
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-25-2016

Characterization of Homogenized Mechanical
Properties of Porous Ceramic Materials Based on
Their Realistic Microstructure
Siavash Rastkar
Florida International University, srast002@fiu.edu

DOI: 10.25148/etd.FIDC000247
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Applied Mechanics Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Rastkar, Siavash, "Characterization of Homogenized Mechanical Properties of Porous Ceramic Materials Based on Their Realistic
Microstructure" (2016). FIU Electronic Theses and Dissertations. 2478.
https://digitalcommons.fiu.edu/etd/2478

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2478&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=digitalcommons.fiu.edu%2Fetd%2F2478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2478?utm_source=digitalcommons.fiu.edu%2Fetd%2F2478&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

CHARACTERIZATION OF HOMOGENIZED MECHANICAL PROPERTIES

OF POROUS CERAMIC MATERIALS BASED ON THEIR REALISTIC

MICROSTRUCTURE

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL ENGINEERING

by

Siavash Rastkar

2016



To: Interim Dean Ranu Jung
College of Engineering and Computing

This dissertation, written by Siavash Rastkar, and entitled Characterization of Ho-
mogenized Mechanical Properties of Porous Ceramic Materials Based on Their Re-
alistic Microstructure, having been approved in respect to style and intellectual
content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Cesar Levy

George S. Dulikravich

Arvind Agarwal

Seung Jae Lee

Igor Tsukanov, Major Professor

Date of Defense: March 25, 2016

The dissertation of Siavash Rastkar is approved.

Interim Dean Ranu Jung

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2016

ii



c© Copyright 2016 by Siavash Rastkar

All rights reserved.

iii



DEDICATION

To my parents.

iv



ACKNOWLEDGMENTS

Thanks, everyone who helped me learn more!

v



ABSTRACT OF THE DISSERTATION

CHARACTERIZATION OF HOMOGENIZED MECHANICAL PROPERTIES

OF POROUS CERAMIC MATERIALS BASED ON THEIR REALISTIC

MICROSTRUCTURE

by

Siavash Rastkar

Florida International University, 2016

Miami, Florida

Professor Igor Tsukanov, Major Professor

The recent advances in the Materials Engineering have led to the development

of new materials with customized microstructure in which the properties of its con-

stituents and their geometric distribution have a considerable effect on determina-

tion of the macroscopic properties of the substance. Direct inclusion of the material

microstructure in the analysis on a macro level is challenging since spatial meshes

created for the analysis should have enough resolution to be able to accurately cap-

ture the geometry of the microstructure. In most cases this leads to a huge finite

element model which requires a substantial amount of computational resources.

To circumvent this limitation a number of homogenization techniques were devel-

oped. By considering a small element of the material, referred to as Representative

Volume Element (RVE), homogenization methods make it possible to include the

effects of a materials microstructure on the overall properties at the macro level.

However, complexity of the microstructure geometry and the necessity of satisfy-

ing periodic boundary conditions introduce additional difficulties into the analysis

procedure.

In this dissertation we propose a hybrid homogenization method that combines

Asymptotic homogenization with MeshFree Solution Structures Method (SSM). Our
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approach allows realistic inclusion of complex geometry of the microstructure that

can be captured from micrographs or micro CT scans. In addition to unprecedented

flexibility in handling complex geometries, this method also provides a completely

automatic analysis procedure. Using meshfree solution structures simplifies meshing

to creating a simple cartesian grid which only needs to contain the domain. This

also eliminates manual modifications which usually needs to be performed on meshes

created from image data.

A computational platform is developed in C++ based on meshfree/asymptotic

method. In this platform also a novel meshfree solution structure is designed to pro-

vide exact satisfaction of periodic boundary conditions for boundary value problems

such as homogenization. Performance of the developed platform is tested over 2D

and 3D domains against previously published data and/or conventional finite ele-

ment methods. After getting satisfactory results, homogenized properties are used

to compute localized stress and strain distributions over inhomogeneous structures.

Furthermore, effects of geometric features of pores/inclusions on homogenized

mechanical properties is investigated and it is demonstrated that the developed

platform could provide an automated quantitative analysis tool for studying effects

of different design parameters on homogenized properties.
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CHAPTER 1

INTRODUCTION

1.1 Problem Description and Importance

Advances made in different manufacturing fields were always linked to technological

breakthroughs in robotics, information technology and high performance computing,

but nothing can affect how things are made and what they are capable of more than

the materials used by manufacturers. Significant advances in structural material

technologies have been made in the past 50 years and new materials such as ceramics

and composites have shown superior properties in comparison to traditional ones

such as steel and aluminium. Until the 1950s, the most important ceramic materials

were pottery, bricks, tiles and cement. After a few decades, in the early 90’s the

value of components produced with advanced materials was almost $2 billion per

year and by 2000 this number was doubled [10, 32].

In general materials such as composites and ceramics can be described as ma-

terials made from dissimilar constituents formed into inhomogeneous structures

with methodical or random geometric distribution. One of the difficulties in the

widespread application of advanced materials is understanding the underlying mech-

anisms behind the processing-structure-property relationship of them [32]. In other

words, how can selection of constituents and processing route affect the microstruc-

ture of material and how to predict the properties of a certain microstructure. Cur-

rently these problems are being investigated quite specifically and research programs

are focusing on understanding the mentioned underlying relations. The physical

properties of these materials are highly dependent on three main factors: (1) the

properties of base materials used to make the final product; (2) spatial distribu-

tion and shape of the inhomogeneities ; (3) the relative density of the product [49].
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Figure 1.1: Schematic diagram showing the relation between processing, structure,
properties and behaviour of an advanced material. Red boxes represent the areas
which this dissertation investigates.

Therefore one of the main challenges in creating new materials with desired proper-

ties is controlling inhomogeneity (or more specifically pores) sizes and distributions

and studies have been conducted to investigates methods for controlling the size of

porosities during the manufacturing process [1, 61] or how to model porous materials

and investigate the effect of pore sizes and topology on material behavior [14]. Here

in this dissertation our work is mainly concentrated on developing a computational

platform to improve our understanding of the links between material microstructure

architecture, its properties and mechanical behaviour of the material (Fig. 1.1).

1.2 Literature Review

In many engineering cases despite the fact that the materials involved are not ho-

mogenous we are still interested in having an overall understanding of their behavior.

One of the most common techniques for doing this is homogenization, which allows

us to calculate effective material characteristics based on properties of particular

components and their volume fraction in the structure. Considering the vast ap-

plications of ceramic and composite materials and the undeniable importance of

understanding their mechanical behavior, here in this work we are going to focus

on investigating their homogenized mechanical properties based on a realistic micro

structure model.
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Attempts to find out the properties of composite materials started about 100

years ago and at that time it was as simple as rule of mixtures. This general

rule is a weighted mean used to calculate various properties of composite materials

by predicting an upper and a lower bound for material properties [51] However this

simple model could not provide a precise tool but it was the base for developing more

advanced analytical methods to predict material properties. In early 60s Hashin

and Shtrikman were able to provide a variational approach for predicting bounds

on the effective properties. Although the method proposed by them was much more

accurate than simple rule of mixtures but it was limited to two phase materials

and it depended only on the relative volumes and did not take the geometry into

consideration [18, 19]. To overcome this weakness, a few years later Hill proposed

a self consistent method for composite materials and he was able to calculate the

macroscopic elastic moduli of two-phase composites with ellipsoidal inclusions [27,

26]. Later in 1973 Mori and Tanaka discussed a method for calculating the average

internal stress in the matrix of composite materials and they showed that the actual

stress in the matrix is the average stress plus the local fluctuations [44]. This method

was modified in 1987 by Benveniste for computation of the effective properties of

composites [5].

Although different analytical methods have been proposed for homogenization,

but all of them are often limited to specific cases. On the other hand since numerical

methods have more flexibility in handling complex problems they seem to be a more

appropriate tool to deal with homogenization problem. Most of classic numerical

homogenization techniques follow similar steps. In these methods to reach to an

understanding of material’s general behavior, instead of studying the whole structure

a microstructural representative volume element (RVE) is defined as the repetitive

structural pattern. Periodic boundary conditions are applied on opposing faces
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of the mentioned element and governing equations of the problem are solved in the

RVE. Then an attempt is made to bridge between micro and macro-scale and predict

the global results.

Reliability and efficiency of multi-scale methods has been investigated by differ-

ent groups. For instance a RVE based homogenization scheme for a periodic porous

composite is compared to direct analysis and the error is investigated as a func-

tion of the ratio of the RVE size to global domain dimensions [28]. Also adaptive

methods for hierarchical modeling of heterogenous structures are introduced where

modeling errors created by replacing the actual structure with a representative el-

ement are investigated [72] and required RVE scale in order to meet a preset error

was determined [46].

So far various numerical methods have been used to tackle the multi-scale equa-

tions of a homogenization problem and among all these methods Finite Element

Analysis is the most popular one, due to its flexibility in handling different type of

problems, being computer programming friendly and the availability of commercial

FE software [8, 15]. Extensive studies have been carried out about FE homogeniza-

tion techniques. Their computational issues and applications were overviewed and a

relationship between macro and micro-scale properties were developed [8, 41]. Math-

ematical expansions for modeling physical phenomena on inhomogeneous materials

with periodic microstructure and also the explicit mathematical equations which de-

scribes the local stress and strain fields associated with a given global domain were

derived [50]. Performance of such formulations were tested on composite structures

and effect of reinforcement volume fraction and their geometry and distribution in

the matrix on overall material properties were studied [47].

Behavior of different type of elements like thin structure shell and beam elements

are studied in thermal, mechanical and coupled problems and they have been ap-
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plied in solving in plane loading problems for 3D beams with periodic structure [7].

Derivation of homogenization equations are studied in details for computation of ef-

fective constitutive parameters, analytical and finite element formulation of a group

of simple geometries such as rank laminated composites are compared with each

other and results are used for structural topology optimization to obtain desired

material properties [20, 21, 22]

In many cases where finding the effective property of a non-homogenous material

was the goal, computational homogenization methods have proven to be a very pow-

erful tool. The numerical investigation of stress and strain of orthotropic composite

materials has yield to determining their average (effective) stress and strain energy

[70] and also combining asymptotic homogenization and finite element is used to

depict the evaluation of microstructural stresses and strains [16]

Similar studies have been performed on reinforced composites to find out their

effective shear modulus and effect of volume fraction of particles on it [31]. Thermal

properties of two-phase materials were investigated by applying a FE homogeniza-

tion scheme and as the result effective thermal expansion coefficient was calculated

[43], same process has been implemented on non-homogenous materials to find out

their effective Youngs modulus [42].

Although finite element, as the most popular computational homogenization

technique, is a very robust and developed method but it still carries some weaknesses.

Generally in any finite element method the domain of interest is divided into very

small elements which their sizes are determined by size of the smallest features in

the domain, but due to computational costs and concerns there is a limit on how

small these meshes can be. As a result, the geometrical complexity that can be

captured by them is limited. Also in cases where geometry is presented by detailed

pictures of the microstructure there are very few software packages which are capable
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of performing image-based mesh generation. And not only they are considerably

expensive but also substantial amount of manual work is required for fine tuning

the meshes. furthermore, finite element is based on continuity in elements and

modeling frequent breakages of material which often happens in a homogenization

problem can be another source of problems for a finite element user.

Most importantly in any RVE-based homogenization method, due to the peri-

odic nature of the structure, it is of great importance to be able to apply periodic

boundary conditions on the faces of selected RVE. The most common approach for

mesh-based finite element methods to impose periodic boundary conditions on op-

posing sides of a RVE involves pairing nodes on opposite faces. But in a general

setting the similarity of mesh distribution on paired boundaries of RVE cannot al-

ways be guaranteed, especially in cases where the geometry of pores inside the RVE

requires a non-periodic mesh or pores intersect with RVE sides. Both these cases are

very common when the RVE model is cpatured from a real micro structure image

and contains a non-periodic mesh which can make the node pairing process very

difficult to apply [45, 68].

To overcome drawbacks of conventional finite element, which mainly present

themselves during the mesh generation stage, meshfree or meshless methods have

been developed. Over the past 15 years, meshfree techniques have presented them-

selves as a powerful numerical tool for dealing with different types of engineering

problems. The basic idea behind modeling a certain geometry without using meshes

was proposed by Rvachev in 1963, he presented functions called R-functions which

were used to model domain geometry and form a solution structure in terms of a

functional expression which captures the native geometry and satisfies the given

boundary conditions [53, 54].

In meshfree method instead of using a geometry conforming mesh to represent
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Figure 1.2: The distance field functions constructed from the boundary representa-
tion of state of Wisconsin [59].

the model, a group of implicit functions are utilized to describe the domain. These

functions are designed in such way that they have zero values on the boundary, pos-

itive in the domain and negative outside. A sample geometry modeled via distance

field functions is shown in Fig. 1.2. In 1999 Shapiro and Tsukanov started a detailed

study on theory of R-functions and they explored different methods for generation

of implicit functions (also known as distance field functions). Based on whether the

native domain is represented in the form of a CSG (Constructive Solid Geometry)

or a boundary representation, different methods could be implemented to generate

the proper distance field functions [59].

Having the distance field representation of a domain makes it possible to create

a solution structure for the boundary value problem imposed on it. The resulting

Solution Structure Method (SSM) contains necessary terms to capture the geometric

effect and also can provide exact satisfaction of boundary conditions and it is in fact

meshfree, which means the spatial discretization no longer needs to conform the

geometry of the domain [56]. It was also shown that by a proper choice of R-function

the SSM can converge to the exact solution of the problem. Efficiency of the method

was tested in a sample non-steady heat transfer problem with non-homogenous
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mixed boundary conditions. In similar works it was also shown that R-functions can

be used in automated modeling of problems with time-varying geometries [59, 56].

In addition to the development of SSM, researches were carried out to investigate

the properties of functions involved in it. An algorithm was proposed for direct nu-

merical computation of partial derivative of mentioned functions. It was shown that

by application of generalized Leibnitz rules, constant time access can be provided

to the partial derivatives which accelerates the automatic differentiation process

[63]. Also a novel technique was formulated for geometrically adaptive numerical

integration. Numerical integration over solid domains usually requires adoption to

the solid boundaries, but it was demonstrated that by combining a system similar

to marching cubes with suitable parameterizations of the boundary cell geometry a

greater accuracy with fewer integration point can be provided [39].

After investigating the mathematics behind SSM and the advantages that R-

functions can provide, solution structures were studied more systematically and

they were classified for different types of boundary conditions. The possibility of

automatic construction of them were evaluated and it was shown that how distance

field functions in conjunction with transfinite interpolation can be used toward exact

satisfaction of boundary conditions. Previously developed automatic differentiation

and integration toolboxes were used in run time and over non-meshed domains to

deal with case studies such as heat transfer with mixed Neumann and Dirichlet

boundary conditions, plate vibration, stress in a cantilever beam and incompress-

ible fluid dynamic [64, 55]. Fig. 1.3 shows how the automatic differentiation and

integration toolboxes can be implemented in a meshfree analysis engine.

Considering the ability and flexibility of meshfree methods in capturing com-

plicated geometries, they were also applied in modeling non-homogenous materials.

It was shown that using generalized Taylor series expansions to describe all dis-
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Figure 1.3: Implementation of the ’Automatic Differentiation’ and ’Adaptive Inte-
gration’ in meshfree analysing system [64].

tributions of physical properties and also employing distance fields to boundaries

and material features can provide a powerful tool to represent variations of material

properties and also satisfy prescribed boundary conditions [65].

This capability was later used as a base for developing a software platform called

Scan and Solve for simulation of physical fields [11]. In the mentioned platform

physical domains can be captured by surface or volumetric scanning technologies,

constructive solid geometry, polygonized model and even appropriately interpreted

point cloud. Since Scan and Solve is a completely meshfree paradigm it can provide

the means for automated field simulation and bypassing geometric and topological

meshing problems [13, 12].

Based on the survey conducted on literature about trends in homogenization field

it can be noticed that although finite element methods are the most widely used tools

in homogenization problems, there still exist challenges in applying them. In most

homogenization problems geometric models are provided by micrograph images and

due to the mathematical approach used for almost all homogenization techniques,

they all involve solving a boundary value problem with periodic boundary conditions.
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Solution to such problems involves converting the captured image into a model

understandable by meshing software packages. Meshing has to be done in a manner

which provides possibility of node-pairing on opposing faces, but in a general setting

the similarity of mesh distribution on paired boundaries of RVE cannot always be

guaranteed, especially in cases where the geometry of inhomogeneities inside the

RVE requires a non-periodic mesh or they intersect with RVE sides.

Considering the nature of meshfree methods, it seems taking advantage of them

will allow us to tackle homogenization problems in a more efficient way by complete

elimination of meshing process. This way all the manual work required to fine

tune the meshes and make them suitable for a problem with periodic boundary

conditions will vanish and numeric simulation of homogenization problems will be

more automatized and eventually will lead to cheaper and faster simulations.

1.3 Objectives and Contributions

The main idea behind this research is that the overall mechanical properties of a

porous media are dependent on the geometry and distribution of porosities in micro

structure. In addition to material properties; geometry, volume fraction and location

of pores would affect not only the overall mechanical properties, but also will have

an impact on stress/strain distribution in the material.

In this dissertation we developed a computational platform to:

• Acquire graphical representation of material structure via 2D microgrpahs and

convert them into approximate distance field representations.

• Assemble a proper meshfree solution structure for boundary value problems

with periodic boundary conditions by using enrichment basis functions.
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• Combine a meshfree solution structure with asymptotic homogenization to

predict overall mechanical properties of multi-phase inhomogeneous structures.

• Use the homogenized properties in conjunction with the meshfree method to

find the stress/strain distribution in the domain.

• Study the effect of geometric distribution of inhomogeneities on the overall

material properties.

1.4 Outline of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 describes the theory

of asymptotic homogenization and how physical fields can be expressed in two mi-

cro and macro domains. Also concept and mathematics behind meshfree solution

structure is discussed in detail. Chapter 3 explains the hybrid meshfree/asymptotic

homogenization method and related formulations, it also contains numerical exam-

ples used to validate the performance of our platform. In Chapter 4 homogenized

properties are used to investigate stress/strain distribution in an inhomogeneous

domain and necessary numerical experiments are presented. Chapter 5 contains the

study on effect of geometry on overall material mechanical properties. Homoge-

nization of three dimensional domains is studied in Chapter 6 and discussions and

conclusions are presented in Chapter .
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CHAPTER 2

THEORY AND MATHEMATICAL FORMULATION

In this chapter the mathematical background for theories and methods used in

developing our computational platform is explained in details. As mentioned in

Chapter 1, the proposed platform is formed by combining asymptotic homogeniza-

tion and meshfree method. Section 2.1 describes the formulation required for calcu-

lation of overall properties of inhomogeneous materials, then investigates prediction

of stress field distributions and also introduces alternative methods for evaluation

of effective properties calculated via homogenization methods.

Mathematical theories involved in meshfree method, such as solution structures

for boundary value problems with different types of boundary conditions, distance

field functions and automatic differentiation and integration are explained in Section

2.2.

2.1 Homogenization, Formulation and Result Assessment

2.1.1 Homogenization

Asymptotic method, as part of homogenization theories, was developed from study-

ing partial differential equations containing rapidly varying coefficients and then

it was formed into a powerful tool for finding overall properties of inhomogeneous

materials.This method is capable of analyzing inhomogeneous materials with high

contrast in the properties of their constituents and in addition to obtaining effective

material properties it also solves the full structural problem at micro level [15, 34].

It worth mentioning although here we are using asymptotic method, but the

developed platform is not limited to that and can be used to empower any other

numerical homogenization technique.
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Figure 2.1: Schematic representation of global and local coordinate systems.

As shown in Fig. 2.1, an inhomogeneous material with a periodic microstructure

can be represented by domain Ω in the global coordinate system x and a spatially

periodic RVE associated with domain Y in local coordinate system y. The ratio of

macro and micro coordinate systems is define by ǫ, where ǫ << 1 and is defined in

eq. (2.1). For derivation of asymptotic formulation two important assumptions are

made [28]:

• Fields vary on multiple spatial scales due to the existence of microstructure.

• The microstructure is spatially periodic.

In asymptotic method if any physical property (Ψ) of material can be related

to two distinct macro-scale (Ω) and micro-scale (Y ) domains then an expansion in

form of eq. (2.2) can be written with respect to ǫ [20].

y =
x

ǫ
(2.1)

Ψǫ(x) = Ψ0(x,y) + ǫΨ1(x,y) + ǫ2Ψ2(x,y) + ... (2.2)

Where ǫ → 0, ǫ superscript shows the periodicity of a given variable on the

global coordinate system and Ψi function are defined in the domain Ω and they

are Y -periodic. To evaluate effective properties of inhomogeneous materials it is
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Figure 2.2: (a) Domain Ω subjected to body force f, traction force t and prescribed
displacement boundary condition; (b) Corresponding RVE in local coordinate sys-
tem.

crucial to re-derive governing and constitutive equations in such way that the effect

of microstructural inhomogeneities is taken into consideration.

To do so, let’s start with a domain Ω in global coordinate subjected to body

force f and traction force t on the boundary Γt and prescribed displacement on Γd.

Mentioned domain has a spatially periodic structure and is made from RVEs which

are defined in local coordinate system as shown in Fig. 2.2.

If we assume that the constitutive equation and strain-displacement relation for

domain Ω are defined as eqs. (2.3) and (2.4) and V describes a group of Y -periodic

test functions which satisfy homogenous Dirichlet boundary conditions , then the

general elasticity problem for domain Ω can be stated as eq. (2.5).

σǫ
ij = Eǫ

ijklε
ǫ
kl (2.3)

εǫkl =
1

2

(
∂uǫk
∂xl

+
∂uǫl
∂xk

)

(2.4)

∫

Ω

Eǫ
ijkl

∂uǫk
∂xl

∂vi
∂xj

dΩ =

∫

Ω

fividΩ+

∫

Γt

tividΓ ∀vi ∈ V (2.5)
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Where σij , εij and Eijkl show the stress, strain and elasticity tensors. ui repre-

sents displacement field and same as eq. (2.2), ǫ superscript shows the periodicity

of the given variable on global coordinate system x.

Since solution for eq. (2.5) (uǫ) depends on macro-scale and micro-scale domains

(for different points in macroscopic domain microstructure varies, but if it is studied

in microscopic level a periodic pattern could be detected [17]), an expansion in form

of eq. (2.2) can be written for it:

uǫi(x) = u0i (x,y) + ǫ1u1i (x,y) + ǫ2u2i (x,y) + ... (2.6)

Now by substituting eq. (2.6) back into eq. (2.5) and using chain rule of function

differentiation which is:

∂(.)

∂xǫi
=
∂(.)

∂xi
+

1

ǫ

∂(.)

∂yi
(2.7)

we will get:

∫

Ω

Eǫ
ijkl{

1

ǫ2
∂u0k
∂yl

∂vi
∂yj

+
1

ǫ

[(
∂u0k
∂xl

+
∂u1k
∂yl

)
∂vi
∂yj

+
∂u0k
∂yl

∂vi
∂xj

]

+

[(
∂u0k
∂xl

+
∂u1k
∂yl

)
∂vi
∂xj

+

(
∂u1k
∂xl

+
∂u2k
∂yl

)
∂vi
∂yj

]

+ ǫ(...)}dΩ

=

∫

Ω

fividΩ +

∫

Γt

tividΓ

(2.8)

Since eq. (2.8) has to be valid for any given ǫ → 0+, it is necessary that coefficients

of any power of ǫ be zero [50]. Therefore:

1

ǫ2

∫

Ω

Eǫ
ijkl

∂u0k
∂yl

∂vi
∂yj

dΩ = 0 (2.9)

1

ǫ

∫

Ω

Eǫ
ijkl

[(
∂u0k
∂xl

+
∂u1k
∂yl

)
∂vi
∂yj

+
∂u0k
∂yl

∂vi
∂xj

]

dΩ = 0 (2.10)

∫

Ω

Eǫ
ijkl

[(
∂u0k
∂xl

+
∂u1k
∂yl

)
∂vi
∂xj

+

(
∂u1k
∂xl

+
∂u2k
∂yl

)
∂vi
∂yj

]

dΩ =

∫

Ω

fividΩ +

∫

Γt

tividΓ

(2.11)
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Multiplying eq. (2.9) by ǫ2, taking the limit ǫ → 0+, integration by parts,

applying divergence theorem and implementing periodic boundary conditions on

opposing faces will lead to a boundary value problem of u0 in domain Y [17]:

−
∂

∂yj

(

Eǫ
ijkl

∂u0k
∂yl

)

= 0 y ∈ Y (2.12)

Which gives us:

u0 = u0(x) (2.13)

u0 is the first term in asymptotic expansion for displacement eq. (2.6) and it is

independent of microscopic coordinates y. In other words we can say asymptotic

expansion divides behavior of the displacement field into two parts. u0(x) which

is only a function of global coordinates, represents the macroscopic or homogenized

part of the displacement and rest of the terms in eq. (2.6) carry the microscopic

effects. Now by using information in eq. (2.13), multiplying eq. (2.10) by ǫ and

taking the limit ǫ→ 0+ we will have:

∫

Y

Eǫ
ijkl

(
∂u0k
∂xl

+
∂u1k
∂yl

)
∂vi
∂yl

dY = 0 (2.14)

Following the steps performed on eq. (2.9), which were integration by part, using

divergence theorem and applying periodic boundary conditions, eq. (2.14) could be

represented in the form of a boundary value problem which should be solved for u1

[50]:

∂

∂yj

[

Eǫ
ijkl

(
∂u0k
∂xl

+
∂u1k
∂yl

)]

= 0 (2.15)

It has been proposed that the solution for eq. (2.15) takes the form of [8, 17]:

u1i = −χkl
i (x,y)

∂u0k(x)

∂xl
+ ũ1i (x) (2.16)

Where ũ1i (x) is an arbitrary integration constant in y, χkl ∈ V are test functions

satisfying periodicity conditions and since eq. (2.15) is linear with respect to u0
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they can be the solution for [17]:

∫

Y

Eijpm

∂χkl
p

∂ym

∂vi
∂yj

dY =

∫

Y

Eijkl

∂vi
∂yj

dY ∀vi ∈ V (2.17)

In the next step if we take the limit ǫ → 0+ of eq. (2.11) and use eq. (2.13) in

conjunction with following lemma which is valid for a Y -periodic function f(y):

limǫ→0+

∫

Ω

f
(x

ǫ

)

dΩ →
1

|Y |

∫

Ω

∫

Y

f(y)dY dΩ (2.18)

We will get the macro-scale balance equation:

∫

Ω

[
1

|Y |

∫

Y

Eijkl

(
∂u0k
∂xl

+
∂u1k
∂yl

)

dY

]
∂vi
∂xj

dΩ

=

∫

Ω

(
1

|Y |

∫

Y

fidY

)

vidΩ +

∫

Γt

tividΓ ∀vi ∈ V

(2.19)

Here |Y | means volume or area for three or two dimensional domains. Now substi-

tuting eq. (2.16) into eq. (2.19) yields to:

∫

Ω

EH
ijkl

∂u0
∂xl

∂vi
∂xj

dΩ =

∫

Ω

f̄ividΩ+

∫

Γt

tividΓ ∀vi ∈ V (2.20)

Where:

EH
ijkl =

1

|Y |

∫

Y

(

Eijkl − Eijpm

∂χkl
p

∂ym

)

dY (2.21)

f̄i =
1

|Y |

∫

Y

fidY (2.22)

Comparing eq. (2.20) to eq. (2.5) denotes the fact that eq. (2.20) is macro-

scopic balance equation and EH
ijkl defined by eq. (2.21) represents the homogenized

elasticity tensor and f̄i is the average body force.

Going back to eq. (2.17) and putting it side by side eq. (2.20) shows that micro-

scale and macro-scale equations are not coupled and homogenized elasticity tensor

can be computed by solving eq. (2.17) and the solution is completely independent

of macro-scale displacement u0. So for a given inhomogeneous material as long as
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the geometry of RVE does not change, homogenized elasticity tensor calculated for

it is going to be valid for macroscopic problems with different external loads and

boundary conditions.

It also should be noted that in eq. (2.17), χ functions are symmetric with

respect to k and l indices which means that for a three dimensional problem six

equations in the form of eq. (2.17) should be solved and a two dimensional problem

will only require three equations with different kl indices [17].For a 3D problem

kl = 11, 22, 33, 12/21, 13/31, 23/32 and in a 2D domain kl = 11, 22, 12/21.

Here in this work a first order asymptotic expansion will be used for displacement

and therefore the final form of eq. (2.6) will be:

uǫ(x) = u0(x)− ǫ

(

χkl
i (x,y)

∂u0k(x)

∂xl
− ũ1i (x)

)

+ ǫ2(...) (2.23)

Higher order displacement correctors can be calculated by following similar steps,

interested reader can refer to [50] and [20] for more information.

2.1.2 Stress distribution

After calculation of homogenized elasticity tensor and finding the formulation for

the terms in displacement asymptotic expansion shown in eq. (2.6), we can use

those information to investigate stress and strain distribution in micro level. As

mentioned in Section 2.1.1 one of the main advantages of asymptotic method is

that it can provide the solution for full structural problem at micro level and unlike

other homogenization techniques, this method provides a localization algorithm to

explicitly define the equation for stress and strain at micro-scale [28].

If we go back to eq. (2.6) and write a first order expansion for displacement,

substitute it in eq. (2.4) and use the chain rule represented in eq. (2.7) we will get:

εǫij(x) = ǫ−1ε−1
ij (x,y) + ǫ0ε0ij(x,y) + ǫ1ε1ij(x,y) (2.24)
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Where:

ε−1
ij =

1

2

(
∂u0i
∂yj

+
∂u0j
∂yi

)

(2.25)

ε0ij =
1

2

(
∂u0i
∂xj

+
∂u0j
∂xi

)

+
1

2

(
∂u1i
∂yj

+
∂u1j
∂yi

)

(2.26)

ε1ij =
1

2

(
∂u1i
∂xj

+
∂u1j
∂xi

)

+
1

2

(
∂u2i
∂yj

+
∂u2j
∂yi

)

(2.27)

Knowing that u0 is only a function of global coordinate x (2.13) and the fact that

we are only using first order expansion, eq. (2.24) can be rewritten in the following

form which describes the localized strains:

εǫij = ε0ij + ǫ1(...) ≈
1

2

[(
∂u0i
∂xj

+
∂u0j
∂xi

)

+

(
∂u1i
∂yj

+
∂u1j
∂yi

)]

(2.28)

Now by substituting eq. (2.28) back into eq. (2.3) the equation for localized

stresses can also be derived:

σǫ
ij = σ0

ij + ǫ1(...) ≈
1

2
Eǫ

ijkl

[(
∂u0k
∂xl

+
∂u0l
∂xk

)

+

(
∂u1k
∂yl

+
∂u1l
∂yk

)]

(2.29)

2.1.3 Validation of homogenized properties

In Section 2.1.1 detailed formulation for calculation of homogenized mechanical

properties with asymptotic method was presented, here we are going to introduce

two alternate methods for computation of such properties. Later depending on the

type of the numerical experiments which we are conducting, one or both of these

methods are going to be used to evaluate the accuracy of the results of our compu-

tational platform.

Hashin-Shtrikman bounds

As mentioned in Chapter 1, over the last decades different methods have been

developed to calculate the effective properties of inhomogeneous materials. Among
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them there is a group of methods which can provide an upper and lower bound to

predict the homogenized properties of a composite structure. Hashin and Shtrikman

bounds are one of the very common approaches for dealing with effective properties.

This method was developed based on a variational approach and it is valid for

materials with linear constitutive behavior and an isotropic microstructure regular

enough which could be considered as a periodic structure [18, 19].

Based on Hashin and Shtrikman’s formulation, the upper and lower bounds for

bulk and shear modulus of a two phase microstructure is defined as:

κ1 +
f2

1
κ2−κ1

+ 3(1−f2)
3κ1+4µ1

≤ κ∗ ≤ κ2 +
1− f2

1
κ1−κ2

+ 3f2
3κ2+4µ2

(2.30)

G1 +
f2

1
G2−G1

+ 6(1−f2)(κ1+2G1)
5G1(3κ1+4G1)

≤ G∗ ≤ G2 +
(1− f2)

1
G1−G2

+ 6f2(κ2+2G2)
5G2(3κ2+4G2)

(2.31)

Where κ∗ and G∗ are the homogenized bulk and shear modulus, κ1, G1 and κ2, G2

are the modulus for two phases of material, f2 is the volume fraction of phase two

and it is also assumed that κ2 ≥ κ1 and G2 ≥ G1 [35]. Bulk and shear modulus can

be defined in terms of elasticity tensor elements:

κ =
1

2
(C1111 + C1122) G =

1

2
(C1111 − C1122) (2.32)

And in two dimensional problems for plane stress and plane strain special cases eq.

(2.32) can be simplified to:

κ =
E

2(1− ν)
For plane stress

κ =
E

2(1 + ν)(1 − 2ν)
For plane strain

G =
E

2(1 + ν)
For plane stress and plane strain

(2.33)

Although Hashin-Shtrikman bounds do not provide the exact values of the ho-

mogenized properties, but they can offer an acceptable region of results for overall

properties of material structures which are compatible with their assumptions.
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Strain energy method

Strain energy method is based on Hill’s theory which provides all the necessary and

sufficient conditions for energetically and mechanically defined effective properties

to be equal to each other. For a linear elastic material, this principle can be outlined

as [26]:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (2.34)

Where σ and ε are stress and strain tensors, 〈.〉 means spatial average in the domain

and ”:” shows the twice contracted tensor product. Thus, according to eq. (2.34)

the average of the products equals the product of averages.

For a better understanding of Hill’s principle let us consider a body B with a

known microstructure. Due to some boundary conditions on ∂B and in absence of

any body forces, there are stress and strain fields σ and ε induced in B. If we show

these fields as a superposition of the mean values and zero-mean fluctuations [48]:

σ = σ̄ + σ′ ε = ε̄+ ε′ (2.35)

we can define the volume average of energy density in B as:

〈U〉 =
1

2V

∫

B

σ : εdV =
1

2
〈σ : ε〉 =

1

2
〈σ〉 : 〈ε〉+

1

2
〈σ′ : ε′〉 (2.36)

Therefore, for the average of products to be equal to the product of averages we

should have:

〈σ′ : ε′〉 = 0 (2.37)

For an infinite domain this condition is trivially satisfied, but in a finite body, for eq.

(2.37) to be true the body has to be loaded in a specific way on its boundaries. By

using Gauss-Green theorem, the necessary and sufficient conditions for eq. (2.37)

to hold could be found [25, 24]:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 ⇔

∫

∂B

(t− 〈σ〉.n) . (u− 〈ε〉.x) dS = 0 (2.38)
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Where t is traction, u is displacement, n and x respectively show the normal vector

to the boundary and the coordinates of boundary points. Looking back to eq. (2.38)

it could be determined that there are three different types of boundary conditions

which satisfy this equation.

First group of these boundary conditions is Dirichlet type which is usually called

Kinematic Uniform Boundary Conditions or KUBC and it can be represented as:

u(x) = ε0.x ∀x ∈ ∂B (2.39)

Next class of boundary conditions which satisfy eq. (2.38) is a group of Neumann

conditions named Static Uniform Boundary Conditions or SUBC:

t(x) = σ0.n ∀x ∈ ∂B (2.40)

There is also another set of boundary conditions which can make the integral

in eq. (2.38) to be equal to zero called Mixed Uniform Boundary Conditions or

MUBC:
(
t(x)− σ0.n

)
.
(
u(x)− ε0.x

)
= 0 ∀x ∈ ∂B (2.41)

Different combination of traction and displacement boundary conditions can be com-

bined together to create a mixed boundary condition of form eq. (2.41). Considering

the fact that here we are dealing with homogenization problems, two sets of these

combinations are of great importance, displacement periodic boundary condition:

u(x) = ε0.x ∀x ∈ ∂Bdisplacement

u(x+L) = u(x) + ε0.L, t(x+L) = −t(x) ∀x ∈ ∂Bperiodic

(2.42)

And traction periodic boundary condition:

t(x) = σ0.x ∀x ∈ ∂Btraction

u(x+L) = u(x) + ε0.L, t(x+L) = −t(x) ∀x ∈ ∂Bperiodic

(2.43)
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In eqs. (2.39) to (2.43), L is the periodic length. σ0 and ε0 show the prescribed

uniform tensors on the boundary and it should be noted that according to average

stress and strain theory ε0 = 〈ε〉 and σ0 = 〈σ〉 [48]. By applying different sets of

any of the introduced boundary conditions along different coordinate axis, strain

energy formula can be used to determine different elements of the elasticity tensors.

More detailed explanation on methods of applying the boundary conditions could

be found in [48], [25], [24], [30] and [23].

2.2 MeshFree

As mentioned in Chapter 1, over the last decade meshfree or generally mesh reduc-

tion methods have introduced themselves as powerful numerical tools for solving

a vast range of science and engineering problems with the purpose of eliminating

meshing difficulties which exist in current finite element methods. Meshfree tech-

niques have been applied to different categories of problems like crack propagation

[2], moving material interface [59], incompressible fluid flow [66], vibration [37] and

also problems with highly oscillatory solutions such as multiscale problems [29].

In this section we will go over the basic concept of a meshfree solution and will

explain the necessary tools and techniques for development of a meshfree computa-

tional platform.

2.2.1 Solution Structure Method

In many engineering problems, the governing equations are presented in the form of

a partial differential equation and such equation over a domain Ω can be generally
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formulated as [59]:

Au = f

Liu|∂Ωi
= ϕi

u|t=0 = u0
∂u

∂t
= u̇0

(2.44)

Where operator A describes the general physical law, u(x, t) is a unknown func-

tion representing the distribution of a physical field in space and time and f is some

known function. Values of function u or its derivatives or both are defined by op-

erator Li and given function ϕi on the ith portion of the boundary ∂Ω of a given

domain Ω. And if the domain, its boundaries or the boundary conditions can vary

with time, the initial conditions for the transient problem can include the initial

values of the function or its derivatives.

Exact solution for boundary value problem (BVP) presented in eq. (2.44) exist

only for very few and very simple equations. Real world problems with complex

geometrical domain representations are mostly solved approximately by one of the

many known numerical methods.

The numerical method utilized in this dissertation for solving boundary value

problems is called Solution Structure Method (SSM) which is in fact a generalized

form of R-function method (RFM) developed by Rvachev and his students [53, 54].

RFM itself is an extension of the approach introduced by Kantorovich for solving

two dimensional homogenous boundary value problems with Dirichelt boundary

conditions and the idea behind it is based on the observation that the solution of

such problem can be presented in form of [36]:

u = ωΦ (2.45)

Where Φ is some unknown function and ω : Rn → R is a known function which has

zero values on the boundary of the domain ∂Ω and it is positive inside Ω. Also ω
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functions are designed in such way that they are normalized to m-th order:

ω|∂Ω = 0 ,
∂ω

∂n
|∂Ω = 1 ,

∂kω

∂nk
|∂Ω = 0 k = 2, 3, ..., m (2.46)

Expression eq. (2.45) contains two independent type of information: the function

ω describing all the geometric information of this specific boundary value problem

and function Φ which is responsible for satisfying the differential equation of the

boundary value problem. Since ω is exactly zero on the boundary ∂Ω, any solution in

the form of eq. (2.45) will exactly satisfy the homogenous boundary conditions and

this is completely independent of the unknown function Φ or the type of differential

equation [59, 56].

Since determination of function Φ satisfying the differential equation is not an-

alytically always possible, we can approximate it by a finite linearly independent

series [59]:

Φ =
n∑

i=1

Ciχi (2.47)

Where Ci’s are scalar coefficients and χi’s are a group of basis functions. Solution

structure presented in eq. (2.45) does not place any constraints on χ functions and

the choice of these functions are completely independent of any spatial discretization

of the domain [56].

Substituting eq. (2.47) back into eq. (2.45) will give us the structure of approx-

imate numerical solution to a boundary value problem with homogeneous Dirichlet

boundary conditions in the from of:

u = ω

n∑

i=1

Ciχi (2.48)

and any type of numerical method such as variational, projection, energy function

minimization, etc., can be used to solve for the numerical values of Ci.

After the initial introduction of solution structure eq. (2.45), the SSM concept

was developed by Rvachev and his team for boundary value problems with different
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Table 2.1: Solution structures corresponding to different types of boundary condi-
tions for second order partial differential equations [64].
Type of BC BC Formulation Solution Structure

Dirichlet u|∂Ω = ϕ u = ωΦ+ ϕ

Neumann ∂u
∂n
|∂Ω = ϕ u = Φ− ωDω

1 (Φ)− ωΦ+ ωϕ+ ω2Φ

3rd kind
(
∂u
∂n

+ hu
)
|∂Ω = ϕ u = Φ− ωDω

1 (Φ)− hωΦ + ωϕ+ ω2Φ

Mixed u|∂Ω1
= ϕ u = ω1Φ + ϕ+

(
∂u
∂n

+ hu
)
|∂Ω2

= ψ ω1ω2

ω1+ω2
(ψ + ω2Φ−Dω2

1 (ω1Φ+ ϕ)− hω1Φ− hϕ)

types of boundary conditions. A summary of proposed solution structures are pre-

sented in Table 2.1. Mathematical formulation for derivation of such structures are

explained in details in [56] and [64].

In Table 2.1 each solution structure is in fact a function made from the unknown

Φ function, normalized ωi functions describing the geometry of domain boundaries,

prescribed functions ψ, h, ϕ and the operator Di which is defined as:

Dω
i (.) = (∇(.) · ∇ω)i (2.49)

As mentioned earlier Φ functions are finite linear combination of basis functions

which can be selected from B-splines, polynomials, trigonometric polynomials or

any other common choices and regardless of the chosen system of basis functions all

these solution structures will satisfy boundary conditions exactly. In this method,

not like traditional PDE solvers which require discretization of the geometry and

applying boundary conditions at the nodes, satisfaction of boundary conditions is

done by innovative design of ω functions.
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2.2.2 Distance field functions

The constructional details of solution structure for a boundary value problem were

discussed in Section 2.2.1 and based on what was delivered it can easily be observed

that creation of a solution structure strongly depends on the ability to construct

a function ω that vanishes on all or a portion of the boundary of the geometric

domain. In other words it could be said that equation ω = 0 should define the

domain boundaries.

One group of functions which can provide such properties are exact distance field

functions, which measure the normal distance of any given point in the domain to

the closest boundary. By definition, these functions are differentiable and have unit

gradients everywhere except the points that are equidistance from several boundaries

(for example points on medial axis or corner points). Also the zero set of exact

distance field functions corresponds to and implicitly defines the boundaries of a

geometric domain [58].

Since differential properties of ω functions are critical in many applications in-

cluding construction of a solution structure for a boundary value problem, it was

proposed to replace exact distance field functions with their m-th order approxima-

tion to overcome their differentiability limitations [59, 6].

Different methods have been used for generation of approximate distance field

functions such as fitting or interpolation of splines and radial basis functions [67],

applying level set methods [71] or taking advantage of constructive methods like

theory of R-functions [53, 54].

Theory of R-functions can provide the necessary tools for construction of ap-

proximate distance field functions which can implicitly represent a domain [59]. An

R-function is a real-valued function whose sign is completely determined by the signs

of its arguments, for example f(x1, x2, x3) = x1x2x3 can be negative only when the
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number of its negative arguments are odd. In other words a R-function works as

a boolean switching function changing its sign only when their arguments change

their signs [53]. The main advantage of the theory relies on the fact that every

formal logical sentence has an equivalent class of R-functions which their signs are

determined by the truth table of the logical sentence. Two of the most popular

R-functions are:

x1 ∧α x2 =
1

1 + α

(

x1 + x2 −
√

x21 + x22 − 2αx1x2

)

x1 ∨α x2 =
1

1 + α

(

x1 + x2 +
√

x21 + x22 − 2αx1x2

) (2.50)

Which corresponds to the logical conjunction ∧ and disjunction ∨ respectively and

α(x1, x2) is an arbitrary function with −1 < α(x1, x2) < 1. Even the value of

α can be set to a constant, for example α = 1 yields to min and max functions

or setting α = 0 results in a function which is analytical everywhere except at

x1 = x2 = 0. As boolean functions, R-functions could be used to describe any

region represented by a system of inequalities as a single function ω which can be

normalized up to m-th order. Interested reader can refer to [54], [59], [58] and [6]

for extensive studies on approximate distance fields created with R-functions and

their differential properties.

For a better understanding of the concept, here as an example we will explain

different steps of constructing approximate distance field functions for a simple ge-

ometry. Let us assume that the geometry of a sample domain is a right angled

triangle shown in Fig. 2.3(a). To represent this domain in terms of approximate

distance fields first it is broken down to intersection of three primitive half-spaces

which can easily be described by simple inequalities:

ω1(x, y) = x− y ≥ 0 ω2(x, y) = a− x ≥ 0 ω3(x, y) = y ≥ 0 (2.51)
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(a)
1

3

2
01 ³w

02 ³w 03 ³w

a

(b)

Figure 2.3: (a) The native geometry, a right angled triangle, broken down into
intersection of three primitive half spaces; (1) under line 1, (2) left side of line 2 and
(3) above line 3. (b) Inequalities for ω1, ω2 and ω3 plotted as functions of x and
y and the resulting R0-conjunction ω = ω1 ∧0 ω2 ∧0 ω3. The ω function has zero
values and non-zero gradients on the boundaries and it is differentiable in the whole
domain.

and ω will be:

ω = (ω1 ≥ 0) ∩ (ω2 ≥ 0) ∩ (ω3 ≥ 0) (2.52)

Now by using theory of R-functions and replacing boolean operators with their

corresponding R0-functions, approximate distance fields for the native geometry can

be written as:

ω = ω1 ∧0 ω2 ∧0 ω3 (2.53)

Fig. 2.3(b) shows the corresponding three dimensional plot for each of half-spaces

and also the resulting conjunction of all of them which gives us the approximate

distance field representation for the domain in question.

2.2.3 Automatic differentiation and Integration

After presenting the theoretical concepts for construction of solution structures and

approximate distance field functions, we can actually implement the SSM for solving

a boundary value problem and study the solution steps in a more practical manner.
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To do so, let us consider a simple boundary value problem involving Poisson equation

and homogeneous Dirichlet boundary conditions which is defined over domain Ω:

−∇2f = K , K = cte , f |∂Ω = 0 (2.54)

We also assume that the approximate distance field functions ω describing do-

main Ω is already constructed by one of the methods explained in Section 2.2.2. Go-

ing back to Table 2.1, shows that based on presented boundary conditions the proper

solution structure for this problem would be f = ωΦ, Φ =
∑n

i=1Ciχi. Now sub-

stituting the solution structure back into Poisson equation, using Galerkin method

with same test functions as basis functions in our solution structure and applying

divergence theorem will give us:

∫

Ω

∇

[
n∑

j=1

Cj(ωχj)

]

· ∇(ωχi)dΩ =

∫

Ω

K · ∇(ωχi)dΩ (2.55)

Differentiating eq. (2.55) with respect to the unknown coefficients Cj yields to

a system of algebraic equation [A][C] = [B] where elements of matrix A and vector

B are defined as:

aij =

∫

Ω

∇(ωχi) · ∇(ωχj)dΩ , bj = K

∫

Ω

∇(ωχj)dΩ (2.56)

Solving a boundary value problem with SSM will require differentiating the solu-

tion structure, integrating over the geometric domain and solving a system of linear

algebraic equations. Except for the solution of algebraic equation, rest of the com-

putational techniques are rather different than the ones implemented in conventional

mesh-based methods [64].

Automatic differentiation

The most important issue in calculating the partial derivatives of a solution struc-

ture in a system such as eq. (2.56) is that the domain dependent distance field

30



functions are defined at run time, therefore a differentiation algorithm is required

which can handle run time calculations with an acceptable accuracy. Many algo-

rithmic differentiation methods have been formulated, but generally they can be

divided into three main categories: Symbolic, Numerical, Automatic.

Symbolic differentiation can be used when the closed form of function is available

and by date it has been implemented in many commercial softwares such as Maple

and MATLAB, but unfortunately when the function is not a relatively simple one

this method can become very intensive and unmanageable. Numerical methods are

mainly based on finite difference method or approximating a function by polynomials

or splines and since they only require evaluation of the function itself they have a

clear advantage compared to the other methods, but sometimes they can become

unstable and reaching to the desired accuracy might not be possible [60, 59].

Automatic differentiation is in fact a collection of techniques to evaluate the nu-

merical value of a function’s derivative at a certain point with a computer program.

It uses same differentiation rules as symbolic method, but instead of propagating

the symbolic expression of the derivatives it deals with numerical values of them

and it can be implemented in forward or reverse modes. Detailed mathematical

formulation of both forward and reverse automatic differentiation algorithms can be

found in [60, 52].

In this dissertation, a forward automatic differentiation technique is utilized

which uses Leibnitz rules to compute numeric values of partial derivatives and stores

them in a certain type of data structure called tuple. The proposed data structure

can provide a real time access to the values of derivatives and accelerate the whole

computation process [63].

A tuple structure is a storage method which arranges the partial derivatives of
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a function (up to a certain order) in an array by increasing order of derivatives:

[

f(x),
∂f

∂x1
(x), ...,

∂f

∂xn
(x),

∂2f

∂2x1
(x),

∂2f

∂x1∂x2
(x), ...,

∂2f

∂2xn
(x), ...,

∂mf

∂mxn
(x)

]

(2.57)

A powerful C++ class for tuples have been developed which has elementary and

arithmetic operations as friend functions and given a point in space, it is capable of

calculating partial derivatives of a function up to a certain order and storing them

in a structure such as eq. (2.57). By using such allocation scheme partial derivatives

of same order will occupy the same spot in the storage array and they can be easily

accessed just by pointing to the corresponding array index [62, 63, 64].

Geometrically adaptive numerical integration

In the process of solving a boundary value problem with solution structure method

and after finding the numerical values of derivatives in a system similar to eq. (2.56),

the next logical step would be evaluating the integrals over the geometric domain.

Conventional numerical integration over solid domains usually requires generation of

geometry conforming grid and adapting the solid boundaries to grid lines or faces. In

this approach integration cells intersecting domain boundaries are either included or

ignored. This can lead to considerable integration errors near the boundaries which

is completely undesirable when it comes to solving boundary value problems.

A novel technique for calculation of integrals in boundary cells were proposed in

[39] where the authors used a classification system for boundary cells in conjunction

with parametrization of their geometry and they were able to allocate integration

points in boundary cells using the exact geometry instead of statistical methods.

The idea of domain geometry parametrization is based on the fact that using

a suitable coordinate system can eliminate singularities in integrands and reduce

the integration error. In this method, geometrically adaptive integration, for each
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(a) (b) (c)

Figure 2.4: (a) Cartesian coordinates used for boundary cells with at least one face
fully contained in the domain (b) Cylindrical coordinates for boundary cells with
at least on edge in the domain (c) Spherical coordinates for boundary cells with at
least one vertex in the domain [39].

boundary cell depending on the number of its faces, edges or vertexes being in the

domain one of the Cartesian, cylindrical or spherical coordinate systems is assigned

to parameterize the cell geometry. Fig. 2.4 shows some of the different possible

arrangements of boundary and boundary cells and suitable coordinate system for

each combination.

By choosing a proper coordinate system and having a characteristic function

representing the domain, geometrically adaptive integration can provide a more

efficient distribution of integration points in geometric cells and as a result lead to

a better numerical accuracy for the same computational cost compared to other

integration methods.

2.2.4 Image Acquisition

The importance of constructing approximate distance field functions as one of the

essential ingredients of solution structure method was discussed in Section 2.2.2

and it was explained how theory of R-functions can be used to generate such func-

tions. Here we will discuss the fact that constructing distance field functions are

not restricted to simple boundary representation of geometric domains and it can

be applied for modeling of much more complex geometries.
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In real life engineering problems which often involve complex geometries, differ-

ent methods can be used to describe the domain such as CAD models, point clouds,

polygonal meshes, B-splines, etc. It was shown that not only approximate distance

fields can be generated from any of the mentioned domain representations, but also

using this method will lead to a more automated field modeling process compared

to conventional mesh based methods [11].

This method proposes to represent approximate distance field function ω in the

form of a finite linear combination of basis functions:

ω(x, y, z) =
m∑

i=1

Cω
i χ

ω
i (x, y, z) (2.58)

where Cω
i are coefficients of the system of m sufficiently complete basis functions

χω
i . Basis functions can be chosen from polynomials, radial basis functions, B-

splines, etc. and this selection will effect the accuracy, convergence, differential

and computational properties of the approximate distance fields. Coefficients in eq.

(2.58) can be computed by the least square method which minimizes the square of

the difference between values of ω function and Euclidean distance map of sampled

points distributed in the domain [11, 13]:

F =
k∑

j=1

(
m∑

i=1

Cω
i χ

ω
i − dj

)2

(2.59)

where k is the number of distance samples and dj is the j
th signed distance measured

from point (xj , yj, zj) to the closest boundary.

Later in a similar study the approximate distance field construction technique

was further improved and the possibility of generation of such functions from CT

(Computed Tomography) and MRI (Magnetic Resonance Imaging) images was in-

vestigated. It was demonstrated that by applying proper image processing methods,

data from a greyscale CT or MRI image can be transferred into a binary image.
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Then Euclidean distances from every voxel/pixel in the binary image to the clos-

est boundary voxel/pixel can be calculated by Saito’s algorithm [57, 13]. Resulting

distance map is piecewise and therefore not differentiable which makes it an unsuit-

able representation for a distance field function in meshfree method. However the

constructed distance map can be used in a scheme such as eq. (2.59) to generate

differentiable approximate distance fields and eventually provide a powerful tool

for transferring image data into a distance field representation usable in a solution

structure method.

The accuracy of approximate distance fields generated from images can be con-

trolled by type, degree and resolution of basis functions as well as by the location

and number of distance map samples [13].
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CHAPTER 3

HOMOGENIZED MECHANICAL PROPERTIES OF

INHOMOGENEOUS MATERIAL

After explaining the theoretical background on asymptotic homogenization method

and meshfree solution structures, here in this chapter the details of our proposed

hybrid platform will be investigated. Meshfree/asymptotic method uses a novel

solution structure to solve asymptotic homogenization problem which provides the

means for exact satisfaction of periodic boundary conditions, also this platform is

empowered with a geometric block capable of acquiring realistic geometric models

from complex microstructures.

We will start with the mathematical formulation of the solution in Section 3.1

and go over the possibility of development of a software platform to automatize

the homogenization process, then in Section 3.2 performance of the hybrid mesh-

free/asymptotic method will be tested by comparing it to previously published data

and/or test results gathered from available commercial softwares.

3.1 MeshFree/Asymptotic Platform

Going back to Section 2.1.1 we can recall that the homogenized mechanical proper-

ties of an inhomogeneous structure can be calculated by:

EH
ijkl =

1

|Y |

∫

Y

(

Eijkl − Eijpm

∂χkl
p

∂ym

)

dY (3.1)

Where χkl(y) are Y-periodic functions which are the solution for weak form of

balance equation:

∫

Y

Eijpm

∂χkl
p

∂ym

∂vi
∂yj

dY =

∫

Y

Eijkl

∂vi
∂yj

dY ∀vi ∈ V (3.2)
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In the weak formulation v(y) are also Y-periodic functions defined and smooth

enough in domain Y . The most common method for solving eq. (3.2) is using FEA

[50, 21] which involves generating a geometry conforming mesh on the boundary

and enforcing periodic boundary conditions on boundary nodes and that requires

pairing nodes on opposite faces of the RVE. In a general setting similarity of mesh

distribution on paired boundaries of RVE cannot be guaranteed, specially when the

geometry of inhomogeneities inside the RVE requires a non-periodic mesh or pores

intersect with RVE sides.

To overcome this setback, in this dissertation a meshfree solution structure has

been incorporated to solve eq. (3.2). This novel implementation of solution structure

will eliminate any meshing and node pairing and also makes it possible to satisfy

exact periodic boundary conditions.

3.1.1 Solution structure for periodic boundary conditions

According to Table 2.1, solution structure for a boundary value problem with non-

homogeneous Dirichlet boundary conditions can be represented by zero-order trun-

cated series in the form of:

u = ωΦ+ ϕ (3.3)

Where ω is the distance field function representing the domain, Φ and ϕ functions are

designed in such way that they give the proposed solution structure enough degrees

of freedom to satisfy governing equations and boundary conditions of the problem.

ωΦ satisfies the homogenous boundary conditions (recalling that the distance field

functions are zero on the boundary), and consequently u satisfies u|∂Y = ϕ. Since

Φ and ϕ functions are usually unknown they could be approximated by linear com-

37



bination of basis functions:

Φ =

n∑

i=1

CΦ
i ηi , ϕ =

n′

∑

i=1

Cϕ
i ψi (3.4)

The solution structure eq. (3.3) does not pose any restrictions on the choices

of basis functions {ηi , i = 1, . . . , n} and also selection of these functions are com-

pletely independent of geometry of the domain. ηi functions can be chosen from any

common basis function system such as B-splines, polynomials, trigonometric poly-

nomials, etc. On the other hand, {ψi , i = 1, . . . , n′} are supposed to generate the

solution on the boundary and therefore they should satisfy periodicity conditions.

Substituting expansions eq. (3.4) back into eq. (3.3) leads to:

u =
n∑

i=1

CΦ
i (ωηi)

︸ ︷︷ ︸

1

+
n′

∑

i=1

Cϕ
i ψi

︸ ︷︷ ︸

2

(3.5)

In eq. (3.5) part (1) provides the approximation of function u inside the domain

and it satisfies the homogeneous Dirichlet boundary conditions and part (2) is the

enrichment functions responsible for treatment of periodic boundary conditions.

Going back to eq. (3.2) and using expression eq. (3.5) to form a solution for this

equation results in:

χkl
m =

n+n′

∑

q=1

Ckl
qmξq , ξq =







ωηq q = 1, . . . , n

ψq−n q = n+ 1, . . . , n+ n′

(3.6)

By applying Galerkin assumption which requires using the same group of func-

tions for weight and test functions the modified form of weak formulation will be:

∫

Y

Eijmn

∂χkl
m

∂yn

∂ξi
∂yj

dY =

∫

Y

Eijkl

∂ξi
∂yj

dY (3.7)

For calculation of all the members of elasticity tensor in a three dimensional domain

eq. (3.7) should be solved for six different kl indices to find out all necessary χkl
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functions (kl =11, 22, 33, 12/21, 13/31, 23/32). In two dimensional domains number

of equations reduces to three and corresponding indices are kl =11, 22, 12/21.

Substituting series expansion of χkl
m functions into eq. (3.7) gives us:

∫

Y

Eijmn

∂
(
∑n+n′

q=1 Ckl
qmξq

)

∂yn

∂ξi
∂yj

dY =

∫

Y

Eijkl

∂ξi
∂yj

dY (3.8)

Taking the summation out of the integral and differentiating with respect to C

coefficients will result in a system of linear algebraic equations in the form of:

[A][C] = [B] (3.9)

Where in fact for a certain kl, elements of matrix [A] and vector [B] are respectively

calculated by:

aij =

∫

Y

Epqmn

∂ξi
∂yn

∂ξj
∂yq

dY (3.10)

bj =

∫

Y

Epqkl

∂ξj
∂yq

dY (3.11)

In the developed computational platform, to solve eq. (3.9) we will use basis

functions that are constructed over Cartesian grid that does not conform to the

shape of geometric model. This makes it possible to eliminate meshing (which

could be very tedious and time consuming when images or CT scans are used as

the geometry source) from the solution procedure. Assembly of the matrices and

vectors in eq. (3.9) is performed by geometrically adaptive integration of eq. (3.10)

and eq. (3.11), while automatic differentiation technique produces the numerical

values of partial derivatives of basis functions. After solving eq. (3.9), values of
{
Ckl

qm

}
coefficients are substituted back in eq. (3.6). Then by introducing

{
χkl
m

}

values from eq. (3.6) into eq. (3.1), homogenized elastic tensor for a given geometry

can be calculated.

In order to give a more clear picture of solving homogenization problem with

meshfree technique, here for a sample domain we will demonstrate the construction
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Figure 3.1: Construction of approximate distance fields using R-functions, (a) The
native geometry is divided into five half-spaces, (b) Inequalities for ω1 to ω5 plotted
as functions of x and y and the resulting R0-conjunction ω has zero values and
non-zero gradients on the boundaries and it is differentiable in the whole domain.

of different pieces involved in solution structure eq. (3.6) (ω, η and ψ), and also

we will show how coefficient matrix and load vector in system of linear algebraic

equations in eq. (3.9) can be assembled.

Let us start with a geometric domain shown in Fig. 3.1, a rectangular RVE with

a circular void. As shown the geometric domain can be represented as intersections

and unions of the elementary half-spaces that can be defined by simple inequalities.

In our case these half-spaces are: right side of edge 1, left side of edge 3, below

edge 2, above edge 4 and outside of a disk of radius r. Each of these half-spaces is

described by the following inequalities:

ω1(x, y) = x+ a ≥ 0 ω2(x, y) = a− y ≥ 0

ω3(x, y) = a− x ≥ 0 ω4(x, y) = y + a ≥ 0

ω5(x, y) =
1
2r
(x2 + y2 − r2) ≥ 0

(3.12)

Therefore the boolean expression for domain Y could be presented as:

Y = (ω1 ≥ 0) ∩ (ω2 ≥ 0) ∩ (ω3 ≥ 0) ∩ (ω4 ≥ 0) ∩ (ω5 ≥ 0) (3.13)

In theory of R-functions to construct a real-valued function ω which could repre-

sent domain Y , the boolean operators need to be replaced with corresponding R0-

function, therefore the final expression for ω which is positive inside the geometric
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Figure 3.2: Basis functions created over a Cartesian grid on the domain.

domain Y , negative outside, and vanishes on its boundary will be:

ω = ω1 ∧0 ω2 ∧0 ω3 ∧0 ω4 ∧0 ω5. (3.14)

Next step for completion of our solution structure is to choose the system of

basis functions η, as mentioned before any of common basis function systems can

be an acceptable choice since the solution structure poses no restriction on basis

functions. Fig. 3.2 shows a system of polynomial basis functions constructed over

a non-conforming grid on the domain.

After explaining the construction of ω and η, the only remaining element of

solution structure is ψ functions which are responsible for treatment of periodic

boundary conditions and therefore they should satisfy periodicity requirements. In

other words ψ functions which here we call the Enrichment Functions have to be

constructed in such way that they have the same behavior on opposing sides of the

RVE. In this dissertation, enrichment functions for two dimensional domains are

always generated in pairs and therefore the total number of them (n′) is always

an even number. In each pair one function is responsible for reconstruction of

boundary values on boundaries parallel to x axis and the other one does the same

for boundaries parallel to y axis. If we assume that for a rectangular RVE in xy
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Figure 3.3: Enrichment functions created in pairs via eq. (3.15) for n′ = 6.

plane defined by its corners 1 the total of number of enrichment functions is n′ = 2k,

then the k-th pair of enrichment functions can be formulated as:

∆x = xmax − xmin ∆y = ymax − ymin

xc =
xmax + xmin

2
yc =

ymax + ymin

2

For k = 1 ψ1 =

[(
∆x

2

)2

− (x− xc)
2

]

(y − yc)
2

ψ2 =

[(
∆y

2

)2

− (y − yc)
2

]

(x− xc)
2

For k = 2, 3, ... ψ2k−1 = (y − yc)
2

2k∏

j=0

[

x−

(

xmin +
j

2k
∆x

)]

ψ2k = (x− xc)
2

2k∏

j=0

[

y −

(

ymin +
j

2k
∆y

)]

(3.15)

In Fig. 3.3 a group of enrichment functions constructed by eq. (3.15) for n′ = 6

are demonstrated and it is clearly shown that how these functions satisfy periodicity

conditions.

1(xmin, ymin), (xmax, ymin), (xmax, ymax) and (xmin, ymax).
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Figure 3.4: Schematic for a tuple sequence structure.

Now by having all the necessary information on functions involved in solution

structure, χ functions can be constructed in the form of eq. (3.6). In the developed

computational platform, at any calculation point values of each ξq function and its

derivatives are stored in a differential tuple (see Section 2.2.3 for information on

tuple construction). Then these tuples are assembled one after each other and form

a tuple sequence which can provide run-time access to values and derivative of test

functions in eqs. (3.10) and (3.11). Fig. 3.4 shows the schematic for a tuple sequence

structure.

As mentioned earlier assembly of coefficient matrix and load vector in eq. (3.9)

is done by geometrically adaptive integration, which like any other numerical inte-

gration method requires a proper distribution of integration points in the domain

to numerically evaluate the integrants at those points. Here in our computational

platform, the latter is done by creating a nonconforming geometric grid over the

domain and using the grid cells as a pattern for distribution of Gauss integration

points. The tuple sequence structure gets evaluated at every single integration point

and the numerical values of derivatives stored in the tuples will then be used for

integration purposes. The mentioned grid and distribution of Gauss points for the

RVE under discussion are respectively shown in Figs. 3.5(a) and (b).

Number of the grid lines and Gauss integration points density in each grid can

be adjusted based on the complexity of geometry in a manner that provides enough

resolution to perform numerical integration. For example, if a finer resolution near

the boundaries is required to make sure that all the geometric features are being
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(a) (b) (c) (d)

Figure 3.5: (a) Nonconforming uniform grid over the domain, (b) Distribution of
Gauss integration points in the uniform grid cells, (c) Nonconforming grid with
refined boundary cells, (d) Distribution of Gauss integration points in the refined
grid cells.

captured, the developed computational platform can achieve that by creating a finer

grid close to the boundaries and eventually having a higher density of integration

points in the boundary regions, Figs. 3.5(c) and (d) show an example of grid refine-

ment close to the boundaries.

By having the Gauss points distribution in the domain, numerical values for the

elements in coefficient matrix and load vector of system of linear algebraic equations

in eq. (3.9) can be calculated and the system could be solved for unknown
{
Ckl

qm

}

which eventually leads to finding the homogenized mechanical properties of the

domain.

3.1.2 Software prototype work flow

As a result of this dissertation the mathematical concept of computational plat-

form described in Section 3.1.1 has been turned into a C++ computer program to

show the possibility of development of a software package working based on the hy-

brid meshfree/asymptotic idea and also testing its performance in various numerical

experiments.
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Work flow of the mentioned platform is presented as a block diagram in Fig. 3.6.

As shown, the platform is formed by interconnecting four independent blocks. The

first component is the User Interface block which provides the connection between

the user and the solver. By accessing this block, user can import the desired 2D

image as source of the native geometry, choose type of the basis functions based on

the complexity of the geometry and select the proper homogenization method ac-

cording to the physical property which has to be homogenized. Each of these inputs

are connected to one of the three blocks in the solver. Data from microstructure

image is transferred to the Geometric Block and after being processed, a binary

image of each domain in the microstructure is rendered which eventually leads to

the generation of distance field functions. Homogenization Block provides the ge-

ometry of the RVE, necessary boundary conditions and valid governing equations at

micro scale level. It also gives us the proper recipe for calculation of homogenized

properties.

In the center of solver lies the MeshFree Block. Distance field representation of

the geometry, governing equations, related boundary conditions and also type of

the basis functions are provided as inputs for it and inside this block a solution

structure is formed in such way that satisfies the exact boundary conditions. Then

the generated structure in conjunction with an automatic differentiation toolbox is

used to produce the terms in micro level balance equation and by applying adaptive

integration, a system of linear equations is created which its solution will provide

the necessary information to evaluate the homogenized properties of the given mi-

crostructure.

The connection lines linking User Interface with Geometric Block and MeshFree

Block provides a number of user control parameters which can be adjusted based

on the complexity of the geometry and required accuracy (see Fig. 3.7). Going
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Figure 3.6: Block diagram for Meshfree/Asymptotic homogenization platform.

from user interface to geometric block, user can choose type and degree of the

basis functions used to create distance fields and in case of reading geometry from

two dimensional images number of distance samples also can be adjusted. The

connection to the meshfree block gives the user the ability to specify number of

the grids over the domain, refinement degree of the grids, number of Gauss points

in each grid cell, resolution for small feature detection and number of enrichment

functions.

One of the very important advantages of the developed platform is that the pieces

connecting to the MeshFree block function independently and they can be replaced

by any custom made toolbox as long as the replacement is capable of generating

the required outputs, which makes the platform compatible with various types of

problems.
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Figure 3.7: Control parameters accessible by user in the Meshfree/Asymptotic ho-
mogenization platform.

3.2 Numerical Experiments

In this section performance of the developed computational platform is tested in

comparison to previously published data or results of commercially available soft-

ware packages. Numerical experiments presented here, based on their geometry are

divided into three different categories: geometries presented in previously published

literature, geometries resulting in fully anisotropic elasticity tensor and geometries

captured from two dimensional micrograph images. In each category number of

examples are presented ad results are compared with a proper validation criterion.

3.2.1 Geometries mentioned in literature

Carbon/Epoxy composite

For the first example, a RVE with a rather simple geometry is selected. Since this

sample was previously studied in [40], results of Meshfree/Asymptotic method could

be compared to conventional finite element method. The mentioned RVE consists

of a composite with unidirectional carbon fibers embedded in epoxy.

In [40] such combination was investigated by assuming a square RVE with a cir-

cular inclusion as shown in Fig. 3.8 and the homogenized properties were calculated
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Figure 3.8: RVE for a composite with periodic circular inclusions (Vf = 0.25).

for different volume fractions (Vf) of the fiber. Following data are used for material

properties alongside with plane strain assumption:

Carbon: E1 = 15 GPa ν1 = 0.20

Epoxy: E2 = 3 GPa ν2 = 0.35
(3.16)

As presented in Fig. 3.8 the geometry of RVE for this numerical experiment is

very similar to Fig. 3.1, the only difference is the replacement of circular void with

carbon fibers.

In our homogenization platform the structure of RVE is imported into the geo-

metric engine and distance field functions, nonconforming grid and Gauss integration

points distribution are prepared for epoxy matrix and carbon fibers separately. Figs.

3.9(a)-(d) respectively show these parameters. Then a solution structure same as

eq. (3.6) is formed with four enrichment functions which are customized for a square

domain with unit length sides:

ψ1 = (0.52 − (x− 0.5)2)(y − 0.5)2 ψ3 = x(x− 0.5)(x− 1)(y − 0.5)2

ψ2 = (0.52 − (y − 0.5)2)(x− 0.5)2 ψ4 = y(y − 0.5)(y − 1)(x− 0.5)2
(3.17)

These functions satisfy the periodic boundary conditions in a Y -periodic domain:

χ(y1, y2) = χ(y1 + Y, y2) = χ(y1, y2 + Y ) = χ(y1 + Y, y2 + Y ) (3.18)

For a 2D problem three sets of χ functions are required (kl = 11, 12 / 21, 22) to fully
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Figure 3.9: Geometry modeling (a) Distance field functions for epoxy; (b) Distance
field functions for carbon fiber; (c) Nonconforming grid over the domain; (d) Gauss
integration points distribution.

form the homogenized elasticity tensor by using equation eq. (3.1). Fig. 3.10 shows

the χ functions for this particular problem which are consisted of trigonometric-

polynomial distance functions and a set of four polynomial enrichment functions.

Homogenization process is performed for different volume fractions of fiber and

results are compared with [40] and also with analytical values derived for upper

and lower bounds of homogenized properties by Hashin and Shtrikman [18, 19].

Fig. 3.11 shows the homogenized properties obtained from MeshFree/Asymptotic

platform as functions of fiber volume fraction and compares them with finite element

results. Calculated properties are perfectly consistent with Hashin-Shtrikman upper

and lower bounds and also in a very good agreement, within 1% of the results of

finite elements.

Square RVE with a square void

In a study similar to the previous example homogenized properties of a square RVE

with a square shape void was investigated in [4]. RVE was modeled similar to Fig.

3.12, and it was assumed that the structure is in plane stress and material properties

are E = 87 GPa and ν = 0.22. Homogenized properties of the RVE were calculated

as a function of material volume fraction by using conventional finite elements.
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Figure 3.10: Basis
{
χkl
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}
functions for RVE with circular inclusions.
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Figure 3.11: Homogenized (a) Young’s and (b) Shear modulus for a square RVE
with a circular fiber computed with MeshFree method and compared with finite
elements results in [40] and Hashin-Shtrikman upper and lower bounds.
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Figure 3.12: RVE for a square domain with a square void (Vf = 0.70).
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Figure 3.13: Construction of approximate distance field functions for a RVE with a
square void using R0-conjunction.

Here the same RVE is studied by meshfree/asymptotic platform and results

are compared to the ones published in [4]. To do so, first the geometry is broken

done to primitive shapes which are two squares and then by using R0-functions

the distance field representation of the structure is prepared. Then nonconforming

grid is generated over the domain and Gauss integration points are distributed.

A solution structure similar to eq. (3.6) with the same enrichment functions as

eq. (3.17) is formed and eventually χ functions are calculated. Fig. 3.13 shows

construction of distance field functions for the RVE, the nonconforming grid and

Gauss points are presented in Fig. 3.14 and χ functions are shown in Fig. 3.15.

The above procedure is repeated for different volume fractions of material and

homogenized properties of the RVE are calculated and stored. Fig. 3.16 shows
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Figure 3.14: (a) Nonconforming grid over the RVE; (b) Distribution of Gauss inte-
gration points.
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Figure 3.15: Basis
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functions for RVE with a square void and vf = 0.70.

52



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Material Volume Fraction

E
11

11

H
(G

P
a)

Finite Element
MeshFree

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

Material Volume Fraction

E
12

12

H
(G

P
a)

Finite Element
MeshFree

(a) (b)

Figure 3.16: Elements of homogenized elasticity tensor (a) EH
1111 (b) EH

1212 as func-
tions of material volume fraction, computed with meshfree and compared to finite
element results published in [4].

the elements of the homogenized elasticity tensor presented as functions of material

volume fraction and the outcome of meshfree/asymptotic method and conventional

finite elements published in [4] are very close, with the maximum difference of 9%.

Periodic masonry structure

Masonry is a two-phase material comprised of brick and mortar joints, normally ar-

ranged periodically and studying its in-plane load deformation characteristic is very

important for designing and retrofitting masonry structures. Instead of applying ex-

pensive and time consuming laboratory and field experiments, in [69] an alternative

numerical method was proposed for calculation of effective material properties of

such structures. The authors combined an equivalent periodic eigenstrain method

with a strain energy approach to formulate the effective stiffness of the masonry.

Here same geometries used in [69] are studied with meshfree/asymptotic platform

and results are compared to the published data. The RVE structure for a masonry

block is shown in Fig. 3.17 and following material and geometric properties along
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Figure 3.17: RVE for a masonry block with mortar thickness t = 20 mm.

with plane stress assumption are used in the modeling process:

Brick: Eb = 11 GPa νb = 0.20

2a = 55 mm 2b = 250 mm

Mortar: Em = 2.2 GPa νm = 0.25

(3.19)

Following the steps in meshfree/asymptotic method, first distance field functions

for each phase in the RVE is constructed, nonconforming grid is formed over the ge-

ometry and Gauss integration points are distributed. Figs. 3.18(a)-(d) respectively

show the distance field functions for brick, mortar, grid and Gauss points.

Solution structure for periodic boundary conditions in eq. (3.6) with the same

enrichment functions as eq. (3.17) is used to create the series expansion for χ

functions, Fig. 3.19 shows these functions. Eventually homogenized elasticity tensor

is computed and same process is repeated for different values of t and results are

plotted in Fig. 3.20 against the data presented in [69]. Comparing the results of

meshfree/asymptotic and eigenstrain method shows that these two are in a very good

agreement with each other (within 11% of each other) and the developed platform

is performing with an acceptable accuracy.
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Figure 3.18: Geometry modeling for a masonry block with t = 20 mm (a) Distance
field functions for brick; (b) Distance field functions for mortar; (c) Nonconforming
grid over the domain; (d) Gauss integration points distribution.
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Figure 3.19: Basis
{
χkl
m

}
functions for a masonry RVE with t = 20 mm.
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Figure 3.20: Elements of homogenized elasticity tensor computed with mesh-
free/asymptotic and results of eigenstrain method published in [69].

3.2.2 Fully anisotropic geometries

All the geometries discussed in Section 3.2.1 have some kind of symmetry and be-

cause of that the resulting homogenized elasticity tensor is either isotropic or or-

thotropic. These geometries will never lead to fully anisotropic results and always

EH
1112 = EH

1211 = EH
2212 = EH

1222 = 0. Numerical experiments in this section is chosen

in such way that they will lead to fully anisotropic material behavior, therefore we

can test the capability of the developed platform in handling nonsymmetric struc-

tures.

Perforated plate

In the first nonsymmetric numerical example a plate with periodic structure of

elliptical voids is studied and its homogenized stiffness matrix is calculated by using

meshfree/asymptotic platform, Fig. 3.21(a) shows the RVE configuration. It is
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Figure 3.21: Geometry modeling for a perforated plate (a) RVE; (b) Distance field
functions; (c) Nonconforming grid over the domain; (d) Gauss integration points
distribution.

assumed that RVE is in plain strain and L1

L2
= 1, a1

b1
= 1

3
, a2

b2
= a3

b3
= 1

3
, E =

26.67 GPa and ν = 0.33.

Same as before distance field functions, nonconforming grid, Gauss integration

point distribution and solution structure are prepared for the RVE. Fig. 3.21(b)-

(d) shows the components involved in geometry modeling. By having the proper

geometric model for a meshfree platform, the coefficient matrix and load vector in

the system of liner algebraic equation are assembled, χ functions and consequently

homogenized elasticity tensor are computed. Resulting χ functions are presented in

Fig. 3.22.

To validate the outputs of meshfree/asymptotic platform, a strain energy based

scheme is used to predict effective material properties. In Section 2.1.3 details of

strain energy method are discussed and it is explained how Hill condition is the

necessary and sufficient condition for the energetically and mechanically defined

properties to be to equal to each other and how applying certain types of boundary

condition on a RVE can satisfy the requirements of Hill principle.

In the energy method used in this study, the RVE is modeled as a two dimen-

sional geometry in COMSOL and three sets of kinematic uniform boundary condi-

tions (KUBC) are applied to the boundaries of RVE. Stress distribution and strain
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Figure 3.22: Basis
{
χkl
m

}
functions for a perforated plate.

energies are measured by using conventional finite elements and results obtained

from each set of boundary conditions are used to calculate the elements in one of

the columns of the elasticity tensor. Fig. 3.23 shows the model and corresponding

mesh created in COMSOL and different set of boundary conditions applied to the

RVE edges.

Elements of homogenized stiffness matrix [EH ] obtained frommeshfree/asymptotic

and strain energy method are both recorded in Table 3.1 and the corresponding dif-

ference for each element is calculated.

3.2.3 Geometries captured from images

So far all the geometries of RVEs used in our numerical experiments were mod-

eled by creating primitive geometric shapes and combining them with each other

through theory of R-functions. In this section we are going to demonstrate one of

the significant advantages of meshfree/asymptotic platform which is the capability
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Figure 3.23: COMSOL model of the RVE for perforated plate, KUBC boundary
conditions and elements of homogenized elasticity tensor corresponding to each set
of boundary conditions.

Table 3.1: Homogenized stiffness matrix of the RVE for perforated plate.

Strain Energy Method MeshFree/Asymptotic Difference

EH
1111 23.35 23.14 0.90 %

EH
2222 19.86 20.76 4.53 %

EH
1212 7.06 6.60 6.52 %

EH
2211 9.41 9.40 0.1 %

EH
1211 2.28 2.42 6.14 %

EH
1222 1.77 1.92 8.47 %
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Figure 3.24: Geometry modeling of TaC (a) Grayscale image of the microstruc-
ture (b) Binary representation of the geometry (c) Sampled Euclidean distances (d)
Distance field functions

of generating distance field functions from two dimensional images. Source of ge-

ometry for numerical experiments here are 2D micrographs taken from material’s

microstructure and transferred into distance field representation.

Spark plasma sintered TaC

In this numerical experiment a SEM image of a spark plasma sintered TaC is used as

the source of geometry, the sample was prepared at 1850 ◦C at a pressure of 100 MPa

and a hold time of 10 min. Fig. 3.24(a) shows the matrix and porosities, elastic

modulus and Poisson’s ratio obtained from nanoindentations for matrix are E =

313GPa, ν = 0.24 [3]. Same as previous examples a rectangular RVE is considered,

here the RVE contains arbitrarily shaped and distributed porosities. According

to work flow diagram of the platform (Fig. 3.6) the SEM image is imported into

geometric block as the native representation of microstructure. Then it is processed

with a noise reduction filter and converted into a binary black and white image.

Sampled Euclidean distances are generated based on the binary image by using Saito

algorithm for Euclidean distance transformation. Eventually smooth (differentiable)

distance filed functions are rendered by a least square fit of bilinear B-splines on

a 285×285 grid on the samples of discrete Euclidean distances. Figs. 3.24(b)-(d)
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Figure 3.25: 3D presentation of distance field functions constructed over the SEM
image of spark plasma sintered TaC.

illustrate the steps performed on the original image by the geometric block and

also for having a more clear picture of the distance field functions created over the

domain, their 3D plot is shown in Fig. 3.25.

Distance field functions are imported into MeshFree block and similar steps as

previous samples are followed to derive the homogenized properties. Fig. 3.26(a)

and (b) show the nonconforming grid constructed over the domain and Gauss in-

tegration point distribution. χ functions are presented in Fig. 3.27 and eventually

homogenized properties are computed and compared with the outputs of strain en-

ergy method in Table 3.2.

In this sample, considering the image-based nature of the geometry representa-

tion, an open source platform (OOF2) is used as the finite element solver. OOF

(Object Oriented Finite element) is a group of FE solvers which studies the mate-

rial’s macroscopic behavior based on its microstructure, in this solver an image of

microstructure is used as the source of geometry and a finite element mesh is gen-

erated by using an adaptive mesh technology which makes it possible to generate

a geometry conforming mesh on different phases of structure. These phases are se-

61



(a) (b)

Figure 3.26: Geometry modeling of TaC (a) Nonconforming grid over the domain;
(b) Gauss integration points distribution.
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Figure 3.27: Basis
{
χkl
m

}
functions for the SEM image of spark plasma sintered TaC.
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Table 3.2: Homogenized stiffness matrix for the RVE obtained from SEM image of
TaC. Values are derived by assuming plane stress and E = 313 GPa, ν = 0.24.

Strain Energy Method MeshFree / Asymptotic Difference

EH
1111 291.87 304.02 4.16 %

EH
2222 292.60 304.96 4.22 %

EH
1212 113.65 117.48 3.37 %

EH
2211 70.62 73.74 4.42 %

EH
1211 -0.45 -0.36 20.00 %

EH
1222 -0.34 -0.18 47.06 %

lected according to their colors and different mechanical properties can be assigned

to each one of them [38, 9].

Fig. 3.28 shows a sample setup of OOF2 software with an image imported in

it as the source of domain geometry. Three sets of KUBC boundary conditions

compatible with Hill principle are applied to calculate homogenized properties of

the domain by strain energy method:

Set I: ux|∂Y = x uy|∂Y = 0

Set II: ux|∂Y = 0 uy|∂Y = y

Set III: ux|∂Y = 0.5y uy|∂Y = 0.5x

(3.20)

Even for the geometry used here, which is a relatively simple one, the initial mesh

generated by OOF2 which is basically a grid over the domain (Fig. 3.28) has to

go through considerable amount of manual modifications to minimize its effective

energy. Effective energy of a mesh structure depends on the material and shape

homogeneity of its elements, for a mesh containing elements with completely ho-

mogenous material and shape this value goes toward zero and as the inhomogeneity

increases the effective energy approaches to one. Fig. 3.29 shows the modifications

performed here which involves subdividing elements with heterogeneity in material,
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Figure 3.28: OOF2 software setup with a microstructure image imported as source
of the geometry.

snapping the internal boundary nodes to boundary limits and element annealing

[38].

In Fig. 3.29(d) some areas are marked and numbered on opposing edges, which

indicates the regions which mesh still needs modifications to be able to be used

in a node pairing scheme for a boundary value problem with periodic boundary

conditions.

AlSi-dispersed CNT matrix

In continuation of testing performance of the developed hybrid platform, another

SEM image is used as the source of geometry and the workflow shown in Fig. 3.6

is followed to calculate its homogenized properties. Figs. 3.30(a)-(c) respectively

show the original SEM image, the binary representation of the geometry and the
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Figure 3.29: (a) The initial mesh on the TaC microstructure image (b) After refin-
ing the mesh in vicinity of porosities (c) After snapping the nodes close to internal
boundaries to the boundaries and smoothing the elements (d) After performing steps
b and c for elements which are still consisted of two different materials and rational-
izing and fixing illegal elements; Elements representing the porous area are colored
to show the captured geometry by OOF2. Marked areas with same numbers show
the regions which mesh still needs modifications to have matching node distribution
on opposing edges in order to perform node pairing to satisfy periodic boundary
conditions.
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Physical dimensions: 2.8 µm x 2.8 µm

(a) (b) (c)

Figure 3.30: Geometry modeling of AlSi-CNT (a) SEM image of the microstructure
(b) Binary representation of the geometry (c) Sampled Euclidean distances.

(a) (b) (c) (d)

Figure 3.31: Geometry modeling of AlSi-CNT (a) Distance field representation of
the matrix (b) Distance field representation of the fibers (c) Nonconforming grid for
both phases (d) Gauss integration points distribution.

corresponding Euclidean distances. Over a 540×540 grid of bilinear B-splines, dif-

ferentiable distance field functions are generated from Euclidean distances for both

phases in the microstructure. Then nonconforming grid is created over the domain

and Gauss integration points are distributed as shown in Fig. 3.31.

The above information is imported into meshfree solver and by assuming a plane

stress state and following material properties: Ematrix = 74.52GPa, νmatrix = 0.33,

Efiber = 600GPa and νfiber = 0.27 values of χ functions and eventually homogenized

mechanical properties of the AlSi-CNT are calculated. Fig. 3.32 shows the χ

functions and homogenized properties are presented in Table 3.3. The geometry
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Figure 3.32: Basis
{
χkl
m

}
functions for the SEM image of AlSi-CNT.

Table 3.3: Homogenized stiffness matrix for the RVE representing AlSi-CNT. Values
are derived by assuming plane stress and Ematrix = 74.52GPa, νmatrix = 0.33,
Efiber = 600GPa and νfiber = 0.27.

Strain Energy Method MeshFree / Asymptotic Difference

EH
1111 122.12 130.42 6.80 %

EH
2222 121.08 129.82 7.22 %

EH
1212 39.98 46.88 17.26 %

EH
2211 36.78 42.98 16.86 %

EH
1211 -0.50 -0.53 6.00 %

EH
1222 -0.18 -0.23 27.78 %
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Figure 3.33: The final finite element mesh for AlSi-CNT, created with OOF2 and
manually modified. Areas which still needs modifications for performing node pair-
ing are marked.

presented in Fig. 3.30(b) is also imported in to OOF2 to calculate the homogenized

properties of the structure with strain energy method. A finite element mesh is

generated on the domain and the mesh is gone through considerable amount of

manual modifications to be compatible with geometric features of the domain. Final

mesh is shown in Fig. 3.33 and same as the mesh created in Fig. 3.29, the areas

which still requires modifications to make the mesh suitable for a boundary value

problem with periodic boundary conditions are marked.

Al-10-CNT

The last numerical experiment which takes an image as source of the geometry

investigates the homogenized properties of another composite with carbon nano-

tubes shown in Fig. 3.34(a). Same as before this image is processed an converted to a

black and white binary image, then corresponding Euclidean distances are generated
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(a) (b) (c)

Figure 3.34: Geometry modeling of Al-10-CNT (a) Grayscale image of the mi-
crostructure (b) Binary representation of the geometry (c) Sampled Euclidean dis-
tances.

(a) (b) (c) (d)

Figure 3.35: Geometry modeling of Al-10-CNT (a) Distance field representation of
the matrix (b) Distance field representation of the fibers (c) Nonconforming grid for
both phases (d) Gauss integration points distribution.

as shown in Fig. 3.34(c). Figs. 3.35(a)-(d) respectively show the distance field

functions for matrix and fibers which are created over a 570×570 grid of bilinear B-

splines, the nonconforming grid and distribution of Gauss integration points. Same

material properties as AlSi-CNT are assumed for calculation of χ functions and

behavior of these functions are presented in Fig. 3.36. Consequently homogenized

properties are computed and compared to outcomes of strain energy method in Table

3.4. Fig. 3.37 shows the manually modified mesh which was originally created over

the domain by OOF2 and the problematic areas for node pairing are marked.
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Figure 3.36: Basis
{
χkl
m

}
functions for the SEM image of Al-10-CNT.

Table 3.4: Homogenized stiffness matrix for the RVE representing Al-10-CNT. Val-
ues are derived by assuming plane stress and Ematrix = 74.52GPa, νmatrix = 0.33,
Efiber = 600GPa and νfiber = 0.27.

Strain Energy Method MeshFree / Asymptotic Differences

EH
1111 171.45 189.94 10.26 %

EH
2222 158.09 178.37 12.83 %

EH
1212 50.80 56.04 10.31 %

EH
2211 45.80 50.62 10.52 %

EH
1211 0.23 0.18 21.74 %

EH
1222 -0.34 -0.26 23.53 %
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Figure 3.37: The final finite element mesh created over Al-10-CNT domain by OOF2
and manually modified. Areas which still needs modifications for performing node
pairing are marked.

Discussion

Going back to Tables 3.2-3.4 and reviewing the differences shows that in some cases,

where geometries are captured from images, there are considerable differences be-

tween results of Meshfree/Asymptotic and Strain Energy methods. It should be

noted there are very few software packages capable of converting images into finite

element models and a very fewer number available as open source platforms. Al-

though among these platforms OOF2 suits homogenization problem the best, it has

theoretical differences with Meshfree/Asymptotic platform which can explain the

differences reported in homogenized properties.

Meshfree/Asymptotic platform uses approximate distance field functions to cap-

ture a realistic representation of the geometry from micrograph images where in

OOF2 a finite element model is manually created using a series of mesh modifica-

tion tools.
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In OOF2 homogenized properties of the domain are calculated by applying Hill’s

conditions (see Chapter 2.1.3) and integrating strain energy, but Meshfree/Asymptotic

platform uses Asymptotic homogenization technique and finally for integration,

MeshFree/Asymptotic platform uses Gauss integration points with adjustable reso-

lution where in OOF2 all integration points are given equal weights.

As stated in Section 3.1.1 one of the main advantages of meshfree/asymptotic

platform is the elimination of meshing step from solution procedure and satisfying

periodic boundary conditions via enrichment functions. Going back to Figs. 3.29,

3.33 and 3.37 clearly shows that how meshing process for geometries acquired from

images can be time consuming and demanding and meshfree solution structure can

help us to perform the homogenization in complete autonomy. In addition to easy

handling of boundary conditions, comparing above figures with their corresponding

distance field representations which respectively are Figs. 3.24, 3.31 and 3.35 shows

that the developed platform can also capture a more accurate model of microstruc-

ture in comparison to conventional finite elements.
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CHAPTER 4

STRESS AND STRAIN DISTRIBUTION

As mentioned earlier in Section 2.1.1 one of the main advantages of asymptotic

method to other homogenization techniques is that with this method in addition to

finding homogenized properties of the material, the full structural problem at micro

level can also be solved. This method explicitly defines equations to calculate the

micro-scale stress and strain levels and provides the means to study the effect of

micro-level geometric features on stress distribution.

In this section we will start by going over the mathematical formulation of stress

and strain fields and explain how they can be calculated without fully modeling

all the geometric features of the domain, then performance of meshfree/asymptotic

method in solving the micro level structural problem will be tested by comparing

the results to the data obtained from studying full geometric models.

4.1 Stress-Strain Localization Methodology

Going back to Chapter 2, we recall that in asymptotic method behavior of any phys-

ical field which can be related to two distinct macro-scale and micro-scale domains

can be described as an expansion in form of eq. (2.2). Therefore displacement,

being one of the physical fields depending on both macro and micro scale, can be

written as:

uǫ(x) = u0(x) + ǫu1(x,y) (4.1)

It was also explained that in asymptotic expansion of displacement, the first

term on the right hand side of the equation is in fact displacement fields calculated

via homogenized properties and second term could be computed by eq. (2.16):

u1i = −χkl
i (x,y)

∂u0
k
(x)

∂xl
+ ũ1i (x)
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After computing u0(x) and u1(x,y), eqs. (2.28) and (2.29) could be used to find

out stress and strain fields. Here to make it easier to follow the described procedure,

mentioned equations are recalled from Chapter 2 and rewritten:

εǫij = ε0ij + ǫ1(...) ≈
1

2

[(
∂u0i
∂xj

+
∂u0j
∂xi

)

+

(
∂u1i
∂yj

+
∂u1j
∂yi

)]

(4.2)

σǫ
ij = σ0

ij + ǫ1(...) ≈
1

2
Eǫ

ijkl

[(
∂u0k
∂xl

+
∂u0l
∂xk

)

+

(
∂u1k
∂yl

+
∂u1l
∂yk

)]

(4.3)

The process for stress-strain field localization by using meshfree/asymptotic plat-

form could be summarized as:

• Computing χ functions and finding homogenized elasticity tensor EH .

• Using the homogenized elasticity tensor to calculate u0(x).

• Calculate u1(x,y) values by substituting u0(x) and χ values in eq. (2.16)

• Plugging u0(x) and u1(x,y) values in eqs. (4.2) and (4.3) to calculate local-

ized stress and strain fields.

4.2 Numerical Experiments

Numerical experiments presented here, are generated by using the RVEs introduced

in Chapter 3. Different numbers of previously studied RVE geometries are put to-

gether here to construct a global domain with a periodic structure. Each domain is

subjected to a combination of different type of boundary conditions (axial or shear

forces or displacements) to simulate different real life situations. Then in conjunc-

tion with these boundary conditions, the existing data on the RVEs homogenized

properties (EH) are used to solve the simple homogenized elasticity problem for
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homogenized displacements, u0(x). Previously computed χ functions and homoge-

nized displacements are plugged in eq. (2.16) to calculate u1(x,y) functions, which

here we call them Geometric Effects. Eventually by having all the necessary infor-

mation to find out the total displacement values, they are used to localize stress and

strain distributions and study the effect of different geometric features on mentioned

functions.

To evaluate the performance of meshfree/asymptotic platform, the global domain

geometry for each numerical experiment has been also fully modeled in a meshfree

solver for elasticity problems and displacement, strain and stress distributions are

calculated. In each case results are compared with each other and corresponding

error distributions are presented.

4.2.1 Carbon/Epoxy composite

In this example the RVE presented in Fig. 3.8 is used to construct global periodic

domains. Carbon/Epoxy RVEs are put together in three different geometric setups

which are made from 2 × 2, 10× 10 and 50× 50 rectangular grids of RVEs. Mate-

rial properties are the same as Chapter 3 and the domains undergo a plane strain

deformation. Fig. 4.1(a) shows the geometry and properties of the RVE and global

domains assembled from 4 and 100 RVEs are presented in Figs. 4.1(b) and (c),

as shown the left edge of domain is fixed in x and y directions and the constant

shear force of 100 N/unit length is applied to the right edge. According to stress-

strain localization process, in the first step χ functions and homogenized properties

are calculated, which for the mentioned RVE it has been already done in Chapter

3. Then elasticity problem for the homogenized domain is solved with the applied

boundary conditions. Fig. 4.1(d) shows the setup for homogenized problem, and it
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Figure 4.1: Geometry modeling (a) RVE; (b) Global domain with a 2 × 2 grid
and boundary conditions ; (c) Global domain with a 10 × 10 grid and boundary
conditions(d) Homogenized problem.

is solved for u0(x). Now that u0(x) functions are computed and values of χ are

known, geometry effect functions can be calculated by using eq. (2.16).

Going back to eq. (2.1) and by comparing the unit lengths in local and global

coordinates in Fig. 4.1 we can see that the values of ǫ for the global domains with a

2×2, 10×10 and 50×50 grid are respectively equal to 0.5, 0.1 and 0.02. Substituting

ǫ and values for u0 and u1 in eq. (4.1), we can calculate total displacements for

each global domain setup. After calculating u0 and u1 functions, strain and stress

distributions can be computed by plugging in displacement functions in eqs. (4.2)

and (4.3).

At the same time to evaluate the results of meshfree/asymptotic platform, the

geometry for all three global domains are fully modeled with a meshfree geometric

engine. This model contains all the geometric features and their corresponding

material properties and the full structural problem is solved for it by considering

the same boundary conditions as the homogenized problem and choosing a proper

solution structure from Table 2.1.

Using the results of meshfree solution on full geometric model (FGM ) as a bench

mark and comparing outputs of meshfree/asymptotic platform with them, we can

calculate L2-norms for each member of displacement vector and strain and stress
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Figure 4.2: L2-norms calculated for strains and stresses with different values of ǫ.

tensors by:

L2-norm =

√∫

Ω
(f ref − f ǫ)2 dΩ
∫

Ω
f ref 2dΩ

(4.4)

Recalling eq. (2.2), we know that values calculated by asymptotic expansion

should get closer to results of full geometric solution as ǫ → 0+. In Fig. 4.2 L2-

norms for displacements, strains and stresses of global domains with ǫ = 0.5, 0.1, 0.02

are computed and presented side by side each other and it clearly can be observed

that as the value of ǫ gets smaller results of homogenized solution gets closer to

outcomes of full geometric model.

L2-norm gives us a quantitative understanding about the performance of mesh-

free/asymptotic platform, but in order to see how errors are distributed over the

domain and in which areas it is more likely to have larger error values, error distri-

butions for displacements, strains and stresses are also calculated by using

f error(x) =
|f ref(x)− f ǫ(x)|

max(|f ref(x)|)
(4.5)

Figs. 4.3, 4.4 and 4.5 respectively show the error distributions for displacements,

strains and stresses. In each figure the first row corresponds to a global domain with
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ǫ = 0.5, second row presents the error distribution when ǫ = 0.1 and the last row

is computed with ǫ = 0.02. Studying error distributions shows that in predicting

displacement values, asymptotic/meshfree platform performs very well even with

large size RVEs and as ǫ gets smaller the answers of full geometric model and

homogenized model become almost the same (largest error value is less than 1%).

For strains and stresses although maximum error values are larger comparing to

displacements, but if we look closer we can see that large values of error is mostly

limited to boundary RVEs. And as ǫ gets smaller size of RVEs and consequently

the area occupied by boundary RVEs, which is the area containing large values of

error, gets smaller and at all the other points of domain results of full geometric

model and homogenized model are in very good agreement with each other.

Going back to Chapter 3 and reviewing eq. (3.6) shows that solution structure

proposed for homogenization problem is designed in a way to satisfy periodic bound-

ary conditions and when a RVE edge and one of the global domain edges coincide

with each other, enforcing periodic boundary conditions on the boundary RVE will

cause discrepancies between the two sets of results.

Studying L2-norms and error distribution plots for different values of ǫ confirms

that the results obtained from homogenized model with meshfree/asymptotic plat-

form converge toward the outcomes of full geometric model. Here to give a more

clear picture of the stress-strain localization process results of meshfree/asymptotic

platform for the global domain with ǫ = 0.1 are also presented.

As explained earlier the first step after solving homogenized setup of the prob-

lem is to compute geometric effects and then use them to calculate displacement

and eventually strain and stress values. Fig. 4.6 shows how inhomogeneities in the

geometry can effect the homogenized displacement fields and Fig. 4.7 compares the

total displacements calculated by asymptotic/meshfree platform with our bench-
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mark which is the results of full geometric model. Same comparison is performed

for strains and stresses in Figs. 4.8 and 4.9. It is worth pointing out that although

in calculation of strain and stress fields there is a slight error in the values, but the

proposed platform is very well capable of predicting the location where maximum

strains and stresses happen.

4.2.2 Square RVE with a square void

Same as the previous example, one of the RVEs studied in Chapter 3 is used here

to construct a global domain. As shown in Fig. 4.10(a) the square RVE with a

square void is considered as the local domain and it is assembled in three different

1×4, 5×20 and 25×100 grids to form global domains with different ǫ values. Figs.

4.10(b) and 4.10(c) show the structure of the global domains with 1× 4 and 5× 20

grids and also the boundary conditions. The global domains have fixed supports on

both ends and a distributed load with a constant profile is being applied on them

in −y direction. Material properties are the same as Chapter 3 and the domains

experience a plane stress loading.

Following the same steps as Section 4.2.1, first homogenized setup of the prob-

lem which is shown in Fig. 4.10(d) is solved to find homogenized displacements.

Then u0(x) values alongside with χ functions are used to find geometry effects and

eventually total displacements are calculated. This process is performed for all three

global domains and the corresponding L2-norms for their displacements, strains and

stresses are calculated with respect to the results of full geometric model analysis

and presented in Fig. 4.11.

In addition to L2-norms, error distributions are also calculated by equation 4.5

and the plots for displacement, strain and stress error distributions are respectively
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Figure 4.3: Error distribution for displacement over the global domains with ǫ =
0.5, 0.1, 0.02.
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Figure 4.4: Error distribution for strains over the global domains with ǫ =
0.5, 0.1, 0.02.

81



σerror
xx σerror

yy σerror
xy

ǫ
=

0.
5

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3

 

 

0 0.1 0.2 0.3 0.4 0.5

 

 

0 0.1 0.2 0.3 0.4 0.5

ǫ
=

0.
1

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3

 

 

0 0.2 0.4 0.6

 

 

0 0.1 0.2 0.3

ǫ
=

0.
02

0 0.05 0.1 0.15 0.2 0.25

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 4.5: Error distribution for strains over the global domains with ǫ =
0.5, 0.1, 0.02.

82



-20 -10 0 10 20 -10 -5 0 5 10

(a) (b)

Figure 4.6: Geometry effects for the global domain with ǫ = 0.1 (a) u11(x,y); (b)
u12(x,y).
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Figure 4.7: Total displacements calculated with full geometric model and homoge-
nized model.

83



 

 

−200 −100 0 100 200

 

 

−150 −100 −50 0 50 100 150

 

 

−150 −100 −50 0

εǫxx εǫyy εǫxy

 

 

−200 −100 0 100 200

 

 

−150 −100 −50 0 50 100 150

 

 

−150 −100 −50 0

εFGM
xx εFGM

yy εFGM
xy

Figure 4.8: Strains calculated with full geometric model and homogenized model.
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Figure 4.9: Stresses calculated with full geometric model and homogenized model.
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Figure 4.12: Error distribution for displacement over the global domains with ǫ =
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presented in Figs. 4.12, 4.13 and 4.14.

Same as before error distribution plots for displacements shows very small error

values and in plots corresponding to strains and stresses maximum values of error are

limited to areas containing boundary cells. Based on L2-norm and error distribution

plots it is safe to say that, as expected when ǫ → 0+ the results of homogenized

model converges to full geometric model.

In order to investigate the performance of proposed platform in predicting lo-

cations of maximum strains and stresses, results obtained from the homogenized

model of the global domain with ǫ = 0.1 are compared with full geometric model

and their plots are compared side by side in Figs. 4.15, 4.16 and 4.17.

4.2.3 Spark plasma sintered TaC

As the last numerical experiment carried out to evaluate the performance of mesh-

free/asymptotic platform in finding the local distribution of stresses and strains,

the RVE shown in Fig. 3.24 is used to construct a global domain. Same as the

previous two examples, RVEs are put together in three different 2× 2, 10× 10 and
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Figure 4.13: Error distribution for strains over the global domains with ǫ =
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Figure 4.14: Error distribution for stresses over the global domains with ǫ =
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Figure 4.15: Total displacements calculated with full geometric model and homoge-
nized model for a global domain constructed from square RVEs with a square void
and ǫ = 0.1.
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Figure 4.16: Strains and corresponding error distributions for a global domain con-
structed from square RVEs with a square void and ǫ = 0.1.
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Figure 4.17: Stresses and corresponding error distributions for a global domain
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Figure 4.19: L2-norms calculated for strains and stresses with different values of ǫ.

50×50 grids. Fig. 4.18(a) shows the RVE geometry and material properties, global

domains created by 2× 2 and 10× 10 grids and corresponding boundary conditions

are presented in Figs. 4.18(b) and (c) and Fig. 4.18(d) shows the homogenized

problem setup.

Homogenized and full geometric models are solved for all three global domains

and corresponding L2-norms for displacements, strains and stresses are computed

and presented in Fig. 4.19. Same as before, following the behaviour of L2-norms
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clearly shows that as ǫ → 0+ results of homogenized solution converge toward the

ones from full geometric model. Error distributions for displacements, strains and

stresses are respectively presented in Figs. 4.20, 4.21 and 4.22 and Figs. 4.23 and

4.24 compare the values of strains and stresses calculated with homogenized and full

geometric models side by side.
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Figure 4.21: Error distribution for strains over the global domains with ǫ =
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Figure 4.23: Strains and corresponding error distributions for a global domain con-
structed from square RVEs with a square void and ǫ = 0.1.
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Figure 4.24: Stresses and corresponding error distributions for a global domain
constructed from square RVEs with a square void and ǫ = 0.1.
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CHAPTER 5

EFFECTS OF GEOMETRIC FEATURES ON MECHANICAL

PROPERTIES

In Chapters 3 and 4 details of the developed computational platform were dis-

cussed. It was shown that the meshfree/asymptotic homogenization method can

easily handle complex geometries. Also due to its meshfree nature, the mesh gen-

eration procedure can be completely removed and we can have access to a fully

automated analysis.

In most of common homogenization methods, the only factor effecting homoge-

nized properties is the volume fraction of inhomogeneities and the output effective

elasticity tensor is always isotropic. But in the developed platform, in addition to

volume fractions, spatial distribution of pores and inclusions is also taken into con-

sideration, besides when dealing with nonsymmetric geometries or materials this

platform is very well capable of predicting anisotropic effective properties.

In this chapter, we study RVEs with various distributions of pores or inclusions

and investigate the effects of geometry on homogenized properties. Numerical ex-

periments are designed in such way that in addition to different volume fractions,

they can provide us several spatial distributions of inhomogeneities.

For example in Fig. 5.1 we have a unit length square shaped RVE with a rectan-

gular 0.7× 0.3 area marked and centered in it. This area is used as the permissible

area for distribution of inhomogeneities. In this particular example 250 circular

pores with the diameter of 0.02 are randomly distributed in the mentioned area.

Then this distribution is rotated 180◦ CCW and the homogenized properties of the

RVE are calculated every 5◦. As shown in Figs. 5.1 (a) and (b), the volume frac-

tion of pores are the same for every arrangement (Vf = 15.8%). Fig. 5.2 shows

elasticity tensor members as a function of rotation angle, to calculate these values
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Figure 5.1: A unit length RVE with random distribution of circular porosities inside.
Pores are distributed in a rectangular 0.7×0.3 area centered in the RVE with edges
(a) parallel to x and y axis, (b) with a 45◦ CCW rotation.
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Figure 5.2: Elasticity tensor members as a function of rotation angle, (a) E1111 and
E2222, (b) E1212 and E1122, (c) E1112 and E1211.

it is assumed that for the matrix material mechanical properties are E = 100 GPa,

ν = 0.2 and the RVE is experiencing a plane stress loading. As shown in Fig. 5.2,

although at all rotation angles the RVE has the same volume fraction of pores but

the values of elasticity tensor members change considerably. Specially Fig. 5.2 (c),

representing the changes in E1112/E1211 and E2212/E1222, clearly shows that most

of the spatial arrangements will result in an anisotropic effective elasticity tensor,

which other common homogenization techniques are not capable of recovering it.

Numerical experiments presented here can be categorized in three different groups
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based on the factor they study, those factors are: volume fraction, concentration of

pores or inclusions and type of the basic geometry used to model inhomogeneities.

In all experiments it is assumed that the properties for base material (matrix) are

Ematrix = 100 GPa and νmatrix = 0.2. If the RVE contains pores, they are modeled

as void spaces and if there is a second material mixed in the matrix, it is assumed

that the second phase has the same Poisson’s ratio as the matrix and it is ten times

stronger which means Einclusion = 1000 GPa and νinclusion = 0.2.

5.1 Effect of volume fraction

To study the effect of volume fraction on effective mechanical properties, a square

domain is considered as the RVE and it is filled with random number of reinforcing

fibers. Fiber width is kept constant and equal to 0.0125, the lengthes are randomly

sized within [0.0, 0.3] range and their orientation is also a random value between

[0, π]. Fig. 5.3 shows ten different RVEs filled with fibers and the corresponding

fiber volume fractions. Each RVE is homogenized and members of the resulting

homogenized elasticity tensor are presented in Fig. 5.4.

As expected, an increase in the fiber volume fraction will increase the material

stiffness and although the distributions are random but since they are almost evenly

distributed around the RVE center, values of E in x and y directions (E1111 and

E2222) are very close to each other. It can be observed that relation between values

of elasticity tensor members and fiber volume fraction is a linear one. Comparing

Figs. 5.4 (a) and (b) also shows that axial strength of the RVE is more sensitive to

fiber volume fraction than shear strength.

98



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.3: A unit length RVE with random distribution of different volume fractions
of fibers. (a) 5%, (b) 8%, (c) 12%, (d) 15%, (e) 18%, (f) 21%, (g) 24%, (h) 25%, (i)
28%, (j) 31%.
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Figure 5.4: Elasticity tensor members as a function of fiber volume fraction, (a)
E1111 and E2222, (b) E1212 and E1122.
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Figure 5.5: A unit length RVE with random distribution of circular porosities inside.
Pores are distributed in a rectangular (a) 0.7× 0.3, (b) 0.7× 0.4, (c) 0.7× 0.5, (d)
0.7× 0.6 area.

5.2 Effect of pore concentration

In this numerical experiment, same square RVE is considered and four different

rectangular areas are created in it as permissible areas for pore distribution. Size of

these rectangular areas goes from 0.7× 0.3 to 0.7× 0.6 (width is kept constant and

heights change) and since number of pores are adjusted in such way that we always

have a 10% volume fraction of pores, the smaller rectangles will lead to a more

concentrated distribution of pores and the bigger ones give a wider distribution.

Fig. 5.5 shows the four different RVE arrangements, in each RVE the group of

pores is rotated from 0◦ to 180◦ and at 24 different positions homogenized properties

are calculated and recorded. Values of members of resulting homogenized elasticity

tensors are plotted against rotation angles in Fig. 5.6.

Fig. 5.6 clearly shows that in addition to volume fraction and porosity orienta-

tion, the concentration of pores can also have a considerable effect on homogenized

properties. All four RVEs have the same volume fraction of pores, but in all the plots

in Fig. 5.6 the wider distribution of pores has led to a higher values of homogenized

properties.

Recalling the equations for coordinate transfer of moment of inertia values, we

know that if the moments of inertia for a given geometry are defined as Ixx, Iyy and
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Figure 5.6: Elasticity tensor members as a function of rotation angle for different
areas of pore distribution. (a) E1111, (b) E2222, (c) E1212.

Ixy in xy coordinate system, the new values in x́ý coordinate system which is the

rotation of xy by angle α will be:

Ix́x́ = Ixx+Iyy
2

+ Ixx−Iyy
2

cos(2α)− Ixysin(2α)

Iýý =
Ixx+Iyy

2
+ Ixx−Iyy

2
cos(2α) + Ixysin(2α)

Ix́ý =
Ixx−Iyy

2
sin(2α) + Ixycoas(2α)

(5.1)

Using this information and the fact that values of elasticity tensor members have a

trigonometric behavior with respect to rotation angle, it can be predicted that the

homogenized properties and the moment of inertia of pores would have a correlation

as shown in Fig. 5.7.

In another experiment performed for investigating the effect of pore concentra-

tion on homogenized properties, the RVE presented in Fig. 5.5 (a) is used again.

But instead of having a single 0.7 × 0.3 rectangle as permissible area, pores are

distributed in four 0.35 × 0.15 rectangles centered in each one of the coordinate

quadrants as shown in Fig. 5.8. Volume fraction of pores is kept at 10% and each

rectangle is rotated from 0◦ to 180◦. Homogenized properties for the RVE with four

separated pore distributions are computed and compared with the data for the RVE

with a single permissible area for pore distribution in Fig. 5.9.
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Figure 5.7: Elasticity tensor members as a function of moment of inertia for different
areas of pore distribution.

As Fig. 5.9 shows, off-diagonal elements of homogenized elasticity tensor for

both arrangement of pores are almost the same and although the diagonal elements

of the RVE with four separate distribution of pores have higher values, but the

differences are very small (< 1%).

Above experiments are repeated for new sets of RVEs which have the same ge-

ometric configurations as Figs. 5.5 and 5.8. The only difference is that instead of

random distribution of circular pores inside the RVEs, they contain random distri-

bution of inclusions of a second material stronger than matrix.

Figs. 5.10, 5.11 and 5.12 respectively show the RVE geometry, homogenized

properties as a function of rotation angle and the correlation between homogenized

properties and moments of inertia of the inclusions. Same as before, the plot pre-

senting homogenized properties versus rotation angle shows that wider distribution

of inclusions will lead to a higher values of homogenized properties in comparison
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Figure 5.8: A unit length RVE with random distribution of circular porosities inside.
Pores are distributed in 4 rectangular 0.35× 0.15 areas with edges (a) parallel to x
and y axis, (b) with a 45◦ CCW rotation.

0 50 100 150
88

89

90

91

92

93

α (deg)

E
1

1
1

1 (
G

P
a
)

 

 

Single Box

Separated

0 50 100 150
88

89

90

91

92

93

α (deg)

E
2

2
2

2 (
G

P
a
)

 

 

Single Box

Separated

0 50 100 150
35

35.2

35.4

35.6

35.8

36

36.2

36.4

α (deg)

E
1
2
1
2 (

G
P

a
)

 

 

Single Box

Separated

(a) (b) (c)

0 50 100 150
17.6

17.7

17.8

17.9

18

18.1

18.2

18.3

α (deg)

E
1
1
2
2 /

 E
2
2
1
1 (

G
P

a
)

 

 

Single Box

Separated

0 50 100 150
−1

−0.5

0

0.5

1

α (deg)

E
1
1
1
2 /

 E
1
2
1
1 (

G
P

a
)

 

 

Single Box

Separated

0 50 100 150
−1

−0.5

0

0.5

1

α (deg)

E
2
2
1
2 /

 E
1
2
2
2 (

G
P

a
)

 

 

Single Box

Separated

(d) (e) (f)

Figure 5.9: Elasticity tensor members as a function of rotation angle for pores
distributed in a single rectangle and four separated ones. (a) E1111, (b) E2222, (c)
E1212, (d) E1122, (e) E1112, (c) E2212.
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(a) (b) (c) (d)

Figure 5.10: A unit length RVE with random distribution of a circular inclusions as
reinforcement. Inclusions are distributed in a rectangular (a) 0.7×0.3, (b) 0.7×0.4,
(c) 0.7× 0.5, (d) 0.7× 0.6 area.
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Figure 5.11: Elasticity tensor members of a RVE with two different materials as
a function of rotation angle for different areas of pore distribution. (a) E1111, (b)
E2222, (c) E1212.

to a more concentrated distribution.

Plots comparing the homogenized properties of a RVE with a continuous distri-

bution of inclusions to the one with four separated inclusion groups are presented in

Fig. 5.13, which again shows the values of the off-diagonal elements are almost iden-

tical and the diagonal elements of the RVE with separated distribution of inclusions

have a higher value, but the difference is very small (< 4%)
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Figure 5.12: Elasticity tensor members as a function of moment of inertia for dif-
ferent areas of pore distribution.
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Figure 5.13: Elasticity tensor members as a function of rotation angle for inclusions
distributed in a single rectangle and four separated ones. (a) E1111, (b) E2222, (c)
E1212, (d) E1122, (e) E1112, (c) E2212.
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(a) (b)

Figure 5.14: A unit length RVE with random distribution of pores inside. Pores
are distributed in a 0.7 × 0.3 rectangular area and modeled with (a) ellipses, (b)
Squares.

5.3 Effect of pore shape

In Figs. 5.5 (a) and 5.10 (a) pores and inclusions are modeled with circular shapes.

Here same RVEs with the same permissible pore distribution areas are considered,

but instead of using circles, pores are modeled with ellipses and squares as shown in

Fig. 5.14. Same process has been repeated for the RVE containing inclusions of a

stronger second material. The areas containing pores ad inclusions are rotated from

0◦ to 180◦ and homogenized properties are computed and recorded at 24 different

positions.

Fig. 5.15 shows the recorded properties and compares them with properties of the

RVE containing circular pores, as shown homogenized properties of this particular

example does not depend that much on geometric shapes used to model pores. Fig.

5.16 represents the same properties for the RVEs containing inclusions. Again we

can see that whether pores or inclusions are modeled with circles, ellipses or squares,

computed homogenized properties are almost the same.
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Figure 5.15: Elasticity tensor members as a function of rotation angle for pores
modeled with circles, ellipses and squares. (a) E1111, (b) E2222, (c) E1212, (d) E1122,
(e) E1112, (c) E2212.
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Figure 5.16: Elasticity tensor members as a function of rotation angle for inclusions
modeled with circles, ellipses and squares. (a) E1111, (b) E2222, (c) E1212, (d) E1122,
(e) E1112, (c) E2212.
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CHAPTER 6

HOMOGENIZATION OF THREE DIMENSIONAL DOMAINS

The mathematical formulation derived for homogenization in Chapter 3 is the

general tensor notation of equations and depending on the ranges of indices in eqs.

(3.6) - (3.11) it can be implemented on 3D as well as 2D domains. For a three

dimensional problem (when i, j, k, l,m, n = 1, 2, 3) eq. (3.7) should be solved for six

different sets of kl = 11, 22, 33, 23/32, 13/31, 12/21. Which will lead to six differ-

ent sets of linear algebraic equations in the form of eq. (3.9). Since the elements

of [A] matrix do not depend on kl values, the coefficient matrixes of all these lin-

ear equation sets are the same and the only thing changing is the [b] vector. As

we know solving these systems will give us the values for
{
Ckl

qm

}
and eventually

{
χkl
m

}
functions, which will be substituted in eq. (3.1) to calculate the homogenized

properties.

Although the workflow diagram of developed homogenization platform for three

dimensional problems is the same as Fig. 3.6, but changes need to be made specially

in distance field generation and adaptive integration blocks to make them compatible

with 3D domains. Details of theses modifications are extensively discussed in [39,

64, 11].

In addition to above modifications, a new set of enrichment functions suitable

for 3D domains has to be defined which can satisfy periodic boundary conditions

on three dimensional RVEs, see eqs. (3.5) and (3.15). Enrichment functions imple-

mented to ensure satisfaction of periodic boundary conditions over a cubic RVE are

described in eq. (6.1).

Same as previous chapters, here a group of numerical experiments are chosen to

evaluate the performance of meshfree/asymptotic homogenization platform and the
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results are compared with previously published data and/or strain energy method.

∆x = xmax − xmin ∆y = ymax − ymin ∆z = zmax − zmin

xc =
xmax + xmin

2
yc =

ymax + ymin

2
zc =

zmax + zmin

2

For k = 1 ψ1 =

[(
∆y

2

)2

− (y − yc)
2

][(
∆z

2

)2

− (z − zc)
2

]

(x− xc)
2

ψ2 =

[(
∆x

2

)2

− (x− xc)
2

][(
∆z

2

)2

− (z − zc)
2

]

(y − yc)
2

ψ3 =

[(
∆y

2

)2

− (y − yc)
2

][(
∆x

2

)2

− (x− xc)
2

]

(z − zc)
2

For k = 2, 3, ... ψ3k−2 = (x− xc)
2

2k∏

j=0

[

y −

(

ymin +
j

2k
∆y

)] [

z −

(

zmin +
j

2k
∆z

)]

ψ3k−1 = (y − yc)
2

2k∏

j=0

[

x−

(

xmin +
j

2k
∆x

)][

z −

(

zmin +
j

2k
∆z

)]

ψ3k = (z − zc)
2

2k∏

j=0

[

y −

(

ymin +
j

2k
∆y

)][

x−

(

xmin +
j

2k
∆x

)]

(6.1)

6.1 Layered Composite

As the first numerical experiment on 3D domains a simple layered composite is

studied and as a heterogeneous material its homogenized mechanical properties are

calculated. A representative volume element of the structure is shown in Fig. 6.1

and Table 6.1 contains corresponding material properties. Effective properties of

mentioned structure was studied in [47] by using conventional finite element and

here those results will be used to evaluate the performance of MeshFree/Asymptotic

method on a 3D geometry.

Following the work flow presented in Chapter 3, first distance field functions

are created for each phase in the structure, a nonconforming grid is laid over the

domain and Gauss integration points are distributed. Fig. 6.2 shows the distance

109



1.0
0.2

Matrix

Reinforce
ment

Figure 6.1: RVE geometry for a composite structure with layer reinforcement.

Table 6.1: Mechanical properties of matrix and reinforcement for the layered
composite[47].

Property Value

Matrix elastic modulus, Em (GPa) 3.5

Matrix Poisson’s ratio, νm 0.35

Reinforcement elastic modulus, Em (GPa) 72.0

Reinforcement Poisson’s ratio, νm 0.30
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Figure 6.2: Distance field functions for matrix and reinforcement layer and Gauss
integration point distribution in a section of domain.

field functions for matrix and reinforcement and also distribution of integration

points are illustrated for a small section of the domain.

A solution structure similar to eq. (3.6) is created and 3D enrichment functions

presented in eq. (6.1) are incorporated in it, and finally system of linear equations

are solved and χ functions are computed. Fig. 6.3 shows the corresponding χkl
m

functions for m = 1 and homogenized properties are presented and compared with

strain energy method in Table 6.2. Since the RVE shown in Fig. 6.1 has three planes

of symmetry, behaviour of χ functions for m = 2, 3 are going to be very similar to

the ones with m = 1 and the only difference would be the maximum and minimum

values of the functions. Therefor 6 out of total of 18 χ functions are presented here

for illustration purposes.

6.2 Composite Matrix Reinforced with Boron Fiber

Next three dimensional numerical experiment, investigates a composite matrix re-

inforced with continuous boron fibers which was previously studied in [47]. Same

as other examples, a proper RVE is considered as the domain of interest. Distance

field functions are generated for each phase of the structure and after creation of
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Figure 6.3: χkl
1 functions for layered composite.

Table 6.2: Homogenized stiffness matrix of the layered composite RVE.

MeshFree/Asymptotic Strain Energy Method Difference
7EH

1111 21.41 21.18 1.09 %

EH
2222 21.41 21.18 1.09 %

EH
3333 9.46 8.81 7.38 %

EH
1122 8.19 8.03 1.99 %

EH
1133 4.64 4.33 7.16 %

EH
2233 4.64 4.33 4.10 %

EH
2323 3.05 2.93 4.10 %

EH
1313 3.05 2.93 4.10 %

EH
1212 6.60 6.65 0.75 %
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1.0

Matrix

r = 0.39

Figure 6.4: RVE geometry for a composite structure with fiber reinforcement, Vf
(fiber volume fraction)= 0.47).

Table 6.3: Mechanical properties of matrix and fiber [47].

Property Value

Matrix elastic modulus, Em (GPa) 68.3

Matrix Poisson’s ratio, νm 0.30

Reinforcement elastic modulus, Em (GPa) 379.3

Reinforcement Poisson’s ratio, νm 0.10

the nonconforming grid and distribution of Gauss integration points, χ functions

are calculated. Fig. 6.4 and Table 6.3 respectively show the RVE structure and

mechanical properties corresponding to each material in the domain. Distance field

functions and a section of Gauss integration point distribution are presented in Fig.

6.5 and Fig. 6.6 shows the χ functions. Considering the fact that the behaviour of

structure in x and y directions are the same, only one of the two sets of χ functions

corresponding to x and y directions (m = 1, 2) are plotted alongside with the ones re-

lated to z direction (m = 3) and eventually homogenized properties are tabulated in

Table 6.4. Reviewing homogenized properties computed via MeshFree/Asymptotic

platform shows quite satisfactory agreement with conventional finite element results,

with the maximum difference of 3 %.
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1w

2w

Figure 6.5: Distance field functions for matrix and reinforcement fiber and Gauss
integration point distribution in a section of domain.

Table 6.4: Homogenized stiffness matrix of the composite with fiber reinforcement.

MeshFree/Asymptotic Strain Energy Method [47] Differences

EH
1111 181.47 178.21 1.83 %

EH
2222 181.47 178.21 1.83 %

EH
3333 231.56 231.04 0.23 %

EH
1122 44.48 45.27 1.75%

EH
1133 40.68 40.49 0.47 %

EH
2233 40.68 40.49 0.47 %

EH
2323 74.93 73.19 2.38 %

EH
1313 74.93 73.19 2.38 %

EH
1212 64.89 62.80 3.33 %
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Figure 6.6: χkl
m functions for composite with fiber reinforcement.
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1.0

Matrix

r = 0.046

Figure 6.7: RVE geometry for a composite structure with reinforcement grid, Vf
(fiber volume fraction)= 0.02.

6.3 Cubic Grid-Reinforced Composite with Orthotropic Re-

inforcement

As the last example, a cubic RVE containing fiber reinforcements in three direc-

tions which is studied in [33] is considered as the source of domain geometry. Fig.

6.7 shows the RVE structure and mechanical properties for matrix and reinforce-

ments are presented in Table 6.5 which clearly shows the orthotropic behavior of

the reinforcement structure. Distance field functions and Gauss integration point

distribution are shown in Fig. 6.8 and Table 6.6 compares the homogenized proper-

ties computed via MeshFree/Asymptotic platform and conventional finite elements

side by side.

Reviewing the numerical experiments presented in Chapter 3 on 2D domains

and the ones investigated in this chapter for 3D RVEs, we can clearly see that the

MeshFree/Asymptotic method has a very satisfactory performance and provides

a robust and fully automated platform to compute the homogenized properties of

various inhomogeneous structures.
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Table 6.5: Mechanical properties of matrix and fiber [33].

Property Value

Matrix elastic modulus, Em (GPa) 3.19

Matrix Poisson’s ratio, νm 0.35

Reinforcement Properties

E1 (GPa) 173.06

E2 (GPa) 33.06

E3 (GPa) 5.17

G23 (GPa) 3.24

G13 (GPa) 8.27

G12 (GPa) 9.37

ν23 0.17

ν13 0.25

ν12 0.03

Figure 6.8: Distance field functions for matrix and reinforcement grid and Gauss
integration point distribution in a section of domain.
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Table 6.6: Homogenized stiffness matrix of the composite with reinforcement grid.

MeshFree/Asymptotic Strain Energy Method Differences

EH
1111 6.45 6.35 1.57 %

EH
2222 5.42 5.38 0.74 %

EH
3333 5.10 5.12 0.39 %

EH
1122 2.75 2.76 0.36 %

EH
1133 2.73 2.74 0.36 %

EH
2233 2.72 2.74 0.73 %

EH
2323 1.21 1.20 0.83 %

EH
1313 1.24 1.22 1.64 %

EH
1212 1.24 1.22 1.64 %
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CHAPTER 7

CONCLUSION

Summary and Discussion

In this dissertation a novel computational method is introduced to calculate ho-

mogenized mechanical properties of materials with inhomogeneous structures. This

method combines Asymptotic Homogenization technique with MeshFree Solution

Structures and creates a hybrid system which inherits the perks of both meshfree

and asymptotic theories.

Theoretical background and mathematical formulation of asymptotic homoge-

nization and meshfree solution structures are discussed in detail. It is also explained

how these two methods are combined. Then a computational platform is developed

based on the hybrid Meshfree/Asymptotic method. This platform takes advantage

of a meshfree geometric engine which converts micrograph images of complex struc-

tures into models suitable for numerical analysis.

Solving homogenization problem using conventional finite elements requires gen-

eration of a geometry conforming mesh over the domain, and when the geometric

information of this domain is provided by only images, first these image data need

to be converted to finite element meshes. There are very few software packages to

perform the latter, they create a preliminary mesh over the domain and provide the

user with a group of tools to manually apply them and modify the mesh to get to

the desired quality. In addition, for boundary value problems with periodic bound-

ary conditions (e.g. homogenization problem) the modified mesh requires additional

treatments such as node pairing to be suitable for implementation of such boundary

conditions.
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While in the developed platform, meshfree modeling of the domain simplifies

meshing to generation of a simple cartesian grid which only needs to contain the

domain. Also a suitable solution structure is designed which provides exact satisfac-

tion of periodic boundary conditions. Consequently there would be no need for any

manual mesh modifications and this will provide a completely automated platform

for computing homogenized mechanical properties (see Fig. 7.1).

This platform is created in conjunction with a larger meshfree library in C++

and necessary modulus and features are designed and added to it. One of the

novel features developed in this work is a Meshfree Solution Structure for boundary

value problems with Periodic Boundary Conditions. This structure utilizes a group

of carefully designed enrichment functions to enforce periodicity conditions on the

boundaries and provide Exact Satisfaction of periodic boundary conditions.

Performance of the developed platform is tested with numerical experiments in

two major categories: geometries presented as CAD models and geometries cap-

tured from images. In all cases where RVE geometry is presented in form of a

CAD model, meshfree/asymptotic results and previously published data are very

similar, with the maximum difference of 11%. Where micrograph images are di-

rectly imported to the platform, diagonal elements of homogenized elasticity tensor

obtained from meshfree/asymptotic and strain energy methods are again in a very

good agreement (within 10% of each other). Discrepancies among off-diagonal ele-

ments are more noticeable, and the reasons behind them originates from theoretical

differences between meshfree/asymptotic and strain energy methods.
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As stated earlier, there are very few software packages available to create finite

element models from image data and among those available as open source platforms,

OOF2 is the one used to compute benchmark properties. Although OOF2/strain

energy method does not use the same approaches as meshfree/asymptotic method

for geometry modeling, solving the homogenization problem and post processing the

results, it is still one of the best numerical benchmarks available.

The developed platform is capable of handling multi-phase inhomogeneous do-

mains and producing fully anisotropic homogenized elasticity tensor. It also captures

the realistic geometry from images and in a completely automated process computes

the homogenized properties. Results of meshfree/asymptotic method are in the same

level of accuracy as available methods such as strain energy, but due to elimination

of meshing and manual mesh modifications these results are less expensive.

Fig 7.2 compares the solution times for computing homogenized properties of

a sample RVE (see Section 3.2.3) with meshfree and conventional finite elements.

Solution time which consists of: Importing the Geometry & Preparing the Model,

Solving Homogenization Problem and Post Processing the Results is almost the same

for both methods. The main difference is that in conventional finite element method

the time spent for preparing the model is a person’s time, but meshfree methods do

the same thing automatically by consuming more processing power which is much

cheaper than a skilled finite element user. It also worth mentioning, currently the

developed C++ code runs on a single node and it can be easily modified for parallel

computing which significantly reduces solution time.

After satisfactory evaluation of the developed platform in predicting homoge-

nized properties of inhomogeneous structures, those properties are used to find the

localized distribution of stresses and strains in nonuniform domains. Three differ-

ent numerical experiments were designed using previously studied RVEs. Boundary
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Figure 7.2: (a) RVE for Al-10-CNT, (b) Solution time comparison for conventional
finite elements and meshfree solution structures. The time for importing geometry
& preparing the model is the time spent by a skilled finite element user to import
Fig. 3.34(b) into OOF2 and create the mesh shown in Fig. 3.37.

conditions and loads simulating real engineering problems are applied to these do-

mains and using L2-norms of displacements, convergence of the localized values to

the results of full geometric models are investigated. For ǫ << 1, localized val-

ues of displacements are within 2% of full geometric model results. Also localized

stress distribution patterns are very well predicted and stress concentration zone are

clearly distinguishable.

Although error distribution plots for stresses show high error values, these spikes

are limited to finite number of boundary points. In areas where RVE boundaries at

local scale coincides with global boundaries, local solution structure enforces periodic

boundary conditions at local scale and this can cause noises on global responses.

Furthermore a study is conducted on the effect of geometric features on homog-

enized mechanical properties. It is shown that in addition to volume fraction of

porosities/inclusions (which currently is the major factor determining homogenized

properties in most of homogenization techniques), their concentration and spatial

orientation also plays an important role in homogenized properties.

More importantly, it is demonstrated that automated calculation of homoge-

nized properties provides the opportunity for Automated Quantitative Analysis of

homogenized properties, which could be a powerful design and optimization tool.
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For example, 3D printing technology gives user the ability to treat material prop-

erties, their volume fractions and microstructure geometry as design variables for

reaching to a desired property. In such applications, a quantitative analysis of ge-

ometric features effect on homogenized properties would lead to a more optimized

and cost effective designs.

At the end, the developed platform was equipped with necessary modulus to be

able to work with 3D domains. This will allow us to use computer generated models

as geometric representation of the material structure and calculate its homogenized

mechanical properties. Performance of the 3D block was tested against previously

published data and in all numerical experiments promising results were obtained

(max error < 7%).

Limitations and Future Works

• Currently the solution structure satisfying periodic boundary conditions is devel-

oped for rectangular or cubical RVEs. Developing similar structures for RVEs with

different geometries such as triangle and tetrahedral could provide more flexibility

in handling complex geometries.

• Asymptotic method works on the key assumption that the material microstructure

is periodic, studying effect of different RVE selections could improve performance of

the developed method over non-periodic domains.

• At the moment geometric block of our platform can only convert 2D images into

distance field function representations. For studying 3D domains only CAD models

can be used. Improving the geometric engine to convert 3D image data into distance

field functions would extend applications of meshfree/asymptotic method. For ex-

ample this method could be applied to MRI images of structures such as bones to

study their properties.
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• The Current version of meshfree/asymptotic platform uses LU decomposition method

from PETSc library for solving system of linear algebraic equations, for example eq.

(3.9). This library contains other direct and itterative solvers. Using more advanced

solvers could increase efficiency of the platform.

• Homogenized elasticity tensor is currently presented as constant values. Improving

computational efficiency of our platform would provide the tools to divide a single

domain into more than one RVE, and compute homogenized properties at different

sections of material and eventually provide a functionally graded response.
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