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ABSTRACT OF THE DISSERTATION

FLASH CACHING FOR CLOUD COMPUTING SYSTEMS

by

Dulcardo A. Arteaga Clavijo

Florida International University, 2016

Miami, Florida

Professor Ming Zhao, Major Professor

As the size of cloud systems and the number of hosted virtual machines (VMs)

rapidly grow, the scalability of shared VM storage systems becomes a serious issue.

Client-side flash-based caching has the potential to improve the performance of

cloud VM storage by employing flash storage on VM hosts to exploit the locality

inherent in VM I/Os. However, there are several challenges to the effective use of

flash caching in cloud systems. First, cache configurations such as size, write policy,

metadata persistency, and redundant array of independent disks (RAID) level have

a significant impact on flash caching. Second, the typical capacity of flash devices is

limited in comparison to the dataset size of consolidated VMs. Finally, flash devices

wear out and face serious endurance issues that are aggravated by the use of caching.

This dissertation presents research on how to address problems of cloud flash

caching in the following three aspects: First, it presents a thorough study of differ-

ent cache configurations, including a new cache-optimized RAID configuration that

uses a large number of long-term traces collected from real-world public and pri-

vate clouds. Second, it studies an on-demand flash cache management solution for

meeting VM cache demands and minimizing device wear out. It uses a new cache

demand model, reuse working set (RWS), to capture data with good temporal lo-

cality, and uses RWS size (RWSS) to model a workloads cache demand. Finally, in

situations where a cache is insufficient to meet VM demand, it employs dynamic
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cache migration to balance cache load across hosts by live-migrating cached data

along with the VMs.

The results show that, compared to traditional RAID, cache-optimized RAID

improves performance by 137% without sacrificing reliability. In addition, compared

to traditional working-set-based cache allocation, RWSS-based on-demand cache

allocation reduces workload cache usage by 78% and lowers the amount of writes

sent to the cache device by 40%. Combining on-demand cache allocation with

dynamic cache migration for 12 concurrent VMs yields a 28% higher hit ratio and

28% lower 90th percentile I/O latency, compared to cases without cache allocation.
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CHAPTER 1

Introduction

Network storage systems such as SAN [TS00] and IP-SAN (e.g., iSCSI [KHSB02],

NBD [nbd]) are commonly used in emerging cloud computing systems to store virtual

machine (VM) images for a set of VM hosts (e.g., [ebs, nov]). Such a shared stor-

age system allows efficient storage utilization by consolidating separate VM storage

resources into a single shared pool. It also enables fast, live VM migrations, which

transfer only the VMs’ in-memory states across hosts during migrations. However,

as the size of cloud systems and the number of hosted VMs rapidly grow, the scala-

bility of shared storage becomes a serious issue. In production cloud deployment, a

single host can run hundreds of VMs whereas a cluster of hosts can run thousands

of VMs sharing the same storage server. Consequently, the VM storage system may

become the bottleneck where VMs cannot reach their desired performance even

when provisioned with the necessary CPUs and memory.

Cloud system host-side flash caching employs flash-memory-based storage on a

VM host as the cache for its remote storage to exploit the data-access locality and

improve VM performance. It has received much attention in recent years [BLM+12,

ioC, HAWS13, dmc], for two important reasons. First, as the level of consolida-

tion continues to grow in cloud computing systems, the scalability of shared VM

storage servers becomes a serious issue. Second, the emergence of flash-memory-

based storage has made flash caching a promising option to address the issue of I/O

scalability because accessing a local flash cache is significantly faster than accessing

remote storage across a network.

However, several challenges must be addressed to make effective use of flash

caches in cloud storage systems:
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Flash caching architecture and configurations First, it is important to prop-

erly configure the cache to deliver the best possible performance with data

reliability. To do so, several key questions must be answered. First, how to

size the flash caches? Given the capacity and cost constraints of flash devices,

there needs to be enough locality in VM IOs in order to make flash caching

cost-effective. Otherwise, the cloud may not be a good target for flash caching.

Second, how to choose the write caching policies? Although the nonvolatile

nature of flash storage allows writes to be served directly from the cache, syn-

chronizing the cache with the server has implications for both IO performance

and data durability. Third, is it necessary to make a flash cache persistent

across client restarts and crashes? A persistent cache requires both data and

metadata to be persistently stored in the cache, which introduces additional

writes that are detrimental to both IO performance and flash endurance. Fi-

nally, how to improve the reliability of a flash cache so as to tolerate device-level

failures? If a flash cache retains locally modified data, it is critical that it can

recover from flash device failures, but the fault-tolerance mechanism employed

should not negate the performance benefits of write-back caching.

Limited cache capacity Second, cache capacity is very limited in comparison to

VM dataset sizes. Considering the increasing data intensity of workloads and

the increasing number of VMs consolidated to a host, it is important to allo-

cate shared cache capacity among competing VMs according to their actual

demands.

Limited device endurance Third, flash devices wear out by writes and face se-

rious endurance issues, which are in fact aggravated by the use for caching

because both the writes inherent in the workload and the reads that miss

the cache induce wear-out [YPGT13]. Therefore, cache management must be

2



careful not to admit data that are not useful to workload performance but

damage the endurance.

We believe that these problems are significant and that solving them would

support the effective use of cloud caching to address the issue of scalability on cloud

storage and optimize the performance of cloud applications. This thesis presents

a flash-caching solution that first considers a feasibility study of real cloud-system

traces then proposes a solution that considers on-demand cache allocation of cache

capacity according to VM workload demands, and dynamic cache migration that

balances cache loads across hosts by live-migrating VMs along with their cached

data.

1.1 Thesis Statement

We propose “CloudCache”, a cloud caching and management solution, that ad-

dresses the previous challenges, in the following ways:

1. Provides a thorough study of cache configurations such as size, write policy,

metadata persistency, and reliability, as well as their impact on cloud caching

performance and reliability

2. Utilizes on-demand space allocation, which uses reuse working set size (RWSS)

model to predict workload demand, to effectively admit reused data into the

cache and enforce cache allocation

3. Employs dynamic cache migration which allows to migrate cached data across

hosts along with the VM, in order to maintain cache load balance across

multiple hosts.

3



1.2 Contributions

The first contribution is a comprehensive study of different cache configurations and

their impact on performance and reliability. First, by comparing the working set

size (WSS) of the traces to the typical size of commodity flash devices, we vali-

date that cloud systems are strong targets for flash caching. Second, by studying

different cache write policies, we determine the tradeoff of each. Third, we study

the overheads involved in making cache metadata persistent. Finally, with an un-

derstanding of the importance of write-back caching, we investigate how to make

the process reliable and affordable. Our solution is a new cache-optimized RAID

technique that selectively provides data redundancy.

The second contribution is on-demand cache-space allocation, which enhances

our caching solution with the capacity to analyze current workload demand by using

the RWS model. Based on this model, we study prediction methods to estimate a

workloads cache demand based on the observed RWSS and cache admission policies

to admit only data with good temporal locality, thereby maximizing workload per-

formance while minimizing wear. Our solution is then able to allocate shared cache

capacity to the VMs according to their actual cache demands.

The third contribution is dynamic cache migration. Because it is important to

maintain cache load balance across hosts in order to satisfy VM cache demands,

dynamic cache migration approach helps to balance cache load across hosts by live-

migrating cached data along with the VMs. It uses both on-demand migration of

dirty data to minimize the overhead of synchronizing such data and background

migration of reuse working set to quickly warm up the cache for a migrated VM,

thereby minimizing impact on the VM. Meanwhile, it can also limit the data transfer

rate for cache migration to minimize the impact on cohosted VMs.
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Our results show that, compared to traditional RAID, cache-optimized RAID

improves performance by 137% without sacrificing reliability. In addition, compared

to traditional working-set-based cache allocation, RWSS-based on-demand cache

allocation reduces workload cache usage by 78% and lowers the number of writes

sent to cache device by 40%. Combining on-demand cache allocation with dynamic

cache migration for 12 concurrent VMs yields a 28% higher hit ratio and a 28%

lower 90th percentile I/O latency, compared to cases without cache allocation.

1.3 Outline

The rest of the thesis is organized as follow: Chapter 2 presents the study on different

cache configurations using real cloud traces; Chapter 3 presents on-demand space

allocation which allocates cache capacity according to VMs’ workload demands;

Chapter 4 presents dynamic cache migration which is used to balance cache load

across hosts; Chapter 5 describes the related work; and finally, Chapter 6 presents

the thesis conclusions and future work.
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CHAPTER 2

Flash Caching Architecture and Configurations

2.1 Introduction

Flash caching has become a popular and effective solution for improving I/O perfor-

mance for computing systems that depend on network storage system for example

data centers and cloud providers, which can host tens to hundreds of VMs in the

same physical hosts.

However, several key questions need to be answered to make effective use of

flash caches in cloud storage systems. First, how to size the flash caches? Given

the capacity and cost constraints of flash devices, there needs to be enough locality

in VM IOs in order to make flash caching cost effective. Otherwise, cloud may not

be a good target for flash caching. Second, how to choose the write caching polices?

Although the non-volatile nature of flash storage allows writes to be served directly

from the cache, how to synchronize the cache with the server has implications on

both IO performance and data durability. Third, is it necessary to make a flash

cache persistent across client restarts and crashes? A persistent cache requires both

data and metadata to be persistently stored in the cache, introducing additional

writes, which are detrimental to both IO performance and flash endurance. Finally,

how to improve the reliability of a flash cache so as to tolerate device-level failures?

If a flash cache retains locally modified data, it is critical that the cache can recover

from flash device failures, but the fault-tolerance mechanism employed should not

negate the performance benefits of write-back caching.

This chapter studies client-side flash caching in cloud systems by providing an-

swers to the above questions based on dm-cache [dmc], a block-level cache solution

6



that provides transparent flash caching on cloud VM hosts and supports concurrent,

dynamic VMs to efficiently share a cache. It has been adopted by cloud service

providers for production use [cloa]. To facilitate this study, we have collected a

substantial amount of block IO traces from a private cloud at Florida International

University (FIU) and a public cloud from CloudVPS [cloa]. The FIU traces con-

tain nearly one year of block IO traces collected from several production servers

(Web serve, Moodle server, and network file system servers). The CloudVPS traces

contain block IO traces from hundreds of VMs on the production systems of the

Infrastructure-as-a-Service (IaaS) cloud for several days.

Our study first analyzes the basic characteristics of dm-cache based flash caching

and the collected cloud traces. It reveals that dm-cache introduces small latency

overhead which is around 23µs when using an SATA solid-state drive (SSD) devices

and 9µs when using a PCIe SSD device. It also validates that cloud VMs are good

targets for flash caching by comparing the working set size (WSS) of the traces to

the typical size of commodity flash devices.

Having confirmed the feasibility of flash caching, we further study the impact of

different write caching policies. Our results show that retaining writes in the cache

is beneficial to performance, producing a 48% to 321% speedup in comparison to a

policy that only invalidate cache blocks upon writes. More importantly, delaying the

synchronization with the server (i.e., write-back caching) can significantly improve

the performance, producing 74% to 1289% speedup compared to the policy that

synchronizes with the server upon every write (i.e., write-through caching). This

improvement is mainly attributable to a 52% to 94% reduction of server load by

exploiting the locality of cached writes, which was not considered in related stud-

ies [HAWS13]. Our study also reveals the tradeoff associated with making a flash

cache persistent across client restarts and crashes. To store the metadata persis-
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tently, it introduces up to 0.06ms latency overhead, but it allows the client to work

with a warm cache after it recovers, which saves the time (3 to 5 hours in our traces)

to warm up the cache and increases the hit rate by up to 28%. Compared to the

related work [HAWS13], we provide quantitative results on the cost and benefit of

making flash cache persistent and show that this tradeoff should be carefully decided

based on the cloud environment such as the expected client failure rate.

Understanding the importance of write-back caching, we further investigate how

to make it reliable and affordable. Our solution is a new cache-optimized RAID

technique that selectively provides data redundancy. It recognizes the fact that

cached clean data already have redundant copies on the server and employs addi-

tional flash devices only to provide fault tolerance to cached dirty data, thereby

minimizing the overhead while maximizing utilization. The results show that this

cache-optimized RAID can provide fault tolerance with negligible overhead (9.1µs),

and substantially improves the performance by 135% and 72% compared to using

traditional RAID and write-through caching, respectively, to achieve reliability.

Overall the work described in this chapter has made the following contribu-

tions: 1) it provides one of the first comprehensive analysis of the effectiveness of

flash caching based on a production-grade cache utility designed for cloud environ-

ments and a substantial amount of traces collected from real-world systems; 2) It

is among the first to quantitatively analyze the various key cache design decisions

for flash caching, and demonstrate the significance of employing write-back policy

and making a flash cache persistent across client restarts; 3) It proposes a new

cache-optimized RAID technique to allow a write-back cache to tolerate flash device

failures with minimal cost.

The rest of the chapter is organized as follow: Section 2.2 describes the back-

ground and related work; Section 2.3 presents the methodology of the trace-driven
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analysis; Section 2.4 analyzes the cacheability of cloud workloads using the collected

cloud traces; Section 2.5 discusses the overhead of dm-cache-based flash caching; Sec-

tion 2.6 shows a latency analysis; Section 2.7 analyzes the impact of different write

caching policies; Section 2.8 analyzes the cost and benefit associated with making

a cache persistent; Section 2.9 presents the cache-optimized RAID technique for

reliable write-back caching; and Section 2.10 summarizes the chapter.

2.2 Background and Motivation

Client-side persistent-storage-based caching can improve the performance of a dis-

tributed storage system by harnessing the persistent storage available on the storage

client to exploit the locality within its IOs, thereby accelerating data accesses to the

client and reducing IO load on the server. Earlier results from dm-cache show that

HDD-based client-side caching can achieve a 15-fold speedup for an iSCSI-based

system with 8 clients sharing one HDD-based server [HZ06]. However, the use of

client-side disk caching was not widely adopted, which can be attributed to at least

the fact that the latency of an HDD-based cache is often comparable to the network

latency to the storage server. Therefore, the benefit of client-side caching hence ex-

hibits only when the server is heavily loaded [HZ06] or accessed through a wide-area

network [ZF06, ZZF06].

While the emergence of flash-based storage is fundamentally transforming the

landscape of computer storage field, it is also changing the perception on client-side

caching, because the speed of a flash-based cache can be substantially faster than

an HDD-based storage server. Even as flash storage gets increasingly adopted on

the storage server side, the diversity of flash devices allows the use of faster flash
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storage (e.g., single-level cell flash) on the client side as the cache for the slower flash

storage (e.g., multiple-level cell flash, hybrid flash/HDD) on the server side.

The potential of flash caching has motivated several SSD caching solutions (e.g.,

dm-cache [dmc], ioCache [ioC], Mercury [BLM+12]). In this chapter, we focus on

dm-cache based SSD caching, which has been successfully deployed in production

cloud computing systems and motivated the designs of other SSD caching solutions

(e.g., FlashCache [fla]).

Although the potential of client-side flash caching is well recognized, it is still

unclear how much performance improvement that it can achieve for typical cloud

workloads and how to best design and configure the cache given the many possi-

ble choices. Recently, Holland et al. [HAWS13] studied several key design con-

siderations, including flash-RAM integration, write-back policy, cache persistency,

and cache consistency, based on simulations. In particular, they found that write-

through caching is good enough because the writes to the storage server can be

submitted asynchronously without slowing down the client. However, they did not

consider the impact on the server’s load and its resulting effect on the client’s per-

formance, which are studied in this chapter using a real flash cache implementation

with real traces.

The importance of flash caching has also motivated related work on exploiting

cache-specific characteristics to optimize the use of flash storage. FlashTier [SSZ12]

studied a new flash device interface specialized for caching, which reduces the block

management overhead by unifying the block address mappings done by the cache

and device and reduces the device garbage collection overhead by silently evicting

clean cache blocks.

HEC [YPGT13] and LARC [HWC+13] described on section 5.1 studied new

cache admission policies to address the flash wear-out issue by not caching data that
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are infrequently used or from backup workloads. These solutions are complementary

to this chapter’s study which focuses on the design issues internal to cache while

our discoveries also have an impact on flash performance and endurance.

2.3 Methodology

2.3.1 Dm-cache Block-level Cache

Dm-cache [dmc, HZ06] provides caching at block level for distributed storage sys-

tems. It is created upon block-level storage virtualization by interposing a virtual

block device between the storage client and server, and can be transparently de-

ployed on the client-side of a distributed storage system to provide caching. Our

current implementation of dm-cache is based on the Linux block device virtualiza-

tion framework (device mapper) and can be seamlessly employed by any Linux-

based environments including VM systems that use Linux-based IO stack (e.g.,

Xen [BDF+03] and KVM [kvm]). It is an open-source solution and has been adopted

by production cloud systems [clob]. Therefore, we use dm-cache as a representative

flash caching solution and feed it with real-world traces to carry out this study.

Dm-cache supports full associativity with LRU-based replacement and various

write caching polices. Dm-cache employs a radix tree for fast cache lookup and an

LRU list for quickly finding a replacement block. (See Section 2.5 for the overhead

analysis.) Although alternative cache replacement algorithms (e.g., ARC [MM03])

are available, cache replacement is not the focus of this chapter and the use of LRU

in our study offers at least a baseline performance from a commonly used algorithm.

To support the use in cloud computing systems, dm-cache allows multiple co-

hosted VMs to safely share the same cache device in a work-conserving manner
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Figure 2.1: Architecture of Shared flash Caches for Cloud

(but with isolated data-sets, data sharing at block level requires a cluster file sys-

tem [VMF, glo] and will be considered in our future work). It also allows the cache

contents to be controlled on a per-VM basis in order to support dynamic VM life

cycles and migrations. For example, when a VM is terminated or migrated to a dif-

ferent host, its cached data can be flushed without affecting the other VMs sharing

the same cache.

Figure 1 illustrates the architecture of dm-cache-based flash caching in cloud

environments. In this example there are multiple VMs each with its own virtual

disk stored directly on the logical volumes (LVs) (/dev/lv-disk#) remotely accessed

through SAN or IP SAN (e.g., iSCSI [KHSB02], NBD [nbd]). The local storage

device (/dev/sdc) on the client-side of this distributed storage system, the VM host,

is used to provide block-level caching for the VM images. In order for the VMs to

share the cache device, a virtual cache (e.g., /dev/mapper/cache1 ) is created for

12



each VM and presented to the VM as its virtual disk, while all the virtual caches

are at the end mapped to the same physical cache device (a VM identifier is stored

in every cached block to track the ownership of cache data). Each VM’s IOs to its

virtual disk are thereby handled by dm-cache and satisfied from the cache or remote

LV.

2.3.2 Dm-cache-sim Cache Simulator

To facilitate the analysis of cache performance using long-term traces and with

different cache configurations, we also created a user-level cache simulator, dm-

cache-sim. It is able to flexibly model the cache management of dm-cache, use

block-level traces to drive the simulations, and collect detailed statistics on cache

usages and hit rates. Note that we do not use this simulator to gather IO latency

or throughput which are always collected using dm-cache with real experiments.

Because we do not attempt to simulate the time behavior of dm-cache, the simulator

generally runs faster than real experiments while giving the same cache hit rate

results as real experiments. It is therefore good for quickly exploring the impact of

different cache configurations on cache hit rate using long-term traces.

2.3.3 Traces

To support this flash caching study, real-world block IO traces were collected from

production cloud systems using blktrace, a Linux block-layer IO tracing mechanism

[blk], and, dtrace a Solaris dynamic tracing framework [dtr]. The statistics of the

collected traces are summarized in Table 3.1. The first group of traces were collected

from a private cloud at FIU. Several production servers (Web, Moodle, and network

file system servers) were traced for months. The Web server hosts a departmental
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Server Time IO Load WSS Write
Name (days) (GB) (GB) (%)

webserver 281 2,247 110 51
moodle 161 17,364 223 13
buffalo 90 39,128 638 41
bear 152 57,887 1037 22
CloudVPS (170+ VMs) 3 7 - 223 5 - 20 14 - 85

Table 2.1: Trace statistics

website; the Moodle server hosts the Moodle online learning system; the Bear and

Buffalo servers are the file servers for storing the user data of faculty and students,

respectively. These different types of servers represent services that are commonly

hosted on cloud VMs. The second group of traces were collected from the production

system of a public IaaS cloud provider (CloudVPS ) [cloa]. A random set of 170 VMs

were selected from three VM hosts and traced for up to three days.

Figure 2.2 shows the total number of IOs and the numbers of reads and writes for

the Webserver trace for over 10 months. This workload is write-intensive because

the reads to the commonly visited web pages can be well captured by the webserver’s

memory cache, leaving the underlying storage layer a high ratio of writes. Figure 2.3

shows the patterns of the Moodle trace for nearly six months. Although this trace

is collected also from a website, its patterns are quite different from the Webserver.

First, the overall intensity is an order of magnitude higher than theWebserver trace,

because the Moodle website services contents such as course slides and assignments

which are much larger than the data served by the Webserver. Second, because the

working set is much larger, a significant number of reads misses the memory cache

and dominates the storage workload (82% overall). Figures 2.4 and 2.5 show the IO

patterns for the two file server traces, which are both much more intensive than the

Webserver and Moodle traces. Between these two file servers, Bear services a larger

dataset and its storage workload has a greater percentage of reads than Buffalo.
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The above four traces provide a good representation of cloud workloads with

different levels of IO intensity and different read/write ratio. Figure 2.6 further

illustrates commercial cloud workload patterns using a subset of the VM traces

collected from Cloud VPS, where every group of bars corresponds to a one-day

trace from one of the VMs. These VMs exhibit diverse IO characteristics in terms of

intensity and read/write ratio. As Cloud VPS is an IaaS provider, the guest systems

of the VMs are owned by the users and their behaviors can be only observed from

outside of the VMs.
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Figure 2.2: FIU Web server IO patterns
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Figure 2.3: FIU Moodle server IO patterns

2.3.4 Experimental Testbed

To obtain IO performance metrics such as latency and throughput of flash caching,

the collected traces were replayed on a real iSCSI-based storage system. One node
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Figure 2.4: FIU Buffalo file server IO patterns
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Figure 2.5: FIU Bear file server IO patterns

from a compute cluster is set up as the storage server (iSCSI target) and the others

as the clients (iSCSI initiators). Each node has two six-core 2.4GHz Opteron CPUs,

32GB of RAM, and one 500GB 7.2K RPM SAS disk, running 3.2.20 Linux-kernel

in a Debian 6.0 OS. Each client node in addition is equipped with dm-cache and

flash devices to provide caching. The server node runs iSCSI server to export the

LVs stored on its SAS disk to the clients via a Gigabit Ethernet.

The performance of flash devices varies across different interfaces, vendors, and

models. In this study, we consider two representative devices from major vendors

and with different interfaces: a 120GB MLC SATA-interfaced flash device from Intel

(Model: Intel C2CW120A3) and a 240GB MLC PCIe interfaced flash device from

OCZ.
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Figure 2.6: Cloud VPS VM IO patterns

Workload SATA-SSD PCIe-SSD
type (ms) (ms)

Sequential read 0.14 0.23
Sequential write 0.07 0.03
Sequential read/write 0.08 0.16
Random read 0.18 0.23
Random write 0.07 0.04
Random read/write 0.10 0.19

Table 2.2: Raw Flash Latencies

2.4 Cacheability Analysis

We start our study with a basic cacheability analysis by analyzing the working

set size (WSS) of our collected cloud traces. Because a cache’s performance for a

given workload is largely determined by how well the cache can store the workload’s

working set, we try to understand whether the capacity of commodity flash devices

is sufficient with respect to the working set size of a typical cloud workload. In

the analysis below, we consider using the write-back caching policy and LRU-based

cache replacement.

Table 3.1 lists the total WSS, i.e., the total number of unique block references,

across the entire duration of every cloud trace. For the Web server, Moodle, and

CloudVPS traces, their WSSes can be well stored by a typical commodity flash

device. While the WSSes of the buffalo and bear file server traces are much larger,
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they can also be completely stored in a high-end flash device. However, in a cloud

environment, the limited cache capacity has to be shared by many VMs hosted on the

same client. Each VM only gets a portion of the flash cache, which is most unlikely

to be sufficient for the total WSSes observed from these traces. Nonetheless, it is also

unnecessary to keep the working set of an entire workload which lasts up to 9 months

for the above traces, in the cache. If the cache can hold the working set observed at

a smaller timer scale, say weeks, then it can still achieve good performance most of

the time, except for when the workload transits from one working set to another.

Figure 2.7 shows the WSS calculated per week (Weekly WSS ) and the WSS

calculated from the start of the trace (Total WSS ) as they vary over time for the

Web and Moodle server traces. The results show that the weekly WSS of the Web

server workload is quite stable and stays below 20GB most of the time, although

the entire WSS for 9 months can grow to 110GB. The weekly WSS of the Moodle

server workload fluctuates over time but in average it is 100GB, which is less than

half of the total WSS at the end of the 5-month trace.

Finally, to illustrate the potential cache performance with different cache sizes,

we extract one-month-long segments of the Web server trace that exhibit different

WSS, and show how well the cache performs in terms of hit rate in Figure 2.8. In

general, the cache hit rate is well above 50% and exceeds 90% in many cases.

The above analysis reveals that the working sets of typical cloud workloads can

be well cached in commodity flash devices, thereby verifying the feasibility of using

flash devices as caches in cloud systems. Given the workloads that a VM host need

to serve, the above analysis can also help determine the appropriate size of the flash

cache. However, for unknown workloads, their WSSes have be estimated online,

which will be studied in our future work.
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Figure 2.7: Working set size (WSS) variations over time

2.5 Cache Overhead

To further investigate the feasibility of flash-based caching, we analyze its worst-

case overhead using dm-cache. Cache overhead is directly associated with cache

management operations including lookup, insertion, invalidation, and update. This

overhead needs to be small, especially considering the fast speed of flash storage

which can make any software-introduced overhead appear significant in the overall

IO latency. We compare the IO latencies from when flash caching is not used to

when it is used but with a cold cache, in order to evaluate the overhead of cache

lookup and insertion. We compare the IO latencies from raw flash device (without

using dm-cache) to the latencies from warm flash cache (using dm-cache) to evaluate

the overhead of cache lookup and invalidation/update.

We use fio [fio] to create basic read and write intensive workloads of sequential

and random patterns. These workloads are issued to the raw storage device using
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Figure 2.8: Cache hit rate given different cache Size and WSS

direct IOs so that any potential optimization done by the file system and memory

cache is bypassed in this performance analysis. Each workload exercises 1GB of

data and is repeated four times. We consider three caching policies as defined

below, which mainly differ in how they handle a write to the cache.

• Write-invalidate (WI): The write invalidates the cached block and is submitted

to the storage server.

• Write-through (WT): The write updates both the cache and the storage server.

• Write-back (WB): The write is stored in the cache immediately but is submit-

ted to the storage server later. Before the storage server gets the write, the

block is locally modified in the cache and considered dirty.

The write-through and write-back polices are well studied in the processor cache

related literature [HP06], which provide a tradeoff between data coherence and per-

formance. The write-invalidate policy sounds contrived, but it simplifies the han-
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dling of writes. There are also some variations in implementing the write-through

and write-back policies. For write-through, the IO experiences a write stall if it

waits for the write to complete in both the cache and back-end storage [HP06]. A

common optimization is to allow the IO to be returned to the upper storage layer

once it is stored in the cache, which allows the application to continue while the

back-end storage is being updated. The dm-cache implementation adopts this opti-

mization. For the write-back policy, a dirty block is written to the back-end storage

when it is replaced. As an optimization for better data reliability, dm-cache also

supports the automatic flushing of dirty blocks periodically or when the percentage

of dirty blocks exceeds a threshold (similarly to the Linux pdflush policy) as well as

manual flushing through a IOCTL signal.
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Figure 2.9: Dm-cache latency for read workloads
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Figure 2.10: Dm-cache latency for write workloads
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For a read workload (Figure 2.9), the average latency is around 0.3ms when there

is no cache employed. When the SATA-flash cache is used the results show a small

overhead of less than 0.023ms when the cache is cold, and for the PCI-e flash cache

this overhead is less than 9µs. This overhead is mainly from looking up the requested

block and finding the replacement block. Both operations are fast because dm-cache

employs a radix tree for cache lookup which has a time complexity of O

log n


where

n is the maximum number of blocks in the the cache, and it maintains a linked-

list-based LRU list for replacement. Once the requested block is fetched from the

server, it is immediately returned to the upper layer in the IO stack while being

stored into cache. When the cache is warm, the average latency drops to 0.107ms

for the SATA flash cache and 0.23ms for the PCI-e flash cache, both of which match

the raw flash read latencies (¡0.01ms slowdown) and are substantially faster than

reading from the remote HDD.

For a sequential write workload (Figure 2.10), the average latency is around

0.4ms when flash cache is not used. When write-invalidate caching is used, the

latencies are the same as when there is no cache since all the writes still need

to be serviced by the remote server. When write-through or write-back caching

is used, the latencies drop drastically, 0.06ms for the SATA flash and 0.05ms for

the PCIe flash, because writes can be returned once they are stored by the flash

cache. Their performance matches the raw device latencies with negligible difference

(¡0.008ms slowdown) because the overhead introduced by cache lookup and finding

the replacement block is small. For a random write workload (Figure 2.10), the

latency difference between write-through/write-back and no-cache/write-invalidate

is even more drastic, because the HDD-based back-end performs much worse for

random writes than sequential writes while the flash’s performance remains almost

the same.
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In summary, the above results confirm that the overhead introduced by dm-

cache is small and insignificant even compared to the raw latencies of flash devices,

thereby further verifying the feasibility of flash-based caching with software-based

cache management.

2.6 Latency Analysis

With the understanding of how different cache policies affect hit rate, we further

study their impact on actual IO performance by analysing the IO latencies from

caching different type of workloads. We use benchmarks to produce specific patterns

of workloads and real trace to analyze IO performance of real-world workloads.

2.6.1 FIO Benchmark

Flexible IO (fio) is a versatile IO workload generator [fio]. It is used to create

read and write intensive workloads of sequential and random patterns. Workloads

are issued the raw storage device using direct IOs so that the impacts of file sys-

tem and memory cache are avoided in this performance analysis. Each workload

exercises 1GB of data and is repeated four times. We study the IO latencies for

each workload using three different cache policies (write-through, write-allocate,

and write-back)compared to the scenario where flash cache is not employed.

For a sequential read workload (Figure 2.11), the average latency is around 0.3

ms when there is no cache employed. When the SATA-flash cache is used, the results

show a small overhead of less than 0.05 ms during the warm up time. Once the cache

is warm, the average latency drops to 0.05 ms for the SATA flash cache and 0.23 ms

for the PCIe flash cache, which match the raw flash read latency. For a sequential
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Figure 2.11: Sequential Reads

write workload (Figure 2.12), the average latency is around 0.4 ms when flash cache

is not used. When write-through caching is used, the latencies are the same as when

there is no cache since all the writes still need to be serviced by the remote server.

When write-back or write-allocate caching is used, the latencies drop drastically,

0.06 ms for the SATA flash and 0.05 ms for the PCIe flash, because writes can be

returned once they are serviced by the flash cache.

For a sequential read/write workload (Figure 2.13), the average latency is similar

as sequential write when flash cache is not used, because the writes are scheduled to-

gether with reads causing less prefetching/batching for reads. When write-through

caching is used latencies drops a little after cache is warm since all reads are ser-

24



0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

 0  1  2  3  4  5  6  7  8A
ve

ra
ge

 L
at

en
cy

 (
m

s)
Time (min)

No Cache
Write-Through

Write-Back
Write-Allocate

0.00
0.03
0.06
0.09

 0  0.5  1  1.5

(a) SATA SSD cache

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

 0  1  2  3  4  5  6A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Time (min)

No Cache
Write-Through

Write-Back
Write-Allocate

0.00
0.03
0.06
0.09

 0  0.3  0.6  0.9  1.2

(b) PCI SSD cache

Figure 2.12: Sequential Writes

viced from cache. When write-back or write-allocate caching is used latencies drop

substantially to 0.2 ms during warm up for SATA and PCIe flash, once the cache is

warm we can see average latencies of 0.09 ms for SATA flash and 0.17 ms for PCIe,

which reflect the raw flash latencies on both flash devices.

For a random read workload (Figure 2.14(a) ), the average latency is similar

as sequential reads, because the IOs are re-schedule before being dispatched to

iSCSI server resulting sequential workload at the server side. For a random write

workload (Figure 2.15), the latency difference between write-back/write-allocate

and no-cache/write-through is even more drastic, because the HDD-based backend

performs much worse for random writes than sequential writes.
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Figure 2.13: Sequential Reads-Writes

For a random read/write workload (Figure 2.16), the average latency is around

1.2 ms when flash cached is not used. When write-through caching is used, the

latencies are the same as when there is no cache since all IOs still need to be serviced

by remote server. When write-back caching is used, the latencies drops drastically

even at warm up since remote server only serve reads while writes are serviced from

cache, once the cache is warm all IOS are serviced from cache generating 0.05 ms

average latency. Finally when write-allocate caching is used, the latencies during

warm up remain the same as when there is no cache involved, since read & writes

are being forwarded to remote server, after warm-up average latencies are 0.05 ms.
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Figure 2.14: Random Reads

2.7 Write Policy Analysis

As shown in Section 2.3.3, a cloud workload can have a substantial amount of writes.

This observation is also confirmed by related work [LPGM08, NDR08], which can be

attributed to the fact that modern computer systems are getting larger memories

which can cache reads in memory but do not buffer writes for too long due to

durability concerns. Therefore, the choice of a write caching policy is important and

it has implications on both performance and data durability. This section studies

the impact of different write cache policies, where we use dm-cache-sim to study the

impact on cache hit rate using long-term traces and use dm-cache to evaluate the

impact on IO performance using real experiments driven by shorter traces.
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Figure 2.15: Random Writes

2.7.1 IO Latency

The various write caching policies impact IO latencies differently. If there is enough

locality in writes, a policy that retains writes in cache (i.e., write-through or write-

back) can speed up the IOs including both reads and writes that hit the cached

blocks, compared to another policy that does not retain writes (i.e., write-invalidate).

Otherwise, the limited cache capacity can be wasted which slows down the IOs that

experience conflict misses. Comparing write-through policy to write-back policy,

they exhibit the same behavior in terms of the cache hit rates but not necessarily

the IO performance. Although writes can be returned as soon as they are stored

in cache in both policies, the IOs that have to be serviced by the server experience
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Figure 2.16: Random Reads-Writes

different latencies. With the write-through policy, all the writes have to be sent to

the server right away, while with the write-back policy, writes can be delayed and

the following writes that hit the cached dirty data can be absorbed completely by

the cache. Therefore, the server experiences a higher load under the write-through

policy which in turn affects the performance of the clients. This difference can be

significant in a highly consolidated environment such as a cloud system.

In order to evaluate the performance impact of different write caching policies,

we consider two real workloads taken from the Web server and the Moodle server

traces described in Section 2.3.3, which are relatively more write-intensive and read-

intensive respectively. One typical day of workload was extracted from each trace
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Figure 2.18: Performance of a write-Intensive workload using different write caching
policies

and replayed using btreplay at a 20-fold speedup in the environment specified in

Section 2.3.4. While the accelerated replay makes the replayed workload more in-

tensive than the original one, it is still a reasonable setup because, 1) on a typical

cloud VM host there can be well above 20 VMs running concurrently; 2) the original

trace would have also been more intensive on its own if there was a flash caching

deployed to speed up its IOs.
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Read-intensive Trace

First, we replayed a one-day read-intensive workload extracted from the Moodle

server trace, which has a 20GB total working set size and consists of 65% reads and

35% writes. Figure 2.17 shows the average IO latencies measured every 20 minutes

during the experiment using dm-cache with different write policies. The latencies

from native iSCSI without dm-cache are also provided as a reference.

Initially, it takes around 5 hours to warm up the cache, during which the different

write policies offer similar performance in term of latency because the performance is

dominated by reads that miss the cache and have to be serviced by the server. Note

that the No Cache case also exhibits a warm-up phase, although it does not employ

a client-side flash cache, because the memory caches involved in this distributed

storage system also need to be warmed up initially.

During the rest of the experiment, as the flash cache is warmed up to serve

the reads, the difference in the write policy shows up where the write-back policy

consistently outperforms the other policies. The IO latencies from both write-back

and write-through policies are lower than write-invalidate by 58ms and 23ms in

average respectively, because writes can be returned immediately after they are

stored in cache. However, because the write-through policy still submits all writes

to server, it slows down the read misses that have to be serviced by the server,

although the latencies of writes are hidden to the client. Hence, the IO latencies

from the write-through policy are higher than the write-back policy by 35ms (247%)

in average.

Write-intensive Trace

The second experiment considers a one-day write-intensive workload extracted from

the Web server trace, which has a total of 10GB WSS and consists of 15% read and
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85%writes. We expect to see a larger performance difference among the different

write caching policies compared to the above read-intensive trace.

Figure 2.18(a) shows the IO latencies measured every 20 minutes during the trace

replay. For the No Cache and Write Invalidate cases, it also takes around 5 hours to

warm up the caches. In contrast, the Write Through and Write Back cases do not

exhibit a warm-up phase, because most of the IOs in this write-intensive workload

can be directly serviced from the flash cache. The Write Back and Write Through

policies present latencies lower that the case of Write Invalidate by 19ms and 3ms

respectively. More importantly, throughout the experiment, theWrite Back policy’s

IO latencies are lower than the Write Through policy by 3.5ms (230%) in average,

mostly because it effectively reduces the server IO load and allows the IOs that have

be serviced by the server to complete faster.

In order to evaluate the different write caching policies in a highly consolidated

cloud environment, we employ three storage clients that share the same storage

server in the next experiment, where each client replays a different day of the write-

intensive Web server trace. In this more typical scenario, we can appreciate the

substantial improvement made by the write-back caching: it’s IO latencies are lower

than the write-through caching by 67ms (5991%) in average. In fact, the perfor-

mance of write-through caching is slowed down to the same level of the much simpler

write-invalidate caching, with only 17ms improvement.

2.7.2 Server Load

As shown in the above experimental results, the write caching policies do exhibit

evident differences in their impacts to a workload’s IO performance. In particular,

the difference between write-through and write-back can be significant. Although
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both can hide the latency for writes, the difference in server IO load does impact the

client-side performance substantially. As a further validation of these observations,

we extend this write policy analysis to the entire traces using the dm-cache-sim

simulator. However, instead of collecting hit rates, which are always the same

between write-through and write-back, we collect the number of IO requests that

are serviced by the server, which is the server IO load during these long-term traces.
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Figure 2.19: Server IO load for Web server trace
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Figure 2.20: Server IO load for Moodle server trace

Figures 2.19-2.22 illustrate how the server load varies over the entire duration of

the four FIU traces. All of them show that the write-back policy always results in

substantially lower server load than the write-through policy. The largest improve-

ment is from the Bear file server trace (Figure 2.22), which shows a 94% reduction

on IO load. The smallest improvement is from the Buffalo file server trace (Figure

2.21), which shows a 52% reduction on IO load.
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Figure 2.21: Server IO load for Buffalo server trace
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Figure 2.22: Server IO load for Bear server trace

Figure 2.23 shows the IO load on the storage server for the Cloud VPS traces,

where each trace is replayed separately. In general we can see that the write-back

policy still achieves the lowest IO load on the server, and the reduction varies from

21% to 83% compared to the write-through policy.

2.8 Persistency Analysis

2.8.1 Persistency Overhead

With the understanding of the impact on hit rate and IO latency of the different

cache policies, we want to further analyze the overhead associated with making

the cache persistent—although cached data blocks are always persistently stored on

flash, the metadata of these blocks, including the source-to-cache address mappings
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Figure 2.23: Server IO load for CloudVPS traces

and valid and dirty bits, also need to be considered in terms of their persistency.

Storing the metadata persistently on flash allows the cached data to be reused

after the storage client reboots, but it incurs more overhead. Moreover, if the

write-back policy is used, the metadata of dirty blocks must be stored persistently;

otherwise, these locally modified data will be lost after a reboot. Note that even

if the storage client is completely lost, a persistent flash cache can be physically

moved to a different client to reuse or recover the cached data. Based on the above

considerations, we study two different persistency configurations for a flash cache.

• All-persistent : The metadata of all cached blocks are persistently stored on

the flash.

• Write-back-persistent : The metadata of only the dirty cache blocks are per-

sistently stored on the flash.

To make a flash cache persistent, metadata updates need to be committed to

the cache upon cache insertions, replacements, and invalidations. Our current im-

plementation for making dm-cache persistent is quite straightforward. A metadata

update is written to the flash at the same time of the corresponding cache insertion

or replacement (but cache invalidations require only metadata updates and no data

updates). The data and metadata updates are issued in parallel and the original
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IO request received by dm-cache is returned only when both are committed to the

cache. The IO latency is hence determined by the slower one between the data and

metadata updates. Although flash devices typically have good internal parallelism

to handle concurrent IOs, additional writes introduced by the metadata updates

may degrade the performance of flash caching because writes tend to be slower than

reads and get amplified due to the need of garbage collection.

More efficient handling of metadata update is possible but not trivial. For exam-

ple, it is possible to combine the data and metadata updates in a single write, but

the metadata is typically small and requires the update on a partial page. Related

work [SSZ12] proposed to store the metadata in the out-of-band (OOB) area of a

flash page on the device, but it requires changing the device’s FTL and occupies

the limited OOB area which is commonly used for important error correction. In

addition to the potential slowdown, storing metadata in flash cache also reduces the

size available for data caching; in our experiments, using a 120GB flash device total

size, 1GB of the flash capacity needs to be reserved for metadata storage.

Figure 2.8.1 shows the IO latencies for various persistency configurations when

handling a random read/write (50% reads and 50% writes) workload of different

sizes generated by the fio benchmark. The write-back policy is used for both persis-

tency configurations. When the workload is small (4GB random reads/writes with

1GB of WSS), the overhead of persistency is small (around 0.03ms); but when the

workload is larger (10GB random reads/writes with 5GB of WSS), the overhead

grows to 0.06ms (101.8%) as the addition metadata updates slow down the other

cache accesses.
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Figure 2.24: Persistency overhead with fio

2.8.2 Persistency Benefits

Having a persistent cache allows the client to continue with a warm cache after it

reboots or recover from a crash. In contrast, with a non-persistent cache, the client

has to flush all the cached data after it comes back and warms up the cache from

scratch, which may lead to substantial compulsory misses. We study this perfor-

mance improvement from a persistent cache by analyzing the cache hit rate from

the two different configurations, all-persistent and write-back-persistent using dm-

cache-sim, while considering different reboot/crash frequencies (daily and hourly).

Figure 2.25(a) shows the results from a workload extracted from the Web server

trace, assuming the client reboots or recovers upon the start of every day in the

experiment. The results show that upon every reboot/recovery, the write-back-

persistent configuration has to warm up the cache again, which in average takes 5

hours, whereas the all-persistent configuration always enjoys a warm cache despite
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Figure 2.25: Cache hit rate changes over time with different persistency configura-
tions

of the reboots or crashes. In average, the hit rate of all-persistent configuration

is higher than the write-back-persistent configuration by 7.97% in this experiment.

Note that the hit rate drops in the middle of day which happens to both configura-

tions and is caused by the change of data locality.

Figure 2.25(b) shows the results from a workload extracted from the Moodle

server trace, assuming the client reboots or recovers upon the start of every 5th hour

in the experiment. For this workload, using the write-back-persistent configuration,

it takes in average 3 hours to warm up the cache again after a reboot/crash, and as

a result the hit rate is lower by 27.66% than the all-persistent configuration which

has a warm cache persisting across reboots/crashes.

The above cost and benefit analysis shows a clear tradeoff. Making a flash cache

entirely persistent slows down IO latencies during normal operations but improves

hit rates after client reboots. This decision should be made based on the expected
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Figure 2.26: Overhead of cache-optimized RAID

client failure rate for a given cloud system.

2.9 Reliability

While the persistent flash cache discussed in the previous section allows the cache

to tolerate client restarts and crashes, it does not protect data against flash device

failures, including memory cell failures that cannot be masked by the device con-

troller and catastrophic whole-device or whole-chip failures. This concern for data

reliability is the reason why flash caching is commonly used in write-through mode,

by submitting writes to the storage server while caching them on the flash device,

instead of the write-back mode in which writes are delayed in cache without imme-

diately submitted to server. However, as shown in Section 2.7, write-back caching

can substantially improve the storage client’s performance and reduce the storage

server’s load. This conflicts presents a challenge to the effective use of flash caching.

RAID is a classic technique used to tolerate catastrophic failures for hard-disk

storage, and has been recently studied for flash storage [JMBR11, BKPM10]. How-

ever, compared to the level of RAID extensively employed on the storage server, the

use of RAID for flash caching faces two major limitations. First, the cost of using

RAID for a flash cache is substantially more expensive than the cost on the storage
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Figure 2.27: Performance of different reliability configurations

server. Following the general principle of forming an effective storage hierarchy,

for a storage layer to be fast enough as a cache for the underlying layer, it has to

use a technology that is typically much more expensive in terms of per unit size

cost. Second, using RAID to improve the reliability for a flash cache is at conflict

with the other objectives, particularly performance—more redundancy leads to less

capacity for storing data localities, and endurance—more redundancy also leads to

more wear-out to the flash of the same size.

To address the above limitations, we propose a new cache-optimized RAID tech-

nique by exploiting different levels of reliability needs for clean data and dirty data

to improve cache utilization and reduce its cost. On one hand, clean data in the

cache do not require extra redundancy, and their flash pages can employ RAID-0

across the participating flash devices to provide only performance improvement via

striping. On the other hand, dirty data in the cache must be provided the same

level of reliability as the primary storage, so they will employ higher levels of RAID

to tolerate different types of failures. In this way, the cost of using RAID to provide

fault tolerance can be minimized by introducing only the necessary redundancy into
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a flash cache, and this approach has the potential to make a write-back cache reli-

able and affordable. For the same reason, the adversary impact of using RAID to

cache performance and wear-out can also be minimized. Furthermore, the tradeoff

between these conflicting objectives can be flexibly adjusted by tuning the amount

of dirty data kept in cache.

We have implemented this cache-optimized RAID technique in dm-cache. In

this implementation, reads are striped among the flash devices in a RAID-0 fashion

for performance improvement while writes are replicated among the devices in a

RAID-1 fashion for reliability improvement. For replacement, a read replaces the

LRU block considering all devices in the RAID group, a write is replicated across

the devices using the LRU block on each device.

The rest of this section evaluates our proposed cache-optimized RAID tech-

nique. First we study the overhead by comparing the cache-optimized RAID with

a vanilla write-back cache layered on top native Linux RAID-0 (Write-back RAID-

0 ). Because the Write-back RAID-0 does not provide any data redundancy, this

experiment evaluates the overhead incurred by replicating the dirty cached blocks

in our cache-optimized RAID. We employed two identical flash devices on the client

for the RAID configurations and used fio to generate different workload patterns

for the experiment. The results in Figure 2.26 show that this overhead is small (less

than 9.1µs (9%) increase in IO latency).

We further analyze the performance of the cache-optimized RAID for real-world

workloads and compare it to the alternative options that also provide data reliabil-

ity, including write-through caching on top of native Linux RAID-0 (Write-through

RAID-0 ) and write-back caching on native RAID-1 (Write-back RAID-1 ). We con-

sider the same two workloads used in Section 2.7.1, one read-intensive from the

Moodle server trace and the other write-intensive from the Web server trace. Fig-
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ure 2.27(a) shows the IO latencies for the read-intensive workload. In average, the

cache-optimized RAID configuration’s latencies are lower than the Write-through

RAID-0 and Write-back RAID-1 configurations by 63ms (26%) and 172ms (72%)

respectively. Because of the slower performance of the write-back RAID-1, from

replicating every block and half-reduced capacity, its warm-up time is also stretched

longer than the other two configurations. Figure 2.27(b) shows the latencies for the

write-intensive workload, where the cache-optimized RAID configuration’s latencies

are again lower than Write-through RAID-0 and Write-back RAID-1 by 1.97ms

(135%) and 0.23ms (23%) in average, respectively.

2.10 Summary

This chapter provides answers to several key questions that determine how to ef-

fectively use flash caching in cloud systems. How to size the flash caches? A good

cache size should be able to hold the WSS of a given workload, and we analyzed

a set of representative traces to understand the typical WSSes of cloud workloads.

How to choose the write caching polices? There is always trade-off among different

policies in term of performance, reliability, and consistency. Different from the con-

clusion from related work, our results show that write-back caching can substantially

outperform write-through caching due to the reduction of server IO load. Is it nec-

essary to make a flash cache persistent across client restarts and crashes? Making

a flash cache persistent across client restarts incurs small overhead, but it can save

the cache warm-up phase which typically lasts hours according to our analysis. How

to improve the reliability of a flash cache so as to tolerate device-level failures? To

address the reliability issue of write-back caching, we propose a new cache-optimized

data redundancy (RAID) technique which minimizes the RAID overhead by intro-
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ducing redundancy to only cache dirty data and shows to be significantly faster than

traditional RAID and write-through caching.

We have collected large amounts of traces from both production public and

private clouds. To effective analyze these traces and understand the impacts of

various key caching policies and cache allocation approaches, we have developed a

user-space cache simulator. Finally, we have also implemented these techniques in a

real cloud caching framework, dm-cache. The results confirm that cloud computing

systems are a good target for flash caching, but the locality in writes must be

effectively utilized. The results also show that the working-set sizes of real cloud

workloads can be accurately predicted online and used to guide efficient dynamical

cache allocation.
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CHAPTER 3

On-demand Space Allocation

3.1 Introduction

Host-side flash caching employs flash-memory-based storage on a virtual machine

(VM) host as the cache for its remote storage to exploit the data access local-

ity and improve the VM performance. It has received much attention in recent

years [BLM+12, ioC, HAWS13, AZ14], which can be attributed to two important

reasons. First, as the level of consolidation continues to grow in cloud computing sys-

tems, the scalability of shared VM storage servers becomes a serious issue. Second,

the emergence of flash-memory-based storage has made flash caching a promising

option to address this IO scalability issue, because accessing a local flash cache is

substantially faster than accessing the remote storage across the network.

However, due to the capacity and cost constraints of flash devices, the amount

of flash cache that can be employed on a host is much limited compared to the

dataset sizes of the VMs, particularly considering the increasing data intensity of

the workloads and increasing number of workloads consolidated to the host via vir-

tualization. Therefore, to fulfill the potential of flash caching, it is important to

allocate the shared cache capacity among the competing VMs according to their

actual demands. Moreover, flash devices wear out by writes and face serious en-

durance issues, which are in fact aggravated by the use for caching because both

the writes inherent in the workload and the reads that miss the cache induce wear-

out [YPGT13, HWC+13]. Therefore, the cache management also needs to be careful
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not to admit data that are not useful to workload performance and only damage

the endurance.

We propose CloudCache to address the above issues in flash caching through

on-demand cache management. Specifically, it answers this challenging question,

how to allocate a flash cache to VMs according to their cache demands? Flash

cache workloads depend heavily on the dynamics in the upper layers of the IO

stack and are often unfeasible to profile offline. The classic working set model

studied for processor and memory cache management can be applied online, but

it does not consider the reuse behavior of accesses and may admit data that are

detrimental to performance and endurance. To address this challenge, we propose

a new cache demand model, Reuse Working Set (RWS), to capture the data that

have good temporal locality and are essential to the workload’s cache hit ratio,

and use the RWS size (RWSS ), to represent the workload’s cache demand. Based

on this model, we further use prediction methods to estimate a workload’s cache

demand online and use new cache admission policies to admit only the RWS into

cache, thereby delivering a good performance to the workload while minimizing the

wear-out. CloudCache is then able to allocate the shared cache capacity to the VMs

according to their actual cache demands.

We provide a practical implementation of CloudCache based on block-level vir-

tualization [HZ06]. It can be seamlessly deployed onto existing cloud systems as

a drop-in solution and transparently provide caching and on-demand cache man-

agement. We evaluate it using a set of long-term traces collected from real-world

cloud systems [AZ14]. The results show that RWSS-based cache allocation can sub-

stantially reduce cache usage and wear-out at the cost of only small performance

loss in the worst case. Compared to the WSS-based cache allocation, the RWSS-

based method reduces a workload’s cache usage by up to 76%, lowers the amount
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of writes sent to cache device by up to 37%, while delivering the same IO latency

performance. Compared to the case where the VM can use the entire cache, the

RWSS-based method saves even more cache usage while delivering an IO latency

that is only 1% slower at most.

To the best of our knowledge, CloudCache is the first to propose the RWSS model

for capturing a workload’s cache demand from the data with good locality and for

guiding the flash cache allocation to achieve both good performance and endurance.

While the discussion in the chapter focuses on flash-memory-based caches, we believe

that the general CloudCache approach is also applicable to new nonvolatile memory

(NVM) technologies (e.g., PCM, 3D Xpoint) which will likely be used as a cache

layer, instead of replacing DRAM, in the storage hierarchy and will still need on-

demand cache allocation to address its limited capacity (similarly to or less than

flash) and endurance (maybe less severe than flash).

The rest of the chapter is organized as follows: Section 3.2 and Section 3.3

present the motivations and architecture of CloudCache, and Section 3.4 describe

the on-demand cache allocation including evaluation results.

3.2 Motivations

The emergence of flash-memory-based storage has greatly catalyzed the adoption

of a new flash-based caching layer between DRAM-based main memory and HDD-

based primary storage [BLM+12, ioC, AZ14, MZM+14]. It has the potential to

solve the severe scalability issue that highly consolidated systems such as public

and private cloud computing systems are facing. These systems often use shared

network storage [KHSB02, nbd] to store VM images for the distributed VM hosts,

in order to improve resource utilization and facilitate VM management (including
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live VM migration [CFH+05, NLH05]). The availability of a flash cache on a VM

host can accelerate the VM data accesses using data cached on the local flash device,

which are much faster than accessing the hard-disk-based storage across network.

Even with the increasing adoption of flash devices as primary storage, the diversity

of flash technologies allows the use of a faster and smaller flash device (e.g., single-

level cell flash) as the cache for a slower but larger flash device (e.g., multi-level cell

flash) used as primary storage.

To fulfill the potential of flash caching, it is crucial to employ on-demand cache

management, i.e., allocating shared cache capacity among competing workloads

based on their demands. The capacity of a commodity flash device is typically

much smaller than the dataset size of the VMs on a single host. How the VMs

share the limited cache capacity is critical to not only their performance but also

the flash device endurance. On one hand, if a workload’s necessary data cannot

be effectively cached, it experiences orders of magnitude higher latency to fetch the

missed data from the storage server and at the same time slows down the server from

servicing the other workloads. On the other hand, if a workload occupies the cache

with unnecessary data, it wastes the valuable cache capacity and compromises other

workloads that need the space. Unlike in CPU allocation where a workload cannot

use more than it needs, an active cache workload can occupy all the allocated space

beyond its actual demand, thereby hurting both the performance of other workloads

and the endurance of flash device.

S-CAVE [LML+13] and vCacheShare [MZM+14] studied how to optimize flash

cache allocation according to a certain criteria (e.g., a utility function), but they

cannot estimate the workloads’ actual cache demands and thus cannot meet such de-

mands for meeting their desired performance. HEC [YPGT13] and LARC [HWC+13]

studied cache admission policies to reduce the wear-out damage caused by data
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Figure 3.1: Architecture of CloudCache

with weak temporal locality, but they did not address the cache allocation problem.

Bhagwat et al. studied how to allow a migrated VM to access the cache on its

previous host [BPO+15], but they did not consider the performance impact to the

VMs. There are related works studying other orthogonal aspects of flash caching,

including write policies [KMR+13], deduplication/compression [LSD+14], and other

design issues [HAWS13, AZ14].

3.3 Architecture

CloudCache supports on-demand cache management based on a typical flash caching

architecture illustrated in Figure 3.1. The VM hosts share a network storage for

storing the VM disks, accessed through SAN or IP SAN [KHSB02, nbd]. Every

host employs a flash cache, shared by the local VMs, and every VM’s access to its

remote disk goes through this cache. CloudCache provides on-demand allocation of

a flash cache to its local VMs and dynamic VM and cache migration across hosts

to meet the cache demands of the VMs. Although our discussions in this chapter
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focus on block-level VM storage and caching, our approaches also work for network

file system based VM storage, where CloudCache will manage the allocation and

migration for caching a VM disk file in the same fashion as caching a VM’s block

device. A VM disk is rarely write-shared by multiple hosts, but if it does happen,

CloudCache needs to employ a cache consistency protocol [NWO88], which is beyond

the scope of this chapter.

CloudCache supports different write caching policies: (1) Write-invalidate: The

write invalidates the cached block and is submitted to the storage server; (2) Write-

through: The write updates both the cache and the storage server; (3) Write-back :

The write is stored in the cache immediately but is submitted to the storage server

later when it is evicted or when the total amount of dirty data in the cache exceeds a

predefined threshold. The write-invalidate policy performs poorly for write-intensive

workloads. The write-through policy’s performance is close to write-back when the

write is submitted to the storage server asynchronously and the server’s load is

light [HAWS13]; otherwise, it can be substantially worse than the write-back pol-

icy [AZ14]. Our proposed approaches work for all these policies, but our discussions

focus on the write-back policy due to limited space for our presentation. The relia-

bility and consistency of delayed writes in write-back caching are orthogonal issues

to this chapter’s focus, and CloudCache can leverage the existing solutions (e.g.,

[KMR+13]) to address them.

In the next few sections, we introduce the two components of CloudCache, on-

demand cache allocation and dynamic cache migration. As we describe the designs,

we will also present experimental results as supporting evidence. We consider a

set of block-level IO traces [AZ14] collected from a departmental private cloud as

representative workloads. The characteristics of the traces are summarized in Ta-

ble 3.1. These traces allow us to study long-term cache behavior, in addition to the
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Trace Time (days) Total IO (GB) WSS (GB) Write (%)

Webserver 281 2,247 110 51
Moodle 161 17,364 223 13
Fileserver 152 57,887 1037 22

Table 3.1: Trace statistics

commonly used traces [msr] which are only week-long.

3.4 On-demand Cache Allocation

CloudCache addresses two key questions about on-demand cache allocation. First,

how to model the cache demand of a workload? A cloud workload includes IOs

with different levels of temporal locality which affect the cache hit ratio differently.

A good cache demand model should be able to capture the IOs that are truly

important to the workload’s performance in order to maximize the performance

while minimizing cache utilization and flash wear-out. Second, how to use the cache

demand model to allocate cache and admit data into cache? We need to predict the

workload’s cache demand accurately online in order to guide cache allocation, and

admit only the useful data into cache so that the allocation does not get overflown.

In this section, we present the CloudCache’s solutions to these two questions.

3.4.1 RWS-based Cache Demand Model

Working Set (WS) is a classic model often used to estimate the cache demand of

a workload. The working set WS(t, T ) at time t is defined as the set of distinct

(address-wise) data blocks referenced by the workload during a time interval [t −

T, t] [Den68]. This definition uses the principle of locality to form an estimate of the
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set of blocks that the workload will access next and should be kept in the cache. The

Working Set Size (WSS) can be used to estimate the cache demand of the workload.

Although it is straightforward to use WSS to estimate a VM’s flash cache de-

mand, a serious limitation of this approach is that it does not differentiate the level

of temporal locality of the data in the WS. Unfortunately, data with weak temporal

locality, e.g., long bursts of sequential accesses, are abundant at the flash cache layer,

as they can be found in many types of cloud workloads, e.g., when the guest system

in a VM performs a weekly backup operation. Caching these data is of little benefit

to the application’s performance, since their next reuses are too far into the future.

Allowing these data to be cached is in fact detrimental to the cache performance, as

they evict data blocks that have better temporal locality and are more important to

the workload performance. Moreover, they cause unnecessary wear-out to the flash

device with little performance gain in return.

To address the limitation of the WS model, we propose a new cache-demand

model, Reuse Working Set, RWSN(t, T ), which is defined as the set of distinct

(address-wise) data blocks that a workload has reused at least N times during a

time interval [t − T, t]. Compared to the WS model, RWS captures only the data

blocks with a temporal locality that will benefit the workload’s cache hit ratio.

When N = 0 RWS reduces to WS. We then propose to use Reuse Working Set

Size (RWSS ) as the estimate of the workload’s cache demand. Because RWSS

disregards low-locality data, it has the potential to more accurately capture the

workload’s actual cache demand, and reduce the cache pollution and unnecessary

wear-out caused by such data references.

To confirm the effectiveness of the RWS model, we analyze the MSR Cambridge

traces [msr] with different values of N and evaluate the impact on cache hit ratio,

cache usage—the number of cached blocks vs. the number of IOs received by cache,
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Figure 3.2: RWS analysis using different values of N

and flash write ratio—the number of writes sent to cache device vs. the number

of IOs received by cache. We assume that a data block is admitted into the cache

only after it has been accessed N times, i.e., we cache only the workload’s RWSN .

Figure 3.2 shows the distribution of these metrics from the 36 MSR traces using box

plots with whiskers showing the quartiles. Increasing N from 0, when we cache the

WS, to 1, when we cache the RWS1, the median hit ratio is reduced by 8%, but the

median cache usage is reduced by 82%, and the amount of flash writes is reduced

by 19%. This trend continues as we further increase N .

These results confirm the effectiveness of using RWSS to estimate cache demand—

it is able to substantially reduce a workload’s cache usage and its induced wear-out

at a small cost of hit ratio. A system administrator can balance performance against

cache usage and endurance by choosing the appropriate N for the RWS model. In

general, N = 1 or 2 gives the best tradeoff between these objectives. (Similar obser-
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vations can be made for the traces listed in Table 3.1.) In the rest of this chapter,

we use N = 1 for RWSS-based cache allocation. Moreover, when considering a

cloud usage scenario where a shared cache cannot fit the working-sets of all the

workloads, using the RWS model to allocate cache capacity can achieve better per-

formance because it prevents the low-locality data from flushing the useful data out

of the cache.

In order to measure the RWSS of a workload, we need to determine the appro-

priate time window to observe the workload. There are two relevant questions here.

First, how to track the window? In the original definition of process WS [Den68],

the window is set with respect to the process time, i.e., the number of accesses made

by the process, instead of real time. However, it is difficult to use the number of

accesses as the window to measure a VM’s WS or RWSS at the flash cache layer,

because the VM can go idle for a long period of time and never fill up its window,

causing the previously allocated cache space to be underutilized. Therefore, we use

real-time-based window to observe a workload’s RWSS.

The second question is how to decide the size of the time window. If the window is

set too small, the observed RWS cannot capture the workload’s current locality, and

the measured RWSS underestimates the workload’s cache demand. If the window is

set too large, it may include the past localities that are not part of the workload’s

current behavior, and the overestimated RWSS will waste cache space and cause

unnecessary wear-out. Our solution to this problem is to profile the workload for

a period of time, and simulate the cache hit ratio when we allocate space to the

workload based on its RWSS measured using different sizes of windows. We then

choose the window at the “knee point” of this hit ratio vs. window size model, i.e.,

the point where the hit ratio starts to flatten out. This profiling can be performed

periodically, e.g., bi-weekly or monthly, to adjust the choice of window size online.
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Figure 3.3: Time window analysis for the Moodle trace

We present an example of estimating the window size using two weeks of the

Moodle trace. Figure 3.3 shows that the hit ratio increases rapidly as the window

size increases initially. After the 24-hour window size, it starts to flatten out, while

the observed RWSS continues to increase. Therefore, we choose between 24 to 48

hours as the window size for measuring the RWSS of this workload, because a larger

window size will not get enough gain in hit ratio to justify the further increase in

the workload’s cache usage, if we allocate the cache based on the observed RWSS.

In case of workloads for which the hit ratio keeps growing slowly with increasing

window size but without showing an obvious knee point, the window size should be

set to a small value because it will not affect the hit ratio much but can save cache

space for other workloads with clear knee points.

3.4.2 Online Cache Demand Prediction

The success of RWSS-based cache allocation also depends on whether we can accu-

rately predict the cache demand of the next time window based on the RWSS values

observed from the previous windows. To address this problem, we consider the clas-
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sic exponential smoothing and double exponential smoothing methods. The former

requires a smoothing parameter α, and the latter requires an additional trending

parameter β. The values of these parameters can have a significant impact on the

prediction accuracy. We address this issue by using the self-tuning versions of these

prediction models, which estimate these parameters based on the error between the

predicted and observed RWSS values.

To further improve the robustness of the RWSS prediction, we devise filtering

techniques which can dampen the impact of outliers in the observed RWSS values

when predicting RWSS. If the currently observed RWSS is λ times greater than the

average of the previous n observed values (including the current one), this value

is replaced with the average. For example, n is set to 20 and λ is set to 5 in our

experiments. In this way, an outlier’s impact in the prediction is mitigated.

Figure 3.4 shows an example of the RWSS prediction for three weeks of the

Webserver trace. The recurring peaks in the observed WSS in Figure 3.4(a) are

produced by a weekly backup task performed by the VM, which cause the predicted

WSS in Figure 3.4(b) to be substantially inflated. In comparison, the RWSS model

automatically filters out these backup IOs and the predicted RWSS is only 26% of

the WSS on average for the whole trace. The filtering technique further smooths out

several outliers (e.g., between Day 4 and 5) which are caused by occasional bursts

of IOs that do not reflect the general trend of the workload.

3.4.3 Cache Allocation and Admission

Based on the cache demands estimated using the RWSS model and prediction meth-

ods, the cache allocation to the concurrent VMs is adjusted accordingly at the start

of every new time window—the smallest window used to estimate the RWSS of all
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Figure 3.4: RWSS-based cache demand prediction

the VMs. The allocation of cache capacity should not incur costly data copying

or flushing. Hence, we consider replacement-time enforcement of cache allocation,

which does not physically partition the cache across VMs. Instead, it enforces logi-

cal partitioning at replacement time: a VM that has not used up its allocated share

takes its space back by replacing a block from VMs that have exceeded their shares.

Moreover, if the cache is not full, the spare capacity can be allocated to the VMs

proportionally to their predicted RWSSes or left idle to reduce wear-out.

The RWSS-based cache allocation approach also requires an RWSS-based cache

admission policy that admits only reused data blocks into the cache; otherwise, the

entire WS will be admitted into the cache space allocated based on RWSS and evict

useful data. To enforce this cache admission policy, CloudCache uses a small portion
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of the main memory as the staging area for referenced addresses, a common strategy

for implementing cache admission [YPGT13, HWC+13]. A block is admitted into

the cache only after it has been accessed N times, no matter whether they are reads

or writes. The size of the staging area is bounded and when it gets full the staged

addresses are evicted using LRU. We refer to this approach of staging only addresses

in main memory as address staging.

CloudCache also considers a data staging strategy for cache admission, which

stores both the addresses and data of candidate blocks in the staging area and

manages them using LRU. Because main memory is not persistent, so more precisely,

only the data returned by read requests are staged in memory, but for writes only

their addresses are staged. This strategy can reduce the misses for read accesses by

serving them from the staging area before they are admitted into the cache. The

tradeoff is that because a data block is much larger than an address (8B address per

4KB data), for the same staging area, data staging can track much less references

than address staging and may miss data with good temporal locality.

To address the limitations of address staging and data staging and combine

their advantages, CloudCache considers a third hybrid staging strategy in which

the staging area is divided to store addresses and data, and the address and data

partitions are managed using LRU separately. This strategy has the potential to

reduce the read misses for blocks with small reuse distances by using data staging and

admitting the blocks with relative larger reuse distances by using address staging.

3.4.4 Evaluation

The rest of this section presents an evaluation of the RWSS-based on-demand cache

allocation approach. CloudCache is created upon block-level virtualization by pro-
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viding virtual block devices to VMs and transparently caching their data accesses to

remote block devices accessed across the network (Figure 3.1). It includes a kernel

module that implements the virtual block devices, monitors VM IOs, and enforces

cache allocation and admission, and a user-space component that measures and pre-

dicts RWSS and determines the cache shares for the VMs. The kernel module stores

the recently observed IOs in a small circular buffer for the user-space component to

use, while the latter informs the former about the cache allocation decisions. The

current implementation of CloudCache is based on Linux and it can be seamlessly

deployed as a drop-in solution on Linux-based environments including VM systems

that use Linux-based IO stack [BDF+03, kvm]. We have also created a user-level

cache simulator of CloudCache to facilitate the cache hit ratio and flash write ratio

analysis, but we use only the real implementation for measuring real-time perfor-

mance.

The traces described in Section 3.3 are replayed on a real iSCSI-based storage

system. One node from a compute cluster is set up as the storage server and the

others as the clients. Each node has two six-core 2.4GHz Xeon CPUs and 24GB

of RAM. Each client node is equipped with the CloudCache modules, as part of

the Dom0 kernel, and flash devices (Intel 120GB MLC SATA-interface) to provide

caching to the hosted Xen VMs. The server node runs the IET iSCSI server to

export the logical volumes stored on a 1TB 7.2K RPM hard disk to the clients via a

Gigabit Ethernet. The clients run Xen 4.1 to host VMs, and each VM is configured

with 1 vCPU and 2GB RAM and runs kernel 2.6.32. The RWSS window size for

the Webserver, Moodle, and Fileserver traces are 48, 24, and 12 hours, respectively.

Each VM’s cache share is managed using LRU internally, although other replacement

policies are also possible.
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Prediction Accuracy

In the first set of experiments we evaluate the different RWSS prediction methods

considered in Section 3.4.2: (1) Exp fixed, exponential smoothing with α = 0.3,

(2) Exp self, a self-tuning version of exponential smoothing, (3) DExp fixed, double-

exponential smoothing with α = 0.3 and β = 0.3, (4) DExp self, a self-tuning version

of double-exponential smoothing, and (5) Last value, a simple method that uses the

last observed RWSS value as predicted value for the new window.

Figure 3.5 compares the different prediction methods using three metrics: (1)

hit ratio, (2) cache allocation, and (3) prediction error—the absolute value of the

difference between the predicted RWSS and observed RWSS divided by the observed

RWSS. Prediction error affects both of the other two metrics—under-prediction

increases cache misses and over-prediction uses more cache. The figure shows the

average values of these metrics across all the time windows of the entire 9-month

Webserver trace.

The results show that the difference in hit ratio is small among the different

prediction methods but is considerable in cache allocation. The last value method

has the highest prediction error, which confirms the need of prediction techniques.

The exponential smoothing methods have the lowest prediction errors, and Exp Self
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is more preferable because it automatically trains its parameter. We believe that

more advanced prediction methods are possible to further improve the prediction

accuracy and our solution can be extended to run multiple prediction methods at the

same time and choose the best one at runtime. But this simple smoothing-based

method can already produce good results, as shown in the following experiments

which all use Exp Self to predict cache demand.

Staging Strategies

In the second set of experiments, we evaluate CloudCache’s staging strategies. First,

we study the impact of the staging area size. In general, it should be decided ac-

cording to the number of VMs consolidated to the same cache and the IO intensity

of their workloads. Therefore, our approach is to set the total staging area size as

a percentage, e.g., between 0.1% and 1%, of the flash cache size, and allocate the

staging area to the workloads proportionally to their flash cache allocation. Fig-

ure 3.6(a) gives an example of how the staging area allocation affects the Webserver

workload’s hit ratio when using address staging. The results from data staging are

similar. In the rest of the chapter, we always use 256MB as the total staging area

size for RWSS-based cache allocation. Note that we need 24B of the staging space

for tracking each address, and an additional 4KB if its corresponding data is also

staged.

Next we compare the address, data, and hybrid staging (with a 1:7 ratio be-

tween address and data staging space) strategies with the same staging area size in

Figure 3.6(b). Data staging achieves a better read hit ratio than address staging

by 67% for the Webserver trace but it loses to address staging by 9% for Moodle.

These results confirm our discussion in Section 3.4.3 about the tradeoff between

these strategies. In comparison, the hybrid staging combines the benefits of these
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Figure 3.6: Staging strategy analysis

two and is consistently the best for all traces. We have tested different ratios for

hybrid staging, and our results show that the hit ratio difference is small (<1%).

But a larger address staging area tracks a longer history and admits more data into

the cache, which results in more cache usage and flash writes. Therefore, in the rest

of this chapter, we always use hybrid staging with 1:7 ratio between address and

data staging space for RWSS-based allocation.

We also compare to the related work High Endurance Cache (HEC) [YPGT13]

which used two cache admission techniques to address flash cache wear-out and are

61



 0

 20

 40

 60

 80

 100

Web Moodle File
server

Hit Ratio (%)

 0

 10

 20

 30

 40

 50

Web Moodle File
server

Allocation (GB)

 0

 20

 40

 60

 80

 100

Web Moodle File
server

Flash Write Ratio (%)

RWSS HEC TC+SSEQR
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closely related to our staging strategies. HEC’s Touch Count (TC) technique uses

an in-memory bitmap to track all the cache blocks (by default 4MB) and admit only

reused blocks into cache. In comparison, CloudCache tracks only a small number of

recently accessed addresses to limit the memory usage and prevent blocks accessed

too long ago from being admitted into cache. HEC’s Selective Sequential Rejection

(SSEQR) technique tracks the sequentiality of accesses and rejects long sequences

(by default any longer-than-4MB sequence). In comparison, CloudCache uses the

staging area to automatically filter out long scan sequences.

Because HEC did not consider on-demand cache allocation, we implemented it

by using TC to predict cache demand and using both TC and SSEQR to enforce

cache admission. Figures 3.7 shows the comparison using the different traces, which

reveals that on average HEC allocates up to 3.7x more cache than our RWSS-based

method and causes up to 29.2% higher flash write ratio—the number of writes sent

to cache device vs. the number of IOs received by cache. In return, it achieves

only up to 6.4% higher hit ratio. The larger cache allocation in HEC is because it

considers all the historical accesses when counting reuses, whereas the RWSS method
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considers only the reuses occurred in the recent history—the previous window. (If we

were able to apply the same cache allocation given by the RWSS method while using

HEC’s cache admission method, we would achieve a much lower hit ratio, e.g., 68%

lower for Moodle, and still a higher flash write ratio, e.g., 69% higher for Moodle.)

The result also confirms that the RWSS method is able to automatically reject scan

sequences (e.g., it rejects on average 90% of the IOs during the backup periods),

whereas HEC needs to explicitly detect scan sequences using a fixed threshold.

WSS vs. RWSS-based Cache Allocation

In the third set of experiments, we compare RWSS-based to WSS-based cache allo-

cation using the same prediction method, exponential smoothing with self-tuning.

In both cases, the cache allocation is strictly enforced, and at the start of each

window, the workload’s extra cache usage beyond its new allocation is immediately

dropped. This setting produces the worst-case result for on-demand cache alloca-

tion, because in practice CloudCache allows a workload to use spare capacity beyond

its allocation and its extra cache usage is gradually reclaimed via replacement-time
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enforcement. We also include the case where the workload can use up the entire

cache as a baseline (No Allocation), where the cache is large enough to hold the

entire working set and does not require any replacement.

Figure 3.8 shows the comparison among these different approaches. For RWSS,

we consider two different values for theN in RWSN , as described in Section 3.4.1. In

addition, we also compare to the related cache admission method, LARC [HWC+13],

which dynamically changes the size of the staging area according to the current hit

ratio—a higher hit ratio reduces the staging area size. Like HEC, LARC also does

not provide on-demand allocation, so we implemented it by using the number of

reused addresses to predict cache demand and using LARC for cache admission.

RWSS1 achieves a hit ratio that is only 9.1% lower than No Allocation and 4%

lower than WSS, but reduces the workload’s cache usage substantially by up to 98%

compared to No Allocation and 76% compared to WSS, and reduces the flash write
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ratio by up to 6% compared to No Allocation and 37% compared to WSS. (The

cache allocation of RWSS and LARC is less than 4GB for Webserver and Fileserver

and thus barely visible in the figure). No Allocation has slightly lower flash write

ratio than RWSS1 for Moodle and Fileserver only because it does not incur cache

replacement, as it is allowed to occupy as much cache space as possible, which is not

a realistic scenario for cloud environments. Compared to LARC, RWSS1 achieves

up to 3% higher hit ratio and still reduces cache usage by up to 3% and the flash

writes by up to 18%, while using 580MB less staging area on average. Comparing

the two different configurations of RWSS, RWSS2 reduces cache usage by up to 9%

and flash writes by up to 18%, at the cost of 4% lower hit ratio, which confirms the

tradeoff of choosing different values of N in our proposed RWS model.

To evaluate how much performance loss the hit ratio reduction will cause, we

replay the traces and measure their IO latencies. We consider a one-month portion

of the Webserver and Moodle traces. They were replayed on the real VM storage and

caching setup specified in Section 3.4.4. We compare the different cache management

methods in terms of 95th percentile IO latency. Figure 3.9 shows that the RWSS -

based method delivers the similar performance as the alternatives (only 1% slower

than No Allocation for Moodle) while using much less cache and causing more writes

to the cache device as shown in the previous results.

The results confirm that our proposed RWSS-based cache allocation can indeed

substantially reduce a workload’s cache usage and the corresponding wear-out at

only a small performance cost. In real usage scenarios our performance overhead

would be much smaller because a workload’s extra cache allocation does not have to

be dropped immediately when a new time window starts and can still provide hits

while being gradually replaced by the other workloads. Moreover, because the WSS-

based method requires much higher cache allocations for the same workloads, cloud
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providers have to either provision much larger caches, which incurs more monetary

cost, or leave the caches oversubscribed, which leads to bad performance as the

low-locality data are admitted into the cache and flush out the useful data.

3.5 Summary

Flash caching has great potential to address the storage bottleneck and improve

VM performance for cloud computing systems. Allocating the limited cache capac-

ity to concurrent VMs according to their demands is key to making efficient use of

flash cache and optimizing VM performance. Moreover, flash devices have serious

endurance issues, whereas weak-temporal-locality data are abundant at the flash

cache layer, which hurt not only the cache performance but also its lifetime. There-

fore, on-demand management of flash caches requires fundamental rethinking how

to estimate VMs’ cache demands and how to provision space to meet their demands.

This chapter presents CloudCache, an on-demand cache management solution to

these problems. It employs a new cache demand model, Reuse Working Set (RWS),

to capture the data with good temporal locality, allocate cache space according to

the predicted Reuse Working Set Size (RWSS), and admit only the RWS into the

allocated space. Extensive evaluations based on real-world traces confirm that the

RWSS-based cache allocation approach can achieve good cache hit ratio and IO

latency for a VM while substantially reducing its cache usage and flash wear-out.
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CHAPTER 4

Dynamic Cache Migration

4.1 Introduction

The on-demand cache allocation approach discussed in the previous chapter allows

CloudCache to estimate the cache demands of workloads online and dynamically

allocate the shared capacity to them. Using this approach CloudCache is able

to reduce cache usage and wear-out, but in order to meet workloads demands the

cache capacity has to be sufficient to hold all the current VMs. This chapter address

another key question when using on-demand cache allocation, which is how to handle

situations where the VMs’ cache demands exceed the flash cache’s capacity. Due to

the dynamic nature of cloud workloads, such cache overload situations are bound to

happen in practice and VMs will not be able to get their desired cache capacity. To

solve this problem, we propose a dynamic cache migration approach to balance cache

load across hosts by live migrating the cached data along with the VMs. It uses

both on-demand migration of dirty data to provide zero downtime to the migrating

VM, and background migration of RWS to quickly warmup the cache for the VM,

thereby minimizing its performance impact. Meanwhile, it can also limit the data

transfer rate for cache migration to limit the impact to other co-hosted VMs.

Our results show that the proposed dynamic cache migration reduces the VM’s

IO latency by 93% compared to no cache migration, and causes at most 21% slow-

down to the co-hosted VMs during the migration. Combining the on-demand cache

allocation with the dynamic cache migration approaches, CloudCache is able to im-
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prove the average hit ratio of 12 concurrent VMs by 28% and reduce their average

90th percentile IO latency by 27%, compared to the case without cache allocation.

The rest of the chapter is organized as follows: Section 4.2 describes live VM mi-

gration, Section 4.3 presents how to limit the transfer rate, Section 4.4 discusses our

evaluation results and finally Section 4.5 presents and evaluation using 12 concurrent

VMs.

4.2 Live Cache Migration

Live VM migration allows a workload to be transparently migrated among physical

hosts while running in its VM [CFH+05, NLH05]. In CloudCache, we propose to

use live VM migration to balance the load on the flash caches of VM hosts—when

a host’s cache capacity becomes insufficient to meet the local VMs’ total cache

demands (as estimated by their predicted RWSSes), some VMs can be migrated to

other hosts that have spare cache capacity to meet their cache demands.

VM-migration-based cache load balancing presents two challenges. First, the

migrating VM’s dirty cache data on the migration source host must be synchronized

to the destination host before they can be accessed again by the VM. A naive way

is to flush all the dirty data to the remote storage server for the migrating VM.

Depending on the amount of dirty data and the available IO bandwidth, the flushing

can be time consuming, and the VM cannot resume its activity until the flushing

finishes. The flushing will also cause a surge in the storage server’s IO load and

affect the performance of the other VMs sharing the server. Second, the migrating

VM needs to warm up the cache on the destination host, which may also take a

long time, and it will experience substantial performance degradation till the cache

is warmed up [HAWS13, AZ14].
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To address these challenges, CloudCache’s dynamic cache migration approach

uses a combination of reactive and proactive migration techniques:

On-Demand Migration: When the migrated VM accesses a block that is dirty in

the source host’s cache, its local cache forwards the request to the source host and

fetches the data from there, instead of the remote storage server. The metadata of

the dirty blocks, i.e., their logical block addresses, on the source host are transferred

along with VM migration, so the destination host’s local cache is aware of which

blocks are dirty on the source host. Because the size of these metadata is small

(e.g., 8B per 4KB data), the metadata transfer time is often negligible. It is done

before the VM is activated on the destination, so the VM can immediately use the

cache on the destination host.

Background Migration: In addition to reactively servicing requests from the

migrated VM, the source host’s cache also proactively transfers the VM’s cached

data—its RWS—to the destination host. The transfer is done in background to

mitigate the impact to the other VMs on the source host. This background migration

allows the destination host to quickly warm up its local cache and improve the

performance of the migrated VM. It also allows the source host to quickly reduce its

cache load and improve the performance of its remaining VMs. Benefiting from the

RWSS-based cache allocation and admission, the data that need to be transferred

in background contain only the VM’s RWS which is much smaller than the WS, as

shown in the previous section’s results. Moreover, when transferring the RWS, the

blocks are sent in the decreasing order of their recency so the data that are most

likely to used next are transferred earliest.

On-demand migration allows the migrated VM to access its dirty blocks quickly,

but it is inefficient for transferring many blocks. Background migration can trans-

fer bulk data efficiently but it may not be able to serve the current requests that
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Figure 4.1: Architecture of dynamic cache migration

the migrated VM is waiting for. Therefore, the combination of these two migration

strategies can optimize the performance of the VM. Figure 4.1 illustrates how Cloud-

Cache performs cache migration. When a VM is live-migrated from Host A to Host

B, to keep data consistent while avoiding the need to flush dirty data, the cached

metadata of dirty blocks are transferred to Host B. Once the VM live migration

completes, the VM is activated on Host B and its local flash cache can immediately

service its requests. By using the transferred metadata, the cache on Host B can

determine whether a block is dirty or not and where it is currently located. If a

dirty block is still on Host A, a request is sent to fetch it on demand. At the same

time, Host A also sends the RWS of the migrated VM in background. As the cached

blocks are moved from Host A to Host B, either on-demand or in background, Host

A vacates their cache space and makes it available to the other VMs.

The CloudCache module on each host handles both the operations of local cache

and the operations of cache migration. It employs a multithreaded design to han-

dle these different operations with good concurrency. Synchronization among the

threads is needed to ensure consistency of data. In particular, when the destination

host requests a block on demand, it is possible that the source host also transfers this

block in background, at the same time. The destination host will discard the second
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copy that it receives, because it already has a copy in the local cache and it may have

already overwritten it. As an optimization, a write that aligns to the cache block

boundaries can be stored directly in the destination host’s cache, without fetching

its previous copy from the source host. In this case, the later migrated copy of this

block is also discarded. The migrating VM needs to keep the same device name

for its disk, which is the virtual block device presented by CloudCache’s block-level

virtualization. CloudCache assigns unique names to the virtual block devices based

on the unique IDs of the VMs in the cloud system. Before migration, the mapping

from the virtual block device to physical device (e.g., the iSCSI device) is created

on the destination host, and after migration, the counterpart on the source host is

removed.

4.3 Migration Rate Limiting

While the combination of on-demand and background migrations can optimize the

performance of a migrating VM, the impact to the other VMs on the source and

destination hosts also needs to be considered. Cache migration requires reads on the

source host’s cache and writes to the destination host’s cache, which can slow down

the cache IOs from the other co-hosted VMs. It also requires network bandwidth,

in addition to the bandwidth already consumed by VM memory migration (part of

the live VM migration [CFH+05, NLH05]), and affects the network IO performance

of the other VMs.

In order to control the level of performance interference to co-hosted VMs, Cloud-

Cache is able to limit the transfer rate for cache migration. Given the rate limit,

it enforces the maximum number of data blocks that can be transferred from the

source host to the destination host every period of time (e.g., 100ms), including both

71



on-demand migration and background migration. Once the limit is hit, the migra-

tion thread will sleep and wait till the next period to continue the data transfer. If

on-demand requests arrive during the sleep time, they will be delayed and served

immediately after the thread wakes up. The rate can be set based on factors includ-

ing the priority of the VMs and the RWSS of the migrating VM. CloudCache allows

a system administrator to tune the rate in order to minimize the cache migration

impact to the co-hosted VMs and still migrate the RWS fast enough to satisfy the

cache demands.

4.4 Evaluation

We evaluate the performance of CloudCache’s dynamic cache migration using the

same testbed described in Section 3.4.4. Dynamic cache migration is implemented in

the CloudCache kernel module described in Section 3.4.4. It exposes a command-line

interface which is integrated with virt-manager [vir] for coordinating VM migration

with cache migration. We focus on a day-long portion of the Moodle and Webserver

traces. The Moodle one-day trace is read-intensive which makes 15% of its cached

data dirty (about 5GB), and the Webserver one-day trace is write-intensive which

makes 85% of its cached data dirty (about 1GB).

We consider four different approaches: (1) No Cache Migration: the cached data

on the source host are not migrated with the VM; (2) On-demand: only the on-

demand cache migration is used to transfer dirty blocks requested by the migrated

VM; (3) On-demand + BG Dirty: in addition to on-demand cache migration, back-

ground migration is used to transfer only the dirty blocks of the migrated VM; (4)

On-demand + BG RWS: both on-demand migration of dirty blocks and background

migration of RWS are used. In this experiment, we assume that the cache migration
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Figure 4.2: Migration strategies

can use the entire 1Gbps network bandwidth, and we study the impact of rate limit-

ing in the next experiment. For on-demand cache migration, it takes 0.3s to transfer

the metadata for the Moodle workload and 0.05s for the Webserver workload.

Figure 4.2(a) shows that for the Moodle workload, on-demand cache migration

decreases the 90th percentile latency by 33% and the addition of background migra-

tion of dirty data decreases it by 35%, compared to No Cache Migration. However,

the most significant improvement comes from the use of both on-demand migra-

tion of dirty data and background migration of the entire RWS, which reduces the

latency by 64%. The reason is that this workload is read-intensive and reuses a

large amount of clean data; background migration of RWS allows the workload to

access these data from the fast, local flash cache, instead of paying the long network

latency for accessing the remote storage.
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For the Webserver workload, because its RWS is mostly dirty, the difference

among the three cache migration strategies is smaller than the Moodle workload

(Figure 4.2(b)). Compared to the No Cache Migration case, they reduce the 90th

percentile latency by 91.1% with on-demand migration of dirty data, and by 92.6%

with the addition of background migration of RWS.

Note that the above results for the No Cache Migration case do not include

the time that the migrated VM has to wait for its dirty data to be flushed from

the source host to the remote storage before it can resume running again, which

is about 54 seconds for the Moodle workload and 12 seconds for the Webserver

workload, assuming it can use all the bandwidths of the network and storage server.

In comparison, the VM has zero downtime when using our dynamic cache migration.

Figure 4.2(c) shows how the migrating VM’s performance varies over time in

this Moodle experiment so we can observe the real-time performance of the differ-

ent migration strategies. The peaks in On-demand and On-demand + BG Dirty are

caused by bursts of on-demand transfer of clean data blocks requested by the mi-

grated VM. We believe that we can further optimize our prototype implementation

to avoid such spikes in latency.

In Figure 4.2(c), we also compare our approach to an alternative cache migration

implementation (On-demand + BG WS ) which migrates the VM’s entire working

set without the benefit of our proposed RWSmodel. Using the same Moodle trace, at

the time of migration, its RWSS is 32GB and WSS is 42GB. As a result, migrating

the WS takes twice the time of migrating only the RWS (6mins vs. 3mins) and

causes a higher IO latency overhead too (71% higher in 90th percentile latency).

In the next experiment, we evaluate the performance impact of rate limiting the

cache migration. In addition to the migrating VM, we run another IO-intensive VM

on both the source and destination hosts, which replays a different day-long portion
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Figure 4.3: Impact of different cache migration rate

of the Webserver trace. We measure the performance of all the VMs when the

cache migration rate is set at 40MB/s and 100MB/s and compare to their normal

performance when there is no VM or cache migration. Figure 4.3 shows that the

impact to the co-hosted VMs’ 90th percentile IO latency is below 16% and 21% for

the 40MB/s and 100MB/s rate respectively. Note that this is assuming that the co-

hosted VMs already have enough cache space, so in reality, their performance would

actually be much improved by using the cache space vacated from the migrating VM.

Meanwhile, the faster migration rate reduces the migrating VM’s 90th percentile IO

latency by 6%. Therefore, the lower rate is good enough for the migrating VM

because the most recently used data are migrated first, and it is more preferable for

its lower impact to the co-hosted VMs.

4.5 Putting Everything Together

The previous two sections and Chapter 3 described and evaluated the RWSS-based

on-demand cache allocation and dynamic cache migration approaches separately.

In this section, we present how to use them together to realize on-demand cache

management for multiple VM hosts. Consider the flash cache on a single host. If its
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capacity is sufficient to satisfy the predicted cache demands for all the local VMs,

it is simply allocated to the VMs according to their demands. The spare capacity

is distributed to the VMs proportionally to their demands, or left idle to minimize

wear-out. If the cache capacity is not sufficient, then cache migration needs to be

considered in order to satisfy the demands of all the VMs.

When considering the use of cache migration, there are three key questions that

need to be answered, when to migrate, which VM to migrate, and which host to

migrate it to? To answer the first question, CloudCache reserves a certain percentage

(e.g., 10%) of the cache capacity as a buffer to absorb the occasional surges in

cache demands, and it starts a migration when the total cache demand exceeds

the 90% threshold for several consecutive RWSS windows (e.g., three times). This

approach prevents the fluctuations in cache workloads from triggering unnecessary

cache migrations which affect the VMs’ performance and the system’s stability.

To answer the second and third questions, CloudCache’s current strategy is to

minimize the imbalance of cache load among the hosts in the system. The host

that requires cache migration queries every other host’s current cache load. It then

evaluates all the possible migration plans of moving one of its local VMs to a host

that can accommodate the VM’s RWS under the 90% threshold. It then chooses

the plan that minimizes the variance of the hosts’ cache load distribution.

We use a real experiment to illustrate the use of our approaches for meeting

the cache demands of dynamically changing workloads. We consider two VM hosts

each with 64GB of flash cache. Host A ran 12 VMs, and Host B ran three VMs,

concurrently. Each VM replayed a different 10-day portion of the Webserver trace.

The cache allocation was adjusted every 2 days on both hosts. The first time window

is the warm-up phase during which the VMs were given equal allocation of the cache

capacity. Afterwards, the cache was allocated to the VMs proportionally to their
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estimated RWSSes. Moreover, a VM could take more than its share if there was idle

capacity from the other VMs’ shares because our approach is work-conserving. The

experiment was done on the real VM storage and caching setup specified in Section

3.4.4.

Figure 4.4(a) shows how the cache space is distributed among the VMs on Host

A when (a) there is no cache allocation, (b) on-demand cache allocation but without

cache migration, and (c) on-demand cache allocation with dynamic cache migration.

Comparing (a) and (b), we can see how our RWSS-based on-demand allocation

improves the fairness among the competing VMs. For example, between Days 4

and 8, VMs 6, 7, 8 dominated the cache space in (a), but in (b), every VM got a

fair share of the cache space proportionally to their estimated RWSSes. Notice that

VMs 7 and 8 were allocated much less in (b) than what they got in (a), which is

an evidence of how the RWS-based cache demand model filtered out the VMs’ low-

locality data and kept only those that are useful to their performance. As a result,

comparing the average performance of all 12 VMs across the entire experiment, (b)

is better than (a) by 17% in terms of hit ratio and 13% in terms of 90th percentile

IO latency.

In (c) dynamic cache migration was enabled in addition to on-demand cache

allocation. After the total demand—the sum of the 12 VMs’ RWSSes—exceeded

the threshold for three consecutive windows, CloudCache initiated cache migration

on Day 8 and chose to move VM 11, the one with the largest predicted RWSS at

that time, and its cached data to Host B. As VM 11’s RWS was moved to Host B,

the remaining 11 VMs took over the whole cache on Host A, proportionally to their

estimated RWSSes. As a result, comparing the average performance of all 12 VMs

after Day 8, (c) is better than (b) by 49% in terms of hit ratio and 24% in terms of

90th percentile IO latency. Across the entire experiment, it outperforms (a) by 28%
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in hit ratio and 27% in 90th percentile IO latency, and outperforms (b) by 10% in

hit ratio and 16% in 90th percentile IO latency.

Although this experiment involved only two VM hosts and the migration of

only one VM, the above results are still representative for the migration of any

VM and its cache data between two hosts in a large cloud computing environment.

But we understand in such a large environment, more intelligence is required to

make the optimal VM migration decisions. There is a good amount of related work

(e.g., [WSVY07, XF11]) on using VM migration to balance load on CPUs and main

memory and to optimize performance, energy consumption, etc. CloudCache is the

first to consider on-demand flash cache management across multiple hosts, and it can

be well integrated into these related solutions to support the holistic management

of different resources and optimization for various objectives. We leave this to our

future work because the focus of this chapter is on the key mechanisms for on-

demand cache management, i.e., on-demand cache allocation and dynamic cache

migration, which are missing in existing flash cache management solutions and are

non-trivial to accomplish.

4.6 Summary

Flash caching has great potential to address the storage bottleneck of cloud com-

puting systems and improve associated VM performance. Allocating limited cache

capacity to concurrent VMs according to their demands is key to efficient use of flash

cache and optimizing VM performance, as shown in the previous chapter. But this

approach does not provide for the scenario in which the total demand of concurrent

VMs is higher that the available cache capacity, a scenario that will become increas-

78



ingly common with the increasing level of consolidation on cloud systems. Therefore,

cache allocation alone does not address the scalability issue of cloud storage.

This chapter presents dynamic cache migration to handle cache overload situ-

ations. This approach live-migrates a VM with its cached data to meet the cache

demands of all VMs, employing on-demand cache migration for dirty data and back-

ground migration of the entire reuse working set. Our results confirm that dynamic

cache migration can transparently balance cache load across hosts with little impact

on the migrating VM and the other cohosted VMs
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(b) On-demand cache allocation without cache migration

 0
 8

 16
 24
 32
 40
 48
 56
 64
 72
 80

 0  2  4  6  8  10

C
ac

he
 U

sa
ge

 (
G

B
)

Time (Days)

Total
 Demand

Threshold
Capacity

(c) On-demand cache allocation with dynamic cache migration

Figure 4.4: Cache usages of 12 concurrent VMs
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CHAPTER 5

Related Work

5.1 Flash Caching Solution

Client-side disk caching can improve the performance of cloud storage by harnessing

the storage available on the client-side of network storage, the VM hosts, and the

locality inherent in VM I/Os. With the emergence of solid state drives (SSDs),

the benefit of client-side caching is potentially more significant as the speed of an

SSD cache substantially outperforms the storage server that has traditional spinning

disks.

The potential of flash caching has motivated several related solutions. For ex-

ample: Mercury [BLM+12] is a persistent, write-through host-side cache for flash

memory that was designed as a hypervisor cache, which simplifies its integration

and deployment into host environments, in order to provide caching to the VMs

hosted on the client over a variety of networked storage protocols; ioCache [ioC]

supports caching in the hypervisor and in the individual VMs on a storage client

using custom-built flash hardware and management software; HyCache [ZR12] is a

distributed middle-ware layer built on top of HDFS. It creates a user level cache

API with SSD device to speed up I/O workloads on HDFS, where each distributed

data node has a HDD and SSD where a subset of HDFS block files are kept on SSD

for performance enhancement. Strong consistency is made possible by creating a

symbolic link from SSD to HDD after eviction. In this thesis, we base our flash

caching study on dm-cache [dmc], a open-source block-level caching solution. It

is created upon block-device virtualization and can be transparently deployed on
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VM hosts. It has been successfully adopted by production cloud systems [dmc] and

motivated the designs of other related solutions (e.g., FlashCache [fla]).

There are also related works on improving various aspects of SSD caching. For

example, FlashTier [SSZ12] proposed cache-specific SSD management to enhance

the performance of an SSD device dedicated for caching uses, it provides unified

address space by using sparse hash map from Google, along with cache consis-

tency and silent eviction for improved performance; Previous work from Koller et

al. also advocated the importance of write-back caching and studied new ordered

and journaled write-back policies for flash caches, in order to improve the consis-

tency of cached dirty data [KMR+13]. This thesis complements the previous work

by further studying the performance impact of write-back caching to both storage

client and server using real workloads and proposing a new cache-optimized RAID

technique to improve the reliability of write-back-based flash caches.

Cache configuration has also been studied by Holland et al. [HAWS13], which

focuses on several key design considerations, including flash-RAM integration, write-

back policy, cache persistency, and cache consistency. Their study is based on

simulations that calculates the latencies generated by different write policy. Their

conclusion is that write-through caching delivers good enough performance com-

pared to write-back since writes can be asynchronously submitted to the back-end

storage. However, this work does not consider the impact on the servers load and its

resulting effect on the clients performance, which are studied in this thesis using a

real flash cache implementation analyzing traces collected from highly consolidated

cloud environments.

RAID is a classic technique to improve the reliability of storage and has also

been considered in the context of flash storage [JMBR11]. A unique challenge of

flash-based RAID is synchronous aging, which means that the flash devices used
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in a RAID group wear out at the same time and cannot be recovered by RAID.

Diff-RAID was proposed to address this challenge by intentionally distributing par-

ity blocks unevenly across the flash devices so that the writes caused by parity

updates are also unevenly distributed, allowing the devices to wear out at differ-

ent speed [BKPM10]. This related work is complementary to the proposed cache-

optimized RAID technique which improves storage utilization and reduces wear out

by providing redundancy to only the dirty data in a cache.

5.2 Cache Management

There are several related flash cache management solutions. S-CAVE [LML+13]

considers the number of reused blocks to estimate a VM’s cache demands, and it

does not employ a cache admission policy. Hence, the non-reused blocks also require

cache space and may evict the more useful blocks. Moreover, the cache allocation

in S-CAVE is done using several heuristics. vCacheShare [MZM+14] allocates a

read-only cache by maximizing a unity function that captures a VM’s disk latency,

read-to-write ratio, estimated cache hit ratio, and reuse rate of the allocated cache

capacity. However, these solutions do not allocate cache capacity according to the

VMs’ actual cache demands, nor do they consider dynamic cache migration for

meeting the demands when a cache becomes overloaded. These problems are ad-

dressed by CloudCache’s on-demand cache allocation and dynamic cache migration

approaches.

HEC and LARC studied cache admission policies to filter out data with weak

temporal locality and reduce the flash wear-out [YPGT13, HWC+13, LCQX14].

However, they do not consider the problem of how to allocate shared cache capacity

to concurrent workloads, which is addressed by CloudCache. Moreover, our RWSS-
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based approach is also able to effectively filter out data with no reuses and achieve

good reduction on flash wear-out. Another similar approach is mARC [SLK+15]

which also filters out data with weak temporal locality and does not consider allo-

cation of shared cache capacity, it uses multiple phases which allow to admit more

data than other approaches, based on implementation details we believe that our

RWSS-based approach can achieve better reduction on flash wear-out.

In the context of processor and memory cache management, there are cache

replacement algorithms that address the cache pollution caused by scan sequences.

In particular, ARC keeps data with no reuses in a separate list and prevents it

from flooding the list of data with reuses [MM03]. However, it does not address the

wear-out caused by scan sequences, as data with reuses are still admitted into the

cache. There are also related works on processor and memory cache allocations. For

example, miss-rate curve (MRC) can be built to capture the relationship between

a workload’s cache hit ratio and its cache sizes. The cache allocation can be then

decided by optimizing the overall performance of all the workloads [SRD01, ZPS+04,

TASS09]. Related work has also studied the use of process migration to balance the

process cache load on a multicore system [KBH+08].

Compared to processor and memory cache management, flash cache management

has fundamentally different challenges and opportunities. On one hand, the work-

load at the flash cache layer can be highly spiky and contain long scan sequences

which are detrimental to both the performance and endurance of the cache. On

the other hand, flash cache management can employ more sophisticated techniques

implemented in software and use VM migration to dynamically balance cache load

across hosts. We exploit these opportunities and addresses these challenges in our

on-demand flash cache management solution, CloudCache.
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5.3 Cache Migration

Bhagwat et al. studied how to allow a migrated VM to request data from the

cache on its pervious host [BPO+15], in the same fashion as the on-demand cache

migration proposed in Section 4.1. However, as shown in our evaluation results,

this technique alone cannot ensure good performance to the migrated VM. It also

has a long-lasting, negative impact on the source host in terms of both performance

interference and cache utilization. If the migrated VM’s data are evicted by the

source host, then its performance will be even worse because a request has to be

forwarded by the source host to the primary storage. In comparison, CloudCache

considers the combination of on-demand migration and background migration and

optimizes the performance of both the migrated VM and the other co-hosted VMs.
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CHAPTER 6

Conclusions and Future work

6.1 Conclusions

Caching is one of the most widely used techniques for improving the performance

of data access in computer systems. Its effectiveness is largely determined by the

available locality in the workload that can be exploited by the cache, and the speedup

that can be obtained by serving it from the cache versus from the next layer in the

storage hierarchy. The emergence of flash storage has motivated consideration of

client-side caching in network storage systems because flash speed is significantly

faster than that of the network and the mechanical disks on the storage server. It also

comes in time to address the serious scalability issues that cloud computing systems

now face as the number and size of VMs quickly increase on shared storage systems.

Allocating limited cache capacity to concurrent VMs according to their demands is

key to the efficient use of flash cache and to optimizing VM performance. Moreover,

flash devices have serious endurance issues, whereas weak-temporal-locality data

are abundant at the flash cache layer, hurting both cache performance and cache

lifetime. Therefore, on-demand management of flash caches requires a fundamental

rethinking of how to estimate VM cache demands and how to provision space to

meet these demands.

This thesis presents three research components that address previous problems

for using flash caching on cloud computing systems. First, it presents a thorough

study of flash cache architecture and configurations, by analyzing a large number of

real-world traces collected from both public and private clouds. This study confirms
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that cloud workloads have good cacheability and dm-cache incurs low overhead

with respect to commodity flash devices. The impact of different write caching

policies is significant to cache performance. In contrast to conclusions reached in

related studies, our results show that write-back caching can significantly outperform

write-through caching due to the reduction of server I/O load. Our results also

show the tradeoff of making a flash cache-persistent across client restarts, saving

hours of cache warm-up time but incurring considerable overhead from persistent

metadata updates. Finally, to address the reliability issue of write-back caching, we

propose a new cache-optimized RAID technique that minimizes RAID overhead by

introducing redundancy only to cached dirty data, which appears to be significantly

faster than traditional RAID and write-through caching. Second, this thesis presents

CloudCache, an on-demand cache management solution that employs a new cache

demand model, RWS, to capture data with good temporal locality, allocate cache

space according to the predicted RWSS, and admit only the RWS into the allocated

space. Third, to handle cache overload situations, CloudCache takes a new cache

migration approach that live-migrates a VM with its cached data to meet the cache

demands of the VMs. Extensive evaluation based on real-world traces confirms that

RWSS-based cache allocation can achieve a strong cache-hit ratio and I/O latency

for a VM while significantly reducing its cache usage and flash wear. It also confirms

that dynamic cache migration can transparently balance cache load across hosts with

little impact on the migrating VM and the other cohosted VMs.

6.2 Future Work

This thesis provides a solid framework for future work in several directions. First, we

plan to use flash simulators and open-controller devices to monitor the actual Pro-
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gram/Erase cycles and provide more accurate measurement of our solution’s impact

on flash device wear-out. Second, when the aggregate cache capacity of all VM hosts

is insufficient, CloudCache has to allocate cache proportionally to the VMs’ RWSSes.

We plan to investigate a more advanced solution that maps each VM’s cache allo-

cation to its performance and optimizes the allocation by maximizing the overall

performance of all VMs, we plan to extend traditional miss-rate curve techniques

[WPGA15, WID+14] to capture the relationship between cache miss rate and cache

allocation. Third, although our experiments confirm that flash cache allocation has

a significant impact on application performance, the allocation of other resources,

e.g., CPU cycles and memory capacity, is also important. We plan to consider the

holistic management of different resources including processor, memory, and flash

cache and optimize the management for various objectives. Finally, although the

discussion in this thesis focuses on flash-memory-based caching, CloudCaches gen-

eral approach also applies to emerging nonvolatile memory (NVM) devices such as

PCM and 3D XPoint used for caching in the storage hierarchy. These devices may

or may not have the same endurance issue as NAND flash, but their capacities would

still be quite limited and thus require an effective on-demand cache management

solution. Nonetheless, cache management must be fast enough to match their much

higher speeds. We plan to investigate the effectiveness of CloudCache for managing

new NVM-based caches as they become available.
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