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ABSTRACT OF THE DISSERTATION

STORAGE MANAGEMENT OF DATA-INTENSIVE COMPUTING SYSTEMS

by

Yiqi Xu

Florida International University, 2016

Miami, Florida

Professor Ming Zhao, Major Professor

Computing systems are becoming increasingly data-intensive because of the explo-

sion of data and the needs for processing the data, and storage management is critical

to application performance in such data-intensive computing systems. However, existing

resource management frameworks in these systems lack the support for storage manage-

ment, which causes unpredictable performance degradations when applications are under

I/O contention. Storage management of data-intensive systems is a challenging problem

because I/O resources cannot be easily partitioned and distributed storage systems require

scalable management. This dissertation presents the solutions to address these challenges

for typical data-intensive systems including high-performance computing (HPC) systems

and big-data systems.

For HPC systems, the dissertation presents vPFS, a performance virtualization layer

for parallel file system (PFS) based storage systems. It employs user-level PFS proxies to

interpose and schedule parallel I/Os on a per-application basis. Based on this framework,

it enables SFQ(D)+, a new proportional-share scheduling algorithm which allows diverse

applications with good performance isolation and resource utilization. To manage an HPC

system’s total I/O service, it also provides two complementary synchronization schemes

to coordinate the scheduling of large numbers of storage nodes in a scalable manner.

vii



For big-data systems, the dissertation presents IBIS, an interposition-based big-data

I/O scheduler. By interposing the different I/O phases of big-data applications, it sched-

ules the I/Os transparently to the applications. It enables a new proportional-share schedul-

ing algorithm, SFQ(D2), to address the dynamics of the underlying storage by adaptively

adjusting the I/O concurrency. Moreover, it employs a scalable broker to coordinate the

distributed I/O schedulers and provide proportional sharing of a big-data system’s total

I/O service.

Experimental evaluations show that these solutions have low-overhead and provide

strong I/O performance isolation. For example, vPFS’ overhead is less than 3% in through-

put and it delivers proportional sharing within 96% of the target for diverse workloads;

and IBIS provides up to 99% better performance isolation for WordCount and 30% better

proportional slowdown for TeraSort and TeraGen than native YARN.
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CHAPTER 1

INTRODUCTION

Data-intensive computing systems have penetrated every aspect of people’s lives. Be-

hind it is the scientific and commercial processing of massive data impacting the deci-

sion makings in companies, academics, governments and personal lives. Two types of

data-intensive computing systems continue to co-exist in the modern computing environ-

ment. High Performance Computing (HPC) systems, consisting of tightly coupled com-

pute nodes and storage nodes, are used to execute task parallelism for scientific purposes

like weather forecasting, physics simulation, and the likes. Message Passing Interface

(MPI) is an example of a computing framework on HPC systems. Big-data systems,

comprised of more loosely coupled nodes, are used to execute data parallelism for tasks

such as sorting, data mining, machine learning, etc. MapReduce is an example of a com-

puting framework on big-data systems. The clearer definitions and the differences of the

two types of systems will be explained below in details.

Both HPC systems and big-data systems are deployed for multiple users and appli-

cations to share the computing resources so that 1) the resource utilization is high, driv-

ing down the usage cost per application/user, and the users get better responsiveness of

application execution; 2) the data set is reused without extra overhead to move around

performing redundant I/Os, and users can also save space. As the computing needs con-

tinue to grow in data-intensive computing systems, the shared usage model results in a

highly resource-competing environment. For example, Amazon provides HPC and big-

data as cloud services. Hadoop version 2, YARN, provides a scheduler to encompass both

MapReduce and MPI jobs.

As the number of concurrent data-intensive applications and the amount of data in-

crease, application I/Os start to saturate the storage and interfere with each other, and

storage systems become the bottleneck to application performance. Both HPC and big-
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data systems’ I/O amplification adds to the I/O contention in the storage systems. To

counter failures in these distributed systems, HPC systems employ defensive I/Os such

as checkpointing to restart an application from where it fails, and big-data systems repli-

cate persistent data by a factor of k, which grows with the scale of the storage system.

Both mechanisms aggravate the I/O contention on the storage. The storage systems can

be scaled-out, but the compute to storage node ratio is still high, rendering the storage

subsystem a highly contended component.

Therefore, the lack of I/O performance isolation in the data-intensive computing sys-

tems causes severe storage interference which compromises the performance target set

by other resource managers proposed or implemented in a large body of works. Failure

to provide applications with guaranteed performance has consequences. Data-intensive

applications must complete in bounded time so as to get meaningful results. For exam-

ple, weather forecast data is much less useful when the forecasted time has passed. Paid

user in a big-data system also require a predictable runtime even though the job is not

time-sensitive, and the provider may get penalized in revenues if jobs fail to complete in

a timely manner.

This dissertation addresses the problems stated above for data-intensive computing

systems. It provides different approaches for both HPC storage systems and big-data

storage systems because their differences in principles, architecture, and usage pose dis-

tinct challenges. Before studying these systems and addressing their respective problems

separately, the discussion of the differences between these two types of systems is estab-

lished here.

HPC systems are strongly coupled distributed systems, connected by expensive hard-

ware and network links (e.g. InfiniBand [inf]). The application execution principle fo-

cuses on task parallelism, and thus both its parallel compute processes and I/O requests

are tightly coupled and must be executed together. This means a failure of any node re-

2



sults in the failure of the entire application. This is also why the checkpointing I/Os are

major sources of I/Os when running such applications, as the periodical save of appli-

cation progress constitutes much higher amount of data than its original input and final

output. Since the defensive I/Os are synchronous, they block the whole application’s

progress in its defensive I/O phase. The I/Os are served in a remote I/O model, where

compute and storage nodes are discrete sets of nodes, and data flows on the network from

compute nodes directly to the storage nodes (and vice versa). As discussed above, the

increase of HPC system scale reduces Mean Time To Failure (MTTF), adding the need to

perform more frequent defensive I/Os. The most widely used programming framework

for HPC systems is Message Passing Interface (MPI).

Big-data systems are also distributed systems, while commonly connected by com-

modity, inexpensive hardware using Ethernet links. The architecture employs data par-

allelism, such that each task is independent of each other for a certain application. Thus,

individual tasks of any application can be scheduled separately. Currently MapReduce

is the most widely accepted computing model in big-data systems. Such systems’ fault-

tolerance is enabled by restarting any failed task independently on any node, preferably as

close to where the data exists as possible. The I/Os are served by a locality model, where

computing is shipped to the data location and performs local I/Os there. The replication

scheme behind such a storage system results in a much higher probability of executing

local I/Os, also making task recovery much easier. The independence of tasks enables

each of them to make progress without rolling back the whole application’s progress

even under failures. Unlike HPC storage systems, big-data storage systems provide a

more complex application execution approach, where different phases of a MapReduce

application (map, shuffle, reduce) involve local I/Os interleaved with remote I/Os, and

persistent I/Os interleaved with intermediate I/Os.

3



Throughout this dissertation the definition of HPC systems and big-data systems are

exclusive of each other, although in reality, both architectures support executing the

framework and jobs of the other, blurring the lines between them.

The rest of this chapter presents separately the problems, challenges, and approaches

to HPC storage management and big-data storage management.

1.1 HPC Storage Systems

High-performance computing (HPC) systems remain to be indispensable for solving chal-

lenging computational problems in many disciplines including science, engineering, medicine,

and business. Such systems deliver high performance to applications through parallel

computing on large numbers of processors and parallel I/Os on large numbers of storage

devices. However, a noteworthy recent trend of HPC is that the applications become in-

creasingly data intensive. On one hand, the emergence of “big-data” is fostering a rapidly

growing number of data-driven applications which rely on the processing and analysis

of large volumes of data. On the other hand, as applications employ more processors

to solve larger and/or harder problems, they are forced to checkpoint more frequently in

order to cope with the reduced mean time to failures [OAT+07]. The implication of the

proliferation in data-intensive applications in HPC systems is that the I/O performance

plays a growing, crucial role in applications on HPC systems.

At the same time, HPC applications are increasingly deployed onto shared computing

and storage infrastructures. Similarly to the motivations for cloud computing, consolida-

tion brings significant economical benefits to both HPC users and providers. For data-

intensive HPC applications, hosting popular datasets (e.g., human genome, weather data,

digital sky survey, Large Hadron Collider experiment data) on shared infrastructure also

allows these massive volumes of data to be conveniently and efficiently shared by differ-

ent applications. Consequently, today’s HPC systems are typically not for dedicated use

4



by particular applications anymore; they are, instead, shared by applications with diverse

resource demands and performance requirements.

It is the combination of the above two concurrent trends that makes resource manage-

ment, particularly the management of shared storage resources an important and challeng-

ing problem to HPC systems. Although the processors of an HPC system are relatively

easy to partition in a space-sharing manner, the storage bandwidth is difficult to allo-

cate because it has to be time-shared by applications with varying I/O demands. Without

proper isolation of competing I/Os, an application’s performance may degrade in unpre-

dictable ways when under contention. However, the support of such storage management

is generally lacking in HPC systems. In fact, existing HPC storage stack is unable to

recognize different applications’ I/O workloads—it sees only generic I/O requests arriv-

ing from the compute nodes; it is also incapable of satisfying the applications’ different

storage bandwidth needs—it is often architected to meet the throughput target for the en-

tire HPC system. These inadequacies prevent applications from achieving their desired

performance while making efficient use of the HPC resources.

This dissertation presents a new approach to addressing the above limitations and

providing application-specific storage bandwidth management through the virtualization

of parallel file systems (e.g., Lustre [Lus08], GPFS [SH02], PVFS2 [CLRT00], PanFS

[WUA+08]) commonly used in HPC systems. The virtualization framework, named

vPFS, is able to transparently interpose parallel file system I/Os, differentiate them on

a per-application basis, and schedule them according to the applications’ performance re-

quirements. Specifically, it is based on 1) the capture of parallel file system data and meta-

data requests prior to their dispatch to the storage system, 2) distinguishing and queuing

of per-application I/Os, and 3) scheduling of queued I/Os based on application-specific

bandwidth allocations. vPFS employs a proxy-based virtualization design which enables
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the above parallel I/O interposition and scheduling transparently to existing storage sys-

tems and applications.

Based on vPFS, various I/O scheduling algorithms can be enabled at the virtualization

layer for different storage management objectives. Specifically, this dissertation focuses

on proportional sharing schedulers which can provide the much needed control knob for

allocating the shared data and metadata services of the parallel storage, much like the

allocation of CPU cores in an HPC system. To this end, the dissertation designs a new

proportional-share I/O scheduler, SFQ(D)+, which allows applications with diverse I/O

sizes and issue rates to share the parallel storage with good application-level fairness and

system-level utilization. It recognizes the limitation of the traditional SFQ(D) scheduler

by considering the different costs of dispatched I/Os when they are processed by the un-

derlying storage. It further employs the backfilling technique to promote the dispatching

of small I/Os and improve the storage resource utilization. This scheduler is employed by

the distributed vPFS proxies to provide fair sharing of each individual data and metadata

server, while the distributed schedulers also coordinate with one another to achieve fair

sharing of the entire parallel storage system’s total data and metadata services. To han-

dle the scale of HPC storage system, new threshold- and layout-driven synchronization

schemes are invented to support the scheduling coordination with good efficiency.

The vPFS framework can support different parallel file systems and be transparently

deployed on existing HPC systems. A prototype of vPFS is implemented by virtualizing

PVFS2 [CLRT00], a widely researched and open-source parallel file system, and evalu-

ated with experiments using a comprehensive set of representative HPC benchmarks and

applications, including the IOR [SS07] benchmark, BTIO from the NAS Parallel Bench-

mark suite [BBB+91]), a real-world scientific application WRF [WB05], and a metadata

benchmark multi-md-test from PVFS2 [CLRT00]). The results demonstrate that the per-

formance overhead of the proxy-based virtualization and I/O scheduling is small: < 1%
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for reads, < 3% for writes, and < 3% for metadata accesses in terms of throughput. The

results also show that the new SFQ(D)+ scheduler can achieve good proportional sharing

for competing applications with diverse I/O patterns: > 96% of the target sharing ratio for

data service and > 98% for metadata service. It can also provide significantly better per-

formance isolation for an application with small, bursty I/Os (when it is under intensive

I/O contention) than the traditional SFQ(D) scheduler (3.35 times better performance)

and the native PVFS2 (8.25 times better performance) while still making efficient use of

the storage (13.81 times better total throughput than a non-work-conserving scheduler).

In summary, the contributions of this HPC storage management work are as follows:

1. A new virtualization-based parallel storage management approach which is, to the

best of our knowledge, the first to allow per-application bandwidth allocation in

such an environment without modifying existing HPC systems;

2. The design, implementation, and evaluation of vPFS which is demonstrated exper-

imentally to support low overhead bandwidth management of parallel I/Os as well

as metadata operations;

3. Novel distributed SFQ-based scheduling techniques that fit the architecture of HPC

parallel storage and support efficient total-service proportional sharing;

4. Adapted backfilling technique specifically for storage systems, to protect small I/Os

whose performance is easily undermined by large I/Os;

5. The first experimental evaluation of SFQ-based proportional sharing algorithms in

parallel file system environments.

7



1.2 Big-data Storage Systems

Big-data is an important computing paradigm that becomes increasingly used by many

science, engineering, medical, and business disciplines for knowledge discovery, decision

making, and other data-driven tasks based on processing and analyzing large volumes of

data. These applications are built upon computing paradigms that can effectively express

data parallelism and exploit data locality (e.g., MapReduce [DG04]) and storage systems

that can provide high scalability and availability (e.g., Google File System [GGL03],

Hadoop HDFS [SKRC10]). As the needs of data-intensive computing continue to grow

in various disciplines, it becomes increasingly common to use shared infrastructure to

run such applications. First, big-data systems often require substantial investments on

computing, storage, and networking resources. Therefore, it is more cost-effective for

both resource users and providers to use shared infrastructure for big-data applications.

Second, hosting popular data sets (e.g., human genome data, weather data, census data)

on shared big-data systems allows such massive data to be conveniently and efficiently

shared by different applications from different users.

Although computing resources (CPUs) are relatively easy to partition, shared stor-

age resources (I/O bandwidths) are difficult to allocate, particularly for data-intensive

applications which compete fiercely for access to large volumes of data on the storage.

Existing big-data systems lack the mechanisms to effectively manage shared storage I/O

resources, and as a result, applications’ performance degrades in unpredictable ways when

there is I/O contention. For example, when one typical MapReduce application (Word-

Count) runs concurrently with a highly I/O-intensive application (TeraGen), WordCount

is slowed down by up to 107%, compared to when it runs alone with the same number of

CPUs.
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I/O performance management is particularly challenging for big-data systems because

of two important reasons. First, big-data applications have complex I/O phases (e.g.,

rounds of map and reduce tasks with different amounts of inputs, intermediate results,

and outputs for a MapReduce application), which makes it difficult to understand their

I/O demands and allocate I/O resources properly to meet their performance requirements.

Second, a big-data application is highly distributed across many datanodes, which makes

it difficult to coordinate the resource allocations across all the involved nodes needed by

the data-parallel application. For example, the performance of a MapReduce application

depends on the received total storage bandwidth from all the nodes assigned to its map

and reduce tasks.

This dissertation presents IBIS, an Interposed Big-data I/O Scheduler, to provide per-

formance differentiation for competing applications’ I/Os in a shared big-data system.

This scheduler is designed to address the above-mentioned two challenges. First, how

to effectively differentiate I/Os from competing applications and allocate the shared stor-

age bandwidth on the individual nodes of a big-data system? IBIS introduces a new I/O

interposition layer upon the distributed file system in a big-data system, and is able to

transparently intercept the I/Os from the various phases of applications and isolate and

schedule them on every datanode of the system. IBIS also employs a new proportional-

share I/O scheduler, SFQ(D2), which can automatically adapt I/O concurrency based on

the storage load and achieve strong performance isolation with good resource utilization.

Second, how to efficiently coordinate the distributed I/O schedulers across datanodes and

allocate the big-data system’s total I/O service to the data-parallel applications? IBIS

provides a scalable coordination scheme for the distributed SFQ(D2) schedulers to effi-

ciently coordinate their scheduling across the datanodes. The schedulers then adjust their

local I/O scheduling based on the global I/O service distribution and allow the applica-

tions to proportionally share the entire system’s total I/O service.
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The IBIS prototype is implemented in Hadoop/YARN, a widely used big-data system,

by interposing HDFS as well as the related local and network I/Os transparently to the

applications, and it is able to support the I/O management of diverse applications from

different big-data frameworks. It is evaluated using a variety of representative big-data

applications (WordCount, TeraSort, TeraGen, Facebook2009 [SWI], TPC-H queries on

Hive [TSJ+10]). The results confirm that IBIS can effectively achieve total-service pro-

portional bandwidth sharing for diverse applications in the system. They also show that

IBIS can support various important performance polices. It achieves strong performance

isolation for a less I/O-intensive workload (WordCount, Facebook2009, TPC-H) when

under heavy contention from a highly I/O-intensive application (TeraGen and TeraSort),

which outperforms native Hadoop by 99% for WordCount and 15% for TPC-H queries.

This result is accomplished while still allowing the competing application to make good

progress and to fully utilize the storage bandwidth (< 4% reduction in total throughput).

IBIS can also achieve excellent proportional slowdown for competing applications (Tera-

Sort vs. TeraGen) and outperforms native Hadoop by 30%. Finally, the use of IBIS

introduces small overhead in terms of both application runtime and resource usages.

Overall, unlike most of the related works which focus on improving the I/O efficiency

of big-data systems [AGW+12, GRZ13], this dissertation addresses the problem of I/O

interference and performance management in big-data systems, which is not adequately

addressed in the literature. Although existing mechanisms such as cgroups [con] can be

employed to manage the contention among local I/Os, as the results in this dissertation

will show, they are insufficient due to the lack of control on distributed I/Os which are

unavoidable for big-data applications. IBIS therefore complements the existing solutions

for CPU and memory management of big-data systems, and provides the missing control

knob for I/O management which is much needed by increasingly data-intensive appli-

cations. Compared to the few related works [WVA+12b, SFS12, WVA+12a] that also
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studied the performance management of big-data storage, IBIS supports applications that

are more challenging (with complex computing and I/O demands) and diverse (including

both batch and query workloads). In summary, this dissertation makes the following con-

tributions in big-data storage management:

1. A thorough study of the performance interference among competing big-data ap-

plications caused by I/O contention on the shared storage;

2. A new interposed big-data I/O scheduling framework which can transparently sched-

ule the different types of I/Os from a MapReduce application and efficiently coor-

dinate the scheduling across the distributed storage nodes to enforce the policy for

total-service sharing of the entire system;

3. A new adaptive proportional-share I/O scheduling algorithm (SFQ(D2)) which can

automatically optimize the tradeoff between fair sharing and resource utilization

and provide strong performance differentiation to applications with high utilization

of the system;

4. A prototype built upon widely used Hadoop MapReduce system, which is shown

experimentally to deliver effective total-service proportional sharing and support

flexible performance polices including performance isolation and proportional slow-

down.

1.3 Outline

The outline of the dissertation is as follows: Chapter 2 discusses the background and

related work in HPC and big-data storage management; Chapter 3 and Chapter 4 present

the performance management of HPC and big-data storage systems, respectively; and

Chapter 5 concludes the dissertation and outlines the future work.
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CHAPTER 2

RELATED WORK

2.1 HPC Storage Systems

In a typical HPC system, applications running on the compute nodes access their data

stored on the storage nodes through a parallel file system. A parallel file system (e.g.,

Lustre [Lus08], GPFS [SH02], PVFS2 [CLRT00], PanFS [WUA+08]) consists of clients,

data servers, and metadata servers. The clients run on the compute nodes (or dedicated

intermediate I/O nodes) and provide the interface (through POSIX or MPI-IO [TGL96])

to the parallel file system. Metadata servers are responsible for managing file naming,

data location, and file locking. Data access typically has to first go through a metadata

server to obtain the appropriate permission and the location on the corresponding data

servers for the requested data. To avoid the metadata server from becoming a bottleneck,

parallel file systems can distribute metadata management across several metadata servers.

Finally, data servers run on the storage nodes and are responsible for performing reads

and writes on the locally stored application data. Each data request issued by a client is

usually striped across multiple data servers to achieve high performance by serving the

striped requests in parallel on their storage nodes.

In current HPC systems (Figure 2.1), the storage infrastructure is considered as opaque

by applications: it is shared by all the compute nodes and it serves applications’ I/O de-

mands in a best-effort manner. Although it is straightforward to partition the compute

nodes (and their processors) among multiple concurrent applications, the parallel file sys-

tem storage has to serve the concurrent I/O requests from all the applications that are

running in the system, which often have distinct I/O access patterns and performance re-

quirements. However, the parallel file system based storage is not designed to recognize

the different I/O demands from applications—it only sees generic I/O requests arriving
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Figure 2.1: The architecture of a parallel storage system

from the compute nodes. Neither is the storage system designed to satisfy the differ-

ent performance requirements from applications—it is engineered to meet the maximum

throughput target for the entire HPC system.

2.2 Big-data Storage Systems

Typical big-data computing systems are often built upon a highly scalable and available

distributed file system. In particular, Google File System (GFS) [SEP+97] and its open-

source clone Hadoop Distributed File System (HDFS) [SKRC10] provide storage for

massive amounts of data on a large number of nodes built with inexpensive commod-

ity hardware while providing fault tolerance at scale. Big-data applications then build

upon the I/O interface provided by such a distributed file system and are executed on

the nodes in a data-parallel fashion. In particular, the MapReduce programming model

and associated run-time systems are able to automatically execute user-specified map

and reduce functions in parallel, and handle job scheduling and fault tolerance [DG04].

Higher-level storage services such as databases (e.g. Bigtable [CDG+06], HBase [Hba],

Spanner [CDE+12]) can be futher built upon these distributed file systems. Therefore,
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this dissertation focuses on big-data storage systems of the GFS/HDFS kind. While big-

data databases can also be built directly on raw storage without relying on a distributed

file system [DHJ+07, Vol, LM10, Klo10], they are not the focus of this dissertation.

GFS/HDFS

Local	File	System

map reduce map reduce
��

�� GFS/HDFS

Local	File	System

reduce map reduce map��

��

⑤
��Input	to	a	map	task
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map	phase’s	intermediate	results)

��Input	to	a	reduce	task	(spilled	from	
memory)

⑤Output	from	a	reduce	taskData	Node Data	Node

Figure 2.2: The architecture of a big-data storage system

Both the map and reduce phases of a MapReduce application can spawn large num-

bers of map and reduce tasks on the GFS/HDFS nodes to process data in parallel. They

often have complex but well-defined I/O phases (Figure 2.2). A map task is preferably

scheduled to the node where its input data is stored. It reads the input from GFS/HDFS

(either via the local file system or across the network) and spills and merges key-value

pairs onto the local file system as intermediate results. A reduce task starts by copy-

ing/shuffling its inputs from all the map tasks’ intermediate results (either stored locally

or across the network). It then merges the copied inputs, performs the reduce processing,

and generates final output to GFS/HDFS. Each of the above phases can have different

bandwidth demands in the input and output. Moreover, given the same volume of data to

a map or reduce task, it can take different amounts of time to process the data depending

on the application’s computational complexity.
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2.3 Related Storage Management Work

2.3.1 HPC Storage Management

Storage resource management has been studied in related work in order to service compet-

ing I/O workloads and meet their desired throughput and latency goals. Such management

can be embedded in the shared storage resource’s internal scheduler (e.g., disk schedulers)

(Cello [SV98], Stonehenge [HPC04], YFQ [BBG+99], PVFS [RI01]), which has direct

control over the resource but requires the internal scheduler to be accessible and modifi-

able. The management can also be implemented via virtualization by interposing a layer

between clients and their shared storage resources (Façade [LMA03], SLEDS [CAP+03],

SFQ(D) [JCK04], GVFS [ZZF06]). This approach does not need any knowledge of the

storage resource’s internals or any changes to its implementation. vPFS follows this ap-

proach in order to support existing HPC setups and diverse parallel file systems. Although

this virtualization approach has been studied for different storage systems, to the best of

our knowledge, vPFS is the first to study its application on parallel file system based

storage systems. Moreover, vPFS embodies new designs that address the unique charac-

teristics and requirements of such systems.

Various scheduling algorithms have been investigated in related storage management

solutions. They employ techniques such as virtual clocks, leaky buckets, and credits

for proportional sharing [JCK04] [HPC04] [ZSW+06] [GMV10], earliest-deadline first

(EDF) scheduling to guarantee latency bounds [LMA03], feedback-control with request

rate throttling [KKZ05], adaptive control of request queue lengths based on latency mea-

surements [GAW09], and scheduling of multi-layer storage resources based on online

modeling [SLG+09]. The effectiveness of these scheduling algorithms is unknown for

an HPC parallel storage system. This gap can be mainly attributed to the lack of support

for per-application bandwidth allocation in such a system. The vPFS framework bridges
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this gap by enabling various parallel I/O schedulers to be instantiated without imposing

changes to parallel file system clients and servers. It is also the first to study proportional

sharing algorithms on a parallel file system.

The majority of the storage resource schedulers in the literature focuses on the allo-

cation of a single storage resource (e.g., a storage server, device, or a cluster of inter-

changeable storage resources) and addresses the local throughput or latency objectives.

LexAS [GV05] was proposed for fair bandwidth scheduling on a storage system with

parallel disks, but I/Os are not striped and the scheduling is done with a centralized con-

troller. DSFQ [WM07] is a distributed algorithm that can realize total service proportional

sharing across all the storage resources that satisfy workload requests. However, it faces

challenges of efficient global scheduling when applied to an HPC parallel storage system,

which are addressed by the vPFS and its enabled distributed parallel I/O scheduling.

U-Shape [ZDJ11] is a related project that tries to achieve application-desired perfor-

mance by first profiling the application’s instantaneous throughput demands and then at

runtime scheduling the application’s I/Os according to the predicted demands. However,

it does not address the often unpredictable contentions in a real-world HPC system where

applications with complex behaviors compete on the shared parallel storage system in a

convolved manner. In comparison, vPFS provides proportional sharing of the data and

metadata services for diverse applications without assuming a priori knowledge of the

applications. It offers the key missing control knob in HPC management which can be

utilized to realize different high-level performance policies such as proportional slow-

down and performance isolation.

Recognizing the importance of metadata management, HPC researchers proposed var-

ious solutions to improve metadata access performance. [MBL+11] and [PG11] studied

directory distribution for highly scalable parallel file systems. [AZ11] proposed paral-

lel file system delegation techniques to offload the management of parallel storage space
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to applications, relieving the metadata management bottleneck at the parallel file sys-

tem. [CLR+09] considered techniques to improve metadata access efficiency in PVFS

by precreating objects and batching requests. [WUA+08] studied the use of SSD-based

buffers for accelerating metadata accesses. These solutions are complementary to vPFS

in that vPFS can benefit from of the metadata performance enhancements made by these

related solutions while providing proportional sharing of the metadata service which they

lack.

Finally, there is related work that also adopts the approach of adding a layer upon an

existing parallel file system deployment in order to extend its functionality or improve

its performance (pNFS [HH05], PLFS [BCG+10], ZOID [IRYB08]). In addition, cross-

server coordination has also been considered in the related work [ZDJ10] [SYS+11] to

improve spatial locality and I/O performance. These efforts do not address the fair sharing

of a parallel file system by concurrent applications and are hence also complementary to

this dissertation’s vPFS-based solutions.

2.3.2 Big-data Storage Management

Existing big-data systems offer simple core resource management functions. Hadoop

MapReduce [had] allocates CPU resources in terms of slots to map or reduce tasks, where

the number of available slots is set according to the number of CPU cores in the system.

Recent developments such as Mesos [HKZ+11] and YARN [VMD+13] allow the allo-

cation of both CPU and memory resources to competing big-data applications. But the

management of shared I/O bandwidth among competing applications is missing from ex-

isting systems, which is crucial to the performance of inherently I/O intensive big-data

applications.
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In an HPC system as well as others, the computing infrastructure consisting of large

numbers of compute nodes is often the core of the system. A parallel/distributed file

system uses a much smaller number of storage nodes to provide remote data access to

applications executed on the compute nodes. In contrast, in a big-data system, the storage

infrastructure is the core of the system. Computing tasks are distributed to large numbers

of storage nodes to process the stored data. Moreover, although traditional MPI-based

HPC applications can also be I/O demanding, their I/O operations are mostly generated

by large, sequential checkpointing events. In contrast, big-data applications have inter-

twined I/O phases which generate both reads and writes to storage either locally or across

the network. Consequently, the scale and complexity of a big-data system are substan-

tially higher than an HPC system, and the I/O demands of big-data applications are also

substantially more challenging to manage. This dissertation recognizes these unique chal-

lenges and addresses them with new solutions upon the general interposition principles.

To the best of our knowledge, the problem of I/O management for MapReduce-type

big-data systems is largely unexplored in the literature. For other types of big-data sys-

tems, Frosting [WVA+12b] provides a scheduling layer upon HBase which dynamically

controls the number of outstanding requests and proportionally shares the HBase storage

among competing clients. However, it treats the entire HBase storage stack as a single

black box and is agnostic to how the competing I/Os are distributed to the underlying

storage nodes. Consequently, it is difficult to achieve good performance isolation when

I/Os compete on the individual shared nodes; while in order to provide any performance

guarantee, it has to throttle HBase I/Os as long as one of the nodes is overloaded, leaving

the others underutilized. In contrast, IBIS manages I/Os at the lower GFS/HDFS layer

and in a distributed manner. This approach can provide more effective I/O performance

differentiation while making efficient use of the underlying storage resources.
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PISCES [SFS12] provides fair sharing of key-value storage by controlling requests

dispatched to storage nodes according to the shares. In comparison, in a MapReduce-

type big-data system an application’s task distribution is driven by both CPU slot require-

ment and data locality, and its I/O demands are much more complex—including multiple

phases of local and network I/Os, and diverse—with different intensities on the various

types of I/Os. Hence, I/O management in a MapReduce system cannot be achieved by

merely controlling task dispatching, and has to rely on both local I/O scheduling and

global coordination which are part of the IBIS solution.

Cake [WVA+12a] presents a two-level scheduling approach to meeting the perfor-

mance goal of latency-sensitive applications (HBase) when they are consolidated with

throughput-oriented applications (MapReduce), but it cannot provide any performance

guarantee to the latter. In comparison, IBIS supports both types of applications.

Several works studied other orthogonal aspects of big-data storage: PACMan [AGW+12]

manages memory-based caching of map task inputs to improve application performance;

iShuffle [GRZ13] improves the performance of intermediate I/Os. However, they would

still need a storage management solution like IBIS to provide performance isolation for

the intermediate I/Os and the I/Os that trickle down the memory cache layer among con-

current applications.

2.3.3 Management of Other Types of Storage Systems

I/O interposition is a technique often used to manage a shared storage resource that does

not provide native knobs for controlling its competing I/Os. It has been employed in

the related work to realize a proportional bandwidth scheduler for a shared file ser-

vice [JCK04], to create application-customized virtual file systems upon a shared net-

work file system [ZF06], and to manage the performance of a parallel file system based
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storage system [XAZ+12]. Big-data systems present unique challenges to I/O manage-

ment because of the complexity (different types of I/Os), diversity (different levels of

intensity), and scale (many datanodes) of the I/O contention. These are addressed by the

techniques embodied in IBIS, including holistic interposition of HDFS, local file system,

and network I/Os, an adaptive proportion-share I/O scheduler, and scalable coordination

of distributed I/O scheduling.

There are also related works on the performance management of other types of storage

systems. Horizon [PSB10] can provide global minimum throughput guarantee for a RAID

storage system, but it requires a centralized controller to assign deadlines to requests,

which is difficult to apply to a big-data system where I/Os are issued directly by local

tasks on each datanode. A two-level scheduler [ZSW+06] was proposed for meeting

I/O latency and throughput targets, but it supports only local I/O scheduling, whereas a

big-data system requires the distributed storage management provided by IBIS.
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CHAPTER 3

HPC STORAGE SYSTEMS MANAGEMENT

3.1 Introduction

High-performance computing (HPC) systems remain to be indispensable for solving chal-

lenging computational problems in many disciplines including science, engineering, medicine,

and business. Such systems deliver high performance to applications through parallel

computing on large numbers of processors and parallel I/Os on large numbers of storage

devices. However, a noteworthy recent trend of HPC is that the applications become in-

creasingly data intensive. On one hand, the emergence of “big data” is fostering a rapidly

growing number of data-driven applications which rely on the processing and analysis

of large volumes of data. On the other hand, as applications employ more processors

to solve larger and/or harder problems, they are forced to checkpoint more frequently in

order to cope with the reduced mean time to failures [OAT+07]. The implication of the

proliferation in data-intensive applications in HPC is that the I/O performance plays an

growing, crucial role in applications on HPC systems.

At the same time, HPC applications are increasingly deployed onto shared computing

and storage infrastructures. Similarly to the motivations for cloud computing, consolida-

tion brings significant economical benefits to both HPC users and providers. For data-

intensive HPC applications, hosting popular datasets (e.g., human genome, weather data,

digital sky survey, Large Hadron Collider experiment data) on shared infrastructure also

allow these massive volumes of data to be conveniently and efficiently shared by different

applications. Consequently, today’s HPC systems are typically not for dedicated use by

particular applications any more; they are, instead, shared by applications with diverse

resource demands and performance requirements.
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It is the combination of the above two concurrent trends that makes resource manage-

ment, particularly the management of shared storage resources an important and challeng-

ing problem to HPC systems. Although the processors of an HPC system are relatively

easy to partition in a space-sharing manner, the storage bandwidth is difficult to allo-

cate because it has to be time-shared by applications with varying I/O demands. Without

proper isolation of competing I/Os, an application’s performance may degrade in unpre-

dictable ways when under contention. However, the support of such storage management

is generally lacking in HPC systems. In fact, existing HPC storage stack is unable to

recognize different applications’ I/O workloads—it sees only generic I/O requests arriv-

ing from the compute nodes; it is also incapable of satisfying the applications’ different

storage bandwidth needs—it is often architected to meet the throughput target for the en-

tire HPC system. These inadequacies prevent applications from achieving their desired

performance while making efficient use of the HPC resources.

Virtual PFS is the new approach to addressing the above limitations and providing

application-specific storage bandwidth management through the virtualization of parallel

file systems (e.g., Lustre [Lus08], GPFS [SH02], PVFS2 [CLRT00], PanFS [WUA+08])

commonly used in HPC systems. The virtualization framework, named vPFS, is able

to transparently interpose parallel file system I/Os, differentiate them on a per-application

basis, and schedule them according to the applications’ performance requirements. Specif-

ically, it is based on 1) the capture of parallel file system data and metadata requests prior

to their dispatch to the storage system, 2) distinguishing and queuing of per-application

I/Os, and 3) scheduling of queued I/Os based on application-specific bandwidth alloca-

tions. vPFS employs a proxy-based virtualization design which enables the above parallel

I/O interposition and scheduling transparently to existing storage systems and applica-

tions.
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The rest of this chapter is organized as follows: Section 3.2 shows the need for HPC

storage systems management with an example; Section 3.3 presents the design of a vir-

tualized parallel file system layer; Section 3.4 describes a novel algrorithm to cope with

unfairness of I/O requests in the storage; Section 3.5 introduces a scalable decentralized

synchronization scheme for parallel file system schedulers; Section 3.6 discusses the need

and method for scheduling of metadata I/Os; and Section 3.7 presents the evaluation of

the vPFS solution on PVFS for overhead, effectiveness and efficiency.

3.2 Motivation

In a typical HPC system, applications running on the compute nodes access their data

stored on the storage nodes through a parallel file system. A parallel file system (e.g.,

Lustre [Lus08], GPFS [SH02], PVFS2 [CLRT00], PanFS [WUA+08]) consists of clients,

data servers, and metadata servers. The clients run on the compute nodes (or dedicated

intermediate I/O nodes) and provide the interface (through POSIX or MPI-IO [TGL96])

to the parallel file system. Metadata servers are responsible for managing file naming,

data location, and file locking. Data access typically has to first go through a metadata

server to obtain the appropriate permission and the location on the corresponding data

servers for the requested data. To avoid the metadata server from becoming a bottleneck,

parallel file systems can distribute metadata management across several metadata servers.

Finally, data servers run on the storage nodes and are responsible for performing reads

and writes on the locally stored application data. Each data request issued by a client is

usually striped across multiple data servers to achieve high performance by serving the

striped requests in parallel on their storage nodes.

In current HPC systems, the storage infrastructure is considered as opaque by appli-

cations: it is shared by all the compute nodes and it serves applications’ I/O demands in
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a best-effort manner. Although it is straightforward to partition the compute nodes (and

their processors) among multiple concurrent applications, the parallel file system stor-

age has to serve the concurrent I/O requests from all the applications that are running in

the system, which often have distinct I/O access patterns and performance requirements.

However, the parallel file system based storage is not designed to recognize the different

I/O demands from applications—it only sees generic I/O requests arriving from the com-

pute nodes. Neither is the storage system designed to satisfy the different performance

requirements from applications—it is engineered to meet the maximum throughput target

for the entire HPC system.

HPC applications in fact differ by several orders of magnitude in storage bandwidth

requirements. For example, WRF [WB05] may require hundreds of Megabytes of inputs

and outputs at the beginning and end of its execution; mpiBLAST [DCF03] may load

Gigabytes of genome data when it starts but not much I/Os afterwards; S3D [SHC+06]

can produce Gigabytes of restart files periodically in order to tolerate failures during its

execution. Applications also have different priorities, e.g., due to different levels of ur-

gency or business value, which should be reflected on the scheduling of their I/Os. For

example, the execution of WRF for the forecast of an incoming hurricane should be given

the highest priority, but it may not be necessary to dedicate the entire system to WRF, as

the obtainable speedup often does not scale to the system size. Therefore, applications

with different storage bandwidth demands and performance requirements are multiplexed

on the shared storage system, which will become increasingly more common with the

continued scale-up of HPC systems. Hence, per-application allocation of shared parallel

storage bandwidth is key to delivering application desired performance, which is gener-

ally lacking in existing HPC systems.

As a motivating example, Figure 3.1a shows the impact of I/O contention on a typical

parallel storage system shared by two applications represented by IOR [SS07], which is-
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Figure 3.1: BTIO performance slowdown
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sues continuous checkpointing I/Os and NPB BTIO [BBB+91], which generates outputs

interleaved with computation. Each application has a separate set of compute nodes but

they compete for the same set of parallel file system servers. The figure compares the per-

formance of BTIO between when it runs alone (Standalone) without any I/O contention,

and when it runs concurrently with IOR (Shared). The chosen experiment workloads are

Class C with full subtype (using collective I/O [TGL99]) and Class A with simple subtype

(without collective I/O).

The expectation from the BTIO user’s perspective when under I/O contention is either

no impact (no loss in I/O throughput and no increase in runtime) or at least fair sharing

(50% loss in I/O throughput and 100% increase in I/O time). However, the results in

Figure 3.1b show that BTIO suffers much more severe performance drop even though the

two applications are using separate compute nodes. For Class A with smaller I/Os, the

I/O time is increased by 657% (Figure 3.1b) and the I/O throughput is reduced by 92.5%

(Figure 3.1a); and as a result the total runtime is increased by 228.8%. For Class C with

larger I/Os, the performance loss is relatively smaller: the I/O time is still increased by

143.5%, and the I/O throughput is reduced by 68.4%; and as a result, the total runtime is

increased by 76%. (More details on this experiment are presented in Section 3.7.) These

results demonstrate the need for bandwidth management in a parallel storage system,

a problem that becomes increasingly pronounced as HPC systems grow in size. It is

desirable to provide fair bandwidth sharing so that each application achieves predictable

performance regardless of the contention from other applications in a shared HPC system.

A possible solution to this problem is to statically allocate parallel file system servers

to each application, but data cannot be easily swapped in and out as processes do, so

this solution is not feasible in HPC systems with a large number and dynamic sets of

applications. This approach also disables the sharing of common data among different

applications. Some systems limit the number of parallel file system clients that an appli-
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cation can access [NLC08] [YSH+06]. This approach allows an application to always get

some bandwidth through its allocated clients. But as shown in the above experiment, it

cannot support strong bandwidth isolation because the parallel file system servers are still

shared by all the applications without any isolation.

3.3 Parallel Storage System Virtualization

The general strategy taken by vPFS to enable I/O scheduling for HPC parallel storage

systems is based on the virtualization principles, where an indirection layer exposes the

parallel file system interfaces already in use by the storage system for I/O accesses. This

strategy allows applications to time-share the I/O resources without modifications, while

enforcing performance isolation among them. Parallel I/O schedulers can be layered upon

this virtualization layer to address the limitations of existing parallel file systems dis-

cussed in Section 2.3.1 without changing the interface exposed to applications. To create

this virtualization layer, vPFS takes a user-level proxy-based I/O interposition approach

by inserting a layer of parallel I/O proxies between the shared native parallel file system

clients and servers, which differentiates per-application I/Os and enforces their resource

allocation. This proxy-based virtualization approach can be applied transparently to ex-

isting HPC system deployments, while the experimental results in Chapter 3.7 show that

the overhead introduced by the user-level proxies is small. It can support different parallel

file system protocols as long as the proxy understands the protocols and handles the I/Os

accordingly.

Specifically in vPFS, the parallel I/O proxies are spawned on every parallel file sys-

tem server to broker the application’s I/Os across the system, where the requests issued

by a parallel file system client are first processed and queued by a proxy and then for-

warded to the native parallel file system server for the actual data access (Figure 3.2). To
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Figure 3.2: The architecture of PFS virtualization

differentiate the I/Os from different applications, a proxy can use their source network

addresses (IPs) to identify their ownership, because HPC systems commonly partition

compute nodes across concurrent applications so each node executes a single applica-

tion’s processes. In the case when multiple applications are run on the same compute

node, each application’s I/Os can be directed to a specific port of the proxy so that its I/O

can be uniquely identified using the source network address and port number combina-

tion.

The placement of vPFS proxies does not have to be restricted to the native parallel file

system servers in order to create virtual parallel file systems. They can in fact be placed

anywhere along the data path between the clients and servers. For example, the proxies

can run on a subset of the compute nodes, which are dedicated to provide I/O services for

the rest of the compute nodes. Such a proxy placement can be leveraged to deploy vPFS

in HPC systems that do not allow any third-party program on the data servers. It is also

useful when the network bandwidth between the compute and I/O nodes is a bottleneck

and needs to be allocated on a per-application basis.

Although such a virtualization approach has been applied to the scheduling of cen-

tralized storage servers [ZF06, JCK04], vPFS is the first to take this approach to manage

a highly distributed storage system, and consequently it needs to address the scalability

challenges in the management. In an HPC system, it is infeasible to rely on a single proxy
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to decide the scheduling of I/Os (as the previous work does) for the entire distributed stor-

age system, although such an approach would be convenient to enforce global bandwidth

allocations. Instead, vPFS is designed with decentralized proxies which cooperate on

I/O scheduling to collectively deliver global bandwidth allocations, and it considers new

techniques to reduce the overhead from cross-proxy communication for global scheduling

synchronization. A variety of parallel I/O scheduling algorithms with different objectives

can be deployed at the vPFS virtualization layer by using the proxies to monitor and con-

trol I/O executions. This dissertation focuses on proportional sharing and address the

challenges of realizing such scheduling efficiently in large-scale parallel storage systems.

3.4 Fair Share of Parallel Storage I/Os

Proportional sharing of parallel storage bandwidth is important to HPC applications be-

cause their performance targets are often specified in terms of turnaround times which

depend on the shares of CPU cycles and I/O bandwidth that the applications can get from

the system. It is relatively straightforward to allocate CPU shares based on cores and

time slices, but it is non-trivial to allocate I/O bandwidth shares. Proportional-share I/O

schedulers can provide this key missing control knob in HPC resource management. Pro-

portional resource sharing is defined as when the total demand is greater than available

resource, each application should gets a share of the resource proportionally to its as-

signed weight [KMT98, MW00]. In an HPC system, the weights can be set based on the

high-level policies, such as application priorities, and the proportional-share scheduler

would enforce such policies among the applications that share the parallel file system’s

I/O bandwidth. For example, if two applications are assigned weights 4 and 1, then their

shares of the system’s I/O bandwidth should be 80% and 20%, respectively, whenever

their combined demand exceeds the total available bandwidth. Because only the relative
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values of the weights matter to the bandwidth allocation, in the dissertation, the weight

assignment to the applications is often specified in terms of the ratio among the weights.

3.4.1 Review of SFQ and SFQ(D)

The proportional-share scheduler is built upon the SFQ family of schedulers because of

their computational efficiency, work conserving nature, and theoretical provable fairness.

To help the readers understand the new proportional-share scheduler, a brief summary

of SFQ and SFQ(D) is provided here. In essence, SFQ schedules the backlogged re-

quests from different applications using a priority queue, where each request’s priority

is positively affected by its application’s weight and negatively affected by its cost (often

estimated based on the size of the request). The scheduler can dispatch only one outstand-

ing request, and it decides which one to dispatch based on the virtual start time and finish

time of the requests in its queue. A new request’s start time is generally assigned based

on the same application’s previous finish time, and its finish time equals to its start time

plus its cost. Therefore, when the scheduler dispatches the queued requests according to

the increasing order of their start times, each competing application is able to get a fair

share of service on the shared resource. When applications are assigned different weights

(e.g., based on their priorities), these weights are used to adjust the finish times—the cost

of a request reduces proportionally to its application’s weight—so that the applications

receive service proportionally to their weights.

The scheduler is work-conserving in that when an application does not have enough

requests to use up its allocated share of service, the scheduler does not wait for the appli-

cation and instead immediately dispatches the next request in the queue with the smallest

start time. But when this application’s next request comes, its start time is set to the cur-

rent global virtual time—which is always advanced by the scheduler based on the start
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time of its last dispatched request—instead of the application’s previous request’s finish

time, so the service that it did not use due to previous idleness is forfeited.

Based on the above basic SFQ algorithm, the SFQ(D) [JCK04] algorithm is designed

for proportional sharing of storage resources that are commonly able to handle multiple

outstanding requests concurrently. The level of concurrency that the shared storage re-

source supports is captured by the parameter D in SFQ(D). The scheduler follows the

original SFQ algorithm when assigning timestamps and dispatching queued requests ac-

cording to the increasing order of their start times, but it allows up to D outstanding I/Os

to be serviced concurrently by the underlying storage in order to take advantage of the

available concurrency of the resource.

The choice of D has important implications on both fairness and resource utilization

in a real system. Theoretical bound of fairness comes from the assumption that all appli-

cations have backlogged requests in the scheduler. However, it is not the case in reality.

On one hand, a larger D allows more concurrent I/Os and a higher utilization of the stor-

age, but it may hurt fairness because it allows a more aggressive workload to dispatch

more I/Os while a less aggressive one to lose more share due to the work-conserving na-

ture of the scheduler. As the dispatched I/Os are out of the control of the scheduler, they

may also overload the storage and cause significant delays to the following I/Os from

other workloads. On the other hand, a smaller D gives the scheduler a tighter control

on the amount of I/O share that a more aggressive workload can steal from others, and

allows the less aggressive workloads to establish queued I/Os for the scheduler to choose

from when it is ready to dispatch more. It can thus improve fairness among the competing

workloads but may lead to underutilization of the storage.

Therefore, it is important to strike a balance between fairness and utilization with

an optimal D under mixed I/O workloads, which is a challenging problem addressed by

vPFS. The inherent limitation of SFQ(D) is that D does not capture the impact from

31



the size of each I/O. Every dispatched I/O occupies one out of the D slots, regardless

of the size of the I/O, although a larger I/O generates a higher load on the storage than

a smaller one. This limitation becomes pronounced when applying SFQ(D) to an HPC

parallel storage system, which has been traditionally oriented to service large, sequential

I/Os (e.g., checkpointing) but is also seeing increasingly more small, random I/Os (e.g.,

visualization) [CLR+09]. The BTIO motivation example in Figure 3.1 shows that small

I/Os are vulnerable under the contention of large I/Os (the Class A workload experiences

152% more increase in runtime and 400% more slowdown in throughput than the Class

C workload). The new scheduler addresses this limitation of SFQ(D) and provides fair

scheduling of both large and small parallel I/Os upon vPFS.

3.4.2 Variable Cost I/O Depth Allocation

The new SFQ(D)+ scheduler recognizes the different costs of outstanding requests in the

underlying storage by allocating different number of slots of the total I/O depth to them

based on their slot cost L . Once D is chosen, different sized I/Os use different number

of slots out of D , and the total slot cost of all outstanding I/Os should not exceed D . The

use of the variable slot costs in the algorithm is described in pesudocode in Algorithm 1.

This enhancement to the original SFQ(D) algorithm can effectively protect small, low I/O

rate workloads and provide better fairness when they are contended by large, intensive

workloads. Small I/Os are affected by less large I/Os when they are dispatched together.

Low I/O rate I/Os also wait less for the outstanding large I/Os to complete. SFQ(D)+ takes

control of the contention among the outstanding I/Os in the underlying storage before they

are dispatched and get out of the hand of the scheduler. I/Os are differentiated not only

by their relative order in the scheduler’s queue, per the original SFQ(D), but also by their

variable slot cost L in the shared storage. A key question to the application of SFQ(D)+
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is that how to determine the variable slot cost L of requests in terms of their use of

the underlying storage’s I/O depth. It is addressed by profiling the latencies of I/Os of

various sizes on the storage. Because I/Os of the same size often require the same of

amount of processing and incur similar latencies in the storage, they can be considered

to have the same slot cost and their latency can be used to estimate the value of L . This

methodology is consistent with the common use of I/O size as the estimate of I/O cost

in assigning finish tags in SFQ. Note that for storage where read and write requests incur

different costs (e.g., flash storage), different depth costs can be used for reads and writes.

In order to apply this new SFQ(D)+ algorithm to scheduling a shared storage resource,

there are two key parameters that need to be determined: first, the D parameter which

represents the number of outstanding I/Os that the storage can handle; and second, the L

parameter which represents the slot cost of an outstanding I/O. Note that in principle these

two parameters need to be determined for each major type of I/Os serviced by the storage.

For parallel file system based storage, a single D and a single L value are sufficient

to differentiate the large and small I/Os in such a system, which can be determined by

profiling the storage as discussed in the rest of this section.

First, the throughput model that captures the relationship between the I/O throughput

and the number of outstanding I/Os is built to determine the D parameter of the storage

system. The traditional SFQ(D) algorithm [JCK04] also requires profiling to determine

D , but it does not consider the dependence of this parameter to the I/O sizes. In SFQ(D)+,

the profiling focuses on building a throughput model for small I/Os that the storage serves,

so that the cost of large I/Os can be expressed as multiple depth slots where each slot

represents the cost of processing a small I/O. In such a throughput model, the throughput

generally increases with the growth of the number of outstanding I/Os, and flattens out

when the storage becomes saturated. The number of outstanding I/Os that saturates the

storage determines the D parameter for this particular I/O size.
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Figure 3.3: Throughput models for a PFS storage node

For example, the throughput model of the data server used for this dissertation’s ex-

perimental evaluation is shown in Figure 3.3. To confirm that I/Os with different sizes

can lead to different values of the D parameter, the figure shows the throughput model for

different I/O sizes, although in practice only the throughput model for small I/Os is re-

quired to determine D for SFQ(D)+. The model is created by issuing random I/O requests

directly to the storage, using DIRECTIO to bypass the page cache, and using libaio to

generate different numbers of outstanding I/Os. The results demonstrate that the storage

saturates at different points for different I/O sizes. D is 1 for I/Os larger than 512KB, and

between 10 to 15 for I/Os smaller than 512KB.

Second, the latency model that captures the relationship between the I/O latency and

the number of outstanding I/Os is built to determine the L parameter of the storage

system. In general, a large I/O spends the majority of its time on data transfer which grows

with the I/O size, whereas a small I/O spends the majority of its time on request processing

which is relatively independent from the I/O size. Therefore, by comparing the latency
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model of different I/O sizes, it is possible to determine the I/O size that differentiates large

I/Os from small ones and determine the slot cost of large I/Os with respect to small ones.

Figure 3.4 shows the latency models for different I/O sizes from the same profiling

experiment discussed above. The results confirm that the latency models of small I/Os

are similar, whereas the models of large I/Os are quite different. To make this observation

clearer, Figure 3.4b plots the slopes of all the latency models in Figure 3.4a. It further

confirms that the latency slope does not change much for I/O sizes less than 128KB,

but it grows proportionally for larger I/O sizes. These latency profiling results show that

128KB is an appropriate value from differentiating small I/Os from large ones, where all

I/Os smaller than 128KB can be considered small I/Os and have the same unit slot cost

L = 1. Moreover, the results also help determine the slot cost of large I/Os. For example,

if the typical large I/Os that the storage serves is 2MB, then the ratio between the latency

of 2MB I/Os vs. the latency of small I/Os decides the slot cost of large I/Os, which is

in this case 5. It means that when the scheduler dispatches an I/O smaller than 128KB,

it uses only one of the D slots that the underlying storage has; but to dispatch an I/O of

2MB, it has to use 5 out of the D slots. Note that although small I/Os may come with

different sizes, large I/Os are often of fixed size determined by the basic block size that

the parallel file system is configured with. For example, in PVFS2 the parallel I/Os to

data servers are often issued in 256KB data chunks.

As discussed above, the two key parameters, D and L , of SFQ(D)+ can be de-

termined using simple profiling experiments which need to be done only once as the

throughput and latency models do not change for a given HPC storage stack. In this way,

SFQ(D)+ is able to understand the actual capacity of the underlying storage for process-

ing different I/Os and the actual costs of these I/Os, in order to achieve fair sharing of the

storage for I/Os with diverse sizes.
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Algorithm 1: Dispatching Algorithm of SFQ(D)+ Scheduler with Backfilling
Procedure Dispatch()

// This function is invoked upon the arrival of a new request

or the completion of a dispatched request

Output: The I/O requests to be dispatched IOs to dispatch
1 foreach request r in the scheduler queue do

// The queue is sorted in the ascending order of the

requests’ start times

// Lsum is the total slot cost of dispatched requests

// r.L is the slot cost of r
2 if r.L +Lsum ≤ D then
3 IOs to dispatch.add(r)
4 Lsum←Lsum + r.L
5 end
6 end
7 return IOs to dispatch

3.4.3 Backfill I/O Dispatching

A side-effect of variable I/O slot costs is that the request with the highest priority in the

scheduler’s queue may not be able to be dispatched immediately even when there are

remaining depth slots available but less than the slot cost of the request. The request

can be dispatched only when the other outstanding I/Os complete and the number of

available slots is restored beyond its slot cost. When there are unoccupied depth slots, the

underlying storage is also underutilized. To make efficient use of the storage resources

and increase the overall system throughput, SFQ(D)+ adopts an optimization to dispatch

I/Os with backfilling so that small I/Os can enter the storage before the large I/Os queued

ahead of them when there are idle depth slots available. The use of backfilling in the

algorithm is described in Algorithm 1. This optimization matches the work-conserving

nature of the SFQ family of schedulers. At the same time, it further promotes the dispatch

of small I/Os and is consistent with the SFQ(D)+ algorithm’s principle of protecting small

I/Os which are vulnerable to the contention from large I/Os.
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Backfilling [JN99] was originally designed to utilize system capacity in a batch job

scheduler. When jobs are scheduled based on their order in the queue, the system capacity

may not be fully utilized when the remaining capacity is not sufficient to run the job that

is currently at the head of the queue. Backfilling allows the scheduler to search the queue

for small jobs that fit the remaining capacity and immediately run them in order to fully

utilize the system. Akin to the backfilling of jobs, the backfilling for I/O scheduling allows

small I/Os to be dispatched before the large ones that are queued ahead of them in order

to fully utilize all the slots of the underlying storage’s I/O depth. Specifically, whenever

there are free slots available but they do not fit the I/O that is currently at the head of

the queue, the SFQ(D)+ scheduler searches its queue for a small, fitting I/O to dispatch

instead of waiting for enough free slots to be available for dispatching the large request

at the head of the queue. Note that when searching for backfill candidates, the algorithm

follows the start-time order of the requests in the queue and stops when the available free

slots are used up or there is no queued request that fits the remaining slots. Therefore,

while promoting small I/Os, the scheduler still maintains fairness among small I/Os from

different applications.

Overall the backfilling I/O dispatching technique complements the variable I/O slot

cost in SFQ(D)+ and helps applications with small I/Os mitigate the impact from large,

intensive applications in two key aspects. First, when the depth of the underlying storage

is fully utilized, only the completion of a large outstanding I/O can warrant the entrance

of a similar large I/O, therefore avoiding the dispatch of too many large I/Os to impact

the small I/Os. Second, when large I/Os cannot be dispatched due to the lack of sufficient

slots, small I/Os queued by the scheduler can be dispatched out of order. Therefore, the

combination of these techniques in the new SFQ(D)+ scheduler provides the necessary

support for achieving fair scheduling in modern, HPC storage systems which face mixed

workloads with highly diverse I/O sizes.
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3.5 Parallel Storage Distributed Scheduling Coordination

3.5.1 Total-Service Proportional Sharing

The scheduling algorithm described in the previous section supports the proportional shar-

ing of the bandwidth of individual data servers and metadata servers in a parallel file

system, and is employed by every vPFS proxy to enforce the bandwidth allocation of

its local data and metadata storage. But because an application’s parallel I/Os requires

service from different servers, it is desirable to provide total-service fairness, where the

total amount of I/O service that an application gets from all the distributed servers in the

system is proportional to its weight. However, local proportional sharing at every parallel

file system server is not sufficient to derive proportional sharing of the entire system’s to-

tal bandwidth, because the I/O service distribution can be uneven across the servers, due

to uneven distribution of an application’s I/Os and uneven distribution of I/O contention

from different applications on each server. As a simple example, consider two applica-

tions A and B sharing the parallel file system, where A has its data striped across all the

data servers but B’s data is only on half of the servers. Even if each server enforces equal

sharing of the local bandwidth between A and B, the total bandwidth that they get from

the entire system will not be equal—A in fact gets twice the amount of total bandwidth

than B because A’s I/Os are serviced by twice the number of servers.

DSFQ [WM07] is a distributed SFQ scheduler that supports total-service proportional

sharing in a distributed storage system by employing a set of coordinators between the

storage clients and servers. Each client uniformly accesses all the coordinators, giving

each coordinator equal chance of collecting request statistics from all the applications.

Each coordinator has two roles, forwarding requests to their destination servers, and keep-

ing track of each application’s requests. When forwarding a request to a server, the coor-

dinator also piggybacks the cost of requests from this application forwarded to the other
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servers. When the server receives the request, its local scheduler becomes aware of the

application’s total service received from the entire system, and adjust the local scheduling

(by shifting the start time of the request by the piggybacked cost and hence delaying the

processing of the request) to achieve total-service fairness.

However, it is difficult to apply the distributed coordinators scheme used in DSFQ

to the management of an HPC parallel storage system, because it assumes that 1) each

coordinator can forward requests destined to any server, and 2) each application uses all

coordinators to forward requests. These assumptions are to ensure that a coordinator can

communicate with all local schedulers and always has a uniform chance to piggyback the

global scheduling information for each local scheduler, but they do not hold in typical

HPC parallel storage systems. For high-throughput, a parallel file system client always

issues data requests directly to the data servers where the corresponding data is stored on

(after retrieving the data layout from the metadata server). Therefore, there is nowhere in

the HPC system architecture to place the required coordinators which can receive requests

from arbitrary clients—regardless of the data layouts—and forward them to arbitrary data

servers.

It is possible to modify this architecture to make the data layout opaque to the clients,

place the coordinators between the clients and servers, and then force the I/Os to go

through the coordinators in a random fashion. However, this design would still be unde-

sirable because 1) it requires a coordinator to forward requests to remote data servers and

thus incurs overhead from additional network transfer; 2) it takes away an application’s

flexibility of specifying data layout, e.g., by specifying layout hints through the MPI-IO

interface [TGL96]. These constraints imposed by typical parallel file system architecture

motivate the need for a new distributed scheduling design that supports both efficient data

access and total-service fairness.
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To achieve total-service proportional sharing, vPFS takes a distributed scheduling ap-

proach where the local SFQ(D)+ schedulers implemented by the proxies on the data and

medadata servers communicate with one another to obtain global I/O service information

and adjust their local service allocations accordingly to achieve the desired total-service

fairness. Compared to the approaches taken by DSFQ, this distributed scheduling de-

sign is suited for typical parallel storage architecture, because, first, it still allows data to

directly flow from clients to servers, and second, it does not require a proxy to forward re-

quests to any other remote servers than it local one. However, the need of efficient global

scheduling synchronization across the distributed proxies remains to be a challenge which

is addressed by the techniques presented in the rest of this section.

3.5.2 Threshold-driven Global Scheduling Synchronization

Strictly speaking, global synchronization is required upon every request that a local sched-

uler receives so that the other schedulers can adjust their scheduling immediately. How-

ever, such a per-request broadcast scheme is not acceptable in a large system. Instead,

vPFS considers schemes to reduce the frequency of broadcast by batching the costs of

a number of locally serviced requests in a single broadcast message. Nonetheless, as a

tradeoff, the fairness guarantee offered by the original DSFQ algorithm [WM07] may be

weakened. The overhead of broadcast can be effectively controlled if the proxies syn-

chronize with one another periodically. but this scheme does not provide a bound on

the amount of unsynchronized I/O cost across proxies. As a result, if a server services

a large number of requests during a synchronization period, it would cause high fluctua-

tions on the other servers as they try to catch up with the total-service fairness after the

synchronization.
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Algorithm 2: Global I/O Cost Synchronization
Procedure UpdateAndTrigger(pi

f ,A)

// Update the accumulated cost and trigger a synchronization

message if necessary

Input: pi
f ,A, the ith request from App f on server A

1 costsum
f ← costsum

f + pi
f ,A.cost

2 if costsum
f > threshold f then

3 Message← new HashMap()
4 foreach App j do
5 Message.put( j,costsum

j )
6 costsum

j ← 0
7 end
8 foreach server A serving App f do
9 SendMessage(A,Message)

10 end
11 end

Procedure ReceiveAndSync(Message)
// Receive the synchronization message and update the local

scheduling parameters

Input: Message received from another vPFS scheduler
1 foreach app f in Message.keySet() do
2 batchcost f ← batchcost f +Message.get( f )

// batchcost is the amount of service that App f has received

from the other schedulers; it is used to delay the start

time of f’s requests in the queue
3 end

In order to achieve efficient total-service proportional sharing with a good unfair-

ness bound, vPFS adopts a threshold-driven global synchronization scheme. In this new

scheme, a broadcast message is triggered whenever the accumulated cost of arrived re-

quests from an application f on the local server exceeds a predetermined threshold. In

this way, the degree of divergence from the perfect total-service fairness is bounded by the

threshold , because no application would get unfair extra service more than this bound.

This scheme can also limit the fluctuation after each synchronization to the extent of the

threshold. The pseudo code for threshold-driven global synchronization trigger is illus-
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trated in Algorithm 2. A vPFS scheduler uses the UpdateAndTrigger procedure to trig-

ger a global synchronization when the accumulated cost from an application exceeds its

threshold. A scheduler uses the ReceiveAndSync procedure to handle the synchroniza-

tion message sent from another scheduler. Line 1 accumulates the total I/O service that an

application f has received from the other schedulers in batchcost f . When considering the

next request from f in the queue, t he scheduler delays its start time by batchcost f , thereby

enforcing the total-service fairness betwe en f and the other applications [WM07].

When implementing this threshold-driven scheme, it can be simplified to use a single

threshold for all applications on all distributed schedulers, instead of one threshold per

application. A scheduler issues synchronization when the total cost of requests from all

of its serviced applications exceeds this threshold, where the broadcast contains the costs

of all of these applications. This simplification will in fact tighten the unfairness bound.

Moreover, this single threshold can be conveniently and flexibly adjusted to balance the

tradeoff between efficiency and fairness of the total-service proportional sharing.

3.5.3 Layout-driven Total-Service Proportional Sharing

Although the above threshold-driven total-service proportional sharing can substantially

reduce the overhead from global scheduling synchronization, the cost and delay of syn-

chronization will still grow as the number of servers increases in the system. To further

reduce the synchronization cost, vPFS also supports a layout-driven global synchroniza-

tion scheme in which each distributed local scheduler leverages an application’s file layout

information to approximate its global I/O cost from its locally received I/Os. Therefore,

frequent global synchronization can be avoided whereas broadcast is required only upon

the arrival and departure of applications in the storage system.
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A file’s layout information, which includes striping method and parameters, can be

either discovered in an I/O request or retrieved from a metadata server. For example,

PVFS2 embeds the striping method and the specific parameters for this method in every

I/O request; if a parallel file system does not do that, such information can still be obtained

from the metadata servers. Based on the striping method used by an application, a local

scheduler can estimate the application’s total service from the striped I/O that it receives

locally. For example, in PVFS2, three native striping methods are implemented: simple

stripe, two-dimensional stripe, and variable stripe. When using simple stripe, the total ser-

vice amount can be approximated by multiplying the request size seen by the local server

and the number of servers involved in this application. When using two-dimensional

stripe, each group’s I/O size can be constructed by using the factor number (a number

indicating how many times to stripe within each group of servers before switching to an-

other group) within each group to approximate the total I/O service. When approximating

the total service in variable stripe, different servers’ stripe sizes can be used to reconstruct

the original I/O request size.

Another necessary parameter for estimating total service is the number of servers in-

volved in each I/O request. The num servers field is embedded together with the stripe

information in the PVFS2 I/O requests. In case it is not available in other parallel file sys-

tem protocols, only one synchronization is required to obtain this information when a new

application enters the system. Although it is possible for an application to use different

layouts for its files, it is rarely used in practice. For manageability, the application usually

prefers using a uniform layout on its entire data set. Therefore, the layout information

needs to be retrieved on a per-application basis rather than per-file basis.

By locally calculating total I/O service using the stripe method and parameters as well

as the number of involved servers, the global scheduling synchronization can be almost

eliminated. The reduction in broadcast frequency and message size can lead to substantial

44



saving in processing time and network traffic. Because synchronization is needed only

when an application starts or ends in the HPC system, this cost is negligible compared

with the typical time that the application stays in the system. Note that the arrival and

departure of applications can be estimated by tracking I/O requests or informed by a

typical job scheduler (e.g., TORQUE [Sta06], LoadLeveler [SCZL96]) commonly used

for HPC job management.

Even for applications using mostly small, non-striped I/Os, it is common for the par-

allel file system to evenly distribute small I/Os on all the involved servers for the sake

of performance. Hence, it is still feasible to use the layout information to estimate the

total service in such systems. In scenarios where this assumption does not hold, vPFS can

switch to use the threshold-driven synchronization scheme for more accurate scheduling

of such I/Os. To enable the switch, each local scheduler monitors the amount of small

I/Os that it receives and when the accumulated cost of these I/Os exceeds the predefined

threshold, it triggers a synchronization with the other local schedulers as described in Sec-

tion 3.5.2. Therefore, the above two synchronization schemes complement each other and

can be used in different scenarios to provide effective total-service proportional sharing.

3.6 Parallel Storage Metadata Scheduling

he above discussion on the SFQ(D)+ scheduler focused on the scheduling of data I/Os on

a parallel file system. As the dataset of modern HPC workloads grows, they are also in-

creasingly metadata-intensive [MBL+11, CLR+09, PG11, AZ11, JSPW+11, MBO+11,

BGK+12, AEHH+11, LRT04, LWG+15], which warrants considerations for the perfor-

mance of metadata I/Os as well. In fact, it has been observed that the amount of metadata

in a system grows at a faster rate than the data. Taking WRF, a real-world scientific ap-

plication as an example, it entails a variety of intensive metadata operations. First, for
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checkpointing, WRF uses file-per-process, N-to-N access pattern, in which each process

writes to its own checkpointing file. The creation of and accesses to a large number of

checkpoint files involve substantial metadata operations, which, if not serviced with the

adequate throughput, may slow down the checkpoint operations and delay the application

progress. Second, for scalable output operations, WRF often employs a group of dedi-

cated I/O processes (in the I/O quilting mode) [WB05] to perform I/Os on a shared output

file. These output files involve a large number of concurrent operations to the shared

metadata, which can also become a bottleneck if they are not provisioned with the fair

share on throughput.

As an example, Figure 3.5 shows the numbers of metadata I/Os versus data I/Os dur-

ing a typical run of WRF on PVFS2. A total of 64 MPI processes were spawned to

execute WRF on 8 nodes, and they used POSIX to access the parallel file system (via the

mount points) which includes 8 nodes serving as both data servers and metadata servers.

To fulfill this job, the parallel file system used a large number of metadata I/Os in addition

to the data I/Os. The number of metadata I/Os actually far exceeds the number of data

I/O requests. During the whole run, metadata requests must accompany data I/O requests

to fulfill the job. For example, the metadata I/Os include many GETATTR requests issued

by the PVFS2 clients for retrieving the attributes of the input, output, and restart files

throughout the run. Each request has an average size of 176 bytes. Meanwhile, most of

the data I/Os are 512KB or 64KB in size and split into 64KB or 8KB parallel requests,

respectively, across the servers. While this example is specific to PVFS2, as discussed

above, parallel file systems in general can have intensive metadata I/Os which are critical

to application performance and need to be effectively scheduled for performance man-

agement.

Although modern parallel file systems have adopted various techniques to improve

the scalability of metadata management, they are not sufficient to guarantee throughput to
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metadata-intensive applications. For example, parallel file systems can employ distributed

metadata servers to share the metadata load, and there is related work on optimizing the

load balance across the distributed metadata servers [PG11]. Some systems start to de-

ploy solid-state storage to hide the latency increase due to the burstiness of metadata

accesses [WUA+08]. However, such scalability techniques can only improve the overall

metadata access performance for applications, and cannot isolate the performance inter-

ference and provide fair sharing of the metadata servers among competing applications.

In fact, these parallel file systems do not provide any means to differentiate metadata re-

quests from different applications, an application’s metadata access may be slowed down

in unpredictable ways when under contention. Moreover, as an application’s data I/Os

often depend on its metadata I/Os, the lack of performance differentiation on metadata

requests can impact data requests and hurt the fairness of sharing the data servers, which

further aggravates the application-level unfairness and loss of performance guarantee.

To solve this problem, the new SFQ(D)+ scheduler can be applied to the scheduling

of metadata accesses, thereby providing complete support to fair sharing of key parallel

storage resources, including both data and metadata servers, and offering comprehensive

I/O performance guarantee to HPC applications. Metadata accesses are similar to small
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data requests in size. But different from data requests, the exact size of the response to a

metadata request is not always known before scheduling (e.g., the total number of objects

in a directory is unknown to the scheduler until the directory content is fetched from the

server). Nonetheless, the costs of the generally small metadata accesses are similar in the

metadata servers, and it is much more important to measure metadata throughput in terms

of IOPS than MB/s. For example, considering WRF in the above example, metadata

servers receive millions of requests in a short period with less than 200 bytes of response

each. Thus, SFQ(D)+ uses a constant value (10KB) to approximate each metadata I/O’s

cost, which is large enough to cover most of the metadata I/Os and small enough with

respect to 128KB threshold discussed in Section 3.4.2.

Similar to the asymmetric data distribution discussed in Section 3.5, metadata ac-

cesses are often unevenly distributed across the metadata severs (despite the best-effort

made by the metadata distribution schemes [WPBM04]). In fact, the distribution of meta-

data services can be more uneven than that of data services because each metadata access

is independent, whereas the striped data accesses from the same request are often evenly

distributed across the involved data servers. For example, PVFS2 [CLRT00] stores a

directory object (usually at a middle level in a directory tree) and all its underlying meta-

data objects on a single metadata server. Thus, a frequently accessed directory can make

its corresponding metadata server a hotspot and cause uneven distribution of metadata

services across the metadata servers.

The threshold-driven synchronization scheme presented in Section 3.5.2 can be adopted

to address the asymmetric service distribution for metadata accesses. Unlike data re-

quests, metadata requests are not striped and there is also no layout information that

can be exploited by a local scheduler to infer the global service distribution. Therefore,

the layout-driven synchronization scheme proposed for data I/O scheduling does not ap-

ply to metadata I/O scheduling. Instead, vPFS uses the threshold-driven synchronization
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scheme to measure and synchronize the metadata service rates for the contending appli-

cations across all the distributed metadata servers. But different from data service, the

scheduler uses the number of serviced metadata accesses, rather than number of serviced

bytes, to set the threshold for triggering a synchronization. Thus, fair sharing of metadata

servers can be provided to applications in terms of IOPS (instead of MB/s) which is what

really matters to the performance of metadata-intensive applications.

3.7 Experimental Evaluation

3.7.1 Setup

The vPFS approach was prototyped on PVFS2 [CLRT00] for the experimental evalua-

tion. PVFS2 is a modern parallel file system implementation, and has comparable per-

formance to other commonly used implementations [SMMB08]. It has been often used

as the platform for studying various parallel file system problems [CLR+09, CST+11,

ZDJ11, ZDJ10, SMMB08, MBO+11, PG11, AZ11, SYS+11, RI01, YLP05, OHS+05,

ZDJ11, LRT04, AEHH+11]. The fundamental techniques (virtualization-based parallel

I/O scheduling) and algorithms (SFQ(D+)) in vPFS for managing the performance of

parallel file system I/Os are generally applicable to different specific parallel file system

implementations.

This evaluation was done on a test-bed consisting of two clusters, one as compute

nodes running a variety of benchmarks and the other as storage nodes running vPFS

proxies and PVFS2 (version 2.8.2) servers. The storage cluster has eight nodes each with

two six-core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and two 500GB 7.2K SAS

disks. The compute cluster has eight nodes each with two six-core 2.4GHz Intel Xeon

CPUs, 24GB of RAM, and two 1TB 7.2K SAS disks. Both clusters are connected to the
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same Gigabit Ethernet switch. All the nodes run the Debian 4.3.5-4 Linux with the 2.6.32-

5-amd64 kernel and use EXT3 (in the journaling-data mode, unless otherwise noted) as

the local file system.

The evaluation considers four types of benchmarks:

1. Data-intensive parallel I/O benchmark—IOR (2.10.3) [SS07], a typical HPC I/O

benchmark, is used to generate parallel I/Os through MPI-IO. IOR can issue large

sequential reads or writes to represent the I/Os from accessing checkpointing files,

which is a major source of I/O traffic in HPC systems [PD04]. It is extended by the

author to issue random reads and writes and represent other HPC I/O patterns. Since

there is no computation involved, IOR generates the most intensive checkpointing

I/O workloads.

2. Metadata-intensive parallel I/O benchmarks—multi-md-test from the PVFS2

suite is used to represent applications that are metadata intensive. Multi-md-test

measures the performance of concurrent parallel metadata operations from pro-

cesses that use the POSIX interface to the parallel file system mounted on VFS on

the computer nodes. It simulates a burst of back-to-back metadata requests issued

to parallel file systems with no computation in between.

3. Scientific application benchmark—BTIO (Block Tri-diagonal solver with I/O sub-

types) benchmark from the NASA Parallel Benchmark (NPB) suite (MPI version

3.3.1) [BBB+91] is used to represent a typical scientific application with interleaved

intensive computation and I/O phases. The problem solving algorithm and its im-

plementation in BTIO highlight the limitations to I/O performance of the system,

and the benchmark is a good case for testing the speed of parallel I/Os [WdW03].

This dissertation considers the diverse I/O access patterns (Class A and Class C) of

BTIO. Class A generates 400MB of data and Class C generates 6817MB. Class A
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uses simple subtype and Class C uses full subtype of BTIO. The former does not

use collective buffering and as a result involves a large number of small I/Os. The

latter uses MPI I/O with collective buffering which aggregates and rearranges data

on a subset of the participating processes before writing it out.

4. Real-world scientific application—WRF [WB05] version 3.3, a weather forecast

model application widely used for weather research. WRF uses MPI to coordinate

parallel computing while using POSIX I/Os for data accesses to the parallel file sys-

tem mounted on the compute nodes. It is compiled using the dmpar configuration

(distributed memory option (MPI)), and run with the em quarter ss test case. This

test case produces a simulation of a supercell thunderstorm. The environmental

wind makes a “quarter circle” when plotted on a hodograph, and is commonly re-

ferred to as “quarter circle shear”. In general, WRF simulates and forecasts weather

conditions based on models. All WRF test cases share the same I/O pattern: WRF

sequentially reads input, and sequentially writes output and checkpointing data pe-

riodically during the mass calculation for each granular time unit calculated and

forecasted. Although the evaluation here focuses on one specific case, it is rep-

resentative of the common I/O patterns of all WRF cases and the results are thus

useful to WRF users in general. In this setup, WRF starts with about 50MB of input

data, and for every forecast minute during the storm’s progress, writes to an output

file shared by all processes and a restart file for each process. The entire execu-

tion generates a total of 70GB of restart files (from 64 processes) and 7GB of final

output file. Input, output, and restart files are all stored using NetCDF3 [RD90], a

commonly used scientific data format. Average I/O sizes, after striping is around

32KB on each data server. Note that the choice of data format for WRF will not

change the relative comparison between vPFS and the native parallel file system,
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because the management of data and metadata I/O contention is already needed

regardless of the data format used.

The rest of the chapter includes several groups of experiments designed to evalu-

ate various key aspects of vPFS: Section 3.7.2 evaluates its ability to provide fair shar-

ing among highly I/O-intensive workloads with different access patterns; Section 3.7.3

studies how it handles dynamic workloads and resource availability in the system; Sec-

tions 3.7.4 and 3.7.5 evaluate the support for scientific applications with both large and

small I/Os; Section 3.7.6 focuses on the scheduling of metadata-intensive applications;

finally, Section 3.7.7 measures the overhead of vPFS and Section 3.7.8 shows its devel-

opment cost. Based on the profiling results discussed in Section 3.4.2, the parameter D

(the total number of slots that the storage supports) for SFQ(D) and SFQ(D)+ is set to 14,

and the parameter Llarge (a large I/O’s slot cost) for SFQ(D)+ is set to 5, unless otherwise

noted.

3.7.2 IOR with Various Access Patterns

This experiment evaluates the ability of vPFS to enforce fair bandwidth sharing between

I/O-intensive applications with diverse I/O patterns. IOR is used to represent two appli-

cations, App1 and App2, each running 128 processes on a separate set of compute nodes.

App1 always issues sequential writes, whereas App2’s I/O pattern changes from sequential

writes, sequential reads, to random reads and writes (both the offset of the requests and

the use of read versus write are randomly decided following a uniform distribution). To

evaluate server synchronization effectiveness, the two applications share the data servers

in an asymmetric way: App1 uses only four of the eight data servers whereas App2 uses

all of them. Without any bandwidth management in such an asymmetric setup, the to-

tal bandwidth that each application gets is proportional to the number of servers that it
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Figure 3.6: IOR write vs. IOR write

has (1:2). Therefore, this experiment can evaluate whether the distributed schedulers can

realize total-service fairness for any arbitrary weights assigned to App1 and App2.

Figures 3.6, 3.7 and 3.8 show the throughputs of the two applications with different

access pattern combinations and with different total-service weights assignment. The

achieved bandwidth share ratios are shown on top of the bars in the figures, which all

closely match the given weight ratios across the diverse experiment configurations. These

results are obtained from the threshold-driven synchronization method in vPFS, where the

threshold is set to 10MB. It achieves the same level of fairness as a much smaller threshold

(512KB) which triggers synchronization upon every request (results not shown here for

the sake of brevity), while reducing the synchronization overhead by 95%.

Note that the total throughput decreases as the gap between the App1:App2 weight

ratio increases. It is due to the asymmetric distribution of the applications’ data. When

App1 is favored more by the scheduler, App2’s I/Os are suppressed more on the four

servers that App1 has access to, which in turn also suppresses the amount of service that

App2 gets from the other four servers, because an App2’s request is always striped across
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Figure 3.9: The throughput of 8 competing IORs

all eight servers. Therefore, this drop in total system utilization is only a consequence of

the experiment setup, not the shortcoming of the scheduling algorithm.dd

3.7.3 IOR with Dynamic Arrivals

This experiment evaluates vPFS’ ability of handling the dynamic arrivals and departures

of applications which are common in a production HPC system. A total of eight applica-

tions enters the system one by one with an average inter-arrival time of about 60 seconds,

where each application is represented by an IOR instance with 32 processes in sequential

writing mode. After 480 seconds, all eight applications (256 processes) are present in

the system until the end (1200th second). To make the experiment more interesting, the

odd-numbered applications use only four data servers and the even-numbered ones use all

of the eight servers; and the weight of each application is assigned the same value as its

ID, i.e., App1 has a weight of 1 and App2 has a weight of 2, and so on. Different from the

pervious experiment, this experiment employs the layout-driven global synchronization.

Figure 3.9 illustrates the average throughput achieved by each application measured

every 5 seconds throughout the experiment. The results show that each application’s

throughput is indeed proportional to its assigned weight throughout the experiment, in

spite of the asymmetric data distribution and the changing number of concurrent applica-
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Figure 3.10: The fairness of 8 competing IORs

tions in the system. Figure 3.10 shows the the total I/O throughput and the Jain’s fairness

index from the eight applications. Jain’s fairness index [JCH84] is a commonly used met-

ric for evaluating the fairness in resource sharing. It is defined as

(
∑

n
i=1

Ti
Wi

)2

n∑
n
i=1

(
Ti
Wi

)2 where Ti

and Wi are the throughput and weight, respectively, of Application i in the system. The

range of the fairness index is [0,1] where a larger index value indicates higher fairness.

The results in Figure 3.9 show that vPFS achieves nearly perfect fairness (above 0.99)

throughout the experiment, despite the fluctuations in total system throughput as applica-

tions enters the system dynamically.

Moreover, these results also show that vPFS is able to handle the intrinsic dynamics

of the underlying storage that it manages. At the beginning of the experiment, the to-

tal system throughput increases almost linearly as the applications enter the system one

by one and start the writes which are initially buffered in memories of the data servers

and flushed to disks in background. But after about 500s into the experiment, the total

throughput drops significantly, because the memory buffers are filled up and the servers

have to flush the writes to disks in foreground. This transition causes a substantial change

in the system’s total bandwidth, which is bounded by the speed of the memories before

the transition and bounded by the disks afterwards. Nonetheless, vPFS is always able to
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deliver the specified total-service sharing ratios regardless of such dynamic changes in

the underlying storage.

3.7.4 BTIO vs. IOR

This experiment applies vPFS-based storage management to solve the motivating prob-

lem described in Section 3.2, i.e., how to guarantee BTIO’s I/O bandwidth and overall

performance when it is under the intensive interference from IOR. This experiment uses

the same setup as the one in Section 3.2, Figure 3.1a, where BTIO is used to model typical

HPC applications with interleaved computation and I/O and IOR is used to create inten-

sive contention (e.g., from checkpointing I/Os) on the shared parallel file system storage.

BTIO and IOR each has 64 MPI processes running on a separate set of four compute

nodes while sharing the eight I/O nodes.

Two types of BTIO workloads are considered in this experiment: Class C (writing and

reading 6817MB of data) with full subtype (using collective buffering) and Class A (writ-

ing and reading 400MB of data) with simple subtype (without collective buffering). A

major difference between these workloads is that the former issues I/O requests of 4MB

to 16MB in size, whereas the latter issues I/Os of 320B in size. Because of the differ-

ent levels of small I/Os in the two workloads, this experiment evaluates how effectively

vPFS can protect the bandwidth of small I/Os from BTIO against the intensive, large I/Os

(32MB writes) from IOR. Note that different from the goal of fair bandwidth sharing in

the previous experiments, the goal of this experiment is to provide performance isolation

to BTIO while allowing the competing IOR to use the remaining bandwidth in a work-

conserving manner, which is challenging to achieve. It also serves a good showcase of

vPFS’ flexibility of realizing different performance policies.
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Figures 3.11 and 3.12 show the I/O throughput and total runtime, respectively, of

BTIO under different configurations. As discussed in Section 3.2, when there is no band-

width management (BTIO w/ IOR, Native), BTIO’s run time is increased by 228.8% in

Class A and 75% in Class C w.r.t. its standalone runtime (Standalone). When vPFS em-

ploys the traditional SFQ(D) scheduler (BTIO w/ IOR, Virtual (SFQ(D))) helps reduce

the slowdown to 153.3% for class A and 20.3% for Class C, as the BTIO throughput is

restored to 16.8% and 72.1%, respectively, of the Standalone case. As discussed in Sec-

tion 3.4.2, the lack of differentiation between large and small I/Os in the SFQ(D) when

considering the dispatch of D requests puts BTIO at an unfair disadvantage. It is also

noticeable that Class A’s performance is much more challenging to restore than Class

C, because of its use of much smaller I/Os which are also much more sensitive to the

interference from IOR’s large I/Os.

In order to completely isolate the impact of I/O contention, a non-work-conserving

SFQ(D) scheduler is implemented on vPFS, which strictly throttles an application’s band-

width usage based on its allocation. Specifically, this non-work-conserving scheduler will

put an application’s I/Os temporarily on hold when its completed I/O service exceeds its

given bandwidth cap. When running under the non-work-conserving scheduler (BTIO w/

IOR, Non-work-conserving SFQ(D)), BTIO can achieve the same level of performance

as when it runs alone. Although the non-work-conserving scheduler can provide per-

formance isolation to BTIO, it is not desirable for a shared system because IOR cannot

make use of BTIO’s spare bandwidth to make progress and the system can be severely

underutilized when BTIO’s demand is low.

In comparison, the new SFQ(D)+ is designed to protect small I/Os while still be-

ing work-conserving. The result (BTIO w/ IOR, SFQ(D)+) in Figure 3.12 shows that for

Class A, SFQ(D)+ can restore BTIO’s throughput to 120% of its standalone case, which is

219% better than SFQ(D) scheduler, and only 18% worse than the non-work-conserving
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scheduler. For Class C, SFQ(D)+ cannot achieve more improvement than SFQ(D) be-

cause Class C issues I/Os of the same average size as IOR and SFQ(D)+ thus reduces to

SFQ(D).

SFQ(D)+ cannot completely restores BTIO’s performance as the non-work-conserving

scheduler does, because of BTIO’s bursty I/Os with low issue rate. Considering one of

the 64 BTIO processes, after the initial file creation, the process interleaves 4 seconds of

writes and 6 seconds of computation for 40 iterations in the first output phase. Then in the

verification phase, it repeats 3 seconds of reads and 1 second of verification for 40 itera-

tions. In addition, each BTIO process issues only one outstanding I/O. Therefore, BTIO’s

IO issue rate is much lower compared to IOR which issues IOs continuously. Since

SFQ(D)+ is work-conserving, spare bandwidth from BTIO has to be yielded to IOR. But

when a BTIO process’ I/O arrives, it has to wait for a total of D outstanding I/Os of

IOR to complete before it can be dispatched. In comparison, the non-work-conserving

scheduler would not dispatch any I/O from IOR until BTIO uses up its fair share of the

bandwidth.

However, SFQ(D)+ achieves better balance between resource utilization and perfor-

mance isolation. When it restores BTIO Class A’s performance to 120% of its standalone

case, it slows down IOR by only 56% slowdown (from 597MB/s to 262MB/s), whereas

the non-work-conserving scheduler has to slowdown IOR by up to 99% (from 597MB/s

to 0.69MB/s) in order to provide better isolation for BTIO. Therefore, SFQ(D)+ achieves

13.81 times better total throughput and resource utilization. Moreover, compared to the

traditional SFQ(D), SFQ(D)+ achieves 3.35 times better performance for BTIO with only

10.6% reduction on total throughput. Hence, SFQ(D)+ provides excellent performance

isolation for a small I/O application while still making efficient use of the shared storage

bandwidth.
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3.7.5 WRF vs. IOR

This experiment continues to evaluate vPFS and its schedulers using WRF, a real-world

scientific application. WRF reads input at the beginning of each computation iteration

and writes checkpointing data (containing dumps of all varialbes in the model at a certain

forecast time) and output data (containing the final forecast variables of the model simu-

lation) periodically. In the experiment, it is run using 64 parallel processes, each issuing

reads and writes of sizes 128KB to 512KB in size. IOR is used again to create contention

using 64 parallel MPI processes each issuing large (8MB) writes. The two applications

are run on separate compute nodes but share all the eight data nodes. Compared with

BTIO, it is even more challenging to provide performance isolation to WRF, because it

accesses the parallel file system through the POSIX interface which generates all small

I/Os and a large volume of intensive metadata accesses (as shown in Figure 3.5).

As shown in Figure 3.13, when contended by IOR, the runtime of WRF is increased by

580+% (WRF w/ IOR Native). With vPFS, the SFQ(D) scheduler can reduce the runtime

increase to 180% at best when using a high sharing ratio of 16:1 to favor WRF, and

SFQ(D)+ can further reduce the slowdown to 79% of the standalone runtime while using

a fair 1:1 sharing ratio. This improvement is from the use of variable slot cost to capture
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large I/Os’ actual processing cost in the underlying storage and the use of backfilling to

allow small I/Os to be promoted. For WRF, these techniques benefit both its data and

metadata I/Os when they are scheduled on the eight PVFS2 nodes which serve as both

data and metadata servers. Overall SFQ(D)+ allows WRF to run up to 81% and 281%

faster than SFQ(D) and the native case, respectively.

This experiment is also used to evaluate the impact of the L parameter—the slot

cost of large I/Os—in the proposed SFQ(D)+ scheduler. Figure 3.14 shows the through-

put of IOR and WRF as well as their combined throughput with different L settings.

When L is too small, the scheduler underestimates the cost of large I/Os, and it reduces

to the traditional SFQ(D) which considers large I/Os as expensive as small I/Os when

making dispatching decisions. The throughput of WRF is thus is substantially reduced,

whereas IOR does not gain much because it can already saturate the storage. When L

is set too large, the scheduler overestimates the cost large I/Os, and behaves more like

the non-work-conserving scheduler (discussed in Section 3.7.4) where the share allocated

to WRF can be left idle when it is not fully utilized. Consequently, the throughput of

IOR drops substantially, but WRF cannot gain much due to its low I/O rate; and the com-

bined throughput drops severely too. The experiment shows that adjusting the L value

can balance between performance isolation and resource utilization. It also confirms that

the choice of L = 5 based on the profiling results is indeed optimal as it provides the

best tradeoff between fairly treating small I/Os vs. large I/Os and fully utilizing the stor-

age bandwidth. Specifically, SFQ(D)+ performs at least 281% better than the non-work-

conserving scheduler and 25% better than the traditional SFQ(D) in terms of total system

throughput.
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3.7.6 Metadata Scheduling

This group of experiments focuses on evaluating vPFS’ ability of scheduling metadata

I/Os and proportionally sharing the bandwidth of parallel file system’s metadata servers.

Multi-md-test from the PVFS2 suite is used to represent a metadata-intensive application.

The PVFS2 setup is configured with distributed metadata servers, where each storage

node runs both the data server and metadata server. Two instances of the multi-md-test

benchmarks are used, each with 64 parallel processes, to share the eight data/metadata

servers. The assigned weights for App1 and App2 are 2:1. Multi-md-test accesses the

mounted parallel file system using the POSIX interface, and the PVFS2 clients on the

compute nodes convert the POSIX requests to the PVFS2 requests and send them to

the distributed servers. Its execution follows the phases of mktestdir, create, write,

readdir, read, close, rm, and rmtestdir. The write and read phases involve writing

and reading of 400MB data to a file per process.

Figure 3.15 shows the metadata I/O throughput of the two applications on one meta-

data server on the left y-axis and Jain’s Fairness Index over time on the right y-axis. (The

results on the other metadata servers are similar and omitted here.) The throughput data

show two sets of spikes, which represent the high IOPS of the readdir phase for both

applications, where App1’s progress is roughly twice as fast as App2. During the first

160 seconds of the experiment, both applications are performing mktestdir and create

operations, but App1 gets twice the amount of metadata IOPS as App2, which matches

their given weights of 2:1. The second overlapped period is from 350 second to 550

second, during which App1 is performing rm and rmtestdir while App2 is performing

readdir and read. Note that the read phase also involves metadata accesses, because a

getattr request is often issued before a read according to the PVFS2 protocol. During

this overlapped period, the metadata accesses from the two applications also follow the

given 2:1 ratio.
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Overall, the Jain’s Fairness Index throughout the experiment is above 0.95 in average.

There are two periods when one of the two applications is in the write phase (160s-260s

for App1, 300s-360s for App2) and does not issue any metadata request. During these

periods, the Fairness Index drops to close to 0.5 only because vPFS’ work-conserving

SFQ(D)+ scheduler allows the application that is more active in metadata I/Os to take

away the spare bandwidth from the other and make efficient use of the metadata servers’

processing capacity.

3.7.7 Overhead

Proxy-based Virtualization and Scheduling Overhead

The last group of experiments studies the performance overhead of vPFS’ overhead from

several aspects. It first considers the overhead from the proxy-based parallel file system

virtualization and scheduling for highly intensive workloads. It compares the throughput

between Native (native PVFS2 without using proxy), Virtual (PVFS2 virtualized using

vPFS but without any scheduler), and Virtual-SFQ(D)+ (vPFS with SFQ(D)+ based I/O

scheduling). IOR is used in this experiment to generate intensive sequential reads and

writes. The number of processes used by IOR is 256, evenly distributed on eight physical

nodes. To increase the intensity of the request rates and demonstrate the worst-case over-

head of vPFS, in this experiment only, the file is preloaded into the data servers’ memories

when IOR runs in the read mode (to eliminate the impact of disk latency), and the file sys-

tems on the data servers use EXT3 in the ordered-data mode (to eliminate the impact of

data journaling latency). The results in Figure 3.16 show that the throughput overhead

caused by the proxy and its scheduler are small, and when they are combined the total is

still less than 1% for READ and 3% for WRITE of the native PVFS2 throughput. The

extra overhead for WRITE comes from additional message forwarding from the server to
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the client to notify the completion of each write request (note that there is a gap between

the completion of data transfer from client to server and the completion of writing data

on the server side. READ does not bear this overhead because the client automatically

completes the request when expected amount of data is received.

The next experiment studies the overhead of metadata I/O virtualization and schedul-

ing in vPFS. A set of eight nodes is used to run a total of 128 multi-md-test processes,

each issuing 60K metadata operations, and another set of eight nodes is employed as the

PVFS2 metadata servers. Figure 3.17 shows the benchmark’s total throughput of meta-

data operations from vPFS (Virtual) versus the native PVFS2 (Native). Two different

configurations of the benchmark are considered: one issues metadata operations through

the POSIX interface (POSIX) and the other through the PVFS2 interface (PVFS2) di-

rectly. The former configuration has lower throughput because metadata operations have

to go through additional layers (Linux virtual file system) to reach the parallel file sys-

tem. Similarly to the previous experiment, the memory caches are kept warm in order

to maximize the metadata I/O rate and reveal the worst-case overhead of vPFS. Overall

the overhead is less than 3% when using the PVFS2 API and less than 5% when using

POSIX. Note that the PVFS2 API does not provide the close call, and the POSIX API

does not offer readdir stat and readdir plus, which are omitted in the figure.

The resource usage overhead of vPFS is also measured for an experiment with eight

concurrent IOR instances competing for eight shared data servers by reading the CPU

and memory consumptions of a vPFS proxy running the SFQ(D)+ scheduler with the

threshold-driven synchronization scheme (which has higher overhead than the layout-

driven scheme). Figure 3.18 compares the proxy’s resource usages to the native PVFS2

daemon’s, and the results show that the overhead is low and comparable to the native

daemon even when it has to handle 256 concurrent IOR processes’ I/Os on each data

server.
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The results show that the overhead of vPFS proxy-based virtualization and scheduling

is small, which can be attributed to several performance optimizations taken by the proxy

implementation. First, the proxy employes single-threaded, polling-based synchronous

I/O multiplexing instead of using a multi-threaded model in order to save the cost of

context switching. On each proxy (one per server), exactly one polling function is called

on an array of sockets. Second, the polling function activates only when there is available

data (for read) or available buffer (for write) on the sockets. Third, the proxy processes the

data on multiple ready sockets returned by the polling call in batch. It reads/writes each

socket in a non-blocking manner, processing only the data that is actually available and

returning immediately when the work is done. Fourth, to reduce the memory overhead,

the proxy does not store a request’s payload when queueing the I/O requests; instead, it

extracts the request headers and queues only the information necessary for determining

the scheduling action (e.g., IP address, payload size, total number of servers involved,

striping parameters, etc.).

Synchronization Overhead

The results from Sections 3.7.2 and 3.7.3 confirm that both the threshold-driven and

layout-driven synchronization schemes can achieve equally good sharing of the system’s

total bandwidth (within 3% of total-service fairness). However, as discussed in Sec-

tion 3.5, the synchronization overhead differs between these two schemes, which is evalu-

ated here. In order to make this difference more evident, this experiment 1) involves a total

of 96 data servers running on Xen virtual machines (with paravirtualized kernel 2.6.32.5)

hosted on the eight server nodes, 2) uses the NULL-AIO [Din09] in PVFS2 to skip the

actual disk reads and writes and maximize the I/O rate, 3) runs eight concurrent IOR in-

stances, each with 32 parallel processes hosted on a separate physical compute node, and

4) sets the synchronization threshold below the average request size so that every request
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triggers a broadcast in the threshold-driven scheme. Note that this setup is designed to

reveal the worst-case overhead of the threshold-driven synchronization scheme. In prac-

tice, the threshold is set much higher and the corresponding synchronization overhead is

much lower.

Figure 3.19 shows the throughput of one of the applications and Figure 3.20 shows

the synchronization traffic on one of the servers. (The results obtained from the other

applications and servers are similar.) In this worst-case setup, the threshold-driven scheme

has a constant need of synchronization among the distributed SFQ(D)+ schedulers. Such

frequent synchronization also causes high fluctuations on the throughput because every

synchronization triggers a local scheduler to adjust the start times of its queued requests.

In contrast, the layout-driven scheme involves synchronization only at the entry and exit

times of an application. As a result, layout-driven synchronization scheme shows a much

smoother total system throughput in Figure 3.19 and much less synchronization traffic

in Figure 3.20. As shown in Figure 3.21, the layout-driven scheme also achieves 13.3%

higher total throughput (612.08 MB/s vs. 540.91 MB/s) and 93.0% lower deviation (2.21

MB/s vs. 31.59 MB/s) than the threshold-driven scheme. Meanwhile, it can still correctly

estimate the total service based on the layout information and achieve good fair sharing

(with a Jain’s fairness index value of 0.97).

3.7.8 Cost of Implementation

Finally, vPFS is designed as a framework that allows various I/O schedulers to be de-

veloped in a modularized fashion and flexibly plugged in for parallel file systems. To

evaluate the development effort, Table 3.1 summarizes the code complexity of the vPFS

framework. The total lines of C code currently in the prototype sums up to 5,197, in-

cluding the support for TCP interconnect, PVFS2 parallel file system, and three types of
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Figure 3.19: I/O throughput of different synchronization schemes
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Figure 3.20: Network traffic of different synchronization schemes
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Table 3.1: The development cost of vPFS virtualization and schedulers. The lines of code
are counted for different components of vPFS.

Framework LOC Components LOC

Virtualization 1695
Interface 694

TCP 397

PVFS2 601

Scheduler
3502

Interface 735

SFQ(D) 552

SFQ(D)+ 987

Two-Level 1228

Total 5197
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schedulers. To break it down, the virtualization framework costs 1,695 lines of code and

the scheduling framework costs 3,502 lines of code. The generic interfaces exposed by

these frameworks allow different network transports, parallel file systems, and schedul-

ing algorithms to be incorporated into vPFS. Specifically, the support for TCP and PVFS2

protocols each costs less than 1,000 lines of code. Different schedulers cost from 500 to

1,300 lines of code depending on their complexity. For example, the most complex one

is an experimental two-level scheduler [XZ13] that supports both throughput and latency

driven I/O scheduling, and it costs 1,228 lines of code.

3.8 Summary

A new approach, vPFS, to parallel storage management in HPC systems is presented.

vPFS addresses this problem through the virtualization of contemporary parallel file sys-

tems. Upon the vPFS framework, a new proportional sharing I/O scheduler, SFQ(D)+,

is proposed to allow applications with diverse I/O sizes and issue rates to share the stor-

age with good application-level fairness and system-level utilization. vPFS also includes a

combination of efficient synchronization schemes for a large number of distributed sched-

ulers to coordinate their local I/O scheduling and achieve the global, total-service sharing

target.

vPFS approach is feasible because of its small overhead in terms of throughput and

resource usage (<3% for reads, <3% for writes, and <3% for metadata accesses). Mean-

while, it achieves nearly perfect total-service proportional bandwidth sharing for com-

peting parallel applications with diverse I/O patterns (>96% of the target sharing ratio).

vPFS achieves 8.25 times better performance isolation than the native PVFS2, and its

SFQ(D)+ scheduler achieves 3.35 times better performance isolation than the original

73



SFQ(D). It also makes efficient use of the storage and the SFQ(D)+ scheduler achieves

13.81 times better total throughput than a non-work-conserving scheduler.
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CHAPTER 4

BIG-DATA STORAGE SYSTEMS MANAGEMENT

4.1 Introduction

Typical big-data computing systems are often built upon a highly scalable and avail-

able distributed file system. In particular, Google File System (GFS) [GGL03] and its

open-source clone Hadoop Distributed File System (HDFS) [SKRC10] provide storage

for massive amounts of data on a large number of nodes built with inexpensive com-

modity hardware while supporting fault tolerance at scale. A big-data application runs

many tasks on these datanodes, which process the locally stored data in parallel via the

I/O interface provided by such a distributed file system. In particular, the MapReduce

programming model and associated run-time system are able to automatically execute

user-specified map and reduce functions in parallel and handle job scheduling and fault

tolerance [DG04]. Higher-level storage services such as databases (e.g., Hive [TSJ+10])

can be further built upon the distributed file system and provide more convenient inter-

faces (e.g., SQL) for users to process the data. Therefore, this dissertation focuses on

big-data storage systems of the GFS/HDFS kind.

Although computing resources (CPUs) are relatively easy to partition, shared stor-

age resources (I/O bandwidths) are difficult to allocate, particularly for data-intensive

applications which compete fiercely for access to large volumes of data on the storage.

Existing big-data systems lack the mechanisms to effectively manage shared storage I/O

resources, and as a result, applications’ performance degrades in unpredictable ways when

there is I/O contention. For example, when one typical MapReduce application (Word-

Count) runs concurrently with a highly I/O-intensive application (TeraGen), WordCount

is slowed down by up to 107%, compared to when it runs alone with the same number of

CPUs.
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I/O performance management is particularly challenging for big-data systems because

of two important reasons. First, big-data applications have complex I/O phases (e.g.,

rounds of map and reduce tasks with different amounts of inputs, intermediate results,

and outputs for a MapReduce application), which makes it difficult to understand their

I/O demands and allocate I/O resources properly to meet their performance requirements.

Second, a big-data application is highly distributed across many datanodes, which makes

it difficult to coordinate the resource allocations across all the involved nodes needed by

the data-parallel application. For example, the performance of a MapReduce application

depends on the received total storage bandwidth from all the nodes assigned to its map

and reduce tasks.

Both the map and reduce phases of a MapReduce application can spawn large numbers

of map and reduce tasks on the GFS/HDFS nodes to process data in parallel. They often

have complex but well-defined I/O phases. A map task is preferably scheduled to the node

where its input data is stored. It reads the input from GFS/HDFS (either via the local file

system or across the network) and spills and merges key-value pairs onto the local file

system as intermediate results. A reduce task starts by copying/shuffling its inputs from

all the map tasks’ intermediate results (either stored locally or across the network). It then

merges the copied inputs, performs the reduce processing, and generates final output to

GFS/HDFS. Each of the above phases can have different bandwidth demands for input

and output. Moreover, given the same volume of data to a map or reduce task, it can take

different amount of time to process the data depending on the application’s computational

complexity.

This dissertation proposes IBIS, an Interposed Big-data I/O Scheduler, to provide per-

formance differentiation for competing applications’ I/Os in a shared big-data system.

This scheduler is designed to address the above-mentioned two challenges. First, how

to effectively differentiate I/Os from competing applications and allocate the shared stor-
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age bandwidth on the individual nodes of a big-data system? IBIS introduces a new I/O

interposition layer upon the distributed file system in a big-data system, and is able to

transparently intercept the I/Os from the various phases of applications and isolate and

schedule them on every datanode of the system. IBIS also employs a new proportional-

share I/O scheduler, SFQ(D2), which can automatically adapt I/O concurrency based on

the storage load and achieve strong performance isolation with good resource utilization.

Second, how to efficiently coordinate the distributed I/O schedulers across datanodes and

allocate the big-data system’s total I/O service to the data-parallel applications? IBIS

provides a scalable coordination scheme for the distributed SFQ(D2) schedulers to effi-

ciently coordinate their scheduling across the datanodes. The schedulers then adjust their

local I/O scheduling based on the global I/O service distribution and allow the applica-

tions to proportionally share the entire system’s total I/O service.

The rest of this chapter is organized as follows: Section 4.2 presents the need for big-

data storage systems management; Section 4.3 introduces the virtualization approach of

big-data storage systems; Section 4.4 presents the unique schduling algorithm to control

I/O concurrency; Section 4.5 details the design of an efficient scheduler coordination

scheme; Section 4.6 discusses the support for I/O management across different big-data

frameworks; and Section 4.7 demonstrates the overhead, effectiveness and efficiency of

IBIS solution implemented on YARN.

4.2 Motivation

The lack of I/O management in big-data systems presents a serious hurdle for data-

intensive applications to get their desired performance. In a MapReduce system, on every

single datanode, the tasks from different MapReduce applications compete with one an-

other across all their phases for HDFS, local file system, and network I/Os. Across the
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Figure 4.1: I/O demands of two classic MapReduce applications
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whole big-data system, these highly distributed applications also compete on many datan-

odes and their performance depends on the total amount of I/O services that they can get

from all the involved nodes.

As an example of the diverse I/O demands of big-data applications, Figure 4.1 com-

pares the I/O profile of two classic MapReduce applications, TeraSort and WordCount,

each running alone with the same allocation of CPU and memory resources. These pro-

files show that TeraSort has a much more intensive I/O workload than WordCount. Tera-

Sort has intensive HDFS reads and local file system writes in the map phase and intensive

HDFS writes in the reduce phase. WordCount’s output is much smaller than its input, but

there are plenty of intermediate writes throughout the map and reduce phases.

With such diverse big-data applications, the lack of I/O management will lead to se-

vere and unpredictable performance interference between the applications. As an exam-

ple of the I/O contention’s performance impact, Figure 4.2 compares the performance

of WordCount when it runs alone to when it runs with another application (TeraGen,

TeraSort, TeraValidate) while keeping its CPU allocation (half of the 96 CPU cores in the

system) the same. Details of the experiment setup are provided in Section 4.7. The results

show substantial performance degradation in WordCount, which confirms the significant

performance impact caused by I/O contention (CPU cache contention is relatively in-

significant to the performance of these data-intensive applications). This dissertation ad-

dresses this serious problem with an interposed big-data I/O scheduling approach, IBIS,

which is presented in the rest of this dissertation.

4.3 Interposed I/O Scheduling

The first question addressed by IBIS is how to effectively differentiate the I/Os across the

different phases of competing MapReduce applications on every datanode of a big-data
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system. The general design of IBIS is based on the virtualization principles, where an

indirection layer exposes the interfaces already in use by the big-data system to access

storage, allowing applications to time-share the storage system without modifications,

while enforcing performance isolation and differentiation among them.

A key design decision that needs to be made in a virtualization approach is choosing

the proper abstraction to introduce the virtualization layer. In the context of a big-data

system, there are multiple layers in the storage hierarchy, from the applications, to HDFS,

and to local file system and storage devices. On one hand, introducing virtualization at

a higher layer can make use of more application knowledge to help the implementation,

but it is more tied to specific applications and loses control of how I/Os are executed by

the underlying layers. On the other hand, introducing virtualization at a lower layer of

the storage hierarchy allows more control of I/O executions and can support more diverse

applications, but it has to deal with more primitive I/O operations and loses application

semantics that are useful for I/O differentiation.

Considering this tradeoff, IBIS is introduced upon the GFS/HDFS layer of the MapRe-

duce storage architecture (Figure 4.3). This design can make effective use of application

information to differentiate I/Os, because applications access the shared storage mostly

through the HDFS interface. It also has enough low-level I/O control by scheduling the

dispatch of I/Os to local file systems. Interposing of the applications’ direct local file

system I/Os and network I/Os are done at other interfaces at the same level. The rest of
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this section details the interposition of these different types of I/Os used by a MapReduce

application. All the modifications described below for implementing IBIS are made to

Hadoop/YARN and do not require any change to applications.

Persistent I/Os are I/Os serviced by HDFS, where the inputs for map tasks are read

from HDFS, and the outputs from reduce tasks are written to HDFS. Tasks use the DF-

SClient to interface with the Data Node, which represents an HDFS daemon, and Data

Node converts the data requests, from both local and remote map tasks, to local file system

I/Os. To differentiate I/Os from competing applications, the DFSClient interface is mod-

ified to carry application-specific information (job identifier and I/O service weight) as

part of the header of each data request issued by the map/reduce tasks. These requests are

scheduled by the IBIS component implemented in Data Node, which maintains a request

queue for its local storage and dispatches the queued requests according to the chosen

scheduling algorithm and policy.

Intermediate I/Os are I/Os to a datanode’s local file system (not HDFS) for storing

temporary data. Both map and reduce tasks use the local file system for spilling and

merging in-progress data. The intermediate I/Os can also influence an application’s per-

formance. For example, a sorting program can generate the same amount of intermediate

data as its input. In IBIS, these intermediate I/Os are first tagged with the job identifier

and I/O service weight, and then routed to the IBIS component implemented within a

local I/O scheduler, which can also reside in the Data Node daemon that runs on every

datanode. IBIS schedules the intermediate I/Os in the same way as the persistent I/Os,

following the same scheduling algorithm and policy.

Network I/Os occur during a shuffling phase between all the map tasks and reduce

tasks. Because each reduce task’s input is a partition of the map phase’s outputs, it gener-

ally has to request a portion of the outputs from every map task. The data pulling thread

launched by a reduce task is initiated with the job identifier and weight, which are car-
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ried over in the header of the HTTP-based data requests. These requests are handled by

the HTTP servlets which are implemented in the Node Manager daemons. Therefore,

an IBIS scheduler is also implemented in the Node Manager to differentiate the network

I/Os and schedule the corresponding local file system I/Os.

Note that IBIS does not rely on any bandwidth control from the network layer, and

it is shown to be sufficient in the experiments because of two reasons: 1) The storage is

generally saturated before the network; 2) By applying bandwidth control at the storage

endpoints of the network I/Os, IBIS indirectly influences the contention on the network.

However, IBIS can incorporate the network bandwidth control mechanisms such as Open-

Flow [ope] if they are necessary and available, which will be left for future work.

In all the above I/O phases, concurrent requests from different applications are dif-

ferentiated by their unique application IDs. An application obtains its ID from the job

scheduler, which is carried over to all of its parallel tasks and used by the tasks to tag their

I/Os for HDFS, intermediate, and network data. For every shared I/O service, these re-

quests are queued and dispatched by an IBIS scheduler according the algorithm presented

in the next section.

4.4 Proportional I/O Sharing

The second question addressed by IBIS is how to allow the tasks from competing applica-

tions to proportionally share the I/O service of each datanode in a big-data system. The

interposed I/O scheduling framework in IBIS is flexible enough to support different algo-

rithms. This dissertation focuses on algorithms that allow applications to proportionally

share the I/O bandwidth, in the same way how they share the CPU time proportionally

(e.g., using the Hadoop Fair Scheduler [fai]), so that it can provide the much needed, miss-

ing control knob for I/O allocation in big-data systems. Proportional resource sharing is
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defined as when the total demand is greater than the available resource, each applica-

tion should get a share of the resource proportionally to its assigned weight. Because

only the relative values of weights matter to the bandwidth allocation, in the dissertation,

the weight assignment to applications is often specified in terms of the ratio among the

weights.

The proposed proportional-share scheduler is built upon the SFQ family of schedulers

because of their computational efficiency, work-conserving nature, and theoretically prov-

able fairness. SFQ schedules the backlogged requests from different applications using

a priority queue, where each request’s priority is positively affected by its application’s

weight and negatively affected by its cost (often estimated based on the size of the re-

quest). The scheduler can dispatch only one outstanding request, and it chooses the one

with the earliest start time in the queue.

The SFQ(D) scheduler [JCK04] is an extension of SFQ for proportional sharing of

storage resources which are commonly capable of handling multiple outstanding requests

concurrently. The level of concurrency that the shared storage resource supports is cap-

tured by the depth parameter D in SFQ(D). The scheduler follows the original SFQ algo-

rithm to dispatch queued requests, but it allows up to D outstanding I/Os to be serviced

concurrently by the underlying storage in order to take advantage of the available I/O

concurrency.

The choice of D has important implications on both fairness and resource utilization

for a real storage system. On one hand, a larger D allows more concurrent I/Os and a

higher utilization of the storage, but it may hurt fairness because of the scheduler’s work-

conserving nature. A more aggressive workload can use up all the storage bandwidth and

even overload it, delaying the I/Os from a less aggressive workload. On the other hand,

a smaller D gives the scheduler a tighter control on the amount of I/O share that a more

aggressive workload can steal from others, and allows the I/Os from a less aggressive
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workload to be serviced quickly when they arrive. It can thus improve fairness among the

competing workloads but may lead to underutilization of the storage. So it is difficult to

determine the optimal value of D statically, and it depends on the characteristics of the

storage and workloads, some of which are also dynamic. It was in fact left as future work

in the SFQ(D) paper [JCK04].

To address the above problem, this dissertation introduces a new SFQ-based algo-

rithm, Dynamic Depth SFQ, or SFQ(D2) in short. It employs a feedback controller to

automatically and dynamically adjust the value of D online. The controller works period-

ically (e.g., every second), and it decides the depth Dk+1 for the next period k+1, based

on the distance between the observed average I/O latency Lk of the previous period and

the reference latency Lre f :

Dk+1 = Dk +Ki× (Lre f −Lk) (4.1)

where Ki is an integral gain factor which determines how aggressively the controller works

to reach the target latency. Following this equation, the controller automatically optimizes

the value of D as it steers the observed I/O latency towards the reference latency.

The controller chooses I/O latency as the target because its goal is to maximize the

storage utilization without compromising the fairness among applications, and I/O latency

directly reflects the I/O performance of applications and the I/O load of the underlying

storage. The reference latency is decided offline by profiling the storage using a syn-

thetic MapReduce workload with increasing I/O concurrency. Both the I/O latency and

throughput are measured during the profiling, and the I/O latency observed before the

storage starts to saturate is the reference latency for the controller. Such profiling needs to

be done only once for a given storage setup. If the storage’s read and write performance

are asymmetric such as in SSDs, the profiling can give separate reference latencies for

reads and writes. In this case, the Lre f and Lk in the controller become the weighted av-
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erage of the read latencies and write latencies, with the weights being the percentages of

reads and writes observed in the previous control period.

This SFQ(D2) scheduler works upon the interposition layer described in Section 4.3

on every datanode of the big-data system. Each scheduler independently adjusts D based

on its local dynamics in the workloads and underlying storage, and dispatches up to D

number of outstanding I/Os from its local queue to the storage. This scheduler is used

to provide proportional sharing of all the important I/O services offered by a datanode,

including HDFS I/Os, temporary data I/Os, and network I/Os.

4.5 Distributed I/O Scheduling Coordination

The third question addressed by IBIS is how to efficiently coordinate the distributed I/O

schedulers across datanodes to support proportional sharing of a big-data system’s total

I/O service among competing applications. A limitation of the IBIS scheduler described

above is that a local scheduler’s decision is made independently at each datanode, with-

out accounting for information from other nodes. Local scheduling, based on only local

knowledge, however, is not sufficient to deliver the desired performance differentiation

from the perspective of the highly distributed big-data applications. The parallel nature of

such an application requires it to get the necessary I/O service from all the nodes where its

tasks are scheduled, and its performance depends on the total amount of I/O service that

it gets from the system. Therefore, I/O management at the system level should support

total-service proportional sharing, which means that the applications share the total I/O

service from all the datanodes in the system proportionally to their assigned weights.

The challenge to achieving total-service proportional sharing is that applications often

get unevenly distributed I/O services from the involved nodes. The exact amount of ser-

vice that an application gets from a particular node depends on the number of CPU slots
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that it gets on the node—which decides the I/O demands, and the applications running on

the other slots of the same node—which decides the I/O contention. The number of slots

that an application gets on a node in turn depends on the combination of, at any moment,

the global CPU slot allocation policy, the application’s data locality on the node, and the

number of slots currently available on the node. Because of such uneven distribution of

I/O services across the nodes, simply applying the same sharing ratio to each node and

enforcing it using the local SFQ(D2) scheduler will not produce the same ratio of sharing

of the total I/O service.

To address this challenge, IBIS enables the distributed SFQ(D2) schedulers to co-

ordinate with one another and enforce total-service proportional sharing collaboratively.

Every scheduler shares its local I/O service distribution—the applications that it serves

and the amounts of services that they get locally, with the other schedulers. Based on

the global I/O service distribution, every scheduler can then adjust its local I/O service

distribution so that the total services that the applications get are proportionally to their

assigned weights. Specifically, IBIS follows the algorithm in DSFQ [WM07] to adjust

local SFQ scheduling for total-service proportional sharing. When an SFQ(D) scheduler

considers the scheduling of a queued request, it delays the request’s start time by the to-

tal amount of service that the corresponding application has received from all the other

nodes. In this way, the local scheduler dispatches the requests from different applications

according to their received total I/O services, not just the local services.

Another challenge that must be addressed by IBIS is how to efficiently coordinate a

large number of distributed schedulers in a big-data system. If every scheduler has to

broadcast its information to all the other schedulers, it can easily overwhelm the sched-

ulers and the network as the system scales out. DSFQ [WM07] work assumes a tradi-

tional remote I/O model, where the clients send their I/Os to remote storage nodes and

a coordinator can be interposed in between to gather and pass on the global I/O service
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Figure 4.4: Architecture for distributed I/O scheduling coordination

distribution. But this approach does not apply to a big-data system, where computing

tasks are shipped to the nodes where their data is stored and they process the data using

primarily local I/Os.

To solve this problem, IBIS employs a centralized Scheduling Broker to facilitate

the information exchange among the distributed schedulers in a scalable manner (Fig-

ure 4.4). Every local scheduler j ∈ {1, . . . ,m} sends its current I/O service distribution—a

vector of local I/O service amount ai j for each application i ∈ {1, . . . ,n} that the sched-

uler j serves—to the broker periodically (e.g., every 1 second). Based on the informa-

tion received from all the local schedulers, the broker summarizes the total I/O service

Ai = ∑
m
j=1 ai j for each application i in the system. It then responds to a local scheduler’s

message with the total I/O service distributions—a vector of total I/O service amount Ai
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for each application i that the local scheduler currently serves. Based on this total service

information, the local scheduler can then adjust its scheduling as discussed above.

The overhead of this scheduling coordination scheme is small. The size of the mes-

sages between a local scheduler and the broker is bounded by the number of applications

that the scheduler currently serves. The state that the broker needs to maintain is simply

a vector of total I/O service amount for all the applications currently in the system. The

frequency of coordination can be adjusted based on the desired granularity of fairness

and the scale of the system—more frequent coordination reduces transient unfairness but

increases the overhead; and vice versa. Hadoop/YARN already employs centralized man-

agers, in particular the Resource Manager for coordinating the distributed Node Man-

agers, which is shown to be scalable for managing thousands of nodes [VMD+13]. In

fact, in the IBIS implementation, the I/O Scheduling Broker is embedded as part of the

Resource Manager and the I/O scheduling coordination information is piggybacked on

the existing communications between the managers to further reduce its overhead.

4.6 Multi-framework I/O Scheduling

Big-data resources are increasingly shared by diverse computing frameworks [DG04,

TSJ+10], as users have different data processing requirements as well as different prefer-

ences of programming models. No single framework is perfect for all big-data problems

and all users. Solutions such as YARN [VMD+13] and Mesos [HKZ+11] allow different

frameworks to share the same set of resources and employ mechanisms such as contain-

ers [con] to allocate CPU cores and memory capacity to the resource-sharing applications.

However, these resource management solutions still cannot provide strong performance

isolation, because they do not support the allocation of shared I/O resources which the

data-intensive applications have to compete for. As the experiments will show in Sec-
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tion 4.7.4, although containers do provide some level of I/O isolation, it is not sufficient.

Containers can control only the I/Os directly issued to the local file system, e.g., inter-

mediate I/Os from MapReduce, but not the distributed I/Os, e.g., HDFS I/Os, which are

serviced by a shared datanode server and cannot be differentiated using the container

mechanism.

Thus, existing multi-framework resource management solutions still need IBIS to pro-

vide the missing I/O control knob for effective I/O bandwidth allocation. Specifically, in

YARN, IBIS is seamlessly integrated in its Application Master, Resource Manager, Node

Manager, and Data Node components (Figure 4.5).

IBIS allows an application to specify its required total I/O bandwidth (e.g., 300MB/s)

to its Application Master, in addition to the amount of required CPUs and memory (e.g.,

64 CPU cores and 64GB RAM), in order to achieve its desired performance. The central-

ized Resource Manager collects the resource requests from the concurrent Application
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Masters and uses IBIS to determine the global, total-service I/O bandwidth allocation,

as well as allocating the CPUs and memory using an existing scheduler such as the Fair

Scheduler. The Resource Manager then coordinates with the distributed Node Managers

to enforce the resource allocations on every datanode. Each Node Manager uses the local

Data Node to schedule the local I/Os according to the global, total-service I/O sharing

target, similarly to how it uses containers to enforce the CPU and memory allocations to

the local data processing tasks.

Finally, the IBIS scheduler in Data Node interpose all the I/Os, as discussed in Sec-

tion 4.3 and uses SFQ(D2) discussed in Section 4.4 to schedule the I/Os according to the

given bandwidth allocation.

4.7 Experimental Evaluation

4.7.1 Setup

The experimental evaluation was done on a cluster of nine nodes each with two six-core

2.4GHz AMD Opteron CPUs, 32GB of RAM, and two 500GB 7.2K RPM SAS disks,

interconnected by a Gigabit Ethernet switch. All the nodes run the Debian 4.3.5-4 Linux

with the 3.2.20-amd64 kernel and use EXT3 as the local file system. The evaluation was

performed in YARN 2.7.0 with the IBIS prototype implemented in the Resource Manager,

Node Manager, Application Master, and Data Node as described in Sections 4.3 and 4.6.

Eight nodes are dedicated to run applications consuming up to 96 CPU cores and 192GB

memory by their tasks, where each map task uses 1 CPU core and 2GB of memory and

each reduce task uses 1 CPU core and 8GB of memory. One additional node runs the

YARN Resource Manager and Name Node and the IBIS scheduling broker. The two

disks on each node are used to store HDFS data and intermediate data separately. The
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Table 4.1: The YARN configuration used in the evaluation

Key Value
dfs.replication 3
dfs.block.size 134217728

fairscheduler.preemption true, 5s

configuration parameters of YARN and its Fair Scheduler used in the evaluation are listed

in Table 4.1.

The evaluation compares the performance of IBIS to native Hadoop with YARN using

a variety of benchmarks, including TeraGen (1TB output), TeraSort (50–400GB input),

WordCount (50GB Wikipedia input), Facebook2009 [SWI], and TPC-H on Hive [TSJ+10]

(53GB input), which are explained in detail in the following experiments. For IBIS with

the SFQ(D2) scheduler, the control period is set to 1 second.

4.7.2 Performance Isolation (WordCount)

The first experiment evaluates whether IBIS is able to provide performance isolation to

one application while it is under intensive I/O contention from others as in the motivat-

ing example discussed in Section 4.2. It is an important policy in many scenarios where

the performance of an important big-data application must be guaranteed regardless of

the contention from others. As in the motivating example, Figure 4.6a shows that when

WordCount runs with TeraGen, it is slowed down by 107% due to I/O contention, com-

pared to when it runs alone with the same CPU allocation (48 map slots and 16 reduce

slots). Performance isolation is challenging to accomplish for WordCount because its

I/O rate is much lower than TeraGen, while a work-conserving I/O scheduler tries not to

under-utilize the storage.

Figure 4.6a shows the results of IBIS from using both the original SFQ(D) scheduler

with a static value of D and the new SFQ(D2) scheduler which dynamically adjusts D.
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The sharing ratio between WordCount and TeraGen is set to 32:1 to favor WordCount,

but TeraGen can always use the spare I/O bandwidth because the schedulers are work-

conserving. Comparing the results from SFQ(D) with different D values, it shows that

reducing D does give the scheduler a tighter control on I/O scheduling and achieves better

performance isolation for WordCount, reducing its slowdown to as low as 13%. Compar-

ing the results from SFQ(D) to SFQ(D2), it shows that the new scheduler achieves the

best isolation for WordCount with a runtime that is only 8% slower than when it runs

alone, and it does so by automatically adjusting the value of D.

Note that the 32:1 sharing ratio is used here because the objective of this experiment

is to restore the performance of WordCount without underutilizing the bandwidth. Lower

sharing ratios would favor WordCount less and result in worse performance of WordCount

while still being much better than the native case. For example, a sharing ratio of 2:1

restores WordCount’s performance to 148% of its standalone runtime with SFQ(D=2)

and 118% with SFQ(D2).

The excellent performance isolation from IBIS is accomplished while still allowing

the competing application, TeraGen, to make good progress and fully utilize the under-

lying storage. To confirm this, Figure 4.6b compares the total throughput of WordCount

and TeraGen when they run on native Hadoop without I/O management vs. when they

run on IBIS. The native case has the highest total throughput, because TeraGen’s I/Os are

sent to storage as soon as they come without any control. In comparison, the number of

outstanding I/Os is controlled by D in the schedulers of IBIS. The results show that IBIS

can achieve good storage utilization in all configurations, where the best result is also

from SFQ(D2) which is only 4% lower than the native case. This result is achieved while

reducing WordCount’s runtime slowdown from 107% to 8% as discussed above.

To provide a detailed view of how SFQ(D2) works, Figure 4.7 shows how it adapts

D based on the observed I/O latency on one of the datanodes. It follows the equation for
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the feedback controller described in Section 4.4. The gain factor is set to 10−6. The value

of D is bounded between 1 and 12. Throughout the run the controller reacts quickly to

the observed latency and adapts D quickly to sustain strong performance isolation with

good resource utilization. Noticeable that at the 260th second and 790th second, the

underlying storage system undergoes foreground flushing of writes buffered in memory

and causes the high spikes in I/O latency, while the controller still responds in a timely

manner. Although IBIS does not have direct control of such lower-level dynamics, it can

still effectively mitigate their impact by timely adapting the I/O concurrency. It is there-

fore able to sustain good performance isolation without having to modify the underlying

storage layers which would be much more intrusive and expensive.

Although faster storage devices such as SSDs are increasingly considered by big-data

systems, they cannot completely replace HDDs due to their limited capacity. Moreover,

faster storage does not make the I/O contention problem go away; the increasing volume

and velocity of big-data will always demand I/O management. To confirm this, the same

experiment is repeated on a different storage setup using SSDs (Intel 120GB MLC SATA-

interfaced flash devices) to store both HDFS and temporary data on each datanode. The
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results in Figure 4.8a first confirm that WordCount is still severely interfered (50% slow-

down) by TeraGen on native Hadoop due to I/O contention. They also confirm that IBIS

still achieves strong performance isolation with excellent storage utilization for this faster

storage setup. Interestingly, IBIS with SFQ(D2) achieves a better runtime for WordCount

than when it runs alone, and a better total throughput for WordCount and TeraGen than

native Hadoop. This can be explained by the read/write asymmetry of flash devices and

the implicit promotion of reads in SFQ(D2). Writes are much slower than reads on flash

devices and they can significantly slow down the reads that are scheduled after them.

When intensive writes are received by the scheduler, it automatically reduces D, which

gives the reads a better chance to establish backlogged requests and be dispatched before

some of the writes, therefore achieving better overall performance. This unique charac-

teristic of flash devices will be further studied in the future work to optimize the IBIS

scheduler specifically for the use of SSDs in big-data systems.

4.7.3 Performance Isolation (Facebook2009)

The second experiment evaluates whether IBIS is also able to provide performance isola-

tion to the Facebook2009 workload, which is far more diverse than WordCount. A total

of 50 jobs are created using the SWIM workload generator [SWI], by sampling the his-

torical Facebook job logs and emulating their computing and I/O phases. The samples are

down-scaled to fit the size of this dissertation’s testbed. The workload consists of diverse

MapReduce applications, including both small and large jobs and having different levels

of I/O demands, with their input-to-shuffle ratio and shuffle-to-output ratio varying be-

tween 0.05 to 103 and 2−5 to 102 respectively. These ratios represent the relative dataset

sizes between map input to shuffle input and between shuffle input to reduce output. Vary-
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Figure 4.9: Cumulative distribution of Facebook2009 job runtimes

ing these ratios therefore generates different levels of computation and I/O intensities for

the various phases of the jobs.

The Facebook2009 jobs are run together with TeraGen on the native Hadoop (Inter-

fered) and on IBIS using the SFQ(D2) scheduler with a bandwidth sharing ratio of 32:1

favoring Facebook jobs (SFQ(D2)). As a baseline, Facebook2009 is also run alone with-

out I/O contention from others (Standalone). The CPU and memory resources allocated

to Facebook2009 are kept to half of the total resources for all the cases.

Figure 4.9 compares the cumulative distribution of the Facebook2009 jobs’ runtimes.

In the Standalone case, 90% of Facebook2009 jobs finish within 120s. When they run

together with TeraGen without I/O management in the Interfered case, they are impacted

drastically by TeraGen, and no job finishes within 50s and 90% of them take up to 230s.

In comparison, using SFQ(D2), IBIS is indeed able to provide strong isolation to Face-

book2009, and 90% of the jobs can finish within 138s. Comparing the average runtime
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of Facebook2009, it is reduced from 168s in the Interfered case to 115s under SFQ(D2),

where the Standalone average runtime is 98s. Most of these jobs require only one wave

of map and reduce tasks. Without an I/O scheduler, their I/Os are severely interfered by

TeraGen and slowed down substantially. With IBIS, they are well isolated from Tera-

Gen and can utilize the allocated storage bandwidth to achieve a performance close to the

standalone case.

4.7.4 Multi-framework I/O Scheduling

The third experiment evaluates IBIS’ ability to schedule I/Os and manage their perfor-

mance for different big-data frameworks, Hive [TSJ+10] and MapReduce, that share the

same infrastructure. Specifically, this experiment considers TPC-H queries [tpc] as the

benchmark for Hive. TPC-H represents decision support systems scanning large volumes

of business data, executing queries with a high degree of complexity, and providing keys

to important business questions. Hive is a data warehouse framework built upon Hadoop,

to support the SQL query execution for data stored on HDFS. Its execution engine spawns

a series of MapReduce jobs for query fulfillment, providing end users with much flexibil-

ity in data format adaptation and ease of use in a scalable cluster environment.

The experiment focuses on the TPC-H queries Q9 (product type profit) and Q21 (sup-

pliers who kept orders waiting) which involve multiple intensive I/O phases including

both HDFS and intermediate I/Os. Q9 reads 53GB of initial input from five tables stored

on HDFS and generates 120GB of intermediate I/Os. Q21 reads 45GB of initial input

from four tables on HDFS, and generates 40GB of intermediate I/Os. Both queries launch

up to 15 sequential Hadoop jobs. Q9’s final output is 5KB and Q21’s final output is

2.6GB.
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The TPC-H queries on Hive and TeraSort on MapReduce are run concurrently, each

with half of the CPU cores and memory. Although the native YARN does not provide any

support for I/O management, it is conceivable to extend it to use cgroups [con], which

YARN already uses to allocate CPUs and memory, to also manage I/O bandwidth alloca-

tion. To compare to this cgroups-based approach, YARN is extended to use the cgroups

mechanisms to allocate shared I/O bandwidth between the two frameworks. This ex-

tended YARN can use both the proportional-sharing and throttling modes of cgroups to

manage I/Os. In the proportional-sharing mode, the shared bandwidth is allocated to com-

peting applications according to their assigned weights. In the throttling mode, a specific

cap can be set to an application’s bandwidth usage. Note that as discussed in Section 4.6,

this approach as well as other similar ones can manage only the intermediate I/Os, but not

HDFS I/Os; in contrast, IBIS is able to differentiate both local and distributed I/Os and

schedule them according to the given performance policy.

Figure 4.10a shows the relative performance of the two TPC-H queries when running

against TeraSort w.r.t. their standalone runtimes. For Q21, on Native YARN, the query

experiences a 35.2% performance loss when compared to its standalone runtime. When

using cgroups’ two different modes with aggressive parameters to favor TPC-H—100:1

bandwidth sharing ratio in CG weighted 100:1 and 1MB/s bandwidth cap on TeraSort in

CG throttled 1MB/s, it can only improve the query performance by 1.2% and 2.5% re-

spectively. In comparison, IBIS is able to improve the query performance to within 80%

of its standalone performance, which is 15.2% better than native YARN and 12.7% bet-

ter than cgroups. For Q9, the query experiences a 26% performance loss when running

against TeraSort on Native YARN. Both cgroups’ throttling policy and IBIS can restore

the query performance to 91% of its standalone runtime, which is better than cgroups’

proportional-share policy by 8%. The cgroups-based I/O throttling works better for Q9

than Q21, because Q9 has a higher level of intermediate I/Os which can be throttled by
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cgroups. However, throttling causes underutilization of storage and unnecessary slow-

down of the competing application, TeraSort. Consequently, the performance of TeraSort

is up to 16% worse when using cgroups throttling, compared to IBIS which is work-

conserving.

To evaluate the overall system performance considering both competing frameworks,

the experiment considers the average relative performance of the two applications, i.e.,

the average of each application’s relative performance w.r.t. its own standalone perfor-

mance. Figure 4.10b shows that when Q21 runs with TeraSort, the two applications expe-

rience a 26% performance loss in average on Native YARN, and the use of cgroups-based

proportional bandwidth sharing does not improve it. The I/O throttling policy of cgroups

makes it even worse because it is non-work-conserving and causes underutilization of the

I/O bandwidth. In comparison, IBIS is able to achieve an average relative performance of

80%. For Q9, cgroups and IBIS achieve similar average relative performance, which is

about 4% lower than Native because this query is more I/O intensive and incurs a higher

overhead in I/O scheduling.

Considering the results from both figures, a multi-framework resource management

solution such as YARN cannot provide strong performance isolation among competing

applications due to the lack of I/O management. In comparison, IBIS is able to provide

I/O isolation and when used in combination with YARN’s CPU and memory management,

it is able to protect the performance of a vulnerable application such as TPC-H while still

allowing the competing, intensive application such as TeraSort to make good progress by

using the available storage bandwidth.
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4.7.5 Proportional Slowdown

The previous three experiments are designed to show IBIS’ ability to support the perfor-

mance isolation policy. Another important and commonly used policy is proportional

slowdown, i.e., the relative performance of competing applications, w.r.t. their standalone

performance, is proportional to their assigned weights. This policy is often used to achieve

fairness for applications in terms of their performance, not their resource allocations.

A big-data application’s performance depends on both the available CPU cores and I/O

bandwidth, and its use of CPU and I/O resources are correlated. Without control on the

I/O bandwidth, it is possible to achieve proportional slowdown by limiting the CPU slots

allocated to the more I/O-intensive application and indirectly throttling its I/O rate, so that

the less I/O-intensive one can get more I/O bandwidth. Nonetheless, such a configuration

leads to under-utilization of the storage and suboptimal performance of the applications.

With IBIS, system administrators can tune both CPU slot and I/O bandwidth alloca-

tions together, and achieve proportional slowdown without wasting the resources. Ide-

ally, this tuning should be done automatically without human intervention, which would

require performance models of the big-data applications that can capture their CPU and

I/O resource demands given different performance targets. How to create such models

and use them to automatically tune the resource allocations are interesting research prob-

lems on their own and will be considered in the future work. This dissertation focuses

on the problem of providing the necessary I/O control mechanisms to support a variety

of performance policies such as performance isolation and proportional slowdown, which

comes with a set of unique challenges discussed earlier and is tackled by the proposed

IBIS framework. Without such control knobs enabled by IBIS, it would be difficult for

either administrators or autonomic software to achieve the desired performance policy

with efficient resource utilization.
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In this experiment, equal slowdown of both TeraSort and TeraGen is the target policy,

meaning that both applications should be slowed down by the same percentage relative

to their respective standalone runtime. Figure 4.11 shows the performance slowdown

of these two applicationsi. By adjusting only the CPU allocation using the Hadoop Fair

Scheduler, the best equal slowdown that it can get is 83% slowdown for TeraSort and 61%

for TeraGen. By using Fair Scheduler and IBIS to tune both CPU and I/O allocations

together, it is able to get a perfect equal slowdown of 42%, which is 30% better than

the average slowdown of them when using Fair Scheduler only. These results therefore

confirm that IBIS is also able to support the proportional slowdown policy and optimize

the application performance under this policy.
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Figure 4.11: Performance slowdown of TeraSort and TeraGen with or without IBIS

4.7.6 Coordinated Scheduling

As discussed in Section 4.5, many factors decide the I/O service that an application gets

from each storage node in a big-data system, including data distribution, slot allocation,

task assignment, and competing applications, which all contribute to the uneven distri-

bution of I/O services across the nodes. Without a mechanism for coordinating the dis-
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tributed I/O schedulers and an algorithm to adjust local sharing ratios based on the global

sharing policy, the total service that an application gets from the entire big-data system

will diverge from the given target. This experiment evaluates the effectiveness of the

distributed scheduling coordination mechanisms (Section 4.5) for achieving total-service

proportional sharing.

The experiment is conducted similarly to the previous one for achieving equal slow-

down for TeraSort and TeraGen, but it considers two different IBIS setups where the dis-

tributed scheduling coordination is disabled (No Sync) and enabled (Sync). The latter case

should allow IBIS to find better equal slowdown because it can dynamically adjust local

I/O service distribution based on global service distribution, which leads to better CPU

and I/O resource utilization and better performance for both applications. Figure 4.12

shows the performance slowdown of TeraSort and TeraGen with respect to their own

standalone runtimes. The average performance slowdown with Sync is 25% better than

from No Sync, confirming the improvement made by the coordinated I/O scheduling.
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Table 4.2: CPU and memory usages of the YARN and IBIS daemons including the Re-
source Manager, Node Manager, and Data Node

Benchmark Resource Native IBIS
WordCount CPU 0.4% 0.5%
TeraGen CPU 1.7% 5.1%
TeraSort CPU 0.55% 0.65%
WordCount Memory 1.2% 8.2%
TeraGen Memory 2.0% 8.1%
TeraSort Memory 1.6% 10.6%

4.7.7 Overhead

The last experiment evaluates the overhead of IBIS from several aspects. First, it studies

the performance impact to a big-data application from IBIS-based I/O interposition and

scheduling. WordCount, TeraGen, and TeraSort are all considered because each of them

has distinct I/O patterns and demands. They are run separately with all the 96 CPU cores

in the system. Figure 4.13 shows that the overhead of using IBIS is 1%, 2%, and 4% for

WordCount, TeraGen, and TeraSort, respectively, in terms of runtime.

Second, the resource usages of IBIS are evaluated by tracking the total CPU and

memory utilizations of the Hadoop TaskTracker, DataNode, and JobTracker, where the
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Table 4.3: Development cost of IBIS

Component Lines of Code
Interposition 2593
SFQ(D) Scheduler 734
SFQ(D2) Scheduler 1520
Scheduling Coordination 1705
Total 6552

IBIS implementation is located. Table 4.2 lists the per-core CPU utilization and per-node

memory utilization, which are reasonable compared to native Hadoop’s resource usages.

Third, Table 4.3 summarizes the code development complexity in terms of lines of

code categorized by the IBIS components. IBIS provides a flexible big-data I/O schedul-

ing framework, and allows users to conveniently create new schedulers for different ob-

jectives. The amount of work required to develop a sophisticated scheduler on IBIS is

only at the level of a thousand lines of code.

4.8 Summary

IBIS is an Interposed Big-data I/O Scheduler to address the challenges and provide the

much needed I/O performance differentiation to diverse big-data applications, possibly

from different frameworks. IBIS is designed to transparently differentiate and schedule

application I/Os on every datanode by interposing upon the distributed file system com-

monly used in big-data systems. It includes a new proportional-share I/O scheduler that

can dynamically adjust I/O concurrency to optimize the tradeoff between application fair-

ness and resource utilization. It provides efficient coordination for the I/O schedulers

distributed across the datanodes to cooperate and achieve proportional sharing of the big-

data system’s total I/O service.

The evaluation results confirm that IBIS can effectively achieve total-service propor-

tional bandwidth sharing for diverse applications in the system. They also show that IBIS
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can support various important performance polices. It achieves strong performance isola-

tion for a less I/O-intensive workload (WordCount, Facebook2009, TPC-H) when under

heavy contention from a highly I/O-intensive application (TeraGen and TeraSort), which

outperforms native Hadoop by 99% for WordCount and 15% for TPC-H queries. This re-

sult is accomplished while still allowing the competing application to make good progress

and to fully utilize the storage bandwidth (< 4% reduction in total throughput). IBIS can

also achieve excellent proportional slowdown for competing applications (TeraSort vs.

TeraGen) and outperforms native Hadoop by 30%. Finally, the use of IBIS introduces

small overhead in terms of both application runtime and resource usages.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Data-intensive computing systems have been created and evolving to keep up with the

pace of the growing needs of computation and data in the modern world. The ubiquitous

service implemented by these systems meets the problem of application performance in-

terference in a shared, competing setting adopted by most public service providers or

private institutions. These data-intensive applications create bottlenecks on the storage

subsystems of the data-intensive computing systems and the bottlenecks have become a

major contributor to application performance degradation. In order to service the appli-

cations with performance guarantees and efficient resource utilization, this dissertation

provides novel approaches to data-intensive storage systems management, including both

HPC systems and big-data systems. Specifically, it makes the following three major con-

tributions:

First, virtualization based I/O interposition is introduced upon the storage subsystems

of HPC and big-data computing systems. The virtualization technique avoids the intrusive

need to change the system internals or the existing application code base. This transparent

layer provides the ability to recognize I/Os from different application for further QoS

differentiation. In both parallel storage systems and big-data storage systems, the file

system layer is chosen to be interposed upon, which is proven be most appropriate as it

provides enough higher level semantics and lower level controls.

Second, novel SFQ(D) based proportinoal share algorithms are created on the above-

mentioned virtualization layers for HPC and big-data storage systems. On on hand, par-

allel storage systems face the prominent need of servicing small, latency-sensitive I/Os

together with large, sequential I/Os that tend to overload the storage and sabotage the
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original SFQ(D) algorithm’s fairness in I/O bandwidth sharing. On the other hand, dis-

tributed storage systems receive diverse I/Os from different phases with changing I/O

concurrency and they saturate the disks frequently. This also undermines the ability of

original SFQ(D) algorithm to enforce I/O bandwidth fairness by increasing the queueing

time tremendously. To address these issues, the proposed SFQ(D)+ employs a mecha-

nism to differentiate the cost of I/Os of different sizes when being executed in the storage,

while SFQ(D2) adapts the I/O concurrency of the storage, both improving the fairness in

I/O bandwidth sharing.

Third, for total service proportional sharing, both types of storage systems require

coordinated scheduling among the distributed storage nodes. Because of the vast differ-

ence in these two systems’ architectures, two different approaches are created in order

to achieve the same goal. In parallel storage systems, the two proposed synchronization

schemes can complement each other by either balancing the cost of synchronization and

the unfairness bound or eliminating all-to-all communication when certain I/O distribu-

tion information is available. In big-data storage systems, global I/O distrubtion for each

application is collected and disseminated through a centralized information broker in a

scalable manner.

Specifically, vPFS is created to address the parallel storage management in HPC sys-

tems. Today’s parallel storage systems are unable to recognize applications’ different I/O

workloads and to satisfy their different I/O performance requirements. vPFS addresses

this problem through the virtualization of contemporary parallel file systems. Such virtu-

alization allows virtual parallel file systems to be dynamically created upon shared phys-

ical storage resources on a per-application basis, where each one gets a specific share of

the overall I/O bandwidth. This virtualization layer is implemented via parallel file sys-

tem proxies which interpose between native clients and servers and capture and forward

the native requests according to the scheduling policies.
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Upon the vPFS framework, a new proportional sharing I/O scheduler, SFQ(D)+, is

proposed to allow applications with diverse I/O sizes and issue rates to share the stor-

age with good application-level fairness and system-level utilization. SFQ(D)+ improves

over SFQ(D) by taking into account the different I/O depth costs when dispatching small

vs. large I/Os, thereby achieving better fairness among diverse workloads. vPFS also

includes a combination of efficient synchronization schemes for a large number of dis-

tributed schedulers to coordinate their local I/O scheduling and achieve the global, total-

service sharing target. These enhancements address the challenges of applying the orig-

inal SFQ algorithms [JCK04] [WM07] to HPC parallel storage and enhance them for

providing high throughput and fair data and metadata services to diverse HPC applica-

tions.

The dissertation presents a comprehensive evaluation of the vPFS prototype imple-

mented by virtualizing PVFS2. The results obtained using typical HPC benchmarks

and real-world applications, IOR [SS07] and BTIO [BBB+91], WRF [WB05], multi-

md-test[CLRT00] show that the vPFS approach is feasible because of its small overhead

in terms of throughput and resource usage (<3% for reads, <3% for writes, and <3%

for metadata accesses). Meanwhile, it achieves nearly perfect total-service proportional

bandwidth sharing for competing parallel applications with diverse I/O patterns (>96% of

the target sharing ratio). vPFS achieves 8.25 times better performance isolation than the

native PVFS2, and its SFQ(D)+ scheduler achieves 3.35 times better performance isola-

tion than the original SFQ(D). It also makes efficient use of the storage and the SFQ(D)+

scheduler achieves 13.81 times better total throughput than a non-work-conserving sched-

uler.

Specifically for big-data systems, IBIS, an Interposed Big-data I/O Scheduler, is cre-

ated to address the above challenges and provide the much needed I/O performance dif-

ferentiation to diverse big-data applications, possibly from different frameworks. IBIS
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is designed to transparently differentiate and schedule application I/Os on every datan-

ode by interposing upon the distributed file system commonly used in big-data systems.

It includes a new proportional-share I/O scheduler that can dynamically adjust I/O con-

currency to optimize the tradeoff between application fairness and resource utilization.

It provides efficient coordination for the I/O schedulers distributed across the datanodes

to cooperate and achieve proportional sharing of the big-data system’s total I/O service.

The results from an extensive evaluation confirm that IBIS can effectively address the

severe I/O interference problem that existing big-data systems have and provide strong

performance isolation with efficient resource usage.

The IBIS prototype is implemented in Hadoop/YARN, a widely used big-data system,

by interposing HDFS as well as the related local and network I/Os transparently to the

applications, and it is able to support the I/O management of diverse applications from

different big-data frameworks. It is evaluated using a variety of representative big-data

applications (WordCount, TeraSort, TeraGen, Facebook2009 [SWI], TPC-H queries on

Hive [TSJ+10]). The results confirm that IBIS can effectively achieve total-service pro-

portional bandwidth sharing for diverse applications in the system. They also show that

IBIS can support various important performance polices. It achieves strong performance

isolation for a less I/O-intensive workload (WordCount, Facebook2009, TPC-H) when

under heavy contention from a highly I/O-intensive application (TeraGen and TeraSort),

which is better than native Hadoop by 99% better for WordCount and 15% better for

TPC-H queries. This result is accomplished while still allowing the competing applica-

tion to make good progress and to fully utilize the storage bandwidth (< 4% reduction

in total throughput). IBIS can also achieve perfect proportional slowdown for competing

applications (TeraSort vs. TeraGen) and outperforms native Hadoop by 30%. Finally, the

use of IBIS introduces small overhead in terms of both application runtime and resource

usages.
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5.2 Future Work

This dissertation focuses on the I/O performance guarantee on the storage side in data-

intensive computing systems. It immediately spawns further promising research top-

ics to the management of application performance in data-intensive computing systems.

As achieving user-perceived application performance is the ultimate goal in large scale,

shared data-intensive computing systems, the next three future topics cover different I/O

scheduling policies, integration with other resource management, and hollistic end-to-end

control of application performance respectively.

5.2.1 Latency-driven I/O Scheduling

The future work will consider other storage management objectives for data-intensive

computing systems, and extend it beyond proportional bandwidth sharing. While the dif-

ferentiation of applications and their respective throughput needs are addressed in this

dissertation, a limitation of the proposed storage management approaches is the inabil-

ity to satisfy both I/O bandwidth and latency needs — current work can only guarantee

proportional sharing of bandwidth for the entire system with good utilization.

Latency of an application is the major performance concern for highly interactive

applications emerging in the use of HPC in recent years. For example, compared with data

mining or hurricane forecast applications which process data in bulks and need a stable,

constant throughput regardless of I/O response time, an interactive application such as

visualization software may need relatively low throughput but it is sensitive to I/O delays

and requires bounded response time. In big-data systems, small jobs also make up the

majority of workload composition in production environments (Facebook) and they need

bounded I/O latency. Existing related work addresses latency and throughput control in

a single-disk system [ZSW+06], but does not provide synchronized latency provisioning

113



from multiple involved storage nodes, while our initial results on a two-level I/O scheduler

that supports both throughput- and latency-driven parallel I/O scheduling on vPFS has

shown promising results [XZ13].

Our preliminary two-level scheduler consists of an upper level responsible for request

admission and throughput guarantee. It divides the I/O requests into groups and uses

SFQ(D) algorithm to throttle and guarantee I/O throughput for each application. The

SFQ(D) serves as a credit scheduler, using D as credits for each application bucket. D

is measured in bytes instead of storage concurrency slots, replenished globally for all

applications, and is thus work-conserving for each application. The lower level consists

of an EDF scheduler maintaining the deadline of I/Os dispatched to the storage device.

By observing the storage latency, the lower level reports storage idleness to the upper

level. It also uses the latency to determine the storage concurrency, improving utilization.

This process is repeated online using a feedback-control loop and each action/observation

happens within their respective time window.

The first version of this scheduler has been proven effective on a single-node setup

of HPC storage systems. The feedback loop can react to system saturation using two

distinctive workloads with different throughput and latency QoS demands. It also re-

acts to deadline misses and storage idleness, maintaining the storage at a balance point

where all deadlines are met and throughput is high. On-going work is focused on provid-

ing total-service throughput guarantee from the upper admission level, and synchronized

application-level latency guarantee on the lower level across many storage nodes. Such a

scheduler is also conceived to be feasible on big-data systems which require low delay in

job execution, especially small jobs.
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5.2.2 Coordinated Storage and Network I/O Management

In our proposed IBIS for big-data storage management, the network throughput guaran-

tee is provided by indirectly controlling the I/O service before receiving/transmitting the

network packets. For network reads, the corresponding I/O service is throttled by the

local disk reads; for network writes the corresponding I/O service is throttled by the lo-

cal disk writes. While it proves effective in our setup, it still remains to be solved if the

network contention already exists in the link. Initial results have shown that various data-

intensive applications can saturate the network link frequently. It is caused by either a

large shuffling phase in MapReduce involving an all-to-all traffic pattern, or by an inten-

sive write phase (e.g. in reduce phase), where the replication factor is not low, amplifying

the network load. Previous works have either only dealt with network as a single resource

not serving storage purposes, or not in coordination with storage I/O management. This

lack of coordination of storage and network I/O management impacts both HPC storage

systems and big-data storage systems.

For big-data storage systems, complex workload models and patterns exercise the net-

work in multiple ways. Persistent I/Os access the network resource when HDFS I/Os are

remote to the task, e.g. a remote HDFS read from a task where the data is not resident on

the same node, or when an HDFS write of the final results where the replication factor is

larger than two. The majority of intermediate I/Os are also transferred over the network to

merge the map results for reducing. This constitutes the main usage of network resource

in MapReduce-type big-data workloads. Furthermore, the I/O performance of the data

transferred on the network also affects the synchronization traffic. When synchroniza-

tion messages cannot arrive on time, the service fairness can fluctuate and diverge from

the target. All these can result in the cascading of loss of QoS onto the next phase of

applications’ execution.
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In HPC storage systems, network traffic is also outstanding. HPC systems often have

high compute-to-storage node ratio, consolidating more data onto smaller number of stor-

age nodes. Thus a higher rate of network transfer is generated on the links, and it may

become a bottleneck in the application performance. Currently the network control is not

implemented inside HPC storage systems, and a lack of network control method could

result in suboptimal performance isolation for some highly latency-sensitive applciations

running in HPC systems.

With the advent of Software Defined Network (SDN), the network contention can

be managed by applying scheduling algorithms to the switch layer. More importantly,

this scheduling must coordinate with the storage management layer on top of the data-

intensive computing system. The initial research has rudimentary control over network

bandwidth using Open vSwitch and OpenFlow. Challenge remains to dynamically track

the network flow and identify which flow belongs to which application, meanwhile main-

taining a high overall network utilization.

5.2.3 End-to-end Application Performance Guarantee

The virtualization framework of the data-intensive computing systems enables a variety

of interesting future research topics. In HPC systems, the compute nodes are the control

knob for the CPU resource, and network controller is the control knob for network re-

source, and the vPFS is the control knob for its storage system. In big-data systems, the

control knob for CPU is number of map slots from the job scheduler, the memory is con-

trolled by Java Virtual Machine launch parameter, the network controller is the knob for

network resource, and I/O bandwidth is controlled by IBIS. With all those control knobs,

the next step is to automatically and precisely tune these control knobs online holisti-

cally. Autonomic resource management will be studied to accurately allocate different
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types of resources based on performance models that can capture a MapReduce applica-

tion’s resource demands. For example, different resources’ usages will be modeled and

the coordination of all resource managers will be designed and implemented.

To deliver guaranteed performance for each application, the mapping between the pro-

visioning of resources and the resulting performance is need, which is called a resource-

performance model. To be specific, the model is a mapping from a vector of resources to

application performance metrics, such as (CPU, memory, network, storage)→(throughput

/ latency / runtime). When equipped with per-application resource-performance models,

the resource management system solves an optimization problem within a total resource

limit constraint, and a data locality constraint, to maximize application performance and

minimize total resource usage. Techniques such as Dominant Resource Fairness can be

used on multiple types of resources, while modeling of resource-performance of applica-

tions can be done by online fuzzy modeling techniques [WXZF11]. The fuzzy modeling

technique has been used on the VM resource allocation in the cloud computing systems,

but not yet on the parallel applications in data-intensive systems [WXZ12]. The strength

of this tool is that it can characterize highly complex and nonlinear systems, but the in-

tegration of network and storage I/O has not been explored either. Although it promises

online adaptive training but its effectiveness in diverse workloads and frequent application

phase changes also needs to be investigated.
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