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ABSTRACT OF THE DISSERTATION

STOCHASTIC GEOMETRY BASED ANALYSIS OF CAPACITY, MOBILITY AND

ENERGY EFFICIENCY FOR DENSE HETEROGENEOUS NETWORKS

by

Arvind Merwaday

Florida International University, 2016

Miami, Florida

Professor İsmail Güvenç, Major Professor

In recent years, the increase in the population of mobile users and the advances in compu-

tational capabilities of mobile devices have led to an exponentially increasing traffic load

on the wireless networks. This trend is foreseen to continue in the future due to the emerg-

ing applications such as cellular Internet of things (IoT) and machine type communications

(MTC). Since the spectrum resources are limited, the only promising way to keep pace with

the future demand is through aggressive spatial reuse of the available spectrum which can

be realized in the networks through dense deployment of small cells. There are many chal-

lenges associated with such densely deployed heterogeneous networks (HetNets). The main

challenges which are considered in this research work are capacity enhancement, velocity

estimation of mobile users, and energy efficiency enhancement.

We consider different approaches for capacity enhancement of the network. In the

first approach, using stochastic geometry we theoretically analyze time domain inter-cell

interference coordination techniques in a two-tier HetNet and optimize the parameters to

maximize the capacity of the network. In the second approach, we consider optimization

of the locations of aerial bases stations carried by the unmanned aerial vehicles (UAVs) to

enhance the capacity of the network for public safety and emergency communications, in

case of damaged network infrastructure. In the third approach, we introduce a subsidization

scheme for the service providers through which the network capacity can be improved by

using regulatory power of the government. Finally, we consider the approach of device-to-

device communications and multi-hop transmissions for enhancing the capacity of a network.
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Velocity estimation of high speed mobile users is important for effective mobility man-

agement in densely deployed small cell networks. In this research, we introduce two novel

methods for the velocity estimation of mobile users: handover-count based velocity estima-

tion, and sojourn time based velocity estimation. Using the tools from stochastic geometry

and estimation theory, we theoretically analyze the accuracy of the two velocity estimation

methods through Cramer-Rao lower bounds (CRLBs).

With the dense deployment of small cells, energy efficiency becomes crucial for the

sustained operation of wireless networks. In this research, we jointly study the energy

efficiency and the spectral efficiency in a two-tier HetNet. We optimize the parameters of

inter-cell interference coordination technique and study the trade-offs between the energy

efficiency and spectral efficiency of the HetNet.
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CHAPTER I

Introduction

Since the introduction of advanced mobile devices with data-intensive applications, cellular

networks are witnessing rapidly increasing data traffic demands from mobile users. Cisco has

recently predicted an 11-fold increase in global mobile data traffic between 2013 and 2018 [1],

while Qualcomm has predicted an astounding 1000x increase in mobile data traffic in the

near future [2]. To keep up with the increasing traffic demands, the cellular networks are

being transformed into heterogeneous networks (HetNets) by the deployments of small cells

(picocell, femtocell, etc) over the existing macrocells. A HetNet is illustrated in Figure 1.1,

which is composed of small-size cells such as micro-, pico-, and femto-cells overlaid on the

existing macrocells to increase the frequency reuse and capacity of the network.

Macrocell

Femtocell

MBS
PBS

FBS

Picocell

MBS: Macrocell base station
PBS: Picocell base station
FBS: Femtocell base station

Figure 1.1: Illustration of a HetNet.

HetNets are a promising solution to achieve the ever increasing demand for higher data

rates. However, it is inevitable for the network operators to face much bigger challenge in

the future. Emerging applications such as massive internet of things (IoT) would multiply

the number of devices on wireless communication networks by several folds, which would

place tremendous traffic load on the network. Addressing this challenge will lead to extreme

densification of the small cells which will give rise to hyper-dense heterogeneous networks

(HDHNs). Although HDHNs can improve the network capacity by manifolds through the

spatial reuse of available spectrum, this increase in the network capacity comes with an
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Figure 1.2: The Cube: vision for wireless network evolution.

increase in the interference and a need for complex interference coordination mechanisms.

Hence, the extreme densification of small cells pose some critical challenges in the system

design and management of the network. We classify these challenges into the following three

broad categories: capacity enhancement, mobility management, and energy efficiency (EE)

enhancement.

In summary, the daunting future data traffic demands can be met by substantially

increasing the density of small cells. But, the extreme densification of small cells pose

critical challenges in terms of mobility management and EE. Hence, to reap benefits from

the next generation cellular networks, the three important parameters: capacity, mobility,

and energy efficiency, should be analyzed and optimized by considering the associated trade-

offs. The goal of next generation cellular networks should be to provide an ubiquitous,

efficient and greener mobile communication to the population.

1.1 Capacity Enhancement

Capacity enhancement is one of the main goals of the next generation wireless networks

through which the exponentially increasing demand for wireless data can be met. The re-
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quired 1000x capacity improvement in the near future can be basically obtained through [3]:

spectrum efficiency enhancement, spectrum extension, and network densification, as illus-

trated in Figure 1.2. It can be noticed that the majority (56x) of the required 1000x increase

in network capacity is attributed to the network densification. Therefore, massive deploy-

ment of small cells in HetNets is imminent in the form of micro-, pico-, and femto-cells.

A small portion (6x) of the capacity enhancement can be obtained through spectral effi-

ciency (SE) enhancement techniques such as: coordinated multipoint transmissions and in-

terference management techniques, multiple-input and multiple-output (MIMO) and beam

forming techniques, etc. Since radio spectrum is a scarce and precious resource, only a mi-

nor portion (3x) of capacity enhancement can be expected from spectrum extension which

relies on adding new licensed bands (including higher frequencies), and refarming of the

existing bands for efficient use.

In this dissertation, the following innovative techniques for capacity enhancement in

HetNets will be discussed and analyzed in detail.

1. Inter-cell interference coordination (ICIC) techniques to improve the channel con-

ditions for the users experiencing severe interference from the neighboring cell base

stations (BSs).

2. Fostering of spectrum sharing among the service providers through subsidization

schemes from the government.

3. Device-to-device (D2D) communication and multihop transmissions for the efficient

use of spectrum resources.

1.1.1 Inter-cell Interference Coordination

In HetNets, picocells and femtocells are primarily deployed in an attempt to improve the

capacity of the cellular networks. The idea of small cell deployments is to reduce the

traffic load on macrocells in crowded areas by offloading a portion of the macrocell users

to the underlying small cells. However, due to smaller coverage areas, small cells might

not be able to associate sufficient number of user equipments (UEs). To improve the UE
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Figure 1.3: Illustration of the coverage areas of picocells with and without range expansion.

offloading to small cells, range expansion bias (REB) is added to the reference symbol

received powers (RSRPs) of the small cells during UE association, to virtually increase the

coverage areas of small cells. For illustration, the coverage areas of the picocells with and

without range expansion are shown in Figure 1.3. The use of REB enables a picocell to

associate more users and thereby improving the offloading of UEs to the picocells. However,

the picocell signal to interference plus noise ratio (SINR) in the range expanded region is

lower than the macrocell SINR. As a result, the offloaded users in the range expanded

region of picocells might experience high interference from the umbrella macrocell. This

necessitates a ICIC mechanism between macrocell base stations (MBSs) and picocell base

stations (PBSs) to protect the range expanded UEs from the MBS interference.

The ICIC techniques are inherently important in the context of HetNets. A HetNet

basically consists of macrocells overlaid with small cells such as microcells, picocells, femto-

cells, etc. Consider a two-tier HetNet consisting of macrocells and cochannel deployment of

picocells in which the picocells use same frequency band as the macrocells. In this scenario,

the inter-cell interference is illustrated in Figure 1.4. For a picocell user equipment (PUE)

located at the edge of the picocell, the received power from the neighboring MBS is compa-

rable to the received power from the PBS. Therefore, the PUE will experience significant

inter-cell interference from the MBS. The use of ICIC techniques are of critical importance

in such a scenario.
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Figure 1.4: Illustration of range expansion and inter-cell interference in two-tier HetNets.

To mitigate the interference problems in HetNets, different enhanced inter-cell inter-

ference coordination (eICIC) techniques have been specified in long term evolution (LTE)

Rel. 10 of 3GPP which includes time-domain, frequency domain and power control tech-

niques [4]. In this dissertation, we mainly focus on the time-domain interference coordina-

tion methods. In the time domain eICIC technique, MBS transmissions are muted during

certain subframes and no data is transmitted to macrocell user equipments (MUEs). The

picocell-edge users are served by PBS during these subframes (coordinated subframes) and

thereby protecting the picocell-edge users from MBS interference. In LTE Rel. 11, further-

enhanced inter-cell interference coordination (FeICIC) technique has been standardized in

which the MBS transmits at reduced power (instead of muting the MBS completely) during

the coordinated subframes (CSFs) to serve only its nearby UEs.

In this dissertation, the FeICIC technique will be theoretically studied on a system

level using stochastic geometry. The key system parameters for FeICIC will be optimized

by considering aggregate capacity in a cell and scheduling fairness among the users in a

cell. Further, the potential benefits of unmanned aerial base station (UABS) cells will be

studied in the post disaster scenario such as aftermath of an earthquake when a portion of

the network infrastructure might have been damaged. Herein, the capacity and coverage

gains that can be obtained by optimizing the locations of the UABSs (to minimize inter-cell

interference) will be studied.

5



1.1.2 HetNets with Unmanned Aerial Base Stations

In recent years, unmanned aerial vehicles (UAVs) and drones are being increasingly used in

various applications including security and control operations, search and rescue missions,

monitoring, crop management, communications, etc. One of the interesting applications

of UAVs that is being currently researched is the use of UAV as a small cell BS which

can be referred to as UABS. One of the main advantage of UABSs is that they can be

deployed rapidly, which can be very useful in public safety communications (PSCs) during

emergency events. UAVs are uniquely suited for such PSC scenarios due to their mobility

and self organization capabilities, which are invaluable for quickly delivering broadband

connectivity at times and locations where most needed, through an agile, low-cost, and

ubiquitous communication infrastructure. On the other hand, interference management in

such networks is more challenging due to the mobility of UABSs. Therefore, developing

and analyzing ICIC techniques for the PSC networks with UABSs is an important task.

1.1.3 Government Subsidization Scheme for Spectrum Sharing

With the continuous increase in mobile traffic, users and mobile communication services

are facing the problem of spectrum shortages. Governments around the world are trying to

find ways in which more spectrum can be made available not only for mobile use, but also

for other services that involve the use of wireless broadband technologies such as weather

forecast and surveillance [5]. Moreover, wireless networking technologies are becoming a

more critical platform for disaster management and public safety applications, which man-

dates better communications and interoperability by effectively exploiting under-utilized

spectrum resources following a disaster [6]. Conceptualizing the next generation cellular

technology shows that improvement in the spectrum regulations will become a critical con-

sideration to meet the future traffic demands [7].

One promising but relatively underexplored approach to foster more sharing of the

spectrum is via the use of regulatory power. Here, the idea is to subsidize the spectrum

to the providers with lower costs in return of proof-of-sharing. Thus, the providers will

6



be offered discounted spectrum bands, potentially at different locations, but will be asked

to cover users not subscribed to them so as to maintain their subsidy incentives from the

government. In this dissertation, a spectrum sharing framework based on game theory will

be introduced that considers spatial and temporal provider/government relationships, as

well as dynamic components such as roaming and signal quality, in a noncooperative game.

It will be shown that through spectrum subsidization, the SE of the users can be improved

significantly while on the other hand, monopolization of the market by a single provider

can be avoided.

1.1.4 Device-to-Device Communication and Multihop Transmissions

The D2D communication has recently received significant interest due to its potential ben-

efits to achieve higher throughput and offer proximity based services [8,9]. As a technology

component of ongoing LTE Rel-12 standardization, it is also considered an important en-

abler for PSCs as it can be deployed rapidly with or without fixed infrastructure [10]. In

general, the devices of a D2D network are battery powered and have stringent transmit

power requirements. Therefore, the devices can benefit from multi-hop transmissions with

the peer devices acting as relay nodes. In such a multi-hop network, the devices can com-

municate with one another over a much larger geographical area.

Consider a D2D scenario as illustrated in Figure 1.5 where the device D1 may commu-

nicate with D4 directly through single-hop transmission or through multi-hop transmission

by using D2 and D3 as relay nodes. With transmit power control in the devices, the SINR

at all the receivers are assumed to be constant. Then, the area of the large blue circle can

be intuitively thought of as the power spent by D1 to communicate with D4. With this

intuition, in the multi-hop case, the total area of the three small orange circles is smaller

than the large blue circle. Thus, the total power spent in multi-hop case is smaller than

that of the single-hop case. Moreover, larger coverage circle of D1 in single-hop case in-

dicates higher interference caused to other devices. Therefore, multi-hop communication

minimizes the interference while the devices can achieve longer distance communication. In
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Figure 1.5: Illustration of multi-hop transmissions in D2D communications.

this dissertation, the advantage of multi-hop transmissions in terms of bit error rate (BER)

performance will be studied by using link level simulations.

1.2 Mobility Management

The demand for wireless data traffic has increased significantly in the past decade and is

expected to continue to do so [1, 2]. Small cells are being rapidly deployed over existing

macro-cellular networks in order to keep up with the increasing data traffic demands. Due

to the random and dense deployment of small cells, mobility management has emerged as

one of the most critical challenges, particularly when dealing with high-speed UE. Mobility

management in cellular networks is an important task that is critical to provide good quality

of service to the mobile users by minimizing the handover failures. Velocity of a UE plays

critical role on the handover performance of the UE particularly when the cell density is

high [11–13], where knowing the UE’s velocity becomes necessary for effective mobility

management. In homogeneous networks that only have macrocells, handovers are typically

finalized at the cell edge due to large cell sizes. With the deployment of small-cell base

stations (SBSs), due to smaller cell sizes, it becomes difficult to finalize the handover process

at the cell edge for mobile devices [11,12,14]. In particular, high-mobility devices may run
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deep inside the coverage areas of small cells before finalizing a handover, thus incurring

handover failure due to degraded SINR. These challenges motivate the need for UE-specific

and cell-specific handover parameter optimization, which typically require estimation of

the UE’s velocity for effective configuration of handover parameters [15] such as: TTT,

hysteresis threshold, etc. UE’s velocity estimate may also be used for scheduling [16, 17],

mobility load balancing [18], channel quality indicator (CQI) feedback enhancements [19],

and EE enhancements [20].

It is possible to develop efficient methods of velocity estimation by using the information

generated from a mobile UE during the events of small cell boundary crossings. To this

end, two novel and efficient velocity estimation methods are introduced and analyzed in

this dissertation.

1. Handover-count based velocity estimation: In this method, the velocity of a UE is

estimated based on the number of small cells traversed by the UE within a predefined

time window. Here, the term “handover-count” is used in a broad sense to refer to

the number of cells traversed by a UE, irrespective of whether or not the UE connects

to the new cell after a small cell boundary crossing.

2. Sojourn time based velocity estimation: In this method, sojourn time samples of a

mobile UE is used to estimate its velocity. The sojourn time is defined as the amount

of time a mobile UE spends in a cell before it is handed over to another cell.

1.3 Energy Efficiency Enhancement

Alongside the increasing node density in HetNets, the remarkable growth of mobile com-

munications industry has raised concerns over the energy consumption of the network in-

frastructure and the resulting atmospheric emissions. Indeed, mobile communications is

expected to generate 201 Mega-tons of emissions by 2020. The telecom industry is con-

cerned about the energy costs and carbon footprint of their network infrastructure. These

concerns will get more critical in the future due to the increasing base station (BS) densities.

In future generation HetNets, it is expected that the small cells can be as close as 50 m
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apart from each other [21]. In such a scenario, minimizing the network energy consumption

while maximizing the data sent to the users becomes crucial for the sustained operation of

the network.

The EE can be defined as

EE =
Area SE

Area power consumption
, (1.1)

where, “Area SE” is the achieved SE per unit area in bps/Hz/km2, and “Area power con-

sumption” is the power consumption of the network infrastructure per unit area in W/km2.

According to (1.1), increasing the area SE will increase the EE. However, increasing the

area SE might involve setting up of more BSs which will also increase the area power con-

sumption. Therefore, there is a trade-off associated between the SE enhancement and the

EE enhancement. In the HetNets, interference coordination techniques such as FeICIC

plays an important role in improving the SE and EE of the network. In this research, we

will analyze the SE and EE enhancements in a two-tier HetNet that uses FeICIC for inter-

ference coordination between the MBSs and PBSs. We will optimize the system parameters

of FeICIC technique and study the trade-offs between SE and EE enhancements.

1.4 Contributions and Organization

The focus of this research is on 3 important requirements for the next generation HetNets:

capacity enhancement, mobile velocity estimation, and EE enhancement. The research to

be presented in this dissertation resulted in several publications in IEEE conferences and

journals [22–33]. The key contributions of this dissertation can be summarized as follows.

1. Capacity enhancement :

• Generalized SE expressions are derived using stochastic geometry by considering

the FeICIC method which includes eICIC and no eICIC as the two special cases.

In this analytic framework that uses reduced power subframes and range expan-

sion, expressions for the average SE of UEs and the 5th percentile throughput are
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derived. These expressions are validated through system level simulations. Fur-

ther, optimization of key system parameters of the FeICIC method is performed

in order to maximize the aggregate capacity in a cell and the proportional fairness

among the users in the cell [22, 30,31].

• Enhancing the capacity and coverage of the cellular network by deploying the

UABSs in a PSC scenario will be studied through system level simulations.

Herein, it will be assumed that a portion of the network infrastructure will be

damaged in a large geographical area due to a natural disaster such as an earth-

quake. In the simulations, the locations of the UABSs will be optimized using

genetic algorithm (GA) to maximize the 5th percentile SE of the users. Here, the

benefits of using REB in the UABS cells will also be studied [25,28].

• A subsidization framework will be modeled using an extensive form game, where

the government incentivizes the providers to give service to the foreign customers

who are outside the coverage of their home provider. Through the numerical

results, it will be shown that the government can significantly improve the average

SE of the users by providing subsidy to the service providers. This study also

shows that the government can avoid monopolization by a single provider and

thereby offering a fair chance to the small service providers to compete in the

market [26].

• The performance gains that can be obtained by using multi-hop transmissions

in the D2D communications will be studied through link level simulations. As-

suming that the devices use orthogonal frequency division multiplexing (OFDM)

modulation scheme, the BER of two-hop transmissions will be shown to be con-

siderably smaller than the single-hop transmissions [29].

2. Mobile velocity estimation:

• Handover-count based and sojourn time based velocity estimation methods will

be introduced using the tools from stochastic geometry. The accuracy of the

two estimation methods will be characterized through Cramer-Rao lower bounds
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(CRLBs). Additionally, the handover-count based velocity estimate will be used

to detect the mobility state (low/medium/high) of a UE, and the expressions for

the probability of detection and probability of false alarm will be derived. The

CRLB of the sojourn time based method will be shown to be smaller than the

CRLB of handover-count method [23,24,27].

3. Energy efficiency enhancement :

• Using stochastic geometry, The EE and SE will be jointly studied by consid-

ering a two-tier HetNet which uses FeICIC and range expansion. The system

parameters of FeICIC technique will be optimized and the trade-offs between EE

enhancement and SE enhancement will be analyzed [33].

The remainder of this dissertation is organized as follows. Chapter II provides a liter-

ature review of the topics relevant to the issues discussed in the Introduction. The tech-

niques of range expansion and FeICIC are analyzed theoretically in Chapter III for two-tier

HetNets. The use of unmanned aerial BSs for capacity enhancement in HetNets is studied

in Chapter IV. The framework for government subsidization is developed and analyzed in

Chapter V. The advantages of using D2D communication and multi-hop transmissions in

HetNets is studied through simulations in Chapter VI. In Chapters VII and VIII, handover-

count based and sojourn time based techniques for the velocity estimation of a UE in dense

HetNets are theoretically analyzed, respectively. Finally, the optimization of SE and EE in

two-tier HetNets that use range expansion and FeICIC is studied in Chapter IX. Finally,

Chapter X lists the conclusions of this research work and also identifies some important

directions for future research.
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CHAPTER II

Literature Review

2.1 Analysis of Capacity in HetNets using Stochastic Geometry

Cellular networks are witnessing an exponentially increasing data traffic from mobile users.

HetNets offer a promising way of meeting these demands. Since the BSs of different tiers in

a HetNet use different transmission powers but the same spectrum bandwidth, analyzing

and mitigating the interference at an arbitrary UE is difficult. Moreover, the locations of

small cell BSs are random in nature as their deployments are not carefully planned. Even

though the MBS locations are carefully planned, in reality, the actual deployments are

random to some extent and do not resemble a standard pattern such as hexagonal grid.

Therefore, modeling of the HetNets that are both realistic and mathematically tractable is

a challenging task.

2.1.1 Related Work on Evaluation Methodology

Different approaches have been used in the literature for the performance evaluation of

HetNets. The traditional simulation models with BSs placed on a hexagonal grid are highly

idealized and may typically require complex and time-consuming system-level simulations.

On the other hand, models based on stochastic geometry and spatial point processes provide

a tractable and computationally efficient alternative for performance evaluation of HetNets

[34–37]. Poisson point process (PPP) based models have been recently used extensively in

the literature for performance evaluation of HetNets. However, as the MBS locations are

carefully planned during the deployment process, PPP based models may not be viable

for capturing real MBS locations, due to some points of the process being very close to

each other. Matern hardcore point process (HCPP) provides a more accurate alternative

spatial model for MBS locations. In HCPPs, the distance between any two points of the

process is greater than a minimum distance predefined by hard core parameter. HCPP

based models are relatively more complicated due to the non-existence of the probability
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generating functional [34]. Also, HCPP has a flaw of underestimating the intensity of the

points that can coexist for a given hard core parameter [38]. Hence, HCPP models are not

as tractable and simple as the PPP models.

With PPPs, using simplifying assumptions, such as Rayleigh fading channel model, and

a path-loss exponent of four, we can obtain closed form expressions for aggregate interfer-

ence and outage probability. Therefore, use of PPP models for performance evaluation of

HetNets is appealing due to their simplicity and tractability [39]. Furthermore, the PPP

based models provide reasonably close performance results when compared with the real

BS deployments. In particular, results in [36] show that, when compared with real BS de-

ployments, PPP and hexagonal grid based models for BS locations provide a lower bound

and an upper bound, respectively, on the outage probabilities of UEs. Also, the PPP based

models are expected to provide a better fit for analyzing denser HetNet deployments due

to higher degree of randomness in small-cell deployments [35]. In this research, due to

their simplicity and reasonable accuracy, we will use PPP based models to characterize and

understand the behavior of HetNets in terms of various design parameters.

2.1.2 Use of PPP Based Models for LTE-Advanced HetNet Performance Eval-

uation

The existing literature has numerous papers based on the PPP model for analyzing HetNets.

Using PPPs, the basic performance indicators such as coverage probability and average rate

of a UE are analyzed in [40–43]. The use of REB in the picocell enables it to associate

with more UEs and thereby improves the offloading of UEs to the picocells. The effect

of REB on the coverage probability is studied in [44, 45]. However, with range expansion,

the offloaded UEs at the edge of picocells experience high interference from the macrocell.

This necessitates a coordination mechanism between the MBSs and PBSs to protect the

picocell-edge UEs from the MBS interference. While [35, 36, 46] considers a homogeneous

cellular network, [45] considers a HetNet with range expansion. The authors of [35, 36, 45]

have obtained the information of real BS locations in an urban area from a cellular service

provider. On the other hand, the authors of [46] have obtained the BS location information
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from an open source project [47] that provides approximate locations of the BSs around the

world.

The eICIC technique using REB is studied well in the literature by analyzing its effects

on the rate coverage [48, 49] and on the average per-user capacity [31, 50]. However, in

the simulations of [51], the MBS transmits at reduced power (instead of muting the MBS

completely) during the CSFs to serve only its nearby UEs. Therein, the use of reduced

power subframes during CSFs is shown to improve the HetNet performance considerably in

terms of the trade-off between the cell-edge and average throughputs. In another study [52],

simulation results show that the FeICIC is less sensitive to the duty-cycle of CSFs than the

eICIC. In [53], 3rd Generation Partnership Project (3GPP) compliant simulations are used

to study and compare the eICIC and FeICIC techniques for different REBs and almost

blank subframe densities. Therein, the amount of power reduction in the reduced power

subframes is made equivalent to REB and its optimality is not justified. In [40], analytic

expressions for coverage probability of an arbitrary UE is derived using PPPs. Later, the

analytical framework in [40] has been extended to SE derivations in [31,50] by considering

eICIC and range expansion. Reduced power subframes, which are standardized in LTE

Rel. 11 [54], are not analytically studied in literature to our best knowledge.

In this research, analytic expressions for SE in a network will be derived by including

reduced power subframes and range expansion. The derived SE expressions will be validated

through Monte Carlo simulations. Further, the key system parameters will be optimized to

maximize both aggregate capacity in a cell and proportional fairness among its users.

2.2 UAVs in HetNets for Public Safety Communications

The PSCs carry critical importance to save lives, property, and national infrastructure in

case of incidents such as fires, terrorist attacks, or natural disasters. Up until recently,

PSC has been handled through narrowband communication technologies such as the land

mobile radio (LMR), which can deliver reliable voice communications, but do not support

broadband data [55], and are also often limited in terms of coverage and interoperability [56].

The National Broadband Plan by the Federal Communications Commission (FCC) states
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that a cutting-edge PSC shall make use of broadband technologies “to allow first responders

anywhere in the nation to send and receive critical voice, video and data to save lives, reduce

injuries and prevent acts of crime and terror”.

Broadband wireless technologies such as the 4G LTE have a strong potential for revolu-

tionizing communications during public safety situations. While the legacy LMR technology

can provide better cell coverage and range when compared to LTE for PSC applications,

LTE technology can offer substantially higher data rates, which are critical for services

such as real-time situational awareness [57]. Exploiting the features of LTE systems will

be essential for transforming the PSC infrastructures from a capacity-limited platform into

a high-speed communication infrastructure. For example, efforts to develop the first na-

tionwide, LTE-based high-speed PSC network, FirstNet [58], are in progress in the United

States.

Another important opportunity for revolutionizing the PSC capabilities is to introduce

UAVs, such as balloons, quadcopters, or gliders, for delivering pervasive broadband con-

nectivity [59]. Enabled by recent technological advances, miniaturization, and open-source

hardware/software initiatives, UAVs have found several key applications recently [60–63].

Amazon, for example, claims that seeing its Prime Air order delivery UAVs in the sky

is expected to be as conventional as seeing mail trucks on the road within the next few

years [62]. Google and Facebook have been investigating the use of a network of high-

altitude balloons [64] and drones [65] over specific population centers for providing broad-

band connectivity. Such solar-powered drones are capable of flying several years without

refueling. A relatively less explored application of UAVs is to deliver broadband data rates

in emergency and public safety situations through low-altitude platforms [66].

In this research, we consider a large scale PSC scenario in which a portion of the network

infrastructure is damaged due to a natural disaster. We investigate the potential benefits

of UAVs in the post disaster scenario by studying the capacity and coverage improvements

achieved through the deployment of UAVs. Furthermore, we optimize the locations of the

UAVs to maximize the 5th percentile capacity of the network.
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2.3 Spectrum Sharing and Subsidization for Capacity Enhancement

In the United States, FCC and National Telecommunications and Information Admin-

istration (NTIA) are investing in the projects of spectrum sharing between Federal and

non-Federal users as a means to increase spectrum capacity while increasing its efficiency as

well [67]. For example, T-Mobile USA is currently sharing its spectrum with federal agen-

cies [68]. The Citizen’s Broadband Radio Service (CBRS) is another recent initiative in

the United States [69] which aims to effectively share the federal spectrum with non-federal

users under well defined FCC regulations. Cognitive radio and dynamic spectrum access

techniques have been extensively studied in the literature [70–72], which can facilitate better

sharing of the spectrum in these scenarios.

Subsidization of spectrum to the providers is a promising approach through which

the government can use its regulatory power to encourage spectrum sharing among the

providers. Recent studies suggest significant market and user welfare gains under subsi-

dization schemes, e.g., data subsidy for offering minimal data plan to users for free [73] or

spectrum pooling among providers to improve user experience [74]. To our best knowledge,

study of such subsidized spectrum markets using game theoretical frameworks is not avail-

able in the literature. Even though subsidization is heavily employed in several markets, the

wireless market has not seen much of its usage beyond a few, limited scenarios. The most

known subsidization in a wireless market is the subsidization of the expensive phones to

the users by the provider [75], in that the user pays the phone’s cost over a locked, termed

contract. Unlocking the contract term either requires return of the phone or payment of a

significant fee.

Only recently, the authors in [73] investigated the concept of using subsidies for spectrum

management. Their work analyzed price and quality of service (QoS) subsidy schemes to

increase the utility of the consumers from the data plans. The goal is to increase the

availability of wireless data plans to more users. In their model, the regulator offers a

subsidized (i.e., less expensive) data plan to the end users with lower quality of service via

subsidization to the providers. In contrast, here, we consider subsidizing the spectrum to
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the providers and focus on implementing a subsidy system mainly between the providers

and the government. We aim to make the subsidization seamless to the end users and aim

to incentivize the providers to be more welcoming to the users subscribed to other providers.

As a major difference, we focus on spectrum subsidy rather than data plan subsidy.

A related concept to the subsidization approach that we consider is inter-operator roam-

ing. Through roaming, a customer can make/receive calls and send/receive data while out-

side of the home network coverage, by using the infrastructure of another provider. This

is enabled through reciprocal roaming charges among operators, which may vary, e.g., de-

pending on the nationwide coverage supported by an operator through its infrastructure.

The new roaming regulations in European Union (EU) to be effective from June 2017 will

no longer allow the telecom providers to charge extra roaming costs to their customers [76].

The goal is to facilitate competition in the roaming market and bring international roaming

prices down to domestic rates, e.g., through diversity of market players, low barriers to

market entry, and equal access to basic wholesale services.

The analysis in [77] shows that, as long as certain coverage conditions are fulfilled,

providers in an open system (where roaming is allowed) have strictly better revenues when

compared to a closed system with no roaming. Benefits of inter-operator spectrum shar-

ing and joint radio resource management (JRRM) have also been demonstrated in recent

works [78–80]. The inter-operator JRRM technique proposed in [78] allows subscribers to

get service through other operators in case the home operator network is blocked, and re-

sults show that inter-operator roaming agreements improve both the network performance

and the operators’ revenue.

In this research, we model a subsidization framework using extensive form game, and

show how to find (perfect) equilibrium solutions for (a simple case of) the game. The

players in the game are a finite number of service providers plus a single government player.

The government incentivizes by offering subsidy to the providers so that they give service

to foreign customers who are outside the coverage of their home provider or simply in a

spot where their home providers signal quality is worse than other providers they are not

subscribed to. Yet, the government also expects the providers to share their spectrum
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and infrastructure resources with foreign calls. If a provider cannot satisfy a proof-of-

sharing level, it has to return some or all of the subsidy back to the government. Thus, the

providers each aim to maximize their profit from enrolling customers, by efficiently investing

the subsidies received from the government.

2.4 Velocity Estimation and Mobility State Detection

Existing LTE and LTE-Advanced technologies are capable of estimating the mobility state

of a UE into three broad classes: low, medium, and high-mobility [11, 12, 15, 81]. This is

achieved at a UE by counting the number of handovers within a given time window, and

comparing it with a threshold which can be implemented during the connected mode [82]

or the idle mode [83] of the UE. It can also be implemented at the network side, by

tracking the prior history of handovers for a particular UE. The accuracy of a UE’s mobility

state estimate will benefit significantly from the densification of SBS deployments. While

more accurate UE-side speed estimation techniques based on Doppler estimation have been

discussed in [84–87], due to their complexity and standardization challenges, they have not

been adopted in existing cellular network standards. While global positioning system (GPS)

can be used for accurate estimation of a UE’s speed, it may not be a practical solution for

mobility management as 1) the GPS receiver at a UE consumes significant amount of

power, 2) GPS coverage may not be available in environments such as urban canyons and

underground subways, and 3) not all the UEs are equipped with GPS receivers. A popular

usecase example that uses such real-time mobility state information at a UE is that of UE-

specific cell selection: high speed UEs can be biased to stay connected to macrocells even

when small cell link quality is better [88].

2.4.1 Handover-count Based Velocity Estimation

There are various studies available in the literature on handover-count based mobility state

detection (MSD). A simulation based mobility analysis is performed in [81] where it is

proposed that the number of handovers made by a UE are weighted differently for macro

to macro, macro to pico, pico to macro, and pico to pico handovers (1, 0.45, 0.25, and 0.1,
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respectively), to produce a good estimate of UE mobility. In [89], considering a random

way point (RWP) model and using stochastic geometry, the expected number of handovers

during the movement period of a RWP model is derived. The probability density function

(PDF) of the sojourn time is also presented for homogeneous networks. In [90], a theoretical

framework using stochastic geometry is developed to study the UE mobility in HetNets, in

which the expressions for vertical and horizontal handoff rates are derived. In [91], closed

form expressions of cross-tier handover rate and sojourn time in a small cell are provided

using stochastic geometry for a two-tier network. In another study [92], stochastic geometry

is used to derive the handover rate, which in turn is used to derive coverage probability of

a UE in HetNet by considering that the UE is mobile and a fraction of the handovers result

into failure.

A set of related works in the literature have studied the path prediction of UEs and the

handoff time estimation along the predicted path which can help in improving the quality

of service to the UEs. A destination and mobility path prediction model called DAMP is

proposed in [93], while a handoff time window estimation method and mobility-prediction-

aware bandwidth (MPBR) allocation scheme is presented in [94]. In [95], different methods

for predicting the future location of a UE based on prior knowledge of the UE’s mobility

are studied. A method for tracing UE’s location using semi-supervised graph Laplacian

approach is proposed in [96].

Despite the earlier work in [11, 12, 15, 81–87, 89, 90, 92–96], fundamental performance

bounds and optimum algorithms for handover-count based velocity estimation have not

been studied in the literature. In this research, we introduce a novel and efficient handover-

count based UE velocity estimation technique using the tools from stochastic geometry, and

characterize its accuracy through CRLBs, when the density of SBSs is known. We further

extend our study to MSD of a UE. The focus of this research is on velocity estimation and

MSD based on the handover counts of a UE; path prediction and handoff time estimation

techniques are not considered. Mobility state estimation itself is an important topic in

3GPP Release-8 specifications, and being researched currently. Additionally, there are

applications which require velocity estimation at the UE side, in which case, implementing
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the path prediction algorithms at a UE would be difficult. To our best knowledge, velocity

estimation based on handover counts at a UE has not been studied analytically in the

literature, which is one of the main contribution of this part of the research.

2.4.2 Sojourn Time Based Velocity Estimation

There are only a few studies available in the literature that investigate the use of sojourn

time information for mobility management. In [97], considering a RWP for UE mobil-

ity, expressions for the PDF and the expected value of the sojourn time are derived for

homogeneous networks, assuming that the BSs are distributed according to a PPP. The

authors in [98] estimated the velocity of a UE in two-tier cellular networks using the so-

journ times of the UE, while assuming a classical Manhattan cell model [99]. Despite the

earlier work in [11, 97, 98], fundamental bounds for the accuracy of sojourn-time based UE

velocity estimation have not been studied in the literature. In this research, we introduce a

novel technique for UE velocity estimation based on sojourn-time samples, and analyze its

accuracy through CRLBs, when the density of SBSs is known.

2.5 Energy Efficiency

Until recently, only SE was considered as the key performance indicator of cellular net-

works by the researchers and the 3GPP evolution. Nowadays, green evolution is becoming

a major trend and the telecom industry is concerned about the energy costs and carbon

footprint of their network infrastructure. The Energy Aware Radio and neTwork tecHnolo-

gies (EARTH) project [100] which was completed in 2012 has made several contributions

in the literature. The goal of the EARTH project was to address the global environmental

challenge by investigating the EE of mobile communication systems. The energy consump-

tion of a MBS is far greater than the energy consumption of a small cell BS. Recent surveys

reveal that around 80% of the energy required for the operation of a cellular network is

consumed at the MBS sites [101]. Hence, deploying more MBSs to achieve better SE will

lead to smaller EE when compared to the deployment of small cell BSs. In other words,

by deploying more small cells the BSs can be brought closer to the users which results into
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smaller radiation of energy. Accordingly, the studies in [102–105] through Monte Carlo sim-

ulations show that the EE in HetNets is considerably better than the EE in homogeneous

networks.

There are several other works in the literature which are focused on the EE of cellular

networks. While the works in [106–109] are simulation oriented and consider hexagonal

macrocell geometry or a single macrocell overlaid with small cells, the works in [110–116]

are based on stochastic geometry. The current state of the art consists of several interesting

techniques to improve the EE of future cellular networks. One promising approach is to put

some BSs into sleep mode during certain times when the traffic load is low [106,108–111,115].

In [114], the authors have shown that phantom cell network (unlike small cell BSs, the

phantom cell BSs operate on a different spectrum from the MBSs) has both higher SE

and EE than the small cell network. Another technique is proposed in [112] where BSs

from different tiers in a HetNet jointly transmit the same data to a typical user, and

further optimize the EE performance. In another work [113], the authors have proposed

cooperative and cognitive schemes to increase the EE in HetNets. To improve the EE in

HetNets, an idea of DTX support for the BS resource scheduler is proposed in [107] such

that the transmissions to a UE are delayed until there is a sufficient amount of data requiring

transmission to utilize at least a defined percentage of the system bandwidth. However, to

the best of our knowledge, there is no work in the literature that jointly studies the SE and

EE in HetNets with FeICIC mechanism. In this research, we will study the optimization of

FeICIC for EE and SE enhancements in a two-tier HetNet.
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CHAPTER III

Analysis of FeICIC in two-tier HetNets

The use of reduced power subframes has been standardized in LTE Rel. 11 which is therein

referred to as FeICIC. The reduced power subframes in the FeICIC technique can improve

the capacity of HetNets while also providing interference coordination to the picocell-edge

users. However, in order to obtain maximum benefits from the reduced power subframes,

setting the key system parameters, such as the amount of power reduction, carries critical

importance. Using stochastic geometry, this chapter lays down a theoretical foundation

for the performance evaluation of HetNets with reduced power subframes and range ex-

pansion bias. The analytic expressions for average capacity and 5th percentile throughput

are derived as a function of transmit powers, node densities, and interference coordination

parameters in a two-tier HetNet scenario, and are validated through Monte Carlo simula-

tions. The details of the simulation model are documented explicitly, and the Matlab codes

can be accessed through [117] for regenerating the results. Joint optimization of range

expansion bias, power reduction factor, scheduling thresholds, and duty cycle of reduced

power subframes are performed to study the trade-offs between aggregate capacity of a cell

and fairness among the users. To validate our analysis, we also compare the stochastic

geometry based theoretical results with the real MBS deployment (in the city of London)

and the hexagonal-grid model. Our analysis shows that with optimum parameter settings,

the LTE Rel. 11 with reduced power subframes (FeICIC) can provide substantially better

performance than the LTE Rel. 10 with almost blank subframes (eICIC), in terms of both

aggregate capacity and fairness.

3.1 System Model

We consider a two-tier HetNet system with MBS, PBS and UE locations modeled as two-

dimensional homogeneous PPPs of intensities λ, λ′ and λu, respectively. Both the MBSs and

the PBSs share a common transmission bandwidth. We assume round robin scheduling in all
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the downlinks of a cell. For analytical tractability, we also assume that during a subframe,

a BS allocates entire system bandwidth to a single UE. We also assume that the cells have

full buffer traffic and the thermal noise is negligible when compared to interference. The

MBSs employ reduced power subframes, in which they transmit at reduced power levels to

prevent high interference to the PUEs. On the other hand, the PBSs transmit at full power

during all the subframes.

Figure 3.1: Frame structure with reduced power subframes, transmitted with a duty cycle
of β = 0.5.

The frame structure with reduced power subframes is shown in Figure 3.1. During

uncoordinated subframes (USFs), the MBS transmits data and control signals at full power

Ptx and during CSFs, it transmits at a reduced power αPtx, where 0 ≤ α ≤ 1 is the power

reduction factor. The PBS transmits the data, control signals and cell reference symbol

with power P ′tx during all the subframes. Setting α = 0 corresponds to eICIC; and α = 1

corresponds to no eICIC case.

Define β as the duty cycle of USFs, i.e., ratio of the number of USFs to the total number

of sub-frames in a frame. Then, (1−β) is the duty cycle of CSF/reduced power subframes.

Let K and K ′ be the factors that account for geometrical parameters such as the transmitter

and receiver antenna heights of the MBS and the PBS, respectively. Then, the effective

transmitted powers of MBS during USFs is P = PtxK, MBS during CSFs is αP , and PBS

during USF/CSF is P ′ = P ′txK
′. For an arbitrary UE, let the nearest MBS at a distance

r be its macrocell of interest (MOI) and the nearest PBS at a distance r′ be its picocell

of interest (POI). Then, assuming Rayleigh fading channel, the reference symbol received

power from the MOI and the POI are given by,

S(r) =
PH

rδ
, S′(r′) =

P ′H ′

(r′)δ
, (3.1)
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respectively, where δ is the path-loss exponent, and the random variables H ∼ Exp(1) and

H ′ ∼ Exp(1) account for Rayleigh fading. Define an interference term, Z, as the total

interference power at a UE during USFs from all the MBSs and the PBSs, excluding the

MOI and the POI. Similarly, define Z ′ as the total interference power during CSFs. We

assume that there is no frame synchronization across the MBSs and therefore irrespective

of whether the MOI is transmitting a USF or a CSF, the interference at UE has the same

distribution in both cases, and is independent of both S(r) and S′(r′). Then, an arbitrary

UE experiences the following four signal to interference ratios (SIRs):

Γ =
S(r)

S′(r′) + Z
,→ USF SIR from MOI (3.2)

Γ′ =
S′(r′)

S(r) + Z
,→ USF SIR from POI (3.3)

Γcsf =
αS(r)

S′(r′) + Z
,→ CSF SIR from MOI (3.4)

Γ′csf =
S′(r′)

αS(r) + Z
.→ CSF SIR from POI (3.5)

3.1.1 UE Association

In (3.4) and (3.5), it can be noted that Γcsf and Γ′csf are directly affected by α and hence

their usage will make the cell selection process dependent on α. Thus, we consider Γ and

Γ′ to minimize the dependence of the cell selection process on α.

The cell selection process using Γ, Γ′ and the REB τ can be explained with reference to

Figure 3.2. If τΓ′ is less than Γ, then the UE is associated with the MOI, otherwise with

the POI. After the cell selection, the UE is scheduled either in USF or in CSF based on

the scheduling thresholds ρ (for MUE) and ρ′ (for PUE). In macrocell, if Γ is less than ρ

then the UE is scheduled to USF, otherwise to CSF. Similarly, in picocell, if Γ′ is greater

than ρ′ then the UE is scheduled to USF, otherwise to CSF (to protect it from macrocell

interference). The cell selection and scheduling conditions can be combined and formulated
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as:

If Γ > τΓ′ and Γ ≤ ρ→ USF-MUE, (3.6)

If Γ > τΓ′ and Γ > ρ→ CSF-MUE, (3.7)

If Γ ≤ τΓ′ and Γ′ > ρ′ → USF-PUE, (3.8)

If Γ ≤ τΓ′ and Γ′ ≤ ρ′ → CSF-PUE. (3.9)

UE

MUE

PUE

USF-MUE

CSF-MUE

CSF-PUE

USF-PUE

Γ > 𝜏Γ′

Γ ≤ 𝜏Γ′

Γ ≤ 𝜌

Γ > 𝜌

Γ′ ≤ 𝜌′

Γ′ > 𝜌′

Cell selection
Scheduling

Figure 3.2: Illustration of UE association criteria.

A sample layout of MBSs and PBSs with their coverage areas for the four different

UE categories are illustrated in Figure 3.3. Here, the coverage regions for USF- and CSF-

PUEs in picocells are colored in orange and green, respectively. Whereas in macrocells,

the coverage regions for USF- and CSF-MUEs are colored in white and blue, respectively.

Note that in the related work of [48], the UE association criteria are based on the average

reference symbol received power at UE, where as our model is based on the SIR at UE, it

also encompasses the FeICIC mechanism. In [48], the boundary between the USF-PUEs

(picocell area) and the CSF-PUEs (range expanded area) is fixed due to the fixed transmit
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power of PBS. On the other hand, in our approach, the boundary between USF and CSF

users can be controlled using ρ in macrocell and ρ′ in picocell, the parameters which play

an important role during optimization as will be shown in Section 3.4.3.

Figure 3.3: Illustration of two-tier HetNet layout.

Using (3.1)-(3.5), it can be shown that the two SIRs Γcsf and Γ′csf could be expressed in

terms of Γ and Γ′ as,

Γcsf = αΓ, Γ′csf =
Γ′(1 + Γ)

1 + Γ[α(Γ′ + 1)− Γ′]
. (3.10)

Hence, knowing the statistics of Γ and Γ′, particularly their joint probability density function

(JPDF), would provide a complete picture of the SIR statistics of the HetNet system. We

first derive an expression for joint complimentary cumulative distribution function (JCCDF)

of Γ and Γ′ in Section 3.2.1. Then we differentiate the JCCDF with respect to γ and γ′ to

get the expression for JPDF in Section 3.2.2, which will then be used for spectral efficiency

analysis.

3.2 Derivation of Joint SIR Distribution

3.2.1 JCCDF of Γ and Γ′

From (3.1), we know that S(r) and S′(r′) are exponentially distributed with mean P/rδ

and P ′/(r′)δ, respectively. For brevity, substitute S(r) = X and S′(r′) = Y in (3.2) and
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(3.3):

Γ =
X

Y + Z
, Γ′ =

Y

X + Z
. (3.11)

Using (3.11) it can be easily shown that the product ΓΓ′ has a maximum value of 1.

Let, R and R′ be the random variables denoting the distances of MOI and POI from a

UE. Then, the JCCDF of Γ and Γ′ conditioned on R = r,R′ = r′ is given by,

P{Γ > γ,Γ′ > γ′
∣∣ R = r,R′ = r′}

= EZ
[
P
{
X > γ(Y + Z), Y > γ′(X + Z)

}]
,

= EZ

[∫ +∞

y1
fY (y)

∫ y/γ′−Z

γ(y+Z)
fX(x) dx dy

]
, (3.12)

for γ > 0, γ′ > 0, γγ′ < 1. Here, fX(x) = rδ

P exp
(
− rδ

P x
)

, fY(y) = (r′)δ

P ′ exp
(
− (r′)δ

P ′ y
)

,

and the integration limit y1 = γ′Z
(

1+γ
1−γγ′

)
. The integration region of (3.12) is graphically

represented in Figure 3.4. By solving the integration as shown in Appendix 1, we can obtain

a closed form expression for the conditional JCCDF as

P{Γ > γ,Γ′ > γ′|R = r,R′ = r′}

=
(1− γγ′)LZ

(
1

1−γγ′
(
γ(1+γ′)rδ

P + γ′(1+γ)(r′)δ

P ′

))
[
1 + γ P

′

P

(
r
r′

)δ] [
1 + γ′ PP ′

(
r′

r

)δ] , (3.13)

for γ > 0, γ′ > 0, and γγ′ < 1, where LZ(s) is the Laplace transform of the total interference

Z.

Expression for LZ(s) can be derived as follows. We assume that the interfering MBSs

of a UE are frame asynchronous and subframe synchronous. Essentially, we wanted to

assume no synchronization at all. However, this would permit part of a subframe from an

interfering transmitter to interfere with part of another subframe at the receiver, and the

complications for analysis would be too much. To simplify the interference scenario, we

would not account for, or model, any interference by partially overlapping subframes. In
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Figure 3.4: Illustration of the integration region in the JPDF of X and Y .

other words, if a subframe partially overlaps another subframe, it is assumed to overlap

completely. This is equivalent to the “subframe-synchronized but frame-asynchronous”

assumption.

The locations of the USFs and CSFs are uniformly randomly distributed, with a USF

duty cycle of β for all the MBSs. Hence, each interfering MBS transmits USFs with proba-

bility β and CSFs with probability (1−β). Therefore, the tier of MBSs can be split into two

tiers, one tier of MBSs transmitting only USFs and other transmitting only CSFs. These

two tiers are independent PPPs with intensities λβ and λ(1 − β). Therefore, the FeICIC

scenario can be modeled using three independent PPPs as illustrated in Table 3.1.

Table 3.1: PPP parameters for USF MBSs, CSF MBSs, and PBSs.

BS type PPP Intensity Tx. power Distance of UE
to nearest BS

USF-MBSs Φusf βλ P r

CSF-MBSs Φcsf (1− β)λ αP r

PBSs Φ′ λ′ P ′ r′

Let, Iusf(r), Icsf(r), and I ′(r′) be the interference at UE from all interfering USF-MBSs,

CSF-MBSs and PBSs. Then, the total interference is Z = Iusf(r) + Icsf(r) + I ′(r′). Using

[118, Corollary 1], parameters in Table 3.1, and assuming δ = 4, we can derive the Laplace
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transform of Z in (3.13) to be,

LZ(s) = exp

{
− πβλ

√
Ps

[
π

2
− tan−1

(
r2

√
Ps

)]
− π(1− β)λ

√
αPs

[
π

2
− tan−1

(
r2

√
αPs

)]
− πλ′

√
P ′s

[
π

2
− tan−1

(
(r′)2

√
P ′s

)]}
. (3.14)

3.2.2 JPDF of Γ and Γ′

The conditional JPDF of Γ and Γ′,

f
Γ,Γ′
∣∣R,R′(γ, γ′ ∣∣ r, r′) = P{Γ = γ,Γ′ = γ′|R = r,R′ = r′} (3.15)

can be derived by differentiating the JCCDF in (3.13) with respect to γ and γ′. Detailed

derivation of conditional probability JPDF is provided in Appendix 2. Using the theorem

of conditional probability we can write

fΓ,Γ′,R,R′(γ, γ
′, r, r′) = f

Γ,Γ′
∣∣R,R′(γ, γ′ ∣∣ r, r′)fR(r)fR′(r

′), (3.16)

where, the PDFs of R and R′ are fR(r) = 2πλre−λπr
2

and fR′(r
′) = 2πλ′r′e−λ

′π(r′)2 ,

respectively. We can then express the unconditional JPDF of Γ and Γ′ as,

fΓ,Γ′(γ, γ
′) =

∫ ∞
dmin

∫ ∞
d′min

fΓ,Γ′,R,R′(γ, γ
′, r, r′) dr′ dr

=

∫ ∞
dmin

∫ ∞
d′min

f
Γ,Γ′
∣∣R,R′(γ, γ′ ∣∣ r, r′)fR(r)fR′(r

′) dr′ dr, (3.17)

where, we assume that a UE is served by a BS only if it satisfies the minimum distance

constraints: UE should be located at distances of at least dmin from the MOI and d′min from

the POI.
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3.3 Spectral Efficiency Analysis

In this section, the expressions for aggregate and per-user SEs for different UE categories

are derived. Considering the JPDF of an arbitrary UE in (3.17), first the expressions for

the probabilities that the UE belongs to each category are derived. Then, these expressions

are used to derive the mean number of UEs of each category in a cell. These are followed by

the derivation of the aggregate SE. Then, per-user SE expressions are obtained by dividing

the aggregate SE by the mean number of UEs.

3.3.1 MUE and PUE Probabilities

Depending on the SIRs Γ and Γ′, a UE can be one of the four types: USF-MUE, CSF-MUE,

USF-PUE or CSF-PUE. Given that the UE is located at a distance r from its MOI and r′

from its POI, probabilities of the UE belonging to each type can be found by integrating the

conditional JPDF over the regions whose boundaries are set by the cell selection conditions

in (3.6)-(3.9). Based on these conditions the integration regions for different UE categories

are shown in Figure 3.5. Here, the shaded regions indicate the integration regions.

γ′

γ

USF−MUE

CSF−MUE

CSF−PUE
USF−PUE

R2

R1

R3
R4

ρ

√
τ

1/
√
τ ρ′

γ = τ γ′γ = 1/γ′

Figure 3.5: Illustration of the integration regions in the JPDF of Γ and Γ′.
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The probability that a UE is a CSF-MUE can be found by integrating the JPDF over

the region R1,

Pcsf =P{Γ > τΓ′,Γ > ρ} =

∫ ∞
ρ

∫ min
(

1
γ
, γ
τ

)
0

fΓ,Γ′(γ, γ
′) dγ′ dγ. (3.18)

To form concise equations, let us define an integral function,

G(g,Ri) =

∫ ∫
Ri
g(γ, γ′)fΓ,Γ′(γ, γ

′) dγ′ dγ, (3.19)

where, g is a function of γ and γ′, Ri for i = 1, 2, 3, 4 is the integration region as defined in

Figure 3.5. Then, (3.18) can be written as,

Pcsf = P{Γ > τΓ′,Γ > ρ} = G(1,R1). (3.20)

Similarly, the conditional probabilities that a UE is a USF-MUE, USF-PUE or CSF-PUE

are respectively given as,

Pusf =P{Γ > τΓ′,Γ ≤ ρ} = G(1,R2), (3.21)

P ′usf =P{Γ ≤ τΓ′,Γ′ ≥ ρ′} = G(1,R4), (3.22)

P ′csf =P{Γ ≤ τΓ′,Γ′ < ρ′} = G(1,R3). (3.23)

3.3.2 Mean number of MUEs and PUEs

Since the MBS locations are generated using PPPs, the coverage areas of all the MBSs

resemble a Voronoi tessellation. Consider an arbitrary Voronoi cell. Let the number of UEs

in the cell be N , and number of CSF-MUEs in the cell be M . Then, M is a random variable
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and the mean number of CSF-MUEs is given by,

Ncsf = E[M ] = E

[
N∑
n=1

1{UE n is a CSF-MUE}
]

= EN

{
E

[
N∑
n=1

1{UE n is a CSF-MUE}
∣∣ N]}

= EN

{
N∑
n=1

E

[
1{UE n is a CSF-MUE}

]}
, (3.24)

where in (3.24) we use the fact that the probability that any of the N UEs in a cell being

a CSF-MUE is independent of N . However, it is important to note that this is itself a

consequence of our assumption that there is no limit on the number of CSF-MUEs per cell.

Further, the event that any one of the UEs in a cell is a CSF-MUE is independent of the

event that any other UE in that cell is a CSF-MUE, and all such events have the same

probability of occurrence, namely Pcsf given in (3.20). Then,

Ncsf = EN

{
N∑
n=1

Pcsf

}
= EN [NPcsf ] = Pcsf E[N ]. (3.25)

Using [119, Lemma 1], it can be shown that the mean number of UEs in a Voronoi cell is

λu/λ. Therefore, the mean number of CSF-MUEs in a cell are given by,

Ncsf =
Pcsfλu

λ
. (3.26)

Similarly, the mean number of USF-MUEs, USF-PUEs and CSF-PUEs are respectively

given by,

Nusf =
Pusfλu

λ
, N ′usf =

P ′usfλu

λ′
, N ′csf =

P ′csfλu

λ′
. (3.27)
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3.3.3 Aggregate and Per-user Spectral Efficiencies

We use Shannon capacity formula, log2(1 + SIR), to find the SE of each UE type. The

mean aggregate SE of an arbitrarily located CSF-MUE can be found by

Ccsf(λ, λ
′, τ, α, ρ, β) = (1− β)

E
[
log2(1 + Γcsf)

∣∣ UE is a CSF-MUE
]

Pcsf

= (1− β)
G(log2(1 + γcsf),R1)

Pcsf
,

= (1− β)
G(log2(1 + αγ),R1)

Pcsf
. (3.28)

Similarly, the mean aggregate SEs for USF-MUEs, USF-PUEs and CSF-PUEs can be re-

spectively derived to be

Cusf(λ, λ
′, τ, α, ρ, β) =β

G(log2(1 + γ),R2)

Pusf
, (3.29)

C ′usf(λ, λ
′, τ, α, ρ′, β) =β

G(log2(1 + γ′),R4)

P ′usf

, (3.30)

C ′csf(λ, λ
′, τ, α, ρ′, β) =(1− β)

G(log2(1 + γ′csf),R3)

P ′csf

, (3.31)

where, γ′csf = γ′(1+γ)
1+γ[α(γ′+1)−γ′] . Then the corresponding per-user SEs are

Cu,usf(λ, λ
′, τ, α, ρ, β) =

λ Cusf(λ, λ
′, τ, α, ρ, β)

λu Pusf
, (3.32)

Cu,csf(λ, λ
′, τ, α, ρ, β) =

λ Ccsf(λ, λ
′, τ, α, ρ, β)

λu Pcsf
, (3.33)

C ′u,usf(λ, λ
′, τ, α, ρ′, β) =

λ′ C ′usf(λ, λ
′, τ, α, ρ′, β)

λu P ′usf

, (3.34)

C ′u,csf(λ, λ
′, τ, α, ρ′, β) =

λ′ C ′csf(λ, λ
′, τ, α, ρ′, β)

λu P ′csf

. (3.35)

3.3.4 5th Percentile Throughput

The 5th percentile throughput reflects the throughput of cell-edge UEs. Typically the cell-

edge UEs experience high interference and analyzing their throughput provides important

information about the fairness among the users in a cell and the system performance.
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Consider the JPDF expression in (3.17). The integration regions of the JPDF for differ-

ent UE categories are shown in Figure 3.5. The SIR PDF of USF-MUEs can be evaluated

by integrating the JPDF over γ′ in the region R2,

fΓ(γ) = P{Γ = γ
∣∣ UE is a USF-MUE} =

∫ min
(
γ
τ
, 1
γ

)
0

fΓ,Γ′(γ, γ
′) dγ′, (3.36)

for 0 ≤ γ ≤ ρ. The cumulative distribution function (CDF) expression can be derived as

FΓ(γusf) = P{Γ ≤ γusf

∣∣ UE is a USF-MUE}

=

∫ γusf

0
fΓ(γ) dγ =

∫ γusf

0

∫ min
(
γ
τ
, 1
γ

)
0

fΓ,Γ′(γ, γ
′) dγ′ dγ, (3.37)

for 0 ≤ γusf ≤ ρ and, the CDF of throughput of the USF-MUEs can be derived as a function

of FΓ(γusf) in (3.37) as,

FCusf
(cusf) = P{Cusf ≤ cusf

∣∣ UE is a USF-MUE}

= P{log2(1 + Γusf) ≤ cusf

∣∣ UE is a USF-MUE},

= P{Γusf ≤ (2cusf − 1)
∣∣ UE is a USF-MUE}

= FΓ(2cusf − 1), (3.38)

for 0 ≤ cusf ≤ log2(1 + ρ). By using the CDF plots, the 5th percentile throughput of USF-

MUEs can easily be found as the value at which the CDF is equal to 0.05. Similarly, the

5th percentile throughput of other three UE categories can also be found.

3.4 Numerical and Simulation Results

The average SE and 5th percentile throughput expressions derived in the earlier sections

are validated using a Monte Carlo simulation model built in Matlab. Validation of the PPP

capacity results for a HetNet scenario with range expansion and reduced power subframes

is a non-trivial task. In this section, details of the simulation approach used for validating
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the PPP analyses are explicitly documented to enable reproducibility. Matlab codes for the

simulation model and the theoretical analysis can be downloaded from [117].

3.4.1 Simulation Methodology for verifying PPP Model

Algorithm used in simulation to find the aggregate and per-user SEs is described below.

1. The X- and Y-coordinates of MBSs, PBSs and UEs are generated using uniformly

distributed random variables. The mean number of MBS and PBS location marks are

λA and λ′A respectively, where, A is the assumed geographical area that is square in

shape as illustrated in Figure 3.6.

2. In the PPP analysis, the geographical area is assumed to be infinite. In such case, it

is important to account for edge effects in the simulations. In a tessellation that is

defined on an unbounded region, what happens outside a bounded simulation window

may effect what happens within the window [120]. As the simulation area is limited,

if a UE is located at the edge of the simulation area, the BSs around it will not

be symmetrically distributed. Hence, to avoid the edge effects the UE locations are

constrained within a smaller area Au that is aligned at center of the main simulation

area A to avoid the UEs from being located at the edges. The mean number of UEs

in the area Au is λuAu.

3. The MOI (closest MBS) and POI (closest PBS) for each UE is identified. The min-

imum distance constraints are applied by discarding the UEs that are closer than

dmin(d′min) from their respective MOIs (POIs).

4. The SIRs Γ, Γ′, Γcsf , Γ′csf are calculated for each UE using (3.2)-(3.5).

5. The UEs are classified as USF-MUEs, CSF-MUEs, USF-PUEs and CSF-PUEs using

the conditions in (3.6)-(3.9).

6. The MUEs (PUEs) which share the same MOI (POI) are grouped together to form

the macro- and pico-cells.
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7. The SEs of all the UEs are calculated. In a cell, SE of a USF-MUE i is calculated

using β log2(1+Γi)

(No. of USF-MUEs in the cell)
. The SEs of other UE types are calculated using

similar formulations.

8. The aggregate capacity of each UE type is calculated in all the cells.

9. Mean aggregate capacity and mean number of UEs of each type are calculated by

averaging over all the cells.

10. The per-user SE of each UE type are calculated by (mean aggregate capacity)/(mean

number of UEs).
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Figure 3.6: Simulation layout.

3.4.2 Per-user SEs with PPPs and Monte Carlo Simulations

The system parameter settings are shown in Table 3.2. The per-user SE results obtained

using the analytic expressions of (3.32)-(3.35) are compared with the simulation results in

Figures 3.7(a) and 3.7(b) for macrocell and picocell, respectively. The averaging process in

the simulations is not straight forward and it can be explained as follows. With reference to

Figure 3.6, the inner simulation area Au where the UEs are distributed consists of random

number of macrocells and picocells in each simulation instance. On average, it contains
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λAu macrocells and λ′Au picocells. Since the simulation results are obtained by averaging

over the macrocells and picocells, we can say that the simulation results were obtained by

averaging over approximately λAuNsim macrocells and λ′AuNsim picocells, where Nsim is

the number of simulation instances. Using the parameter values in Table 3.2 and Nsim = 20,

we can say that the simulation results were obtained by averaging over approximately 4,508

macrocells and 13,524 picocells.

Table 3.2: Parameter settings.

P, P ′ 46 dBm, 30 dBm

K,K ′ -11 dBm

dmin, d
′
min 35 m, 10 m

λ, λ′, λu (marks/Km2) 4.6, 3λ, 200

Fading model, Path-loss exponent (δ) Rayleigh, 4

β, ρ, ρ′ 0.5, 4 dB, 0dB

A,Au 10× 10 km2, 7× 7 km2
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Figure 3.7: Per-user SE in macrocell and picocell with β = 0.5, ρ = 4 dB and ρ′ = 0 dB.

The analytic and simulation plots in Figures 3.7(a) and 3.7(b) match with sufficient

accuracy. However, there exists a slight disagreement between the analytic and simulation

results which could be due to the fact that the calculation of analytic results involves four

nested integrals. Since the numerical integration in Matlab has certain tolerance limits,

the results could be off the ideal values. Another source for disagreement could be due to

the fact that in theoretical analysis, the BSs are assumed to be distributed over an infinite
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geographical area. However, the simulations are performed using a finite area of 10 × 10

km2. Nevertheless, Figure 3.7 provides the following insights:

3.4.2.1 USF- and CSF-MUEs

Referring to Figure 3.2, USF-MUEs form the outer part and CSF-MUEs form the inner

part of the macrocell. As the REB increases, some of the USF-MUEs at the macro-pico

boundary which have worse SIRs are offloaded to the picocell. Consequently, the mean

number of USF-MUEs decreases and their per-user SE increases as shown in Figure 3.7(a).

The mean number of CSF-MUEs are not affected by τ as long as
√
τ ≤ ρ. Considering

Figure 3.5, it can be noted that if
√
τ = ρ, the line γ = τγ′ intersects the boundary of

region R1. Hence, if τ is increased further such that
√
τ > ρ, the area of R1 decreases and

thereby decreases the mean number of CSF-MUEs. Therefore, the per-user SE of CSF-

MUEs remains constant as long as
√
τ ≤ ρ, and increases if τ crosses this limit as shown in

Figure 3.7(a).

On the other hand, as the α increases, the transmit power of all the interfering MBSs

increases during CSFs, hence it increases the interference power Z at all the UEs. This

causes the SIRs of USF-MUEs (Γ), USF-PUEs (Γ′) and CSF-PUEs (Γ′csf) to decrease,

which can be noted in (3.2), (3.3), and (3.5), respectively. However, the SIRs of CSF-MUEs

(Γcsf) would increase (despite of increased interference) because of the increase in received

signal power (due to higher α) which can be noted in (3.4). Considering (3.6) and (3.7),

since ρ is a constant, the degradation in Γ causes the number of USF-MUEs to increase and

CSF-MUEs to decrease. Consequently, the per-user SE of USF-MUEs decreases and that

of CSF-MUEs increases for increasing α, as shown in Figure 3.7(a).

3.4.2.2 USF- and CSF-PUEs

As the REB increases, the mean number of USF-PUEs remains constant if ρ′ > 1/
√
τ

because the area of region R4 in Figure 3.5 is unaffected by the value of τ . Therefore, the per-

user SE of USF-PUEs also remain constant for increasing REB as shown in Figure 3.7(b).

With increasing REB, some MUEs are offloaded to the picocell and become CSF-PUEs.
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But, these UEs are located at cell-edges and have low SIRs. Hence the per-user SE of

CSF-PUEs decreases as shown in Figure 3.7(b).

On the other hand, as the α increases, the transmit power of all the interfering MBSs

increases during CSFs causing Γ, Γ′ and Γ′csf to decrease and Γcsf to increase, as explained

previously. Considering (3.8) and (3.9), since ρ′ is a constant the degradation in Γ′ causes

the number of USF-PUEs to decrease and CSF-PUEs to increase. Consequently, the per-

user SE of USF-PUEs increases and that of CSF-PUEs decreases for increasing α, as shown

in Figure 3.7(b).

3.4.3 Optimization of System Parameters to Achieve Maximum Capacity and

Proportional Fairness

The five parameters τ, α, β, ρ, and ρ′ are the key system parameters that are critical to

the satisfactory performance of the HetNet system. The goal of these parameter settings is

to maximize the aggregate capacity in a cell while providing proportional fairness among

the users.

Consider an arbitrary cell which consists of N UEs. Let Ci be the capacity of an

arbitrary UE i ∈ {1, 2, ..., N}. The sum of capacities (sum-rate) and the sum of log

capacities (log-rate) in a cell are respectively given by,

Csum =

N∑
i=1

Ci, Clog =

N∑
i=1

log(Ci) = log

(
N∏
i=1

Ci

)
. (3.39)

Maximizing the Csum corresponds to maximizing the aggregate capacity in a cell, while

maximizing the Clog corresponds to proportional fair resource allocation to the users of a

cell [121, App. A], [122]. There can be trade-offs existing between aggregate capacity and

fairness in a cell. Maximizing the Csum may reduce the Clog, and vice versa. In this section,

we try to understand these trade-offs by analyzing the characteristics of Clog and Csum with

respect to the variation of key system parameters.

We attempt to maximize the aggregate capacity and the proportional fairness among

the users by jointly optimizing the five key system parameters which can be mathematically
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formulated as,

max
ρ,ρ′,α,τ,β

Csum = max
ρ,ρ′,α,τ,β

N∑
i=1

Ci, (3.40)

and, max
ρ,ρ′,α,τ,β

Clog = max
ρ,ρ′,α,τ,β

log

(
N∏
i=1

Ci

)
. (3.41)

We solve the optimization problem numerically with brute-force search technique. As there

are five optimization parameters, this problem involves searching for an optimum solution

in a five-dimensional space. The variation of Clog with respect to ρ, ρ′, α, τ is shown in

Figure 3.8, for β = 0.5. These plots are obtained through the Monte Carlo simulations and

each plot is the variation of Clog with respect to ρ for fixed values of ρ′, α and τ . The

optimum scheduling thresholds ρ∗ and ρ′∗ that maximize the Clog are dependent on the

values of α and τ .
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Figure 3.8: Sum of log capacities versus the scheduling thresholds for different α and τ
combinations.
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We have used a simple brute force search technique to optimize the system parameters,

while it is also possible to use non-linear optimization techniques. For example, reinforce-

ment learning method is used in [123,124] to optimize the downlink transmission strategies

in HetNets such as the transmit power and the REB. In [108], a game theoretic approach and

distributed learning algorithm is used to optimize the downlink transmit power, REB, and

the ON/OFF states, of individual BSs to minimize the system cost which includes energy

and load expenditures. Typically, these optimization techniques use distributed approach

and are developed to be efficient from the implementation perspective. In addition, some

information exchange among the BSs are typically required for these optimization methods

to work. For example, in [108], estimated traffic load, transmission power, and REB are

broadcasted by the BSs for optimization of the operating parameters at each individual

small cell BS. On the other hand, the brute force search technique does not require any

information exchange among the BSs. In this research, our focus is to understand the char-

acteristics of the optimum system parameters, rather than the implementation efficiency of

the optimization method used. Brute force search method is also used, for example, in [48]

to find the optimum REB and duty cycle of almost blank subframes that maximize the rate

coverage in HetNets.

Figure 3.9 shows the plots of ρ∗ and ρ′∗ as the functions of α and τ . The markers show

the simulation results while the dotted lines show the smoother estimation obtained using

the curve fitting tool in MATLAB. For small α values, the optimum threshold ρ∗ has higher

values as shown in Figure 3.9(a), and according to (3.7) this causes very few MUEs that

have Γ > ρ∗ to be scheduled during CSFs. This makes sense because MBS transmit power

during CSFs is very low for small α and hence the number of CSF-MUEs which can be

covered is also less. On the other hand, for higher α values, MBS transmits with higher

power level during CSFs and can cover larger number of CSF-MUEs. Therefore, to improve

the fairness proportionally, the optimal ρ∗ value decreases with increasing α so that more

MUEs are scheduled during CSFs.

In the picocell, with increasing α the CSF-PUEs at the cell edges will experience higher

interference from the MBSs. Then, more PUEs should be scheduled during USFs to improve
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Figure 3.9: Optimized scheduling thresholds versus α for different τ (a) in macrocell; (b)
in picocell. With λ = 4.6 marks/Km2 and λ′ = 13.8 marks/Km2.

proportional fairness. Likewise, decreasing ρ′∗ in Figure 3.9(b) indicates that more PUEs

are scheduled during USFs as per (3.8).

The Clog with optimum scheduling thresholds ρ∗ and ρ′∗ is plotted in Figure 3.10(a).

Higher the Clog, better is the proportional fairness. It is important to note that the range

expansion bias, τ , has a significant effect on proportional fairness. The Clog increases from

−40 to −28 when τ is increased from 0 db to 12 dB.

Compared to τ , α has a smaller effect on the proportional fairness. When α is set to

zero which corresponds to the eICIC, Clog is at its minimum. It shows that eICIC provides

minimum proportional fairness. Figure 3.10(a) moreover shows that setting α = 1 which

corresponds to no eICIC, also does not provide maximum Clog. An α setting between 0.125

and 0.5 maximizes the Clog and hence the proportional fairness.

The characteristics of Csum with optimum scheduling thresholds is shown in Figure 3.10b.

As the τ increases, Csum decreases, which is the opposite effect when compared to the

Clog in Figure 3.10(a). This shows the trade-off between the aggregate capacity and the
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Figure 3.10: Clog and Csum with optimum scheduling thresholds ρ∗ and ρ′∗; λ =
4.6 marks/Km2 and λ′ = 13.8 marks/Km2.

proportional fairness. Increasing the τ would increase the proportional fairness but decrease

the aggregate capacity, and vice versa.

Comparing Figures 3.10(a) and 3.10(b) also explains the trade-off associated with setting

α. A very small value, 0 < α < 0.125, provides larger Csum but smaller Clog, which is

better from an aggregate capacity point of view. Setting 0.125 ≤ α ≤ 0.5 is better from

a fairness point of view. Any value of α > 0.5 is not recommended since it degrades the

aggregate capacity as shown in Figure 3.10(b), decreases the proportional fairness as shown

in Figure 3.10(a), and consumes higher transmit power by the MBSs. Setting α = 0 as in

the eICIC case would reduce both Csum and Clog drastically.

The effects of α and τ on the 5th percentile, 50th percentile and average SEs are shown in

Figure 3.11. Here again, optimum scheduling thresholds ρ∗ and ρ′∗ are used. Figure 3.11(a)

shows that as the REB increases from 0 dB to 6 dB, some of the MUEs at the border of

the macrocell are offloaded to the picocell. Since these offloaded UEs are served by picocell

during the CSFs, they would have better throughput resulting into the improvement in

5th percentile SE. However, if the REB increases to 12 dB, more MUEs are offloaded

and the picocell becomes crowded resulting into poor SEs for the PUEs. Hence the 5th

percentile SE decreases when the REB increases from 6 dB to 12 dB. Figure 3.11(a) also
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shows that with τ = 6 dB, setting α = 0.125 maximizes both 5th and 50th percentile SEs.

Figure 3.11(b) shows the characteristics of average SE of an arbitrary UE, which is similar

to the characteristics of Csum in Figure 3.10(b). By comparing Figures 3.11(a) and 3.11(b),

it can be noted that the 50th percentile SE and the average SE have opposite behaviors

with respect to the REB. As the REB increases, 50th percentile SE increases while the

average SE decreases.

3.4.4 Impact of the Duty Cycle of Uncoordinated Subframes

In the results of Figures 3.9–3.11, β was set to 0.5 and we next show the effect of varying

β on Clog and Csum. Introducing β into the optimization problem makes it difficult to

visualize the results due to the addition of one more dimension. Therefore, we use the

optimized scheduling thresholds, ρ∗ and ρ′∗, and analyze Clog and Csum as the functions β,

α and τ . Figures 3.12 and 3.13 show the Clog versus β and the Csum versus β, respectively

for different values of α and τ . The variation of Clog with respect to β is not significant,

except for α = 0. Whereas, the variation of Csum with respect to β is significant.

When α = 0, the Clog value decreases rapidly for β < 0.5. Nevertheless, α = 0 is shown

to have poor performance in the previous paragraphs and hence it is not recommended.
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Figure 3.13: Csum versus β with optimum scheduling thresholds ρ∗ and ρ′∗. With λ =
4.6 marks/Km2 and λ′ = 13.8 marks/Km2.
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For other values of α, variation in β does not affect the Clog significantly, which shows

that by using a fixed value of β, proportional fairness can be achieved by optimizing (to

maximize Clog) the scheduling thresholds. Figure 3.13 shows that fixing β approximately

to 0.43 maximizes the Csum irrespective of α and τ , provided the scheduling thresholds are

optimized to maximize Clog.

In [48], the boundary of CSF-PUEs that form the inner region of picocell (excluding the

range expansion region) is fixed due to the fixed transmit power of PBS. The association

bias and resource partitioning fraction parameters are used as the variables to be optimized.

It is analogous for us to have a fixed ρ′ and optimize β and τ . But in contrast, we fix the β

for simplicity and optimize the other four parameters, since coordinating β among the cells

through the X2 interface is complex and adds to communication overhead in the backhaul.

The X2 is a type of interface in LTE networks which connects neighboring eNodeBs in a

peer to peer fashion to assist handover and provide a means for rapid coordination of radio

resources [125].

3.4.5 5th Percentile Throughput

Using the expressions derived in Section 3.3.4, the 5th percentile throughput versus α for

different τ is shown in Figure 3.14(a) for MUEs, and in Figure 3.14(b) for PUEs. As

the α increases, MBSs transmit at higher power level during CSFs and the UEs of all

types experience a higher interference power. However, the received signal power at CSF-

MUEs increases with α and results in improved 5th percentile throughput as shown in

Figure 3.14(a). But, the SIRs of USF-MUEs and USF/CSF-PUEs degrade due to higher

interference and therefore their 5th percentile throughput decreases with increase in α as

shown in Figures 3.14(a) and 3.14(b).

Increasing the REB, τ , causes the USF-MUEs with poor SIR, located at the edge of

macrocell, to be offloaded to the picocell and thereby increasing the 5th percentile through-

put of USF-MUEs as shown in Figure 3.14(a). The offloaded UEs in picocell are scheduled

during CSFs and due to their poor SIR the 5th percentile throughput of CSF-PUEs de-

creases as shown in Figure 3.14(b).
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Figure 3.14: 5th percentile throughput (a) in macrocell; (b) in picocell. With λ =
4.6 marks/Km2 and λ′ = 13.8 marks/Km2.

3.4.6 Comparison with Real BS Deployment

We obtained the data of real BS locations in United Kingdom from an organization [126]

where the mobile network operators have voluntarily provided the information of location

and operating characteristics of individual BSs. The data set in [126] was last updated in

May 2012, and it provides exact locations of the BSs. Also, the BSs of different operators

can be distinguished.

In this section, we compare the 5th percentile SE results from the PPP model with

that of the real BS deployment and hexagonal grid model. The real MBS locations of two

different operators in a 15× 15 km2 area of London city were obtained from [126] as shown

in Figure 3.15. In this area, the average BS densities of the two operators were found to

be 1.53 MBSs/km2 and 2.04 MBSs/km2. To have a fair comparison, the MBS locations

for hexagonal grid and PPP models were also generated with the same densities. The PBS

locations were generated randomly using another PPP model. The parameters τ = 6 dB,

α = 0.5, β = 0.5, ρ = 4 dB, ρ′ = 12 dB, and Ptx = 46 dBm were fixed while the PBS

density λ′ was varied to analyze its effect on the 5th percentile SE.

The plots of 5th percentile SE versus PBS density are shown in Figure 3.16 for the

two operators. The 5th percentile SE of operator-2 is better than that of operator-1 since

the former has higher MBS density. As expected, the 5th percentile SE improves with the
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Figure 3.15: Real base station locations of two different operators in a 15× 15 km2 area of
London city.

increase in PBS density. It can also be observed that increasing the PBS transmit power

P ′ from 10 dBm to 30 dBm will result into almost twice the 5th percentile SE. Since

hexagonal grid model is an ideal case, it has the best 5th percentile SE and forms an upper

bound. The PPP model has the worse 5th percentile SE and forms a lower bound. The

real MBS deployment is usually planned and hence it is not completely random in nature.

On the other hand, it is also not equivalent to the idealized hexagonal grid model due to

the practical constraints involved during the deployment. Hence, the 5th percentile SE of

real MBS deployment lies in between the hexagonal grid and random deployments.
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Figure 3.16: 5th percentile SE versus PBS density.
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CHAPTER IV

Unmanned Aerial Base Stations in HetNets

In recent years, UAVs are becoming popular in many applications, including wireless com-

munications. An UAV or a group of UAVs equipped with small cell BSs can be deployed

immediately in order to provide on-demand capacity enhancement in a particular geo-

graphical area of interest. This feature of UAVs is very helpful for PSCs during emergency

situations where communications play a critical role in saving lives. Since the current com-

munication technologies heavily rely on the backbone network, the failure of BSs due to

natural disasters or malevolent attacks causes communication difficulties for public safety

and emergency communications.

Lately, the use of UAVs such as quadcopters and unmanned gliders have gained attention

in PSCs. They can be used as UABSs, which can be deployed rapidly as a part of the HetNet

architecture. However, due to their mobile characteristics, interference management in the

network becomes very challenging. In this chapter, we explore the use of UABSs for PSCs

during natural disasters, where part of the communication infrastructure becomes damaged

and dysfunctional (e.g., as in the aftermath of the 2011 earthquake and tsunami in Japan).

Through simulations, we analyze the throughput gains that can be obtained by exploiting

the mobility feature of the UAVs. Our simulation results show that when there is loss of

network infrastructure, the deployment of UABSs at optimized locations can improve the

SE coverage and the 5th percentile SE of the network. This improvement is observed to be

more significant with higher path-loss exponents. Furthermore, using REB in the UABS

cells is shown to provide additional gains in the 5th percentile SE of the network.

4.1 Public Safety Communications Scenarios

This chapter aims to explore a new generation of broadband PSC systems that include

UAVs for addressing the intricate interference management challenges in emerging PSC

scenarios. In particular, we introduce a UAV assisted HetNet system that will constitute
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Figure 4.1: Large scale PSC scenario. The MBSs, SCBSs, and UABSs constitute a hetero-
geneous network (HetNet) infrastructure, where the UABSs can dynamically change their
positions for optimized coverage and seamless broadband connectivity.

the pillar of the next generation of PSC systems. To provide a context for the proposed

system, two representative PSC scenarios are discussed next.

4.1.1 Scenario-1: Large-scale PSC scenario

The first typical public safety scenario, illustrated in Figure 4.1, involves providing capable

PSCs in diaster-affected environments following the aftermath of an earthquake, tsunami,

or hurricane. In such environments, there is a vital need to maintain broadband, high-speed

communication between first responders and victims, whose basic communication mediums

may be jeopardized by damaged networking infrastructure as in the 2011 Earthquake in

Japan [127]. In the representative scenario shown in Figure 4.1, only two of the seven

MBSs with large coverage areas remain operational after a disaster. The figure also illus-

trates a number of SBSs, which can be critical to maintain connectivity in PSC scenarios.

Range expansion techniques [22] are commonly used with the SBSs to extend coverage and

fairly distribute users among different cells. To sustain ubiquitous broadband connectivity,
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Figure 4.1 shows how different types of UAVs are serving as UABSs. In hot-spot regions

with denser UE population, quadcopters can hover at a fixed location, while gliders have to

follow a circular trajectory. Relaying and multi-hop communication methods can also be

used for extending the coverage through the incident scene, either through UAVs or other

UEs.

4.1.2 Scenario-2: Small-scale PSC scenario

A second, typical PSC scenario involves a smaller-scale environment as in Figure 4.2, rep-

resentative of scenarios such as a building on fire or a barricaded suspect. The incident

scene is served by a number of SBSs, which are embedded into police cars, fire trucks, and

UAVs. These SBSs provide broadband connectivity to first responders and victims in a

timely manner, typically for deep situational awareness purposes through real-time wireless

video streaming. Some example use cases of broadband connectivity include transmission

of 3D blueprints of a burning building to the hand-held devices of first responders, live

streaming of high definition video of the incident scene from the cap-mounted cameras (or

Google-glass like gadgets) of the first responders to a command center, and transmission

of multichannel vital signs of a hurt disaster victim to an external medical post to facili-

tate the diagnosis in collaboration with the on-site emergency medical staff and a remote

specialist [128]. By exploiting UAV mobility, broadband connectivity can be delivered into

desired regions, including congested areas and indoor environments.

A major challenge in the UAV assisted HetNets is to address the severe and highly dy-

namic interference challenges during/after the disaster scenarios as shown in Figure 4.1 and

Figure 4.2. When compared with conventional heterogeneous network (HetNet) interfer-

ence management techniques, scenarios such as in Figure 4.1 and Figure 4.2 are particularly

unique and challenging due to 1) potentially damaged BS infrastructure, yielding outage

problems; 2) mobility of SBSs in UAVs, police cars, and fire trucks, resulting in dynamic

interference patterns and uncoordinated final locations of SBSs; 3) dynamically changing

locations of UEs following a disaster, potentially clustered into some hot-spot areas; 4) Het-

Net traffic with bursty data transmission (e.g., post-earthquake) which may temporarily
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Figure 4.2: Building fire scenario.

overload the network infrastructure; and 5) the need to maintain high QoS for public safety

personnel in mission-critical scenarios.

In this research, we focus on the large scale PSC scenario which is illustrated in Fig-

ure 4.1. We assume the MBS locations are randomly distributed according to a two-

dimensional homogeneous PPP, and perform Monte-Carlo simulations to evaluate SE cov-

erage and 5th percentile SE of the network. We randomly remove some BS nodes to imitate

a natural disaster, and then study the impact of infrastructure damage on the SE coverage

and the 5th percentile SE. We also investigate the potential benefits of UAVs in the post

disaster scenario by studying the capacity and coverage improvements achieved through the

deployment of UAVs. Furthermore, we optimize the locations of the UAVs using GA to

maximize the 5th percentile SE of the network, and also study the effect of REB on the 5th

percentile SE and the SE coverage.

4.2 System Model

We consider a cellular network with MBS and UE locations modeled as two-dimensional

homogeneous PPPs of intensities λ and λu, respectively. PPP-based models may not be

viable for capturing real MBS locations, due to some points of the process being very close to

each other. However, the PPP-based models provide reasonably close performance results
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when compared with the real BS deployments [22]. We assume all the MBSs transmit at

power Ptx, and every UE connects to its nearest MBS. For an arbitrary UE n at a distance

rnm from its serving MBS m, the average received signal power is given by

S(rnm) =
PtxK

rδnm
, (4.1)

where δ is the path-loss exponent (PLE), and K is the factor that accounts for the geo-

metrical parameters such as transmitter and receiver antenna heights, etc. We consider an

interference limited network in which the thermal noise power at a receiver is assumed to

be negligible when compared to the interference power. Then, the SIR at UE n can be

expressed as,

Γn =
S(rnm)∑

i∈M,i 6=m S(rni)
, (4.2)

where M is the set of all MBSs, and rni is the distance of nth UE to the ith MBS. The

denominator in (4.2) represents the total interference power at UE from all the MBSs

except the serving MBS m. Using Shannon’s capacity formula, and considering round-

robin scheduling for simplicity, the SE of a MUE can be expressed as,

Cn =
log2(1 + Γn)

N
, (4.3)

where N is the number of MUEs in the macrocell.

4.2.1 SE Coverage

Since achieving broadband rates is considered as a major goal, we use SE coverage as the

performance indicator for network coverage1. a UE is considered to be in SE coverage if its

average SE is higher than a threshold TC, i.e., C > TC. Here, we assume full buffer traffic

in all the downlinks. The SE coverage in a typical network is illustrated in Figure 4.3a for

1Note that in LTE, outage (radio link failure) is normally declared when the wideband SINR is lower
than a threshold. Since we envision network that serves all users at minimum guaranteed throughput, we
consider a different coverage criteria for broadband communication applications.
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a 3 × 3 km2 region in which the MBS intensity λ = 4 per km2, and MBS transmit power

Ptx (in dBm) = 46 dBm. In Figure 4.3a, the black lines indicate the cell boundaries, while

the blue colored areas correspond to the SE coverage areas in which the UEs’ SE are greater

than the threshold TC = 3.5× 10−3 bps/Hz, with a UE intensity of λu = 400 per km2. The

white colored regions, on the other hand, are areas where the SE is lower than the threshold

TC, which is negligible in Figure 4.3a.
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Figure 4.3: Illustration of SE coverage in a typical network.

To illustrate the impact of infrastructure loss on coverage and SE, an example scenario

of the cellular network after an earthquake is shown in Figure 4.3b, where 90% of the MBSs

are randomly destroyed during a disaster, and the same SE threshold TC as in Figure 4.3a is

used to calculate outage regions. In this second scenario, outage region grows significantly,

due to 1) overloading of MBSs with many UEs, and 2) poor link qualities of UEs far away

from the MBSs. In a PSC scenario, first responders and victim users located within a

white region in Figure 4.3b will observe very low SE, or even a complete outage and loss of

connectivity. Naturally, for higher SE thresholds, the outage region will grow even larger.

4.3 Coverage Improvement Using UABSs

In the scenario of loss in network infrastructure as in Figure 4.3b, UABSs can be deployed

rapidly to form small-cells and consequently improve the network coverage. Unlike MBSs,
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the UABSs’ positions can be dynamically adjusted and therefore their physical locations

can be optimized in order to get the best network performance for a given scenario.

With the deployment of UABSs, a HetNet is formed with two tiers of BSs: MBSs and

UABSs. We assume that both the MBSs and the UABSs share a common transmission

bandwidth. For simplicity, we assume that the wireless backhaul links of the UABSs have

very large capacity, and they use a different frequency band than the access links. For an

arbitrary UE n, let the nearest MBS m at a distance rnm be its MBS of interest (MOI) and

the nearest UABS u at a distance rnu be its UABS of interest (UOI). Then, the average

received signal power from the MOI and the UOI are respectively given by

S(rnm) =
PtxK

rδnm
, S′(rnu) =

P ′txK
′

rδnu
, (4.4)

where P ′tx is the transmit power of UABSs, and K ′ is the factor that accounts for the

geometrical parameters such as the transmitter and receiver antenna heights. Then, an

arbitrary UE experiences the SIRs,

Γn =
S(rnm)∑

i∈M,i 6=m S(rni) +
∑

j∈U S
′(rnj)

, (4.5)

Γ′n =
S′(rnu)∑

i∈M S(rni) +
∑

j∈U ,j 6=u S
′(rnj)

, (4.6)

from the MOI and the UOI, respectively. Here, U is the set of all UABSs, and rnj is the

distance of nth UE to the jth UABS. The denominators of (4.5) and (4.6) represent the

total interference power at the UE. We assume that the UABSs employ range expansion

bias (REB) during the UE association process in order to associate with more number of

UEs. Each UE performs cell selection by using Γn,Γ
′
n and the REB τ as follows:

If Γn > τΓ′n → select MOI, (4.7)

If Γn ≤ τΓ′n → select UOI. (4.8)
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Table 4.1: System parameters

Parameter Description Value

λ, λu MBS and UE intensities 4 per km2, 100 per km2

Ptx, P
′
tx MBS and UABS transmit powers 46 dBm, 30 dBm

K,K′ Factors accounting for the geometrical parameters of an-
tennas

−11 dB,−11 dB

δ Path-loss exponent 4

τ Range expansion bias 0 dB

dh Altitude of UABSs 121.92 m

TC SE threshold 2.55 × 10−3 bps/Hz

Asim Simulation area 10 × 10 km2

- GA population size and generation number 60 and 100

- GA crossover and mutation probabilities 0.7 and 0.1

Finally, the SEs of MUE and UABS-cell UE (UUE) can be respectively expressed as,

Cn =
log2(1 + Γn)

N
, C ′n =

log2(1 + Γ′n)

N ′
, (4.9)

where N ′ is the number of UUEs in the UABS-cell.

4.3.1 Optimization of UABSs’ locations using Genetic Algorithm

We use genetic algorithm (GA) to simultaneously optimize the locations of UABSs in a way

to maximize 5th percentile SE of the network over a given geographical area. Here, each

UABS is assumed to know the locations of other UABSs and MBSs. The GA proposed

by Holland [129] is a global optimization technique based on genetic science. One of the

advantages of GA is that it runs with population of candidate solutions rather than a single

solution. Due to its parallel search capability, it can search over whole working environment

simultaneously, so that an optimum solution can be obtained more quickly than the classical

optimization techniques such as brute force search. Recently, GA has been used to solve

deployment problem of wireless sensor networks, as well as optimization problems such as

the traveling salesman problem.

With the approach of GA, a candidate solution for the optimization problem is referred

as a chromosome, which is a set of all the UABSs’ location coordinates, as illustrated in

Figure 4.4. The optimization process begins with an initial population of chromosomes

that are generated randomly, and runs for a certain number of iterations until the optimum

solution is reached. In each iteration of the GA process, following steps are performed:
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x1 y1 x2 y2 xN yN…

UAV1 UAV2 UAVN

Figure 4.4: An example of a chromosome, where the parameters that need to be optimized
are the individual locations (xi, yi) of each UABS i, where i = 1, 2, ..., N .

1. All chromosomes are evaluated according to a fitness function. In our application, the

5th percentile SE of the network is the fitness function.

2. The selection process is used for determining the best chromosomes in the population

which provide higher 5th percentile SE results.

3. A Crossover process is used which combines the features of two parent chromosomes

to generate two offspring.

4. After a new generation is created through crossover operator, new chromosomes are

randomly chosen for mutation process. The mutation process is used in order to avoid

the solution from converging to a local minima.

Figure 4.5 shows optimized placements of the UABSs using GA in a damaged network,

in a way to maximize the 5th percentile SE over the whole network. In the simulations,

about 90% of the MBSs were removed randomly in order to imitate loss of infrastructure.

Each UABS is assumed to know the locations of other UABSs and BSs. In the considered

architecture, it is assumed that the UABSs can communicate through a backhaul link to a

nearby BS node [130, 131]. The UABSs are observed to be clustered around the cell edges

of macrocells in order to take over the low-SIR UEs and maximize the 5th percentile rate.

Figure 4.5(a) shows an optimized placement of 5 UABSs at an altitude of 152.4 m, while

Figs. 4.5(b) and 4.5(c) show optimized placements of 10 UABSs at altitudes of 152.4 m and

45.72 m, respectively. It can be observed that 10 UABSs can achieve higher SE coverage

area than 5 UABSs. Further, the SE coverage area increases approximately by 4% when

the altitude of the UABSs decreases from 152.4 m to 45.72 m.
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Figure 4.5: Illustration of a damaged network with optimized placements of UABSs using
genetic algorithm.

4.3.2 Range Expansion for UABS Cells

Due to the low transmit power of UABSs when compared to that of the MBSs, the UABSs

might not be able to associate with more number of UEs. Using REB for small cells is one

of the extensively studied techniques in HetNets to offload the macrocell UEs to the small

cells for balancing the traffic load between the macrocells and small cells [22]. The range

expansion has been included in LTE Release-8 specifications (standardized in 2008), and

can also be used with all the future releases of LTE. In this technique, a UE in the network

adds a REB to the received signal strength from the UABSs during the cell selection process,

which increases the probability of selecting the UABSs for their serving cell.
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Figure 4.6: Improving SE coverage and 5th percentile SE with UABSs.

4.4 Simulation Results

The ability of UABSs to move to any location and height on an incident area provides a

powerful mechanism to maintain high SE coverage throughout the network. In this section,

we investigate the impact of optimized deployment and range expansion of UABS cells

on the network performance. The simulation parameters were set to the values as shown

in Table 4.1, and the locations of all UABSs were optimized through GA to maximize

5th percentile SE of the network. The 5th-percentile SE is a performance measure for cell

edge users, and maximizing the 5th percentile SE will ensure that cell edge users continue

to maintain good spectral efficiency.

4.4.1 Impact of Number of Destroyed MBSs

The SE coverage area and the 5th percentile SE as a function of the number of destroyed

MBSs Ndst, (out of a total 400) are shown in Figure 4.6, with different number of helper

UABSs. The SE coverage area is defined as the percentage of area with SE larger than

a threshold TC (taken as 2.55 × 10−3 bps/Hz in simulations), versus the whole simulation

area. These results show that the height (dh) of a UABS has relatively limited effect on

SE coverage, but has a more pronounced effect on the 5th percentile SE due to path loss

factors. Figure 4.6 also shows that 15 optimally-positioned UABSs can handle the load of
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Figure 4.7: Effects of PLE on SE coverage area and 5th percentile SE.

up to 70 MBSs from a SE coverage area perspective, while the gains are lower when the 5th

percentile SE is considered. Lowering the UABS height (assuming line-of-sight scenarios)

is also shown to bring additional SE benefits due to lower path loss.

4.4.2 Impact of Path-loss Exponent

The characteristics of SE coverage and 5th percentile SE with respect to variations in the

PLE are shown in Figure 4.7. In general, both the SE coverage and the 5th percentile SE

improve with the increasing PLE because the interference power at a UE decreases more

rapidly than the signal power as the PLE increases, thereby improving the SIR at the UE.

This is due to the fact that the UE’s distance to its connected BS is lesser than all other

interfering BSs. Figure 4.7 also shows that the SE coverage improves with more number of

UABSs, and the improvement is significant with higher PLE. Particularly, the case when

390 out of 400 MBSs are destroyed, approximately 94% of the area can still be covered with

just 15 UABSs, provided the PLE is 4.5.

4.4.3 Impact of Range Expansion Bias

Figure 4.8 shows the variations of SE coverage probability, 5th percentile SE, and the CDF

of per-user SE, with respect to the REB. It can be observed in Figure 4.8(a) that the
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Figure 4.8: Effects of REB on SE coverage probability and 5th percentile SE.

SE coverage probability is maximized at a particular REB value; however, the coverage

probability gain at this optimum REB is limited. On the other hand, the effect of REB

on the 5th percentile SE is notable as shown in Figure 4.8(b). For example, when 50% of

MBSs are destroyed in 10×10 km2 area and 60 UAVs are deployed at optimal locations,

using an REB of 6 dB increases the 5th percentile SE by 18% when compared to an REB of

0 dB. It can also be noted in Figs. 4.8(a) and 4.8(b) that the effect of REB on SE coverage

probability and 5th percentile SE is more significant when higher number of UAVs are

deployed.

The effects of different number of destroyed MBSs are also shown in Figs. 4.8(a) and

4.8(b). With the increasing number of destroyed MBSs, the SE coverage probability and the

5th percentile SE both decrease due to the decreasing density of MBSs. In such a scenario,
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the SE coverage probability and the 5th percentile SE can be increased significantly by

deploying more number of UABSs at optimized locations. For example, assuming that

97.5% of MBSs are destroyed, by deploying 60 UAVs at optimized locations and using

an REB of 6 dB, the 5th percentile SE can be improved by ∼203% and the SE coverage

probability can be improved by ∼106% when compared to the deployment of 15 UAV.

Figure 4.8(c) shows the CDF of the per-user SE for different number of deployed UAVs and

for different REB values. With more number of deployed UAVs, the CDF shifts towards

right side of the graph indicating better SEs for the users.
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CHAPTER V

Capacity Enhancement through Subsidy Regulations

5.1 Introduction

Traditional regulatory methods for spectrum licensing have been recently identified as one of

the causes for the under-utilization of the valuable radio spectrum. Governmental regulatory

agencies such as the FCC are seeking ways to remove stringent regulatory barriers and

facilitate broader access to the spectrum resources. The goal of such new FCC-backed

efforts is to allow for an improved and ubiquitous sharing of the precious radio spectrum

between commercial service providers.

In this chapter, a novel noncooperative game is proposed to analyze how to foster more

sharing of the radio spectrum via the use of regulatory power. A two stage game is defined

in which the government regulators move first, followed by the providers. The providers

are incentivized by lower spectrum allocation fees from the regulators in return for proof-

of-sharing. The providers are offered discounted spectrum bands, potentially at different

locations, but will be asked to provide coverage to users that are not subscribed to them so

as to maintain their subsidy incentives from the government.

Roaming agreements and spectrum sharing among the traditional operators are alter-

native approaches to the proposed subsidy schemes. However, roaming agreements are not

common among different types of network operators, such as among cellular operators and

public safety operators. While roaming agreements can make spectrum sharing possible

among the service providers, it penalizes the customers and the small service providers

with roaming charges, and may result in monopolization. On the other hand, the pro-

posed subsidy scheme is an alternative solution which is seamless to the customers and

can enhance spectrum sharing among the service providers through the incentives from

government, while avoiding monopolization.
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5.1.1 Motivations

The benefits of subsidizing the spectrum to the providers can be described as follows:

• Participation of the providers and coordination between them is important for the

greater good applications in wireless communications. Example applications include

the public safety communication services offered by the commercial service providers.

In summary, subsidizing the spectrum to the providers helps in improving the quality

of service to the users through the providers’ participation.

• Since the spectrum resources are limited, spectrum sharing is important in order to

use the precious spectrum resources efficiently. Subsidization helps to improve the

spectrum sharing among the providers since the government asks the providers to

provide service to the foreign customers.

• The process of subsidizing the spectrum to the providers will ultimately improve users’

experience. Furthermore, the entire process of the subsidization will be seamless to

the users.

• Finally, the government can prevent monopolization in the market by allocating the

subsidy appropriately to the different providers. This helps the small providers to

effectively compete with the existing large providers.

5.1.2 Contributions

In this chapter, we model a subsidization framework using an extensive form game, and show

how to find (perfect) equilibrium solutions for (a simple case of) the game. The players1 in

the game are a finite number of service providers plus a single government player. In the

legacy cellular market, providers do not have any incentive to serve foreign customers, i.e.,

subscribed to another provider. Customers are effectively forced to their home providers

(i.e., the provider they are subscribed to), even if there may be another provider with a

better signal for their location.

1Customers are not formal players in our game as their actions are completely determined by the moves
of the providers and the government.
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In our proposed model, the government incentivizes by offering subsidy to the providers

so that they give service to foreign customers who are outside the coverage of their home

provider or simply in a spot where their home provider’s signal quality is worse than other

providers they are not subscribed to. Yet, the government also expects the providers to share

their spectrum and infrastructure resources with foreign calls. If a provider cannot satisfy

a proof-of-sharing level, it has to return some or all of the subsidy back to the government.

Thus, the providers each aim to maximize their profit from enrolling customers, by efficiently

investing the subsidies received from the government. A customer’s utility depends upon

the level of service obtained from its home provider as well as the service it receives from

foreign providers.

The government’s most important goal in our spectrum subsidization model is to in-

crease the quality of experience the users receive, and thus, to maximize social welfare, here

measured as the sum of the customers’ utilities. In the subsidization framework, we do not

consider the implementation details of collecting the information of the number of foreign

calls served by a provider and accounting of proof-of-sharing in the legacy cellular systems.

We leave this topic for future research.

Initially, with preliminary observations of the game theoretic framework, we provide in-

sights into the effects of subsidization on the service providers and the customers. However,

due to the complexity of the problem, we cannot obtain the equilibrium solutions. For this

reason, we consider a simple, yet insightful case of two providers and two regions. Here, we

find the equilibrium solution through numerical computation of the equilibrium conditions.

Since analytical expressions to the equilibrium solutions could not be derived, the existence

of Nash equilibrium could not be proved analytically. However, we argue that our analysis

implies this existence at least for some particular parameter values. We then present numer-

ical results of the equilibrium solutions by using real BS locations of two providers in two

cities of the United Kingdom (UK). Through these results, we show that the government

can significantly improve the average spectral efficiency of the users by providing subsidy to

the providers. We further show that the government can avoid monopolization by a single

provider by allocating higher subsidy to the other small scale providers.
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Figure 5.1: Model for a subsidized spectrum market. In this model, government allocates
subsidy ξp to provider p, which in return can utilize a portion spr of it to improve the
service quality (which is captured by ψpr) in region r. Provider p charges fee fp to each of
its customers and as a result collects a revenue Rpr from region r.

5.2 A Spectrum Market with Subsidy

Even though there are several works in the literature on the role of government in market

formations [132,133], the government’s regulatory role in the radio spectrum market has not

been explored well within a game-theoretic framework. Here, we model the government’s

use of subsidies as a way to motivate the service providers to offer better service to the

users in roaming, which the providers would not be likely to do on their own.

We propose a spectrum market model with three types of agents as shown in Figure 5.1:

customers, providers, and a single government player. A list of all the notations used in our

model appears in Table 5.1. The customers are essentially the end-user devices that will

ultimately engage in localized spectrum sharing markets. Let C = {1, ..., NC} be the set of

wireless customers. These customers are spread out over a set of regions R = {1, ..., NR}.

We assume there are nr customers in region r ∈ R. If rc is the region in which customer

c ∈ C is located, we call rc his home region. Each customer c makes βc calls in his home

region (over the time period associated with the game); for simplicity we assume βc is equal
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to a constant β for all c. In addition, we assume customers each make α calls outside their

home region. To choose its main service provider, customer c takes as given the intensity

of service/signal ψprc offered by each provider p in region rc, as well as the fixed fee fp that

each p charges for service over the service period. This is done probabilistically as described

below.

The set of all providers is denoted by P = {1, ..., NP}. Providers operate in all regions.

The government gives each provider an allotment of bandwidth and of monetary subsidy,

which they, in turn, allocate for their own use in each of the NR regions. The amount

of bandwidth and money spent in each region determines the intensity of service offered,

which in turn helps determine who wins customer subscriptions. An important feature of

this model is that the government motivates the providers to give service to customers who

are outside of their home region (i.e., roaming) or simply far away from the base stations

of their home providers. For such customers, foreign providers might be able to provide

a higher intensity signal than the customers’ home providers. The government aims to

motivate providers by reducing their subsidies if they do not serve enough customers who

are away from their home regions.

We propose a two-stage, extensive form noncooperative game [134] in which the gov-

ernment moves first, followed by the providers (all simultaneously). Mathematically, we

would like to solve for a perfect Nash equilibrium in the game as follows: a) Knowing what

the customers will do as a function of {ψprc}c,p and {fp}NP
p=1, we can solve for the optimal

strategy for the providers; b) Knowing how the providers/customers behave, we can solve

the governments problem, which would be to maximize social welfare – which in this case

would be the total of customers’ utility from consuming the wireless spectrum.

In the rest of this section, first, the utility that a customer c can obtain by choosing a

provider p ∈ {1, 2, ..., Np} will be formulated in Section 5.2.1. Subsequently, in Section 5.2.2,

provider p’s problem will be formulated in which the objective is to maximize the profit of

provider p. Section 5.2.3 defines the objective function for the government, which aims to

maximize the social welfare by maximizing the customers’ total utility. Finally, some key

observations and discussions are presented in Section 5.2.4.
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Table 5.1: Notations and Symbols

Symbol Description

NC Total number of customers

NP Total number of providers

NR Total number of regions

nr Number of customers in region r

β Number of home calls made by each customer

α Number of outside calls made by each customer

rc The region where customer c is located

fp The fee charged by provider p to its customers

ψpr The intensity/quality of provider p’s signal in region r

Q(.) An increasing concave function used to calculate ψpr – parameterized with
the investment, spr, and/or bandwidth, bpr, in a region

u(.) Customers’ utility function – parameterized with received signal intensity
ψpr

Uc(p, r) The utility obtained by choosing provider p in region r

Pp(r) The probability that provider p is chosen in region r

Ep Cash on hand for provider p, before obtaining any subsidy

epr A portion of Ep that provider p invests in region r

ξp Subsidy amount provider p receives from the government

ξ Total subsidy budget of the government

Rpr Provider p’s revenue collected from region r

spr A portion of the investment amount Ep + ξp provider p designates/spends
in region r

Np
oc Number of outside calls provider p serves

T (·) Penalty function determining the proportion of the subsidy to be returned
to the government – parameterized with Np

oc

δ Per-outside-call reward to the provider from the government

γ Scaling factor in the customer utility function

5.2.1 Customer c’s Problem

We formulate the customer’s problem based on the value for money that a customer obtains

from a provider. Each customer c has the same increasing concave utility function u for

intensity of wireless service, expressed in units of money per call. Thus

Uc(p, rc) = βu(ψprc)− fp (5.1)

measures the utility a customer would get from local calls in its home region rc, if the

customer chose provider p as its home provider. The customer then chooses provider p
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(p = 1, ..., NP) with probability

Pp(rc) =
Uc(p, rc)∑NP

p′=1 Uc(p′, rc)
. (5.2)

This probabilistic assignment of contracts (prizes) to providers (contestants) based on

resources offered is taken from Contest Theory, and arises in many applications (see,

e.g., [135,136], or the excellent survey paper of [137]). Thus, we emphasize that customers

do not necessarily choose the provider who offers the highest Uc(p, rc); such providers are

only more likely to be chosen. The reason for this is that while Uc(p, rc) captures two impor-

tant variables in what determines a customer’s choice of service (the providers’ fee structure

and intensity of service), it doesn’t capture other things: customers’ lack of knowledge of

all potential carriers and what they offer, their lack of rationality, their brand name loyalty,

etc. Thus, while we would expect providers offering better fees/intensity to attract more

customers, we would not expect them to attract all customers.

We note that customers choose the providers based only upon offered service in their

home regions, because their outside calls will always be covered (at no extra cost to them)

as a result of the government’s subsidization scheme.

5.2.2 Provider p’s Problem

The goal of the providers is to maximize their own profits by optimizing their investments

into the different regions by considering the factors such as the number of customers in

each region and their calling patterns, the amount of fee charged to the customers, and the

competition from the other providers, etc. Provider p has at its disposal a total amount

of cash Ep + ξp, where Ep is the amount of cash on hand at the beginning of the game,

and ξp is the amount of subsidy it receives from the government. They also are allocated

bandwidth Bp from the government. Their problem is to allocate these resources among

the regions, designating spr + epr to spend in region r and bandwidth bpr to use in region
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r, r = 1, ..., NR. The intensity of service that it offers in region r is then

ψpr = Q(spr + epr, bpr), (5.3)

where Q is an exogenously given function (increasing and concave). In other words, the

service intensity monotonically increases with the cash invested by the provider, as well

as the utilized bandwidth. The average spectral efficiency that a user experiences from

provider p in region r can be used as a measure for the service intensity ψpr, which will be

shown in Section 5.5.2. Provider p also sets the fee fp which all of its contracted customers

in all regions must pay.

From the description of the customers’ problem above, we see that provider p will capture

nrPp(r) of the customers in region r, for a revenue of

Rpr = fpnrPp(r), (5.4)

where Pp(r) is defined in (2). Then their total revenue (across all regions) is
∑NR

r=1Rpr.

Next, we note that the customers from region r̂ make αnr̂ calls outside of their home

region. We assume

nr̂r =
nr∑
r′ 6=r̂ nr′

αnr̂ (5.5)

of these occur in region r (r 6= r̂). Thus the foreign calls that customers make outside

their home region are allocated across regions proportionally according to the populations

of those regions.

The nr̂r calls from (5) are allocated probabilistically to the providers, according to the

intensity levels offered by the providers in region r. Hence nr̂r
u(ψpr)∑NP

p′=1
u(ψp′r)

of those calls are

served by provider p. However, in order to be truly considered a outside call for provider

p, we must take into account that Pp(r̂) of these calls (see (2)) are actually p’s customers

already, from region r̂. We should not count these in the calculation of the number of

foreign calls for p, so the true number of outside calls for provider p made by customers

from region r̂ traveling in region r is nr̂r
u(ψpr)∑NP

p′=1
u(ψp′r)

multiplied by 1− Pp(r̂). This in turns
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means that the total number of outside calls that provider p serves is then

Np
oc =

NR∑
r=1

∑
r̂ 6=r

nr̂r
u(ψpr)∑NP

p′=1 u(ψp′r)
(1− Pp(r̂)). (5.6)

The provider is then assessed a penalty according to this number – the lower the quantity

Np
oc is, the higher the penalty. The penalty is expressed as a proportion of subsidy lost, and

is incurred after the market. So, assuming this penalty function is denoted T (·), we can

write down an optimization problem for provider p:

max
{spr},{bpr},fp

NR∑
r=1

Rpr+(1− T (Np
oc))ξp −

NR∑
r=1

(spr+epr) (5.7)

such that,

NR∑
r=1

spr ≤ξp, (5.8)

NR∑
r=1

bpr =Bp, (5.9)

ψpr =Q(spr + epr, bpr), (5.10)

spr, bpr, fp ≥0, ∀ p, r, (5.11)

where the first term in the maximization is the total revenue, the second term is the leftover

subsidy money after the penalty is deducted due to fewer-than-required sharing of the

provider’s spectrum, and the last term is the total amount of expenses the provider uses

from the subsidy it received from the government.

5.2.3 Government’s Problem

The goal of the government is to maximize social welfare, here defined as the customers’

total utility from wireless service. The government’s decision variables are ξp and Bp,

p = 1, ..., NP. It also can designate the function T (·) described above. The objective
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function of the government can expressed as

max
{ξp,Bp}

NP
p=1

NC∑
c=1

βu(ψp(c)rc) +

NP∑
p=1

NR∑
r=1

∑
r̂ 6=r

u(ψpr)(1− Pp(r̂))∑NP
p′=1 u(ψp′r)

nr̂r u(ψpr)

 (5.12)

s.t.,

NP∑
p=1

Bp = B, (5.13)

NP∑
p=1

ξp ≤ ξ, (5.14)

Bp, ξp ≥ 0 ∀p. (5.15)

Here, the first term in the objective function is the utility that customers acquire in their

home regions, while the second term is from calls in outside regions. The notation p(c) is

the home provider to which customer c is assigned. The quantities B and ξ represent the

total amounts of bandwidth and subsidy that the government has at its disposal to allocate.

Note: The objective function could include a term negatively correlated to
∑NP

p=1 ξp, if one

wishes to argue that government spending is a negative. We do not include such a term in

our model.

5.2.4 Observations and Discussion

The model we have just outlined provides a good framework to consider the viability of

subsidizing spectrum to providers in return for increased spectrum sharing. The providers

constitute a key player to scrutinize in such a spectrum market model. Ultimately, the goal

of this market model is to motivate the providers to share their spectrum among each other

to attain the larger good of serving more customers with better quality access links.

Provider p’s problem (5.7) offers several insights. The first term in (5.7) are the fees

provider p collects from its home customers, who are subscribed to provider p. Provider p

has to serve these customers by default. But when these customers travel to other regions,

they may be able to find another provider that offers a better quality signal at that location.

In that case, those customers would be considered as making an outside call, and thus

contributing to the sharing of the spectrum among the providers.
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The second term in (5.7) describes the amount of subsidy money left to provider p.

This leftover amount is dependent on the subsidy amount, ξp, given by the government to

provider p, and more importantly, the number of outside calls, Np
oc, served by provider p

during the subsidy term. If Np
oc is not large enough, provider p may have to return all of

the subsidy back to the government. At the other extreme, provider p may keep all of the

subsidy amount, ξp, if it did serve sufficient number of foreign customers.

The third term in (5.7) quantifies the sum of investments provider p makes from its

subsidy. Provider p can choose which regions to invest more. It can further decide whether

to spend all of the subsidy it received, ξp, from the government. In this model, the provider

takes some risk by spending the subsidy money. It needs to wisely decide on which regions

to invest. The ideal situation for the provider is to invest into those regions in which more

outside calls become possible to serve. This will motivate the providers to invest into more

congested areas and thus serve the larger goal of improving user-perceived link quality.

Remark 1: Providers cannot be hurt by the subsidization option.

A provider (say p) does not have to take the subsidization option if it will not generate

any profits. If p does not participate in the subsidization plan, then the government cannot

penalize it for not serving the required number of outside calls and therefore the revenue

generated from the provider’s own investment Ep will remain intact.

Remark 2: Providers can easily be motivated into a subsidized market.

The government can offer a large ξp and a conservative (i.e., not heavily penalizing) penalty

function to attract the providers into the subsidization option. Since, from Remark 1, there

is really not much of risk from the subsidization option, the tipping point for providers

to sign into subsidization contracts will not be high. A relatively high ξp will promise a

positive return from the subsidization.

Remark 3: Providers will be motivated to invest in a non-overlapping manner and collec-

tively cover a larger area.

The number of outside calls Np
oc in (5.7) depends on the amount of overlap between the

network coverage areas of different providers. Operators, by not duplicating their infras-
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tructure in the same areas, can minimize their investment cost spr, while at the same time

minimizing the penalty cost (1 − T (Np
oc))ξp charged by the government in (5.7), yielding

high revenues. This observation agrees with the conclusions in [77], in which the anal-

ysis suggests that minimization of the duplication of network infrastructure by different

providers yields higher provider revenues.

Remark 4: As the ratio α
β increases, subsidization will be more beneficial, particularly to

those providers smaller in size.

Suppose α increases (and β remains the same, so that the ratio α
β increases). Then from

(5) and (6), it follows that Np
oc will also increase. This will in turn increase the contribution

of the second term in (5.7) to provider p’s revenue. An interesting situation happens for

smaller providers. Small providers serve small regions, so their customers are more apt to

leave their home regions. Hence they make relatively more outside calls than home calls.

Therefore, the contribution of the second and third term of (5.7) into their revenue total

will be more than the first term’s contribution for small providers.

Remark 5: Small providers will be more able to compete with large providers as the ratio

α
β increases.

This follows from Remark 4. A new note to make here is that small providers with smaller

infrastructure will be able to compete against providers with large infrastructure as long as

α is relatively more than β. They will be able to do so by swiftly investing into congested

spots where larger providers cannot reach well.

Remark 6: Monopolization will be avoided as long as the ratio α
β is high.

This follows from Remark 4 and Remark 5. As we’ve seen, under this scenario smaller

providers have the advantage. Thus, there will be no incentive to monopolize.

5.3 Perfect Nash Equilibrium

As stated previously, our game is one where the government moves first followed by the

providers. This makes sense intuitively, as it is natural that the government defines the

rules and private companies then react to them. The government strategy is to set the
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subsidy amounts ξp and the bandwidths Bp granted to each provider p. After this, each

provider simultaneously tries to maximize its utility by optimizing its strategic variables:

subsidy amounts spent in each region spr, bandwidth allocated in each region bpr and fee

charged to customers fp. The optimization method to compute the equilibrium solutions

of the providers’ problems is illustrated in Figure 5.2 by assuming two providers and two

regions for simplicity. Game theoretically, the game tree has two types of subtree: the whole

game itself, and also any subtree occurring after the government makes its initial move.

In game theory, a Nash equilibrium is a set of strategies, one for each player, with the

property that: given the other players stick to their assigned strategies, no player can gain

by unilaterally deviating from their own strategy. A perfect Nash equilibrium [138] is a

special type of Nash equilibrium which has this property not only with regard to the whole

game, but also if restricted (in the natural way) to any subtree of the game.

In our game, a strategy for the government can be represented as g = {ξp, Bp}p∈P .

Denote the set of all such strategies by G. Next, a strategy for provider p ∈ P can be

represented by ap(g) = {spr(g), bpr(g), fp(g)}r∈R. Note that the strategies for the providers

have g as an argument, as the providers move after the government and so can base their

moves according to what the government does. Finally, denote the strategies of all the

providers collectively by the vector a(g) = {ap(g)}p∈P .

Given the above notations, the definition of perfect Nash equilibrium reduces to the

following.

Definition 1. A set of strategies {a∗, g∗} constitutes a perfect Nash equilibrium of this

game, if and only if, it satisfies the following set of inequalities:

Up
(
a∗p(g),a∗−p(g), g

)
≥ Up

(
ap(g),a∗−p(g), g

)
, ∀ap, p ∈ P, and g ∈ G

and UG (g∗,a∗(g∗)) ≥ UG (g,a∗(g)) ∀g ∈ G, (5.16)

where, a∗−p = {ai}i∈P,i 6=p, is the vector of strategies of all the providers other than p. The

function Up is the provider p’s utility given by the expression in maximization problem of
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Optimize Provider 1’s problem 

 𝑠11
∗  𝑠12

∗  𝑓1
∗ =  arg max

𝑠11,𝑠12,𝑓1
𝑔1 𝑠𝑝𝑟, 𝑓𝑝, 𝑒𝑝𝑟, 𝜉𝑝  

Start 

Optimize Provider 2’s problem 

 𝑠21
∗  𝑠22

∗  𝑓2
∗ =  arg max

𝑠21,𝑠22,𝑓2
𝑔2 𝑠𝑝𝑟, 𝑓𝑝, 𝑒𝑝𝑟, 𝜉𝑝  
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∗  

Providers’ strategies: 𝑒𝑝𝑟 →  𝑒11 𝑒12 𝑒21 𝑒22  

𝑠𝑝𝑟 →  𝑠11 𝑠12 𝑠21 𝑠22 =  0 0 0 0  

𝑓𝑝 →  𝑓1 𝑓2 =  0 0  

 𝑠21 𝑠22 𝑓2 =  𝑠21
∗  𝑠22

∗  𝑓2
∗  

Stop 

Optimized values 

 𝑠11
∗  𝑠12

∗  𝑠21
∗  𝑠22

∗  𝑓1
∗ 𝑓2

∗  

Nash equilibrium 

 𝑠11 𝑠12 𝑠21 𝑠22 𝑓1 𝑓2  is 

same as previous 

iteration? 

No 

Yes 

Government’s strategy: 𝜉𝑝 →  𝜉1 𝜉2  

Figure 5.2: Flowchart of the iterative optimization method for finding optimized values of
the subsidy amounts to be spent by the providers in different regions, and the optimum fee
to be charged by the providers to the customers.
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(5.7). The function UG is the government’s utility given by the expression in maximization

problem of (5.12).

In general, for our game the conditions (16) are too difficult to solve analytically, or

even computationally. To gain insights, we consider a simplified form of the game in which

a) there are only two regions and two providers; b) the bandwidth variable is taken out of

the model; and c) there is a linear penalty function. Assuming particular parameter values,

we can computationally solve for the providers’ equilibrium strategies as a function of g;

from this we argue that a perfect Nash equilibrium must exist (Section 5.5.3).

5.4 A Simplified Spectrum Market

In this section, we simplify the market model in Section 5.2, in order to have tractable

expressions that can facilitate numerical evaluations. In particular, we make the following

assumptions:

• We assume a linear penalty function T (Np
oc) in (5.7), for which T (0) = 1 (if a provider

serves no foreign customers, it loses all of its subsidy). It implies that the (1 −

T (Np
oc))ξp term in (7) can be recast as a reward function δNp

oc, where δ is a per-

outside-call reward that the government gives to providers.

• We eliminate the explicit handling of bandwidth in (5.3) and assume that it is implicit

in the intensity function that expresses the received signal quality on an access link.

Hence, (5.3) reduces to ψpr = Q(spr + epr).

• We assume a concave (square root) utility function u in (5.1), and linear signal quality

function Q.

• We then consider a particular case with two-regions and two-providers to analyze the

providers’ part of the equilibrium solution (subsidy s∗pr and fee f∗p ), as a function of

the government’s strategy ξ.

These assumptions will be described in further detail in the following subsections.
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5.4.1 A Linear Penalty Function

The linear penalty function described above is illustrated in Figure 5.3(a) which is a linearly

decreasing function of Np
oc. If provider p serves a minimum of Np

oc,th number of outside

calls, then the penalty to the provider will be zero. On the other hand, the reward function

𝑁oc,th
𝑝

T 𝑁oc
𝑝

1

0 𝑁oc
𝑝

(a) Penalty function

𝑁oc,th
𝑝

𝑁oc
𝑝

𝛿𝑁oc
𝑝

𝜉𝑗

0

(b) Reward function

Figure 5.3: Illustration of penalty and reward functions.

illustrated in Figure 5.3(b) is an increasing function of Np
oc. If provider p serves a minimum

of Np
oc,th number of outside calls, then it would receive complete subsidy amount ξp, which is

equivalent to zero penalty. Here, the slope of reward function is the per-outside-call reward

δ that is specified by the government. Based on the available budget ξ and the expected

number of outside calls αNC, government can determine the per-outside-call reward as

δ =
ξ

αNC
=

∑NP
p=1 ξp

α
∑NR

r=1 nr
. (5.17)

Then, provider p has to serve Np
oc,th = ξp/δ number of outside calls to receive the maximum

reward ξp.

5.4.2 Bandwidth Implicit in the Intensity Function

As stated earlier, we assume ψpr = Q(spr + epr) as a simplified version of (5.3). Using this,

the linear form for the penalty function, and the expressions (5.2)–(5.6) and (5.17), we may
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rewrite provider p’s problem in (5.7) as follows:

max
sp1,sp2,...,spNR

,fp

NR∑
r=1

fpnr
(
βu(Q(spr + epr))− fp

)∑NP
p′=1 βu(Q(sp′r + ep′r))− fp′

−
NR∑
r=1

(spr + epr)

+
ξ

NC

NR∑
r=1

∑
r̂ 6=r

nr̂ nr∑
r′ 6=r̂ nr′

u(Q(spr + epr))∑NP
p′=1 u(Q(sp′r + ep′r))

×
(

1− βu(Q(spr̂ + epr̂))− fp∑NP
p′=1 βu(Q(sp′r̂ + sp′r̂))− fp′

)

(5.18)

s.t.,

NR∑
r=1

spr ≤ ξp, (5.19)

spr ≥ 0, r = 1...NR, (5.20)

fp ≥ 0. (5.21)

Here, it is worthwhile to note that (5.18) is independent of the parameter α due to the use

of linear penalty function and the assumption that each customer makes same number of

outside calls (i.e., α).

5.4.3 Further Simplifying Assumptions

We further make the following simplifying assumptions for our market:

• Concave customer utility function of the form: u(x) = γ
√
x, where γ � 1 is a scaling

factor.

• A linear signal quality function: ψpr = Q(spr) = mpr(spr + epr).

In general, a concave (square-root) utility in the first assumption is considered realistic

enough to capture the diminishing returns behavior of received quality. The second as-

sumption on linear signal quality function may be considered optimistic, since the signal

quality will also behave in a diminishing returns manner as the investment on the infrastruc-

ture increases. However, since Q(·) always feeds into u(·) in our formulation, the u(Q(·))

will still behave according to diminishing returns.
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5.4.4 Two Regions and Two Providers

To make our model more understandable, we now rewrite the providers’ problems in (5.18)-

(5.21) for the case with two providers and two regions. All of the assumptions in Sec-

tions 5.4.1 through 5.4.3 are incorporated in the following formulations.

5.4.4.1 Provider 1’s Problem

By applying the aforementioned simplifying assumptions into (5.18), the objective function

of provider 1 can be expressed as:

max
s11,s12,f1

f1n1
U11

U11 + U21
+ f1n2

U12

U12 + U22
+
ξn1

NC

√
ψ12√

ψ12 +
√
ψ22

U21

U11 + U21

+
ξn2

NC

√
ψ11√

ψ11 +
√
ψ21

U22

U12 + U22
− s11 − s12, (5.22)

s. t., s11 + s12 ≤ ξ1, (5.23)

s11, s12, f1 ≥ 0, (5.24)

where Upr = γβ
√
mpr(spr + epr) − fp. In order to find the solutions s∗11, s

∗
12 and f∗1 which

maximize the provider 1’s problem in (5.22), we take the first-order conditions for the system

(5.22)–(5.24) as follows:

w.r.t. f1:

n1(U11 − f1)(U11 + U21) + f1n1U11

(U11 + U21)2
+
n2(U12 − f1)(U22 + U12) + f1n2U12

(U22 + U12)2

+
ξn1

NC

√
ψ12√

ψ12 +
√
ψ22

U21

(U11 + U21)2
+
ξn2

NC

√
ψ11√

ψ11 +
√
ψ21

U22

(U12 + U22)2
= 0, (5.25)

w.r.t. s11:

βn1γm11U21

2
√
ψ11 (U11 + U21)2

(
f1 −

ξ

NC

√
ψ12√

ψ12 +
√
ψ22

)
+

n2ξm11
√
ψ21

2NC

(√
ψ21 +

√
ψ11

)2√
ψ11

U22

U12 + U22

− 1− λ1 = 0, (5.26)
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w.r.t. s12:

βn2γm12U22

2
√
ψ12 (U12 + U22)2

(
f1 −

ξ

NC

√
ψ11√

ψ11 +
√
ψ21

)
+

n1ξm12
√
ψ22

2NC

(√
ψ12 +

√
ψ22

)2√
ψ12

U21

U11 + U21

− 1− λ1 = 0, (5.27)

and

λ1 ≥ 0, s11 + s12 = ξ1 or λ1 = 0, s11 + s12 ≤ ξ1. (5.28)

Here, λ1 is the Lagrangian multiplier for the constraint (5.23) on the total amount of

subsidization the government offers to providers.

5.4.4.2 Provider 2’s Problem

Similar to provider 1, the objective function of provider 2 can be expressed as

max
s21,s22,f2

f2n1
U21

U11 + U21
+ f2n2

U22

U21 + U22
+
ξn1

NC

√
ψ22√

ψ12 +
√
ψ22

(
U11

U11 + U21

)
+
ξn2

NC

√
ψ21√

ψ11 +
√
ψ21

(
U12

U12 + U22

)
− s21 − s22, (5.29)

s. t., s21 + s22 ≤ ξ2, and s21, s22, f2 ≥ 0. (5.30)

Again similar to Provider 1, Provider 2 will have to optimize w.r.t. s21, s22, and f2. So,

the first-order conditions will be:

w.r.t. f2:

n1(U21 − f2)(U11 + U21) + f2n1U21

(U11 + U21)2
+
n2(U22 − f2)(U12 + U22) + f2n2U22

(U12 + U22)2

+
ξn1

NC

√
ψ22√

ψ12 +
√
ψ22

U11

(U11 + U21)2
+
ξn2

NC

√
ψ21√

ψ11 +
√
ψ21

U12

(U12 + U22)2
= 0, (5.31)
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w.r.t. s21:

βn1γm21U11

2
√
ψ21 (U11 + U21)2

(
f2 −

ξ

NC

√
ψ22√

ψ12 +
√
ψ22

)
+

n2ξm21
√
ψ11

2NC

(√
ψ21 +

√
ψ11

)2√
ψ21

U12

U12 + U22

− 1− λ2 = 0, (5.32)

w.r.t. s22:

βn2γm22U12

2
√
ψ22 (U12 + U22)2

(
f2 −

ξ

NC

√
ψ21√

ψ11 +
√
ψ21

)
+

n1ξm22
√
ψ12

2NC

(√
ψ12 +

√
ψ22

)2√
ψ22

U11

U11 + U21

− 1− λ2 = 0, (5.33)

and

λ2 ≥ 0, s21 + s22 = ξ2 or λ2 = 0, s21 + s22 ≤ ξ2, (5.34)

where λ2 is the Lagrangian multiplier.

5.4.4.3 Government’s Problem

By assuming number of providers Np = 2, number of regions Nr = 2, and eliminating the

explicit handling of bandwidth Bp in the government’s objective function of (5.12), the

government’s problem can be rewritten as

max
ξ1,ξ2

n1βγ

(√
ψ11U11 +

√
ψ21U21

U11 + U21

)
+ n2βγ

(√
ψ12U12 +

√
ψ22U22

U12 + U22

)
+

αγn2√
ψ11 +

√
ψ21

(
ψ21U12 + ψ11U22

U12 + U22

)
+

αγn1√
ψ12 +

√
ψ22

(
ψ22U11 + ψ12U21

U11 + U21

)
(5.35)

s.t., ξ1 + ξ2 ≤ ξ, (5.36)

ξ1, ξ2 ≥ 0. (5.37)
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5.4.5 Optimum Subsidy Amounts (s∗pr) and Optimum Fee (f∗p)

Looking at the formulations of the providers’ problems described in (5.22)–(5.34), it is

clear that the problem in hand is a multi-criteria maximization problem with (5.22) and

(5.29) being the two simultaneous objective functions. The parameters to be optimized

are the fees f1, f2, and the subsidy amounts s11, s12, s21, s22, which are functions of the

input parameters β, n1, n2, ξ1 and ξ2. We wish to solve the eight simultaneous equations

formed by the first order conditions in (5.25)–(5.28) and (5.31)–(5.34). Note that each

parameter to be optimized depends on the other optimization parameters. Due to high

number of unknown variables and the involved complexity while solving these simultaneous

equations (such as solving polynomials of 7th order or higher), it is impractical to derive

the expressions for optimum parameters in closed form. Hence, we numerically solve the

simultaneous equations of (5.25)–(5.28) and (5.31)–(5.34) to obtain the solutions s∗pr and

f∗p .

5.5 Numerical Results

In Section 5.4.4, a simplified model with two providers and two regions was considered in

which the goal was to jointly maximize the two providers’ objective functions (5.22) and

(5.29) by optimizing the subsidy amounts s11, s12, s21 and s22, and the fees f1 and f2. In

this section, we first show the convergence of our simulations for the case of two regions

and two providers. Then, we analyze the characteristics of this model using the numerical

equilibrium solutions.

5.5.1 Simulation Convergence to Equilibrium

Due to complexity of the providers’ problems represented in (5.22) and (5.29), an analytical

proof for the existence of a Nash equilibrium was deemed infeasible. However, our extensive

simulations of the game converged and were based on best response algorithm. Therefore,

we guarantee that the simulations converge to an equilibrium. A two player game based
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Figure 5.4: The convergence to equilibrium using best response algorithm. System param-
eters: ξ1 = 262, ξ2 = 738, β = 76, n1 = 26, n2 = 744, γ = 0.05, ε = 10−3.

on the best response algorithm is designed in Matlab for the case of two providers and two

regions. During each iteration of the algorithm,

1. Provider 1’s parameters s11, s12 and f1 are optimized by solving the simultaneous

equations (5.25)–(5.28);

2. Provider 2’s parameters s21, s22 and f2 are optimized by solving the simultaneous

equations (5.31)–(5.34);

3. The optimized parameters evaluated in the previous two steps are used in (5.22) and

(5.29) to compute the providers’ objective values.

To check for convergence, the evaluated objective values in the current iteration are com-

pared to their respective values in the previous iteration. If the differences are smaller than

a threshold ε, convergence is attained.

The best response simulator described above was run with arbitrary system parameter

settings and the simulator took 93 iterations to converge. Behavior of the optimization
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Table 5.2: Statistics of the number of iterations for convergence.

Iterations Number of occurrences

≤ 15 9141

16-99 388

≥ 100 471

parameters and the provider’s objective functions during the iterations are shown in Fig-

ure 5.4.

The number of iterations required for convergence can vary depending on the input

parameter settings. To obtain the statistics of the number of iterations, the simulator was

run 10,000 times with random system parameters. The system parameters for each iteration

were generated using uniformly distributed random integers: β ∼ U{30, 200}, {n1, n2} ∼

U{20, 1000} and ξ1 ∼ U{50, 950}. The parameter ξ2 was generated using ξ2 = ξ − ξ1 so

that the sum of ξ1 and ξ2 is equal to the subsidy budget ξ of the government.

The resulting distribution of the number of iterations for convergence is described in Ta-

ble 5.2. Most of the simulation runs (91.41% of 10,000) converged within 15 iterations, while

some of the simulation runs (3.88%) took 16 to 99 iterations to converge. The remaining

4.71% of the simulation runs took 100 or more iterations to converge.

5.5.2 Per-user Spectral Efficiency for Signal Quality Function

In this section, the average downlink spectral efficiency (SE) of a typical user will be used

as the signal quality function of the subsidy model. In Section 5.4.3, a linear signal quality

function Q(spr) = mprspr was assumed. In this section, through the system level simulations

of a realistic radio access network, the average per-user SE will be shown to be linearly

proportional to spr + epr. These simulation results will also be used to find the values of

the proportionality constants mpr.

Real BS locations of two providers in two cities of UK: Manchester and Leeds, were

used in the system level simulations [126]. The real BS locations of the two providers are

as shown in Figure 5.5, and the details are provided in Table 5.3. The users’ locations were
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generated using a homogeneous Poisson point process with intensity λu = 20 users/km2.

The following assumptions were made to simulate the average per-user SE:

• Same transmit power 46 dBm for all BSs and every user connects to its nearest BS.

• Users with distance smaller than dmin = 35 m from their respective BSs are discarded.

• Path-loss exponent δ = 4 and Rayleigh fading channel.

• All the users in a cell are served in round-robin fashion.
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Figure 5.5: Real BS locations of 2 providers in the cities of (a) Manchester, and (b) Leeds,
in UK.

Table 5.3: Details of the two regions and the two providers.

Parameter Region 1 (Manchester) Region 2 (Leeds)

Area 1200 km2 225 km2

Provider 1’s No. of BSs
384

(0.32 BSs/km2)
119

(0.53 BSs/km2)

Provider 2’s No. of BSs
228

(0.19 BSs/km2)
92

(0.41 BSs/km2)

The purpose of the system level simulations is to obtain the plots of average per-user

SE from provider p in region r as a function of the subsidy amount spr. Assuming that a

fixed cost cbs = 10 is associated in setting up a BS, the number of BSs that provider p can

setup in region r is given by

Nbs(p, r) =

⌊
spr + epr
cbs

⌋
. (5.38)
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The average per-user SE computed through the simulations are plotted against the number

of BSs in Figure 5.6(a). In each iteration of the simulations, Nbs BSs were randomly selected

in region r from the available set of BSs that are shown in Figure 5.5. For each plot in

Figure 5.6(a), the maximum value for Nbs is set according to the number of BSs shown in

Table 5.3.

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

0.12

Nbs

A
v
er
a
g
e
p
er
-u
se
r
S
E

(b
p
s/
H
z)

 

 

p = 1, r = 1
p = 2, r = 1
p = 1, r = 2
p = 2, r = 2

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

spr + epr

 

 

(a)

(b)

Figure 5.6: Average per-user SE as a function of (a) number of BSs of provider p in region
r, and (b) subsidy amount spent by provider p in region r.

Using the relationship in (5.38) and linear extrapolation of the plots in Figure 5.6(a), the

average per-user SE is plotted in Figure 5.6(b) as a function of spr + epr, the total amount

invested by provider p in region r. It can be seen in Figs. 5.6(a) and 5.6(b) that the average

per-user SE is linearly proportional to Nbs and to spr+epr. The plots for r = 2 have greater

slopes than the plots for r = 1 because region 2 has higher BS density than region 1 as shown

in Table 5.3. Using the curve fitting tool in Matlab, the linear proportionality constant of

the plots were computed as m11 = 1.696× 10−5, m12 = 8.862× 10−5, m21 = 1.712× 10−5,

and m22 = 8.673×10−5, which will be used in the signal quality function of the subsidization

model.
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Table 5.4: Simulation parameters for subsidization model.

Parameter value

α 30

β 20

n1, n2 24000, 4500

e11, e12, e21, e22 3840, 1190, 2280, 920

ξ 1000

γ 0.1

5.5.3 Numerical Optimization Results

The simulation parameters for the subsidization model are shown in Table 5.4. Here, the

number of customers nr in a region was calculated based on the region area shown in

Table 5.3, and assuming a user density λu = 20 users/km2. The real BSs shown in Figure 5.5

are assumed to be setup by the providers with their own investments epr. A provider’s own

investment epr in a region was calculated based on the number of BSs in the region, and

with an assumption that the cost for setting up a BS is cbs = 10.
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Figure 5.7: Optimum subsidy amounts spent by the providers and Optimum fee charged
by the providers to each customer.

89



The government splits the available subsidy budget ξ between the two providers as ξ1

and ξ2. The optimum parameters s∗pr and f∗p are plotted as a function ξ1 and ξ2 in Figure 5.7

which were obtained by simultaneously solving the equations (5.25)-(5.28) and (5.31)-(5.34).

It can be observed in Figure 5.7(a) that s∗12 = s∗22 = 0, which implies that both the providers

do not invest their subsidy amounts in region 2. This is because the BS density in region 2

is higher than in region 1 as shown in Table 5.3. Therefore, both the providers invest their

entire subsidy amounts in region 1 as shown in Figure 5.7(a), s∗11 = ξ1 and s∗21 = ξ2, to

increase the BS density in region 1. The optimum fee f∗p of a provider increases with the

increasing subsidy amount from the government to that provider. However, since provider

1’s BS density is higher than provider 2’s BS density, f∗1 is greater than f∗2 .

Existence of Perfect Nash Equilibrium In our simplified game in Section 5.4.4, we

now argue that the previous results imply the existence of a perfect Nash equilibrium (see

Section 5.3). In the numerical results of Figure 5.7, the optimal strategies s∗pr and f∗p

appear to be continuous functions of ξ1 and ξ2. Hence the government’s objective function

from Section 5.4.4 would be a continuous function of ξ. Since that problem has a compact

domain, a basic theorem from analysis [139, Theorem 7, p. 142] guarantees the existence

of an optimum ξ∗. This ξ∗ would then be the government’s part of the perfect Nash

equilibrium.

The optimum objective functions of the providers and the optimum social welfare are

plotted in Figs. 5.8(a) and 5.8(b), respectively. The variation in ξ1 and ξ2 has considerable

impact on the providers’ objective functions, while not much effect on the social welfare.

The social welfare maximizes when ξ2 = 1000 and ξ1 = 0 because provider 2 has smaller

BS density as shown in Table 5.3. providing more subsidy to provider 2 increases the

competition between the two providers and eventually increases the social welfare.

Optimum allocation of the government’s subsidy budget ξ between the two providers

that maximizes the social welfare is plotted in Figure 5.9 as a function of ξ. For smaller

government subsidy budget, allocating the entire subsidy to provider 2 maximizes the social

welfare as explained in previous paragraph. However, for higher subsidy budget (>7700 in
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Figure 5.8: Optimum objective functions of the providers and optimum social welfare.

Figure 5.9), allocating the entire subsidy to provider 2 will over-benefit the provider 2 and

hence splitting the subsidy proportionally between the providers will maximize the social

welfare. The splitting proportion ξ∗1/ξ
∗
2 is about 0.6 because the ratio between the total

number of BSs of the two providers is about 0.6.

The social welfare and per-user SE are plotted as a function of government’s subsidy

budget in Figure 5.10. It shows that the social welfare and the per-user SE can be increased

significantly through subsidization from the government. With a government’s subsidy

budget of ξ = 15000, the average per-user SE can be increased by 155%. Figure 5.10

also shows the social welfare and per-user SE plots for 3 different proportions of splitting

between the providers. It can be seen that these plots match closely with the optimum

plots. Therefore, no matter how the government allocates the subsidy to the providers, the

users receive close-to-optimum service via subsidization.
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CHAPTER VI

Device-to-Device Communication and Multi-Hop Transmissions

In wireless networks, mobile nodes with limited power budget must rely on multi-hop trans-

missions so as to achieve reliable communication with a distant peer device. Hence, it is of

paramount importance to study the characteristics of wireless transmission over multi-hop

links and its benefits over single-hop communication. In this work, a simulator is developed

to assess the BER performance of multi-hop, multi-carrier communication systems. The

channel model used in the simulator is developed based on the channel statistics obtained

through indoor channel measurements performed using the universal software radio periph-

erals (USRPs). As the bandwidth supported by a USRP device is much smaller than the

channel bandwidth of interest, we use a frequency domain approach to measure the impulse

response of wide band channel. By using the channel measurements, we show the impact

of communication distance on the delay spread and coherence bandwidth of the channel.

Our simulation results with orthogonal frequency division multiplexing (OFDM) systems

show that the BER performance of multi-hop communication is better than the single-hop

communication. The BER performance difference between the two cases becomes more

significant for wider subcarrier frequency spacing.

The goals of this chapter are: 1) to develop a frequency domain wide band channel esti-

mation method using the universal software radio peripheral (USRP) platform that supports

smaller bandwidths (20 MHz) when compared to the channel bandwidth of interest, 2) to

perform channel measurements with different distances between the transmitter and the

receiver, and determine channel statistics such as path-loss, mean excess delay, root mean

square (RMS) delay spread, and coherence bandwidth, 3) to build an empirical channel

model as a function of distance by using the measured channel statistics, and 4) to incor-

porate the developed channel model into the multi-hop simulation model for evaluating the

BER performance of multi-carrier systems. In the multi-hop simulation model, two devices

separated by a distance d communicate with each other in single-hop and two-hop scenarios.
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Using OFDM, the resulting average BERs with single and two-hop cases are compared for

different distances and subcarrier frequency spacings.

6.1 Channel Sounding Method with USRPs

Two USRP devices from National Instruments [140] are used in the setup as shown in Fig-

ure 6.1. Each USRP is controlled by a host PC and the transmitter and receiver operations

are developed using Labview software. A transmitted signal is attenuated, delayed, phase

shifted, and gets corrupted with noise as it travels through the channel. The signal received

by the RX USRP exhibits fading effects due to multi-path propagation.

Figure 6.1: System setup for channel measurements.

6.1.1 Channel Sounding Approach

Channel sounding is done by transmitting N narrow-band sinusoidal signals that are regu-

larly spaced (∆f) in the frequency domain as illustrated in Figure 6.2. Since the bandwidth

of USRP is smaller than the channel bandwidth, the carrier frequency fci is swept across

the channel bandwidth in N discrete steps, i = 1, 2, .., N . At each frequency step, a com-

plex DC base-band signal frame consisting of 1000 samples is sent to the USRP. The USRP

upconverts the DC signal to the carrier frequency fci.

The receiver initially sets the carrier frequency to fC1 and after receiving each frame,

increments the carrier frequency by ∆f . In this way, the carrier frequency sweep process

at the receiver is synchronized with the transmitter. At each frequency step, beginning of

the signal frame is identified via threshold detection of the received signal power. When a

frame is detected and captured, it is downconverted to the base-band and sent to the host
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Figure 6.2: Aggregated spectrum of all the sinusoidal signals.

PC. Carrier frequency offset and phase offset corrections are performed at the host PC to

obtain the complex DC signal whose magnitude and phase represents the channel response

at frequency fci.

6.1.2 Synchronization, Sweep Rate, and Calibration

At the receiver USRP, robust algorithms should be used to track the transmitter carrier

frequency during the frequency sweep process as the transmitter and receiver USRPs use

different timing references. We used power threshold detection method at the receiver’s

host computer to detect the signal. For longer distances between the transmitter and the

receiver, dynamic range of the received power increases over the frequency band and the

signal power may not be detected at some frequencies due to deep fades. In those cases,

synchronization using the timing reference at the hardware level is reliable than using the

host computer. Therefore, programming the FPGA in USRP to periodically change the

carrier frequency can improve the sweep rate significantly. This method along with the

power threshold detection of signal can improve the synchronization.

The transmitter power and receiver gain of the USRPs vary with the carrier frequency

and are not calibrated. It is necessary to know these values to accurately estimate the

amplitudes of received impulse response and for path-loss calculations. We used the Mixed

Domain Oscilloscope to find the USRP transmit power and USRP receiver gain in the

frequency band of interest.
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6.1.3 Extracting Multipath Channel Parameters

After capturing all the frames in a sweep, the magnitude and phase values at all the fre-

quencies are aggregated to form the frequency response of the channel. Then, computing

the inverse fast Fourier transform (IFFT) will provide the CIR h[n] = h(nTs), where Ts =

1/(N∆f) is the sample period and n is the discrete time index. With K CIR measurements,

the average power delay profile (PDP) can be obtained by, PDP [n] = 1
K

∑K
k=1 |hk[n]|2. The

mean excess delay and RMS delay spread can be respectively evaluated as

τ =

∑
∀n
n Ts PDP [n]∑
∀n
PDP [n]

, τ rms =

√
τ2 − (τ)2, (6.1)

where

τ2 =

∑
∀n

(n Ts)
2 PDP [n]∑

∀n
PDP [n]

. (6.2)

Using the RMS delay spread, channel coherence bandwidth can be approximated as Bc ≈

1/(5 τrms) [141].

6.2 Channel Propagation Modeling

The impact of large scale propagation effects on the received signal are captured by path

loss (PL) and shadowing models, while the small scale propagation effects are captured by

channel impulse response model.

6.2.1 Path loss and shadowing models

We model the average PL at a distance d from the transmitter as,

PLdB(d) = PLdB(d0) + α 10 log10(d/d0), (6.3)
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where, α is the path-loss exponent and PLdB(d0) is the PL at a reference distance d0 = 1 m

from the transmitter. Using the curve fitting tool in Matlab, we find the value of α that

provides a best fit of (6.3) to the measured average PL values. The measured average PL

values with respect to d0 can be obtained using

PL
meas
dB (d) = PL

meas
dB (d0) + 10 log10

(
Erx0

Erx(d)

)
, (6.4)

where, Erx(d) and Erx0 are the total energies received from all the multi path components

(MPCs) at distances d and d0, respectively. These energies can be determined using the

measured PDPs as Erx(d) =
∑
∀n PDP [n].

Shadow fading is modeled using a log-normally distributed variable with zero mean and

standard deviation σ. We denote this variable in decibel scale as Xσ ∼ N (0, σ). The σ is

assumed to be independent of d and its value can be found by fitting the Gaussian PDF to

the histogram of the measured samples.

6.2.2 Channel impulse response model

Theoretically, the CIR h(t) is composed of an infinite number of MPC arrivals, which can

be expressed by

h(τ) =
∞∑
i=1

aie
jφiδ(τ − τi), (6.5)

where, τi denotes the delay of the ith arrival in propagation between the transmitter and

the receiver. The ai and φi ∼ U [0, 2π] [142] represent, respectively, the amplitude and

phase shift of the ith arrival. It is possible to completely determine the PDP by a set

of samples spaced by ∆τ = 1/W , where W is the bandwidth of the channel [143] (i.e.,

τk = k/W, k = 0, 1, 2, . . .). Each sample in the set is the power of all MPCs arrived during

the delay bin ∆τ . Then, the PDP can be expressed as,

p̃(τ) =
∞∑
k=1

p̃kδ(τ − τk), (6.6)
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where, p̃k is the power contained in the kth bin. The total energy in the PDP of (6.6) is

normalized such that
∑∞

k=1 p̃k = 1. With this approach, pk (in dB) for LOS case can be

given as [144]

pk =


C k = 0,

Q+ r − β τk
τrms

+ sk k > 0,

(6.7)

where, Q is the normalizing factor that makes the sum of all p̃k’s equals to unity, r is

the difference between the power of second MPC and the power of first MPC which can be

modeled as a Gaussian distribution with mean µr and variance σr, and β is the power decay

coefficient of the MPCs in the PDP. The RMS delay spread τ rms is used as a normalizing

factor, so that β is dimensionless. The variable sk accounts for the random variations in

PDP which can be modeled as a Gaussian distribution with zero mean and variance σs.

The random variable C is the power of the first MPC in PDP that can be modeled as

C = C0 − γc log10(d) + εc, (6.8)

where, C0 is the average power of the first MPC at the reference distance d0, γc is a coefficient

that accounts for the power decay of the first MPC with distance d, and εc is a zero mean

Gaussian random variable with variance σc.

The power decay coefficient β in (6.7) is modeled as

β = β0 − γ log10(d) + ε, (6.9)

where, β0 is the average decay of PDP at the reference distance, γ is a coefficient that

accounts for the power decay of first MPC with distance d, and ε is a zero mean Gaussian

random variable with variance σε.
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6.3 Measurement and Simulation Results

6.3.1 CIR Measurements

Using the channel sounding method described in Section 6.1, CIR measurements of a

100 MHz channel were conducted in an indoor office environment for different line of sight

(LOS) distances (10 m–27 m) between the transmitter and the receiver USRPs. For each

distance, K = 100 CIR measurements were recorded. Figure 6.3 shows the base-band equiv-

alent CIR and frequency response measurements for a distance of 21 m. Figure 6.4 shows

the average PDP evaluated using the 100 CIR measurements at d = 21 m.

Using the measured CIRs, the calculated mean excess delay, RMS delay spread and

coherence bandwidth of the channel are shown in Figure 6.5 as a function of distance. It

can be observed that the RMS delay of channel increases with increase in the distance,

causing the coherence bandwidth to decrease significantly.
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Figure 6.3: Overlaid measurements of base-band equivalent (a) channel impulse responses;
and (b) channel frequency responses; at a distance d = 21 m from the transmitter.
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Figure 6.4: Average PDP of the channel for d = 21 m.
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Figure 6.5: Mean excess delay, RMS delay spread and coherence bandwidth of the channel.

6.3.2 Channel Modeling Parameters

Figure 6.6 shows the measured average PL as a function of 10 log10(d) and the best line

fit to the measured values. The best line fit was produced using (6.3) with α = 1.66 and

PLdB(d0) = 43.42 dB. The α is observed to be less than the free-space path loss exponent

αFS = 2. This could be due to walls of the corridor being close to each other that may

cause strong reflections and refractions, as also reported in [145] for LOS scenarios.
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Figure 6.6: Measured average path loss and the best line fit for different distances.

The shadow fading model can be generated as described in Section 6.2.1 by finding the

standard deviation of shadowing variable Xσ that best fits the Gaussian distribution to the

histogram of the measured samples that include all distances and CIR measurements. Fig-

ure 6.7a shows the histogram and the best fitting Gaussian distribution with σ = 0.117 dB.

This value of σ is close to the value obtained in [146] for an indoor scenario with a LOS

link between the transmitter and the receiver.
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Figure 6.7: Fitting of Gaussian distribution to the histograms of the channel parameters
Xσ, r, and sk.

Combining the path loss and shadowing models, the large scale fading can be expressed

as,

PLdB(d) = PLdB(d0) + 16.6 log10(d/d0) +Xσ. (6.10)

With reference to (6.7), the histogram of r which represents the difference between the

power of second MPC and the power of first MPC is shown in Figure 6.7b. The best

fitting Gaussian distribution is with the mean µr = −16.47 dB and standard distribution

σr = 0.38 dB. For sk in (6.7), the histogram and the best fitting Gaussian distribution with

σs = 29.48 dB are shown in Figure 6.7c. Similarly, other parameters of the channel model

are found through regressions using (6.8) and (6.9), and Table 6.1 shows the extracted

values of all the parameters. Using these parameters, our channel model is validated in
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Figure 6.8, where the simulated PDP samples are compared with the measured PDP samples

for different distances.
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Figure 6.8: Comparison of the (a) measured, and (b) simulated PDP samples for different
distances.

6.3.3 Multi-hop versus Single-hop Performance

The simulation setup for multi-hop communication is illustrated in Figure 6.9. The de-

vices use OFDM to communicate over the channel, and the channel is modeled using the

parameters summarized in Table 6.1. The transmitter can communicate with the receiver

over a relay node with two-hops, or directly with a single-hop by transmitting with higher

transmission power. By using transmit power control, the received powers at the relay

and receiver nodes are assumed to be identical for both single-hop and two-hop cases.

On the other hand, the channel selectivity characteristics of single and two-hop scenarios

will be different due to different communication distances. Our goal is to investigate the

system-level impact of the channel selectivity characteristics on single-hop and multi-hop

communications.

Figure 6.9: Multi-hop communication.
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Table 6.1: Parameters of channel model

Parameter Value

α 1.66
σ 0.12 dB

PLdB(d0) 43.42 dB
C0 −56.62 dB
γc 21.91
σc 0.026
β0 −0.64
γ 0.90
σε 0.0052
σs 29.48 dB
µr −16.47 dB
σr 0.38 dB

Simulations are carried out for three different distances (50, 75, 100 m) between the TX

and RX in Figure 6.9, each with three different subcarrier frequency spacings (60, 80, 100

kHz). The number of subcarriers is fixed to 64, fifty two of which are the active subcarriers.

With this simulation setup, we try to analyze how the distance and the OFDM subcarrier

spacing affect the performance of multi-hop and single-hop communications.

The results that capture the detrimental effects of higher frequency selectivity in an

OFDM system for the TX-RX link are shown in Figure 6.10. From this figure, we can

clearly see that multi-hop communication yields a lower BER for a channel with lower

frequency selectivity. Accordingly, the BER difference between the single-hop and two-hop

cases increases with increasing subcarrier frequency spacing. Nonetheless, Figure 6.10 shows

that multi-hop communication reduces the BER for all frequency spacing.
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Figure 6.10: BER for different distances and subcarrier frequency spacings.

103



CHAPTER VII

Handover-Count based Velocity Estimation and Mobility State Detection

Mobility management in cellular networks is an important task that is critical to provide

good quality of service to the mobile users by minimizing the handover failures. Steps of a

typical handover process in a HetNet scenario is illustrated in Figure 7.1. In order to initiate

a handover, a UE waits until the received signal strength from a serving cell (macrocell) Pm

is larger than the received signal strength from a target cell (picocell) Pp plus a hysterisis

threshold (step-1). Even when this condition is satisfied, a UE waits for a duration of

time-to-trigger (TTT), before sending the measurement reports to its serving cell (step-2).

Use of a TTT is critical to ensure that ping-pongs are minimized due to fluctuations in

the link qualities from different cells. If the condition in step-1 is still satisfied after the

TTT, the UE sends the measurement reports to its serving BS in its uplink (step-3), which

finalizes the handover by sending a handover command to the UE in the downlink (step-4).

In homogeneous networks, the large size of the cells allows steps 1-4 in the handover process

to be completed near the cell edges. Since the UE is connected to the serving BS through

steps 1-4, high interference received from a target BS may frequently cause handover failure

problems in HetNet scenarios, especially to the high mobility users [11, 14]. A high speed

UE moving into a small cell may reach deep inside the coverage area of the small cell before

the handover can be finalized. These challenges in HetNets motivate the need for user

and cell specific handover parameter optimization techniques for high speed users. Since

the handover parameter optimization techniques are highly dependent on the velocity of a

UE, estimating the UE’s velocity is important for effective application of such optimization

techniques.

A simple and efficient way to estimate a UE’s velocity is by counting the number of

handovers made by the UE during a predefined time window. Indeed, handover-count

based mobility state detection has been standardized since LTE Release-8 specifications.

The increasing density of small cells in wireless networks can help in accurate estimation
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Figure 7.1: Handover failure problem in HetNets due to small cell size.

of velocity and mobility state of a UE. In this chapter, we introduce a novel and efficient

handover-count1 based UE velocity estimation technique using the tools from stochastic ge-

ometry, and characterize its accuracy through CRLBs, when the density of SBSs is known.

Since the service provider has the information of the number of SBSs in a particular ge-

ographic area, the SBS density in that area can be calculated and broadcasted as part of

system information in next generation networks. The SBS density may also be signaled in

a user-specific manner to the next generation UEs which are capable of velocity estimation.

Our contributions in this chapter are as follows:

• A densely deployed small cell network is modeled using stochastic geometry. For a

given small-cell density, two approximations to the probability mass function (PMF)

of handover-count of a UE are derived using a heuristic approach.

• Using the PMF approximations, expressions for the CRLB of velocity estimation are

derived.

1Subsequently, “handover-count” is used in a broad sense to refer to the number of cells traversed by a
UE. E.g., in phantom cells [147], a UE is always connected to the MBSs, and can get additional throughput
from SBSs, minimizing handover failures.
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• A minimum variance unbiased (MVU) velocity estimator is derived whose variance

tightly matches with the CRLB, and accuracy of the estimator is investigated for

various UE speeds, SBS densities, and handover-count measurement times.

• The estimated velocity is used to detect the mobility state (low/medium/high) of a

UE, and the expressions for the probability of detection and probability of false alarm

are derived.

• Accuracy of the velocity estimator is analyzed for different realistic scenarios such as:

RWP mobility model for the UEs, clustered deployment of SBSs, and variable UE

velocity.

7.1 System Model

Consider a HetNet scenario where the MBSs tier and the SBSs tier use different frequency

bands, as in phantom cell architecture [147]. We assume that the SBSs are randomly

distributed according to a homogeneous PPP with intensity λ. As the SBSs use a dedicated

frequency band which is different from the frequency band used by the MBSs, the coverage

of a small cell would depend on the neighboring SBSs, but not on MBSs. Hence, the small

cells of the network can be modeled using Poisson-Voronoi tessellation as illustrated in

Figure 7.2(b). In Figure 7.2(a), co-channel deployment of small cells is illustrated in which

the coverage of small cells is determined by the interference from neighboring SBSs and

MBSs. We consider only the dedicated channel deployment of small cells as illustrated in

Figure 7.2(b).

We consider a simple UE mobility scenario as also shown in Figure 7.2(b), in which the

UE travels along a linear trajectory (for example, through X-axis) with constant velocity v.

During the travel, we assume that the UE can determine whenever it crosses the boundary of

a small cell. In a broad sense, we call the boundary crossings made by the UE as handovers.

Therefore, the number of handovers H made by the UE during a measurement time window

T is equal to the number of intersections between the UE travel trajectory (of length d = vT )

and the small-cell boundaries. We use linear mobility model for its simplicity in theoretical
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Figure 7.2: Illustration of cellular network layout.

analysis, and this model is suitable for scenarios such as medium/high speed cars and trains

that may travel through downtown areas. There may be many small cells deployed in such

urban areas in the future which may be referred to as ultra/hyper-dense networks [148].

Linear mobility may not be accurate for some other scenarios, and therefore we have also

considered RWP mobility model which is more general and includes linear mobility as a

special case.

Note that the approach in Figure 7.2(b) for handover-count based MSD of a UE, into

low/medium/high mobility states, has already been specified in the LTE Release-8 stan-

dard. Remarkably, no studies exist in the literature that investigate fundamental bounds

and effective estimators for UE velocity. At high UE speeds and high SBS densities, han-

dover failure of a UE becomes more likely [13, 149, 150]. Hence, the velocity estimation

of UE based on handover counts may not work effectively with conventional LTE mobil-

ity management. On the other hand, emerging small-cell architectures such as phantom

cells [147, 151] decouple the control and user planes, and allow the UE to be connected to

macrocell all the time. Small-cells are discovered through special discovery signals [152],

and a UE can connect them (reminiscent to a handover) to have higher throughput. Hence,

handover-count based velocity estimation is still applicable in such scenarios.
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Figure 7.3: The PMF of the handover count for different λ and v values; (a) λ =
100 SBSs/km2; (b) λ = 200 SBSs/km2; (c) λ = 500 SBSs/km2; (d) λ = 1000 SBSs/km2.

The handover count H for a scenario as in Figure 7.2(b) is a discrete random vari-

able and its statistics do not change with the direction of the linear trajectory because

the SBS locations are modeled using a homogeneous and stationary PPP. The probability

mass function (PMF) fH(h) of handover count obtained through the simulations is shown

in Figure 7.3(a)-7.3(d) for different SBS density λ and UE velocity v settings, with the

handover-count measurement time fixed to T = 12 s. For low SBS densities, as in Fig-

ure 7.3(a), the PMFs for different UE velocities are overlapping significantly, leading to low

velocity estimation accuracies. For higher SBS densities, as in Figure 7.3(d), the PMFs

for different velocities are separated, leading to better estimation accuracies. It should also

be noticed that for higher UE velocities, standard deviation of the handover count also

increases, implying lower estimation accuracies. Another characteristic of the PMF is that

for large λ and v values, the shape of PMF resembles Gaussian distribution.

7.1.1 Modeling Handover-Count Statistics

In order to obtain the velocity estimate of a UE based on its handover count H, we need

to know the PMF fH(h) of handover count. For a scenario as in Figure 7.2(b), an exact

expression for the mean number of handovers can be derived as [89,153]

E[H] =
4vT
√
λ

π
. (7.1)

To the best of our knowledge, there is no expression available for the PMF of handover count

in the literature. Deriving an expression for the PMF fH(h) is a complicated and laborious
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task, which might result into a mathematically intractable expression [153]. Hence, we

derive an approximation to the PMF fH(h).

There are several papers in the literature where the PPP based parameters are approx-

imated rather than deriving the exact expressions due to the complexity involved in the

derivation of exact expressions. For example, in [154], geometrical characteristics of the

perimeter, area and number of edges in a 2-dimensional Voronoi cell, and volume, surface

area and number of faces in a 3-dimensional Voronoi cell are approximated by fitting gen-

eralized gamma distribution to the respective histograms. Similarly, the distributions of

2-dimensional cell area and 3-dimensional cell volume are approximated in [155] by fitting

some simple expressions.

We derive two approximations to the PMF fH(h) for the handover count:

1. approximation fg
H(h) derived using gamma distribution;

2. approximation fn
H(h) derived using Gaussian distribution.

These two approximations to the handover count PMF will be discussed in more detail in

Section III, and their accuracies will be further investigated and compared in Section VI.A.

7.2 Approximation of the Handover Count PMF Using Gamma and

Gaussian Distributions

In this section, two approximations for the PMF of handover count will be introduced.

In each approximation method, the parameters of a distribution (gamma distribution or

Gaussian distribution) will be approximated using the curve fitting tools in Matlab.

7.2.1 Approximation of the PMF of Handover Count using Gamma Distribu-

tion

Gamma distribution has been commonly used in approximating the statistical distribution

of the parameters related to PPPs such as area, volume, number of edges, etc., of Poisson

Voronoi cells [154,155]. It can be effectively used to approximate the handover count PMF.
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The gamma PDF can be expressed using the shape parameter α > 0 and rate parameter

β > 0 as

fg(x) =
βα

Γ(α)
xα−1e−βx, for x ∈ (0,∞), (7.2)

where Γ(α) =
∫∞

0 tα−1e−tdt is the gamma function. Fitting the gamma PDF to the PMF

fH(h) is not a straight forward task since the gamma PDF is a continuous function while

the PMF fH(h) is a discrete function. Therefore, we fit the subsets of gamma PDF to the

PMF fH(h). The subsets of gamma PDF can be obtained by integrating the gamma PDF

Figure 7.4: Illustration of fitting gamma distribution to the handover count PMF.

between the integer values of x as illustrated in Figure 7.4. Integrating the gamma PDF

between 0 and 1 provides the PMF value for h = 0, integrating the gamma PDF between

1 and 2 provides the PMF value for h = 1, and so on. This process can be mathematically
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described as:

fg
H(h) =

∫ h+1

h
fg(x)dx, for h ∈ {0, 1, 2, ...}, (7.3)

where, fg
H(h) is an approximation to the PMF fH(h). Substituting (7.2) into (7.3), we get

fg
H(h) =

∫ h+1

h

βα

Γ(α)
xα−1e−βxdx =

βα

Γ(α)

∫ h+1

h
xα−1e−βxdx, for h ∈ {0, 1, 2, ...}. (7.4)

With the change of variable x = t/β, we can rewrite (7.4) in its equivalent form as

fg
H(h) =

βα

Γ(α)

∫ β(h+1)

βh

(
t

β

)α−1

e−t
dt

β
=

1

Γ(α)

∫ β(h+1)

βh
tα−1e−tdt =

Γ
(
α, βh, β(h+ 1)

)
Γ(α)

,

(7.5)

where, Γ
(
α, βh, β(h+1)

)
=
∫ β(h+1)
βh tα−1e−tdt is the generalized incomplete gamma function.

However, for the approximation in (7.5) to be accurate, the values for α and β parameters

should be chosen such that the mean squared error (MSE) between fH(h) and fg
H(h) is

minimized.

Lemma 1. The α and β parameters for the approximation in (7.5) which minimize the

MSE between fH(h) and fg
H(h) can be expressed as

α = 2.7 + 4d
√
λ, (7.6)

β = π +
0.8

0.38 + d
√
λ
, (7.7)

where d = vT is the distance traveled by UE during the handover-count measurement time.

Proof. See Appendix 3.

Using (7.5)-(7.7), we can capture the statistical distribution of handover count if the

SBS density and the distance traveled by UE are known. Through (7.6) and (7.7), it can

also be noticed that the handover-count distribution depends on the distance traveled by

UE, rather than the UE velocity or the time period independently.
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7.2.2 Approximation of the PMF of Handover Count using Gaussian Distri-

bution

In the previous section, approximation to the handover count PMF fH(h) was derived using

gamma distribution which resulted into an expression in integral form. In this section, we

will approximate the PMF fH(h) using Gaussian distribution which results into a closed

form expression for the handover-count PMF.

The PDF of Gaussian distribution can be expressed as a function of mean µ and variance

σ2:

fn (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (7.8)

Since the PMF fH(h) is discrete and the Gaussian distribution in (7.8) is continuous,

we consider only non-negative integer samples of the Gaussian distribution for the fitting

process. Henceforth, the approximation to fH(h) can be expressed as,

fn
H(h) =

1√
2πσ2

e−
(h−µ)2

2σ2 , for h ∈ {0, 1, 2, ...}. (7.9)

The values of µ and σ2 should be chosen to minimize the MSE between fH(h) and fn
H(h).

Lemma 2. The µ and σ2 parameters for the approximation in (7.9) which minimize the

MSE between fH(h) and fn
H(h) can be expressed as

µ =
4d
√
λ

π
, (7.10)

σ2 = 0.07 + 0.41d
√
λ, (7.11)

where d = vT is the distance traveled by the UE during the handover count measurement

time.

Proof. See Appendix 4.

112



7.3 Cramer-Rao Lower Bound for Velocity Estimation

CRLB can be used to serve as a lower bound on the variance of an unbiased estimator [156].

An estimator is said to be unbiased if its expected value is same as the true value of the

parameter being estimated. An unbiased estimator whose variance can achieve the CRLB is

said to be an efficient estimator, and it can achieve minimum MSE among all the unbiased

estimators. In some scenarios, it might not be feasible to determine an efficient estimator. In

that case, the unbiased estimator with the smallest variance is said to be a MVU estimator.

In this section, we will derive the CRLB for velocity estimation using the mathematical

tools from estimation theory. Since we have two different approximations for the PMF of

the number of handovers, we will obtain two separate CRLB expressions.

7.3.1 CRLB Derivation using Gamma PMF Approximation

In this sub-section we will obtain the CRLB by considering the handover count PMF ap-

proximation that was derived using gamma distribution in Section 7.2.1.

Theorem 1. In a Poisson-Voronoi tessellation of small cells with SBS node density λ, let

a UE travel with velocity v over a linear trajectory and make H handovers over a time

duration T . If the PMF of the handover count can be expressed using fg
H(H; v) as in (7.5),

then the CRLB for velocity estimation is given by

var(v̂) ≥ 1

E
[(

∂ log fgH(H;v)
∂v

)2
] , (7.12)
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where, E[·] is the expectation operator with respect to H, and

∂ log fg
H(h; v)

∂v
=

4T
√
λβα

α2 Γ(α, βh, β(h+ 1))

[
hα 2F2(α, α;α+ 1, α+ 1;−βh)

− (h+ 1)α 2F2(α, α;α+ 1, α+ 1;−β(h+ 1))
]

− 4T
√
λ

Γ(α, βh, β(h+ 1))

[
γ(α, βh) log(βh)− γ(α, β(h+ 1)) log(β(h+ 1))

]
+

0.8T
√
λβα−1e−βh

[
hα − e−β(h+ 1)α

]
Γ(α, βh, β(h+ 1))(0.38 + vT

√
λ)2

− 4T
√
λ ψ(α), (7.13)

where, ψ(·) is digamma function, γ(α, x) =
∫ x

0 t
α−1e−tdt is lower incomplete gamma func-

tion, and 2F2(a1, a2; b1, b2; z) is generalized hypergeometric function which can be expressed

as

2F2(a1, a2; b1, b2; z) =

∞∑
k=0

(a1)k(a2)k
(b1)k(b2)k

zk

k!
, (7.14)

where, (a)0 = 1 and (a)k = a(a+ 1)(a+ 2)...(a+ k − 1), for k ≥ 1.

Proof. See Appendix 5.

Due to the complexity of expression in (7.13), it is impractical to derive the right hand

side (RHS) of (7.12) in closed form. For this reason, we can only find asymptotic CRLB

by numerically evaluating the RHS of (7.12). Through simulations, we generate N samples

of the random variable H and denote them as {Hn}, for n ∈ 1, 2, ..., N . Using these N

samples, we can numerically evaluate the asymptotic CRLB using

var(v̂) ≥ N∑Hmax
m=Hmin

(
Nm

(
∂ log fgH(m;v)

∂v

)2
) , (7.15)

where, Hmax = max{Hn : ∀n ∈ 1, 2, ..., N}, is the maximum value of Hn, Hmin = min{Hn :

∀n ∈ 1, 2, ..., N}, is the minimum value of Hn, and Nm =
∑N

n=1 1{Hn = m} is the number

of elements in the set {Hn} that are equal to m. Here, 1{·} is the indicator function whose

value is 1 if the condition inside the braces is true, 0 otherwise.
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7.3.2 CRLB Derivation using Gaussian PMF Approximation

In this sub-section, we will obtain the CRLB by considering the PMF approximation using

Gaussian distribution that was derived in Section 7.2.2.

Theorem 2. In a Poisson-Voronoi tessellation of small cells with SBS node density λ, let

a UE travel with velocity v over a linear trajectory and make H handovers over a time

duration T . If the PMF of the handover count can be expressed using fn
H(H; v) as in (7.9),

then the CRLB for velocity estimation is given by

var(v̂) ≥ 1( µ
vσ

)2
+ 1

2

(
0.41T

√
λ

σ2

)2 . (7.16)

Proof. Consider the PMF approximation fn
H(h) in (7.9) which can be represented as a

general Gaussian distribution, H ∼ N
(
µ, σ2

)
, where µ and σ2 are given by (7.10) and

(7.11) respectively. The Fisher information for the general Gaussian observations is given

by [156, Section 3.9]

I(v) =

(
∂µ

∂v

)2 1

σ2
+

1

2 (σ2)2

(
∂σ2

∂v

)2

=

(
4T
√
λ

π

)2
1

σ2
+

1

2 (σ2)2

(
0.41T

√
λ
)2
. (7.17)

Using inverse of the Fisher information, the CRLB can be expressed as in (7.16).

7.3.3 Minimum Variance Unbiased Estimator for UE Velocity

In Section 7.3.1 and Section 7.3.2, two CRLB expressions were derived by considering

gamma and Gaussian distributions, respectively, for approximating the handover count

PMF. In the case of using gamma distribution, the CRLB expression was complicated and

not in closed form. On the other hand, in the case of using Gaussian distribution, the

CRLB expression was relatively simple and in closed form. Hence, in this sub-section, we

will consider the case with Gaussian distribution and derive an estimator v̂ for a UE’s

velocity, which takes the number of handovers H as the input. We will further derive the

mean and the variance of this estimator and show that it is a MVU estimator.
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To derive the MVU velocity estimator, we first use Neyman-Fisher factorization to

find the sufficient statistic for v [156, Section 5.4]. Then, we make use of Rao-Blackwell-

Lehmann-Scheffe (RBLS) theorem to find the MVUE [156, Section 5.5]. The Neyman-Fisher

factorization theorem states that if we can factor the PMF fn
H(h) as

fn
H(h) = g

(
F(h), v

)
r(h), (7.18)

where g is a function depending on h only through F(h) and r is a function depending only

on h, then F(h) is a sufficient statistic for v. Using (7.9) and letting F(h) = h, we can

factor the PMF fn
H(h) in the form of (7.18) as

fn
H(h) =

1√
2πσ2

e−
(F(h)−µ)2

2σ2︸ ︷︷ ︸ · 1︸︷︷︸, (7.19)

g
(
F(h), v

)
r(h)

Therefore, the sufficient statistic for v is F(h) = h. The sufficient statistic can be used

to find the MVU estimator by determining a function s so that v̂ = s(F) is an unbiased

estimator of v. By inspecting the relationship between the mean number of handovers H̄

and the velocity v in (7.1), we can formulate an estimator for v as:

v̂ =
πH

4T
√
λ
. (7.20)

In order to evaluate whether this estimator is unbiased, the expectation of the above esti-

mator can be derived as

E[v̂] = E

[
πH

4T
√
λ

]
=

π

4T
√
λ
E[H] =

π

4T
√
λ
µ. (7.21)

Plugging (7.10) into (7.21), we get

E[v̂] =
π

4T
√
λ

4vT
√
λ

π
= v. (7.22)
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Therefore, the estimator v̂ expressed in (7.20) is unbiased. Since this estimator is derived

through RBLS theorem, it is an MVU estimator. To determine whether it is an efficient

estimator, we derive the variance of the MVU estimator as follows:

var(v̂) =var

(
πH

4T
√
λ

)
=

(
π

4T
√
λ

)2

var(H) =

(
vσ

µ

)2

. (7.23)

Comparing (7.23) with (7.16), we can notice that the variance of MVU estimator is greater

than the CRLB, and hence, the derived estimator is not an efficient estimator. Nevertheless,

in Section 7.5.3, we show that the variance of the MVU estimator is very close to the CRLB.

7.4 Mobility State Detection

In this section, we will perform statistical analysis of MSD, in which a UE is categorized into

one of the three different mobility states: low mobility, medium mobility and high mobility,

as in 3GPP LTE Release-8 specifications [81,157,158]. We assume that the unbiased velocity

estimator derived in Section 7.3.3 is used to estimate the UE velocity, and we will derive

expressions for the probabilities that a UE is categorized into each of the three mobility

states.

Using the estimated UE velocity v̂ from (7.20), the UE can be categorized into one of

the three mobility states: low (SL), medium (SM), and high (SH), based on the following

conditions:

S =


SL if v̂ ≤ vl,

SM if vl < v̂ ≤ vu,

SH if v̂ > vu,

(7.24)

where, S ∈ {SL, SM, SH} is the detected mobility state of the UE. The thresholds vl and vu

are the lower and upper velocity thresholds, respectively, based on which a UE is classified

into one of the three mobility states.
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7.4.1 Mobility State Probabilities

For a given velocity v, we define mobility state probability as the probability that the UE

is categorized into a particular state. We can define the following three mobility state

probabilities:

P (S = SL; v)→ Probability that the mobility state is detected as SL, for a velocity v;

P (S = SM; v)→ Probability that the mobility state is detected as SM, for a velocity v;

P (S = SH; v)→ Probability that the mobility state is detected as SH, for a velocity v.

For a given velocity v, as the number of handovers H is a random variable, the velocity

v̂ estimated using (7.20) is also a random variable. Hence, there will be false alarms and

missed detections for calculating the mobility state.

Next, we derive analytic expressions for the mobility state probabilities. Using (7.20),

we can express the PMF of v̂ as,

fv̂(ν) = P (v̂ = ν) = P

(
πH

4T
√
λ

= ν

)
= P

(
H =

4T
√
λν

π

)
= fH

(
4T
√
λν

π

)
= fH(h),

(7.25)

where, h = 4T
√
λν

π . Using the approximation of PMF fH(h) with Gaussian distribution as

in (7.9), we can approximate the PMF of v̂ as,

fv̂(ν) = fH(h) ≈fn
H(h) =

1√
2πσ2

e−
(h−µ)2

2σ2 , for h ∈ {0, 1, 2, ...}. (7.26)

118



Now, we can express the three mobility state probabilities as

P (S = SL; v) =P (v̂ ≤ vl) ≈
hl∑
h=0

fn
H(h), (7.27)

P (S = SM; v) =P (vl < v̂ ≤ vu) ≈
hu∑

h=hl+1

fn
H(h), (7.28)

P (S = SH; v) =P (v̂ > vu) ≈
∞∑

h=hu+1

fn
H(h), (7.29)

where, hl =
⌊4T
√
λvl

π

⌋
, and hu =

⌊4T
√
λvu

π

⌋
, (7.30)

are the optimum lower and upper handover count thresholds for MSD, respectively. Given

the velocity thresholds vl and vu, the choice of handover count thresholds has a direct impact

on the probability of correctly detecting the mobility state of a UE based on its velocity [159].

In (7.30), we have theoretically derived the handover-count thresholds for MSD which are

optimum for the given velocity thresholds. In other related works in the literature, the

handover-count thresholds for MSD have been determined through simulations. In [13,

159, 160], the handover-count thresholds for MSD are found heuristically by considering

the cumulative distribution function (CDF) plots of handover counts, for few different UE

velocities. In [161], the handover counts are assumed to be distributed as Gaussian PDF, and

the optimum handover-count thresholds are obtained by using the handover-count PDFs

for few different UE velocities. However, in these prior works, the optimum handover-

count thresholds are determined for some particular values of BS density and measurement

time windows. Moreover, the statistical relationship between the UE velocity and the

handover count is not considered. In this chapter, we have derived general expressions for

the optimum handover-count thresholds as a function of SBS density λ, handover-count

measurement time T , and velocity thresholds (vl and vu).
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7.4.2 Probability of Detection and Probability of False Alarm

The probability of detection is the probability that the mobility state of a UE is detected

correctly. Mathematically, it can be expressed as

PD =


P (S = SL; v) if v ≤ vl,

P (S = SM; v) if vl < v ≤ vu,

P (S = SH; v) if v > vu.

(7.31)

The probability of false alarm is the probability that the mobility state is detected incor-

rectly, which can be mathematically expressed as PFA = 1− PD.

Consider an illustrative example in which the UE velocity is v = 60 km/h, SBS density

is λ = 1000 SBSs/km2, and handover-count measurement time is T = 12 s. The PMFs

fH(h) and fv̂(ν) are shown in Figs. 7.5(a) and 7.5(b), respectively, which were obtained

through Monte Carlo Simulations. In Figure 7.5(b), the range of v̂ is divided into three

regions SL, SM and SH that are separated from each other through the velocity thresholds

vl = 40 km/h and vu = 80 km/h. It can be noticed in Figure 7.5(b) that even though the

actual UE velocity is a constant v = 60 km/h which belongs to SM state, the estimated

velocity is spread into a range of velocities. Hence, there is a small probability that the

mobility state could be erroneously detected as SL or SH states, which is the probability

of false alarm PFA. On the other hand, majority of the times the mobility state would be

correctly detected as SM, which is the probability of detection PD.

With the particular parameter settings shown in Figure 7.5, the probabilities of different

mobility states can be evaluated using (7.27)-(7.29) as P (S = SL; v = 60) = 0.047, P (S =

SM; v = 60) = 0.8821, P (S = SH; v = 60) = 0.0709, respectively. Then, the probabilities

of detection and false alarm can be evaluated using (7.31) as PD = P (S = SM; v = 60) =

0.8821, PFA = P (S = SL; v = 60) + P (S = SH; v = 60) = 0.1179, respectively.
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Figure 7.5: (a) PMF of the number of handovers; (b) PMF of the estimated velocity;
v = 60 km/h, λ = 1000 SBSs/km2, T = 12 s, vl = 40 km/h and vu = 80 km/h.

7.5 Numerical Results

In this section, firstly, we will validate the accuracy of gamma PMF approximation fg
H(h)

and Gaussian PMF approximation fn
H(h) by plotting their MSE performances. Secondly,

we will plot the CRLBs and analyze the achievable accuracy of a UE’s velocity estimate for

different SBS density λ, UE velocity v, and handover count measurement time T . Finally,

we will plot the variance of the MVU velocity estimator derived in Section 7.3.3 and show

that it is approximately equal to the CRLB.

7.5.1 Accuracy of PMF Approximation

Approximations to the handover count PMF were derived using gamma distribution and

Gaussian distribution in Sections 7.2.1 and 7.2.2, respectively. In this sub-section, we will

quantify the accuracy of each approximation method by evaluating the MSE between the

approximation and the PMF fH(h). The MSE can be expressed as

MSE =
1

Nh

Nh∑
h=1

[
fuH(h)− fH(h)

]2
, for u ∈ {g,n}, (7.32)

where Nh is the number of points in the PMF. The characteristics of MSE with respect

to the variations in λ and v are shown in Figure 7.6 for the two approximation methods.

In general, the MSEs of both approximation methods decrease with the increase in SBS
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(a) PMF approximation using gamma distribu-
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Figure 7.6: MSE versus λ for different v, and T = 12 s.

density λ or UE velocity v. In other words, higher SBS density and higher UE velocity

leads to better accuracy of the PMF approximation. By comparing Figure 7.6(a) and

Figure 7.6(b), it can be noticed that the approximation using gamma distribution provides

approximately ten times smaller MSE than the approximation using Gaussian distribution.

However, the approximation using gamma distribution is not in closed form and hence it

is more complicated than the approximation using Gaussian distribution. Therefore, there

exists a trade-off between the accuracy and the complexity while making a choice between

the two approximation approaches.

7.5.2 CRLB Results

The CRLB plots for UE velocity estimate v̂ are shown in Figure 7.7 for the variations in

UE velocity v and SBS density λ. In the case of gamma approximation of PMF fH(h),

the CRLB plots in Figure 7.7(a) are obtained by numerically evaluating the expression in

(7.15). On the other hand, the CRLB plots in Figure 7.7(b) are obtained using the closed

form expression in (7.16), for the case of Gaussian approximation of PMF fH(h). It can be

observed that the CRLB plots in Figure 7.7(a) and Figure 7.7(b) are similar and follow same

trends with respect to λ and v. However, we can expect that the plots in Figure 7.7(a) are

more accurate because of the smaller MSE of gamma approximation method. On the other
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Figure 7.7: CRLB versus v for different λ, and T = 12 s.

hand, the closed form CRLB expression in (7.16) for the case of Gaussian approximation can

provide more insights, for example, on the dependence of CRLB into different parameters.

From Figure 7.7, it can be noticed that the CRLB increases with the increasing UE

velocity v. This is because the variance of the number of handovers H increases with

increasing v, which can be observed in Figure 7.3. In contrast, the CRLB decreases with

increasing SBS density λ, which can also be intuitively understood from Figure 7.3. With

λ = 100 SBSs/km2, the peaks of the PMFs for different UE velocities are closely spaced with

each other making it difficult to distinguish between the different UE velocities, resulting

into higher CRLB. With λ = 1000 SBSs/km2, the peaks of the PMFs have more spacing

between them making it easier to distinguish between the different UE velocities, resulting

into lower CRLB. Results in Figure 7.7 show that for all considered SBS densities, using a

handover count based approach, a UE’s velocity can be estimated with a root mean squared

error (RMSE) of 20 km/h for UE velocities less than 40 km/h. For UE velocities on the

order of 120 km/h, velocity can still be estimated with a RMSE less than 31 km/h for

densities of 100 SBSs/km2, which can be further improved for higher SBS densities.

In related works of the literature [81,159–161], a fixed measurement time interval of 30 s,

60 s, or 120 s is used for the MSD of UEs. However, we have used a smaller measurement

time interval of T = 12 s in Figure 7.7 so that the velocity estimator can provide quicker

results. At the same time, T = 12 s also provides a reasonable estimation accuracy. For
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Figure 7.8: CRLB versus T for different λ and v = 60 km/h.

example, with SBS density λ = 500 SBSs/km2 and a UE velocity v = 120 km/h, the CRLB

of velocity estimation is just 20 km/h as shown in Figure 7.7. After all, it is a choice of the

service provider to use a measurement time interval based on the requirements. Therefore,

the effects of variations in T are also investigated in the remainder of this chapter.

The effect of handover-count measurement time T on the CRLB can be seen in Fig 7.8.

For a given UE velocity and SBS density, CRLB decreases as the measurement time in-

creases. Therefore, longer handover-count measurement time results into better accuracy

of velocity estimation, with the assumption that the UE will continue traveling on a linear

trajectory.

7.5.3 Variance of the MVU Velocity Estimator

The variance of the MVU velocity estimator given in (7.23) is plotted in Figure 7.9. Even

though the derived MVU estimator is not an efficient estimator, it can be observed from the

plots that the variance of the MVU estimator tightly matches with the CRLB. Therefore,

the MVU estimator performs very close to an efficient estimator.
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Figure 7.9: Comparison between the CRLB and the variance of the MVU estimator.

7.5.4 Mobility State Probabilities, and Probabilities of Detection and False

Alarm

In order to classify a UE into one of the three mobility states, the velocity thresholds vl

and vu can be set depending on the requirements of the service provider. We have set

vl = 40 km/h and vu = 80 km/h. The plots of mobility state probabilities versus UE

velocity v, for four different λ values are shown in Figure 7.10. Here, the analytic plots that

were obtained using (7.27)-(7.29) are observed to match accurately with the simulation

results. When we examine these plots carefully, it can be noticed that as the SBS density

λ increases, the slope of the curves during their transitions also increases, which is closer

to the ideal case where the slope is equal to infinity. In other words, accuracy of MSD

improves significantly with larger SBS densities.

The probabilities of detection and false alarm versus the UE velocity v are shown in

Figure 7.11 for different λ values. It can be noticed that as the UE velocity nears to any

one of the velocity thresholds, the probability of detection decreases and the probability of

false alarm increases. The probability of detection is close to 0.5 when the UE velocity is

equal to vl or vh.
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(c) λ = 500 SBSs/km2
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(d) λ = 1000 SBSs/km2

Figure 7.10: Mobility state probabilities versus UE velocity; T = 12 s, vl = 40 km/h and
vu = 80 km/h.
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Figure 7.11: Probabilities of detection and false alarm.
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The average probability of detection is plotted in Figure 7.12 for different combinations

of the handover count thresholds hl and hu such that hu > hl. Here, the probability

of detection is averaged over UE velocity in the range of 10 km/h to 120 km/h, with

λ = 500 SBSs/km2. It can be observed in Figure 7.12 that the average probability of

detection maximizes to 0.797 with hl = 3 and hu = 7. On the other hand, computing (7.30)

with λ = 500 SBSs/km2, T = 12 s, vl = 40 km/h and vu = 80 km/h also results into hl = 3

and hu = 7. Therefore, equations in (7.30) obtained as a result of our analysis provide

analytic expressions for optimum hl and hu that maximizes the probability of detection.
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Figure 7.12: Average probability of detection for different combinations of hl and hu, with
λ = 500 SBSs/km2.

7.5.5 Estimator Performance with RWP Mobility Model

In this sub-section, we assess the accuracy of velocity estimator with RWP mobility model

for the UE [89]. In the RWP model, the UE movement trace is assumed to have a sequence

of quadruples which can be defined as {(Xn−1,Xn, Vn, Sn)}n∈N, where n denotes the n-

th movement period, Xn−1 and Xn denote the starting and target waypoints, respectively,

during the n-th movement period, Vn denotes the velocity, and Sn denotes the pause time at

the waypoint Xn. The angle between two consecutive waypoints is uniformly randomly dis-

tributed on [−π, π], while the transition length Ln = ‖Xn−Xn−1‖ between two consecutive

waypoints is i.i.d. and Rayleigh distributed with the CDF, P (L ≤ l) = 1−exp(−ξπl2), l ≥ 0,
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where ξ is defined as the mobility parameter. Larger ξ statistically implies that the tran-

sition lengths L are shorter and may be appropriate for mobile users walking. In contrast,

smaller ξ statistically implies longer transitions lengths which may be appropriate for driv-

ing users.

We performed simulations for a special case of the RWP mobility model in which the UE

velocity Vn ≡ v is a positive constant, and the pause times Sn = 0. The characteristics of

the RMSE of velocity estimator are shown in Figure 7.13. It can be observed that the RMSE

increases with increasing v, and decreases with increasing T , similar to the characteristics

of the linear mobility model. The RMSE increases with the increasing mobility parameter

ξ. For large ξ, the UE switches its directions more number of times within the handover

count measurement time interval, leading to larger estimation errors. On the other hand,

for smaller ξ, the UE’s direction switch rate is smaller which results into smaller RMSE. As

ξ → 0, the RMSE of RWP mobility model converges to the RMSE of the linear mobility

model. This is because the direction switch rate tends to zero, and the UE follows a straight

line trajectory indefinitely.
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Figure 7.13: RMSE performance of the velocity estimator with RWP mobility model.
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7.5.6 Mobility State Detection with Variable UE Velocity

In this sub-section, we demonstrate the functionality of our MVU estimator with vari-

able UE velocity, and the effect of handover-count measurement time on estimation accu-

racy. Consider an example in which a user is traveling in a train that is moving over a

straight line trajectory in a downtown region. Assume that the density of small cells is

λ = 1000 SBSs/km2, and handover counts are measured during regular intervals T . The

actual velocity of UE in the train, estimated velocity and the detected mobility state are

shown in Figure 7.14 during a trip from one station to another station. It can be noticed

that the accuracy of velocity estimation is better in Figure 7.14(b) with T = 30 s, when

compared to Figure 7.14(a) with T = 12 s. Also, the probability of false alarm is smaller

with T = 30 s. However, longer measurement time intervals can lead to lower estimation

accuracies if the velocity changes significantly within the measurement time interval.
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Figure 7.14: Demonstration of velocity estimation and MSD with variable UE velocity.

7.5.7 Velocity Estimation in Clustered SBS Deployments

In practical scenarios, SBSs are deployed more in places where more traffic demand is ex-

pected, which results into clustered deployments. In this subsection, we model the clustered

deployment of SBSs using Matern-cluster process that can be realized using cluster centers

and cluster points. The cluster centers form a Poisson process with intensity λ0, and the
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cluster points (SBS locations) are located around each cluster center within a disc of radius

R. The cluster points in these discs are realized using Poisson processes with intensity λ1.
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Figure 7.15: RMSE of velocity estimation in homogeneous and clustered SBS deployments.

The RMSEs of velocity estimator in homogeneous and clustered deployments of SBSs

are compared in Figure 7.15. For fair comparison between the homogeneous and clustered

deployments, the intensities of both Poisson and Matern-cluster processes were kept same.

Given the parameters λ0, λ1 and R of Matern-cluster process, the equivalent homogeneous

intensity λ for Poisson process can be found using λ = λ0λ1πR
2. In general, the RMSE

is higher in clustered deployment of SBSs due to the heterogeneous nature of Matern-

cluster process and the fact that a UE cannot obtain handover-count measurements outside

the discs of clusters. It can be observed in Figure 7.15(a) that the RMSE difference be-

tween homogeneous and clustered SBS deployments increases with increasing UE velocity

v. The RMSE difference also increases significantly when λ0 decreases, for example, from

100 clusters/km2 to 10 clusters/km2. In Figure 7.15(b), it can be seen that the RMSE

difference decreases with increasing R.
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7.5.8 Velocity Estimation with Matern Hardcore Process for SBS Locations

In this sub-section, we model the SBS locations using Matern hardcore process (HCP), in

which, the distance between any two points is greater than a hardcore distance Rhc. The

realization of Matern HCP involves generation of points using a homogeneous PPP, followed

by a thinning procedure. For the Matern HCP of type II, the thinning procedure involves

associating a random mark to each point of the parent PPP, and a point is deleted if there

exists another point within the hardcore distance Rhc with a smaller mark [38]. To realize

the HCP with intensity λhc, the intensity of the parent PPP should be

λ =
− ln(1− λhcπR

2
hc)

πR2
hc

, (7.33)

provided that Rhc is smaller than Rmax
hc = 1/

√
πλhc. We use Rhc = ρ/

√
πλhc, where

0 ≤ ρ < 1 is the randomness parameter. When ρ = 0, Rhc is 0 and the HCP is equivalent

to PPP in which the points are random located as shown in Figure 7.16(a). When, the ρ

increases to 0.99, the points are located more regularly as shown in Figure 7.16(b).
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Figure 7.16: Realizations of Matern HCP of type II with fixed λhc and different ρ values;
(a) ρ = 0; (b) ρ = 0.99.

The RMSE of the MVU velocity estimator against the variation in ρ is shown in Fig-

ure 7.17 for different velocities. The RMSE of the velocity estimator decreases as the ρ
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increases, because the randomness in the SBS locations decreases with increasing ρ. There-

fore, in scenarios where the SBSs are more uniformly placed, the velocity estimation will

work more effectively.
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Figure 7.17: RMSE of velocity estimation with type II Matern HCP for the SBS locations.
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CHAPTER VIII

Sojourn Time based Velocity Estimation

The handover-count based velocity estimation of a UE was studies in Chapter VII. Another

simple way to estimate a user’s velocity is via the use of sojourn time samples. Unlike the

handover count velocity estimation method which uses the number of handovers within

a given time window, the sojourn time based velocity estimation method can make use

of both the handover-count within a time window and the sojourn times between two

consecutive handovers. In this chapter, the CRLB for the sojourn-time based velocity

estimation is analyzed. Stochastic geometry is used for the spatial modeling of small cells,

and the CRLB is derived using the tools from estimation theory. An asymptotically unbiased

velocity estimator is also derived. Our analysis shows that the sojourn time based velocity

estimation exhibit a lower CRLB compared to the CRLB of classical velocity estimation

using handover count.

The goals of this chapter is to introduce a novel technique for UE velocity estimation

based on sojourn-time samples, and analyze its accuracy through CRLBs, when the density

of SBSs is known. Our contributions will also include: 1) The derivation of a closed form

expression for the JPDF of N sojourn-time samples; 2) the derivation, using the JPDF, of

a closed form expression for the CRLB of velocity estimation; and 3) the derivation of an

asymptotically unbiased velocity estimator whose accuracy is investigated for various UE

speeds and SBS densities.

8.1 System Model

Consider a two-tier heterogeneous network (HetNet) consisting of macro cell BSs (MBSs)

and SBSs that use different frequency bands, as in the phantom cell architecture [147,162].

The SBSs are randomly distributed according to a homogeneous PPP with intensity λ.

Assuming that the SBSs are densely deployed, as expected in future wireless networks [163],

the coverage of small cells can be modeled effectively using a Poisson-Voronoi tessellation as
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Figure 8.1: Poisson-Voronoi tessellation of small cells and the UE travel trajectory.

shown in Figure 8.1. For simplicity, we assume that the UE travels with a constant velocity

v along a linear trajectory as shown in Figure 8.1. We let T be the sojourn time and L

the distance traveled within a cell. During the travel, we assume that the UE can detect

its boundary crossings, and therefore can measure the sojourn times. Since the SBSs are

randomly distributed, the sojourn time T is a continuous random variable.

8.1.1 Sojourn Time PDF

The PDF of the distance L traveled by a UE in an arbitrary Poisson-Voronoi cell is derived

in [164] as:

fL(l) =

∫ π

0

∫ π−α

0

π2λl2ραρβ
(
2πλl2b20ρ

2
α − c0

)
sin(α+ β)

e−πλl
2V2(α,β) dβdα, (8.1)

where V2(α, β) =
(
1 + ρ2

β − 2ρβ cosα
)(

1− β

π
+

sin 2β

2π

)
+ ρ2

β

(
1− α

π
+

sin 2α

2π

)
,

ρα =
sinα

sin(α+ β)
, ρβ =

sinβ

sin(α+ β)
,

b0 =
(π − β) cosβ + sinβ

π
, and c0 =

(π − β) + sinβ cosβ

π
.

The details of (8.1) can be found in [164]. Therein, L is denoted as the chord length. Next,

the PDF of sojourn time will be expressed in terms of the chord length PDF fL(·).
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Theorem 3. Consider a Poisson-Voronoi tessellation formed by the SBSs distributed ac-

cording to a PPP of intensity λ. A UE traveling along a straight line trajectory with constant

velocity v has a sojourn time PDF which can be expressed as

fT (t; v) =vfL(vt), (8.2)

where the function fL(·) is the chord length PDF given in (8.1).

Proof. The sojourn time is the ratio of distance traveled by the UE in a cell to the velocity

of the UE, T = L/v. Using this relationship, we can express sojourn time distribution as,

FT (t; v) = P (T ≤ t; v) = P

(
L

v
≤ t
)

= FL(vt).

By differentiating the sojourn time distribution with respect to t, we can obtain the sojourn

time PDF as,

fT (t; v) = ∂FT (t;v)
∂t = ∂FL(vt)

∂t = vfL(vt).

The plots of sojourn time PDF for different SBS densities are shown in Figure 8.2 for a

UE velocity v = 60 km/h.
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Figure 8.2: Sojourn time PDF for different SBS densities, with v = 60 km/h.

8.2 CRLB for Velocity Estimation

In this section, we derive the CRLB for velocity estimation using the sojourn time samples

obtained during a fixed time interval Tw. The number of sojourn time samples N is a
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random variable which is equal to the number of handovers during the time interval Tw.

We first obtain an expression for the JPDF of the N sojourn time samples, and then use

this JPDF to derive the CRLB.

Let T = [Tn : n = 0, 1, ..., N − 1] be a vector of N sojourn time samples. Using exten-

sive simulations, we have found that the correlation between the sojourn time samples of

adjacent cells is less than 5.9%, which is a reasonably small value. Hence, for mathemati-

cal tractability, we assume that the sojourn time samples are independent. Therefore, the

JPDF of N sojourn time samples will be:

fT (t; v) =
N−1∏
n=0

fT (tn; v) = vN
N−1∏
n=0

fL(ln), (8.3)

where t = [tn ≥ 0 : n = 0, 1, ..., N−1] is a vector parameter, and ln = vtn is the chord length

corresponding to the nth sojourn time sample. A pre-requisite for the CRLB derivation is

that the JPDF must satisfy the regularity condition as will be shown next.

Lemma 3. The JPDF of N sojourn time samples which is shown in (8.3) satisfies the

following regularity condition:

E

[
∂ log fT (t; v)

∂v

]
= 0 for all v,

with E[·] being the expectation operator.

Proof. See Appendix 6.

Since the JPDF satisfies the regularity condition, the CRLB for velocity estimation can

be obtained using

var(v̂) ≥ 1

E

[(
∂ log fT (t;v)

∂v

)2
] , (8.4)

where var(·) is the variance operator. Next, we show that the CRLB in (8.4) can be

expressed in closed form.
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Theorem 4. The CRLB for velocity estimation of a UE using the sojourn time samples

measured within a time interval Tw is given by:

var(v̂) ≥ πv

17.52Tw

√
λ
. (8.5)

Proof. See Appendix 7.

8.3 Sojourn Time Based Velocity Estimator

In this section, we derive an estimator which takes N sojourn time samples as the input

and estimates the UE velocity, provided that the SBS density λ is known. We start deriving

the estimator by using mean sojourn time given by:

E[T ] = E

[
L

v

]
=
E[L]

v
=

π

4v
√
λ
. (8.6)

The last step in (8.6) was obtained through the expression for mean cross-sectional length

which is derived in [153]. By rearranging the terms in (8.6) and using E[T ] = 1/N
∑N−1

n=0 Tn,

we can obtain a velocity estimator as

v̂ =
πN

4
√
λ
∑N−1

n=0 Tn
. (8.7)

An estimator is said to be unbiased if its expected value is same as the true value of the

parameter being estimated. Unbiasedness ensures that, on the average, the estimator yields

the true value of the unknown parameter. To check if (8.7) is an unbiased estimator, we

derive the expectation as

E[v̂] =
πN

4
√
λ
E

[
1∑N−1

n=0 Tn

]
6= v. (8.8)
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Figure 8.3: CRLB and estimator variance versus N , for different UE velocities.

Since E[v̂] 6= v, v̂ in (8.7) is not an unbiased estimator. However, as N tends to infinity, we

get,

lim
N→∞

E[v̂] =
π

4
√
λ
E

 1

lim
N→∞

1
N

∑N−1
n=0 Tn

 ,
=

π

4
√
λ
E

[
1

E[Tn]

]
=

π

4
√
λ
E

[
4v
√
λ

π

]
= v. (8.9)

Therefore, the estimator in (8.7) is asymptotically unbiased.

The variance of the velocity estimator can be expressed as

var(v̂) =E
[
v̂2
]
− (E[v̂])2,

=

(
πN

4
√
λ

)2
E
( 1∑N−1

n=0 Tn

)2
−(E[ 1∑N−1

n=0 Tn

])2. (8.10)

8.4 Numerical Results

The plots of CRLB and estimator variance are shown in Figure 8.3 for different N and v

values, with λ = 3000 SBSs/km2. The CRLB plots were obtained using (8.5), while the

plots of estimator variance were obtained through numerical computation of (8.10). It can

be observed that the root mean squared error (RMSE) increases with the increasing UE
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velocity. On the other hand, the RMSE decreases as the number of sojourn time samples

increases. Also, as N increases, the difference between the CRLB and the estimator variance

is reduced.

Next, we compare the CRLBs of the handover-count based and the sojourn-time based

velocity estimation methods. The handover-count based velocity estimation method is

analyzed in [165], where a UE’s velocity is estimated based on the number of small cells

traversed by the UE during a predefined time interval. In [165], CRLB for the handover-

count based velocity estimation is derived to be

var(v̂ho) ≥

1

2

(
0.41Tw

√
λ

σ2

)2

+
( µ
vσ

)2

−1

, (8.11)

where µ = 4vTw

√
λ/π, and σ2 = 0.07 + 0.41vTw

√
λ. The CRLBs of sojourn-time method

and handover-count method are compared in Figure 8.4. The measurement time interval

is fixed to Tw = 12 seconds for both the methods. It can be observed in Figure 8.4 that

the CRLB of sojourn-time method is smaller than the CRLB of handover-count method,

for all the UE velocities and the densities of SBSs. This is because the handover count

method estimates the UE velocity by making use of only the handover count information.

In contrast, the sojourn time method uses both handover count information and sojourn
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time information for the velocity estimation. Hence, theoretically the sojourn time method

provides better accuracy for the UE velocity estimation.

The variance of sojourn-time based velocity estimator is also plotted in Figure 8.4 in

comparison with the CRLBs. It can be seen that the estimator variance does not attain the

CRLB of sojourn-time method. Deriving an efficient estimator that can attain the CRLB

of sojourn-time method is a challenging task due to the complexity of the sojourn-time PDF

expression, and it is left as a future work.
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CHAPTER IX

Energy Efficiency in HetNets

In this chapter, we use stochastic geometry to analyze the EE and SE in a two-tier LTE-

Advanced HetNet. We consider range expansion and FeICIC which has been standardized

in 3GPP Release-11. We optimize system parameters of the HetNet and study the trade-offs

associated between EE and SE of the network.

9.1 System Model

We consider a two-tier HetNet system with MBS, PBS and UE locations modeled as two-

dimensional homogeneous PPPs of intensities λ, λ′ and λu, respectively. Both the MBSs

and the PBSs share a common transmission bandwidth. We assume round robin scheduling

in all the downlinks of a cell. We also assume that the cells have full buffer traffic and the

thermal noise is negligible when compared to interference.

A REB is added to the RSRP of small cells during UE association, to virtually increase

the coverage areas of small cells and improve the offloading of UEs to the picocells. However,

the picocell SIR in the range expanded region is lower than the macrocell SIR. As a

result, the offloaded UEs in the range expanded region of picocells might experience high

interference from the umbrella macrocell. This interference can be mitigated using FeICIC

in which the MBS transmits at reduced power during certain subframes, while the PBSs

transmit at full power during all the subframes, as illustrated in Fig. 9.1. Here, β is the

duty cycle of USFs, i.e., ratio of the number of USFs to the total number of sub-frames in a

frame. During USFs, the MBS transmits at full power Pmbs and during CSFs, it transmits

at a reduced power αPmbs, where 0 ≤ α ≤ 1 is the power reduction factor. The PBS

transmits with power Ppbs during all the subframes.

For an arbitrary UE, let r and r′ be the distances from its nearest MBS and PBS,

respectively. Then, assuming Rayleigh fading channel, the RSRPs from the nearest MBS

and PBS are given by, S(r) = PmbsH/r
δ and S′(r′) = PpbsH

′/(r′)δ, respectively. Here, δ is
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Figure 9.1: Frame structure at MBS and PBS with reduced power subframes.

the path-loss exponent, and the random variables H ∼ Exp(1) and H ′ ∼ Exp(1) account

for Rayleigh fading. Define an interference term, Z, as the total interference power at a UE

from all the MBSs and PBSs, excluding the nearest MBS and PBS. Then, an arbitrary UE

experiences the following four SIRs in different subframe types shown in Fig. 9.1:

Γ =
S(r)

S′(r′) + Z
,→ USF SIR from nearest MBS (9.1)

Γ′ =
S′(r′)

S(r) + Z
,→ USF SIR from nearest PBS (9.2)

Γcsf =
αS(r)

S′(r′) + Z
,→ CSF SIR from nearest MBS (9.3)

Γ′csf =
S′(r′)

αS(r) + Z
.→ CSF SIR from nearest PBS (9.4)

The cell selection and scheduling process using Γ, Γ′ and the REB τ can be performed

using the criteria shown in Fig. 9.2. Here, ρ and ρ′ are the scheduling thresholds used in

macrocell and picocell, respectively. Using the model described in this section, a sample

UE

MUE

PUE

USF-MUE

CSF-MUE

CSF-PUE

USF-PUE

Γ > 𝜏Γ′

Γ ≤ 𝜏Γ′

Γ ≤ 𝜌

Γ > 𝜌

Γ′ ≤ 𝜌′

Γ′ > 𝜌′

Cell selection
Scheduling

Figure 9.2: Cell selection and scheduling criteria in different subframes.

layout of MBSs and PBSs with their coverage areas for the four different UE categories are

illustrated in Fig. 9.3. Here, the coverage regions for USF- and CSF-PUEs in picocells are

colored in orange and green, respectively. Whereas in macrocells, the coverage regions for

USF- and CSF-MUEs are colored in white and blue, respectively.
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Figure 9.3: Illustration of two-tier HetNet layout.

Using Shannon’s capacity formula, the SE of a UE can be expressed as C = log2(1 +

SIR), where SIR can be Γ,Γ′,Γcsf or Γusf depending on the UE’s category. The EE in a

HetNet can be defined as

EE =
Area SE

Area power consumption
, (9.5)

where, “Area SE” is the achieved SE per unit area in bps/Hz/m2, and “Area power con-

sumption” is the power consumption of the network infrastructure per unit area in W/m2.

According to (9.5), increasing the area SE will increase the EE. However, increasing the

area SE might involve setting up of more BSs which will also increase the area power con-

sumption. Therefore, there is a trade-off associated between the SE and EE enhancements.

We formulate the following two optimization problems,

max
ρ,ρ′,β,α

EE and max
ρ,ρ′,β,α

Clog =
∑
i

log(Ci),

for maximizing the EE and the SE with proportional fair scheduling (PFS), respectively.

Here, Ci is the SE of user i in a cell, and the summation is over all the users in the cell. The

maximization of logarithmic sum capacity, Clog, is taken into account, which corresponds

to PFS [121].
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9.2 Numerical Results

In this section, we will present the results for joint optimization of the FeICIC parame-

ters for given densities of macrocell/picocell tiers and their respective transmission powers.

Preliminary results on joint optimization of parameters ρ, ρ′, β, and α are presented in

Fig. 9.4, which shows the maximized EE as a function of PBS density relative to the MBS

density. Here, the path loss exponent δ = 4 and the transmit powers of MBSs and PBSs

are Pmbs = 46 dBm and Ppbs = 30 dBm respectively. Results show that increasing the

network density or the REB improves the EE. The EE is about 0.18 bps/Hz/W when the

PBS density is equal to the MBS density, and the REB does not have noticeable impact on

the EE. When the PBS density is increased to ten times the MBS density, the EE increases

to 46 bps/Hz/W with no REB (τ = 0 dB) and to 0.55 bps/Hz/W with an REB of 12 dB.

On the other hand, EE-maximizing selection of α is seen to be decreasing with increasing

PBS density, and eventually becomes zero. In other words, for high PBS densities, 3GPP

Rel. 10 eICIC with almost blank subframes becomes optimal.
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Figure 9.4: Optimum EE and corresponding α, versus PBS density.

In Fig. 9.5, the impact of network densification on the SE is investigated in a similar

scenario. Fig. 9.5 shows the maximized Clog as a function of PBS density relative to the

MBS density. For the same scenario, the optimum α value is also shown as a function of

relative PBS density. Two different transmission powers of PBSs (10 dBm and 30 dBm)

are considered, along with the range expansion bias values of {0, 6, 12} dB. Results show
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that the maximum Clog increases as a function of PBS density, REB, and PBS transmission

power. The optimum α increases with increasing PBS density or increasing Ppbs. For

dense PBS deployments with high transmission powers (30 dBm), results show that not

implementing interference coordination becomes preferable, since optimum value of α in

Fig. 9.5 converges to 1 (the MBS always transmits will full power in all subframes). On the

other hand, for lower transmission powers, interference coordination with α between 0.13

and 0.25 maximizes the logarithmic sum capacity for PBS densities up to 10× that of PBS

density. This behavior of α is in contrast to the EE-optimized α values in Fig. 9.4, and

calls for further studies to investigate the design trade-offs for future deployments of dense

HetNets, jointly considering the SE and the EE perspectives.
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CHAPTER X

Concluding Remarks and Future Work

The next generation cellular networks are expected to be composed of densely deployed

small cells in order to keep up with the exponentially increasing mobile data traffic. There

are many challenges associated with such densely deployed HetNets. In this research, we

have studied some of the important challenges which can be categorized into capacity en-

hancement, mobility management, and energy efficiency enhancement. In this chapter, we

present the conclusions of this research work and also identify key directions for future

research.

In Chapter III, spectral efficiency and 5th percentile throughput expressions were de-

rived for HetNets with reduced power subframes and range expansion. These expressions

were validated using the Monte Carlo simulations. Joint optimization of the key system

parameters, such as range expansion bias, power reduction factor, scheduling thresholds,

and duty cycle of reduced power subframes, was performed to achieve maximum aggregate

capacity and proportional fairness among users. Our analysis showed that under optimum

parameter settings, the HetNet with reduced power subframes yields better performance

than that with almost blank subframes (eICIC) in terms of both aggregate capacity and

proportional fairness. However, transmitting the reduced power subframes with greater

than half the maximum power proved to be inefficient because it degraded both the aggre-

gate capacity and the proportional fairness. Increasing the range expansion bias improved

the proportional fairness but degraded the aggregate capacity. In case of eICIC, the duty

cycle of almost blank subframes had a significant effect on the fairness, but with reduced

power subframes and optimized scheduling thresholds, duty cycle had a limited effect on

fairness. Hence, fixing the duty cycle and optimizing the scheduling thresholds was prefer-

able since it avoids the overhead of coordinating the duty cycle among the cells through the

X2 interface. We also compared the 5th percentile SE results from PPP model with that

of real BS deployment and hexagonal grid model. We observed that the hex grid model
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forms the upper bound while the PPP model forms the lower bound. Increasing the PBS

density or the PBS transmit power would improve the 5th percentile SE. In this study,

we considered SIR as the only deciding factor for UE association. However in real LTE

networks, UE association criteria also include factors such as UE velocity, load conditions

in cells, and backhaul capacity. An important direction for future research would be to take

such factors into account for capturing a wider range of deployment scenarios.

In Chapter IV, we showed that the public safety communications can significantly ben-

efit from deploying UABSs in the event of any damage to the network infrastructure due to

natural calamities or malevolent attacks. Through simulations and genetic algorithm, we

showed that SE coverage and 5th percentile SE of the network can be improved significantly

by optimally placing the UABSs. Higher path-loss exponent of the channel is shown to pro-

vide significant improvement in the SE coverage and 5th percentile SE of the network. The

use of REB for UABSs provided higher gains when more number of UAVs were deployed.

The potential benefits of using inter-cell interference coordination techniques with the REB

are yet to be studied. Other directions for future research include studying the impact of

UABSs in generalized HetNet scenario (consisting of small-cells such as picocells and fem-

tocells), studying the delay in transmitted messages with non-full buffer traffic model, and

developing path planning algorithms for UAV placement.

In Chapter V, we proposed a novel spectrum market where sharing is promoted explicitly

by the government. The government offers subsidy support to the wireless operators and

requires a performance metric to be reported. We considered this metric to be the number of

outside customers served by the operator, where outside customer means a customer who is

not subscribed to that particular operator. This way, the operators are motivated to invest

their subsidy support into regions where likelihood of reaching and serving outside customers

is higher. This, in turn, increases the aggregate coverage area and the overall signal quality

the customers receive. Both of these end results are appealing to the government and are

the main reasons why the government should provide subsidy.

Our results showed how the government should influence the spectrum sharing by con-

trolling the subsidy amount allocated to each provider. Using real BS locations from two
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providers in two cities of UK, we studied how the providers can distribute the received

subsidy amount into different regions to serve maximum number of outside customers and

eventually maximize their revenues. Such a spectrum market will be attractive to the op-

erators and discourage monopolization, while the customers can seamlessly obtain better

service from the providers. Furthermore, small providers with relatively smaller infrastruc-

ture can survive in this type of market and successfully compete against large operators.

In this research work, we presented the results of a simplified spectrum market consisting

of two-regions and two-providers. A direction for future research would be to analyze the

results of a generalized spectrum market consisting of R regions and P providers. Another

research direction would be compare the social welfare of the spectrum subsidy scheme with

that of the roaming scheme.

In Chapter VI, we performed channel impulse response measurements in an indoor

office environment by using USRPs. A frequency domain channel sounding method was

employed to characterize a wide-band channel of bandwidth greater than the USRP sup-

ported bandwidth. The channel measurement data was utilized to determine the large-scale

and small-scale statistics of the channel, using which, a channel model was developed. Using

this channel model in a multi-hop D2D simulator, we analyzed the BER performance of

single-hop and two-hop communication scenarios with respect to the distance between the

source and destination nodes. Our simulation results showed that the two-hop case provides

significant improvement in the BER performance when compared to the single-hop case.

In Chapter VII, we derived a handover-count based MVU estimator for the velocity of a

UE, and derived optimum handover-count thresholds for MSD. We provided approximations

to the PMF of handover-count using two types of standard distributions: gamma distri-

bution and Gaussian distribution. We found that the PMF approximation using gamma

distribution, even though complicated when compared to Gaussian distribution, provided a

better fit to the PMF with a smaller MSE. On the other hand, the use of Gaussian distribu-

tion provided simpler and closed-form solutions to the PMF approximation. Subsequently,

we derived the CRLB of velocity estimation and a MVU velocity estimator whose variance

was approximately equal to the CRLB. The CRLB of velocity estimation decreases with the
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increasing time interval for counting the number of handovers, which showed the trade-off

between the accuracy and the rapidness of velocity measurements.

The increasing density of small-cells in the future cellular networks facilitates more ac-

curate UE velocity estimation, since the CRLB decreases with the increasing SBS density.

Moreover, the probability of MSD also increases with the increasing SBS density. The

results with RWP mobility model showed that the accuracy of the velocity estimator de-

creases with the increasing randomness in UE’s mobility. On the other hand, results with

Matern-cluster process showed that the estimation accuracy is poorer with clustered SBS

deployment when compared to the homogeneous SBS deployment. Future research direc-

tions may include: path prediction of UEs, and development of algorithms to dynamically

adjust the measurement time interval depending on the past samples of estimated velocity.

In Chapter VIII, we derived a closed-form expression for the CRLB of sojourn-time

based velocity estimation, which is a function of small cell density, UE velocity, and mea-

surement time interval. We also derived an asymptotically unbiased velocity estimator.

Theoretically, the sojourn-time based velocity estimation was shown to be more accurate

than the handover-count based velocity estimation. Future work includes incorporating

more realistic mobility model, developing efficient UE velocity estimator that uses sojourn

time samples, and modeling uncertainties in the boundary detection of small cells.

In Chapter IX, we analyzed the EE and SE in a two-tier HetNet that uses range ex-

pansion and reduced power subframes. The SE and EE in the HetNet can be increased

substantially by increasing the density of small cells. The range expansion provides higher

gains in the EE and SE of the network when the PBS density is much higher than the MBS

density. We showed the trade-off associated with the optimum power level of the reduced

power subframes (α) for maximizing EE and maximizing SE with PFS.
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[61] C. Barrado, R. Messeguer, J. López, E. Pastor, E. Santamaria, and P. Royo, “Wildfire
monitoring using a mixed air-ground mobile network,” IEEE Perv. Computing, vol. 9,
no. 4, pp. 24–32, 2010.

[62] “Amazon Prime Air.” [Online]. Available: http://www.amazon.com/b?node=
8037720011

[63] L. P. Koh, “A drone’s-eye view of conservation,” June 2013. [Online]. Available:
http://www.ted.com/talks/lian pin koh a drone s eye view of conservation

[64] “Google Loon project.” [Online]. Available: http://www.google.com/loon/

[65] A. Abdulsalam, H. Li, and J. Zhang, “Internet for all: Stratospheric solutions by
Google Loon and Facebook drone,” Technical Report, Mar. 2014.

[66] “Aerial base stations with opportunistic links for unexpected and temporary events.”
[Online]. Available: http://www.absolute-project.eu/

[67] “Spectrum sharing,” NTIA, June 2014. [Online]. Available: http://www.ntia.doc.gov
/category/spectrum-sharing

[68] “Spectrum-sharing plan approved by FCC,” National Journal, Aug. 2012. [Online].
Available: http://www.nationaljournal.com/blogs/techdailydose/2012/08/spectrum-
sharing-plan-approved-by-fcc-15

[69] M. M. Sohul, M. Yao, T. Yang, and J. H. Reed, “Spectrum access system for the
citizen broadband radio service,” IEEE Commun. Mag., vol. 53, no. 7, pp. 18–25,
2015.

154



[70] H. Celebi, I. Guvenc, S. Gezici, and H. Arslan, “Cognitive-radio systems for spec-
trum, location, and environmental awareness,” IEEE Antennas and Propagation
Mag., vol. 52, no. 4, pp. 41–61, Aug. 2010.

[71] R. Zhang, Y.-C. Liang, and S. Cui, “Dynamic resource allocation in cognitive radio
networks,” IEEE Signal Processing Mag., vol. 27, no. 3, pp. 102–114, 2010.

[72] B. Wang and K. Liu, “Advances in cognitive radio networks: A survey,” IEEE J.
Select. Topics in Signal Processing, vol. 5, no. 1, pp. 5–23, 2011.

[73] S. M. Yu and S.-L. Kim, “Guaranteeing user welfare in network service: Comparison
of two subsidy schemes,” Performance Evaluation Review, vol. 40, no. 2, pp. 22–25,
September 2012.

[74] N. Jesuale, “Lights and sirens broadband – how spectrum pooling, cognitive radio,
and dynamic prioritization modeling can empower emergency communications, restore
sanity and save billions,” in Proc. IEEE Symp. New Frontiers in Dynamic Spectrum
Access Networks (DySPAN), May 2011, pp. 467–475.

[75] U. Kelkar and N. Aerrabotu, “Over-the-air subsidy lock resolution,” USPTO Patent
US 7088988 B2, 2006.

[76] A. Toor, “Europe puts an end to mobile roaming charges,” The Verge, Oct.
2015. [Online]. Available: http://www.theverge.com/2015/10/27/9620346/european-
parliament-mobile-roaming-charges-law

[77] S. Fabrizi and B. Wertlen, “Roaming in the mobile internet,” Telecom-
munications Policy, vol. 32, no. 1, pp. 50–61, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0308596107001024

[78] L. Giupponi, R. Agusti, J. Perez-Romero, and O. Sallent, “Improved revenue and
radio resource usage through inter-operator joint radio resource management,” in
Proc. IEEE Int. Conf. Commun. (ICC), 2007, pp. 5793–5800.

[79] H.-B. Chang and K.-C. Chen, “Cooperative spectrum sharing economy for heteroge-
neous wireless networks,” in Proc. IEEE Global Telecommunications Conf. (GLOBE-
COM) Workshops, 2011, pp. 458–463.

[80] R. Berry, M. Honig, T. Nguyen, V. Subramanian, H. Zhou, and R. Vohra, “On the
nature of revenue-sharing contracts to incentivize spectrum-sharing,” in Proc. IEEE
INFOCOM, 2013, pp. 845–853.

[81] S. Barbera, P. Michaelsen, M. Saily, and K. Pedersen, “Improved mobility perfor-
mance in LTE co-channel hetnets through speed differentiated enhancements,” in
Proc. IEEE Globecom Workshops (GC Wkshps), 2012, pp. 426–430.

[82] 3GPP, “Evolved universal terrestrial radio access (E-UTRA); radio resource control
(RRC); protocol specification, (TS 36.331).”

[83] 3GPP TS 36.304, “User Equipment (UE) procedures in idle mode,” 3GPP-TSG RAN,
bb, Tech. Rep. 8.5.0, Mar. 2009.

155



[84] M. Ishii and M. Iwamura, “User device and method in mobile communication
system,” European Patent No: 2187671 A1, May 2010. [Online]. Available:
https://www.google.com/patents/EP2187671A1

[85] A. Sampath and J. Holtzman, “Estimation of maximum Doppler frequency for handoff
decisions,” in Proc. IEEE Veh. Technol. Conf. (VTC), Secaucus, NJ, May 1993, pp.
859–862.

[86] B. Zhou and S. Blostein, “Estimation of maximum Doppler frequency for handoff
decisions,” in Proc. Sixth Can. Workshop on Info. Theory, June 1999, pp. 111–114.

[87] L. Zhou and S. D. Blostein, “Recursive maximum likelihood estimation of maximum
Doppler frequency of a sampled fading signal,” in Proc. Biennial Sym. on Commun.,
2000, pp. 361–365.

[88] J. Pang, Q. JIANG, G. Shen, and D. Wang, “Method, appa-
ratus, and system for biasing adjustment of cell range expansion,”
Oct. 2 2014, wO Patent App. PCT/IB2014/000,572. [Online]. Available:
http://www.google.com/patents/WO2014155197A1?cl=en

[89] X. Lin, R. Ganti, P. Fleming, and J. Andrews, “Towards understanding the funda-
mentals of mobility in cellular networks,” IEEE Trans. Wireless Commun., vol. 12,
no. 4, pp. 1686–1698, April 2013.

[90] W. Bao and B. Liang, “Handoff rate analysis in heterogeneous cellular networks: A
stochastic geometric approach,” in Proc. ACM Int. Conf. on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, Montreal, QC, Canada, Sept. 2014, pp.
95–102.

[91] Y. Hong, X. Xu, M. Tao, J. Li, and T. Svensson, “Cross-tier handover analyses in small
cell networks: A stochastic geometry approach,” in Proc. IEEE Int. Conf. Commun.
(ICC), London, UK, June 2015, pp. 3429–3434.

[92] S. Sadr and R. Adve, “Handoff rate and coverage analysis in multi-tier heterogeneous
networks,” IEEE Trans. Wireless Commun., vol. PP, no. 99, pp. 1–1, Jan. 2015.

[93] A. Nadembega, A. Hafid, and T. Taleb, “A destination and mobility path prediction
scheme for mobile networks,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2577–
2590, 2015.

[94] ——, “Mobility-prediction-aware bandwidth reservation scheme for mobile networks,”
IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2561–2576, 2015.

[95] T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades, “Efficient loca-
tion prediction in mobile cellular networks,” Int. J. Wireless Inform. Networks, vol. 19,
no. 2, pp. 97–111, 2012.

[96] J. Pan, S. Pan, J. Yin, L. Ni, and Q. Yang, “Tracking mobile users in wireless networks
via semi-supervised colocalization,” IEEE Trans. Pattern Analysis and Machine In-
telligence, vol. 34, no. 3, pp. 587–600, 2012.

156



[97] X. Lin, R. Ganti, P. Fleming, and J. Andrews, “Towards understanding the funda-
mentals of mobility in cellular networks,” IEEE Trans. Wireless Commun., vol. 12,
no. 4, pp. 1686–1698, Apr. 2013.

[98] Y.-U. Chung, D.-J. Lee, D.-H. Cho, and B.-C. Shin, “Macrocell/microcell selection
schemes based on a new velocity estimation in multitier cellular system,” IEEE Trans.
Vehic. Technol., vol. 51, no. 5, pp. 893–903, Sep. 2002.

[99] M. Gudmundson, “Cell planning in Manhattan environments,” in Proc. IEEE Vehic.
Technol. Conf. (VTC), Denver, CO, May 1992, pp. 435–438.

[100] “Earth - energy aware radio and network technologies.” [Online]. Available:
https://www.ict-earth.eu/

[101] Z. Hasan, H. Boostanimehr, and V. Bhargava, “Green cellular networks: A survey,
some research issues and challenges,” IEEE Commun. Surveys Tutorials, vol. 13, no. 4,
pp. 524–540, Nov. 2011.

[102] F. Richter, A. Fehske, and G. Fettweis, “Energy efficiency aspects of base station de-
ployment strategies for cellular networks,” in IEEE Vehicular Technol. Conf. (VTC),
Anchorage, AK, Sept 2009, pp. 1–5.

[103] F. Richter and G. Fettweis, “Cellular mobile network densification utilizing micro base
stations,” in IEEE International Conf. Commun. (ICC), Cape Town, South Africa,
May 2010, pp. 1–6.

[104] S. Tombaz, M. Usman, and J. Zander, “Energy efficiency improvements through het-
erogeneous networks in diverse traffic distribution scenarios,” in International ICST
Conf. Commun. and Networking in China (CHINACOM), Harbin, China, Aug 2011,
pp. 708–713.

[105] L. Saker, S.-E. Elayoubi, L. Rong, and T. Chahed, “Capacity and energy efficiency of
picocell deployment in LTE-A networks,” in IEEE Vehicular Technol. Conf. (VTC),
Budapest, Hungary, May 2011, pp. 1–5.

[106] A. Saeed, A. Akbari, M. Dianati, and M. A. Imran, “Energy efficiency analysis for
LTE macro-femto HetNets,” in Proc. European Wireless Conf. (EW), Guildford, UK,
April 2013, pp. 1–5.

[107] P. Luoto, P. Pirinen, and M. Latva-aho, “Energy efficient load sharing in LTE-A Het-
Nets,” in IEEE Int. Conf. Wireless and Mobile Computing, Networking and Commun.
(WiMob), Lyon, France, Oct 2013, pp. 119–123.

[108] S. Samarakoon, M. Bennis, W. Saad, and M. Latva-aho, “Opportunistic sleep mode
strategies in wireless small cell networks,” in Proc. IEEE International Conference on
Communications (ICC), Sydney, NSW, June 2014, pp. 2707–2712.

[109] Y. Fu, Z. Fei, N. Wang, C. Xing, and L. Wan, “An energy-efficient dense picostation
deployment and power control strategy for heterogeneous networks,” Smart Comput-
ing Review, vol. 3, no. 1, pp. 24–32, Feb. 2013.

157



[110] Y. S. Soh, T. Quek, M. Kountouris, and H. Shin, “Energy efficient heterogeneous
cellular networks,” IEEE J. Select. Areas Commun. (JSAC), vol. 31, no. 5, pp. 840–
850, 2013.

[111] D. Cao, S. Zhou, and Z. Niu, “Optimal combination of base station densities for
energy-efficient two-tier heterogeneous cellular networks,” IEEE Trans. Wireless
Commun., vol. 12, no. 9, pp. 4350–4362, 2013.

[112] W. Nie, F. Zheng, X. Wang, S. Jin, and W. Zhang, “Energy efficiency of cross-tier
base station cooperation in heterogeneous cellular networks,” Submitted to the IEEE
Trans. Wireless Commun. (TWC), 2014.

[113] H. Wang, J. Jiang, J. Li, M. Ahmed, and M. Peng, “High energy efficient hetero-
geneous networks: Cooperative and cognitive techniques,” Hindawi Int. J. Antennas
and Propagation, vol. 2013, p. 7, 2013.

[114] S. Mukherjee and H. Ishii, “Energy efficiency in the phantom cell enhanced local
area architecture,” in Proc. IEEE Wireless Commun. Networking Conf., 2013, pp.
1267–1272.

[115] D. Tsilimantos, J.-M. Gorce, and E. Altman, “Stochastic analysis of energy savings
with sleep mode in OFDMA wireless networks,” in Proc. IEEE INFOCOM, Turin,
Italy, April 2013, pp. 1097–1105.

[116] X. Zhang, Z. Su, Z. Yan, and W. Wang, “Energy-efficiency study for two-tier heteroge-
neous networks (HetNet) under coverage performance constraints,” Mobile Networks
and Applications, vol. 18, no. 4, pp. 567–577, 2013.

[117] Mpact lab data management. [Online]. Available: http://www.mpact.fiu.edu/data-
management/

[118] S. Mukherjee, “UE coverage in LTE macro network with mixed CSG and open access
femto overlay,” in Proceedings of the IEEE Int. Conf. Commun. (ICC) Workshops,
Kyoto, Japan, June 2011, pp. 1–6.

[119] S. M. Yu and S.-L. Kim, “Downlink capacity and base station density in cellular net-
works,” in Proceedings of the IEEE SpaSWiN workshop (in conjunction with WiOpt),
Tsukuba Science City, Japan, May 2013, pp. 119–124.

[120] J. Moller and D. Stoyan, “Stochastic geometry and random tessellations,” Research
Report R-2007-28, Department of Mathematical Sciences, Aalborg University, 2007.

[121] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using dumb an-
tennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, Aug. 2002.

[122] M. R. Jeong and N. Miki, “A comparative study on scheduling restriction schemes
for lte-advanced networks,” in Proceedings of the IEEE 23rd Int. Symp. Personal
Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, Sept. 2012,
pp. 488–495.

158



[123] M. Simsek, M. Bennis, and I. Guvenc, “Enhanced intercell interference coordination
in HetNets: Single vs. multiflow approach,” in Proc. IEEE Globecom Workshops (GC
Wkshps), Atlanta, GA, Dec 2013, pp. 725–729.

[124] M. Simsek, M. Bennis, and A. Czylwik, “Dynamic inter-cell interference coordination
in hetnets: A reinforcement learning approach,” in IEEE Global Communications
Conference (GLOBECOM), Anaheim, CA, Dec 2012, pp. 5446–5450.

[125] “Backhauling x2,” Cambridge Broadband Networks, Apr. 2011. [Online]. Available:
http://cbnl.com/sites/all/files/userfiles/files/Backhauling-X2.pdf

[126] Sitefinder website. [Online]. Available: http://www.sitefinder.ofcom.org.uk

[127] M. Kobayashi, “Experience of infrastructure damage caused by the great east Japan
earthquake and countermeasures against future disasters,” IEEE Commun. Mag.,
vol. 52, no. 3, pp. 23–29, Mar. 2014.

[128] C. Essid, “Nationwide public safety broadband network,” Dept. of Homeland
Security, Office of Emergency Communications Report, June 2012. [Online].
Available: http://www.dhs.gov/sites
/default/files/publications/Fact%20Sheet Nationwide%20Public
%20Safety%20Broadband%20Network.pdf

[129] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor: University
of Michigan Press, 1975.

[130] S. Rohde, M. Putzke, and C. Wietfeld, “Ad hoc self-healing of OFDMA networks
using UAV-based relays,” Ad Hoc Networks, vol. 11, no. 7, pp. 1893–1906, 2013.

[131] E. Yanmaz, S. Hayat, J. Scherer, and C. Bettstetter, “Experimental performance
analysis of two-hop aerial 802.11 networks,” in Proc. IEEE Wireless Commun. and
Net. Conf (WCNC), Istanbul, Turkey, 2014.

[132] M. Shubik, The Theory of Money and Financial Institutions. Cambridge, MA: MIT
Press, 2011, vol. 3.

[133] T. Quint and M. Shubik, Barley, Gold, and Fiat: A Pure Theory of Money (in press).
Yale University Press, 2013.

[134] Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjorungnes, Game Theory in Wire-
less and Communication Networks: Theory, Models, and Applications. Cambridge
University Press, 2011.

[135] S. Chowdhury, D. Kovenock, and R. Sheremeta, “An experimental investigation of
colonel blotto games,” Economic Theory, vol. 52, pp. 833–861, 2013.

[136] D. Kovenock and B. Roberson, ser. Oxford Handbook of the Economics of Peace
and Conflict. New York: Oxford University Press, 2010, ch. Conflicts with Multiple
Battlefields, pp. 503–531.

159



[137] E. Dechenau, D. Kovenock, and R. Sheremeta, “A survey of experimental research on
contests, all-pay auctions, and tournaments,” Chapman University, Economic Science
Institute, working paper number 12-22, 2012.

[138] M. J. Osborne, An Introduction to Game Theory. Oxford University Press, 2004.

[139] S. Lang, Analysis I. Addison-wesley, 1968.

[140] National Instruments. (2014, Feb. 14) NI USRP. [Online]. Available:
https://www.ni.com/usrp/

[141] R. W. Heath, “Introduction to wireless digital communication: A signal processing
perspective,” .

[142] C. Gentile, N. Golmie, K. Remley, C. Holloway, and W. Young, “A channel propaga-
tion model for the 700 MHz band,” in Proc. IEEE Int. Conf. Commun. (ICC), Cape
Town, South Africa, May 2010, pp. 1–6.

[143] L. Greenstein, S. Ghassemzadeh, S.-C. Hong, and V. Tarokh, “Comparison study of
UWB indoor channel models,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp.
128–135, Jan. 2007.

[144] S. Ghassemzadeh, L. Greenstein, T. Sveinsson, A. Kavcic, and V. Tarokh, “UWB de-
lay profile models for residential and commercial indoor environments,” IEEE Trans.
Veh. Technol., vol. 54, no. 4, pp. 1235–1244, July 2005.

[145] N. Udar, K. Kant, R. Viswanathan, and D. Cheung, “Ultra wideband channel char-
acterization and ranging in data centers,” in Proc. IEEE Int. Conf. Ultra-Wideband
(ICUWB), Singapore, Sep. 2007, pp. 322–327.

[146] A. Alvarez, G. Valera, M. Lobeira, R. Torres, and J. Garcia, “New channel impulse
response model for UWB indoor system simulations,” in Proc. IEEE Veh. Technol.
Conf. (VTC), vol. 1, Apr. 2003, pp. 1–5 vol.1.

[147] H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-B :C-
plane/U-plane split and phantom cell concept,” in Proc. IEEE Global Telecommun.
Conf. (GLOBECOM) Workshops, Anaheim, CA, Dec. 2012, pp. 624–630.

[148] Nokia Networks, “Evolution to ultra-dense networks.” [Online]. Avail-
able: http://networks.nokia.com/portfolio/latest-launches/evolution-to-ultra-dense-
networks

[149] H.-S. Park, A.-S. Park, J.-Y. Lee, and B.-C. Kim, “Two-step handover for LTE hetnet
mobility enhancements,” in Proc. IEEE Int. Conf. ICT Convergence (ICTC), Jeju
Island, Korea, Oct 2013, pp. 763–766.

[150] D. Lopez-Perez, I. Guvenc, and X. Chu, “Theoretical analysis of handover failure
and ping-pong rates for heterogeneous networks,” in Proc. IEEE Int. Conf. Commun.
(ICC), Ottawa, ON, June 2012, pp. 6774–6779.

160



[151] NTT DOCOMO, “5G radio access: Requirements, concept and technologies,” White
Paper, July 2014. [Online]. Available: https://www.nttdocomo.co.jp/english/binary
/pdf/corporate/technology/whitepaper 5g/DOCOMO 5G White Paper.pdf

[152] Huawei, HiSilicon, “Efficient discovery of small cells and the configurations,” Tech.
Rep. 3GPP TSG RAN R1-130895, Apr. 2013.

[153] J. Moller, Lectures On Random Voronoi Tessellations. Springer-Verlag, 1994.

[154] M. Tanemura, “Statistical distributions of poisson voronoi cells in two and three
dimensions,” Forma, vol. 18, no. 4, pp. 221–247, 2003.

[155] J.-S. Ferenc and Z. Nda, “On the size distribution of poisson voronoi cells,” Physica
A: Statistical Mechanics and its Applications, vol. 385, no. 2, pp. 518 – 526, 2007.

[156] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
Prentice-Hall, Inc., 1993.

[157] 3GPP, “Overview of 3GPP release 8,” Tech. Rep. V0.3.3, Sep. 2014.

[158] Huawei, HiSilicon, “Further evaluation on enhancements of mobility state estimation
in hetnet,” Tech. Rep. 3GPP TSG RAN R2-121250, Mar. 2012.

[159] M. Mehta, N. Akhtar, and A. Karandikar, “Enhanced mobility state estimation in
LTE hetnets,” in Proc. National Conf. Commun. (NCC), Mumbai, India, Feb 2015,
pp. 1–6.

[160] H. Shen, K. Liu, D. Xiao, and Y. He, “The enhancements of UE mobility state estima-
tion in the Het-Net of the LTE-A system,” in Proc. Int. Conf. Information Technol.
and Software Engineering, ser. Lecture Notes in Electrical Engineering, W. Lu, G. Cai,
W. Liu, and W. Xing, Eds. Springer Berlin Heidelberg, 2013, vol. 210, pp. 99–106.

[161] J. Turkka, T. Henttonen, and T. Ristaniemi, “Self-optimization of LTE mobility
state estimation thresholds,” in Proc. IEEE Wireless Commun. and Networking Conf.
Workshops (WCNCW), Istanbul, Turkey, April 2014, pp. 161–165.

[162] A. Mohamed, O. Onireti, M. Imran, A. Imran, and R. Tafazolli, “Control-data sepa-
ration architecture for cellular radio access networks: A survey and outlook,” IEEE
Commun. Surveys Tutorials, vol. PP, no. 99, pp. 1–1, Jun. 2015.

[163] National Institute of Standards and Technology (NIST), “Ultra-dense networks.”
[Online]. Available: http://www.nist.gov/ctl/wireless-networks/ultra-dense-nets.cfm

[164] L. Muche, “Contact and chord length distribution functions of the poisson-voronoi
tessellaton in high dimensions,” Advances in Applied Probability, vol. 42, no. 1, pp.
48–68, Mar. 2010.

[165] A. Merwaday and I. Guvenc, “Handover count based velocity estimation and mobility
state detection in dense HetNets,” CoRR, vol. abs/1506.08248, Jun. 2015.

161



APPENDICES

162



Appendix 1: Derivation of JCCDF Expression

This part of the appendix derives closed form equation for the JCCDF in (3.12). Let us

start by rewriting the JCCDF expression,

P{Γ > γ,Γ′ > γ′|R = r,R′ = r′} = EZ

[∫ +∞

y1
fY(y)

∫ y/γ′−Z

γ(y+Z)
fX(x) dx dy

]
(A1.1)

where,

fX(x) = λx exp(−λxx) and fY(y) = λy exp(−λyy); (A1.2)

λx =
rδ

P
and λy =

(r′)δ

P ′
. (A1.3)

The inner integral in (A1.1) can be derived as,

∫ y/γ′−Z

γ(y+Z)
fX(x) dx = exp [−λxγ(y + Z)]− exp

[
−λx

(
y

γ′
− Z

)]
. (A1.4)

Then, the outer integral in (A1.1) can be derived as,

∫ +∞

y1
fY(y)

∫ y/γ′−Z

γ(y+Z)
fX(x) dx dy =λy

∫ +∞

y1
exp[−λyy − λxγ(y + Z)] dy

− λy

∫ +∞

y1
exp

[
−λyy − λx

(
y

γ′
− Z

)]
dy. (A1.5)

The first term in right hand side (RHS) of (A1.5) can be evaluated as,

λy

∫ +∞

y1
exp[−λyy − λxγ(y + Z)] dy =

1

1 + γλx
λy

exp

[−λxγZ(1 + γ′)− λyγ
′Z(1 + γ)

1− γγ′
]
.

(A1.6)

The second term in RHS of (A1.5) can be evaluated as,

λy

∫ +∞

y1
exp

[
−λyy − λx

(
y

γ′
− Z

)]
dy =

1

1 + λx
γ′λy

exp

[−λxγZ(1 + γ′)− λyγ
′Z(1 + γ)

1− γγ′
]
.

(A1.7)
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By substituting (A1.6) and (A1.7) in the first and second terms of (A1.5) respectively, we

get

∫ +∞

y1
fY(y)

∫ y/γ′−Z

γ(y+Z)
fX(x) dx dy

=

(
1

1 + γλx
λy

− 1

1 + λx
γ′λy

)
exp

[−λxγZ(1 + γ′)− λyγ
′Z(1 + γ)

1− γγ′
]
. (A1.8)

Substituting (A1.8) in (A1.1) and using (A1.3) we get,

P{Γ > γ,Γ′ > γ′|R = r,R′ = r′}

=

(
1

1 + γ P
′

P

(
r
r′

)δ − 1

1 + γ′ PP ′
(
r′

r

)δ
)
EZ

[
exp

(
−Z

γ(1+γ′)rδ

P + γ′(1+γ)(r′)δ

P ′

1− γγ′

)]
(A1.9)

Using the definition of Laplace transform, EZ [exp(−Zs)] = LZ(s), and further simplifica-

tion, we get

P{Γ > γ,Γ′ > γ′|R = r,R′ = r′} =
(1− γγ′)LZ

(
1

1−γγ′
(
γ(1+γ′)rδ

P + γ′(1+γ)(r′)δ

P ′

))
[
1 + γ P

′

P

(
r
r′

)δ] [
1 + γ′ PP ′

(
r′

r

)δ] .

(A1.10)
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Appendix 2: Derivation of JPDF Expression

Assuming δ = 4, the JCCDF expression in (A1.10) can be rewritten as,

P{Γ > γ,Γ′ > γ′|R = r,R′ = r′} = M1M2, (A2.1)

where,

M1 =
1− γγ′[

1 + γ P
′

P

(
r
r′

)4] [
1 + γ′ PP ′

(
r′

r

)4] , (A2.2)

M2 =LZ
(

1

1− γγ′
(
γ(1 + γ′)r4

P
+
γ′(1 + γ)(r′)4

P ′

))
. (A2.3)

After some tedious but straight forward algebraic steps, it can be shown that

M1 =
1

1 + γ
(

ã
1−ã

) +
1

1 + γ′
(

1−ã
ã

) − 1, (A2.4)

M2 = exp
{
g
(√

ã, βµ̃
)

+ g
(√

ã/α, (1− β)µ̃
√
α
)

+ g
(√

1− ã, 1− µ̃
)}
, (A2.5)

where, ã = 1

1+ P
P ′

(
r′
r

)4 , µ̃ = 1

1+λ′
λ

√
P ′
P

. The function g in (A2.5) is defined as

g(b, ν) = −νcB
(
π

2
− tan−1 b

c

)
, (A2.6)

where,

B =
πr2

√
P ã

(
λ
√
P + λ′

√
P ′
)

and c =

√
γ(1 + γ′)ã+ γ′(1 + γ)(1− ã)

1− γγ′ . (A2.7)

We can derive the JPDF by differentiating the JCCDF (A2.1) with respect to γ and γ′,

f
Γ,Γ′
∣∣R,R′(γ, γ′ ∣∣ r, r′) =

∂2

∂γ∂γ′
M1M2, (A2.8)
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where M1 and M2 are given by (A2.4) and (A2.5), respectively. By solving (A2.8) it can

be shown that the conditional JPDF

f
Γ,Γ′
∣∣R,R′(γ, γ′ ∣∣ r, r′) =M2h

(
∂M1

∂γ

∂c

∂γ′
+
∂M1

∂γ′
∂c

∂γ
+

∂2c

∂γ∂γ′
M1

)
+M1M2

∂c

∂γ

∂c

∂γ′

(
h2 +

∂h

∂c

)
, (A2.9)

where,

h =
lnM2

c
−Bc

[
βµ̃
√
ã

c2 + ã
+

(1− β)µ̃α
√
ã

c2α+ ã
+

(1− µ̃)
√

1− ã
c2 + 1− ã

]
, (A2.10)

∂M1

∂γ
=− ã(1− ã)

(1 + ãγ − ã)2
, (A2.11)

∂M1

∂γ′
=− ã(1− ã)

[γ′(1− ã) + ã]2
, (A2.12)

∂c

∂γ
=

1

2γ(1− γγ′)

(
c− γ′(1− ã)

c

)
, (A2.13)

∂c

∂γ′
=

1

2γ′(1− γγ′)

(
c− γã

c

)
, (A2.14)

∂2c

∂γ∂γ′
=

1

4(1− γγ′)2

[
3c+

1

c
− ã(1− ã)

c3

]
, (A2.15)

∂h

∂c
=− 2B

[
βµ̃ã3/2

(c2 + ã)2
+

(1− β)µ̃ã3/2α

(c2α+ ã)2
+

(1− µ̃)(1− ã)3/2

(c2 + 1− ã)2

]
. (A2.16)
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Appendix 3: Approximating the α and β Parameters of Gamma Distribution

In this appendix, we derive the expressions for α and β parameters through a heuristic

approach to minimize the MSE between the approximation fg
H(h) and the PMF fH(h) of

the handover count. First, we briefly describe a property of PPP with respect to the scaling

of simulation space which will be used for the derivation of α and β parameters.
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1

(a) (b)

( x
i
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i
 )

L/d
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i
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d = vT

Figure A3.1: Illustration for scaling down the simulation space.

Consider the square shaped simulation space shown in Fig. A3.1(a) with an area L2.

The SBS locations are shown in red dots, and the UE trajectory is shown as blue line of

length d = vT . The intensity of SBSs can be expressed as λ = Navg/L
2, where Navg is

the mean number of SBSs in the simulation area. Assume that the simulation space is

scaled down by the UE travel distance d, i.e., all the coordinates are scaled down by d, for

example, coordinates of a SBS location (xi, yi) will be scaled down to (xid ,
yi
d ) as shown in

Fig. A3.1(b). Therefore, the simulation area will also be scaled down to (L/d)2. However,

the mean number of SBSs Navg remains the same, and hence the intensity of SBSs can be

expressed as λ′ = Navgd
2/L2 = λd2. Here, the term λ′ is a function of λ and d, therefore,

the statistics of the handover count H can be expressed in terms of λ′ alone. For example,

the mean number of handovers in (7.1) can be expressed as E[H] = 4
√
λ′/π. Similarly, the

parameters α and β can also be approximated in terms of λ′.

We obtained histogram of the handover countH through extensive simulations in Matlab

with a range of values for the SBS density λ = {100, 200, 300, ..., 10000} SBSs/km2 and the
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distance d = {0.033, 0.1, 0.2, 0.4} km. For each combination of λ and d, we obtained one

million samples of H for constructing the PMF fH(h). Then, we used the curve fitting tool

in Matlab to obtain the α and β parameters that provides a best fit of fg
H(h) in (7.5) to

the PMF fH(h). By studying the characteristics of α and β parameters with respect to the

variations in λ and d, we formulated

α = 2.7 + 4
√
λ′ = 2.7 + 4d

√
λ, (A3.1)

β = π +
0.8

0.38 +
√
λ′

= π +
0.8

0.38 + d
√
λ
. (A3.2)

The accuracy of these approximations are justified in Fig. A3.2 where the theoretical ex-

pressions (A3.1) and (A3.2) are shown to tightly overlap with the plots obtained through

simulations.
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Figure A3.2: Approximations of the α and β parameters.
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Appendix 4: Approximating the µ and σ2 Parameters of Gaussian Distribution

In this appendix, we derive the expressions for µ and σ2 in (7.9) to minimize the MSE

between the approximation fn
H(h) and the PMF fH(h) of the handover count. We equate

µ to the mean of handover count expressed in (7.1) as

µ =
4vT
√
λ

π
=

4d
√
λ

π
. (A4.1)

Next, we obtain an expression for σ2 using a method similar to the one explained in Ap-

pendix 3. We constructed the PMF fH(h) through simulations, and then used curve fitting

tool in Matlab to obtain the σ2 parameter that provides a best fitting of fn
H(h) in (7.9)

to the PMF fH(h). By studying the characteristics of σ2 parameter with respect to the

variations in λ and d, we formulated

σ2 = 0.07 + 0.41
√
λ′ = 0.07 + 0.41d

√
λ. (A4.2)

The accuracy of this approximation is justified in Fig. A4.1 where the expression (A4.2) is

plotted in comparison with the plots obtained through simulations.
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Figure A4.1: Approximation of the σ2 parameter.
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Appendix 5: Derivation of CRLB with Gamma Approximation for Handover

Count PMF

In this appendix, CRLB for velocity estimation will be derived by considering the handover

count PMF in (7.5) that was derived using the gamma distribution. Taking the logarithm of

PMF will provide the log-likelihood function, which will then be differentiated with respect

to v. Finally, the derivative of log-likelihood function will be used to obtain the CRLB

expression. Consider the handover count PMF,

fg
H(h; v) =

Γ
(
α, βh, β(h+ 1)

)
Γ(α)

, (A5.1)

where, the α and β parameters are given by (7.6) and (7.7), respectively. By taking the

logarithm of (A5.1) and differentiating with respect to v, we get

∂

∂v
log fg

H(h; v) =
∂

∂v
log Γ

(
α, βh, β(h+ 1)

)
− ∂

∂v
log Γ(α). (A5.2)

Consider the first term in the RHS of (A5.2). Let, z1 = βh and z2 = β(h + 1). Then,

we have

∂

∂v
log Γ

(
α, βh, β(h+ 1)

)
=

1

Γ(α, z1, z2)

∂

∂v
Γ(α, z1, z2),

=
1

Γ(α, z1, z2)

[
∂

∂α
Γ(α, z1, z2)

dα

dv
+

∂

∂z1
Γ(α, z1, z2)

dz1

dv
+

∂

∂z2
Γ(α, z1, z2)

dz2

dv

]
.

(A5.3)

Each of the differentials in (A5.3) can be derived to be

∂

∂α
Γ(α, z1, z2) =

2F2(α, α;α+ 1, α+ 1;−z1)zα1
α2

− 2F2(α, α;α+ 1, α+ 1;−z2)zα2
α2

− γ(α, z1) log(z1) + γ(α, z2) log(z2),

∂

∂z1
Γ(α, z1, z2) =− e−z1zα−1

1 ,
∂

∂z2
Γ(α, z1, z2) = e−z2zα−1

2 ,

dα

dv
=4T

√
λ,

dz1

dv
=

−0.8hT
√
λ

(0.38 + vT
√
λ)2

,
dz2

dv
=
−0.8(h+ 1)T

√
λ

(0.38 + vT
√
λ)2

,
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where, γ(α, x) =
∫ x

0 t
α−1e−tdt is the lower incomplete gamma function, and

2F2(a1, a2; b1, b2; z) is generalized hypergeometric function which can be expressed as

2F2(a1, a2; b1, b2; z) =
∞∑
k=0

(a1)k(a2)k
(b1)k(b2)k

zk

k!
, (A5.4)

where, (a)0 = 1 and (a)k = a(a+ 1)(a+ 2)...(a+ k − 1), for k ≥ 1.

Now, consider the second term in RHS of (A5.2), ∂
∂v log Γ(α) = ∂ log Γ(α)

∂α
∂α
∂v . It is well

known that the logarithmic derivative of the gamma function is the digamma function ψ(·).

Therefore,

∂

∂v
log Γ(α) = ψ(α)

∂α

∂v
= ψ(α)

∂

∂v
(2.7 + 4vT

√
λ) = 4T

√
λ ψ(α). (A5.5)

Using the equations (A5.3)-(A5.5), we can express (A5.2) as:

∂

∂v
log fg

H(h; v) =
4T
√
λβα

α2 Γ
(
α, βh, β(h+ 1)

)[hα 2F2(α, α;α+ 1, α+ 1;−βh)

− (h+ 1)α 2F2

(
α, α;α+ 1, α+ 1;−β(h+ 1)

)]
− 4T

√
λ

Γ
(
α, βh, β(h+ 1)

)[γ(α, βh) log(βh)− γ
(
α, β(h+ 1)

)
log
(
β(h+ 1)

)]
+

0.8T
√
λβα−1e−βh

[
hα − e−β(h+ 1)α

]
Γ
(
α, βh, β(h+ 1)

)
(0.38 + vT

√
λ)2

− 4T
√
λ ψ(α). (A5.6)

By squaring (A5.6) and evaluating the expectation over H, we obtain the Fisher information

as

I(v) = E

[(
∂ log fg

H(H; v)

∂v

)2
]
. (A5.7)

By taking the reciprocal of Fisher information, we can express the CRLB for v̂ as in (7.12).
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Appendix 6: Regularity Condition

By taking natural logarithm of the JPDF in (8.3) and then differentiating with respect to

v, we get

∂ log fT (t; v)

∂v
=
N

v
+

N−1∑
n=0

tn
fL(ln)

∂fL(ln)

∂ln
. (A6.1)

The differential term in (A6.1) can be derived to be

∂fL(ln)

∂ln
=

2

ln

(
fL(ln) + f ′L(ln)

)
, (A6.2)

where,

f ′L(l) =

∫ π

0

∫ π−α

0

(
2π3λ2l4ρ3

αρβb
2
0

(
1− πλl2V2(α, β)

)
sin(α+ β)

+
π3λ2l4ραρβc0V2(α, β)

sin(α+ β)

)
e−πλl

2V2(α,β) dβdα.

By substituting (A6.2) into (A6.1), we get,

∂ log fT (t; v)

∂v
=

1

v

(
3N + 2

N−1∑
n=0

f ′L(ln)

fL(ln)

)
. (A6.3)

Given N , to check whether the JPDF satisfies the regularity condition, we take the expec-

tation of (A6.3) w.r.t. L as,

E

[
∂ log fT (t; v)

∂v

]
=

1

v
EL

(
3N + 2

N−1∑
n=0

f ′L(ln)

fL(ln)

)
,

=
1

v

(
3N + 2

N−1∑
n=0

EL

[
f ′L(ln)

fL(ln)

])
. (A6.4)

The expectation function w.r.t. L in (A6.4) can be derived as

EL

[
f ′L(ln)

fL(ln)

]
=

∫ ∞
0
f ′L(l) dl = −1.5. (A6.5)
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The last step in (A6.5) was obtained by numerically evaluating the integral
∫∞

0 f ′L(l) dl in

MATLAB with an error tolerance of 10−6. By substituting (A6.5) into (A6.4), we get,

E

[
∂ log fT (t; v)

∂v

]
=

3N + 2(−1.5)N

v
= 0. (A6.6)

Since the expectation function in (A6.6) equates to zero irrespective of the values of N and

v, the JPDF in (8.3) satisfies the regularity condition for all N and v.
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Appendix 7: CRLB Derivation

By squaring (A6.3) and taking the expectation, we get,

E

[(
∂ log fT (t; v)

∂v

)2
]

=
1

v2
E

9N2 + 4

(
N−1∑
n=0

f ′L(ln)

fL(ln)

)2

+ 12N

N−1∑
n=0

f ′L(ln)

fL(ln)

 ,
=

1

v2
EN

(
9N2 + 4

N−1∑
n=0

EL

[(
f ′L(ln)

fL(ln)

)2
]

+ 8
∑
m<n

EL

[
f ′L(ln)f ′L(lm)

fL(ln)fL(lm)

]
+12N

N−1∑
n=0

EL

[
f ′L(ln)

fL(ln)

])
. (A7.1)

The first two expectations w.r.t. L in (A7.1) can be derived as follows:

EL

[(
f ′L(ln)

fL(ln)

)2
]

=

∫ ∞
0

(
f ′L(l)

fL(l)

)2

fL(l) dl = 3.345. (A7.2)

The last step in (A7.2) was obtained by numerically evaluating the integral in MATLAB

with an error tolerance of 10−6. Next,

EL

[
f ′L(ln)f ′L(lm)

fL(ln)fL(lm)

]
=

∫ ∫ ∞
0

f ′L(ln)f ′L(lm)

fL(ln)fL(lm)
fL(ln)fL(lm)dlndlm,

=

∫ ∞
0

f ′L(lm)

(∫ ∞
0

f ′L(ln) dln

)
dlm.

Substituting (A6.5) into the above equation, we get,

E

[
f ′L(ln)f ′L(lm)

fL(ln)fL(lm)

]
=− 1.5

∫ ∞
0

f ′L(lm) dlm = 2.25. (A7.3)

By substituting (A6.5), (A7.2) and (A7.3) into (A7.1), we get,

E

[(
∂ log fT (t; v)

∂v

)2
]

=
4.38

v2
E[N ]. (A7.4)
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The expectation of N in (A7.4) is basically the mean number of handovers, the expression

for which is derived in [97] as

E[N ] = 4vTw

√
λ/π. (A7.5)

By substituting (A7.5) into (A7.4), we get,

E

[(
∂ log fT (t; v)

∂v

)2
]

=
4.38

v2

4vTw

√
λ

π
=

17.52Tw

√
λ

πv
.

By substituting the above equation into (8.4), we obtain the CRLB as expressed in (7.12).
This completes the proof.
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