NV nodes in the graph that include generation plants, transformers, substation devices,

and customers. The set E = {e1, e2, ..., eNE} of edges includes NE edges corresponding

to transmission lines. Hence, the total number of system components is NG = NV +NE ,

which must be protected from failures.

In this section, it is assumed that failure makers can generate the sever failures on

the system by distributing their limited budget Bf over one or more components of the

graph in order to maximize the physical impact of the failures on the system. In contrast,

operators need to decide how to allocate their limited budget Bd for the protection of

the NG components in order to maximize system survivability under such severe failures.

Based on the operator decision, the terms of budgets can be the amount of money which

needs to spend to reinforce the power system infrastructure, the number of protection and

measuring devices installed on critical transmission lines, the number of the technician

which should be sent to failed transmission line in order to fix them quickly.

The possible failure events that can be considered in this study are categorized into

two groups: a single-failure event, which can affect only one component of the graph at a

time, and a multi-failure event, which can simultaneously cut off two or more components
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of the graph. In the literature, the physical impact of a failure event on the system is

measured by the cost of shed load following the failure of components. As mentioned

in [175], the optimal load shedding problem can be formulated to minimize the cost of

load, which must be shed considering power system stability constraints, as follows

min
z,θ

Nl∑

j=1

wljuljzlj, (6.1)

s.t. Γ
TB sin(Γθ)− (p+ z) = 0, (6.2)

0 ≤ pg + zg ≤ pg, (6.3)

pl ≤ pl + zl ≤ 0, (6.4)

θmin ≤ Γθ ≤ θmax, (6.5)

cmin ≤ B sin(Γθ) ≤ cmax, (6.6)

where wl = [wl1, wl2, ..., wlNl
]T is the weight vector introduced to represent the relative

importance of different kinds of load buses. ul = [ul1, ul2, ..., ulNl
]T represents the load

cost vector, each of those components explains independent load values. p = [pT
g ,p

T
l ]

T

represents the power distribution over NV buses, in which pg = [pg1, pg2, ..., pgNg
]T ≥ 0

refers to power generation over Ng generation buses, while pl = [pl1, pl2, ..., plNl
]T ≤ 0

refers to load distribution over Nl load buses. z = [zT
g , z

T
l ]

T represents the changes

in power assignment for NV buses due to component failures and corresponding load

shedding, in which zg = [zg1, zg2, ..., zgNg
]T ≤ 0 refers to power reduction at given

generation buses while zl = [zl1, zl2, ..., zlNl
]T ≥ 0 refers to load to be shed. θ =

[θ1, θ2, ..., θNV ]
T gives the phase angle at each bus, while θmin and θmax are, respectively,

the minimized and maximized limitations of the phase angle at each bus. Γ ∈ RNV×NE is
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the incidence matrix for the topology of the power grid, and B ∈ RNE×NE is a diagonal

matrix, in which those diagonal entries correspond to line admittances. cmin and cmax

independently represent the minimized and maximized power limitations of each branch.

In this considered problem, constraint (6.2) corresponds to the physical power flow

equation that must be satisfied during the load shedding. Constraint (6.3) ensures that,

for Ng generation buses, the power can only be reduced without being added. Similarly,

in (6.4), pl ≤ pl + zl guarantees that the load is being shed, not being added, while

pl + zl ≤ 0 guarantees that the amount of shed load is not so much that may turn a load

into generation. Constraint (6.5) indicates that, in order to keep the power system in a

stable state, each phase angle of NV buses should be in such an interval. Similarly, the

capacity limits of transmission lines are given in the constraint (6.6).

Constraints (6.2) and (6.6) including trigonometric sine functions render the load

shedding problem a hard non-convex optimization problem. However, as described in

[175], the phase angle differences Γθ ≈ 0 under normal operations of the power grid. If

the phase angle vector is limited to θmin = −π/2 and θmax = π/2, the non-convex op-

timization problem can be linearized as a linear programming problem, shown according

to sin(Γθ) ≈ Γθ for Γθ ≈ 0. Thus, (5.1) can be solved by efficient techniques, including

simplex methods [176] and interior-point methods [177] for optimal solutions. A severe

multiple failure as the worst case scenario could lead to a combination of components

failures, so that the incidence matrix Γ must be updated according to the effected com-

ponent in the system. Taking the updated incidence matrix Γ as an input parameter, the

cost of shed load under the multiple failures will then be equal to
∑Nl

j=1wljuljzlj derived

by (6.1). Using this optimal load shedding technique, a game-theoretic approach for an-

alyzing the continual interactions between the failure maker and the power grid operator

is proposed in the next section.
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6.3 Stochastic Game-theoretic Approach

In this section, a stochastic game is formulated in the normal form Π = 〈S,F ,D,RF ,RD,T〉,

in which players of the game are the failure maker (player 1), representing the nature of

the power system, and the power grid operator (player 2). The key components of the

game include [178]:

S := {s1, s2, ..., sNS} represents the power grid’s state space.

F := {f1, f2, ..., fNF} represents the failure maker’s action space, which contains all

possible methods of allocating budget Bf over the NG components of the graph.

D := {d1, d2, ..., dND} represents the operator’s response space, which contains all

possible methods to distribute budget Bd over the NG components of the graph.

RF(s) := [RFf,d(s)]NF×ND is the failure maker’s expected reward matrix with respect

to failure event f ∈ F and the operator’s response d ∈ D.

RD(s) := [RDf,d(s)]NF×ND is the operator’s expected reward matrix corresponding to

the operator’s response d ∈ D and the failure event f ∈ F .

T(f, d) = [Tsi,sj(f, d)]NF×ND is the power system’s state transition matrix corre-

sponding to the failure event f ∈ F and the operator’s response d ∈ D.

Let ρS [t] be the probability distribution on the power system’s state space at time t,

then the probability distribution at time t + 1 will be pS [t + 1] = T(f, d) × ρS [t]. The

matrix entry Tsi,sj(f, d) indicates the probability that state si transitions to state sj under a

failure action f and an operator’s response d. The Tsi,sj(f, d) can be derived based on two

probabilities, the failure probability pfail
i (f, d) that the normal component i of the power

grid fails in one time step under a failure action f and an operator’s response d and the

recover probability prec
i (f, d) that the failed component i of the power grid recovers in one

time step under a failure action f and an operator’s response d. Assume the pfail
i (f, d) and

prec
i (f, d) depend on the operator’s budgets and the failure maker’s budgets deployed on
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each component, then pfail
i (f, d) and prec

i (f, d) can be formulated, as follows





pfail
i (f, d) = [cfi /(1 + cfi )]× [cfi /(1 + cdi )],

prec
i (f, d) = [cdi /(1 + cdi )]× [1/(1 + cdi )],

(6.7)

where c
f(d)
i is the allocated budget of failures (response mechanisms) related to action

f (d) that happened at the component i of the system.

As it is mentioned in the previous section, for the power grid composed ofNG compo-

nents, the failure makers and operators are constrained by a finite amount of budget. Thus,

the budgetBf for multiple failures and budgetBd for the operator’s response mechanisms

are implemented at a given time.

Here, it is defined that each failure fi ∈ F , i = 1, ..., NF , as a strategy of allocating

possible budgets over NG components




fi = [cfi,1, c
f
i,2, ..., c

f
i,NG

],

∑NG
j=1 c

f
i,j = Bf ,

(6.8)

where 0 ≤ cfi,j ≤ Bf , j = 1, 2..., NG , represents the allocated budget for failures, which

happened for component j of the grid. Similarly, each operator’s response di ∈ D, i =

1, ..., ND, conditions one strategy to distribute its limited budget over NG elements




di = [cdi,1, c
d
i,2, ..., c

d
i,NG

]T ,

∑NG
j=1 c

d
i,j = Bd,

(6.9)

where 0 ≤ cdi,j ≤ Bd, j = 1, 2..., NG , denotes the allocated budget for protecting the

component j of the grid.

6.3.1 Nash Equilibrium Strategies

In the proposed stochastic game Π, for a given state s ∈ S , a pair action (f, d) will

lead to an immediate reward for both sides of the game. Then, the state s transitions to
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the next state si, i = 1, ..., NS , based on transition probabilities Ts,si(f, d), satisfying the

constraint
∑NS

i=1 Ts,si(f, d) = 1.

For a given state s ∈ S , a pair action (f, d), and a consequent disruption, the expected

reward of the failure maker, denoted by RFf,d(s), is measured by the expected cost of load

that must be shed due to the component failures of the power grid, as follows

RFf,d(s) =

NS∑

i=1

(Ts,si(f, d)×
Nl∑

i=1

wljuljzlj), (6.10)

in which
∑Nl

i=1wljuljzlj is derived by the optimal load shedding problem (6.1).

For generating the severe multi-failure events as a worst-case scenario, we intend to

maximize the expected reward for the failure maker, while the power grid operator intends

to minimize it. Thus, the expected reward for operator is just the negative of the expected

reward for the failure maker, presented by RDf,d(s) = −RFf,d(s). The proposed stochastic

game can be therefore considered as a zero-sum stochastic game [179].

So far, the immediate rewards for both sides of the game at each state game has been

specified, but not how these rewards are aggregated into an overall payoff. To solve

this problem, the most commonly used aggregation method is the discounted-sum re-

ward [180]. In the proposed game, the discounted-sum reward of the failure maker is the

discounted sum of expected rewards at each time step t, with a discount factor β ∈ [0, 1):

Q :=
∞∑

t=0

βtRFf,d(s(t)). (6.11)

where βt is the weight of the immediate reward at the time step t, representing the relative

importance of the immediate reward in the overall payoff (a smaller β leads to lower future

payoffs).

The discounted-sum reward of the power grid operator is the negative of this number.

The goal of the failure maker is to generate the worst multi-failure conditions in order to

maximize the long-term reward Q, while facing the operator, who intends to minimize it.
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In order to solve the two players’ optimal strategies of a stochastic game in the normal

form Π, one popular solution is that of a Nash equilibrium in mixed strategies [181], in

which it is a state of the game such that no player can increase its reward by unilaterally

deviating from this equilibrium state. For mixed strategies, the strategies for generating

severe multi-failure events and corresponding response mechanisms are defined as prob-

ability distributions over their space F and D, respectively. Thus, the mixed strategy of a

failure maker for a given state s[t] will be




ρF(s[t]) := [Pr{f(s[t]) = f1}, ..., Pr{f(s[t]) = fNF}]T ,
∑NF

i=1 Pr{f(s[t]) = fi} = 1,

(6.12)

where Pr{f(s[t]) = fi} represents the probability of choosing a failure event fi in state

s[t] ∈ S .

Correspondingly, the operator’s response mixed strategy in state s[t] is given by:




ρD(s[t]) := [Pr{d(s[t]) = d1}, ..., Pr{d(s[t]) = dND}]T ,
∑ND

i=1 Pr{d(s[t]) = di} = 1,

(6.13)

where Pr{d(s[t]) = di} indicates the probability of selecting an operator’s response di

in state s[t] ∈ S . Based on the above equations, the Nash equilibrium can be defined as

follows:

Definition 1

Consider the proposed stochastic game Π = 〈S,F ,D,RF ,RD,T〉, where rewards R
F

and R
D are derived by solving the optimal load shedding problem (1). A Nash equilib-

rium for time step t is a tuple of two mixed strategies (ρ∗F ,ρ
∗
D), such that for all failure

mixed strategies ρ(F) and the operator’s response mixed strategies ρ(D), it satisfies the

following set of inequalities:

Q(s[t],ρF ,ρ
∗
D) ≤ Q(s[t],ρ∗F ,ρ

∗
D) ≤ Q(s[t],ρ∗F ,ρD) (6.14)
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Although the existence of the Nash equilibrium for static games is guaranteed by the

Nash’s theorem [181], in the case of stochastic games, the possible number of strategies

is infinite and is known only in very special cases of stochastic games. However, in this

game, we limit our study to stationary optimal strategies by solving the mixed strategies

for both sides of the game in each state, instead of each time step, where ρF(s) = ρF(s[t])

and ρD(s) = ρD(s[t]), ∀t are optimal. For zero-sum discounted stochastic games, it has

been proved in [178] that there exists an unique Nash equilibrium in stationary strategies

for both sides of the game. Therefore, there always exists a Nash equilibrium for generat-

ing the severe multi-failure events and guiding the power grid operator with the stationary

strategy selection in the proposed stochastic game Π.

6.4 Game Solution

In this section, the two-player zero-sum stochastic game Π, as proposed in Section 6.3,

is solved. The main objective is to characterize Nash equilibrium strategies for each state

s ∈ S , where Nash equilibrium strategy of the one side of the game is the optimal strategy

to maximize the minimum discounted sum of expected rewards under the opponent’s

optimal strategy. Due to the zero-sum nature of the game, it is sufficient to describe the

solution of optimal strategies for only one side of the game. Therefore, hereinafter, the

operator’s side of the game is considered, as the solution for the failure maker will be

analogous.

Using the minimax Q-learning algorithm presented in [181], the operator’s Nash equi-

librium strategies can be derived recursively through the following dynamic programming

approach. At time step t, the optimal discounted sum of expected rewards Q∗, for a given

state s and a pair action (f, d), can be devised iteratively by the following recursions

Qt+1
f,d (s) = RFf,d(s) + β

NS∑

i=1

[Ts,si(f, d)]V (si) (6.15)
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V (si) = min
ρD

max
f

ρT
D(si)Q

t
f,d(si) (6.16)

for a given initial conditionQ0. One of the drawbacks of this method is that every iteration

of this algorithm just depends on rewards derived at the current time step, while ignoring

those derived before steps. Therefore, the computational complexity of such algorithm

grows exponentially with the size of the power grid, making it impractical for grids with

reasonable sizes. Inspired by the improved linear programming algorithm for Markov

decision processes (MDPs) in [179], this study introduces a changeable learning rate αt =

1/(t+ 1)ω for each time step t, for ω ∈ [0.1, 1], into the minimax Q-learning algorithm.

Using the learning rate αt, two new recursions are defined for computing the optimal

discounted sum of expected rewards Q∗ at time step t, as follows

Qt+1
f,d (s) = αt{RFf,d(s) + β

NS∑

i=1

[Ts,si(f, d)]× V (si)}+ (1− αt)Q
t
f,d(s). (6.17)

V (si) = min
ρD

max
f

ρT
D(si)Q

t
f,d(si) (6.18)

for a given initial condition Q0. Also, (6.18) can be formulated as a linear constrained

optimization problem





min
ρ

D

V (si),

ρT
D(si)Q

t
f,d(si) ≤ V (si), ∀f ∈ F ,

(6.19)

The operator’s mixed strategy ρ∗D(s), ∀s ∈ S , calculated by (6.19), is the Nash equi-

librium strategy. The fixed points of (6.17) and (6.18), Q∗ and V ∗, lead to the optimal

minmax solution for the operator. Correspondingly, the Nash equilibrium strategy for the

failure maker ρ∗F(s) ∀s ∈ S , can be obtained by solving the dual of the linear constraint

optimization (6.18)




max
ρ

F

Vdual(si),

ρT
F(si)Q

t
f,d(si) ≥ Vdual(si), ∀d ∈ D,

(6.20)
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Figure 6.1: Flowchart of proposed stochastic game approach.

For the zero-sum stochastic games, the strong max-min property in [178] proves that

the strong duality applies and Vdual(si) is equal to V (si). Thus, the tuple of Nash e-

quilibrium strategies (ρ∗D(s), ρ
∗
F(s)) ∀s ∈ S , obtained by (6.19) and (6.20), is the Nash

equilibrium that we are looking for each state of the power grid. The convergence of the

computing procedure of the Nash equilibrium for the proposed stochastic game is proved

in [178], so that the reward sequence {Qt}t→∞, derived by the algorithm, converges to the

optimal point Q∗. The overall procedure of computing the game rewards and Nash equi-

librium of the proposed stochastic game Π is depicted in the flowchart, shown in Figure

6.1.

6.5 Simulation Results and Analysis

In this section, the performance of the proposed stochastic game algorithm was evaluated

using the standard IEEE 14-bus system from MATPOWER, as a benchmark system, to
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Figure 6.2: The IEEE 14-bus system contains 2 generators, 20 transmission lines. (a) Bus

diagram. (b) Link Diagram.

illustrate the solutions of the game. The bus and line diagram of the system are given in

Figure 6.2, including the total load of 259 MW, 2 generation buses, and 20 transmission

lines. For simulating the game, the failures that disrupt only the transmission lines of

the system are considered. Note that particular transmission lines in a power system are

important, so that any failure on them will significantly cut off a large amount of power

flow from generation to load. Thus, the operator (decision-maker) must react to these

failures by restoring some links before the failures proceed to further stages.

Although the proposed framework can be applied to any finite number of states in

power systems, only two power grids’ states are defined in order to keep this simulation

study numerically simple. If the total number of loads in the grid is Ptotal, two states s1

and s2 can be defined as Pshed = 0 and 0 < Pshed ≤ Ptotal, respectively. Also, it is assumed

the limited budget Bf = 10 for the failure maker to allocate it on the transmission lines

in order to maximize the physical impact of the failures on the system. Similarly, the

limited budget Bd = 10 is assigned for the operator to distribute it on the transmission

lines in order to maximize system survivability under multiple failures. The goal is to

derive the Nash equilibrium strategies of both sides of the game for s1 and s2 based on

the pre-assigned budgets.
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Table 6.1: Shed Load due to Failures in the IEEE 14-Bus System.

Failure Failure Shed Load Failure Failure Shed Load

No. Location (MW) No. Location (MW)

1(f1) Line 1 and 2 228 6(f3) Line 11 and 18 3.5

2 Line 1 and 5 0 7(f4) Line 12 and 19 6.1

3(f2) Line 3 and 6 94 8 Line 16 and 17 0

4 Line 4 and 6 0 9(f5) Line 16 and 18 9

5 Line 11 and 13 0 10(f6) Line 12 and 20 14.9

In the 14-bus system, 10 types of two-failure events were investigated. The amount of

shed load related to each of the successful failures is listed in Table 6.1, in which failure

numbers 1, 3, 6, and 8-10 are selected as the six severe multi-failure events that can cause

more load to be shed than other failures. These critical multiple contingencies usually

form the focus of the strategies for both sides of the game. Thus, the failure maker’s action

space can be formed by F = {f1, f2, f3, f4, f5, f6}, as listed in Table 3.1. Similarly,

the operator’s response space D includes six corresponding response mechanisms, i.e.,

D = {d1, d2, d3, d4, d5, d6}.

Figure 6.3 shows the Nash equilibrium strategies for generating the multi-failure

events and the corresponding operator’s responses in states s1 and s2 for the 14-bus sys-

tem with discount factors β zero (static game), 0.5, and 0.9. The y-axis presents the

probability, in which a certain failure or a response action can be chosen. As can be seen

in Figure 6.3, the results show that the proposed game derives different Nash equilibrium

strategies as the β varies from 0 to 0.9. For example, Figure 6.3(a) shows that in the state

s1 of the static game, the most severe failures can be generated by taking failure events

f1 and f2, which would lead to more load to be shed when the failure succeeds. How-

ever, in the stochastic game, the best selections for generating the worth-case scenarios

are failure events f3 and f4, in which less impacts are caused. This observation can be

explained according to the operator’s response strategy. In both the static game and the
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(a)

(b)

(c)

(d)

Figure 6.3: Nash equilibrium strategies with various discounted factors β for IEEE 14-

bus system. (a) strategies of generating multi-failure events in state s1. (b) operator’s

response strategies in state s1. (c) strategies of generating severe multi-failure events in

state s2. (d) operator’s response strategies in state s2.
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stochastic game (see Figure 6.3(b)), the operator tries to survive the power grid, opting

response actions d1 and d2 with adequately high probability. Although failure events f1

and f2 could lead to a higher physical damage, they are difficult to be successful under a

proper survivability plan in the operator system. Therefore, the Nash equilibrium strategy

for failure maker proposes the failure events with low probability of occurrence (f3 and

f4), which might cut off the transmission lines with less consideration from the power

grid operator. Consequently in state s2 of the stochastic game (Figures 6.3(c) and 6.(d)),

the operator progressively changes its strategy by focusing more on response actions d3,

d4 and d5, as β varies. This represents a continual interaction (in this effort 2 interactions)

between the failure maker and power grid operator.

In addition to the IEEE 14-bus system, the IEEE 39-bus system, including the total

load of 6100 MW, 10 generation buses, and 34 transmission lines, is also implemented

as an additional benchmark for more comprehensive comparison, as shown in Figure 6.4.

Similarly, 30 types of multi-failure events are investigated. The amount of shed load

following each of the successful failures is listed in Table 6.2, in which failure numbers

3, 5, 8, 10, 11, 15, 24, 25, 28 and 30 are chosen as ten severe multi-failure events with

higher physical impacts on the system than others. Therefore, the failure maker’s action

space is formed by F = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10}.

Given the same setting as the 14-bus system (Bf = 10 and Bd = 10), Figure 6.5

presents the Nash equilibrium strategies for generating severe multi-failure events and the

corresponding operator’s responses in states s1 and s2 with various discount factors β.

In s1 of the stochastic game, the best selections for generating the severe failures are the

f3 with high probability and f9 events, which make less physical impacts on the power

systems, as shown in Figure 6.5(a) (i.e., based on the optimal load shedding in (5.1), Line

6, Line 24, Line 32, and Line 34 have less consideration from power grid operator).
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Figure 6.4: The IEEE 39-bus system contains 10 generators, 34 transmission lines, and

18 loads.

Figure 6.5(b) shows in state s1 the operator’s Nash equilibrium strategy varies less

with different discount factors β than the 14-bus system. Compared with the 14-bus sys-

tem, the IEEE 39-bus system has a larger scale and the failure events might be less con-

nected, so that the transmission lines selected to be failed are more independent between

each other. Moreover, as state s1 is the safe state without load to be shed, the operator’s

objective is just to reinforce the transmission lines against potential failures. Thus, the

operator’s Nash equilibrium strategy varies little between different game models. The

continual interaction capability between the failure maker and power grid operator, which

was the main goal of the proposed method, is represented in Figures 6.5(c) and 6.5(d).

Tables 6.3 and 6.4 show the Nash equilibrium strategies of the power system operator

with various limited budgets Bd, namely 10, 20, 30, 40, and 50, assuming a limited
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(a)

(b)

(c)

(d)

Figure 6.5: Nash equilibrium strategies with various discounted factors β for the IEEE 39-

bus system. (a) severe generated multi-failure event strategies in state s1. (b) operator’s

response strategies in state s1. (c) severe generated multi-failure events strategies in state

s2. (d) operator’s response strategies in state s2.
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Table 6.2: Shed Load due to Failures in the IEEE 39-Bus System

Failure Failure Shed Load Failure Failure Shed Load

No. Location (MW) No. Location (MW)

1 Line 1 and 2 0 16 Line 19 and 20 0

2 Line 1 and 3 0 17 Line 20 and 24 0

3(f1) Line 2 and 14 658 18 Line 20 and 25 0

4 Line 3 and 6 0 19 Line 22 and 23 0

5(f2) Line 4 and 30 340 20 Line 22 and 27 0

6 Line 5 and 6 0 21 Line 23 and 25 0

7 Line 5 and 7 0 22 Line 24 and 25 0

8(f3) Line 6 and 24 158 23 Line 25 and 26 0

9 Line 7 and 8 0 24(f7) Line 27 and 28 635

10(f4) Line 10 and 12 233 25(f8) Line 28 and 29 333

11(f5) Line 12 and 13 522 26 Line 30 and 33 0

12 Line 13 and 14 0 27 Line 31 and 32 0

13 Line 16 and 18 0 28(f9) Line 32 and 34 206

14 Line 15 and 17 0 29 Line 33 and 30 0

15(f6) Line 18 and 19 320 30(f10) Line 33 and 34 347

Table 6.3: Nash Equilibrium Strategies of Operator for Various Budgets

Budgets Allocated Budgets for 14-Bus System

Bd=10 S1:(L1=L2=3.83, L3=L6=1.17, and others are 0)

S2:(L11=2.35, L12=L19=1.85, L16=0.8, L18=3.15, others are 0)

Bd=20 S1:(L1=L2=7.53, L3=L6=2.47, others are 0)

S2:(L11=4.82, L12=L19=3.78, L16=1.4, L18=6.22, others are 0)

Bd=30 S1:(L1=L2=11.25, L3=L6=3.75, others are 0)

S2:(L11=6.94, L12=L19=4.61, L16=3.45, L18=10.39, others are 0)

Bd=40 S1:(L1=L2=14.97, L3=L6=5.03, others are 0)

S2:(L11=7.25, L12=8.48, L16=4.27, L18=11.52, L19=6.15, L20=2.33, others are

0)

Bd=50 S1:(L1=L2=16.2, L3=L6=5.44, L12=L20=3.34, others are 0)

S2:L11=9.31, L12=9.78, L16=4.38, L18=13.69, L19=8.94, L20=3.92, others are 0

budgets Bf = 10 for failure maker and a given discount number β = 0.5. The allocated

budget for protecting the transmission lines of the IEEE 14-bus and 39-bus systems in

states s1 and s2 are computed by multiplying the selection probability of a response action

in each state by the assigned limited budget Bd.

As presented in Tables 6.3 and 6.4, for each protection budget, there is a Nash equi-
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Table 6.4: Nash Equilibrium Strategies of Operator for Various Budgets.

Budgets Allocated Budgets for 39-Bus System

Bd=10 S1:(L2=L14=2.1, L12=L13=0.94, L27=L28=1.95, others are 0)

S2: (L6=L24=5, others are 0)

Bd=20 S1:(L2=L14=4.68, L12=L13=2.03, L27=L28=3.28 others are 0)

S2: (L6=L24=4.52, L32=L34=0.48, others are 0)

Bd=30 S1:(L2=L14=8.36, L12=L13=1.91, L27=L28=4.75 others are 0)

S2:(L6=L24=13.14, L32=L34=1.86, others are 0)

Bd=40 S1:(L2=L14=8.33 L12=L13=3.89, L27=L28=5.63, L33=L34=2.13, others are 0)

S2:(L6=L24=14.12, L10=L12=1.98, L32=L34=3.89, others are 0)

Bd=50 S1:(L2=L14=8.42, L12=L13=4.86, L27=L28=9.04, L33=L34=2.66, others are 0)

S2:(L6=L24=15.41, L10=L12=4.33, L32=L34=5.25, others are 0)

librium strategy, so that it proposes the optimal allocation of limited budgets for some

transmission lines in order to restore them before the failures proceed to further stages.

For instance, in the 14-bus system, when 10, 20, or 30 budgets were implemented in state

s1, all of the budget, were allocated for lines 1, 2, 3, and 6, and any successful failures on

them cause more load to be shed than other lines (see Table 6.3). When the limited budget

increased to 50, some portion of the budget was allocated for lines 12 and 20, which have

a risk of the shedding load in the 14-bus system. After a successful failure, resulting in

shedding of partial loads (i.e., state s2), the power system operator should allocate his/her

limited budgets for the lines, such as lines 11, 12, 19, and mostly lines 18, which had less

consideration in state s1. In state s1 and s2 of the 39-bus system (Table 6.4), it can be

clearly observed that by increasing the limited budget, more transmission lines would be

under consideration (by assigning some portion of the budget), which lead to decrease of

the amount of the shed loads, as well as risk of the outage.

Figure 6.6 presents the expected cost of shed load obtained from both the conventional

Q-learning and modified Q-learning (by introducing the learning rate αt) for states s1 and

s2 of the IEEE 14-bus and 39-bus system, assuming Bd=Bf=10 and β=0.5. As can be

seen in Figure 6.6(a), the minimax Q-learning algorithm requires less iterations for con-
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verging to the Nash equilibrium compared with the proposed learning algorithm (around

30 iterations less than proposed game algorithm for ω = 0.9). However, the proposed

algorithm yields lower expected costs of shed load for the operator. It is notable that, as ω

increases, the modified algorithm reaches a lower expected costs of shed load due to the

decrease of the learning rate αt = 1/(t+ 1)ω proposed in the conventional method. In

other words, the modified algorithm yields an expected cost reduction ranging between

5.336% (for ω = 0.1), 16% (for ω = 0.5), and 22.16% (for ω = 0.9) in state s1 of the

system relative to the minimax Q-learning algorithm. Compared to the IEEE 14-bus sys-

tem, the modified algorithm for the IEEE 39-bus system results in a higher cost of load

shedding with the increase of the ω. For example, the proposed algorithm with ω = 0.8

converges to an expected cost 356 $/kW, which is 6 times the cost of ω = 0.9 in state s1

of the 14-bus system.

6.6 Summary

This chapter has presented a new approach based on stochastic game theory to study sur-

vivability of the power grid under severe concurrent multi-failure events. In this study, the

multiple failures have been generated by the failure maker introduced as one side of the

game-theoretic framework. An optimal load shedding approach is proposed to calculate

the minimum cost of shed load under different types of failures by generating multiple

failures with the low and high probability of occurrence. The complex interactions be-

tween the failure maker and power grid operator have been formulated by considering the

limited budgets introduced in the stochastic game. Also, this chapter has proposed a mod-

ified Q-learning algorithm to find the Nash equilibrium strategies of this game with a less

cost of load shedding, compared with the conventional Q-learning, in order to provide re-

alistic guidelines on how to deploy limited budgets for protecting critical components of

the power grid. The IEEE 14-bus and 39-bus systems are used as test models to illustrate

202



(a)

(b)

Figure 6.6: Comparison of expected cost of load shedding in state s1 of the stochastic

game, (a) IEEE 14-bus system. (b) IEEE 39-bus system.
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solutions of the proposed game. Simulation results have shown that the proposed game

method can provide the optimal allocation of limited budgets for some transmission lines

in order to restore them before the failures proceed to further stages.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The integration of renewable energy resources (RESs) with improved penetration has

been of keen interest to the engineers and power system operators for a while now. Re-

search institutes are still conducting studies to assess the possibility of increasing the

penetration of RES. However, grid integration of large RESs particularly in weak grid

can pose the adverse effects on in several significant ways, such as transient and voltage

stability, existing protection schemes, power leveling and energy balancing. To protect the

network from threats related to these issues, this dissertation has developed the advanced

and algorithmic methods for specification of the protection scheme, reactive power ca-

pability and power control requirements for interconnection of the PV and wind power

plants into the smart grid. In this dissertation, different aspects related to the design, op-

timization, implementation, protection, and energy management of smart grid systems

with renewable energy sources are presented.

Wind turbines with the grid-connected mode of the operation play a significant role

toward in sustainable energy development in the future, in which a non-negligible 20% of

them is still employing the FSIGs. Thus, the fault-ride through characteristics of FSIG-

based wind turbines still need to be analyzed. In chapter 2, the comprehensive review of

the state-of-the-art developments for LVRT capability improvement of WTs based on F-

SIGs is given. All reviewed methodologies have been categorized into three main groups,

i.e., series-connected solutions, shunt-connected solutions, and hybrid-connected solu-

tions; discussing the performance of the LVRT schemes including their advantages and

limitations in the detail. Also, an analysis of these LVRT methods in terms of control

complexity and economic feasibility has been comparatively investigated and summa-

rized in Table 2.1, so that it concludes that the overall cost and control complexity of the
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SFCL and UPQC schemes are higher than other types of LVRT technologies. On the oth-

er hand, the SDBR and BFCL methods were relatively the cheapest and simplest control

structure among other LVRT solutions from the economic feasibility point of view. For

verification purposes, several simulations has been presented in MATLAB software to

compare the reviewed LVRT schemes. Based on the simulated results, series connection

DVR and shunt connection STATCOM are the highly efficient LVRT capability enhance-

ment approaches. Thus, this study has provided the guidelines for researchers in order to

choose a suitable technique for the LVRT capability improvement of WT systems.

Application of superconducting devices, such as resistive SFCL (RSFCL) and SMES

for optimal performance of the WTs has been proposed in chapter 3. The main efforts

are categorized into three sections. The application of the RSFCL, in providing an ad-

ditional low voltage ride-through support to the wind-driven FSIG, has been investigated

in chapter3-section 3.1. RSFCL can limit the grid current during the fault and minimize

the voltage reduction at the generator terminal, leading to a compliance with international

grid codes. The results has been demonstrated that the integration of the FSIG-based WT

will become more promising from the energy-saving and downsizing perspective by in-

troducing the RSFCL as self-healing limiter. Furthermore, the application of the RSFCL,

in providing an additional low voltage ride-through support to the PMSG-based WT, has

been studied in chapter3-section 3.2. it has been demonstrated that the RSFCL can be a

promising solution for improving the WT controller performance with respect to the dc-

link fluctuations and the extreme loads on the wind. The proposed RSFCL can decrease

the activation of the dc braking chopper and fast pitch angle control systems, thereby in-

creasing the reliability of the system. A further study has been performed to determine

the optimal performance of the combinatorial 50 MW PMSG-WPP and RSFCL using a

multiobjective optimization based on AHP.
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A micro-SMES system integrated to the VSWT-PMSG, which is interconnected to the

standalone dc microgrid through the bi-directional DC-DC converter, has been proposed

in chapter3-section 3.3. A power balance between loads, micro-SMES system and non-

deterministic wind generation has been maintained via presenting the supervisory control

architecture. For this purpose, an optimal design scheme based on SA algorithm has been

modeled for micro-SMES solenoid coil to ensure the desired energy storage capacity (880

kJ) with least volume. Moreover, this section presents an effective control strategy to ob-

tain a rapid response of the micro-SMES system to the wind speed fluctuations in order

to stabilize dc-link voltage; thereby smoothing the output power simultaneously. This

penetrative approach allows finding the optimized charging and discharging model based

on the exponential function.

Chapter 4 has presented a computational intelligence technique based on a multiob-

jective optimization model in order to design an external interface controller for the coor-

dinated reactive power control between the DFIG-based WT and the STATCOM, during

the faults. Two conflict objectives were voltage deviations during and after grid faults

and low-frequency oscillations of the active power after clearing the faults. This chapter

has introduced a new index called transient power severity index (TPSI) to quantify the

transient active power performance of the system. This proposed methodology provides

a Pareto front for decision makers to determine the optimal tradeoff between these two

objectives. For online applications, the optimal commanded values of the compensat-

ing reactive power for both RSC of the DFIG and the STATCOM controllers have been

achieved via an FLC, which is properly tuned using the NSA algorithm. Simulation re-

sults have shown that the proposed control approach can successfully improve the LVRT

capability of the WT in the weak grid-connected mode. Moreover, it can operate as an

external damping controller for the WT, and therefore, improve the post-fault power os-

cillation damping of system.
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Regarding the design and hardware implementation, the 300-VA three-phase single-

stage CSI, with dc voltage boost capability, has been proposed and has been experimen-

tally implemented as a testbed for grid-tied PV MIC systems. The switching pattern based

on the phasor pulse-width-modulated (PPWM) technique has been employed to produce

the switching signals through regulating the modulation index mi and modulation angle

α0. The state-space averaging method, in combination with the dq reference frame, has

been used to derive the large- and small-signal models in order to study the dynamic

behaviors of the CSI-based MIC system. Surprisingly, it is concluded that the dc-link

voltage has never affected the stability of the proposed system. The results also reveal

that the proposed system stays stable as control parameters of mi and α0 vary within the

CSI’s operating limits. The multivariable PI-based current control strategy with structural

simplicity has been presented to independently control the active and reactive powers.

The experimental results has showed that the proposed control system has a promising

dynamic response in terms of tracking the step changes in the active and reactive power

reference values. Furthermore, the multivariable PI control method represents a supe-

rior axis decoupling capability, so that the step changes in one power command signal

negligibly affect the other.

Chapter 6 has developed a new approach based on the framework of stochastic game

theory to enable a power system to recover from severe and concurrent failures, before

such failures turn into a full blown cascading failure. In this study, the multiple failures

have been generated by the failure maker introduced as one side of the game-theoretic

framework. First, an optimal load shedding technique has been introduced to quantify the

physical impact of worst-case contingencies by generating simultaneously multi-failure

events at various points of the power network. Given these quantified impacts as in-

put parameters, continual interactions between the failure maker, which generates severe
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multi-failure events, and the power grid operator (decision maker) have been formulated

as a stochastic game. In this game, the goal of failure makers was to increase the probabil-

ity of successful multiple failures and the goal of power grid operators was to increase the

probability of successful response mechanisms. The complex interactions between the

failure maker and power grid operator have been formulated by considering the limited

budgets introduced in stochastic game. To find the Nash equilibrium of this game, a new

learning algorithm based on the modified Q-learning algorithm has been proposed with a

less cost of load shedding compared to the conventional Q-learning method. Simulation

results for two IEEE standard 14-bus and 39-Bus systems have shown that the proposed

game method can provide the optimal allocation of limited budgets for some transmission

lines in order to restore them, before the failures proceed to further stages.

7.2 Future Work

The topics covered in this dissertation illustrated the new challenges in real-time control

and optimal operation of smart grid system with integration of large renewable energy

sources. Due to essential needs for understanding, recognizing and solving probable is-

sues and obstacles of future power systems, it recommended to consider the following

topics as the future works:

1. As demonstrated in chapter 3, the length of the recovery period of the SFCL is

a function of the superconducting characteristics used for modeling of the SFCL.

As part of future work, comprehensive studies will be suggested to determine an

accurate model for the SFCL in order to obtain acceptable recovery periods for the

potential applications, especially in RES integrations. Moreover, the comparison of

various kind of the SFCL technologies, such as the resistive SFCL, the shield-core

SFCL, and the saturable-core SFCL, saturated type SFCL would be an interesting

research in this field of area.
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2. There are several interesting future research areas for this field study presented in

chapter 4. For example in this dissertation, multiple DFIGs were experimented with

one WT, in both modeling and simulation. Although this is a justifiable simplifi-

cation due to the fact that there are normally no mutual interactions between wind

turbines on a wind farm, it would be worth to take into consideration more multiple

DFIG models, which are close to real cases, to prove the feasibility of the proposed

control method, and to assist a realistic grid-connected wind farm development. In

addition to the proposed power network as presented in this thesis, it would be in-

teresting to model and analyze relatively large and complex power system scenarios

to demonstrate the effectiveness of the proposed coordinated reactive power control

for such a complex system. Finally, the validity of the proposed approach can be

further verified by the experimental results of a small-scaled DFIG and STATCOM

prototype.

3. Considering further expansion of the three-phase PV MIC system, it would be re-

quired for MIC to be equipped with the real-time active and reactive power control

capability to fulfill the upcoming grid requirements. Thus, the investigations in

chapter 5 can pave the path for the CSI-based MIC applications into photovolta-

ic energy generation systems. This chapter has also presented the tools to further

explore the CSI-based MIC capabilities for other case studies, such as analyzing

stability of the closed-loop control systems and coordinating the output power of

the high number of the CSI-based MIC units as a large-scale grid-tied PV systems.

Different faults of the system should can be studied, and correspondingly proper

protection and control systems can be designed for the CSI.

4. The interactions between the failure maker and power grid operator are formed as

different games in chapter 6. However, a large power system needs to take much

time to implement the algorithms. Although a pruning strategy is proposed, it is still
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primitive. Therefore, further developing the framework and enhancing the efficien-

cy of the proposed algorithms will be our future work. Also, the smart grid system

is more complicated than the model used in this dissertation because it consists of

the power network and the communication network interconnected by edges and

occurrence of failures in one network triggers failures in the other network.
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