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ABSTRACT OF THE DISSERTATION 

PREDICTION OF FRACTURE TOUGHNESS AND DURABILITY OF ADHESIVELY 

BONDED COMPOSITE JOINTS WITH UNDESIRABLE BONDING CONDITIONS 

by 

Vishal Musaramthota 

Florida International University, 2016 

Miami, Florida 

Professor Norman Munroe, Co-Major Professor 

Professor Benjamin Boesl, Co-Major Professor 

 

Advanced composite materials have enabled the conventional aircraft structures to reduce 

weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such 

as aluminum, steel or titanium have been used to manufacture aircraft structures for support of 

heavy loads. Within the last decade or so, demand for advanced composite materials have been 

emerging that offer significant advantages over the traditional metallic materials. Of particular 

interest in the recent years, there has been an upsurge in scientific significance in the usage of 

adhesively bonded composite joints (ABCJ’s). ABCJ’s negate the introduction of stress risers that 

are associated with riveting or other classical techniques. In today’s aircraft transportation market, 

there is a push to increase structural efficiency by promoting adhesive bonding to primary joining 

of aircraft structures. This research is focused on the issues associated with the durability and 

related failures in bonded composite joints that continue to be a critical hindrance to the universal 

acceptance of ABCJ’s. Of particular interest are the short term strength, contamination and long 

term durability of ABCJ’s.  

One of the factors that influence bond performance is contamination and in this study the 

influence of contamination on composite-adhesive bond quality was investigated through the 
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development of a repeatable and scalable surface contamination procedure. Results showed an 

increase in the contaminant coverage area decreases the overall bond strength significantly. A direct 

correlation between the contaminant coverage area and the fracture toughness of the bonded joint 

was established. Another factor that influences bond performance during an aircraft’s service life 

is its long term strength upon exposure to harsh environmental conditions or when subjected to 

severe mechanical loading. A test procedure was successfully developed in order to evaluate 

durability of ABCJ’s comprising severe environmental conditioning, fatiguing in ambient air and 

a combination of both. The bonds produced were durable enough to sustain the tests cases 

mentioned above when conditioned for 8 weeks and did not experience any loss in strength. 

Specimens that were aged for 80 weeks showed a degradation of 10% in their fracture toughness 

when compared to their baseline datasets. The effect of various exposure times needs to be further 

evaluated to establish the relationship of durability that is associated with the fracture toughness of 

ABCJ’s.    
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 INTRODUCTION 

1.1 Introduction  

Flying is considered to be the primary mode of transportation with millions of people 

travelling every year. There has been a 50% increase in the number of passengers in the last ten 

years and is continuously increasing exponentially [1]. Hence, airlines need an expansion in their 

flight volume with bigger capacities such as the Airbus A380. The A380 is currently the largest 

aircraft in the world with a carrying capacity of greater than 800 passengers and a take-off weight 

of 560 tons [2] which is a significant improvement when compared to conventional aircrafts [3]. 

With a structure of such giant magnitude, enormous forces act on the wings as well as the aircraft 

by itself. Specialized steels and aluminum alloys can withstand such large forces at the expense of 

additional weight [4]. With diverse research and development over the past decades, the aircraft 

community has gained significant knowledge and understanding of the uses, strengths and 

limitations of these materials.  

In the past, materials such as aluminum, steel or titanium have been used to manufacture 

complex engineering structures for support of heavy loads [4, 5]. Within the last decade or so, 

demand for new materials [6, 7] that are less dense and exhibit exceptional mechanical properties 

have been developed which offer significant advantages over the traditional metallic materials [8, 

9]. These new materials include carbon fiber reinforced polymer (CFRP) composites. Composite 

materials offer advantages over conventional materials used in aerospace structures due to their 

high strength-to-weight ratio [10, 11, 12]. They provide material toughness, improved damage 

tolerance, fatigue endurance and have lower weights (50% less than that of steel) [11]. Despite the 

superior material properties, there still exist challenges associated with joining of CFRP 

components. In the recent years, there has been an upsurge in scientific interest of using adhesively 

bonded composite joints in a host of fields including aircraft, automobiles etc. The optimal joining 

of composites is accomplished using adhesive bonding, which negates the introduction of stress 
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risers that are associated with riveting or other classical techniques [11, 13].  In today’s aircraft 

transportation market, there is a push to increase structural efficiency by eliminating secondary 

joining via adhesive bonding [11] and to use the latter as the primary joining technique. Adhesively 

bonded composite joints (ABCJs) are expected to sustain static and cyclic loads for extended 

periods of time without having negative effects on the load bearing capacity of the structure [14].  

Recently, the use of adhesive bonding of composite structures has generated a great deal 

of interest in the bonding community. Of particular interest is the short term strength and long term 

durability of these adhesively bonded systems. Issues associated with the durability and related 

failures in aircrafts, continue to be a critical hindrance to the universal acceptance of ABCJs [15, 

16]. Numerous studies have been conducted to determine the initial bond strength of ABCJs, yet 

there is still limited understanding on the assessment of their long term strength. The extrinsic 

factors that affect the strength and durability of ABCJs are environmental conditions [17], operating 

temperatures [18, 19], relative humidity [20], service loads [21] and cleanliness of bonding surface 

[22, 23].   

Contamination and its sources are also a global concern in the production of durable 

adhesive bonds. Sources of possible contamination include peel ply residues, release agents, skin 

oil, dust and moisture [24]. The contamination from peel ply and their release agents have been 

shown to significantly degrade bond quality, which results in reduced adhesion of composite 

systems [25, 26, 27, 28]. Thus, there is a great need for the assessment of the effects of 

contamination on bond strength and its durability in ABCJs. This is the primary focus of this 

research. 

1.2 Composites and Adhesives 

1.2.1 Composites 

Over the past few decades, lighter materials with improved toughness have been developed 

[29] where the goal was primarily to achieve weight savings for an airframe structure. CFRP 
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materials show greater promise in the aforementioned properties via increased specific strength or 

stiffness [8], as described in Figure 1.1. The reduction in aircraft weight by itself results in fuel 

efficiency and lower carbon dioxide emissions along with increased range and maneuverability and 

higher pay load. These are usually continuous carbon fibers (filamentary phase) embedded in a 

polymeric epoxy (matrix phase) [30].  

 

Figure 1.1: Specific Stiffness vs Specific Strength of CFRP composites [31]. 

Carbon fiber reinforced materials have the advantage of offering highly complex shapes, 

more complex than possibly using steel or aluminum [32]. CFRP materials can outperform metals 

in terms of their material performances, offering diverse properties that no one material is able to 

provide.  For example, these materials are light in weight yet an improved strength and stiffness 

was observed when compared to metal alloys or polymers as depicted in Figure 1.1. Additionally, 

a CFRP material, when stacked in a preferential order, offers high structural stability in conjunction 

with possessing higher tensile strength and modulus in the direction of the fiber [33]. Fiber 

reinforced composites in aerospace applications offer improved performance i.e. smoother and 
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more aerodynamic form can be achieved with special aeroelastic properties; improved damage 

tolerance and reduced detectability. Additionally fiber composites offer superior durability by 

providing resistance to fatigue, corrosion and mechanical damage [34]. Figure 1.2 below, 

showcases a few of the properties such as weight, thermal expansion, stiffness and strength aspects 

of composite materials, pictorially. As mentioned earlier, composite materials are a combination of 

fibers and resins. Information on various types of fibers and matrix materials used in polymer 

matric composites (PMC) is highlighted below: 

 

Figure 1.2: Comparison of conventional materials to that of composite materials [35].  
(Courtesy of General Dynamics, Convair Division) 

 

1.2.1.1 Classification of Composites 

Fiber materials involved in structural applications are utilized as reinforcement as they 

provide strength to the material [36] and are typically manufactured with numerous types.  Carbon 

fibers which are a family of Poly Acrylic Nitrile (PAN), pitch based fibers, boron fibers, silicon 

carbide fibers, aramid fibers and alumina fibers are few fiber materials that are commonly used. 

Various dry fiber forms such as rovings, tows, yarns, non-woven and woven fabrics, braided 

fabrics, non-crimp fabrics and tapes are also utilized as typical fiber materials. There also exists 

three dimensional textile preforms which are a subclass of a dry fiber form where the reinforcement 

is manufactured as a single product [34].    
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Matrix materials shares and transfers the load in and out from the fibers while offering 

rupture resistance to fibers. The contribution of the matrix phase in a composite is significant and 

could affect the mechanical performance of the composite. The matrix phase also serves as a 

protection layer for fibers and qualifies to provide resistance from severe environments operating 

on an aircraft. Several thermosetting resins such as epoxy resins, polyester resins, vinyl-ester resins, 

phenolic resins, bismaleimide resins, polyimide resins and cyanate resins are typically utilized for 

high temperature applications. For low temperature applications, many thermoplastic resins that 

are amorphous or semi-crystalline thermoplastics such as polyketones, polyphenylene sulfide, 

polysulfone and polyetherimide are typically used [34].  

 

Figure 1.3: Schematic of a Unidirectional Fiber Composite [37]. 

Unidirectional Fiber Reinforced Composite: Any fiber-reinforced composite with all the 

fibers aligned in a single direction are termed as Unidirectional Fiber Reinforced Composites. 

These may be used in a structural member that can carry unidirectional loads where the ability to 

carry a tensile load is greatest in the fiber direction [33]. Consequently the tensile strength in this 

fiber direction will be of prime importance in the design of such structural members. A schematic 

of a unidirectional fiber composite is showed above in Figure 1.3.  

Carbon fiber composites with the aforementioned qualities can be recognized as future 
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materials that draw tremendous attention and discussion among chemists, polymer and material 

scientists in perceiving their imminent advancements. However, the production of such high 

technical materials is often expensive and only limits itself to top-tier applications. It is estimated 

that by the year 2020, the demand for CFRPs will reach 120K tons/year, which is a significant 

increase from the current usage of 60Ktons/year [38, 39] as shown in Figure 1.4. This increase is 

expected to play a major role in its application in a wide variety of areas including energy, 

environment, safety, military, aerospace and sports [38].  

 

Figure 1.4: Market growth of CFRP and its predictions in various domains [40]. 

1.2.1.2 Economic aspects of Composites and their commercial products: 

Carbon fiber composites, known for their high strength and rigidity, have changed the 

predilection of consumers and manufacturers. Lux Research Inc, lays out an in-depth market survey 

of the usage of CFRP and its needs for current as well as near term production till 2020. A 13% 

compounds annual growth rate is expected from the year 2013 to 2020 with production values 

ranging from 36000 tons to 86000 tons respectively [40]. This equates to $15.4 billion in 2013 to 

$35 billion in 2020 as mentioned in Figure 1.5. Amongst the world production of CFRP materials, 
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Europe is the fastest growing carbon fiber market due to an expanding trade in that region while 

the North America dominates the largest market share in global CFRP market where aerospace and 

defense industries are the two major sectors [41].    

 

Figure 1.5: Compound Annual Growth Rate (CAGR) of CFRP market and its predictions [40]. 

Carbon fiber or CFRP’s primary industries include Aerospace & Defense, Automobile, 

Marine, Sports Equipment, Wind Energy and Civil, of which the most promising sector being the 

aviation, wind farming and motor vehicles [32, 41, 42, 38]. Some of the leading players of carbon 

fiber and CFRP market industry are: Toray Industries (Japan), SGL-Carbon(Germany), Kringlan 

Composites (Switzerland), Cytec Industries (U.S.), Plasan Carbon Composites (U.S.), Teijin Ltd 

(Japan), Hexcel Corporation (U.S.), Mitsubishi Rayon (Japan), Hyosung Corp (South Korea), 

Formosa Plastic Corporation (Taiwan), Gurit Holdings (Switzerland) and Tencate (The 

Netherlands) [43]. 

Over time, aerospace structures have assisted in building confidence in composites 

technology, with the next-generation aircrafts such as Airbus A380 and Boeing 777 have about 50 

percent composite content when compared with 8% for the previous generation of aircraft [42] as 
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shown in Figure 1.6. Current composite materials possess more rigid fibers, better ductile resins 

and are resistant to various harsh conditions. These materials have established themselves in the 

construction of structural components such as wings, fuselage and substructures.  

 

Figure 1.6: CFRP constituting majority of Airbus A380 aircraft structure [44]. 

1.2.2 Adhesives 

A joining technique used to bond two dissimilar or identical materials that are fastened 

producing a close contact between the two materials. The joining technique could be a physical 

bond or a chemical bond depending on the adherend and the adhesive. Adhesives (synthetic 

adhesives) have been developed as early as 1900’s [45] and their evolution over time has been very 

progressive [46]. Conventional joining, however, does exist where nails, rivets, screws etc. are 

utilized to join the materials which generates a localized stress concentration, potentially becoming 

a primary source of failure. Most of the current engineering joining applications lean towards using 

adhesives, as they aid in efficiently transferring the load from the joining materials to the adhesive. 

The development of new materials has greatly improved their usage in a multi domain industry 

such as automotive, aerospace, sporting goods, wind technologies etc. Typical adhesives can be 
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utilized to bond substrates such as ceramics, metals or even polymers. For highly advanced 

aerospace applications, lighter weight materials such as composites can often be used with adhesive 

bonding due to their uniform stress distribution in the joint. This allows for full utilization of the 

strength and rigidity of the adherends [47]. The localized stress concentrations are eliminated 

significantly due to the uniformity in the stress distribution across the load bearing part i.e. 

adhesive.  

1.2.2.1 Classification of Adhesives 

Adhesive bonding is primarily classified into structural and nonstructural adhesive 

bonding, based on the numerous emerging bonding technologies in the current market. Adherends 

which encounter large stresses equivalent to their yield point are termed structural adhesives. These 

bonds are capable of transferring loads and stresses without compromising the integrity of the 

design limits [47]. They also possess shear strengths greater than several orders of magnitude of a 

typical bond and produce a uniform bondline thickness. Additionally, the durability of such bonds 

are long lasting and highly resistant to aging. Film adhesives usually fall in this category. On the 

contrary, nonstructural adhesives such as paste adhesives, pressure sensitive adhesives (PSA) and 

packaging adhesives impose limitations such as non-uniformity in the bondline produce 

inconsistencies in load transfer mechanisms, however they maintain a considerable integrity of the 

adhesive and the adherend. An example of a paste adhesive bearing limitations is the super glues 

which are dominant with cyanoacrylates and possess a poor resistance to moisture and heat [48]. 

With the development of synthetic polymeric materials having superior mechanical properties, the 

major usage of adhesives increased over decades of time in a wide variety of domains.  

Commercially available structural adhesives typically contain a dicyandiamide curative 

apart from various other proprietary additives including, but not limited to tackifiers, plasticizers, 

flow modifiers, fillers, colorants, meshes/scrims, neutralizing agents, stabilizers and antioxidants 

etc. These additives, when incorporated in several compositions with weight percentages (wt %) as 
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low as 0.05 to approximately 25, helps in attaining properties for a desired application.  It should 

be noted that the additive percentage levels are truly based on the total weight of the epoxide 

composition used for the resin type based on the application[49]. Additionally, there exist 

polyurethane adhesives, epoxy adhesives, UV curable adhesives, toughened acrylics, methacrylate 

adhesives and cyanoacrylate adhesives to name a few, that are also utilized based on the type of 

application.  

1.2.2.2 Economic aspects of Adhesives and Commercial Products 

Adhesive materials, particularly structural adhesives known for their high strength and 

moisture resistant properties have changed the preference of bonding technologies, their consumers 

and manufacturers. The global market value of aerospace adhesives was estimated to be $1550.71 

million in 2013 and was projected to be $2189.80 million by 2019 [50]. This accounts to a 5% 

compound annual growth rate where the major driver being the aircraft passengers, deliveries and 

military usage [51]. As mentioned in section 1.2.2.1 about several types of adhesives, Figure 1.7 

illustrates the structural adhesives market share from the year 2012 to 2022. Commercial products 

of structural adhesives include aerospace structures such as helicopter rotor blades, full aluminum 

vehicle bodies, composite roof bonding, bonded seat structures, engine mounts, bushings, 

transmission systems, trunks, spoilers, cladding, composite panels etc. Some of the leading 

worldwide adhesives and sealant manufacturers include 3M (USA), Henkel AG & Co. KGaA 

(Germany), Huntsman (USA), Illinois Tool Works Inc (USA), Avery Dennison (USA), Sika AG 

(Switzerland), Dow Corning Corp. (USA), MACtac (USA), Momentive Specialty Chemicals Inc. 

(USA), RPM International Inc. (USA), MAPEI (USA), Bostik SA (France), H.B.Fuller (USA) etc.  
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Figure 1.7: Global Structural adhesives market share by product, 2012-2022 [52]. 

1.3 Background on Adhesive bonding 

Ever increasing demands from both customers and safety regulators have resulted in 

promoting bonding technologies where the weight savings is a key driving force. Bonded structures 

typically include metal-to-metal, composite-to-metal and composite-to-composite bonding with the 

aid of a highly efficient structural adhesive. ABCJ’s are expected to sustain static and cyclic loads 

for extended periods of time without having negative effects on the load bearing capacity of the 

structure [14]. Currently, adhesive bonding has been limited to secondary bonded structures, i.e., 

composite repair, single or double sided doubler patches [53], scarf or stepped scarf patches [54, 

55, 56] that are adhesively bonded to a damaged site. Repair methodologies typically fall under 

secondary bonding where the composite laminates are precured and are bonded with the help of 

adhesives. In contrast, co-curing techniques are utilized as a joining technique where the composite 

laminate and the adhesive are cured together [57, 58, 59]. In aircraft construction, a well-designed 

adhesive bond can actually result in a stronger structure and can provide higher ultimate strength 

than many metals [15] which is a huge advantage with bonded structures. Figure 1.8 shows the 

adoption of adhesive bonding technique in manufacturing an aerostructure member.  Thus, there is 
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a push to increase structural efficiency by promoting adhesive bonding [11] as primary joining 

technique in today’s aircraft transportation market.  

Under the patronage of the U.S. Department of Defense (DOD) funded, the then Primary 

Adhesively Bonded Structure Technology (PABST) program to its most recent Composites 

 

Figure 1.8: Bonding fabrication process of aerostructures [61] 

Affordability Initiative (CAI) program, considerable research efforts are being undertaken to 

emphasize the need for increasing the structural efficiency of primary aircraft structures [57]. This 

advanced in conjunction with the European Union (EU) funded Boltless assembling Of Primary 

Aerospace Composite Structures (BOPACS) program elaborating the worthiness of adhesive 

bonding in aircraft structures. Therefore directing the need for investigations on the strength and 

durability of these bonded structures, that is of paramount importance to the manufacturers and 

consumers. Of particular interest is the short term strength and long term durability of these 

adhesively bonded systems that offer reliability in the bonding process and  

qualifies for the necessary certification requirements. 

1.3.1 Adhesive Bond Strength 

A general adhesive bond is shown in Figure 1.9. The primary way to measure the quality 

of a bond is to fail the bond which can lead to a quantification of the toughness of the bond i.e. the 

resistance of the adhesive to the propagation of a crack. Bond strength is usually conceptualized 
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based on the loading conditions a bond experiences under tension or compression and is classified 

as a good or bad bond as shown in Figure 1.10. Failures are governed by the type of loading and 

considering that the adhesive bond is loaded in tension i.e. the applied force on the adherends is in 

a direction perpendicular to the bond, the mode of failure is determined.  

 

Figure 1.9: A typical bonded joint showing adherends bonded with adhesive 

A failure is determined to be an adhesion failure, if the bond fails between the adhesive 

layer and one of the adherends as shown in Figure 1.10a. This also depicts that the bond is a pure 

physical bond and exhibits an interlocking mechanism than crosslinking. Figure 1.10b shows a 

failure occurring in the adhesive layer with the adhesive on both sides of the adherends. This is 

called a cohesion failure and the nature of the bond is termed acceptable as the adhesive crosslinks 

with the adherend and the failure occurs at the weakest site within adhesive. Figure 1.10c shows 

the failure in the adherend which can be termed as interlaminar failure i.e. the strength of the bond 

surpasses that of adherend, but it is also a bad joint design. A failure is initiated in the bond 

depending on the mode of loading. The fracture is subjected to occur in a definitive pattern dictating 

the type of failure that has occurred within the bond.  

Figure 1.11 displays the three modes of loading which are used to evaluate the fracture 

toughness of a joint. Each of the three modes require monitoring of the crack and the failure 

patterns. Mode I is called a tensile or opening mode where the loads are applied perpendicular to 

the joint as shown in Figure 1.11a. Mode II is called the sliding or shear mode where the load is 

applied inwards to the plane causing it to shear as shown in Figure 1.11b. Mode III, shown in  
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Figure 1.11c, is termed a tearing shear or out- of- plane shear mode as the load is applied out of the 

plane parallel to the 

 

 

Figure 1.10: Typical bond failure occurrences dictating the type of failure a) adhesive failure; b) 
cohesive failure; c) interlaminar failure 

 

 

Figure 1.11: Crack Opening Modes 

beam. In conventional engineering practice, Mode I is proven to be more useful as it examines the 

stress state near the tip of a sharp crack and the smallest strain energy release rates can be evaluated 

only through Mode I. 
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1.3.2 Mechanisms of Adhesive Bonding 

In order to understand the mechanisms of adhesion, it is appropriate to understand the 

underlying theories of adhesion and relate them to the bond strength or to the physical properties 

of adhesives. Many theories have been postulated that correlates well with the adhesion 

mechanisms such as mechanical interlocking, electrostatic theories, diffusion and adsorption/ 

surface reaction theories. A good understanding of the above mentioned theories will help in 

discerning the adhesion mechanisms between the adhesive and adherend. 

1.3.2.1 Mechanical Interlocking 

With mechanical interlocking, adhesives flow into the irregularities or the surface ridges 

of the adherend. The surface ridges can exist in the form of pores, cavities or channels which is 

attributed to the surface roughness. This creates an interlocking effect as shown in Figure 1.12, for 

which the crack propagation path becomes tortuous and becomes difficult to grow.  However, a 

surface with higher roughness is not always feasible for better adhesion [61] as well as surfaces 

with lower roughness or a smooth surface tends to propagate a crack very easily. 

 

Figure 1.12: Schematic showing the interlocking effect of the adhesive into the adherend. 

1.3.2.2 Electrostatic Theory 

In electrostatic theory, the adhesive and adherend have different electronic band structures 

through which the adhesive and adherend transfer charge i.e. an electropositive material donates 

charge to electronegative material as shown in Figure 1.13. This theory is valid for metallic bonds, 

however, the electronic transfer in polymeric systems has found to be relatively small in 

comparison [62]. 
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Figure 1.13: Schematic showing the charge transfer mechanism between adhesive and adherend. 

1.3.2.3 Diffusion Theory 

This theory states that the adhesion phenomenon is due to the interdiffusion of molecules 

in between the adhesive and the adherend where the interaction between the polymeric chains at 

the interface is prominent. Since the polymeric materials are high in their molecular weight, their 

relatively long-chain molecular structures help in their movement and crosslink at bonding 

conditions as shown in Figure 1.14. The crosslinking density or the entanglement of the polymeric 

chains depends on the curing time, temperature chemical as well as physical forms.    

 

Figure 1.14: Schematic showing the interdiffusion of adhesive and adherend. 

1.3.2.4 Wetting Theory 

According to the wetting or adsorption theories, adhesion between an adhesive and 

adherend results from molecular contact i.e. interatomic forces between the atoms and molecules 

on the respective surfaces interact continuously, largely Vander Waals forces. Figure 1.15 

illustrates the wetting mechanisms where it can be inferred that optimal wetting results when the 

adhesive flows into the hills and valleys of the adherend, resulting in good bond strength. It should 
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be noted that adhesive bonding cannot be attributed fully to one particular mechanism but typically 

occurs as a combination of several mechanisms.  

 

Figure 1.15: Schematic showing polymeric chains interacting with the substrate i.e. Vander 
Waals interaction. 

 
1.4 Manufacturing of bonded composite joints 

The structural components used in an aircraft specifically with composites are often 

directional dependent and could be unidirectional, bi-directional and tri-directional weaved fibers 

with the embedding matrix phase [34]. Below, manufacturing terms typically used in the fabrication 

of composite laminates and their bonding is provided.  

Prepreg: A ready-to-mold or cure material in sheet form where the fibers are embedded at a certain 

volume percentage in a matric (usually epoxy). This may be tow, tape, cloth or mat impregnated 

with resin. Storage is always in freezing temperature as the resin may tend to react at 

ambient temperature. The shelf life is always preserved by keeping the length of the ambient 

exposure time minimal.  

Peel Ply: A peel ply material is a cloth used to protect the top surface layer of a composite laminate 

that is to be bonded. It is co-cured with the laminate during the primary cure on the top most surface 

layer and does not contain transferable chemical release agents. Its easy peel off nature depends on 

type of cloth and the release agents embedded within the ply material as it is intended to completely 

remove itself from the laminate prior to subsequent bonding process. The pull-out/removal process 

can be troublesome as it leaves the surface with variable surface ridges which favorable or un-
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favorable for adhesion, but the surface is clean and free of contaminants with a highly textured 

resin fracture surface leaving a weaved pattern. 

Layup: A process to stack a measured lamina (a single ply) in specified sequence and orientation 

while building up their successive laminae (series of plies) on top of each other in desired 

orientation.  

Release Ply/Film: A specific film that is placed between the tool plate and the stacked composite 

laminae, in order to prevent the adhesion between epoxy and the tool plate during the cure cycle. 

With the help of the release film, it’s always easy to remove the cured laminate due to the presence 

of a non-reactive high temperature polytetrafluoroethylene (PTFE) or its derivative which doesn’t 

participate in the cure reaction with the overlaying composite laminate, which also leaves a smooth 

surface finish with minimal chemical residue on the cured component.  

Breather/Bleeder cloth: A specific foamy cloth which is non-woven that allows air and volatiles to 

be removed from within the vacuum bag throughout the cure cycle. They are also utilized to absorb 

the excess resin that bleeds out of the composite lay-ups without risk of bridging.   

Vacuum Bag Molding: A process in which the stacked composite laminae is cured under pressure 

generated by drawing a vacuum in the space between the layup and a flexible vacuum sheet placed 

over it and sealed at the edges using a high temperature sticky tape.  

Autoclave Molding: A baking process where pressure and heat are applied at the same time to cure 

a specific material. The specimens are pressurized using the pressure while application of heat 

allows curing the specimens (initiates reaction). The output of the process renders a uniform quality 

as the pressure and heat are distributed precisely. Simple and complex geometries can be achieved 

using this technique.     

Primary curing: The joining of layered composite parts for the first time where the only chemical 

reaction occurring is the crosslinking of the layered laminae.  
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Secondary curing: The joining of two or more already cured composite parts, during which the 

only chemical or thermal reaction occurring is the curing of adhesive itself.  

Co-curing: When both primary and secondary cures take place simultaneously i.e. curing a 

composite laminate and bonding together during the same cure cycle.  

1.5 Overview of this study 

This chapter focuses on providing the necessary background information related to 

composites and adhesive bonding, their progress over the period of time, demonstrating their 

classification and economic impact. Many of the insights presented in this chapter are focused on 

adhesive bonding of composite joints where some of the background information on structural 

adhesive bonding was provided. Best practice in development and substantiation of adhesive 

bonded structures primarily requires a good understanding of the theories associated with adhesive 

bonding along with conceptualizing bond strength. The reliability of a bond is indicative of its 

performance and hence thorough understandings of bond failures were theoretically demonstrated. 

The difficulty in the acceptance of a bonded structure is challenged when the service life of the 

bond is considered i.e. the long term durability of these adhesively bonded systems. Issues 

associated with the durability and related failures in aircrafts, continue to be a critical hindrance to 

the universal acceptance of ABCJs [15, 16]. Numerous studies have been conducted to determine 

the initial bond strength of ABCJs, yet there is still limited understanding on the assessment of their 

long term strength. The extrinsic factors that affect the strength and durability of ABCJs are 

discussed in detail in Chapter 2. 
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1.6 Contributions 

This investigation will advance the knowledge and understanding of adhesively bonded 

composite systems and a number of major concerns associated with ABCJ’s for their adoption in 

the aircraft industry as primary joining technique. This would be achieved via the following: 

• The development of a contamination procedure, that not only is scalable and reliable but 

also repeatable, providing insight to the effects of undesirable bonding conditions on short and long 

term bond strength of ABCJ’s. This process can serve as NDE benchmark for detecting 

contamination or weak bonds in ABCJ’s. 

• The development of a test methodology to access/evaluate the durability of ABCJ’s (the 

elucidation of bond durability under elevated temperatures and humidity over extended period of 

time) helps in understanding their long term performance, serving as reliable basis for bonded joints 

and to their adoption in primary structural components.   

• Quantification of the failure ratios through image processing technique that resulted in a 

direct correlation of the fracture property evaluated experimentally.  

• Microscale testing helped in understanding the initiation and damage mechanisms that 

correlated well with macroscale testing providing an insight in understanding the fracture behavior 

of ABCJ’s with undesirable bonding conditions.  

• Correlating the bond strength with the theoretical model that assisted in predicting the 

fracture toughness of a bonded joint with undesirable bonding conditions. 
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 LITERATURE REVIEW 

Although some progress has been made recently in the understanding of adhesive bonding, 

significant efforts were made in the late 80’s and early 90’s to accommodate aerospace needs.   

While weight savings was one of the primary thrusts for this research, reduction in component 

thickness and efficient loading paths were also major drivers. The literature review presented in 

this chapter provides an overview of the research conducted to date for bonded structures and their 

durability and is intended to provide rationale for the suggested testing approaches discussed in 

later sections.  

2.1 Structural adhesives and their chemistry 

Structural adhesives are typically preferred over paste adhesives for bonding of aerospace 

structures due to their significant cohesive strength and does not exhibit creep under significant 

design loads. These adhesives are typically doped with filler materials such as alumina and glass 

to enhance their mechanical properties and electrical and thermal conduction abilities. Due to their 

specific curing procedures, structural adhesives typically exist in several forms, of which film and 

paste are the most widely utilized. Film adhesives are comprised of highly crosslinkable proprietary 

organic compounds that contain curatives necessary to obtain desired bond strength. These 

adhesives often contain a mesh or a scrim that can alter the mechanical properties of the adhesive 

layer significantly [1] but provides for uniform bondline thicknesses. Plasticizers are sometime 

incorporated in special applications where flexibility and elongation are needed. The paste 

adhesives are usually one or two part systems that require heat or room temperature cure for a 

complete curing. One part adhesive systems contain all the materials within the adhesive to be 

cured while the two part system possesses curatives in one part and crosslinkable resins in a second 

part. Another form of structural adhesives is in the form of liquid curable adhesives, which as the 

name suggests, are liquid by nature and cures/hardens when exposed to ambient air. There also 

exist UV curable adhesives where the curing reaction requires UV light to initiate the cure. A wide 
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range of structural adhesives are used in industry based on the application need.  Examples include 

Epoxies, Urethane, Phenolic, Polyamides and Acrylic etc [2]. The information on the structural 

adhesives utilized in this project are proprietary and limited information is available regarding the 

manufacturing and chemistry of the adhesive. Using the Material Safety Data Sheet (MSDS), 

marginal constituents of the adhesive have been identified i.e. epoxy resins, synthetic rubber, 

phenolic polymer and dicyandiamide. Since the dominant constituent is epoxy resin, it will be 

emphasized in detail.  

Epoxy resins 

Epoxy resins offer excellent adhesion to metals and thermoset composites and possess 

superior properties such as high strength, high stiffness, excellent creep resistance, superior fatigue 

resistance and high thermal resistance. The epoxy resin structures are characterized by the  

 

Figure 2.1: Synthesis of di-glycidyl ether of bis-phenol-A with epichlorohydrin. 
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presence of the epoxy group i.e. an oxirane ring as their reactive moiety.  The epoxy or epoxide  

group is usually present as a glycidyl ether, glycidyl amine or as part of an aliphatic ring system. 

The ring structures possess a three membered ring with two carbon atoms individually bonded to 

an oxygen atom. The crosslinking polymer is the product of the resin mixed with hardener or a 

curing agent. Epoxy adhesives can be either single component, a heat curing adhesive or multiple 

component adhesives that can be cured at room temperature or elevated temperatures. One of the 

most widely used epoxy resins for structural adhesives is produced by the reaction between 

diglycidyl ether of bisphenol-A (DGEBA) with epichlorohydrin leading to epoxy resin as shown 

in Figure 2.1.  

Phenolic resins 

Combinations of epoxy and phenolic resins provide superior high temperature resistance 

structural adhesives. These types of resins act as tackifiers or cross linking agents [3] which 

improvise adhesion. The cross linking ability of phenolic resins is employed to provide strength 

and durability to an adhesive bond. Phenolic resins can be of three types a) Vinyl phenolic resins, 

b) Nitrile phenolic resins and c) Epoxy phenolic resins. Of the three resins systems, epoxy resin is 

a preferred cross linking agent for adhesive bonding of aircraft composites due to its high thermal 

resistance i.e. 200oC. On the other hand, vinyl and nitrile phenolic resins can have temperature 

resistance of 100o C and 175o C respectively [4]. 

 

Figure 2.2: Molecular Structure of bis-phenol-A [5]. 
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The phenol group of bis-phenol-A is formed when phenol reacts with acetone at a 2 to 1 mole ratio 

leading to bis-phenol-A of Acetone. If the same reacts with formaldehyde in the same ratio, then it 

yields bis-phenol-F of Formaldehyde. The molecular formula of bis-phenol-A is C15H16O2 with a 

molecular weight of 228.291 g/mol. The structure of bis-phenol-A is shown in  

Figure 2.2.   

Dicyandiamide (DICY) 

A dimer of cyanamide or also called as cyanoguanidine is a nitrogen based molecule that 

is highly reactive with epoxy resins and has a molecular formula of C2H4N4. In structural 

adhesives, it acts as a curing agent to cure DGEBA epoxy resins at elevated temperatures. However, 

both epoxy resins and DICY are stable at room temperatures. The structure of DICY is shown in 

Figure 2.3.  Exclusive studies on epoxy-DICY reaction have been reported [6, 7, 8, 9] where DICY 

acts as a hardener in the reaction and plays a key role in transforming heterogeneous systems to 

increasingly homogenous systems.  

 

Figure 2.3: Molecular structure of DICY [10] 

Some of the resin chemistries described above are used in the curing of epoxy networks which are 

the critical pathways for understanding adhesion between a structural adhesive and a composite 

laminate.  The ramping rates of temperature and pressure, during the reactions also plays a critical 

role in the formation of a good bond. A gradual rise in temperature typically yields a favorable 

adhesive bond while a rapid rise in temperature could stress the bond due to severe thermal loading, 
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weakening the crosslinking mechanism. Although the specimen might appear to be cured, this type 

of cure significantly affects the bond strength. 

2.2 Static Strength Quantification of Adhesive Joints 

Quantification of adhesive joint performance is dependent on the various modes of loading 

i.e. Mode I, Mode II and Mixed Mode I/II. To date, industry typically relies on Mode I (tensile 

failure) testing methodologies to obtain fracture toughness of the joint while Mode II and Mixed 

mode I/II are not fully recognized [12]. Adhesive joints offers advantages over mechanical 

fastening that eliminates stress concentrations [10] and restrains a joint from fiber cuts that arise 

due to drilling of mechanical fasteners [11]. Additionally, the increasing number of premature 

failures of the adhesively bonded structures has led in-depth design and strength evaluations of 

adhesive joints for numerous joint configurations [13]. Several varieties of joints have been 

investigated in the past such as scarf joints [14], T-shaped joints [15, 16], butt joints [17] and L-

shaped joints due to their simple geometry, while single lap joints [18], double lap joints, stepped 

lap joints and stepped scarf joints [19] progressed due to the type of applied load. Lap shear (LS) 

and double cantilever beam (DCB) tests are most commonly used test methods to quantify the 

initial strength of a bonded joint.  

While the static strength for joint assemblies noted above has been quantified extensively, 

improvements to enhance the bond strength of these bonded joints have been a focus area for many 

researchers. Sun [20] developed advanced hybrid joint configurations with stepped attachments 

that provided superior performance over conventional L- shaped joints. While all the tests are 

largely accomplished on flat surfaces, Chiu et al. [21] investigated on several non-flat surfaces and 

reported a distinguishing difference in structural property by changing the topology of the interface.  

Several comprehensive reviews on the strength of joints in fiber reinforced plastics [22], overviews 

on adhesively bonded joints in composite materials [23]; scientific challenges and opportunities of 

bonded repair of composite aircraft structures [24] have been well addresses to emphasize the static 
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strength quantification of adhesively bonded composite joints. Significant research efforts have 

been focused on characterizing the initial bond strength of joints assemblies where metal-to-metal 

bonding have been by and large, the most prominent joint assembly approaches while a fewer 

studies have been reported on composite bonded assembly [10]. An in-depth understanding of the 

identification of key processing parameters, important material characteristics are of prime 

importance that could lead to an avenue of acceptable criteria for bonded assemblies, which is yet 

to be established.    

2.3 Factors affecting composite bond integrity 

A notable limitation of an adhesive joint is the lack of reliability in providing absolute 

consistency in bond integrity i.e. a joint free of defects, voids or any potential contamination. A 

few of the factors that affect composite bond integrity are described in the following sections. 

2.3.1 Surface Preparation 

An adhesive joint can surpass the qualification requirements at the time of testing in terms 

of bond strength and fracture resistance, but little has been known about the longevity of the bond. 

In some situations, poor practices and manufacturing processes can actually produce adequate 

bonds when tested immediately after bonding. However, only high quality manufacturing 

procedures will produce durable, long lasting adhesive bonds. Having a non-homogenous/non-

uniform bond, across the bondline will raise concerns over the quality of the bond and subsequently 

its durability performance.  

Surface preparation of the composite surface is one of the key factors that drive the bond 

quality [25, 26]. Proper surface preparation requires precise attention to detail in process selection, 

validation, specification and performance of adhesives and composite surfaces. Bond strength can 

be significantly enhanced by surface treating the substrates (metal surfaces/ composite laminates) 

such as abrasion,  use of peel ply [27, 28], grit blasting [29], surface functionalization (for 

thermoplastics) and anodization in case of metal adherends [30, 31].  
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Peel ply fabrics are often used in the manufacture of composite laminates to protect the 

surface and improve chemical activity upon removal. Additionally, when the ply is removed, the 

roughness of the surface is increased [32] which can improve mechanical interlocking of the 

adhesive with the substrate. However, the peel ply fabric can react with the laminate during 

fabrication and upon removal, leave residues on the surface [33, 34] which can affect the bond 

strength of a joint significantly. Additionally, the type of peel ply used has also been known to 

significantly reduce the bond strength [35] including, nylon or several grades of polyester.  With 

these peel plies, proper surface preparation after the peel ply removal is required in order to 

eliminate the residues that remain from peel ply.  

Techniques such as solvent cleaning for metals, sanding, and gritblasting for composites 

can enhance the ability of a surface to bond with the adhesive and have been shown to be effective 

[36, 29].  However, their reliability and variations in application have yet to be established for 

certification. Alternatively, atmospheric plasma treatment on metal adherends are known to change 

the surface chemistry of the metal resulting in an efficient surface favorable for bonding [37, 38]. 

Laser ablation has shown promise in terms of reliability by creating surfaces free of peel ply 

residues through a controlled resin removal process from the surface of a composite via a laser 

beam [39, 40]. This provides superior control and reproducing clean surface topologies.  

2.3.2 Contamination and its effects on durability 

Contamination is termed as a foreign material that interferes with the bonding between an 

adherend and adhesive. Sources of possible contamination include peel ply residues, release agents, 

skin oil, dust and moisture [41]. Moisture can arise from the environment or from curing systems 

that involves steam at elevated temperatures. There have been several studies on moisture 

absorption in composites [42], particularly relating to pre-bond moisture [43].  Presence of all the 

aforementioned sources could be treated as contamination and are a global concern in the 

production of durable adhesive bonds. The contamination from peel ply and their release agents as 
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discussed in section 2.2.1 is known to significantly degrade bond quality, which results in reduced 

adhesion of bonded composite systems [44]. Another type of defects from contamination could be 

non bonding surfaces that does not allow the adhesive to chemically bond to the adherend due to 

surface asperities. These are also known as kissing bonds or zero volume bonds. Presence of kissing 

bonds is in itself an in-homogeneity or a discontinuous bond which could significantly affect bond 

strength and can deteriorate entire structure over time. Therefore, there is a great need for the 

assessment of the effects of contamination on bond strength and its durability in ABCJ’s. One of 

the major drawbacks in bonded composites is the detection of the presence of kissing bonds.   

Several inline quality control tools such as non-destructive inspection (NDI) [45] and non-

destructive testing (NDT) [46] have emerged to validate composite surface and also to detect bond 

flaws or voids or any possible contamination. Inspection methods such as a manual tap hammer 

[47], automated tap hammer [48], mechanical impedance analysis [49], C-Scan inspection via 

ultrasonic testing [50, 51] etc., have been developed to detect bond flaws such as a void or foreign 

material in a macro scale, however, these tools cannot determine if a weak bond (i.e. kissing bond) 

exists due to the resolution (submicron range) of the resultant acquired information being poor. 

These weak interface bonds could further deteriorate and lead to debonding at the bonded site over 

time and compromise the mechanical integrity and structural efficiency during service. With these 

limitations, NDI cannot reliably ensure the quality of a bond and cannot provide an assessment of 

the overall strength. Therefore, detecting and testing bond flaws post bonding have been one 

approach to address the weak bond strength issue. Another approach is to create a weak link such 

as a foreign material or contamination on the composite surface prior to bonding and investigate its 

effect on the overall bond strength.  

Contamination on surfaces has been significantly reported in the literature as a critical 

factor that affects adhesion. Recently, Jeenjitkaew et al. [52] contaminated the interface between 

the metal and adhesive on a double lap joint and observed a 27% reduction in the bond strength. 
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Critchlow et al. [53] also observed a reduction in bond strength with frekote contaminant. Markatos 

et al. [54] observed a 70% reduction in fracture toughness after composite panels were dipped into 

frekote (4 at % Si) followed by thermal treatments and bonding. Van Voast et al. [55] proposed a 

methodology to contaminate the peel ply at various levels during its manufacture. In this study, the 

contaminant was directly applied on the composite laminate, unlike the study conducted in [55], 

complicating the quantification of the contamination level. Although some research has been 

conducted on contamination effects, there is a lack of repeatability in the evaluation of the effect 

of contamination on an adhesive joint. The repeatability and scalability of a contaminants effect on 

bond strength are of primary importance for understanding the acceptable level of bond degradation 

without compromising the overall bond performance. 

2.4 Quality Control (QC) 

Obtaining continuous bond homogeneity across the bondline is a primary concern in 

adhesively bonded joints as mentioned in section 2.3.1. For example, the tests conducted on 

specimens should be a true representation of the actual material utilized to validate the integrity of 

the joint. This is non-conventional in adhesive bonding, as there are several other factors that 

govern the bonding process such as temperature and pressure rates, cooling rates, no foreign 

material contamination etc. A little variation in the process control could significantly alter the 

property stability of the specimen. Thus, QC processes should be utiilized in order to ensure the 

performance of the final product. This enables the progression of a product to meet the performance 

standards that are set during qualification of the bonded structure. Processes such as accurate lay-

up control, consistent surface preparation methods and precise cure control are a few QC methods 

industry typically utilizes. Few of outcomes that could result upon improper QC are not utilized are 

listed below: 

• Inadequate pressure applied during lay-up process leads to air channels within the layered 

laminae that could severely affect the volume fraction of material and introduces porosity. 
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• Foreign materials that are trapped in between laminae could affect adhesion of laminate by 

itself. These could typically arise from the incomplete removal of backing film that a 

prepreg is covered with. 

• Mis-orientation of plies will alter the final product significantly and sometime forgotten 

plies. Care has to be taken to always record the number of plies that are layered one by one. 

•  Any potential contamination on the to-be bonded surface acts as a foreign material and 

could affect adhesion.  

• Material cuts and fiber breaks could lead to inconsistent adhesion. 

• Controlling the length of the cure time, heat rate, temperature boundaries at the maxima 

and minima and the cooling rate should be strictly followed.  

The degree of detail that needs to be followed for these advanced manufacturing techniques and 

the associated QC processes will ensure repeatable products with reliable performance. As 

explained in section 2.3.2 several inline quality control tools have been developed to inspect 

finished parts for a potential defect or a damaged site. As a result, QC procedures are needed to 

ensure the continued airworthiness of the bonded structures. 

2.4.1 Bondline control 

Properly designed adhesive joints are never critical in the adhesive layer and rather fail in 

the adherend i.e. failure shifts towards adherend or the weakest link in the bonded system. To 

achieve this, the adhesive thickness effects needs to be considered when characterizing the 

bondline. Several investigations on adhesive thicknesses reported a bondline range between 0.05-

0.5 mm for large joint configurations resulting in superior static strength [56, 57, 58]. Gleich et al. 

[56] evaluated adhesive stresses for various bondline thicknesses and concluded that they decrease 

with increasing bondline thickness. Although Goland and Reissner [59] predicted similar 

behaviour, their prediction was limited to thickness aspects and the stresses at the interface along 

the bondline was not addressed. However, Lee et al. [60] found an interface damage zone with 
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adhesive layer less than 1.5 mm with metal adherends while the damage was in the near field of 

precrack with the adhesive layers of 0.1 mm. Additionally, the effect of interfacial crack in adhesive 

bonded joints with composite substrates was investigated by Yang et al. [61] where the bonded 

joint was assumed to have no flaws and voids. While, Yang et al. addressed the interfacial crack in 

a bonded joint assuming no flaws, Goh et al.’s numerical models predicted the damage behaviour 

of a composite scarf joint at a bondline flaw size of around 3 mm. The data from these articles 

indicate that bondline thickness is usually controlled or optimized based on the nature of loading, 

type of the joint and property of adhesive. A need for consistent QC techniques, however, is 

essential to maximize the bond strength.  

2.4.2 Surface preparation  

Surface preparation on composite laminates require a strict QC methodology that can 

identify critical process parameters and eliminate improper practices such as 

• Inappropriate sequence of surface preparation approaches followed during sanding or grit 

blasting.  

• Non-maintenance of manufacturers recommended ambience while surface preparations. 

• Improper solution concentrations during cleaning. 

• Not changing abrasives periodically if sanding or grit blasting.  

• Elongated periods of exposure after surface preparation.  

All the above mentioned QC guidelines are documented based on experience at the field stations 

and could lead to non-homogeneous surfaces which adversely affects the bonded system.  

2.5 Test Methods 

Designers of composite bonded structures need significantly more information and 

material property measurements in comparison to working with metals such as independent 

measurements of tension, compression and in-plane shear properties. Metal bonds or Composite 

bonds have their distinctive failure modes relating to their respective loading conditions. 
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Additionally, the mechanical properties of composite materials and laminates tend to have higher 

variability than their metallic counterparts. The advisory circular issued jointly by Federal Aviation 

Administration (FAA) and the European Aviation Safety Agency (EASA) details out the design, 

manufacturing and maintenance acceptable certification requirements for composite aircraft 

structures which is one of the most cited articles in relation to light weight structures for aviation 

safety [62]. Toughness of the adhesive is universally determined as a measure of a materials ability 

to absorb work done on it. Also defined as the actual work per unit volume or unit mass of material 

that is required to rupture it.  

As mentioned in section 2.2, there are numerous experimental studies that have been 

conducted to evaluate bond strength and there is little agreement on the best practices for the 

durability assessment of bonded joints. This subject is probably the major challenge that the 

adhesion community faces today. The following test methods described provides an overview on 

the research conducted on the durability of adhesive bonds. Some initial static strength evaluations 

are also mentioned which serve as the building blocks in the design and development of advanced 

structures for aircrafts and for their universal acceptance and certification.  

2.5.1 Wedge Crack Tests 

One of the most popular methods to evaluate the durability of a bond is the wedge crack 

test [64].  In these tests, adhesively bonded metal specimens are loaded by forcing a wedge into 

one end of the laminate resulting in a tensile stress in the region near the crack tip (Mode I) as 

shown in Figure 2.4. This represents a typical wedge crack test. The initial crack arrests when the 

tensile stresses are just below tensile ultimate for the adhesive. That leaves the interface under 

extreme stresses and any degradation of the interface at this point, such as hydration, could result 

in interfacial failure [63]. Results from the wedge test provide measurements of crack growth rate 

and mode of failure (cohesion, adhesion, or adherent failure). It is typically used to evaluate 

durability by subjecting the wedged specimens to an accelerated aging environment. A significant 
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advantage is the fact that multiple specimens can be easily fabricated and subsequently subjected 

to a variety of environmental conditions. Another advantage stems from the concept that the most 

important aspect of durability testing is the mode of failure. With the wedge test, the force to drive 

in the wedge is neither measured nor recorded [64]. The disadvantage being, the varying loading 

condition that is created as the crack propagates in the bondline. Because of its potential to evaluate 

durability of adhesive bonds, previous studies have adapted the wedge test to evaluate bond strength 

durability in composite joints. To prevent diversion of the delamination, unidirectional (0o) tape 

plies oriented in the longitudinal direction of the specimen was proposed by Hart-Smith [64].   

 

Figure 2.4: Schematic showing Wedge Crack Extension Test [65] 

Numerous studies have been conducted using the wedge test as the basis for durability 

evaluation. Some of those include Adams et al. [66], who used the wedge test with metal adherend 

specimens in high temperature water to evaluate various durability test methods including DCB 

tests and variations of the wedge test (forced wedge test). Bardis and Kedward [67] conducted static 

wedge tests with partially wedged composite samples in water, sulfuric acid/water solution and 

sodium hydroxide solution. Overall wedge test method is a well suited test for assessing adhesive 
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bond durability however, wedge insertion rates and their effects on initial crack length need to be 

well established.  

2.5.2 Shear Tests 

Lap Shear tests are one of the most widely utilized shear testing methods for assessing 

initial adhesive bonds strength loaded in shear. However, due to the ease of manufacturing, lap 

shear test specimens have been extended to evaluate durability as well. This test consists of two 

substrates bonded together to create a specimen that is tested under tension loading as shown in 

Figure 2.5. For a single lap, the tension force results in a shear (Mode II) between the substrates 

and the adhesive. Details of typical testing procedures and dimension requirements are provided in 

ASTM D1002.  

The use of lap shear tests for evaluating bond quality has generated controversy among 

authors. Davis and Tomblin [14] conducted a survey of 20 organizations that indicated 77 percent 

of designers use lap-shear test results to establish design allowables. However, the authors indicate 

that its use is not considered best practice. Furthermore, Bardis and Kedward [67] found that “lap 

shear tests provided limited verification of bonded assembly reliability, especially when 

considering prolonged loading and environmental conditions”. They also note that a pure shear 

loading condition is rarely achieved in practice.  Regardless of the disadvantages, the lap shear test 

remains a popular test approach due to its simplicity and ease of implementation. The following 

review covers a few of the lap shear and slight variations of the lap shear test.  The effect of test 

temperature and prebond moisture on carbon fiber reinforced polyester composites was 

investigated by Parker [68, 69, 70] using single lap joints. Cyclic environmental ageing was studied 

by Xu et al. [71], using metal to composite adherends in lap shear tests. Other researchers have 

extended the preconditioning to include mechanical loading in addition to exposure to harsh 

environments. Briskham and Smith [72] evaluated both metal to metal adherends and metal to 

composite adherends using lap joints with cyclic mechanical loads in a hot water environment.  
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Smith and Pothakamuri [73] studied the effects of creep loading in a hot wet environment using 

various peel ply and moisture conditions. It should be noted that their tests were conducted using 

thick wide lap shear coupons. Knox and Cowling [74] used a thick metal adherend that was 

conditioned with environmental aging in a lap shear test.  Their efforts focused on understanding 

the effects of various surface preparation techniques.  Other variations of the lap shear tests include 

work by Ashcroft et al. [75], who used double lap joints with composite adherends to evaluate the 

effect of test temperatures.  They also studied durability by combining the effect of environment 

aging and fatigue on lap-strap joint specimens.  

 

 

Figure 2.5: Schematic Showing Lap Shear test coupon 

2.5.2.1 Interlaminar shear strength (ILSS) Tests 

Interlaminar shear strength type of tests provide apparent shear strength of the material 

where the stress distribution is assumed to be isotropic. Chaterjee et al. [76] evaluated several test 

methods to determine shear properties of composite materials consisting of high modulus, high 

strength fibers in organic matrix materials where an extensive source of information can be 

evaluated and test methods reliable to application can be chosen from.  Yokoyama et al. [77] 

evaluated the ILSS and In-Plane Shear Strengths (IPSS) of unidirectional carbon/epoxy lamianted 

composites using a standard Hopkinson pressure bar and found that ILSS is lower than IPSS by 

29% at low and high rates of deformation. No failures were evidenced and only shear strengths 

were considered. Vodicka et al. [78] investigated the effects of moisture uptake, ultraviolet (UV) 

degradation, temperature on the strength of graphite/epoxy composites for 468-520 weeks and 
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found a marginal increase in the ILSS with absorbed moisture and attributed it to the combined 

effects of stress relief and plasticization of the matrix.  

2.5.3 Double Cantilever Beam Test 

A number of studies have been performed in which DCB tests were adapted for adhesively 

bonded composites. The double cantilever beam (DCB) test is a convenient testing method for the 

study of crack propagations and arrest, and is a standardized experimental method that was 

established to determine the interlaminar fracture toughness and delamination growth onset 

resulting from a Mode I loading condition (ASTM D5528, D6115, D3433) as shown in Figure 2.6. 

This test provides data for the energy release rate, crack growth length, and also provides the 

dominant mode of failure. To determine the effects of durability, on bonded systems, the specimens 

are often conditioned via environmental exposure prior to testing.  A few of these studies that 

address durability are briefly described in this section.  

Although lap-shear type tests are the most popular test for assessing adhesive bond 

strength, Bardis and Kedward [67] reported that mode I tests are best for durability.  This is due to 

the inability of lap-shear tests of metal substrates to duplicate service disbond failures over a range 

of temperatures and environments. Hart-Smith noted that a limitation to DCB testing is that only 

one specimen can be tested at a time, yielding inefficient testing [64].  

DCB tests can also be used to evaluate a number of adhesive bonding process parameters 

including surface preparation methods, precure moisture in peel ply [33] and contamination effects 

[79]. While, the above mentioned parameters influence the initial bond strength of a bonded joint, 

a number of researchers have used DCB testing on specimens preconditioned with environmental 

aging of adhesive bonds. Adams et al. [66], Xu et al. [71], and Datla et al. [80], all studied the 

effects of temperature and humidity of metal or conductive laminates on strain energy release rates 

obtained using DCB tests or slight variations of DCB testing.  Lee [81] evaluated composite 

laminates in cryogenic temperatures using DCB testing. Other researchers have studied the 
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combined effects of fatigue loading and environmental aging.  Johnson et al. [82], used DCB 

specimens to evaluate bond durability for composite/metal joints by exposing specimens to hot/wet 

environments prior to fatigue testing. Kinloch et al. [83], used aluminum substrates in tapered DCB 

specimens to evaluate simultaneous mechanically loading and environmental aging. Smith and 

Pothakamuri [73] created a frame that allowed for similar testing conditions and evaluated the 

durability of adhesively bonded composite substrates.  

 
Figure 2.6: Schematic of a Double Cantilever Beam test specimen 
 

2.5.4 Overview of Test Methods 

The fracture mechanics test methodologies described above are determined based on their 

modes of loading and their test specimen geometry.  The approaches mentioned determine the 

propagation characteristics of existing cracks/ delamination’s within a bonded assembly and how 

durability affects the bonded joint based on the joint configuration. A common practice in testing 

ABCJ’s is typically loading the specimens in Mode I, Mode II and Mixed mode I/II but due to their 

simple geometry and uniformity, DCB testing is recognized and the preferred testing methodology 

for bonded joints in adhesion community. The main advantage of a DCB test is its wide utilization 

of test specimen i.e. it permits measurements in Mode I, Mode II or mixed mode. Mode II and 

Mode I/II can typically possess identical geometry but the fracture and its mode of failure depends 

on the remotely applied loads. The durability of the composite can be at compromise with the 
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conditions mentioned and hence the durability studies on the composites and especially bonded 

composites have to be well understood prior to their qualification or being well recognized for their 

usage in the aircraft structures.  

2.6 Surface Characterization  

In aerospace community, adherends and adhesives for composite materials fall under the 

category of epoxy resins. Characterization of these polymeric compounds is critical in 

understanding the chemistry associated with the surfaces. This will be able to qualify the 

characterization technique utilized as a QC method for producing reliable and durable surfaces. A 

major challenge with the use of adhesively bonded composites is the lack of understanding of the 

surface chemistry of substrates prior to bonding and its effect on bond strength. Since adherends 

and adhesives involved in adhesively bonded composite systems undergo various surface 

preparation methods, surface characterization studies will aid in understanding and quantifying 

differences in the preparation methods adopted. This characterization becomes extremely complex 

for in-situ monitoring processes of epoxy resins such as curing and ageing processes where the 

changes are monitored as a function of cure/time.  

2.6.1 Surface Analytical Tools  

2.6.1.1 FTIR 

An FTIR uses a transmission sampling technique that involves passing the infrared energy 

through the sample and detecting that portion of the beam that is transmitted, i.e. not absorbed. The 

infrared beam passes through the sample and the energy that comes through the sample is measured 

versus the respective wavelength to generate a spectrum. Numerous studies on infrared 

characterized polymeric systems exist in the analytical community that can clearly distinguish 

between the chemical composition and the microscopic constituent structure of a polymer 

composite [84, 85, 86]. Chen et al. [87] studied the fiber matrix interface of carbon-fiber epoxy 

composite and concluded that the size of carbon fiber is important in governing the performance of 
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composite as the fiber and matrix result in the formation of a double interface which improves 

adhesion. In relation to surface preparation approaches Tracey and Flinn [88] compared current 

state of the art handheld FTIR instruments from two different sources and understood the effects 

of surface preparation on IR spectra. They reported potential applications of FTIR as a QA 

technique in adhesive bonding process and how FTIR can quantify the changes associated with 

surface preparation. Fata et al. [89] investigated on the aging behavior of epoxy-DICY network and 

characterized critical chemical and structural changes in the epoxy-DICY network during aging. 

Flinn et al. [90] mapped composite surfaces (ply by ply) via FTIR to detect thermal damages and 

tried to correlate the mapped surfaces to their mechanical strength. However, no clear correlation 

was obtained at that point in time.  

2.6.1.2 Contact Angle 

To understand the wetting characteristics of the composite surface prior to adhesive 

bonding, their surface energy needs to be evaluated in order to determine the wettability of the 

adhesive on adherend. This is one of the critical surface properties that govern the adhesion 

phenomenon of an adhesive apart from its bulk properties [91]. A significant change in the wetting 

behavior of the composite was reported by Hameed et al. [92] where poly(styrene-co-acrylonitrile) 

was blended with epoxy resin system. Hydrophobic nature was observed in the blended composite 

with an increase in contact angle when compared to pristine resin with no blend. This suggests that 

contact angle could detect changes associated with the surface with and without foreign materials 

that aid in quantifying the changes. Although water interactions with polymer surfaces were studied 

earlier [93], very little has been researched on the effect of surface types on bond performance in 

ABCJ’s. Dillingham et al. investigated on abraded and non-abraded composite surfaces and 

correlated their surface free energy with the bond strength [94]. In another study, Dillingham et al. 

[95] was able to distinguish the detrimental levels to acceptable levels of siloxane contamination 
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(residue of peel ply) via wettability measurements prior to affecting the bond strength. This also 

serves as a potential QA method on qualifying the preparedness of a surface prior to bonding.    

2.7 Moisture Uptake 

The amount of moisture in a material determined under prescribed condition and expressed 

as a percentage of the mass of the moist uptake in a specimen is termed as moisture content. 

Moisture uptake criteria in epoxy systems have been widely investigated [96, 97, 98], however, 

their water absorption characteristics have not been very well understood. Their response can be 

quite unexpected depending on the environment i.e. if the epoxy systems are subjected to critical 

temperatures or unusual pressure history [99]. Several researches generated material property data 

for varying levels of saturation in order to quantify the effects of moisture ingression on mechanical 

properties [100, 101]. Diffusion of moisture is the only route for moisture to be absorbed in a 

composite matrix or a fiber following Fick’s law. Parker B.M. [100] investigated single lap joints 

that were cured at 120OC and 175OC and environmentally conditioned them for an extensive period 

of 1000, 4000 and 9000 hours of exposure to over saturated K2SO4 solution at 50oC and 96% RH. 

Joints cured at 120OC were affected more than joints cured at 175OC, showing that moisture affects 

on bond strength is dependent on cure temperature. Obrien [104], suggested that the integrity of a 

bond can be preserved, if the interface is strong and reported that presence of moisture at the 

interface could deteriorate the bond significantly. It was also attributed that at the localized site of 

the strongest interface, the rate limiting step for failure is more pronounced with the presence of 

moisture and the role of interfacial diffusion becomes the least important factor. Efforts were made 

by Nguyen et al. [104], to measure the water concentration at an epoxy/SiO2 interface using 

infrared spectroscopy. The weak adhesion obtained was attributed to the accumulation of water 

which was well correlated. These studies showcase the diffusion of water at the interface and its 

deleterious effects on the integrity of the bond. An in-depth study by Bowden and Throssell [106] 
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on diffusion of water inside metal adherends such as aluminum, iron and SiO2 surfaces revealed 

20 molecular layers thick of water layer at ambient temperatures and humidity.  

While most of the literature indicated the degradation of mechanical properties of an epoxy 

composite systems upon moisture ingression, there is a contradictory agreement revealing an  

enhancement in mechanical properties with increasing moisture to a certain level followed by its 

degradation. Selzer and Friedrich [101] investigated the moisture absorption properties on epoxy 

systems by immersing specimens in water at 23 oC, 70 oC and 100oC for different crack opening 

modes and observed an increase in G1C values for fully saturated specimens when compared to the 

dry specimens.  

In a bonded system, the material surface that is in direct contact with the moist environment 

absorbs moisture rapidly, while moisture transport to the inner layers of a composite is relatively 

slow. The diffusion rate is dependent on the thickness of the system and is of many orders of 

magnitude slower. 

Some composite systems exhibit matrix contraction when exposed to elevated 

temperatures [104], introducing stress concentrations around the fibers. An similar effect is 

observed in composite materials upon physical aging. This research investigates typical materials 

used in aircraft grade bonded composite joints that are subjected to long term exposure. This will 

aid in providing information about the saturation limit of the bonded system and the time taken for 

it to reach moisture equilibrium. Thereby, determining the effects of ageing, time dependent 

phenomenon that is related to durability on the overall bond performance. This will aid in assessing 

the changes in mechanical behavior as a consequence of ageing.   

2.8 Durability 

 The current testing and environmentally conditioning of adhesive bonds is not fully 

understood with little to no agreement of common practices in the bonding community. Silva [95] 

notes, “Durability is a general term that is related to the residual strength of the joint when subjected 
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to water or temperature”. Environmental conditioning is also referred to as aging where the 

materials to be tested are exposed to specific environments for a definitive period of time. This is 

often conducted in conjunction with elevated temperatures and relative humidity. Issues associated 

with the durability and related failures in aircrafts, continue to be a critical hindrance for the 

universal acceptance of ABCJs [109, 110]. The assessment of bond strength and durability (long 

term performance) of aircraft structures is affected by extrinsic factors such as environmental 

conditions [71], operating temperatures [68, 69], relative humidity [111], service loads [112] and 

cleanliness of bonding surface [67, 64]. Several in-house test procedures have been developed and 

put forward to work in accordance with own custom set standards. This may be due to a lack of 

knowledge on test methodologies or appropriate standards that needs to be adopted or due to the 

failure in mimicking the durability standard that represents actual service conditions. To date, 

methods to evaluate durability have focused on the environmental conditioning of specimens in an 

unstressed condition. However, a bonded structure in service experiences stress as well as 

environmental conditioning at the same time. Failure to account for the combined effect of stress 

and environment will frequently result in an overestimation in strength and fatigue life [114]. Thus, 

standard test methods need to incorporate appropriate conditions and be capable of represent actual 

service conditions.  

 

 

2.9 Summary 

This literature review covers a wide spectrum of aspects related to adhesively bonded 

composite joints including; a) structural adhesives used in adhesive bonding and the chemistry 

associated with it; b) factors that affect composite bond integrity such as surface preparation and 

contamination; c) use of surface analytical tools in characterization of ABCJ’s; d) quality control 

methods and e) issues related to durability and their effects on ABCJ’s. These are the important 
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factors that the bonding community must understand and in particular, understanding how 

contamination influences bond strength and durability. The utilization of materials, properties and 

chemistry in relation to the adhesion theories enlightens the mechanism of bonding processes that 

needs to be well understood. This knowledge will serve as the foundation for the level of quality 

control that needs to be adopted in bonding of composite joints. The pros and cons of surface 

analytical tools such as FTIR and Contact angle measurements will assist researchers in utilizing 

suitable techniques that determines the preparedness of the surfaces that are to be bonded. Finally, 

without the knowledge of durability of ABCJ’s, there is no statistical basis for the reliability of 

bonded joints especially in primary structures and hence intelligent design methodologies needs to 

be adopted to gain confidence in the reliable and repeatable performance of bonded joints, thus 

providing a platform for their certification and qualification. This summary is an effort to provide 

a necessary background information needed for the study of adhesively bonded composite joints, 

the work that has been accomplished in this area and the critical issues associated with bonded 

joints.  
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 MATERIALS AND MANUFACTURING 

This chapter provides all the detailed information on the materials utilized for experimental 

analysis such as adhesives, adherends and contaminants. A brief set of manufacturing procedures 

adopted will also be explained.   

3.1 Materials 

Specimens for this study have been manufactured with composite prepregs. The initial 

studies utilized unidirectional carbon epoxy prepreg that was acquired from Toray Composites 

America (TCA). The material was a unidirectional prepreg T800 (P2362U-19-304) with a fiber 

areal weight (FAW) of 190 g/m2 and resin content (RC) of approximately 35%. The adhesive 

utilized was 3M Scotch-Weld (AF 555 U & AF 555 M). The U indicates unsupported tape and the 

M indicates that the tape includes a supported mesh. The Toray prepreg is a semi toughened 

proprietary epoxy prepreg system which cures at 350o F with a young’s modulus of 22.3 x 106 psi 

and 60% fiber volume. Both AF 555 adhesives are designed to cure at 350°F for bonding 

composites. This adhesive can be co-cured, and co-bonded with composite prepreg, or used to bond 

cured composites.   

Peel ply materials acquired from FibreGlast consisted of both and nylon and polyester 583 

peel plies. Additional polyester ply, P60001, was obtained from Precision Fabrics. These peel plies 

are used to protect the composites prior to bonding and to generate an active surface when removed.  

Peel plies are often used in secondary bonding applications.  

Various types of contamination were used in this study including an aerosol from CBS 

Aerosol & Paint, Inc. and Frekote 710-NC from Henkel Corporation. The aerosol is a 100% 

Silicone spray and the Frekote is a semi-permanent proprietary release agent. As per the data sheet, 

the Frekote contains alkanes, octanes, naphtha, dibutyl ether and polydimethylsiloxane (PDMS) 

which is one of the most common contaminants that can effectively release substrates. Initial testing 
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with the aerosol proved to be unreliable so efforts focused on using the Frekote due to its popularity 

as a release agent. The PDMS molecular structure within Frekote is given in Figure 3.1 below.    

 

Figure 3.1: Molecular Structure of PDMS [1] 

3.2 Composite Laminate Design 

A well designed composite laminate will exhibit characteristics such as excellent strength 

and stiffness to weight ratios, good fatigue properties and tuning the stiffness and strength to meet 

the end result of design requirements. To simplify analysis, testing and manufacturing, the primary 

design suggests that a composite laminate be made symmetric. Non-symmetric laminates 

introduces coupling and can affect the stiffness of the laminate. Any asymmetries that are essential 

should be kept at the middle surface where the adhesive is introduced. The database for composite 

materials is fiber and matrix specific and extrapolating them to new materials is risky. The material 

system that was utilized here is designed based on the factors aforementioned and described in 

section 3.3. 

3.3 Manufacturing of Adhesively Bonded Composite Laminates 

In this research, DCB coupons are manufactured as per the ASTM D5528 standard via a 

sequence of steps that are explained in detail below. An end product of a composite system depends 

on its manufacturing processes adopted. The process is based on the applicability and economic 

value. A wide variety of manufacturing  techniques exist such as compression molding (CM), liquid 

composite molding (LCM), injection molding (IM), reinforced reaction injection molding (RRIM), 

structural reaction injection molding (SRIM), resin transfer molding (RTM), vacuum assisted resin 

transfer molding (VARTM), vacuum infusion processing (VIP) and hand layup to name a few [2]. 
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Advanced composite materials typically comprise of thermosets and require several cure steps to 

attain desired properties on an end product. The manufacturing of these composite laminates 

primarily starts with a hand lay-up process. A hand layup process was preferred in this research as 

our production requirements are minimal. Dry prepreg plies are cut into desired dimensions as 

shown in Figure 3.2 (a) and are layed by hand on to a smooth finished plate to form a laminate 

stack as shown in Figure 3.2 (b). The continuous roll of prepreg sheet/ply is protected by a backing 

material which is subsequently removed as each layup step progresses. The fiber layers or plies in 

a laminate are arranged unidirectionally which is the primary loading  

  

Figure 3.2: a) Dry prepreg laminate sheets cut to the desired dimensions and b) Stack of 
10 plies of prepreg laminate.  

direction. The sequence and symmetry has to be maintained in order to avoid misalignment of the 

layers post cure. Unidirectional fibers typically offer higher stiffness and are stronger in the fiber 

direction (here 0 degree). Stacking of the prepreg plies to a desired number, based on the thickness 

needed for of final laminate is then conducted. The red sheet shown in Figure 3.2b underneath the 

stacked laminates is the release ply which acts as a barrier between the laminate and the tool plate. 

This layer usually extends beyond the edges of the layup and is sealed with the help of a high 

temperature tape or a flashbreaker (FB) tape.  

After the laminate stack is arranged, they are covered with the peel ply. The dimensions of 

peel ply are usually an inch over the actual laminate dimension as shown in Figure 3.3(a). The FB 
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tape utilized is a high temperature tape that can sustain maximum temperatures of 400oF as well as 

holding down vacuum bagging materials. The peel ply fabric is applied on both sides of the 

laminate and sealed with the FB tape as shown in Figure 3.3. The breather material is then covered 

across the entire area of cure. The breather material absorbs excessive resin from the laminate and 

also maintains a path throughout the cure, so that air and volatiles can escape.  

 

(a) 

 

(b) 

  
Figure 3.3: a) Application of Peel ply fabric on to the stacked laminate; b) breather 

material on top of peel ply covered stacked laminate. 

Several layers of breather material can be utilized in case of heavy resin bleeds. This is shown in 

Figure 3.3(b). A rubberized sealant tape is utilized to cover the periphery of the tool plate so that it 

creates a circumferential boundary. Vacuum valves, ports and thermocouples are placed 

accordingly to monitor the vacuum levels inside the bag and to record temperatures of the part. A 

vacuum bag is then placed on top of the sealant tape to seal the edges and ensuring no leaks. These 

are generally nylon or polyvinyl alcohol (PVA) materials and is shown in Figure 3.4. The 

compaction pressure provided by the vacuum bag governs the quality of the composite laminates 

that are to be cured. In autoclave curing, although higher pressures can be attained to provide 

sufficient compaction pressure, vacuum bagging is still needed to outgas the available gases in the 
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clave as well as reduce porosity that can be achieved in the absence of vacuum bag. Figure 3.4 

provides and an image of the composite prior to being placed in an autoclave.   

 

Figure 3.4: Vacuum applied to the vacuum bagging process 

A schematic showing a cross section of the set-up is provided in Figure 3.5 and the list of items 

that are utilized are shown in Table 3.1. After the bagging is completed, the sealed plate is placed 

in an autoclave for curing. Autoclave is widely used in aerospace industry for the manufacturing 

of aircraft components, spacecraft and missiles. An autoclave is a pressurized chamber used to heat 

treat specimens under various conditions of temperature and pressure. This is conducted in 

accordance with cure cycles recommended by the manufacturer.  With the high temperatures and 

pressures that can be achieved in the autoclave, a denser, composite part with minimal voids can 

be obtained. The autoclave used for our manufacturing is shown in Figure 3.6. The interior of an 

autoclave has many thermocouple ports, vacuum source ports and vacuum transducer ports. The 

cure process is typically provided by the prepreg manufacturer and must be followed to obtain high 

quality parts. The heating rate, pressure application rate, part temperature along with the cooling 

rate is usually specified with tolerance limits. Deviations from these requirements will lead to lower 

quality parts. Figure 3.7 shows the cure cycle of panels made with the T800 prepreg. The chart 

shows measurements 
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Figure 3.5: Schematic showing the vacuum bagging procedure setup. 

Table 3.1: List of Materials utilized during composite laminate manufacturing 

 

such as temperature, pressure, vacuum, part temperature, vessel temperature etc, as a function of 

time for the cure cycle. The vacuum lines and the pressure lines overlap each other in the cure cycle 

chart which indicates that there was no major leak. The autoclave air temperature leads the part 

temperature which is expected, and the air temperature always overshoots at the end of the ramp 

which was done intentionally and automatically by the autoclave controller, so that the parts can 

reach the cure temperature  more quickly. The parts are cured for the desired time and temperature 

for an efficient bonding process and cooled down. In the process of optimizing parameters, effects 

of vacuum were investigated where vacuum was applied throughout the cure for one set while 
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vacuum was switched off after the vessel pressure attained 12 psi. The parts are maintained under 

compression on the composite parts from here on and result in the desired thickness. Hence, for the 

manufacturing of our parts, the vacuum was removed at a vessel pressure of 12 psi. 

 

 

Figure 3.6: Image of an autoclave utilized for composie manufacturing 

Toray- AF 555M bonded system 

The laminates were cured at 350°F in accordance with the manufacturer’s specifications. 

Secondary bonding was performed at 350oF for 2 hours.  The laminates measured approximately 

13.5 inches in length by 12 inches in width. Two 10 ply laminates with all 0° ply orientation and 

two supported mesh adhesive films were used as the adhesive to bond the panels (the choice of 

number of plies and adhesives are detailed later in this section). A precrack of 2.5 inches for easy 

crack initiation was embedded with a release film in between the adhesive layers. After the bonding 

process was accomplished, 8 specimens were cut from each panel and measured 11.5 inches in 

length by 1 inch in width. Remaining material from each panel was utilized in the surface 

characterization studies. The number of plies was determined based on the mechanical properties 

of the adhesive. Table 3.2 shows the fatigue properties of AF 555. Maximum loads at the surfaces 

and required forces to cause the desired shear stress at the bond line were calculated.    
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Figure 3.7: Cure cycle for Toray Prepreg 

Table 3.2: Maximum Stress and Force Calculations for Toray 

Max Stress (psi) Average Life  (cycles) Force required for a 20 ply 9 inch 
long specimen 

4500 1.58 x 104 - 
4000 5.28 x 104 - 
3500 4.75 x 105 420 
3000 2.67 x 106 360 
2200 1.03 x 107 +  (No failure) 264 

 

Table 3.3 provides the displacement and force requirements as a function of number of plies. These 

parameters were obtained by assuming a 3000 psi shear load at the bondline. Based on this table, 

the specimen design resulted in 20 plies of a unidirectional laminated (0.15 in thick + adhesive) 

with a reasonable force load of 300 lbs and a displacement of 1.07 inches without failure. 

Deflections were determined using Castigliano’s theorem, 

𝜔𝜔 =
𝐹𝐹𝑙𝑙3

3𝐸𝐸𝐸𝐸 

where F is the load, l is the length, E is the Young’s Modulus and I is the Inertia. Specimens were 

tested to deflections of 0.25, 0.5 and 0.75 inches with 80% of tested specimens fracturing at the 

0.75 in deflection. Hence, the 0.5 inch of single amplitude was selected as the appropriate 
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Table 3.3: Displacement and Force Dependency on Number of Plies 

3000 #Plies Thickness (t) Inertia (I) Force on Piston (F) Stress at Surface (σ) 

 2 0.015 2.81E-07 30 1800 
 4 0.03 2.25E-06 60 900 
 6 0.045 7.59E-06 90 600 

Ƭ=3000 8 0.06 1.80E-05 120 450 
 10 0.075 3.52E-05 150 360 
 12 0.09 6.08E-05 180 300 
 14 0.105 9.65E-05 210 257 
 16 0.12 1.44E-04 240 225 
 18 0.135 2.05E-04 270 200 
 20 0.15 2.81E-04 300 180 
 22 0.165 3.74E-04 330 164 
 24 0.18 4.86E-04 360 150 
 

deflection parameter. The curing time of the AF 555 adhesive is 2 hours at 350oF as per 

manufacturer’s recommendations for  bonding to composite. The adhesive cure profile is shown in 

Figure 3.8.  

 

Figure 3.8: Adhesive cure cycle of bonded composite laminates 

 

3.4 Preparation of Contaminated Adhesively Bonded Composite Laminates 
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Durability of the ABCJ’s can potentially be affected from contamination on the laminate 

surfaces, which can degrade the bond quality/bond strength over time.  To study the effect on 

durability a procedure for contaminating the laminate surfaces prior to bonding is needed. The 

objective is to create weaker links between the adherend and adhesive and create a means for 

studying the effects of contamination on bond durability. Several materials were evaluated 

including grease, vacuum oils, silicon gels and release agents.  It was found that release agents were 

more effective in providing repeatable and reliable results.  Release agents are lubricants that are 

often applied to mold surfaces to facilitate release of the molded article. This creates a controlled 

adhesion that can generate scalable and repeatable bonding conditions. This was shown by 

systematically controlling the amount of contamination created or deposited on the laminate 

surface.  

3.4.1 Contamination Methods 

The aim of developing a procedure to contaminate the laminate surfaces prior to bonding 

is to create weaker links between the adherend and adhesive and determine the effect of 

contamination on bond durability in ABCJ’s. Several approaches were explored at FIU to create 

scalable and repeatable bonding conditions. This was exercised by systematically controlling the 

amount of contamination created or deposited on the laminate surface. The contaminant employed 

initially was 100% pure Silicone spray (CBS Aerosol & Paint, Inc). Two approaches were finalized 

to investigate their effect on bond strength. They are detailed below.   

3.4.1.1 Mesh Contamination 

For this approach, a perforated stainless steel mesh (0.305 m x 0.305 m) containing 

equipatterned holes with a diameter of 3.2 mm, thickness of 0.91 mm and a stagger of 22.2 mm 

was utilized. The mesh was vertically placed at a 90° angle and the contaminant was sprayed in the 

perpendicular direction towards the mesh as shown in the Figure 3.9. Care was taken to create a 

uniform layer of contaminant all across the perforated mesh. The mesh containing the contaminant 
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side is brought in contact with the laminate surface to be bonded to replicate the exact same pattern 

as that of mesh. This creates a contaminant imprint on the laminate surface. It should be noted that 

gravimetric analysis was conducted on the laminates before and after contamination in order to 

record the amount of contaminant deposited. 

 

Figure 3.9: Contamination Procedure- Mesh Approach 

3.4.1.2 Stamp Contamination 

In the stamp approach, a rubber stamp with a dotted pattern is brought in contact with the 

contaminant. Arbitrary arrays of spatially ordered patterns of macroscopic feature size are created 

on the surface of the laminate. The contaminant is transferred onto the stamp following which the 

inked contaminant stamp is brought in contact with the laminate surface as shown in Figure 3.10. 

This generates an imprint on the laminate surface with a high throughput than mesh approach. As 

mentioned above, gravimetric analysis was performed on laminates before and after contamination 

in order to monitor the weight gains. The patterned imprint on a composite surface can be viewed 

in the bottom portion of the Figure 3.10. This results in the generation of a contaminant pattern that 

creates the same surface information as of its stamp. This technique is versatile and can become 

increasingly useful as it enables the fabrication/manufacturing process 
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Figure 3.10: Contamination Procedure- Stamp Approach 

very cost effective and by creating localized contaminant sites efficiently. In both the approaches, 

the spatially ordered patterns can be varied by altering the diameter of the holes on the mesh or 

varying the dotted pattern on the stamp. Once the approach is optimized, we then followed the 

utilization of different contaminants to observe their effect on bond strength. 

3.4.2 Contaminant Materials 

The two contamination procedures were evaluated in conjunction with contaminant type 

in an effort to optimize a contaminant that will successfully create a weak link at the interface or 

between the adhesive and the composite surface. Several contaminants were utilized to contaminate 

the composite surface and evaluations of its effect on bond strength were conducted. The 

contaminant types used are mentioned as follows:  

3.4.2.1 Aerosol Contaminant 

The 100% Silicone spray was used to evaluate both the mesh and stamp approaches for 

contaminating the laminates. The approaches were investigated to determine which approach 
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provided more consistent contamination patterns. As shown in Figure 3.11, the mesh approach was 

significantly less consistent in depositing the contamination.  Subsequent contamination in this 

study was done with the stamp approach.  

 
 

Figure 3.11: Differences in the type of approaches a) Mesh; and b) Stamp  

3.4.2.2 Frekote Contaminant 

Frekote, another contaminant utilized to study the effect of contamination on bond strength. 

Frekote is a semi-permanent mould release agent and no research on the effect of bond strength 

using composite materials has been reported so far. The company data sheet reveals the presence 

of polydimethylsiloxane (PDMS), dibutyl ether, light aliphatic solvent naphtha and isoparaffinic 

hydrocarbon. Upon researching, frekote contains alkanes, octanes, naphtha, dibutyl ether and 

polydimethylsiloxane (PDMS). It was also reported as one of the most common contaminants that 

can effectively release substrates from any adherends. Additionally frekote has gained popularity 

as an effective release agent. Frekote contaminant via a stamp approach yielded a better consistence 

in comparison to aerosol.  

3.4.3 Contamination Symmetry 

Efforts were also made to observe the effect of contamination by applying contaminant 

stamped on both sides of the composite laminate prior to bonding and only on a single side. The 

aim of creating weak bonds is to drive the fracture towards the weakest link. 

3.4.3.1 Dual Side Contamination 

The method of application of contaminant on dual sides followed the exact stamp approach 
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mentioned in section 3.4.1.2 and the contaminant was applied on both sides of the composite 

laminate. This case will tend to progress the crack in both directions having considering the 

symmetrical plies i.e. a jaggered pattern between one laminate to another. The distribution of weak 

sites might not be uniform with each laminate and this complicates the understanding of crack 

propagation.   

3.4.3.2 Single Side Contamination 

The development of single side contamination approach over dual side was motivated to 

simplify the crack propagation. The crack path always tends to follow in a direction towards the 

weakest link where the failure occurs in a no adhesion region, which is the contaminant side 

whereas the other side is pure cohesive. This scenario will aid in monitoring the crack propagation 

with ease discerning in a no adhesion region on single side in comparison to monitoring crack 

propagation in both sides.  

3.4.4 Contamination Levels 

With the single side stamp contamination technique, it is proposed that monitoring of 

fracture can easily be identified and simplifies the analysis. In this investigation, understanding 

how varying levels of contamination effect crack dependency on fracture toughness is critical. One 

of the major obstacles arising in this technique is the control of the resultant feature size and how 

that dictates the non-bondability of an adhesive bond.   

3.4.4.1 Stamp with Small Area (A1) 

Stamp with the dotted pattern in which each raised imprint dot is 1 mm in diameter with a 

separation distance of 4.5 mm in the horizontal direction and 3 mm in the vertical direction was 

procured. A1 stamp measured 7 cm x 7.5 cm in dimensions. Upon contaminating with Frekote, this 

geometry results in a ratio of 5.43 percent contaminated area per unit cell. The A1 stamp is shown 

in Figure 3.12a. 

3.4.4.2 Stamp with Larger Area (A3) 
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Stamp with the dotted pattern in which each raised imprint dot is 3 mm in diameter and an 

8 mm of separation distance in both horizontal and vertical direction was procured. A3 stamp 

measured 6.5 cm x 13 cm in geometry. After contamination, this geometry results in a ratio of 5.58 

percent contaminated area per unit cell. The A3 stamp is shown in Figure 3.12b. 

 

Figure 3.12: Comparison of A1 and A3 stamps 

Using this approach, contaminant locations will create adhesion failure (failure at the 

composite-adhesive interface) that is intermixed with areas of cohesion failure (failure within the 

adhesive itself). By varying the size and application pressure of the stamp an improved 

understanding of the influence of each type of failure on overall bond strength can be assessed.  

3.5 Summary 

The contamination methods, materials and levels optimized would reveal a comprehensive 

understanding of weak links within an adhesively bonded joint. The primary advantage of the 

contamination method adopted would assist in creating a repeatable and scalable undesirable 

bonding conditions that are expected to serve as NDE benchmarks to further the understanding of 

effects of contamination in ABCJ’s.  
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 SURFACE CHARACTERIZATION  

Surface characteristics of any material are often controlled by the surface chemical and 

physical properties. Characterizing the surface features or any properties that are associated with 

the surface is of great importance because these surfaces are a primary mode of contact for the 

adhering material. Assessing the surface can reveal information such as activity, available chemical 

groups and surface features such as topography. This chapter describes available surface 

characterization techniques which can provide surface information which might serve as a 

benchmark in predicting the adhesion mechanisms involved with the bonded joints. Figure 4.1 

illustrates the surface characterization techniques and tools that were utilized in the current research 

to analyze the properties and surface chemistry associated with composite laminates.  

 

Figure 4.1: Surface characterization techniques conducted in the current research. 

The information that can be acquired from utilizing these surface techniques are explained in detail 

in the following sections. It should be noted that many routes were adopted for contamination, of 

which a comparison is drawn between the pristine and the optimized contaminated set only in order 

to observe the effect of contamination on bond performance.   
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4.1 Experimental Approach 

4.1.1 Wettability Measurements 

Contact angles were obtained using the sessile drop method with a KYOWA Contact angle 

meter (model no: DM-CE1) equipped with a dispensing needle as shown in Figure 4.2(a). Three 

liquids were utilized for measuring the contact angles: DI water which is mildly polar, ethylene 

glycol-neutral in nature and diiodomethane-highly polar in nature. An ideal probe liquid would be 

the adhesive itself which would give comprehensive information about the kinetics of the contact 

mechanism but the viscosities of the adhesive is extremely high and does not allow its use as probe 

liquids. Additionally, the polarity of the adhesive is unknown. This aids in the selection of known 

liquids having high, neutral and lower  polarity as an alternative. A 2 μl droplet (sessile) was 

generated by rotating the needle and approaching the substrate perpendicular to the needle direction 

with a gentle feed rate of a few micrometers per minute. All the tests were carried out in ambient 

air at room temperature. 10 drops for each liquid were analyzed at 10 different locations separated 

by sufficient spacing (~0.5 mm) to prevent the potential influence of previous tests on the substrate. 

With the aid of FAMAS, an image analysis software, the shape 

 

 

Figure 4.2: (a) Kyowa Contact angle meter and (b) Wetting angle made by a liquid over a 
solid substrate. 

of the dropped image was determined for its contact angle (°) (Figure 4.2b) and surface free energy 

parameters of the sample were evaluated. From a scientific perspective, the understanding of liquid 

solid interactions is essential to understand adhesion, as this represents an ideal case of adhesive 
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corrugating on a solid composite surface while curing. Duncan et al. [1] investigated solid-liquid 

interactions of adherends and adhesives and found that an adhesive will wet the adherend when its 

surface energy is lower than the adherend. According to Young’s Dupre equation for wetting angles 

greater than zero, the force balance at a solid-liquid boundary is given as  

 γlv cosθ =  γsv − γsl (4.1 
 

where 𝜃𝜃 is the contact angle, and 𝛾𝛾𝑒𝑒𝑒𝑒 is the surface energy of the solid-vapor, 𝛾𝛾𝑒𝑒𝑙𝑙is the surface 

energy of solid–liquid interface and 𝛾𝛾𝑙𝑙𝑒𝑒 is the surface energy of liquid-vapor interface. As the 

adhesive tends to wet the adherend, lower contact angles are obtained.  

In this chapter, contact angles are first determined for baseline or pristine samples.  These 

angles are then compared to contact angles measured from the contaminated specimens. 

Differences in these angles will then be correlated with bond strengths from both specimen types.  

4.1.2 FTIR Measurements 

Infrared spectra were collected using the JASCO 4100 series bench-top infrared 

spectrometer using the ATR-PRO450-S accessory. The ATR measures the change in the internally 

reflected infrared beam when the beam comes in contact with the sample. The changes in the energy 

due to absorption of the incident beam is detected which provides information about available 

functional groups on the sample surface. Information related to the available functional groups 

helps to better understand and identify the surface chemistry associated with the adhesive and can 

provide insights on its behavior. Care was taken to ensure full and intimate contact between the 

composite surface and the ATR germanium crystal with the application of moderate pressure over 

the surface as shown in Figure 4.3. A few FTIR systems purge Argon gas into the compartment to 

eliminate moisture and CO2. The JASCO 4100 series utilized does not possess this capability and 

hence, moisture and CO2 peaks were subtracted from the resultant spectra. The FTIR spectrum of 

the material can be compared for “best matches” with libraries of spectra that have been cataloged 
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for known materials. The spectra were collected in 600 cm-1 to 1800 cm-1 region with 2 cm-1 

resolution, 128 scans with scanning speed of 2 mm/sec.  

 

Figure 4.3: Schematic showing FTIR processing technique. 

Samples from Toray prepreg and AF 555M adhesive were investigated before and after 

cure to identify the structural changes that occur in the material system. It should be noted that both 

the prepreg and adhesive are proprietary and very little information is known pertaining to their 

chemistry. The changes that are associated before and after cure can suggest the cure mechanism 

related to the materials and possibly assist in identifying dominant constituents of the material 

system. Prior to analysis, the peel ply was removed from the cured baseline samples and IR 

spectroscopy was conducted on the sample surface. IR spectroscopy was also conducted on the 

surfaces of the contaminated specimens and on the contaminant alone.   

4.1.3 Bondline Measurements 

Joint performance has been shown to be dependent on the bondline thickness and 

consistency of the bondline [2, 3]. When evaluating adhesive bond, bondline thickness 

measurement provide a means for assessing small variances in thickness and their effect on bond 

strength. The Optical Microscope utilized in this research was a petrographic Olympus BH2 and 

SZ9 scope with a camera Q-Imaging Micropublisher 3.3 RTV. The software used to analyze the 
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acquired images was Q-Capture Pro. To provide a consistent bondline in our samples, a high finish 

aluminum plate was placed on top of the laminate to apply even pressure throughout the laminate. 

After secondary cure, the bondline thickness was evaluated using an Optical Microscope to 

determine the variability in the bondline. The measurements are read at 1 cm, 3 cm and 5 cm from 

the crack initiation point of the DCB coupons as shown in Figure 4.4. The red region is the precrack 

region and the black region is the bonded region of a DCB coupon. Bondline measurements help 

in validating the thickness of a bondline and determines the variability associated with the it.  

 

Figure 4.4: Schematic of the bondline measurement at 1cm, 3 cm and 5 cm. 

4.1.4 SEM/EDS microscopy 

Understanding the surface morphology of the composite laminate by itself as well as the 

adhesive to a nanometer resolution and their elemental composition will provide a significant 

information of the role of surface characteristics for adhesive bonding. A JEOL JSM 5900LV 

Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) was 

utilized to analyze the surface morphology and quantify the chemical composition of pristine and 

contaminated ABCJ’s specimens. An accelerating voltage ranging from 15 to 30 kV was used to 

investigate the surface characteristics which aided in distinguishing the elemental constituents or 

the chemical difference between the pristine and contaminated set. Specimens were sputter coated 

with gold for 2 minutes to avoid charging. Additionally, qualitative information on chosen elements 

and their distribution was analyzed using EDS Line scan methods. In line-scanning method, the 

electron probe moves linearly along the ROI on the sample. As the probe moves, the detector 
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records the counts of the signal, which is an indicator of the number of X-ray quanta being detected 

or counted. The sample was ensured to be on a perfect horizontal stage to minimize different 

emergence angles arising of an uneven plane. To maximize the detector output, the line scan was 

set to long dwell times which aided in collecting a reasonable density of counts within the profile.   

4.1.5 Gravimetric Analysis 

Assessing the weight changes in the laminate before and after contamination is of key 

importance when quantifying the contamination. Since contamination impacts the bond strength, it 

is worthwhile to establish/evaluate a relationship between the weight gain and the bond strength 

associated to that processing. A Metler Toledo AB304-S weighing system was utilized to 

demonstrate differences in the weight gain before and after contamination.  

4.2 Results and Discussions 

4.2.1 Wettability Measurement 

The contact angles were measured on all the specimens which included baseline (non-

contaminated), mesh contaminated and stamp contaminated.  Initially, the contamination used was 

the aerosol and as discussed in Chapter 3. However, subsequent analysis was conducted using the 

stamped approach with frekote.  Contact angle measurements were made with each set and are 

discussed below.   

The aerosol mesh contaminated specimens had slightly higher angle measurements than 

the aerosol stamp contaminated specimens for water and ethylene glycol liquids. The variation of 

contact angle for mesh and stamp approach is shown in Figure 4.5. Results show that the contact 

angles are lower using the stamp approach when compared to mesh approach. The increase in the 

contact angle for the mesh approach specimens is attributed to poor wetting characteristics [4]  
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Figure 4.5: Contact Angle measurements for mesh and stamp approach using aerosol 
contaminant. 

 

due to the inhomogeneity in the distribution of Aerosol through a mesh. Table 4.1 shows the wetting 

behavior of different fluids with the composite surfaces. Careful inspection reveals that the mesh 

contaminated specimens displayed a non-uniform spread or inhomogenous spread on the composite 

surfaces. On the other hand, when the contamination was distributed using the stamp approach a 

very consistent pattern and a homogenous distribution pattern was obtained. This is one of the many 

reasons in adopting the stamp approach largely due to its consistent patterning. Figure 4.6 shows a 

comparison between the non-contaminated (baseline) specimens to contaminated specimens i.e. 

aerosol (mesh and stamp) and Frekote contaminant. Lower angles were found for the baseline 

specimens as they are pristine and free of contaminants exhibiting a hydrophilic nature. Lower 

contact angle surfaces have better wetting characteristics, so that the adhesive wets out completely 

on a composite surface and mechanically interlocks itself on a 
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Table 4.1: Wetting Angles with DI Water, Ethylene Glycol and Diiodomethane for Aerosol mesh 

and stamp contaminated specimens. 

 Aerosol (Mesh Contaminated) Aerosol (Stamp 
Contaminated) 

Water 

  

Ethylene 
Glycol 

  

Diiodomethane 

  
 

composite surface resulting in a better wettability. This mechanism can be correlated with the bond 

strength as pristine specimens have lower contact angles and the can possess greater strengths when 

compared with contaminated specimens. Table 4.2 shows their respective wetting angles.  
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Figure 4.6: Contact angle measurements for baseline, aerosol (mesh and stamp) and Frekote 
specimens. 

 

4.2.1.1 Surface Energy measurements 

Surface free energy components have been evaluated using the dispersive, polar and 

hydrogen components of the energy balance equation. Under careful observation, the hydrogen 

component of the pristine specimen has a value of 3.3 mJ/m2 while the toray frekote stamped 

specimens had hydrogen component of value 0.1 mJ/m2. It should be noted that few specimens that 

were fully contaminated with frekote and conducting energy measurements on them revealed the 

hydrogen bonding component to be zero. This suggest that the pristine specimens have available 

hydrogen bonds to share with the adhesive while the contaminated specimens have marginal or 

nothing to share as hydrogen component. Surface Free Energies (SFE) were also calculated based 

on the contact angles obtained for the specimens and can be found in Table 4.3. The total surface 

free energy (SFE) of the baseline specimens and the aerosol mesh contaminated specimens did not 
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vary significantly and the deviation is large due to non-homogeneity of the contaminant across the 

composite surface. 

Table 4.2: Wetting Angles with DI Water, Ethylene Glycol and Diiodomethane for 

Pristine and Frekote stamp contaminated specimens. 

 Toray baseline (non-contaminated)  Frekote (Stamp Contaminated)  

Water 

  

Ethylene Glycol 

  

Diiodomethane 

  
 

However, the aerosol stamp controlled specimen did exhibit a large reduction in SFE when 

compared to frekote stamp controlled specimen. In general, a surface with low surface energy has 

poor adhesiveness i.e. large contact angles. This data correlates well with the contact angles 

obtained when compared to baseline specimen. 
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Table 4.3: Surface Free Energy components of pristine and contaminated specimens 

Sample Surface Free Energy, mJ/m2 

Toray_Baseline (non-contaminated) 51.0 ± 4.5 

Toray_Aerosol mesh contaminated 51.3 ± 28.1 

Toray_Aerosol stamp contaminated 36.2 ± 10.9 

Toray_Frekote stamp contaminated 46.2 ± 3.9 

Toray_Frekote_all contaminated 17.1 ± 2.3 
 

4.2.2 FTIR Measurements 

FTIR Spectroscopic studies were conducted on the adherend and adhesive materials before 

and after cure i.e. as received and post cure. Since the materials are proprietary and company trade 

secrets are involved in it, it is difficult to identify exact constituents of the material but a close 

estimation can be made based on the IR spectra and literature. The changes that are associated with 

the spectra will reveal the cure mechanism.  

4.2.2.1 FTIR Spectroscopy on adherend 

The base polymeric compositions or the reactions involved in Toray prepreg system are 

first evaluated. Figure 4.9 shows the entire spectrum of the adherend (prepreg) material that is 

compared pre and post cure to identify the changes that occur during cure. Epoxy resin is one of 

the dominant constituent in a CFRP system and is identified as the characteristic peak occurring at 

916 cm-1 for the before cure sample. The decrease of this band post cure reveals the consumption 

of epoxy group [5]. The peak disappearance in the cured composite is an indicative that the curing 

process is complete and has occurred fully. The curing mechanism generally involves amine 

addition to epoxy [6]. Epoxy crosslinks with amide of DICY involving in the ring opening of the 

epoxide is shown in Figure 4.7, forming a hydroxyl mechanism generally involves amine addition 

to epoxy [6]. Epoxy crosslinks with amide of DICY involving in the ring opening of the epoxide is 
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shown in Figure 4.7, forming a hydroxyl and secondary amine. The epoxy concentration is 

decreased as the reaction gradually progresses which is seen in the IR spectrum in Figure 4.9 a.  

  

Figure 4.7: Primary Amine and Epoxy reaction 

Conventionally, amine stretch (N-H) occurs with two strong bands between 3300 and 

3500cm-1 while secondary produces only one band between 3350-3310 cm-1 while tertiary has no 

bands in this region [7]. After the attack of amine on epoxide group, the reaction progresses with 

the secondary amine and its hydroxyl group reacting with another epoxy group to form secondary 

hydroxyl group and a tertiary amine [8] as shown in Figure 4.8. This is clearly seen in FTIR 

spectrum where the before cure sample has two strong primary amine peaks between 3300-3500 

cm-1 and are not visible in the after cure sample. 

 

Figure 4.8: Secondary amine and hydroxyl reaction with epoxy. 

Last, the etherification reaction follows [8, 9] between hydroxyl groups and remaining epoxide 

groups as shown in Figure 4.10. The leftover hydroxyl groups are seen in Figure 4.9 b) as a broad 

stretch in between 3500-4000 cm-1. The chain of reactions mentioned above gives us a clear 

understanding of the reaction mechanisms in an epoxy cured systems for high strength applications 

and serving as a good validation tool for the cure cycles. 
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Figure 4.9: Comparison of FTIR Spectra of Toray adherend before and after cure a) 
Fingerprint region b) Full spectrum 
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Figure 4.10: Tertiary Amine- Epoxy reactions followed by etherification 

4.2.2.2 FTIR spectroscopy on adhesive 

The base polymeric compositions or the reactions involved in AF 555M adhesive system 

are evaluated here. Figure 4.11a shows the entire spectrum of the adhesive material that is compared 

pre and post cure to understand the changes that occur during cure. The adhesive system by itself 

is an epoxy based adhesive possessing major constituent as epoxy and DICY as another curing 

agent which acts as a hardener. The curing of epoxy is very pronounce in adhesive at 916 cm-1 in 

before cure sample while has a decrease in its peak intensity in post cure sample. The characteristic 

doublet peaks between 1550- 1650 cm-1 are C-C stretches [7] where the hydroxyl groups of epoxy 

react totally and the peak disappearance is evident in post cure sample. At 2927 cm-1 a broad OH 

stretch band is visible in before cure sample while three small peaks at 300, 3038 and 3058 cm-1 

are seen in post cure which represent C-H stretching of an epoxy group. This is associated with C-

H stretching of carboxylic acid as it usually exists as hydrogen bonded dimers [5]. Also a distinctive 

nitrile peak of DICY is seen at 2206 and 2161 cm-1 which is the hardener and a curing agent used 

in the adhesive. This is consumed totally as the reaction proceeds which is validated by its absence 

in post cure samples. This dictates the strength of an adhesive. Uncured DICY’s reactions can 

weaken the bond strength. Thus, FTIR assists in validating the cure mechanisms of uncured and 

cured adherends and adhesives.  
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Figure 4.11: Comparison of FTIR Spectra of AF555M adhesive before and after cure a) 
Fingerprint region b) Full spectrum. 
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4.2.2.3 FTIR spectroscopy on contaminated specimens 

FTIR spectra of pristine composite laminates, contaminated laminates and contaminant 

alone were investigated for their surface chemical changes as shown in Figure 4.12. The 

frequencies and assignments of FTIR absorption bands are summarized in the Table 4.4. The broad 

stretching bands in the range 3364 cm-1 and 3454 cm-1 present in pristine and contaminated 

laminates correspond to O-H (Hydroxyl) group, and 1109 cm-1 is the characteristic peak for the 

primary amine (N-H) group. The presence of the OH group and NH group is indicative of the 

completion of the epoxy cure reaction during manufacturing as explained in section 4.2.2.1. It 

should also be noted that this identification of peaks validates the crosslinking process of epoxy 

and the curing process. A very intense band of Frekote contaminant in the range of 2928 cm-1 and 

2856 cm-1 was observed that corresponds to CH2 and CH3 stretching vibrations [10, 11] which are 

associated with Polydimethyl-siloxane (PDMS) network [12], a major constituent of Frekote. 

 

Table 4.4: Assignment of the Infrared absorption of epoxy resin with and without contaminant. 

Band (cm-1) Assignment 

3364, 3454 O-H stretch 

2928 CH3 symmetrical bend of Frekote 

2856 CH2 symmetrical bend of Frekote 

1090 Siloxane (Si-O-Si) 

1020-1110 Siloxane (Si-O-Si) 

864 Methyl in Si-(CH3)3 
 

This is the strong intensity peak representative of Frekote i.e. methyl groups attached to Si. In 

Figure 4.13 a, an expanded view of the IR spectra between wavenumbers 2800 and 3000 clearly 

shows the presence of strong broad bands of CH3 and CH2 in contaminated specimen revealing the 
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cause for non-adhesive nature of the adhesive at the contaminated site due to their presence. 

Additionally, a detailed spectrum was further evaluated in the region 600 to 2000 cm-1, which is 

known as fingerprint region, to characterize the available functional groups. As shown in Figure 

4.13 b, the band corresponding to 1102 cm-1 has been identified as Si-O-Si in siloxane [11] [13, 10] 

in a PDMS cross linked network observed only in contaminated specimen. Peaks with identical 

similarities in both contaminated and non-contaminated specimens revealed that the contaminant 

frekote did not react with composite surface and no chemical changes on the surface were detected. 

The qualitative and quantitative similarity between the non-contaminated and contaminated 

specimen that are chemically identical, varied in their transmittance percentage signifying a very 

marginal or no change associated with the absorption of contaminant on composite surface.  

 

Figure 4.12: FTIR spectra comparing the Frekote contaminant, pristine composite surface and 
Frekote contaminated composite surface 
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Figure 4.13: Expanded view of influencial bands in contaminated specimens in orange. 

4.2.3 Gravimetric analysis 

Normally when a polymer is subjected to any liquid, it tends to absorb the liquid due to its 

sorption characteristics. For the optimization of contamination route adopted in Chapter 3, the 

changes that are associated with their weights were recorded. This was also yet another reason to 

optimize stamp approach. The gain % is shown in table and their respective charts below. 

Table 4.5: Percent weight gain of laminate comparison between mesh and stamp 

approach 

Contaminant deposited-Aerosol 
 Before (gms) After (gms)  Gain % 

Aerosol Si 
spray 

(mesh) 

Laminate 1 123.59 123.63 0.032 

Laminate 2 122.52 122.53 0.008 

Aerosol Si 
spray 

(stamp) 

Laminate 1 123.04 123.06 0.022 

Laminate 2 124.18 124.21 0.024 
 

The distribution was non-uniform even after numerous trials via mesh approach as shown in Figure 

3.11 with a significant variation in weight changes. The stamp approach showed promising results 

with a very low deviation in the gain percent and a uniform distribution. Stamp approach was 
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henceforth adopted for future trails. The next task was to try and optimize other contaminants such 

as Frekote 710-NC for further investigation. Figure 4.14 showcases Frekote contaminated 

specimen comparing aerosol and Frekote, both stamped.  

 

Figure 4.14: Weight gain comparisons between Aerosol and Frekote contaminant. 

No significant change in weight gains were obtained between both the contaminants i.e. Aerosol 

and Frekote. Frekote resulted in creating weak bonds in comparison to Aerosol (see bond strength 

results), thus Frekote was adopted to be the ideal contaminant. Table 4.6 shows the weight gain % 

for contamination done on single side (only one panel is contaminated while the other is left 

pristine) and dual side (two panels are contaminated as shown in Figure 3.12). No significant 

changes in weight have been identified in both single and dual contamination and are near uniform.  

Table 4.6: Percent weight gain of contaminant on laminate between Single side and Dual 

side contamination. 

Contaminant deposited-Freekote 

 
Before (gms) After (gms)  Gain % 

Freekote 
700NC Laminate 1 121.35 121.37 0.016 
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(Dual side) 
Laminate 2 125.46 125.49 0.023 

Freekote 
700NC 

(Single side) 

Laminate 1 122.41 122.44 0.024 

Laminate 2 NA NA NA 

*Laminate 2 is designated as not applicable (NA) as only one side is contaminated 

Moisture uptake specimens are being monitored to evaluate the net water ingress % (absorption) 

into the specimen (bonded and non-bonded). The measurements are accurate up to four decimal 

points. 

4.2.4 Bondline Measurements 

Bondline measurements on the specimen post bonding have been determined for baseline 

specimen and contaminated specimen. 8 specimen for each set recording 18 data points on both 

sides of the coupons to evaluate an average bondline thickness. Baseline specimen possessed a 0.34 

mm thick bondline while recorded a bondline of 0.26 mm and A3 recorded a bondline of 0.28 mm. 

The values ranged between 0.26 ~ 0.34 mm. Typical bondline for a specimen is showed in Figure 

4.15. While the bondline thickness obtained for the adopted route in optimizing contaminant are as 

follows. Overall the bondline thickness varied between 0.23 mm to 0.34 mm for the manufacturing 

procedures adopted and the levels of optimization that was done on contaminant.  

  

Figure 4.15: Bondline measurements conducted on a pristine specimen. 

Table 4.7: Average bondline thickness (mm) for all the test cases mentioned in section 3.4 

Specimens (n=4) Bondline (mm) 

Toray_Aerosol (mesh) contaminated 0.23 
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Toray_Aerosol (stamp) contaminated 0.25 

Toray_Freekote (stamp) contaminated-dual side 0.32 

Toray_Freekote (stamp) contaminated-single side 0.33 
 

4.2.5 SEM/EDS microscopy 

SEM/EDS analysis was conducted to investigate the contaminated interface and compare 

it to the non-contaminated interface to understand the influence of contaminant at the interface. 

Line scans across the interface were examined and care was taken that the contaminated region was 

sectioned exactly across the locus of contaminant region. This implies, at a microscopic level, near 

the loci of contaminant, there should exist a debonded interface. While the interface of a non-

contaminated specimen or a region will be bonded cohesively to the adherend. Figure 4.16 shows 

a pristine interface of a non-contaminated specimen and no traces of debonding is seen whereas in 

Figure 4.17 which belongs to a contaminated specimen, a visible debonded area in white is seen at 

the interface.  

 

Figure 4.16: SEM image showing the interface of a non-contaminated specimen. 
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Figure 4.17: SEM image showing the interface of a contaminated specimen. 

Line scans were performed in vertical directions on the same images to identify the 

chemistry of the contaminant as shown in Figure 4.18. Since the contaminant is dominant in PDMS, 

only Si element distribution across the line was scanned. In Figure 4.18b, a significant increase in 

Si content occurs at the debonded region where a large peak in counts occurred as the scan reached 

the crack region indicating the presence of Frekote at the interface. In Figure 4.18a, no Si elemental 

peak was observed in the region or at the interface. Distribution across the line was less than 

marginal and within noise due to longer dwell times.  

  

Figure 4.18: a) Elemental line scans of Si in the baseline/non-contaminated region and b) 
Elemental line scans of Si in the contaminated region across the interface.  

 



97 
 

4.3 Conclusions 

The results of this surface characterization study have been efficient in determining the 

surface response of an adherend or an adhesive in a bonded joint with superior performance. 

Wettability measurements were able to distinguish surfaces with contamination with the variation 

in the contact angle and their surface energy parameters that dictates the adhesive characteristics 

and predict its performance. FTIR measurements were able to discern the complex cure 

mechanisms by revealing the surface chemistry associated with adherend and adhesive. 

Additionally, a distinguishable difference in the FTIR peak intensities between pristine and 

contaminated specimens revealed the adhesion characteristics of a bonded joint in the presence of 

contamination such as Frekote. With the aid of gravimetric analysis, quantification of surface 

contamination was possible with the gain %. For the manufacturing procedures adopted, bondline 

thickness varied between 0.23 mm to 0.34 mm which was consistent throughout.  SEM/EDS line 

scans revealed the presence of siloxane at the interface in a contaminated specimen that can 

influence the strength of a bonded joint. The surface characterization tools utilized necessitates the 

need for characterizing surfaces of a composite material where the information obtained can be 

intrinsically linked to a composite structural performance. The contamination study can serve as a 

possible nondestructive evaluation (NDE) benchmark in predicting the adhesion characteristics 

involved with the bond quality prior to its implementation. For instance, hand-held FTIR scans can 

be used at various stages of composite processing/composite bonding to determine the presence of 

contaminate locations and overall contaminated area. 
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 MECHANICAL STRENGTH CHARACTERIZATION 

This chapter explains the mechanical performance of the bonded joints for pristine (non-

contaminated) and contaminated specimens using the stamp approach. The dependency of 

mechanical strength on the size of contaminated sites has been determined at multi-length scales 

i.e. micro scale and macro scales to better understand the crack propagations and damage initiation 

mechanisms in an adhesively bonded joint. Double Cantilever Beam (DCB) specimens were used 

to evaluate fracture toughness at the macro scale while End Notch Flexural (ENF) specimens were 

utilized to evaluate fracture toughness at the micro scale. Modes of failure were investigated via 

fractographic analysis and quantified using an Image Analysis technique which will be detailed in 

later sections of this chapter.   

5.1 Fracture Toughness Evaluation 

Evaluating fracture toughness based on fracture mechanics assists in efficient design 

practices and is largely determined by material properties such as resistance to crack, stress 

intensity factors, elastic modulus and testing parameters such as crack tip opening displacement 

(CTOD), loading rate etc. In other words, the materials response to mechanical deformation is 

determined in terms of fracture toughness, which can be evaluated based on the mode of loading 

and critical strain energy release rates that characterizes the mode. Table 5.1 provides standards 

and protocol comprehensively summarized by Zhang et al. [1] that evaluate various modes of 

testing bonded joints. 

Table 5.1: Standards and Protocols for Mode I, ModeII and mixed-mode fracture. 

Standards and 
Protocols Fracture Specimen type G Calculation method Ref 

ASTM D3433-99 Mode I DCB, TDCB SBT [2] 

ASTM D5528-13 Mode I DCB SBT, CBT, ECM [3] 

ISO 15024:2000 (E) Mode I DCB CBT, MCC [4] 
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ESIS TC4 Protocol Mode II ELS, NF CBT, ECM, CCM [5] 

*TDCB- Tapered Double Cantilever Beam 
*SBT- Simple Beam Theory  
*CBT- Corrected Beam Theory 
*ECM-Experimental Compliance Method 
*MCC- Modified Compliance Calibration 
*CCM- Compliance Calibration Method 
 

Several investigations that utilized Mode I type fracture to evaluate fracture toughness either  

observe crack propagation visually or within 5% maximum compliance increase [6, 7, 8]. However 

the dynamics of recording crack propagation should be instantenous and it complicates the situation 

with the aforementioned technique. Hecker et al. [9] monitored the crack propagations using a 

camera assisted DCB technique where a crack is detected via an optical techniques. Mode II static 

and dynamic loading conditions were investigated by Mall et al. [10] while Martin et al. [11] 

investigated on laminated composites via a four point bend, end notch flexure test to evaluate 

fracture toughness. However, the current research has explored Mode II type of loading in bonded 

joint at a different length scale (micro-scale) to understand the deformation mechanism while 

following the ASTM D5528 for macro scale.  

5.1.1 Macro-Scale Testing  

DCB testing was conducted on an Ultimate Tensile Machine (UTM), an MTS 858 Table 

Top System manufactured by MTS. DCB tests are conducted to determine the interlaminar fracture 

toughness and provides information such as energy release rate, crack growth and load-material 

specific failure mode. Due to its simple configuration and loading in tension, Mode I methods of 

testing have received much attention and is widely accepted and recognized for bonded composite 

joints [12]. For this investigation, the deflection applied was at a rate of 2.5 to 5 mm/min. With the 

increments in the deflection/loading rate, the delamination length (crack length) was measured on 

one side of test specimen with the aid of a travelling microscope. The delamination onset was 

marked with the help of a silver marker starting from the end of crack insert and gradations were 
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made for every 1 mm for the first 5 mm and continuing the vertical gradation for every 5 mm from 

thereon as shown in Figure 5.1. The DCB specimens measured 292.1 mm in length and 25.4 mm 

in width with a precrack of 63.5 mm. The results of all the DCB tests are calculated as per ASTM 

D 5528 [3]. The calibration method adopted was Modified Beam Theory (MBT) method where the 

expression of strain energy release rate is given as follows:  

𝐺𝐺𝐼𝐼  =  
3𝑃𝑃𝑃𝑃
2𝑏𝑏𝑏𝑏

 

where P is the load, δ is the load point displacement, b is the specimen width and a is the crack 

length. In practice, this will overestimate GI as the beam rotation effects will take place due to bad 

clamping or non-symmetric glueing of piano hinges. Correcting for rotation will introduce a factor 

∆ letting us to consider a slightly longer crack length i.e. a + |∆|, where ∆ is calculated 

experimentally by generating a least squares plot of the cube root of compliance, C1/3, as a function 

of crack length. The compliance, C, is given by  

𝐶𝐶 =  
𝑃𝑃
𝑃𝑃

 

i.e. ratio of the load point displacement and applied load.  

 

Figure 5.1: DCB Experimental setup with bonded specimen under load 

 



103 
 

Compliance can be plotted as a function of crack length as shown in Figure 5.2. The values thus 

obtained correspond to visually observed crack propagation on the edges and serve as an input 

parameter to calculate energy release rate.  

 

Figure 5.2: Complinace correction using Modified Beam Theory (MBT). 

 With the compliance correction factor, the energy release rate is:  

𝐺𝐺𝐼𝐼  =  
3 𝑃𝑃 𝑃𝑃

2𝑏𝑏 (𝑏𝑏 + |∆|) 
 

5.1.2 Micro-Scale In-Situ Testing 

In practice, the micromechanical interaction of fiber and matrix at ply boundaries is a 

complex nonlinear problem, so efforts were made to understand the damage initiations in an 

adhesive layer at a micro scale on a bonded composite joint. A micro load frame (MTI Instruments 

SEM Tester 1000) mounted within the chamber of an electron microscope (JEOL JIB-4500 

SEM/FIB) was utilized for micro-scale evaluation. A schematic of the setup is shown in Figure 5.3 

a. Samples were cut from fabricated baseline and A3 contaminated panels using a low speed 

diamond saw measuring 40 mm in length and 10 mm in width with a precrack length of 10 mm in 

length. A comparison of the load bearing capacity of the baseline sample and A3 contaminated 

samples was conducted using a pre-cracked sample loaded in a four-point bend configuration. The 

pre-crack length and bondline thickness of both samples were measured using electron microscopy 

prior to testing. Testing was completed under load control at a rate of 200 N/min with simultaneous 

imaging using the electron beam and the initiation of damage was monitored within the chamber 
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in real time. SEM chamber pressure was maintained at 7.0 x 10-4 Pa throughout testing.  Samples 

were coated prior to testing with a thin Au layer to ensure conductivity.  

 

  

 

Figure 5.3 (a) Schematic of in-situ end notch fracture (ENF) test configuration (b) Low 
magnification SEM image of an ENF sample loaded in the 4 point bend fixture. (c) Higher 
magnification image of the crack tip region (false green coloring was added to delineate the 

region of adhesive. 
 
 

5.2 Quantification of Failure Modes 

Adhesive bonded joints can demonstrate considerable variation in their performance [13]. 

It is of prime importance to identify the key failures points that led to damage in a structural member 

[14], so that the failures can be understood and minimized in future. Further, the current state of 

understanding failures or failure modes in ABCJ’s is limited to identification only, i.e. adhesive, 

cohesive or mixed mode failure, and not precisely quantify the modes. Attempts to establish a 
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quantified relationship between the failure modes and bond performance have been emphasized in 

this research.  

As mentioned in Chapter 2, contamination is an important but poorly understood 

component of ABCJ’s. There is a derth of information on the effects of contamination on bond 

performance and its response to fracture. A low-cost methodology for quantification of failure 

mode geometry and its coverage area using image data captured via commercially available digital 

cameras is presented for the first time in bonded composites that could accurately quantify the 

failure modes and establish a relationship that can predict the bond strength that can be equally 

comparable to experimental datasets.  

5.2.1 Modeling Procedure/Digital Image Processing 

The tool utilized for image analysis quantification was a software known as ImageJ. ImageJ 

reads all graphic files such as JPEG, PNG, TIFF, BMP etc, and any specific region of interest (ROI) 

can be analyzed accurately. The advantage of ImageJ processing is its ease of evaluating ROI’s and 

deselecting the unwanted areas. The software offers a unique pixel based architecture that can 

discern pixel ratios from digitized images, where each pixel within an image constitutes a single 

data point associated to certain brightness or color intensity. This translates to a color representation 

of the image or dataset captured. The digitally acquired image is processed through ImageJ software 

where a custom plugin is utilized to determine areas. The processed image then undergoes 

scaling/sizing to the relative pixel ratios. This ensures the length scale evaluations are appropriate 

and comparable. The user is then asked to identify the ROI followed by thresholding where the 

user iteratively adjusts the image pixels until a best map that fits the failure mode (ROI) is attained. 

The thresholded pixels are then visually enhanced to translate into the color maps that identify the 

areas of cohesive and adhesive failure. The relative area that is  associated with the scale is thus 

quantified and the computed image is collated with the true mode of failures.  
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Regions in which cohesive failure occurs are colored in red and the areas colored with 

black correspond to adhesive failure or interlaminar failure. Green areas are isolated marker 

components between the red and black areas and can be neglected for this analysis. Cohesive ratios 

and Interlaminar/Adhesive ratios are derived from the areas of each respective colored region as 

shown below: 

Cohesive ratio =
Cohesive area of the specimen

Total area of the specimen
 

 
  Interlaminar or Adhesive ratio =  Non−Cohesive area of the specimen

Total area of the specimen
 

 
It should be noted that only the first 50 mm of damaged area starting from the precrack is considered 

for all the specimens according to ASTM D5528.  

5.3 Fractography Analysis 

A unique and advanced technique in optical microscopy was utilized to identify the crack 

propagation path called Line Profile analysis. In this method a line is drawn across the ROI and a 

profile is created based on the measurement of the macroscopic feature heights/depths. This aids in 

understanding the failure mechanism by revealing the topographic profile of the line showing the 

hils and valleys that represent the path of the crack. The failed surfaces from tested joints were 

analyzed to inspect the failure modes of both non-contaminated and contaminated specimens. The 

specimens were examined for any defects on the failure surface. For localized contaminated and 

non-contaminated site access, a line profile was rastered between two chosen points that was 

selected to cover both contaminated and non-contaminated sites measuring the surface profile of 

fractured adhesive. This aids in assessing the hills and valleys of the fractured adhesive.   

 

 

 

5.4 Results and Discussions 
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5.4.1 Micro-Scale Testing (ENF Testing/In-situ electron microscopy) 

The mechanism of failure and damage initiation were investigated for mode II propagation 

using ENF testing and in situ microscopy, with the resulting load-displacement data from in situ 

ENF testing shown in Figure 5.4.  For the same loading conditions, the crosshead displacement was 

monitored and the final displacement is shown in the Figure 5.4. A representative baseline 

specimen and A3 contaminated specimen had a final displacement of 0.78 mm and 0.96 mm, 

respectively. The increased bulk sample compliance (~ 23% increase after contamination) was 

likely a result of accretion of microscale damage in the specimen, with a reduction in the localized 

modulus due to microcracking as the sample was loaded. As seen in the macroscale DCB testing, 

application of the contaminate can simulate an occurrence of a weak bond or kissing bond, reducing 

the load bearing capacity within the region and ultimately stabilizing the crack opening leading to 

a reduced compliance. This hypothesis is confirmed in the concurrent microscopy, as shown in 

Figure 5.5. Prior to loading, both the baseline and contaminated samples show no signs of damage 

in regions directly in front of the crack tip. During loading, the damage evolution is significantly 

different in the baseline sample, as the damage is confined to the crack tip region with very marginal 

damage within the adhesive layer. During loading of the A3 contaminated sample, damage in the 

contaminated region initiates first and the crack begins to open and propagate (leading to the 

increased compliance seen in the load displacement curves). Then, very near to the crack tip region, 

a significant density of microcracks initiate and begin to coalesce. The most likely cause of these 

microcracks is the large stress concentration that initiates near the edges of the contaminated region. 

This is also attributed to the intermixing of Frekote contaminant with the adhesive during cure and 

settling at the localized regions where microcracks evolve. Damage in the baseline specimen was 

confined to the crack tip region while damage in the contaminated specimen initiated at the 

composite adhesive interface and propagated throughout the adhesive as loading increased. 
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Figure 5.4. Load Displacement curves for baseline (non-contaminated) and A3 contaminated 
specimen using in situ ENF testing. 

 

 

Figure 5.5: Analysis of the damage initiation mechanisms for baseline and A3 
contaminated specimens prior to loading and at peak load. 

5.4.2 Macro-Scale Testing (DCB Testing) 

The strain energy release rates associated with crack growth were calculated as per ASTM 

D5528 as mentioned in section 5.1.1. The GIC values between baseline aerosol (mesh and stamp) 

and Frekote are shown in Figure 5.6. The baseline bonded specimens (non-contaminated) exhibited 

an average G1C of 0.74 kJ/m2. The aerosol mesh contaminated set showed a marginal reduction at 
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0.65 mJ/m2 and the stamp contaminated specimens exhibited an average value of 0.61 kJ/m2. This 

indicates the contamination is weakening the interface causing reduction in the bond strength. The 

Frekote contaminated set exhibited a larger degree of reduction in the bond strength when 

compared to baseline specimens. The contaminated specimens suffered an average bond strength 

value of 0.45 kJ/m2 to that of baseline specimens of 0.74 kJ/m2. This ascertained the choice of 

contaminant in weakening the bond significantly.  

 

Figure 5.6: GIC values between baseline (non-contaminated), Aerosol (mesh and stamp) and 
Freekote (stamp). 

 

The next steps was to investigate between the dual side contamination and the single side 

contamination and as mentioned in section 3.4.3. The results are shown in Figure 5.7 where single 

sided contaminated specimens (red dots on one side) of the interface showed similar reductions in 

bond strength when compared to the dual side contamination (red dots on both sides). Since the 

prime motivation was to drive the fracture towards the weakest link, single side contamination 
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would help understand the crack propagation in an improved way than dual side contamination. 

Thus, single side contamination is adopted as the best approach for the remainder of this study.   

 

Figure 5.7: Comparison of GIC values between baseline (non-contaminated), dual side 
contamination and single side contamination with Frekote. 

5.4.2.1 Fracture Toughness Evaluations for Various Contamination Levels 

With the significant degradation results obtained for single side stamp contaminated 

specimens (see Figure 5.7), the contamination procedure was extended further by modifying the 

nature of stamp pattern i.e. increasing the level of contaminant as discussed in section 3.4.4. This 

will emulate UBC’s criteria and provides substantial information on the influence of varying levels 

of contamination on fracture toughness. Using this approach, contaminant locations will create 

adhesion failure (failure at the composite-adhesive interface) that is intermixed with areas of 

cohesion failure (failure within the adhesive itself). By varying the size and application pressure of 
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the stamp, an improved understanding of the influence of each type of failure on overall bond 

strength can be assessed.  

Two stamps were used (see section 3.4.4) to investigate the effects of contaminated region 

size and total contaminated area on overall bond strength. To investigate the effects of contaminated 

region size, stamps A1 and A3 were used with the same application pressure (labeled as A1L and 

A3) and in this case the stamp was applied with only gravimetric force.  Both stamps have 

equivalent starting coverage areas, therefore variations in bond strength can be attributed to 

contaminated region size (with variation in diameter of 1 mm vs. 3 mm). As shown in Figure 5.8, 

it was found that the G1C variability for A3 contaminated set was large. During the experimental 

runs, as the load increased, the instability of the crack in A3 specimens was high when compared 

to rest of the specimens. No fibre bridging was observed in any of the specimens.  

 

Figure 5.8: GIC vs Cohesive Failure Ratio of Baseline, A1 Stamp and A3 Stamp. 

While this marginally showcases the effect of contamination on the bond strength of adhesively 

bonded joints, A3 contaminated set had a significant influence on fracture toughness with an 
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average GIC of 0.61 kJ/m2, reducing it by 17.57% when compared to the baseline set that had an 

average of 0.74 kJ/m2. This is because the amount of contaminant deposited via A3 stamp 

procedure is predominantly distributed than A1 stamp procedure. The higher the local contaminant 

concentration, the pronounced is its effect on the bond strength of a joint. 

To investigate the effects of total contamination area, only the A1 stamp was used and 

application pressure was varied. One set of data was obtained using only gravimetric pressure on 

the stamp (labeled as A1L) and another with approximately 22 kg of weight placed on the stamp 

(labeled as A1H). In this case the shape of the applied area (stamp) was constant, but the applied 

area was increased with the addition of applied pressure on the stamp. As shown in Figure 5.9, 

similar trends were observed i.e. an increase in the application pressure led to a wider spread of the 

contaminant affecting larger areas. No fibre bridging was observed for any of the specimens. 

 

Figure 5.9: GIC vs Cohesive Failure Ratio of Baseline, A1 Low Pressure and A1 High Pressure. 
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The A1 high pressure specimens had a significant effect on bond strength while A1 low pressure 

exhibited a marginal degradation in the bond strength. While this marginally showcases the effect 

of application pressure on the bond strength of adhesively bonded joints, A1H contaminated set 

had a significant influence on fracture toughness with an average GIC of 0.50 kJ/m2, reducing by 

32.4% when compared to the baseline set with an average GIC of 0.74 kJ/m2. The decrease in G1C 

is more significant than the decrease observed for the A1L set i.e. 2.8 % due to the contaminant 

spread as a function of pressure via A1H. The higher the contaminant spread, the more adverse the 

effect on the bond strength of a joint. Individual failure modes of the specimens were evaluated to 

further the understanding of fracture with undesirable bonding conditions.  

5.4.3 Modes of Failure 

    The individual modes of failure for the all the test cases are examined and shown in 

Figure 5.10. For the baseline specimens in Figure 5.10a, the mode of failure was observed to be 

cohesive with minimal interlaminar failure at the edges. Specimens contaminated with the A1 and 

A3 stamps exhibited mixed mode failure with areas of cohesion failure at non-contaminated sites 

and adhesive failures at the contaminated sites as shown in Figure 5.10b and c. A1 and A3 category 

specimens are well in accordance with the average GIC values indicating an interfacial separation 

of the adhesive from the composite surface at the localized site which is a clear indication of 

reduced bond strength. The contaminated site is in-turn surrounded by the adhesive where bonding 

is strong and a pure cohesive failure is observed. The interlaminar failure at the edges is also 

observed which is likely due to manufacturing/ cutting effects. In the case of specimens 

contaminated with A1H, as shown in Figure 5.10d, the effects of pressure are clearly visible with 

a pure adhesive failure at precrack in 2 specimens while other specimens had adhesive failure at 

the localized regions with a large affected area.    
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Figure 5.10: Failure Modes a) Baseline (non-contaminated); b) A1 Low Pressure; c) A3 Stamp 
and d) A1High Pressure 
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5.4.4 Quantification of Failure Modes 

As mentioned in section 5.2, post visual inspection of failure modes was followed by 

quantifying them. It should be noted that the fracture toughness values were evaluated for the first 

5 cm of the failure region. To have a comparable area measure, quantification was conducted on 

the identical regions. This will assist in establishing the area correlations that are associated with 

fracture toughness. A total of 29 digital images were processed through ImageJ i.e. 8 each for 

baseline, A1L and A3 specimens while only 5 were manufactured for A1H specimens due to 

inventory constraints. In order to avoid repetition of numerous figures, specimens that are a close 

representative of the average are shown in Figure 5.11.  

 

Figure 5.11: Quantified images determining cohesive and adhesive ratios. Top row- 
fractured surfaces for each of the four configurations. Bottom row- Illustrated computed areas 

images using ImageJ, red coloration indicates cohesive failure, black indicates 
adhesive/interlaminar failure, and green demarcates the boundaries between each. 

Individual coupons from DCB testing were analyzed and compared to study the influence 

of overall contaminated area (keeping contaminated size constant) and the influence of 

contamination size (keeping contaminated area constant). The quantified data fully corroborated 
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with the failure modes. Figure 5.12a provides a comparison of two samples contaminated using the 

A3 procedure (A3-05 vs A3-07), while initial stamp unit cell areas are similar, additional 

contaminate was applied in the case of A3-07 due to the cutting location on the panel as well as 

additional spreading during application. There is both a significant difference in cohesive failure 

ratio (39.3% for A3-07 vs. 60% for A3-05) and critical energy release rate (0.33 kJ/m2 for A3-07 

vs. 0.7 kJ/m2 for A3-05) for these two specimen as a function of contaminate amount, a trend that 

was repeated throughout analysis as shown in Table 5.2. From these results, it is clear that the 

contamination procedure was successful in creating a weak bond at the adhesive-composite 

interface resulting in failure, and increasing levels of contamination resulted in decreased bond 

quality. Figure 5.12b shows an additional comparison of two samples, one contaminated using 

  

Figure 5.12: Example cases of the effect of (a) contamination area and (b) contamination size on 
cohesive failure ratio and critical energy release rate values. Contaminated area plays a major role 

in decreasing the bond quality whereas the effects of contamination size are negligible. 
 

the A1L procedure and one using the A3 procedure (A1L-02 vs A3-05). In this case, the cohesive 

failure ratios (60% for A1L-02 to 60% for A3-05) and critical energy release rates (0.7 kJ/m2 for 

A1L-02 to 0.67 kJ/m2 for A3-05) are very similar, but the sizes of the contaminated regions vary 

significantly, from a few mm in A1L-02 to up to 10 mm in A3-05.  These results suggest that the 
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critical energy release rate is not significantly affected by a change in contaminate size (A1, A3 

etc), but only by the total overall contaminated area.  

 

Table 5.2: Bondline thickness, critical energy release rate (G1C), and cohesive failure ratio of 

macroscale specimen (DCB) from baseline and contaminated samples 

ID 
Bondline 
thickness 

[mm] 
Stamp 

Wt. on 
stamp 
[kg] 

G1C, [kJ/m2] Cohesive 
Failure 
Ratio, 
[%] 

1 2 3 4 5 Ave. 

BL-01 0.24 --- --- 0.79 0.69 0.66 0.69 -- 0.71 67.23 
BL-02 0.23 --- -- 0.55 0.56 0.53 0.46  0.52 61.22 
BL-03 0.31 --- --- 0.53 0.63 0.65 0.61 0.55 0.59 80.68 
BL-04 0.35 --- --- 0.73 0.76 0.72 0.74 -- 0.74 76.86 
BL-05 0.40 --- -- 0.77 0.83 0.79 0.82 -- 0.80 65.34 
BL-06 0.38 --- --- 0.96 0.98 0.99 0.93 0.89 0.93 80.05 
BL-07 0.40 --- --- 0.88 0.89 0.88 0.89 0.88 0.89 78.01 
BL-08 0.37 --- -- 0.62 0.77 0.71 0.81 0.84 0.75 84.86 
P-Ave. 0.34 --- ---      0.74 74.28 
A1L-01 0.24 1 mm ~ 0 0.64 0.70 0.58 0.68 -- 0.65 76.76 
A1L-02 0.25 1 mm ~ 0 0.73 0.74 0.52 0.50 0.52 0.60 56.85 
A1L-04 0.33 1 mm ~ 0 0.85 0.83 0.78 0.81 0.81 0.82 86.28 
A1L-05 0.29 1 mm ~ 0 1.2 0.93 0.94 -- -- 1.02 84.52 
A1L-06 0.25 1 mm ~ 0 0.82 0.88 0.75 0.71 0.73 0.78 68.38 
A1L-07 0.26 1 mm ~ 0 0.79 0.76 0.67 -- -- 0.74 80.85 

A1L-
Ave. 0.27 1 mm ~ 0      0.72 75.61 

A1H-01 0.23 1 mm ~ 22 0.39 0.49 0.44 0.72 0.89 0.59 52.83 
A1H-02 0.35 1 mm ~ 22 0.62 0.63 -- -- -- 0.63 56.71 
A1H-03 0.41 1 mm ~ 22 0.50 0.44 0.52 -- -- 0.49 56.82 
A1H-04 0.38 1 mm ~ 22 0.19 0.46 0.41 -- -- 0.35 38.65 
A1H-05 0.26 1 mm ~ 22 0.39 0.36 0.49 -- -- 0.41 54.84 

A1H-
Ave. 0.33 1 mm ~ 22      0.50 51.97 

A3-01 0.18 3 mm ~ 0 0.64 0.68 0.56 -- -- 0.62 72.07 
A3-02 0.22 3 mm ~ 0 0.42 0.62 0.56 0.63 0.66 0.58 37.96 
A3-03 0.29 3 mm ~ 0 0.75 0.81 0.83 -- -- 0.80 75.93 
A3-04 0.30 3 mm ~ 0 0.78 0.71 -- -- -- 0.74 50.67 
A3-05 0.33 3 mm ~ 0 0.75 0.90 0.68 -- -- 0.78 71.07 
A3-06 0.34 3 mm ~ 0 0.34 0.47 -- -- -- 0.41 33.72 
A3-07 0.34 3 mm ~ 0 0.24 0.45 0.29 -- -- 0.33 39.30 

A3-
Ave. 0.28 3 mm ~ 0      0.61 54.38 
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5.4.5 Fractographic Analysis 

An optical microscope equipped with a line profiling feature was utilized to investigate the 

failure modes obtained after mechanical testing. The ultimate aim is to understand the 

fracture/crack profile and its topography which assists us in determining the fracture path that 

occurred during fracture. The non-contaminated specimen and A1 and A3 contaminated specimen 

are shown in Figure 5.13a, b and c, respectively. A pure cohesive failure is observed in non-

contaminated site as seen in Figure 5.13a while at the A1 and A3 contaminant sites as seen in Figure 

5.13b, the adherend surface woven pattern is visible which can be attributed to reduced adhesive-

adherend crosslinking during bonding process as explained in section 4.2.2.3. A pure adhesive 

failure is apparent at the contaminated site whereas a pure cohesive failure is apparent at the 

remaining regions (non-contaminated site).  

A line profile is drawn on this failure surface to understand the crack propagation profile 

which is shown at the bottom of their respective datasets. The profile of the line if drawn on a non-

contaminated site clearly indicates the cohesion path of the crack i.e. crack traverses within the 

adhesive. While in the contaminated set, the hilly regions correspond to the adhesive and the valleys 

correspond to the substrate or the prepreg (no adhesion region).  

Spectral image mapping of the fracture profile was conducted post line profile analysis. A 

spectral map functions with the contrast of the line profile is shown at the bottom of the Figure 

5.13. In non-contaminated specimens, the spectral distribution is even with grey regions (near 

white) indicating the adhesive alone. While the spectral map for the contaminated set, clearly 

discerns the white and black regions along the fracture profile which corresponds to the adhesive 

and the adherend, respectively. This shows a mixed mode type failure with cohesion and adhesion 

as intermediates for the crack traversing path. 
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Figure 5.13: Line profile analysis showing a line drawn over the fractured surface a) baseline 
specimen; b) A1L stamp specimen and c) A3 stamp specimen. Line profile path is shown beneath 

the optical image follwed by their spectral mapping. 
 

5.5 Conclusions 

In this study the influence of surface preparation on composite-adhesive bond quality was 

investigated through the development of a repeatable and scalable surface contamination 

procedure. As the strength of adhesively bonded joints continue to increase with improved 

chemistry, possible new applications for adhesively bonded composite joints become viable, and 

as such it is important to understand the additional factors that may influence bond performance. 

The macroscale DCB testing and in situ micro scale ENF analysis showed a direct 

correlation between locations of contaminate application and the initiation of damage. In addition, 

overall contaminated area plays a major role in decreasing the bond quality whereas the effects of 

contamination size were not pronounced. The line profile analysis revealed the nature of crack path 

and helped in understanding the role of contamination in governing the fracture behavior.  

The results of this study can be used to improve the design of adhesively bonded 

composites and to design NDE techniques to assess bond quality prior to implementation. For 

instance, hand-held FTIR scans can be used at various stages of composite processing/composite 



120 
 

bonding to determine the presence of contaminate locations and overall contaminated area. 

Standards for acceptable amount of contamination can focus solely on the total contaminated area 

and not on the shape or morphology of the contaminated region. In addition, future design can 

incorporate direct evidence of the influence of weak bonds on overall performance in design and 

modeling software, leading to enhanced confidence in predictions and a reduction in overall 

component weight and in the need for arbitrarily high safety factors or overdesigned mechanical 

fasteners.  
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 DURABILITY OF ADHESIVELY BONDED COMPOSITE JOINTS 

Adhesive bond durability can be defined as bond’s ability to preserve its initial strength 

upon subjecting it to various loading conditions or any external harsh environmental conditions 

over time. The dearth of knowledge on dependable test methodologies and accelerated aging 

procedures or predictable approaches for determining the durability of structural adhesive joints 

has impeded the universal acceptance of adhesive bonding [1]. This in conjunction with the 

remotely applied stresses can exacerbate the structural performance and failure. A combination of 

stress factors along with severe environmental conditions can generally result in overestimating the 

strength of the designed bonded joint. Therefore, the acceptable level of safety that is governed by 

the strength and durability of a bonded structure is of paramount importance to manufactures and 

consumers and needs to be defined/determined serving as a qualification level with regards to long 

term strength of an ABCJ. In this chapter, emphasis on developing a test methodology to assess 

durability is demonstrated. Non-contaminated and contaminated specimens were subjected to a 

developed durability procedure and their effects on bond strength were characterized. Moisture 

absorption studies were conducted simultaneously on composite laminates and on adhesively 

bonded composites to monitor the effects of environment on the material system.   

6.1 Development of Durability Test Procedure 

Understanding the long term performance of ABCJ’s i.e. mechanical as well as other 

physical property effects, as a function of time is of prime importance in this study. This starts with 

developing a testing protocol that can reliably evaluate the durability of ABCJ’s. Based on 

information obtained in the literature review, bond durability assessment would optimally utilize 

testing with specimens that have been preconditioned in harsh environmental conditions or 

mechanically loaded fatigue limits. The preconditioning of specimens prior to fracture tests, should 

emulate the conditioning of bonded components in service. The utilization of this type of 

conditioning presents challenges in establishing an appropriate conditioning protocol. The 
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harmonization between the existing methods such as environmental exposure or mechanical 

loading at high temperatures is less than satisfactory for the current status of testing durability of 

ABCJ’s. 

The proposed methodology focuses on using DCB coupons that are conditioned in ways 

that are similar to service conditions.  Four sets of conditions will be used and are listed below.  

(a) baseline specimen (non-conditioned) 

(b) environmentally conditioning for elapsed times 

(c) fatiguing in ambient air 

(d) combined environmental exposure and fatiguing simultaneously 

After conditioning, the DCB coupons will be tested to evaluate fracture toughness.  GIC values for 

each set will be determined and comparisons will be made with baseline specimens and  

 

 

Figure 6.1: Durability Assessment Procedure 
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contaminated specimens. Analysis of the test cases will be conducted and trends will be established. 

This type of approach allows for various surface preparation methods to be investigated as well as 

the effect of bonding with Undesirable Bonding Conditions (UBC) i.e. contamination on long-term 

durability. In order to minimize the variability of several influencing factors, exposure temperature, 

exposure time and relative humidity have been kept constant as the projects ultimate goal is to 

evaluate the effects of undesirable bonding conditions on durability. For the environmentally 

exposed specimens, the exposure time was initially chosen to be 2 months with an exposure 

temperature of 50oC and 95% RH. These aging conditions are more severe than those expected to 

occur in service as they are accelerated tests and are selected in order to quantify the changes within 

a reasonable exposure time. The schematic of the proposed methodology is shown above in Figure 

6.1. The mechanical loading will utilize a composite bonded specimen geometrically similar to 

those found in ASTM D790. The specimens will be placed in a novel fixture that supplies support 

at the coupon ends and is cyclically loaded at the center using a pneumatic cylinder to control the 

force/displacement that is imposed. This will allow for the use of different test frequencies and 

amplitudes. The magnitude of the shear load distribution of the specimen will remain constant along 

the specimen and the tension or compression loads at the bondline approaches zero. This 

configuration challenges the interlaminar shear strength at the centroid of the specimen and can be 

adapted to fit within an environmental chamber.  

 On the other hand, it is noteworthy to investigate the effects of harsh environments for 

extended periods of time in an unstressed conditions. This assists in an improved understanding of 

the behavior of moisture over a period of time and is discussed in the section 6.1.1. 

6.1.1. Moisture Absorption Studies of Composite Laminates and ABCJ’s 

For many years it has been known that epoxy bonded joints, upon exposure to humid 

environments, have a significant impact on its bond performance [4, 5, 6]. Orman and Kerr [7] 

reported significant joint strength degradation and harmful effects of environment on epoxy bonded 
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aluminum joints. Epoxy based adhesives were dominantly utilized in joining metals for aerospace 

applications [6]. Many of the moisture uptake studies on composite laminate or only adhesives 

showed degradation in mechanical performance [8], Saponara [9] investigated in understanding the 

diffusion kinetics of structural adhesives and composite laminates where two models were 

developed to predict the durability of polymeric composite materials and neither models were 

capable to fit data for the adhesive mass uptake. Substantial swelling of the materials was reported 

yet marginal degradation behavior was noticed. While degradation behavior has generally been 

observed, there has been a very little agreement for moisture uptake within metal bonded joints 

itself. Bowditch [10] investigated the durability of aluminum adhesive joints in the presence of 

water and reported an initial increase in joint strength. This was attributed to plasticization within 

the adhesive. Similar responses with respect to ABCJ’s were documented. Selzer and Friedrich 

[10] investigated the moisture absorption characteristics of bonded composites where the 

specimens were immersed in a water baths for various temperatures and found their G1C values 

higher than the dry specimens (baseline). In other work of Selzer and Friedrich [11], fracture 

toughness increased with increasing moisture content. Similar observations were observed by 

Lucas and Zhou in their work on bonded composite joints [13]. Pantelakis and Tserpes [15] 

subjected bonded composite specimens to 4200 hours with an RH 85% at 70oC and found an 

increase in toughness of a bonded joint. Katsiropoulos et al. [16] found similar behaviors of 

increased toughness upon wet ageing with an adhesive bondline of 0.5mm. These articles suggest 

that the ABCJ’s have very complex material systems and are difficult to understand when extrinsic 

factors such as moisture ingression or thermal effects are used as stressors. 

Manufactured specimens selected for moisture absorption studies were placed in an 

environmental chamber and care was taken that no two specimens coexisted side by side. For this 

section the same environmental conditions mentioned in the previous section are used, 95% RH 

and 50 oC. Subsequent weight measurements of the specimens were taken on a weekly basis to 
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monitor their weight gain until the sorption equilibrium criterion has been reached. The percentage 

moisture uptake was calculated as: 

% Moisture Uptake = 
(𝑀𝑀𝑖𝑖−𝑀𝑀𝑜𝑜)

𝑀𝑀𝑜𝑜
 x 100 

where, Mi is the final weight of specimen after exposure, Mo is the initial weight of specimen 

before exposure. A total of 16 specimens were selected, of which 8 specimens are bonded with the 

adhesive film and the other eight are joined without the adhesive film as shown in Figure 6.2. These 

specimen types were selected to determine the water sorption on the laminate alone and on the 

adhesive.  

All specimens were stored in a dry and environment weighed to the nearest 0.0001 mg. 

Specimens where then placed in the environmental chamber as shown in Figure 6.2. Out of the 8 

specimens, four were pulled out after two months to test for their fracture strength and observe the 

influence of moisture uptake on the non-bonded and bonded specimens. The absorption behavior 

as a function of time represents Fickian behavior of linear mass uptake [2, 3].  

 

Figure 6.2: Bonded and Non-bonded specimen placed in an environmental chamber for 
moisture uptake analysis. 

 

6.2 Experimental Methodology 
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6.2.1 Environmental Aging 

Comparison of non-contaminated, A1 and A3 contaminated specimens on fracture 

toughness of ABCJ’s using accelerated environmental conditions are being made in this section.  

In general, a tropical based supersonic aircraft, experiences a specific relative humidity (RH) of 

around 81 %. A use of 95% RH will assist in data extrapolations when test specimens are 

conditioned to equilibrium at that moisture level. This will aid  in assessing the extreme boundary 

conditions and facilitates the need for an investigation on the effect of environmental aging on the 

bonded assembly. Specimens for this study are environmentally aged in a Thermotron 2800 

Environmental chamber in an unstressed condition as shown in Figure 6.2 and Figure 6.3. A total 

of 8 specimens are subjected to harsh environments i.e. controlled temperature and humidity 

conditions at 50°C and 95% RH. The fluid selected for the aging process is di-ionized water.  

  

Figure 6.3: a) Environmetal chamber on left and b) Inside an environmental chamber 

6.2.2 Fatigue 

Fatigue of the specimens is accomplished using a cyclic three point bending load as shown 

in Figure 6.4 where a uniform shear can be created at the bondline. Several design considerations 

have been taken into account to minimize the surface stress effects, prior to fatiguing the bonded 
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specimens. Numerous iterations have been conducted for the nominal thickness considering the 

properties as explained in section 3.3.2.  

 

Figure 6.4: Schematic set-up of the fatigue fixture. 

To obtain the uniform shear stress, a fatigue fixture was designed to mechanically load 

DCB specimens with a fully reversible three point bending type load (Figure 6.5). By orchestrating 

the design of the DCB specimen in conjunction with the design of the fixture, it was possible to 

determine the specimen dimensions and fixture displacement/load parameters that will provide a 

close-to-even shear load along the bondline without exceeding the specimens tensile and bending 

yield parameters. The bending of the specimens is caused by a hydraulic powered piston driven by 

computer controlled rapid acting valves. This allows the use of different loading frequencies, 

pressures and pressure profiles. The fatigue fixture was designed to provide a 1 inch maximum 

deflection at half the length of each specimen. It was determined that this configuration provides a 

relatively uniform shear load at the bondline of approximately 3000 psi, requiring 330 lb of force 

per specimen. The fixture operates with a double amplitude fatigue loading frequency between 1 

Hz and 0.25 Hz. During the fatiguing process, the loading frequency is adjusted to produce a total 

of 2.8 million cycles on a 2 month period. The number of cycles is calculated in the specimen 

design table described in section 3.3.2.  
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Figure 6.5: Fatigue fixture for DCB specimens- specimen loaded with 0.5 inch a) forward 
amplitude; and b) backward amplitude. 

 

This fatigue loading will utilize a composite bonded specimen geometrically similar to 

those found in ASTM D790 (Standard Test Methods for Flexural Properties of Unreinforced and 

Reinforced Plastics and Electrical Insulating Materials). The magnitude of the shear load remains 

constant along the specimen length and the tension and compression loads at the bondline approach 

zero. This configuration challenges the interlaminar shear strength at the centroid of the specimen. 

A total of 4 specimens can be loaded into the device and fatigued simultaneously as shown in Figure 

6.5. Fatigue conditioning is conducted for non-contaminated sets, A1 and A3 contaminated sets 

with the results provided in the results and discussion section.  

6.2.3 Combined Environmental Aging and Fatigue 

In addition to exposing specimens to an accelerated aging environment to, other specimens 

were environmentally aged and cyclically loaded simultaneously. A total of four specimens were 

conditioned for a period of two months at 50oC and 95% RH. The fatigue fixture was developed to 

fit inside the environmental chamber in order to conduct accelerated aging and fatiguing 

simultaneously as shown in Figure 6.6. To create the fatigue load, the cylinder pressure is oscillated 

between 0 and 120 psi at the pre-stated frequency. This pressure produces a total specimen 

deflection of 0.5 in (total amplitude of 1.0 in at the center of the specimens). The Toray 800 

(P2362W-19U-304) prepreg has an ultimate strength of 212x103 psi which theoretically should be 

able to sustain a 1 inch deflection with the current specimen design. The 1 inch deflection during 
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fatigue loading keeps the specimen loads below the nominal failure limits for the desired number 

of cycles (see section 3.3.2). 

 

Figure 6.6: Fatigue fixture inside an environmental chamber. 

6.3 Results and Discussions 

6.3.1 Mechanical Strength Characterization for Durability Specimens  

6.3.1.1 Environmental Aging 

Non-contaminated and contaminated specimens conditioned in the environmental chamber 

for 2 months in an unstressed condition and changes in their mechanical strength was characterized 

via changes in fracture toughness. Strain energy release rates associated with crack growth were 

calculated as per ASTM D5528 and as mentioned in section 5.1.1. The GIC values for the 

environmentally conditioned non-contaminated and contaminated specimens are shown in Figure 

6.7. For a 2 month exposure time, marginal variability in GIC was observed for the environmentally 

exposed specimens. For the A1 contaminated specimens, only a small reduction in fracture 

toughness (~10%) was observed when compared to the non-contaminated specimens. The average 

GIC value associated with non-contaminated specimens was 0.74 kJ/m2, while the A1 contaminated 

specimens exhibited 0.67 kJ/m2. This demonstrates marginal effects of contamination on 
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environmental aging, A3 contaminated specimens exhibited an inverse effect with an increase in 

their fracture toughness. The average GIC value was 0.85 kJ/m2, which showed an increase (~13%) 

when compared to the baseline set. when compared to the baseline set. This is possibly attributed 

to the crack bluntness of A3 contaminated specimens. 

 

Figure 6.7: Non-Contaminated and Contaminated specimen subjected to Environmental Exposure 

A larger localized contaminated site can accumulate larger stresses at the crack tip before 

a failure occurs or crack propagates. This could also translate a ductile fracture to a brittle fracture. 

Joshi et al. [17] found that a certain amount of water within a bond actually increases the amount 

of load it can withstand prior to fracture due to plasticization of the adhesive. This suggests that 

although contamination can degrade the bond, upon environmentally ageing with water for the 

exposure time adopted i.e. 2 months had  no effect on the fracture toughness of the joint. 

6.3.1.2 Fatigue in Ambient Air 

Non-contaminated and contaminated specimens were fatigued in ambient air to understand 

the effect of fatigue alone. The parameters that control cyclic loading (see section 6.2.2) were kept 

under the failure limit and the desired number of cycles was adjusted to reach the near failure limit 
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for a time period of 2 months. This emulates the conditioning for mechanical fatiguing. The DCB 

coupons post-fatigue were characterized for their mechanical strength by determining their fracture 

toughness. The strain energy release rates associated with crack growth were calculated as per 

ASTM D5528 and as mentioned in section 5.1.1. The GIC values for the mechanically fatigued 

non-contaminated and contaminated specimens are shown in Figure 6.8. For the fatigue of non-

contaminated and A1 contaminated set, contamination did not have any effect on the bond 

performance and no loss in strength was observed. The scatter in the data was within the variability 

of the baseline non contaminated set. However, A3 contaminated specimens exhibited a significant 

loss in the fracture toughness with a GIC value of 0.57 kJ/m2, reducing it by 31.3% when compared 

to the non-contaminated set. This is attributed to the fact that amount of contaminant deposited via 

A3 is largely distributed than A1.   

 

Figure 6.8: Non-Contaminated and Contaminated specimen subjected to mechanical fatigue.  

6.3.1.3 Combined Environmental Aging and Fatigue 

As part of this study, non-contaminated and contaminated specimens were also subjected 

environmental exposure and mechanical loading simultaneously. The fatigue loading frequency 
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was the same as the fatigue alone conditioning and allowed for the cycles to reach the desired limit 

in 2 months. After conditioning, the specimens were characterized for their mechanical strength by 

determining the fracture toughness. The fracture toughness, GIC values, for the combined 

environmental aging and fatiguing for non-contaminated and contaminated specimens are shown 

in Figure 6.9. For the combined aging, contaminated A1 and A3 specimen sets had a significant 

reduction in fracture toughness with GIC values of 0.70 kJ/m2 and 0.72 kJ/m2 (approximately 

30%).This data set is a combination of two aggravating factor i.e. environmental exposure and 

stressing the bondline via fatiguing; the fracture toughness response is significant in this case 

affecting the bonded joint. Contamination in addition to the durability testing showed significant 

adverse effects on the bond performance. 

 

Figure 6.9: Non-Contaminated and Contaminated specimen subjected to combined loading 
(environmental exposure and mechanical fatigue simultaneously). 
 

Some general conclusions are worth noting here. Although, the specimens are subjected to 

harsh environmental conditions, the slight tendency to have a constant or rising toughness 

characteristic is a common trend that was observed by an number of researchers [17, 16, 12, 13, 
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15]. This behavior was attributed to the plasticization of the adhesive layer upon aging. 

Additionally Joshi et al. [17] reported that epoxies tend to show a larger scatter during the initial 

stages of ageing. These results also demonstrate variability with our epoxy based adhesive. Longer 

aging times for some specimen sets show decreasing trends and will be discussed in later sections. 

Additional information will also be provided for the modes of failure in the following sections.  

6.3.2 Assessing the Mode of Failure for Conditioned Specimens 

In order to understand the failure modes of the aged specimens, all fracture surfaces were 

evaluated where the first 5 cm of the bonded joint was investigated as per ASTMD5528 standards.  

6.3.2.1 Non-Contaminated specimens subjected to Durability 

The failure modes for non-contaminated specimens that were subjected to three aging 

conditions are shown in Figure 6.10. For the baseline specimens shown in Figure 6.10a, no pure 

cohesion failures were observed with specimens having adhesive on both sides of the adherends. 

Small sections of interlaminar failures were observed at the edges of each specimens. Fracture 

surfaces for the specimens that were aged in the environmental chamber for 2 months are shown in 

Figure 6.10b. For this set, we observed a larger amount of interlaminar failures emanating form the 

edges. This can be attributed to the cutting of the specimens and the creation of pathways for water 

ingression emanating from the edges. The interlaminar failure dominating at the edges is clear 

evidence that the water ingressed into the laminate plies through the edges of the coupon. Due to 

the fact that exposure time is not sufficient for the water to ingress into the center of the specimen 

(midplane) and that the coupons are unstressed, there was no reduction in the fracture toughness. 
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Figure 6.10: Comparison of mode of failures for non-contaminated specimens that underwent 
durability route. 

 
For the specimens that were aged via fatigue in ambient air for 2 months, no crack 

propagation was observed within the specimens during the fatigue test. It should be noted that a 

precrack is present for all the specimens and and are been stressed. The coupons sustained the 

fatigue cycle limit succesfully. G1C values increased by ~10% for fatigue specimens when 

compared to their baseline set. Visual observation shows primarily cohesion cohesion failure in all 

the specimens (Figure 6.10c). The large cohesive area dominance is attributed to increased fracture 

toughness when fatigued in ambient air for all the specimens. Additionally, specimens that were 

subject to fatigue, induce strain within the bondline due to compression and tension. The 

entanglement that is associated with the polymeric chains will try to orient themselves when under 

compression and tension. This orientation (increase in entanglement) within the chain structure 

causes more plastic rearrangements as the chain stretches i.e. under compression and tension 
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leading to strain hardening mechanism. This is verified by the crack tip opening displacements 

(CTOD) values for all the specimens that underwent durability as shown in Figure 6.11. For the 

specimens that are subjected to fatigue and environmental exposure simultaneously, cohesion 

failures are observed with minor interlaminar failure. The fatiguing induces strain hardening while 

the moisture is plasticizing the adhesive. This plasticization will further cause the polymeric chain 

rearrangement to intensify and hence the resistance to deformation within the adhesive increases. 

The material bears a capacity to carry higher loads in a small contact area within the 

adhesive/bondline causing strain hardening [18]. This is further verified by the CTOD values as 

shown in Figure 6.11 where it is the largest for combined fatigue loaded and environmental exposed 

specimens.  

 

Figure 6.11: Effect of Durability on CTOD for non-contaminated specimens 

6.3.2.2 Contaminated specimens subjected to Durability 

The failure modes for both contaminated sets subjected to aging were investigated to 

understand their fracture mechanisms. For both contaminated sets, the dominant failure mode was 
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a pure mixed mode with adhesion failures patterned within cohesion failures. Pure adhesion failures 

were not observed.  

6.3.2.2.1. A1 contaminated specimens subjected to durability 

For the specimens contaminated with the A1 stamp, pure cohesion failures were observed 

at the site where no contamination was present. Adhesion failures were observed at the 

contaminated sites. This showed that the contaminant is highly effective in release at the site and 

does not allow bonding with the adherend. With the obtained fracture pattern, it can be understood 

that if a joint is loaded, due to the distribution of ordered contaminant sites, the joint will always 

fail at the contaminated site but overloads the adhesive at the non-contaminated site. This will 

typically generate a mixed mode failure pattern which is seen in Figure 6.12. Very marginal 

interlaminar failure was observed unlike the baseline specimens likely due to stress re-distribution 

between the localized contaminant sites. In the case of non-contaminated set (see section 6.3.2.1), 

the fracture always progressed towards the weakest link which was the edge of the specimen due 

to cutting effects and hence an interlaminar failure was observed. For the contaminated sets, the 

weakest link is the contaminated site where the fracture primarily progresses within the site and 

later progresses towards the edge of the specimen. The adhesive is constantly loaded and unloaded 

in this context where stress re-distribution occurs and hence very marginal interlaminar failures are 

observed in all the A1 contaminated specimens. All the specimens subjected to durability exhibited 

a similar behavior and identical failure modes were observed. The CTOD values were plotted to 

explain the increase in fracture toughness as shown in Figure 6.13.  
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Figure 6.12: Comparison of mode of failures for A1 contaminated specimens that are subjected to 
durability. 

 

 

Figure 6.13: Effect of Durability on CTOD for A1contaminated specimens 
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In the case of environmentally exposed specimens, the increase in the fracture  toughness 

value is attributed to the plasticization of the adhesive which is correlated with the corresponding 

increase in the CTOD value. It should to be noted that the environmentally exposed specimens are 

unstressed and hence strain hardening does not occur. However, the plastic deformation at the crack 

tip is increased with a CTOD value (12.38 mm) which is a 10.8% increase over the baseline set. 

For the fatigue specimens, the increase in fracture toughness is primarily attributed to area of the 

contaminant covered which was marginal i.e. large cohesive failures were seen on both sides of the 

specimens with minimal adhesive failure regions indicating that the contaminant distribution was 

minimal. When subjected to fatigue aging, the specimens exhibited an identical behavior as of the 

non-contaminated specimens where strain hardening occurred and increased the fracture toughness. 

A1 contaminated specimens upon subjected to combined loading exhibited a different mode of 

failure where mixed mode pattern was not visible. This was attributed to the manufacturing defect 

where air channels were clearly visible at the bondline. However, fatiguing and environmental 

exposure affected the CTOD value and was found to be the highest where the induced strain showed 

no effect with the presence of contaminant.   

6.3.2.2.2. A3 contaminated specimens subjected to durability 

The A3 contaminated specimens exhibited pure cohesion failures at the sites where no 

contamination was present and adhesion failures at the contaminated sites. The A3 mode of failure 

replicates the pattern created by the stamp. Due to the low viscosity of the contaminant, maximum 

care was taken to avoid the spreading by not applying any gravimetric pressure on the stamp and 

ensuring that the contaminant pattern is just transferred. A3 stamp procedure is an additional level 

of contamination with increasing contamination size, the failure mode can be easily seen with 

adhesion failures surrounded by cohesion failures. The redistribution of load with the largely non-

bonded contaminant area is pronounced with this level of contamination. These typically generate 

a mixed mode failure pattern which is seen in Figure 6.14. 
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Figure 6.14: Comparison of mode of failures for A3 contaminated specimens that are subjected to 
durability. 

 

In each of the 3 conditioned sets that were contaminated with the A3 stamp, there was no 

interlaminar failure. This is likely due to the stress re-distribution as explained in section 6.3.2.2.1. 

Additionally crack bluntness that is caused due to the large dotted pattern will be a factor that 

influences the fracture toughness. Plasticization again corroborates with the CTOD values i.e. upon 

environmental ageing, the crack tip plasticity will increase causing the CTOD values to increase. 

This plasticizing ability is expected due to the unstressed condition of specimen, the localized 

plasticity of adhesive dominates upon moisture ingression. With fatiguing, although the adhesive 

strain hardens, the CTOD values will tend to decrease due to the large size of the contaminant 

influencing the crack opening and is clearly seen in the failure modes as well as in Figure 6.15. In 

the case of combined loading, the CTOD values tend to decrease further due to the combination 

effects of strain hardening, moisture ingression and contamination. The CTOD is never large where 

there are intermediate voids even after strain hardening and plasticization unlike with the non-
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contaminated specimens where CTOD values increased with combined loading due to absence of 

voids i.e contamination.   

 

 

Figure 6.15: Effect of Durability on CTOD for A1contaminated specimens 

6.3.3 Moisture Absorption Study Results 

Epoxy polymers can absorb moisture when subjected/exposed to humid environments. 

This process occurs through diffusion and the moisture uptake percentage can be plotted as a 

function of time to determine saturation levels. For this study, moisture uptake information was 

obtained for specimens that were laminates only and bonded laminates over a period of 78 weeks. 

Figure 6.16 shows a plot of the moisture uptake data for both the specimen sets. Asymptotic 

absorption behavior is observed. The percentage uptake increased rapidly during the first few 

weeks but slowed in the following weeks. The composite laminate absorbed 0.848 % of moisture 

and the adhesive by itself 0.104% when compared to their initial weights prior to exposure. This 
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aids in understanding the time required for the specimens to saturate and the % saturation can 

dictate the effect on the bond strength. 

 

Figure 6.16: Moisture uptake % plot for bonded composite laminate and laminate only. 

6.3.3.1. Fracture Toughness evaluations for Long Exposure specimens 

After the bonded specimens were exposed to 80 weeks of elevated temperatures and 

humidity, they were removed to evaluate their change in fracture toughness. DCB Results from 

long term exposure samples are shown in Figure 6.17 where they are compared with samples 

exposed for 8 weeks. As discussed earlier in section 6.3.2.1 (see Figure 6.11), 8 weeks of exposure 

did not affect the specimens fracture toughness. The specimens that are exposed for longer duration 

(80 weeks) show a significant degradation in the bond strength by ~19.65% when compared to the 

baseline set. The loss in the strength is attributed to the weakening of the interface at the bondline 

via diffusion of water molecules into the specimens which can be seen in  

Figure 6.17. The moisture content of baseline specimens start at zero increasing to 0.55 % for 

bonded specimens and 0.46 % for non-bonded specimens. It can be concluded that 0.5% of 

moisture uptake for both ABCJ’s and the laminate does not influence their mechanical properties. 
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While on the other hand, moisture uptake % when reached upto 0.944% exhibited a significant loss 

in the bond strength of adhesively bonded specimens and the laminate alone with 0.85% of water 

uptake. The failure modes of adhesively bonded specimens are shown in Figure 6.18 where a 

significant interlaminar failure is observed. The adhesive bonds prepared sustained the durability 

of harsh environmental conditions for 60 days without loss in their strength while those exposed to 

480 days suffered a reduction in their bond strengths by 19.65%. The failure mode progressed from 

cohesive to interlaminar with hygrothermal ageing. It is of prime importance to note that there were 

no adhesion failures observed for the accelerated ageing procedure adopted to characterize the long 

term durability of bonded composite joint suggesting that the bonds produced were durable to 

overcome the interfacial strength between adhesive and adherend.  

 

Figure 6.17: Effect of moisture ingression on bond strength of bonded and non-bonded specimens 
with varying exposure times.   
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Figure 6.18: Mode of Failure for long exposure specimens bonded with adhesive. 

6.4 Conclusions 

A test procedure was successfully demonstrated in order to evaluate durability of 

adhesively bonded composite joints. The durability route adopted was environmental conditioning, 

fatiguing in ambient air and combined loading i.e. fatiguing and environmental exposure 

simultaneously. This was successfully conducted on pristine specimens and specimens that were 

manufactured with undesirable bonding conditions. The failure modes were largely cohesive with 

interlaminar failure at the edges for pristine specimen while the specimens that were contaminated 

exhibited a pure mixed mode failure i.e. an adhesive failure surrounded by a cohesive failure. The 

specimens that were showing an increased fracture toughness was related to plasticization that 

corroborated with CTOD measurements. The specimens that were fatigued experienced a higher 

toughness values attributing it to the strain hardening that were in agreement with CTOD 

displacement measurements. Contaminated specimens showed a lower CTOD values when 

compared to pristine specimen due to the presence of flaws within the adhesive-adherend interface. 

Interlaminar edges which are attributed to the stresses generated in the laminate plies needs further 

refinement in the cutting procedure that can minimize the edge effects. Moisture uptake levels upto 

0.5% did not have any deleterious effect on the bond performance which can serve as a preliminary 

durability dataset for ABCJ’s utilized. While a 0.9% moisture uptake had exhibited a ~20 % 

reduction in the bond performance. No adhesion failures were observed in any of the bonded 

composite joints.  



146 
 

6.5 References 

[1]  W. Broughton and R. Mera, "Review of Durability Test Methods and Standards fro 
Assessing Long Term Performance of Adhesive Joints," National Physical Laboratory, 
Middlesex, UK, May 1997. 

[2]  J. Crank, Mathematics of Diffusion, 2nd Edition, Oxford : University Press, 1975.  

[3]  J. Crank and G. Park, Diffusion in Polymers, London: Academic Press, 1968.  

[4]  I. Ashcroft, D. Hughes and S. Shaw, "Adhesive Bonding of Fibre Reinforced Polymer 
Composite Materials," Assembly Automation, vol. 20, no. 2, pp. 150-161, 2000.  

[5]  I. Ashcroft, R. Digby and S. Shaw, "Accelerated ageing and life prediction of adhesively 
bonded joints," in EURADH 4th European Conference on Adhesion and WCARP 1, 1st 
World COngress on Adhesion and related phenomenon., Garmish-Partenkirchen, 1998.  

[6]  G. Doyle and R. A. Pethrick, "Environmental effects on the ageing of epoxy adhesive 
joints," International Journal of Adhesion & Adhesives, vol. 29, pp. 77-90, 2009.  

[7]  S. Orman and C. Kerr, Aspects of Adhesion, London: University of London Press, 1971.  

[8]  A. Crocombe and A. Kinloch, "Review of Adhesive Bond Failure Criteria," MTS Adhesives 
Project 2, August 1994. 

[9]  S. Zainuddin, M. Hosur, Y. Zhou, A. Kumar and S. Jeelani, "Durability studies of 
montmorillonite clay filled epoxy composites under different environmental conditions," 
Material Science and Engineering A, vol. 507, pp. 117-123, 2009.  

[10]  V. L. Saponara, "Environmental and chemical degradation of carbon/epoxy and structural 
adhesive for aerospace applications: Fickian and anomalous diffusion, Arrhenius kinetics," 
Composite Structures, vol. 93, pp. 2180-2195, 2011.  

[11]  M. Bowditch, "The durability of adhesive joints in the presence of water," International 
Journal of Adhesion and Adhesives, vol. 16, pp. 73-79, 1996.  

[12]  R. Selzer and K. Friedrich, "Influence of water up-take on interlaminar fracture properties 
of carbon fibre-reinforced polymer composites," Journal of Materials Science, vol. 30, pp. 
334-338, 1995.  

[13]  R. Selzer and K. Friedrich, "Mechanical properties and failure behavior of carbon fibre-
reinforced polymer composites under the influence of moisture," Composites: Part A, vol. 
28A, pp. 595-604, 1997.  

[14]  J. Lucas, J. Zhou and Y. Wai, "Micromechanics Analysis of Fibre Fragmentation Test," in 
Proceedings of ICCM 9 in COMPOSITES: Properties and Applications, Madrid, 1993.  

[15]  S. Pantelakis and K. Tserpes, "Adhesive bonding of composite aircraft structures: 
Challenges and recent developments," Science China Physics, Mechanics and Astronomy, 
vol. 57, no. 1, pp. 2-11, Jan 2014.  



147 
 

[16]  C. V. Katsiropoulos, A. Chamos, K. Tserpes and S. G. Pantelakis, "Fracture toughness and 
shear behavior of composite bonded joints based on a novel aerospace adhesive," 
Composites: Part B, vol. 43, no. 2, pp. 240-248, 2012.  

[17]  S. B. Joshi, T. F. Gray, W. M. Banks, D. Hayward, R. Gilmore, L. W. Yates and R. A. 
Pethrick, "Environmental Ageing of Adhesively Bonded Joints. II. Mechanical Studies," 
The Journal of Adhesion, vol. 62, pp. 317-335, 1997.  

[18]  R. S. Hoy and M. O. Robbins, "Strain Hardening of Polymer Glasses: Effect of 
Entanglement Density, Temperature and Rate," Journal of Polymer Science Part B: 
Polymer Physics, vol. 44, no. 24, pp. 3487-3500, Nov 2006.  

[19]  N. Brack and A. Rider, "The influence of mechanical and chemical treatments on the 
environmental resistance of epoxy adhesive bonds to titanium," International Journal of 
Adhesion and Adhesives, vol. 48, pp. 20-27, 2014.  

 



148 
 

 PREDICTION APPROACH 

This chapter describes a fracture mechanistic based model that is fully utilized to predict 

the fracture toughness of ABCJ’s containing undesirable bonding conditions. Undesirable bonding 

conditions were created using the stamp approach as described in Chapter 3. Fracture toughness 

was predicted based on the model criteria and assumptions pertaining to adhesive material that 

were comparably close. The fracture toughness values evaluated from the model is compared with 

the experimental values.   

7.1 Development of Predictive Model Criteria 

The conventional methods for prediction of a fracture in any material utilizes two basic 

approaches i.e. 1) Stress or Strain based approach where a material reaches a critical value and 

failure occurs or 2) Stress intensity of the existing cracks or flaw possessing a stress intensity factor 

associated with the crack/flaw reaching a critical value [1]. Various equation intensive approaches 

have been constructed as predictive models that often result in a large number of undetermined 

parameters. This can potentially limit the predictive power and complicate its comparison with 

experimental data. Here a simplistic fracture model is discussed that demonstrated how stress 

intensity factors can be utilized in fracture studies of ABCJ’s.  

Evolution of microcracks can coalesce to form a macro crack and catastrophically fail in 

load bearing structures. Simulating these microcracks and predicting the overall mechanical 

property of a structure can be very time consuming. Simulations at microscale and their integration 

at a macroscale can be a complex task for a computer. To address this problem, the representative 

volume element (RVE) approach was followed for the prediction of fracture toughness. Fang et.al 

[2] defined the RVE theory as the global length scale in a global coordinate system is proportional 

to the local length scale of the unit cell in the local coordinate system and is expressed as  

𝑌𝑌𝑔𝑔  =  
𝑦𝑦𝑙𝑙
𝜖𝜖
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where 𝑌𝑌𝑔𝑔 is the length scale in global coordinate system; 

 𝑦𝑦𝑙𝑙 is the length scale in local coordinate system; 

𝜖𝜖 is the scaling parameter that is always equal to the ratio of unit cell size to the macroscopic 

region of the global coordinate system in which it belongs.  

This theory served as motivation to construct an RVE model on ABCJ’s as mentioned 

below. Considering a circular crack flaw at the interface of a material having radius, af and height, 

d at the adhesive-adherend interface. For convenience, the flaw is assumed to be small when 

compared to the width of the plate. Figure 7.1 shows the schematic of a true representation of the 

contaminated site at the interface between an adherend and adhesive in an ABCJ.  

 

 

Figure 7.1: Schematic of the true representation of the contamination link at the  
bonded interface. 

 

 A remotely applied uniform stress, S is applied on the adherends. The most influential 

effect on the flaw is the stress field σy acting parallel to S. The top view of the schematic can be 

constructed as RVE model as shown in Figure 7.2. For the prediction approach, an RVE unit cell 

was considered which is shown in red. In our experimental methodology, the contaminant is at the 

interface between the adhesive and adherend. In this model, an identical criteria is assumed by 

considering the flaw to be present at the interface. The grey region represents adherend and the 

localized contaminated sites with a diameter of 2a and the orange represents the adhesive. As 
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explained in Chapter 5 (see section 5.4.3-Figure 5.10), the modes of failure occur in a mixed mode 

i.e. areas of localized adhesion surrounded by area of cohesion. This served as a motivation in 

considering RVE as a dotted array pattern distributed across the entire width of the specimen. 

Assuming that the crack propagates from top to bottom within the within a unit cell as shown in 

Figure 7.2, the stress intensity factor, Kc is given as  

𝐾𝐾𝑐𝑐  =  𝜎𝜎𝑦𝑦 √𝜋𝜋𝑏𝑏 

 

Figure 7.2: RVE Unit cell drawn in red with a local coordinate. 

In this case, K depends on the remotely applied stress σs and the circular flaw size, a. The applied 

stress σs is the force acting per unit area   

𝜎𝜎𝑒𝑒  =  
𝜎𝜎𝑦𝑦
𝐴𝐴

 

where the force translates to tensile strength of the adhesive, 𝜎𝜎𝑦𝑦 which is unknown and A is the unit 

cell area, 𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 

𝐴𝐴 ∗ 𝜎𝜎𝑒𝑒  =  𝜎𝜎𝑦𝑦 

Substituting 𝜎𝜎𝑦𝑦 in 𝐾𝐾𝑐𝑐,  

𝐾𝐾𝑐𝑐  =  𝐴𝐴 ∗  𝜎𝜎𝑒𝑒 √𝜋𝜋𝑏𝑏 

As mentioned, Unit cell area, 𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 is the sum of the areas of cohesive element and adhesive 

element.   

𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐𝑈𝑈𝑙𝑙𝑙𝑙 = 𝐴𝐴𝑐𝑐𝑐𝑐ℎ𝑈𝑈𝑒𝑒𝑈𝑈𝑒𝑒𝑈𝑈  +  𝐴𝐴𝑎𝑎𝑎𝑎ℎ𝑈𝑈𝑒𝑒𝑈𝑈𝑒𝑒𝑈𝑈 
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As mentioned in section 5.4.2.1, the effect of area played a crucial role in governing the fracture 

toughness, GIC of a joint and hence areas were quantified and plotted against GIC’s.  

Therefore,  

𝐴𝐴𝑐𝑐𝑐𝑐ℎ𝑈𝑈𝑒𝑒𝑈𝑈𝑒𝑒𝑈𝑈  =  𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙  −  𝐴𝐴𝑎𝑎𝑎𝑎ℎ𝑈𝑈𝑒𝑒𝑈𝑈𝑒𝑒𝑈𝑈 

Hence Kc can be rewritten as  

𝐾𝐾𝑐𝑐  =  𝐴𝐴𝑐𝑐𝑐𝑐ℎ𝑈𝑈𝑒𝑒𝑈𝑈𝑒𝑒𝑈𝑈 ∗  𝜎𝜎𝑒𝑒 √𝜋𝜋𝑏𝑏 

This is the empirical relation between stress intensity factor, 𝐾𝐾𝑐𝑐 and cohesive area, 𝐴𝐴𝑐𝑐𝑐𝑐ℎ𝑈𝑈𝑒𝑒𝑈𝑈𝑒𝑒𝑈𝑈. A 

linear relationship should be estimated based on the equation above. The RVE unit cell with the 

Stress Intensity factor 𝐾𝐾𝑐𝑐, is calculated based on various flaw sizes ranging as low as 2 nm to 6 

mm. The unit cell assumed was to be 1 cm x 1 cm square. Since the tensile strength of the adhesive 

is unknown, a close comparable range (3~ 7 MPa) was chosen to observe the effect of varying flaw 

sizes with varying tensile strength on 𝐾𝐾𝑐𝑐  . The stress intensity factors are then converted to their 

respective fracture toughness values as follows:  

𝐾𝐾𝑐𝑐  =  �𝐸𝐸 𝐺𝐺𝑈𝑈  

where E is the Young’s Modulus and 𝐺𝐺𝑈𝑈 is the fracture toughness. The processed equation can now 

be written as 

𝐺𝐺𝑈𝑈  =  
𝐾𝐾𝑈𝑈2

𝐸𝐸
 

In general, young’s modulus of typical structural adhesives are in the range of 2000-3000 MPa.  

7.2 Results and Discussions 

The dependency of unit cell cohesion area on 𝐾𝐾𝑐𝑐 is plotted in Figure 7.3. A linear 

relationship was observed between the cohesive area and stress intensity factors. With the young’s 

modulus range mentioned above, it would be a good estimate if the values are chosen in the 

midrange so that a dependency on the trend can be easily estimated. Young’s Modulus was chosen 

to be 2500 MPa and the dependency of fracture toughness 𝐺𝐺𝑈𝑈  on an RVE unit cell cohesive area 



152 
 

was plotted as seen in Figure 7.4. The 𝐺𝐺𝑈𝑈 values thus obtained are compared with the experimental 

values.  

 

Figure 7.3: Dependency of unit cell cohesion area on Kc 

 

Figure 7.4: GC dependency on RVE Unit cell cohesive area 
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The predicted fracture toughness GIC values increased linearly with cohesive area within 

an RVE unit cell. As shown in Figure 7.5, the experimental dataset has a slope of 0.0127 and the 

predicted plot generated a similar slope, with a value of 0.0103. It is evident that the trend in the 

predicted plot for RVE unit cell correlates well with the experimental dataset. Having the  

information of the cohesive area or the area of contamination causing the adhesion failure can assist 

in predicting the fracture toughness values of the specimens. The predicted results are on a good 

agreement  with the experimental results. The chosen range of flaw sizes that were assumed fits 

appropriately with fracture toughness values with an average error % of less than 12.2 % as shown 

in Figure 7.6. It can also be inferred that for every 10% increase in the cohesive area ratio, nearly 

20% increase in the GIC is affected. This suggests that 10% increase in contamination could degrade 

the GIC values by nearly 20%.  

 

Figure 7.5: G1C Experimental vs Predicted Slopes 
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The experimental and predicted equations are given as,  

Experimental,  GIC = 0.0076 (Acoh) + 0.1609 

Predicted, GIC = 0.011 (Acoh) – 0.1124 

 

 

Figure 7.6: Predicted vs Experimental Fracture Toughness plots 

7.3 Conclusions 

The use of RVE unit cell model has been effectively modified to predict the fracture 

toughness of adhesively bonded composite joints using undesirable bonding conditions. In this 

study, a theoretical formula was developed for predicting fracture toughness that was compared 

with the experimental dataset and was found to be in good agreement. The developed model was 

validated by varying the flaw size from as low as 2 nm to 6 mm and the predictions corroborated 

well. It has been demonstrated that this approach has much potential for use in predicting the 

fracture toughness of ABCJ’s having concerns of contamination. Nevertheless, RVE based 
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approaches needs further investigations for an effective prediction of fracture toughness using 

multiple scales of undesirable bonding conditions.  
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8. CONCLUSIONS 

The broad applicability of composite materials provides an avenue to replace existing metallic 

materials in aircraft structures. To maximize the efficiency of composites, the joining of structures 

need to be accomplished using adhesive bonding as opposed to conventional joining methods. An 

increased use in adhesively bonded composites will lead to significantly lighter structures. The 

difficulty in the acceptance of bonded structures centers around the validation of the service life of 

the bond i.e. its long term durability. Intrinsic factors such as contamination and their effects on 

bond performance needs to be significantly understood, before general acceptance in the aerospace 

community.  Nevertheless, numerous research efforts have been initiated in aircraft community to 

improve their structural efficiency by leveraging adhesive bonding technologies.  

As the strength of adhesively bonded joints continue to increase with improved materials and 

manufacturing processes, new applications for adhesively bonded composite joints evolve. As 

such, it is important to understand the additional factors from these applications that may influence 

bond performance. In this study, the influence of surface preparation on composite-adhesive bond 

quality was investigated through the development of a repeatable and scalable surface 

contamination procedure. Contaminant application and wetting characteristics were verified using 

FTIR, contact angle and surface free energy measurements. Both macroscale DCB testing and in 

situ micro scale ENF analysis showed a direct correlation between locations of contaminant 

application (macroscale) and the damage mechanims (microscale). Damage in the baseline 

specimen was confined to the crack tip region whereas the damage in the contaminated specimen 

initiated at the composite adhesive interface and propagated through the adhesive as loading 

increased. The increased compliance for contaminated specimens is due to the coalescence of 

microcracks that resulted in interlaminar failure. Validation of the contaminated and non-

contaminated sites was verified using EDS results. In addition, the overall contaminated area played 
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a major role in decreasing the bond quality, whereas the effects of application size (stamp size) 

were negligible.  

The new test methodology developed in this study, can be an additional tool to the current 

quality management system for developing a reliable adhesively bonded structure. Pristine bonded 

joints and joints with undesirable bonding conditions were used to generate durability datasets that 

where conditioned at 95% RH and 50oC for eight weeks. Results indicated that the length of 

exposure time was not significant enough to affect the bond performance. This information can 

assist future design engineers in setting test parameters for evaluating the long term durability of 

the joints. Conditioning for longer periods of time (80 weeks), did demonstrate some degradation 

in the bond performance due to absorption of moisture. The RVE unit cell approach adopted in this 

study, assists in predicting the fracture toughness of ABCJ’s using undesirable bonding conditions. 

The developed model was successfully validated by varying flaw size from the nanometer to 

millimeter range and the predictions correlated well with the data obtained.   

The overall results of this study can be used to improve the design of adhesively bonded 

composites and to evaluate the ability of NDE techniques to assess bond quality prior to 

implementation. For instance, hand-held FTIR scans can be used at various stages of composite 

processing/composite bonding to determine the presence of potential contaminant locations and 

overall affected area. Based on this study, standards for acceptable amounts of contamination can 

likely focus on the total contaminated area and not on the application size or the process adopted. 

In addition, future designs can incorporate direct evidence of the influence of weak bonds on overall 

performance in design and modeling software. This will lead to an enhanced confidence in 

predictions and a reduction in overall component weight and in the need for arbitrarily high safety 

factors or overdesigned mechanical fasteners.
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