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ABSTRACT OF THE DISSERTATION

HARD QCD PROCESSES IN THE NUCLEAR MEDIUM

by

Adam Freese

Florida International University, 2016

Miami, Florida

Professor Misak Sargsian, Major Professor

The environment inside the atomic nucleus is one of the most fascinating arenas for the

study of quantum chromodynamics (QCD). The strongly-interacting nature of the nuclear

medium affects the nature of both QCD processes and the quark-gluon structure of hadrons,

allowing several unique aspects of the strong nuclear force to be investigated in reactions

involving nuclear targets. The research presented in this dissertation explores two aspects

of nuclear QCD: firstly, the partonic structure of the nucleus itself; and secondly, the use of

the nucleus as a micro-laboratory in which QCD processes can be studied.

The partonic structure of the nucleus is calculated in this work by deriving and uti-

lizing a convolution formula. The hadronic structure of the nucleus and the quark-gluon

structure of its constituent nucleons are taken together to determine the nuclear partonic

structure. Light cone descriptions of short range correlations, in terms of both hadronic

and partonic structure, are derived and taken into account. Medium modifications of the

bound nucleons are accounted for using the color screening model, and QCD evolution is

used to connect nuclear partonic structure at vastly different energy scales. The formalism

developed for calculating nuclear partonic structure is applied to inclusive dijet production

from proton-nucleus collisions at LHC kinematics, and novel predictions are calculated and

presented for the dijet cross section.

The nucleus is investigated as a micro-laboratory in vector meson photoproduction

reactions. In particular, the deuteron is studied in the break-up reaction γd → V pn, for

both the φ(1020) and J/ψ vector mesons. The generalized eikonal approximation is utilized,

allowing unambiguous separation of the impulse approximation and final state interactions

(FSIs). Two peaks or valleys are seen in the angular distribution of the reaction cross
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section, each of which is due to a FSI between either the proton and neutron, or the

produced vector meson and the spectator nucleon. The presence and size of the latter FSI

valley/peak contains information about the meson-nucleon interaction, and it is shown that

several models of this interaction can be distinguished by measuring the angular distribution

for the deuteron breakup reaction.
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CHAPTER 1

Introduction

Quantum chromodynamics (QCD) is believed to be the fundamental theory of strong nuclear

interactions. QCD is a non-Abelian quantum field theory with a group structure SU(3,C).

It postulates that nuclear matter is made of two fundamental kinds of fields. The first are

the quark fields, which transform under the defining representation of SU(3,C). Quarks

come in six flavors—up (u), down (d), strange (s), charm (c), bottom (b), and top (t)—

and each flavor has a corresponding anti-quark, which transforms under the anti-defining

representation of SU(3,C). The three-state internal degree of freedom possessed by each

quark flavor is called color, in analogy to RGB color space, and anti-quarks are considered to

have an “anti-color,” e.g., the anti-quark of a red u quark would be an anti-red ū anti-quark.

Secondly, there are gluons, which transform under the adjoint representation of SU(3,C).

Because of this, the gluon has a 32 − 1 = 8-state internal degree of freedom, which is also

called the color of the gluon.

Physical hadrons are postulated to be colorless mixtures of quarks, anti-quarks, and

gluons. In particular, every known hadron transforms under a trivial (singlet) representation

of SU(3,C). The basic known hadrons are categorized into two groups: baryons, which

consist of three valence quarks, which have a color state of:

1√
6
(| rgb〉+ | gbr〉+ | brg〉− | bgr〉− | grb〉− | rbg〉) , (1.1)

and mesons, which consist of a quark and an anti-quark in their valence states, having a

color state of:

1√
3

(

| rr̄〉+ | gḡ〉+ | bb̄〉
)

. (1.2)

Anti-baryons, consisting of three valence anti-quarks, also exist as the anti-particles of

baryons.

The only known stable baryon is the proton, which has valence quark flavor content

uud. Its anti-particle, the anti-proton (with valence quark content ūūd̄) is likewise the only
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stable anti-baryon. The neutron (valence quark content udd) is an unusually long-lived

baryon, with a mean lifetime of 15 minutes; all other known baryons have lifetimes on the

order of microseconds or less.

Protons and neutrons are able to form stable bound states called nuclei. In particular,

Z protons and (A − Z) neutrons bound together form a nucleus with charge number Z

and mass number A. Typically, theoretical and experimental studies of nuclei are based

on nuclear structure in terms of its nucleonic degrees of freedom. One postulates that

nucleons interact via a phenomenological potential, or the exchange of certain mesons,

and proceeds to calculate nuclear properties in terms of various models. Under a mean field

approximation, in which each nucleon is treated as moving independently under the average

influence of the other (A−1) nucleons, the distances between nucleons are larger than both

the size of the nucleon, and the distance scales at which QCD descriptions have successfully

been applied. Accordingly, descriptions of the nucleus in terms of QCD often amount to

treating the nucleus as a collection of quasi-free nucleons, each of which is individually

described using QCD.

The premise explored in this dissertation is that the nucleus is not just a collection of

nucleons, and that QCD effects unique to the nuclear environment can be observed. There

are several uniquely nuclear aspects to QCD that can be explored. Firstly, the structure of

the protons and neutrons making up the nucleus is expected to be modified by the nucleons’

immersion in a strongly-interacting environment. There is already strong experimental

evidence for this in the EMC effect, named after the European Muon Collaboration which

first observed the effect [1]. Additionally, the nature of various QCD processes, such as

vector meson production and hadron-hadron scattering, may also be changed within the

nuclear environment.

In light of these two aspects, the dissertation is divided into two major chapters. Chap-

ter 2 explores how the QCD structure of nuclei can be theoretically explicated by developing

a formalism that accounts for the latest phenomenology of high-energy, short-distance-scale

experiments using nuclear targets. This is accomplished by looking at inclusive reactions

where minimal constraints are placed on the final states, with a particular focus to inclusive
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dijet production in proton-nucleus collisions. Chapter 3 explores how the nucleus can be

used as a micro-laboratory in which to study specific QCD processes. This chapter instead

looks at exclusive reactions, where the final state is fully specified, and focuses particularly

on incoherent vector meson photoproduction from the deuteron.

1.1 QCD structure of the nucleus

QCD is notoriously difficult to apply at low energies. This happens for several reasons.

Firstly, renormalized QCD has a coupling strength that depends on the energy resolution

scale Q2: it decreases at large Q2—a property called asymptotic freedom—allowing pertur-

bative QCD to be applied at high energy scales, but it also grows without bound for low

Q2, diverging logarithmically at an infrared energy scale, ΛQCD. Secondly, the theory con-

tains infrared divergences corresponding to emission of soft and collinear gluonic radiation.

Collinear divergences are traditionally dealt with in field theories by recognizing that the

asymptotic free states of real experiments do not correspond to the “bare” particles that

appear as lines in Feynman diagrams. In QCD in particular, the asymptotic free states are

not quarks and gluons at all, but are instead colorless (color singlet state) hadrons. Accord-

ingly, proper application of perturbative QCD requires the input of several non-perturbative

quantities, corresponding to the probability that quarks and gluons entering into a pQCD

reaction are found within the initial-state hadrons, and the probability that quarks and

gluons emerging from this reaction form into the final-state hadrons.

Perturbative QCD thus proceeds through a scheme called factorization in which a

hadronic cross section is decomposed into three parts:

1. A universal parton distribution function (PDF) that describes the quark and gluon

makeup of a hadron.

2. A hard (i.e., high-Q2) perturbative QCD cross section for quarks and gluons.

3. A fragmentation function (FF), which describes how a scattered parton forms into a

shower of observable hadrons.

Parton distribution functions and fragmentation functions are manifestly non-perturbative

quantities, and it is currently unknown how to calculate them from first principles. Parametriza-
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tion of both FFs and PDFs for the free proton exist based on extensive experimental data.

Through this factorization scheme, peturbative QCD has achieved a great amount of ex-

perimental success (see for instance the Handbook of Perturbative QCD [2] and the Review

of Particle Physics [3]).

1.1.1 Parton distribution functions

The parton distribution function is a function of two parameters: a light cone momentum

fraction x, and an energy resolution scale µ. The momentum fraction x conventionally

ranges from 0 to 1, and for sufficiently fast hadrons (i.e., in the infinite momentum frame),

it describes the fraction of the hadron’s fast, longitudinal momentum carried by the parton.

The energy resolution scale µ characterizes how exactly factorization is done. Roughly, QCD

processes that occur below the energy µ are considered part of the hadron’s nonperturbative

structure, while processes above the energy µ are calculated within perturbative QCD using

the Feynman rules.

The PDF for the proton is fairly well-known for a wide range of x and µ. However,

the PDFs of atomic nuclei are not especially well-known. A naive guess would suggest that

the PDF of a nucleus can be obtained by convoluting the proton and neutron PDFs with

their individual momentum distributions, but this does not account for modification of the

protons and neutrons inside the nucleus.

The fact that protons and neutrons are modified, and that this modification is sig-

nificant, can be seen in the EMC effect [1, 4]. The EMC effect is that the deep inelastic

scattering cross section for a bound nucleon within a heavy nucleus is not equal to the

DIS cross section for a free nucleon, and instead their ratio is a function of the momentum

fraction x of the struck parton. In particular, for x from 0.3 to 0.8, DIS from the bound

nucleon is suppressed, whereas for x above this it is enhanced. A myriad of models have

been proposed for account for this effect [5, 6], but they have mostly proved inconclusive.

In particular, models based on the Fermi motion and binding energy of a single nucleon can

only partially account for the effect.

4



There is increasing evidence that the EMC effect can be related to multinucleon short

range correlations (SRCs) [7]. It is possible to obtain x > 1, since the parton that was

struck could have been shared between nucleons. Moreover, the cross section ratio at x > 1

becomes a sequence of plateaus, in line with predictions made on the basis of SRCs [8].

Accounting for SRCs is necessary for describing nuclear modification at low µ. The

nuclear PDF at low energy resolutions can indeed be accounted for using a composition of

the nucleonic PDF and the nuclear density, if the nuclear density is modified to include the

effects of SRCs. At high energy resolutions, however, this is not enough. One of the main

focuses of this dissertation is obtaining high-µ nuclear PDFs using the latest phenomenology

of SRCs, the EMC effect, and QCD evolution. This is done in Chapter 2.

1.1.2 QCD evolution

The QCD evolution equation relates the PDF at different energy resolution scales. By

evolving the PDF from a low µ to a high µ one considers many low-energy processes to

now be part of the hadron’s structure. At the same time, one is describing the hadron’s

structure at finer distance scales since these correspond to larger energy scales.

Within renormalized QCD quarks and gluons are not structureless, but instead contain

more partons at smaller distance scales (higher energy scales). It is possible to redefine the

boundary between the partons’ structure and their interactions, so that what was previously

considered a quark can instead be considered a quark with a cloud of gluons and quark-

antiquark pairs surrounding it. The boundary is defined by the experimental scenario:

there is an energy scale Q characterizing how hard a particular kinematic scenario is, and

this scale is chosen as the energy resolution scale for factorization. Changing the energy

resolution scale by performing a harder scattering process removes some of the cloud of

gluons and quark-antiquark pairs from the dressed parton and considers it as being part of

the hadron containing the parton instead. This is illustrated in the cartoon in Fig. 1.1.

This higher-resolution parton invariably has a smaller light cone momentum fraction

x than the lower-resolution parton. As can be seen in Fig. 1.1b, some of the low-µ parton’s

momentum is carried away by gluons, leaving the high-µ parton with less momentum,
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Cartoon of QCD evolution

e e′

q (xhigh)

γ∗

q′

(a) Scattering at low µ

e e′

q (xlow)

γ∗

q′

xhigh

(b) Scattering at high µ

Figure 1.1: Cartoon illustration of QCD evolution. Higher µ moves structure from the
parton to the hadron.

and thus a smaller momentum fraction. Conversely, if one sees a parton with a small (or

moderate) momentum fraction x at a high energy resolution, it may have been contained

within a fast (high x) quark at low resolution.

This fact is especially pertinent to the study of nuclear modifications. This is easiest

to see when considering that x can be greater than 1 for reactions involving nuclei. If

x > 1, this suggests that the probed parton carried two nucleons’ share of the longitudinal

momentum, and thus was likely to have been shared between overlapping nucleons in a

short range correlation. Likewise, x > 2 suggests the parton was shared between three

nucleons, and so on.

1.1.3 Short range correlations on the light cone

It is possible to obtain the observed x > 1 through high-density fluctuations of multiple

nucleons into short range correlations [8]. Therefore, it is necessary to develop a model of

SRCs to describe nuclear PDFs. This dissertation improves upon a model of SRCs using

light cone dynamics [9]. We describe two-nucleon correlations using the two-nucleon light

cone wave function, and correlations between three or more nucleons as arising from a

sequence of two-nucleon correlations. This model describes nucleons with low light cone
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momentum fractions as existing within a mean field, and nucleons with high momentum

fractions as existing within multinucleon correlations. The model developed to account for

multinucleon short range correlations is given in Section 2.4.

1.1.4 QCD evolution of nuclear parton distributions

Jefferson Lab currently measures parton distribution functions at low Q2 and high x, and

these measurements will be extended into the x > 1 region for nuclear targets. Using QCD

evolution, we will make numerical predictions for nuclear PDFs at very large Q2, on the

order of Q2 = 10000 GeV2, at intermediate values of x. These calculations will provide

input for deep inelastic scattering experiments at the EIC, as well as for heavy ion collisions

at the LHC.

A complication that arises here is that, at low energy resolution scales, the masses of

heavy quarks (such as c and b) are not negligible compared to the resolution scale. The

most commonly used renormalization scheme for QCD, the modified minimal subtraction

scheme or MS, neglects quark masses. Conventionally, one compensates for this by turning

quarks off when dealing with energy resolutions below the quark mass, and turning them

on at higher energy scales. This quark mass scheme, due to Collins and Tung [10], shall be

used in this work.

A detailed description of how QCD evolution is adapted to nuclear partonic struc-

ture, together with a computational algorithm for performing this evolution, is given in

Section 2.6.

1.1.5 Inclusive jet production

After the hard pQCD scattering reaction occurs, the parton will hadronize—that is, it

will fragment into an observable shower of closely spaced hadrons, called a jet. If specific

hadrons are looked for in the final state, then it is necessary to introduce a fragmentation

function to calculate the cross section. However, for the inclusive cross section—that is, with

all possible final hadronic states summed over—fragmentation functions are unnecessary.

Since fragmentation functions are an additional complication, it is desirable to avoid them
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if possible when they are not the object of study, and therefore to look at inclusive jet

production.

This dissertation examines inclusive jet production at high-energy kinematics as a

means of studying nuclear PDFs. In particular, this dissertation demonstrates that inclu-

sive jet production at high energy can be used to observe the presence of shared quarks and

gluons within the nucleus at high energy resolutions. This is something that can be accom-

plished at the LHC in proton-nucleus collisions by looking at inclusive two-jet production.

A jet is characterized by two kinematic variables: its rapidity, which is a measure of

the jet’s speed in the heavy ion beam direction, and its momentum in the plane transverse

to the beam direction. The transverse momentum in particular serves as the characteristic

energy resolution scale in proton-nucleus collisions.

Large x > 1 can be obtained by looking at large rapidity and large transverse mo-

mentum in the jets. However, since the high-µ partons obtained by QCD evolution have a

smaller momentum fraction than their low-µ parents, it should be sufficient to look at mod-

erate x < 1 to see the effects of SRCs. This can be accomplished by looking at high-pT jets

with moderate rapidity, which are easier to measure at the LHC. Using QCD evolution and

the light cone description of SRCs, I have made predictions for inclusive two-jet production

at the LHC based on these kinematics.

An explication of the dijet formalism together with the cross section predictions can

be found in Section 2.7.

1.2 The nucleus as a microlab

For many purposes, experiments involving proton targets are adequate for studying the

nature of QCD interactions. However, there are problems for which the proton cannot

serve as an adequate target. Such an example is in studying the nature of J/ψ scattering

from the nucelon. J/ψ is a vector meson composed of a charm quark and its antiquark. The

J/ψ meson has a short lifetime, and the cross section for its production is small enough

that making a J/ψ beam is not feasible. However, using nuclear targets in photo- and
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electroproduction experiments provides a means of studying J/ψ scattering from a nucleon.

The deuteron in particular is a promising candidate.

The rationale behind this is that, in hard photoproduction reactions, the deuteron can

function as a microlab in which a J/ψ produced from one nucleon can be studied as though

it is rescattering from the other (spectator) nucleon. In hard reactions in particular, it is

possible to use an effective Feynman rule formalism: the amplitude for the process can be

described using the amplitudes for isolated two-body interactions occurring in turn. Pho-

toproduction of J/ψ occurs from either the proton or the neutron within the deuteron, and

then the three final-state hadrons (two nucleons and the produced J/ψ) may afterwards in-

teract with one-another. In particular, the J/ψ may scatter from the spectator to the initial

production reaction, which produces a distinct peak or dip in the differential cross section.

The size and shape of this peak provides a means of studying the J/ψ-nucleon interaction,

just as the magnitude and shape of differential cross sections in ordinary macrolabs allows

one to study the nature of scattering reactions.

Chapter 3 of this dissertation explores the use of vector meson photoproduction in a

deuteron breakup reaction in using the nucleus as a micro-lab for studying both the nature

of photoproduction reactions, and of meson-nucleon scattering reactions. This reaction

is analyzed in the framework of the generalized eikonal approximation, and a formalism

developed in Section 3.2 is applied to both φ(1020) production in Section 3.3 and J/ψ

production in Section 3.4.
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CHAPTER 2

Inclusive reactions

The easiest reactions to study in nuclear physics are fully inclusive reactions, where the

probe (usually an electron) that is scattered from a proton or nuclear target is the only

particle detected in the final state. Theoretically, inclusive reactions are characterized by

a summation over all possible final states. This allows the use of completeness relations,

meaning knowledge of the final state is not necessary to calculate scattering cross sections.

Accordingly, scattering cross sections depend only on the structure of the target and its

interaction with the probe.

By considering a pointlike probe that interacts through a well-understood mechanism

(e.g., an electron that interacts via photon exchange), the cross section for the reaction can

be used to study the structure of a hadronic target. The target will tend to be a proton

or a nucleus, although the formalism for inclusive scattering is typically given in terms of

a proton target. In what follows, the standard formalism for inclusive electron scattering

from a proton will be described (in Sec. 2.1), and subsequently the changes in the formalism

necessary for a nuclear target and their consequences will be explained (in Sec. 2.2).

The physical meaning of the “structure” of a hadron can be interpreted in terms

of constituents making up the hadron. These constituents are called partons, and in an

inclusive scattering reaction the probe can be understood as scattering from one constituent

parton. The partons making up a hadron target are mostly the quarks, anti-quarks and

gluons of QCD, although it is also believed that other elementary particles such as photons

make up a small part of a hadron’s partonic structure [11]. The distribution of these

partons in terms of light cone variables, quantified by the so-called parton distribution

functions (PDFs), can be related to the structure functions F1 and F2: firstly, in the quark-

parton model, which treats the constituents of the hadronic target as free and pointlike;

and secondly, in a perturbative correction to the quark-parton model that accounts for

interactions among partons. The main consequence of interactions among partons is that

the parton distribution functions must be regularized to deal with infrared divergences, and

10



Spacetime diagram for DIS

p

e

e′

X

Figure 2.1: Diagram for ep→ e′X.

as a result, they obtain dependence on the energy/momentum resolution scale at which the

hadron is probed. This resolution scale dependence is given by a set of evolution equations

called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [12–14].

The study of inclusive scattering on nuclear targets in particular allows one to examine

how conventional nuclear structure, namely the composition of the nucleus in terms of

protons and neutrons, interplays with the structure of nucleons in terms of partons to

produce the partonic structure of the nucleus. This interplay is described by a convolution

formula for nuclear PDFs, which is derived in Secs. 2.3.4, 2.4.5, and 2.4.9. The interplay

works two ways. Firstly, the partonic structure of the nucleus originates in part from

the motion of nucleons within the nucleus, which is described by the light cone fraction

distribution, the definition and formalism of which are given in Sec. 2.3; Secondly, the fact

that the nucleons making up the nucleus are immersed in a strongly-interacting medium

causes their structure (in the form of nucleonic PDFs) to be modified. This is described in

Sec. 2.5.

After the nuclear PDF formalism is developed, I will explore an application of it to

high-energy proton-nucleus collisions in Sec. 2.7.

2.1 General formalism

The most straightforward reaction that can be used to study the structure of a proton or

nuclear target is inclusive electron scattering. This reaction proceeds at the leading order

by exchange of a single photon, as depicted in Fig. 2.1.
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2.1.1 Kinematics

The reaction is characterized by the following kinematic variables:

• l (l′) is the initial (final) electron four-momentum.

• q = l − l′ is the four-momentum transfer.

• p is the target four-momentum.

• pX is the four-momentum of the unknown hadronic final state X.

• s = (p+ l)2 is the total center-of-mass energy squared.

• W 2 = (p + q)2 = p2X is the invariant mass of the state X.

• xB = −q2
2(p·q) is the Bjorken scaling variable.

• ν = (p·q)
M is the photon energy in the lab frame (target rest frame).

• Q2 = −q2 > 0 is the scalar momentum transfer.

• y = (p·q)
(p·l) is the inelasticity of the scattering.

2.1.2 Hadronic tensor and structure functions

Let λ (λ′) denote the helicity of the initial (final) electron, σ the helicity of the target, and

{λX,i} the internal degrees of freedom of the NX particles in the state X. The momentum-

space Feynman rules give a matrix element for inclusive electron scattering of

M =
e2

−q2 ū
λ′(l′)γµu

λ(l)〈X | Jµ(0) | p, σ〉, (2.1)

where Jµ(0) is the hadronic current operator that characterizes the transition p+ γ∗ → X,

the exact form of which depends on the particular final state X1. Final states with different

numbers of particles will add incoherently, and even have different phase space elements, so

summation over possible X should await calculation of the cross section. Use of the relation

dσ =
∑

X

|M|2
Φ

dQX (2.2)

1 The hadronic current is defined to be an argument of the spacetime point x, but in the momentum-space
representation one uses the operator evaluated at x = 0.
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for the unpolarized cross section element dσ, together with the flux Φ = 4(l · p) and the

phase space element

dQX = (2π)4δ(4)(p + q − pX)
d3l′

2E′
e(2π)

3

NX
∏

j=1

d3pX,j
2EX,j(2π)3

,

gives

E′
edσ

d3l′
=

α2
EM

4π(l · p)Lµν(l, l
′)
∫

dX(2π)4δ(4)(p+ q − pX)

1

2

∑

σ

〈p, σ | Jµ(0) | X〉〈X | Jν(0) | p, σ〉, (2.3)

where

∫

dX =
∑

X

∫ NX
∏

j=1

d3pX,j
2EX,j(2π)3

∑

{λX,j}
(2.4)

is shorthand for summation and integration over all hadronic states X, and where Lµν(k, k
′)

is the leptonic tensor, given by

Lµν(l, l
′) =

1

2

∑

λ,λ′

ūλ(l)γµu
λ′(l′)ūλ

′

(l′)γνu
λ(l) = 2

(

lµl
′
ν + l′µlν − (l · l′)gµν

)

. (2.5)

In analogy to the leptonic tensor, a hadronic tensor W µν(p, q) is also defined:

W µν(p, q) =
1

4πM

∫

dX(2π)4δ(4)(p+ q − pX)
1

2

∑

σ

〈p, σ | Jµ(0) | X〉〈X | Jν(0) | p, σ〉.

(2.6)

Since all the degrees of freedom associated with the final hadronic state X are summed,

it is a function of just p and q. The hadronic tensor is symmetric in its indices since any

anti-symmetric contributions will disappear when contracted with Lµν , and it is Hermitian

since exchanging the indices in Eq. (2.6) is equivalent to complex conjugation. Thus, it is
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a real-valued function. It is possible to rewrite W µν(p, q) as

W µν(p, q) =
1

4πM

∫

d4xeiq·x
1

2

∑

σ

〈p, σ | Jµ(x)Jν(0) | p, σ〉, (2.7)

which is found by using the Fourier transform δ(4)(p + q − pX) =
∫

d4xei·(p+q−pX), and

the fact that Jµ(0) transforms under the Poincare group as Jµ(0) = eiP̂ ·xJµ(0)e−iP̂ ·x.

Eq. (2.7) can be used as the starting point of the operator product expansion, which allows

a great deal of knowledge about proton or nuclear structure to be determined from general

principles such as symmetries. It can also be used to see that current conservation, i.e.,

∂µJ
µ(x) = 0 implies qµW

µν(p, q) = 0. The index exchange symmetry of W µν(p, q), along

with this current conservation condition, means that the most general possible form that

the hadronic tensor can take is

W µν(p, q) =

(

−gµν + qµqν

q2

)

W1(p, q)+

(

pµ − (p · q)qµ
q2

)(

pµ − (p · q)qµ
q2

)

W2(p, q)

M2
. (2.8)

The structure functions W1(p, q) and W2(p, q) are functions of just the scalar invariants q2

and (p · q), or equivalently of the momentum transfer Q2 = −q2 and the Bjorken scaling

variable xB = Q2

2(p·q) . Typically, one uses rescaled structure functions that are redefined to

be unitless (n.b. W1/2(p, q) have units of inverse energy):

F1(xB , Q
2) =MW1(p, q) (2.9)

F2(xB , Q
2) =

(p · q)
M

W2(p, q) = νW2(p, q). (2.10)

Since the hadronic tensor depends on these two structure functions alone, likewise does the

cross section. It is possible to derive from Eq. (2.3), and the definitions of the leptonic

tensor and structure functions:

dσ

dE′
edΩ

=
α2
EM

4E2
e sin

4 θ
2

[

1

ν
F2(xB , Q

2) cos2
θ

2
+

2

M
F1(xB , Q

2) sin2
θ

2

]

, (2.11)

where θ is the angle between the incident and scattered electron momenta.
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Spacetime diagram for DIS in parton model

p

e

e′

X

Figure 2.2: The reaction ep → e′X at a partonic level.

2.1.3 The parton model

The quark-parton model, originally proposed by J. D. Bjorken [15] and R. P. Feynman [16],

postulates that hadrons are made up of pointlike, structureless parts called “partons”.

According to this model, deep inelastic electron scattering occurs by exchange of a highly

virtual photon with a charged parton. A spacetime picture of such a process is depicted in

Fig. 2.2. The applicability of such a picture requires the interaction time to be extremely

short, in particular much shorter than the characteristic interaction times within the hadron.

This is achieved by (1) using the light cone formalism, where the light cone “time” is

given by x+ = ct+ z, and (2) going to the infinite momentum frame, i.e., taking the limit

p+ = E+pz → ∞, so that the light cone time x+ becomes infinitely dilated and the partonic

structure of the target becomes frozen. This is an idealization, but a decent approximation

in high-energy experiments, and one for which corrections can be calculated since the nature

of the partonic interactions (i.e., QCD) is known.

The parton model assumes a collinear approximation: in a frame of reference where

the composite hadron is moving extremely fast in the forward light cone direction, the

partons are assumed to be collinear with the target. Moreover, this approximation neglects

the masses of the partons, which are assumed to be small compared to the energy and

momentum transfer scales that characterize reactions where partons can be seen.

The quark-parton model is understood in the light cone framework, and the hadronic

tensor W µν(p, q) is calculated using light cone perturbation theory. Since this formalism is
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Feynman diagram for hadronic current in parton model

q
k′

k
p {kj}

(a) Parton from hadron

q k′

k

p

{kj}

(b) Parton from photon

q k′

k

p

{kj}

(c) Contact term

Figure 2.3: Feynman diagrams for 〈X | Jµ(0) | p, σ〉 in the parton model.

“time”-order dependent, there are three diagrams for matrix element 〈X | Jµ(0) | p, σ〉, de-

picted in Fig. 2.3. By appropriate choice of coordinates, namely with q+ = 0, the diagrams

of Fig. 2.3b (in which the photon splits) and Fig. 2.3c (in which the parton is “simultane-

ously” [in light cone time] present at both the photon and inside the hadron) can be made

to vanish [17]. Thus only Fig. 2.3a needs to be calculated.

Because of the collinearity of the quark-parton model, the component J−(0) of the

hadronic current decouples from the DIS reaction, meaning W−−(p, q) = W+−(p, q) =

W−+(p, q) = 0 [17]. Calculating W++(p, q) allows one to relate the parton distribution

function, defined by the formula [17]

fi/p(xB) =
∑

F

∫

dxd2k⊥
2x(2π)3

ns
∏

j=1

dxjd
2kj⊥

2xj(2π)3
2(2π)3δ(1)



1− x−
ns
∑

j=1

xj



 δ(2)



k⊥ +

ns
∑

j=1

kj⊥





δ(1)(x− xB)
∣

∣ψi,F/p(x,k⊥; {xj}, {kj⊥})
∣

∣

2
, (2.12)

to the structure function F2(xB , Q
2). Here, ψi,F/p(x,k⊥; {xj}, {kj⊥}) is the light cone wave

function of the parton within the hadron (cf. [18]). The relationship, given by [17]:

F2(xB) =
∑

i

e2i xBfi/p(xB), (2.13)

can be derived from the general form of W µν(p, q) within the quark-parton model.

The lack of dependence of F2 on Q2 in Eq. (2.13) is called Bjorken scaling [15,19] and

is a consequence of neglecting interactions between partons. It is an imperfect description

16



of experimental data for F2(xB , Q
2), which include logarithmic Q2 dependence known as

“scaling violations.” Several authors (see [12–14]) derived the so-called DGLAP evolution

equations, which introduce the requisite logarithmic Q2 dependence into fi/p(xB , Q
2) by

using the known forms of QCD interactions. Currently, a wide range of experimental data

agree to great precision with the predictions of DGLAP evolution [3].

In summary, the quark-parton model and DGLAP evolution are known to explain

the internal structure of the proton with great success. It is the purpose of the present

work to import this legacy to nuclear physics, and to describe nuclear structure in terms of

its partonic degrees of freedom. This possibility will be explored for the remainder of the

chapter.

2.2 Deep inelastic scattering from nuclei

It is in principle possible to perform deep inelastic scattering of electrons from any hadronic

target, and use experimental data about the reaction to determine the partonic structure

of this target. Nuclei may accordingly be targets in such experiments. The formalism

developed previously for proton targets may thus be applied directly to nuclei, with merely

changes of notation: pA and MA will notate the four-momentum and mass of the nucleus,

W µν
A (pA, q) the nuclear hadronic tensor, F

(A)
1/2 (xA, Q

2) the nuclear structure functions, etc.

The biggest change of notation arises from the conventional definition of the nuclear Bjorken

scaling variable; one defines, for nuclear DIS:

xA = A
Q2

2(pA · q) = A
Q2

2νMA
, (2.14)

with ν being the energy transfer from the lepton to the nucleus in the lab frame.

Direct application of the DIS formalism to a nuclear target, without any additional

development, would leave us back at the beginning: the wave function of the nucleus, in

terms of its partonic structure, cannot be calculated from first principles, and one would

need to determine the partonic structure of each nucleus separately from DIS experiments.

However, it is a the goal of further theoretical development to avoid this. Previously-
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obtained knowledge of the partonic structure of nucleons, together with knowledge about

the conventional nuclear structure of nuclei in terms of protons and neutrons, should be

combined in order to determine the partonic structure of nuclei. Once the nuclear parton

distribution functions (nPDFs) are theoretically obtained in this way, predictions for cross

sections can be compared to experiment.

For a very crude example of how nuclear and nucleonic partonic structure might be

related—with a conceptual justification for the factor of A present in the definition of xA—

consider what the partonic structure of nuclei would look like if a nucleus with mass number

A and charge number Z consisted of Z protons and (A − Z) neutrons, all non-interacting

and all at rest in the lab frame. If fi/p, fi/n, and fi/A denote the PDFs of the proton,

neutron, and nucleus respectively, then one would have

fi/A(xB , Q
2) = Zfi/p(xB , Q

2) + (A− Z)fi/n(xB , Q
2), (2.15)

in the approximation mp ≈ mn ≡ mN . In such a scenario, the lepton probe scatters from

one of the nucleons, and the contributions add incoherently. xB ≡ Q2

2νmN

2 is the proper

scaling variable, since the de facto target was one of the nucleus’s constituent nucleons,

which was at rest. However, xB is the fraction of the nucleon’s forward momentum carried

by the struck parton, rather than that of the nucleus. The fraction of the nucleus’s forward

momentum carried by the struck parton is instead

k+

p+A
=
k+

p+N

p+N
p+A

= xB
mN

MA
=

Q2

2νmN

mN

MA
=

Q2

2νMA
=
xA
A
.

In other words, xAA is the actual fraction of the nucleus’s light cone momentum carried by

the parton; however, xB ≈ xA (with the approximation being inexact owing to the binding

energy of the nucleus, i.e. the fact that MA 6= AmN ) is the scaling variable in the “free

nucleon” approximation. Accordingly, xB or xA is used in the comparison of nuclear to

nucleonic DIS data and predictions, since differences between the structure functions for

2 Bjorken xB is always defined with the nucleonic mass, rather than the target mass.
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the nucleon and nucleus at a fixed xA (where xA = xB in the special case A = 1) indicate

nuclear structure.

Another significant indication of nuclear structure comes from the possibility that

xA > 1. This is kinematically possible, since the upper limit of xA comes (kinematically)

from (pA + q)2 = p2X ≥M2
A, which entails Q2

2(pA·q) ≤ 1.

In particular, xA > 1 indicates motion of the struck nucleon. Although the upper limit

of the momentum fraction xN = k+

p+N
is 1, if the nucleon is bound and in motion relative

to the lab frame then xN 6= xB . In situations where xN < xB, since xN = 1 at most, one

can have xB > 1. Since this is purely an effect of nuclear structure, it is worth exploring

scenarios where xB > 1 (and xA > 1) will occur.

2.2.1 Nuclear hadronic tensor, structure functions, and parton distribu-

tions

The nuclear hadronic tensorW µν
A (pA, q) is defined in strict analogy to the proton’s hadronic

tensor, namely

W µν
A (pA, q) =

1

4πMA

∫

dX(2π)4δ(4)(pA + q − pX)

1

2

∑

sA

〈pA, sA | Jµ(0) | X〉〈X | Jν(0) | pA, sA〉. (2.16)

Just as with the hadronic tensor of the proton, the nuclear hadronic tensor decomposes into

a sum of scalar functions of pA and q, namely

W µν
A (pA, q) =

(

−gµν + qµqν

q2

)

W
(A)
1 (pA, q)

+

(

pµA − (pA · q)qµ
q2

)(

pµA − (pA · q)qµ
q2

)

W
(A)
2 (pA, q)

M2
A

, (2.17)
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and moreover structure functions F
(A)
1 (xA, Q

2) and F
(A)
2 (xA, Q

2) are defined in terms of

these as

F
(A)
1 (xA, Q

2) =MAW
(A)
1 (pA, q) (2.18)

F
(A)
2 (xA, Q

2) =
(pA · q)
MA

W
(A)
2 (pA, q) = νW

(A)
2 (pA, q). (2.19)

One can find F
(A)
2 (xA, Q

2) by looking specifically at the ++ component of the nuclear

hadronic tensor; one finds

W++
A (pA, q) =

(p+A)
2

MA(q · pA)
F

(A)
2 (xA, Q

2). (2.20)

With Eq. (2.20), we are in a position to find the relationship between F
(A)
2 (xA, Q

2) and the

nuclear PDF.

The derivation of the nuclear PDF is given now. In particular, we find the expression

for W++
A (pA, q) in terms of the nuclear PDF by first evaluating the matrix element 〈X |

J+(0) | pA, sA〉. The final state X in this derivation is characterized by the flavor i of the

struck parton, since a hard probe will knock the struck parton far from the rest of the target,

causing flavor to be added incoherently, and the Fock component F of partons making up

the nucleus. Realistically, in nuclear DIS reactions, one or a few nucleons are removed and

just one of the nucleons is destroyed, leaving the others, as well as a nuclear remnant, intact.

However, owing to quark-hadron duality, we can express a general final state (including e.g.,

states where just one nucleon is removed and destroyed and the remaining (A− 1) nucleons

are left in an excited bound state) in terms of quark and gluon degrees of freedom, and a sum

over all such partonic degrees of freedom is equivalent to a sum over all possible hadronic

final states. Therefore, we proceed in this section by considering the final hadronic state as

| X〉 =| i,F〉. Later in this chapter, scenarios with more specific final states (in terms of

nucleonic degrees of freedom) will be considered, and comparing the result of this derivation

to that of subsequent calculations will be used to relate the nuclear PDF to the nucleonic

degrees of freedom of the nucleus.
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Bearing these considerations in mind, we have

〈i,F | J+(0) | pA, sA〉 = ūλ
′

i (k
′)eiγ

+

∑

λ u
λ
i (k)ū

λ
i (k)Θ(k+)

k+D(k−)





ns
∏

j=1

ū
λj
ij
(kj)



ΓF/Au
sA
A (pA),

(2.21)

where here usAA (pA) denotes the part of the nuclear wave function that transforms under an

irreducible representation of the Lorentz group3. The denominator factor, D(k−) is given

by

D(k−) = p−A − k− −
ns
∑

i=1

k−i =
1

p+A



M2
A − m2

i + k2
⊥

x/A
−

ns
∑

j=1

m2
ij
+ k2

j⊥
xj/A



 , (2.22)

where x = Ak+

p+A
and xi = A

k+i
p+A

, since we consistently adopt the convention of scaling

momentum fractions by A as long as xA is going to be scaled as such. Except for the factor

of 1
p+A

, this is the denominator of the light cone wave function [18], give by:

ψ
(λ,{λj};sA)

i,F/A (x,k⊥; {xj}, {kj⊥}; pA) =

[

∏ns
j=1 ū

λj
ij
(kj)

]

ūλi (k)ΓF/Au
sA
A (pA)

M2
A − m2

i+k2
⊥

x/A −∑ns
j=1

m2
ij
+k2

j⊥

xj/A

. (2.23)

Using this and the spinor relation ūλ
′

(k′)γ+uλ(k) = 2
√
k+k′+δλλ′ gives

〈i,F | J+(0) | pA, sA〉 = ei2p
+
Aψ

(λ,{λj};sA)

i,F/A (x,k⊥; {xj}, {kj⊥}; pA). (2.24)

Therefore we have, for the ++ component of the nuclear hadronic tensor,

W++
A (pA, q) =

1

4πMA

∑

i,F

∫

dk′+d2k′
⊥

2k′+(2π)3

ns
∏

j=1

dk+j d
2kj⊥

2k+j (2π)
3

[

(2π)4δ(4)



pA + q − k′ −
ns
∑

j=1

kj





4(p+A)
2
∣

∣ψi,F/A(x,k⊥; {xj}, {kj⊥})
∣

∣

2

]

. (2.25)

3 For instance, if the nucleus is spin-half, uA is just a Dirac spinor; if the nucleus is spin-zero, uA is a
constant; if the nucleus is spin-one, uA is a polarization four-vector; and so on.
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We work with three particular approximations when using the quark-parton model: (1) the

collinear approximation, in which the transverse momentum of the partons is set to zero

prior to scattering; (2) the massless quark approximation; and (3) the Bjorken limit, in

which Q2 is much larger than other energy scales involved, but Q2/ν is fixed. Within these

approximations, the four-dimensional delta function evaluates to

δ(4)



pA + q − k′ −
ns
∑

j=1

kj



 =
xA

(q · pA)
δ(1) (x− xA)

δ(1)



1− x

A
−

ns
∑

j=1

xj
A



 δ(2)



k⊥ +

ns
∑

j=1

kj⊥



 . (2.26)

Next, we need to employ the definition of a parton distribution, but must be careful that

the formal definition will be given in terms of a scaled momentum fraction. If a prototypical

nuclear PDF is given in terms of an unscaled momentum fraction x̃A = xA/A as

f̃i/A(x̃A) =
∑

F

∫

dx̃d2k⊥
2x̃(2π)3

ns
∏

j=1

dx̃jd
2kj⊥

2x̃j(2π)3
2(2π)3δ(1)



1− x̃−
ns
∑

j=1

x̃j



 δ(2)



k⊥ +

ns
∑

j=1

kj⊥





δ(1)(x̃− x̃A)
∣

∣ψi,F/p(x̃,k⊥; {x̃j}, {kj⊥})
∣

∣

2
, (2.27)

i.e., if the ordinary definition of a PDF in terms of the true momentum fraction is used,

then because the ordinary sum rules are obeyed for integrations over x̃A, e.g.

∫ 1

0
dx̃A

[

f̃u/A(x̃A)− f̃ū/A(x̃A)
]

= Nu = 2Z + (A− Z) (2.28)

∑

i

∫ 1

0
dx̃Ax̃Af̃i/A(x̃A) = 1, (2.29)

we have for the scaled fraction xA the relations

∫ A

0
dxA

[

f̃u/A(xA)− f̃ū/A(xA)
]

= ANu = 2AZ +A(A− Z) (2.30)

∑

i

∫ A

0
dxAxAf̃i/A(xA) = A2. (2.31)
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This is not the correct normalization for the nPDF, since integration over the chosen mo-

mentum fraction should yield Nu for the valence quark sum rule and A for the momentum

sum rule (rather than 1, since the scaling of xA by A means the total amount of forward

momentum in fractional units is A). Thus, the correct definition of the nPDF in terms of

xA is fi/A = 1
A f̃i/A, or

fi/A(xA) =
∑

F

∫

dxd2k⊥
2x(2π)3

ns
∏

j=1

dxjd
2kj⊥

2xj(2π)3
2(2π)3δ(1)



1− x

A
−

ns
∑

j=1

xj
A



 δ(2)



k⊥ +

ns
∑

j=1

kj⊥





δ(1)(x− xA)
∣

∣ψi,F/p(x,k⊥; {xj}, {kj⊥})
∣

∣

2
, (2.32)

where the factor of 1
A has been absorbed by the delta function δ(1)(x − xA). With this

definition in hand, one finds that

W++
A (pA, q) =

(p+A)
2

MA(pA · q)
∑

i

e2i xAfi/A(xA), (2.33)

or in terms of the nuclear structure function,

F
(A)
2 (xA) =

∑

i

e2i xAfi/A(xA). (2.34)

Eq. (2.34) predicts scaling for nuclear DIS in the Bjorken limit. Scaling violations will

however occur due to interactions between partons, and these violations are manifested in

Q2 evolution of the nuclear PDF.

While these formulas look identical in their form to those of the proton PDF, it was

important to ensure that this identical form held in spite of the A-scaled definition of xA.

With these formulas in hand, it is possible to now relate the nuclear PDF to the nucleonic

degrees of freedom of the nucleus, together with the partonic structure of the nucleons. To

do this will require that a formalism be developed for describing the nucleonic degrees of

freedom in a manner formally equivalent to the partonic degrees of freedom, i.e., in terms

of a light cone fraction distribution. This is done in the next section.
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2.3 The nuclear light cone fraction distribution

To describe nuclear structure in the light cone momentum representation, we use a light

cone fraction distribution (LCFD) fN/A(α,p⊥). This essentially describes how nucleons of

“flavor” N = p and N = n are distributed over various values of the (scaled) light cone

momentum fraction

α = A
p+N
P+
A

, (2.35)

as well as the nucleon transverse momentum p⊥. The LCFD is defined in analogy to the

parton distribution function, but instead it describes the distribution of nucleons inside a

nucleus. In particular, it is defined to satisfy sum rules, viz.

∫ A

0
dα

∫

d2p⊥
(

fp/A(α,p⊥)− fp̄/A(α,p⊥)
)

= Z (2.36)

∫ A

0
dα

∫

d2p⊥
(

fn/A(α,p⊥)− fn̄/A(α,p⊥)
)

= (A− Z), (2.37)

in analogy to the valence quark sum rules for the PDF of a proton, and a momentum

conservation sum rule

∑

N

∫ A

0
dα

∫

d2p⊥
α

A
fN/A(α,p⊥) = 1. (2.38)

Notice that Eqs. (2.36,2.37) state that (e.g.) the number of protons minus the number

of anti-protons in the nucleus is fixed to Z, in analogy to the number of u quarks minus ū

antiquarks being fixed to 2 in the proton. This accounts for the possibility, in principle, of

a proton and anti-proton being created within the nucleus, something that could happen

(with a very tiny probability) if an evolution equation analogous to DGLAP were developed

and applied to the hadronic structure of the nucleus. Developing an account of evolution in

this way would be less straightforward than in the case of QCD, since conventional nuclear

physics is not a fundamental theory describing pointlike objects. However, since nucleon

masses are large in comparison to momentum transfer scales where conventional nuclear

physics is applicable, the creation of nucleon-antinucleon pairs is extremely unlikely, and it
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is reasonable to take fp̄/A(α,p⊥) = fn̄/A(α,p⊥) = 0. Accordingly, the baryon number sum

rules are simplified to

∫ A

0
dα

∫

d2p⊥fp/A(α,p⊥) = Z (2.39)

∫ A

0
dα

∫

d2p⊥fn/A(α,p⊥) = (A− Z). (2.40)

2.3.1 Decomposition of the LCFD

For relativistic bound states, the meaning of such a quantity as the LCFD is best understood

in terms of processes. Most straightforward to consider are scenarios where an impulse

approximation works reasonably well; a hard probe collides with a single nucleon, producing

some final state (by scattering elastically, destroying the nucleon, inducing production of

specific hadrons, or something else), without any final state interactions with the remainder

of the nucleus. The lack of final state interactions requires that the entire process occurs

within a very small time and distance scale, requiring sufficiently large Q2 and xA. In

particular, xA should be considered well within the valence region of the nuclear PDF, so

xA & 0.2, and one should take Q2 ≫ m2
N in order to avoid complications from higher-twist

and target mass effects.

Even within the impulse approximation, it is possible to obtain final states with

varying numbers of removed nucleons. Consider first the mean field approximation, which is

is characterized by the assumption that each nucleon within the nucleus acts independently,

under the influence of the force produced by the bulk of the nucleus (i.e. by the other (A−1)

nucleons). In other words, none of the (A − 1) spectators is specifically correlated with

a nucleon that is removed in a nuclear reaction, and the missing momentum in e.g., the

quasi-elastic removal reaction A(e, e′N) is shared entirely by the remaining (A−1) nucleons,

which remain in a bound state. In other nuclear processes (such as hadron production and

inclusive DIS), the final state will be more complicated than e′ + N + (A − 1), and the

removed nucleon may even be destroyed (such as in the case of DIS), but the contribution
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of the mean field to such a reaction will nonetheless include a remnant of (A− 1) nucleons

in a bound, possibly excited state.

On the other hand, it is possible to have configurations where a small number of

nucleons cluster at short distance, and balance each others’ momenta. For instance, there

are configurations where the probed nucleon has a large initial momentum in the nuclear

center of momentum frame, & 250 MeV or so, which is balanced almost entirely by a single

nucleon. Such a configuration is called a short range correlation (SRC), and probing a

nucleon in an SRC will remove not just the probed nucleon, but its correlated partners

from the nucleus as well. This will be explained further in Sec. 2.4.

Since final states with different numbers of removed nucleons occupy far distant re-

gions of phase space, the probabilities for processes which produce these final states will add

incoherently. Accordingly, within the impulse approximation, the distributions describing

scenarios which will result in these incoherently added final states can also be added inco-

herently. In other words, the LCFD can be decomposed into distributions of nucleons within

the mean field (which will produce one removed nucleon) and within j-nucleon correlations

(which will produce j removed nucleons). In equations, we have

fN/A(α,p⊥) = f
(MF)
N/A (α,p⊥) +

A
∑

j=2

f
(j)
N/A(α,p⊥) =

A
∑

j=1

f
(j)
N/A(α,p⊥), (2.41)

where f
(1)
N/A(α,p⊥) may be used to denote the mean field part of the LCFD (i.e. the part

that contributes to the one nucleon removal cross section). Since fN/A(α,p⊥) is normalized

to the number of nucleons of “flavor” N in the nucleus (e.g. fp/A(α,p⊥) is normalized to

Z), f
(j)
N/A

(α,p⊥) in general will not be normalized as such; instead, f
(j)
p/A

(α,p⊥) will be

normalized to the average number of protons in the mean field (j = 1) or in a j-nucleon

SRC (j ≥ 2). Likewise, 1
Z f

(j)
p/A(α,p⊥) will indicate the probability of a single proton being

in the mean field or a j-nucleon correlation.
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Cut diagram for LCFD

pA pA

pN pN

p(A−1)

V̂

×

Figure 2.4: Cut diagram for finding the LCFD.

2.3.2 Diagrammatic rules for the LCFD

It is possible to find a set of diagrammatic rules for calculating the LCFD and derive

relations involving it. There are obstacles to using the most straightforward methods such

as the optical theorem, since nucleons are not elementary particles and the vertex factors

involved in the process may contain poles in the complex plane in addition to the poles

contained in the propagators, and since the final state particles will not necessarily all be

nucleons, but will in general contain a bound state of (A−1) or (A−j) nucleons (depending

on how many nucleons are removed in the relevant process).

In light of these concerns, one instead uses a cut diagram, an example of which is

depicted in Fig. 2.4. In the cut diagram, spectator particles are placed on their light cone

energy shells, while the interacting particle has an operator V̂N (α,p⊥;αN ,pN⊥), given by

V̂N (α,p⊥;αN ,pN⊥) =
∑

σ

a†N (p, σ)
α

A
δ(1)(α− αN )δ

(2)(p⊥ − pN⊥)aN (p, σ), (2.42)

placed on its internal line.

The creation and annihilation operators satisfy the rules

ūσ
′

N ′(p)a
†
N (p, σ) = aN (p, σ)u

σ′

N ′(p) = δσσ′δNN ′ .

Essentially, the operator V̂N (α,p⊥;αN ,pN⊥) fixes the light cone fraction and the transverse

momentum of a probed nucleon to the fixed values α and p⊥, respectively, and ensures

that the probed nucleon is of the correct “flavor” N . This does not involve a sum over
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all nucleons, however. In Fig. 2.4, for instance, the final state is known to consist of a

single nucleon and a bound state of (A − 1) nucleons. Accordingly, this diagram is used

for calculating 1
AχN

f
(MF )
N/A (α,p⊥) (where χN is the fraction of nucleons of “flavor” N, i.e.

χp =
Z
A and χn = (A−Z)

A ).

2.3.3 The LCFD for the mean field

Using Fig. 2.4, let us calculate the LCFD of the mean field using the rules of light cone

perturbation theory. We have

f
(MF )
N/A (α,p⊥) =

∑

sA

∫

dαsd
2ps⊥

2αs(2π)3

[

ūsAA (pA)ΓN/A

∑

σN
uσNN (pN )ū

σN
N (pN )

p+ND(p−N )
(

∑

σs

uσs(A−1)(ps)ū
σs
(A−1)(ps)

)

V̂N (α,p⊥;αN ,pN⊥)

∑

σ′N
u
σ′N
N (pN )ū

σ′N
N (pN )

p+ND(p−N )
ΓN/Au

sA
A (pA)

]

=
∑

sA

∑

σN ,σs

A

αNαs

∣

∣

∣

∣

∣

1
√

2(2π)3

ūσNN (pN )ū
σs
(A−1)(ps)ΓN/Au

sA
A (pA)

p+AD(p−N )

∣

∣

∣

∣

∣

2

, (2.43)

where

p+AD(p−N ) =M2
A − m2

N + p2
N⊥

αN/A
−
M2

(A−1) + p2
N⊥

αs/A
.

The squared quantity between the | | in Eq. (2.43) takes roughly the form of a two-body

wave function. However, a two-body light cone wave function is normalized to satisfy the

relation

∫

dαNd
2pN⊥

αN (A− αN )

∣

∣

∣ψ
(MF )
N/A (αN ,pN⊥)

∣

∣

∣

2
= 1, (2.44)
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whereas the normalization of f
(MF )
N/A (α,p⊥) to χNA requires the right-hand side of Eq. (2.43)

to be normalized as well to χNA. In other words, the mean field wave function is given by

ψ
(MF )(σN )
N/A (αN ,pN⊥) =

1√
χN

1
√

2(2π)3

ūσNN (pN )ū
σs
(A−1)(ps)ΓN/Au

sA
A (pA)

M2
A − m2

N+p2
N⊥

αN/A
− M2

(A−1)
+p2

N⊥

αs/A

, (2.45)

and thus the LCFD is related to the wave function in the mean field by

f
(MF )
N/A (α,p⊥) = χNA

1

αNαs

∣

∣

∣ψ
(MF )
N/A (αN ,pN⊥)

∣

∣

∣

2
. (2.46)

With this, the baryon sum rule and the wave function normalization rule are simultaneously

satisfied.

The mean field contribution to the nuclear wave function falls off rapidly above the

Fermi momentum, which for a typical heavy nucleus is around 250 MeV [20]. Since
k2F
m2

N
∼

0.005 ≪ 1, the non-relativistic limit is a valid approximation for these momenta, and

relativistic corrections to a non-relativistic mean field model will at most be on the order

one percent.

Constructing a non-relativistic mean field model requires relating the LCFD to the

non-relativistic wave function. The non-relativistic wave function is different from the

light cone wave function, since it is normalized in terms of different variables. Namely,

it is normalized to satisfy
∫

d3p
∣

∣

∣
ψ
(NR)
N/A (p)

∣

∣

∣

2
= 1, so must be related to the LCFD by

f
(MF )
N/A (α,p⊥)dα =

∣

∣

∣ψ
(NR)
N/A (p)

∣

∣

∣

2
dpz. In the non-relativistic limit, we have dpz ≈ MA

A dα, so

the mean field LCFD is, in the non-relativistic limit:

f
(MF )
N/A (α,p⊥) =

MA

A

∣

∣

∣ψ
(NR)
N/A (p)

∣

∣

∣

2
. (2.47)

With Eq. (2.47), it is possible to perform numerical computations for the mean field

contribution to the LCFD, and thus calculate cross sections for incoherent nuclear processes

with one nucleon removed. Existing calculations of the mean field contribution have been

done using Hartree-Fock approximations. For numerical computations, the mean field mo-
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Feynman diagram for hadronic current of mean field

q
k′

k

pN

{kj}

pA

p(A−1)

Figure 2.5: Diagram for 〈X | J+(0) | pA, sA〉 in the mean field approximation.

mentum distributions calculated for 56Fe and 208Pb by Zverev and Saperstein [21] will be

used in this dissertation.

2.3.4 Nuclear PDF in the mean field

The nuclear PDF within the mean field model of the nucleus can be related to the LCFD

by the following convolution formula:

f
(MF )
i/A (xA, Q

2) =
∑

N=p,n

∫ A

xA

dα

α

∫

d2p⊥f
(MF )
N/A (α,p⊥)f

(b,MF )
i/N

(xA
α
,Q2;α,p⊥

)

. (2.48)

The function f
(b,MF )
i/N

(

xA
α , Q

2;α,p⊥
)

is the bound nucleon PDF for a parton with flavor i.

The superscript b signifies that the nucleon is bound, which in general may alter its partonic

structure. (See Sec. 2.5 for further discussion about this.) How the partonic structure of a

bound nucleon is modified may depend on how strongly it is bound, which can depend on

the kinematic parameters α and p⊥, which is why they are included as arguments. Here, I

shall derive the convolution formula within the mean field approximation.

First, as before, the formula for W++
A (pA, q) (given in Eq. (2.16)) is used. However, in

evaluating the matrix element 〈X | J+(0) | pA, sA〉 of the hadronic current, we characterize

the final hadronic state X as consisting of (1) a (possibly excited) bound state of (A − 1)

30



nucleons; (2) the Fock component F of the probed nucleon; (3) the “flavor” N of the probed

nucleon4; and (4) the flavor i of the probed parton.

The diagram for the matrix element is given in Fig. 2.5, and the rules of light cone

perturbation theory give

〈X | J+(0) | pA, sA〉 = ūλ
′

i (k
′)eiγ

+

∑

λ u
λ
i (k)ū

λ
i (k)

k+D(k−)





ns
∏

j=1

ū
λj
ij
(kj)



Γi,F/N

∑

λ u
σN
N (pN )ū

σN
N (pN )

p+ND(p−N )
ūσs(A−1)(ps)ΓN/Au

sA
A (pA)

= 2p+Aeiδλλ′ψ
(λ,{λj};σN )

i,F/N (xN ,k⊥, {xj ,kj⊥};αN ,pN⊥)

ψ
(σN ,σs;sA)(MF )
N/A (αN ,pN⊥), (2.49)

where xN = k+/p+N and xj = k+j /p
+
N are the partons’ light cone momentum fractions with

respect to the nucleon’s forward light cone momentum. It is worth noting that since the

nucleon is in motion, the partonic wave function of the nucleon is given (in the lab frame)

as a function of αN and pN⊥ in addition to the partons’ momenta.

In addition to the hadronic current matrix element, we must rewrite the four-dimensional

delta function in W++
A (pA, q). It decomposes in terms of light cone momenta as δ(4)(∆p) =

2δ(1)(∆p+)δ(1)(∆p−)δ(2)(∆p⊥), with the “plus” and transverse components becoming state-

ments of conservation rules within the nucleonic PDF, namely

δ+ = δ(1)



p+N − k+ −
ns
∑

j=1

k+j



 =
A

αNp
+
A

δ(1)



1− xN −
ns
∑

j=1

xj



 (2.50)

δ⊥ = δ(2)



pN⊥ − k⊥ −
ns
∑

j=1

kj⊥



 , (2.51)

and the “minus” delta function setting the momentum fraction xN in terms of external

observables; namely, in the collinear and massless quark approximations, with the Bjorken

4 Since isospin is conserved in strong nuclear processes, the final states produced by a probed proton and
neutron will be distinct.
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limit taken, we have

δ− = p+Aδ
(1)

(

2(q · pA)−
AQ2

xNαN

)

=
xAp

+
A

2(q · pA)αN
δ(1)

(

xN − xA
αN

)

, (2.52)

where we have defined xA = AQ2

2(q·pA) . This gives a nuclear hadronic tensor of

W++
A (pA, q) =

(p+A)
2

MA(q · pA)
xA
∑

i

e2i
∑

N

{

∫

dαN
αN

d2pN⊥
AχN

∣

∣

∣
ψ
(MF )
N/A (αN ,pN⊥)

∣

∣

∣

2

αN (A− αN )

∫

dxNd
2k⊥

2xN (2π)3

ns
∏

j=1

dxjd
2kj⊥

2xj(2π)3

[

∣

∣ψi,F/N (xN ,k⊥, {xj ,kj⊥};αN ,pN⊥)
∣

∣

2

2(2π)3δ(1)



1− xN −
ns
∑

j=1

xj



 δ(2)



pN⊥ − k⊥ −
ns
∑

j=1

kj⊥





]}

=
(p+A)

2

MA(q · pA)
xA
∑

i

e2i
∑

N

∫

dαN
αN

d2pN⊥

[

f
(MF )
N/A (αN ,pN⊥)

f
(b,1)
i/N

(

xA
αN

, Q2;αN ,pN⊥

)

]

. (2.53)

Comparing this to Eq. (2.33), we have the convolution formula

f
(MF )
i/A (xA, Q

2) =
∑

N

∫ A

xA

dα

α

∫

d2p⊥f
(b,1)
i/N

(xA
α
,Q2;α,p⊥

)

f
(MF )
N/A (α,p⊥) (2.54)

for the nPDF in the mean field. The lower limit of α in this integration is determined by

the constraint that xN = xA/α ≤ 1.

2.4 Short range correlations

A short-range correlation (SRC) is a high-momentum, short-distance configuration of several

nucleons within a nucleus. These stand in contrast to a mean field configuration, where

each nucleon moves independently under the average influence of the (A−1) other nucleons.

In an SRC, by contrast, the nucleons within the short-distance configuration are strongly

correlated with each other, and, owing to the short distance and the strength of the inter-

nucleon force at short distances, nucleons in a j-nucleon SRC are predominantly influenced
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by each other in their dynamics, with the influence of the (A − j) remaining nucleons

negligible in comparison.

2.4.1 The convolution formula

As discussed in Sec. 2.3.1, processes that involve different numbers of removed nucleons

make contributions to the DIS cross section that are incoherently added. Since DIS from

a short range correlation produces a different number of removed nucleons than mean field

contributions—namely, j removed nucleons for a j-nucleon SRC—the mean field and j-

nucleon SRCs add incoherently. This is encoded at the level of purely nucleonic physics by

the decomposition of the LCFD in Eq. (2.41). A similar relation holds for the nuclear PDF,

namely:

fi/A(xA, Q
2) = f

(MF )
i/A (xA, Q

2) +

A
∑

j=2

f
(j)
i/A(xA, Q

2) =

A
∑

j=1

f
(j)
i/A(xA, Q

2). (2.55)

The mean field contribution to the nPDF is related to the mean field part of the LCFD

by Eq. (2.54). There is the question of whether a similar relation holds for the j-nucleon

SRC contributions to the nPDF and their contributions to the LCFD. In fact, it will be

demonstrated in this section that the following relation explicitly holds for j = 2 and

j = 3-nucleon correlations:

f
(j)
i/A(xA, Q

2) =
∑

N=p,n

∫ A

xA

dα

α

∫

d2p⊥f
(j)
N/A(α,p⊥)f

(b,j)
i/N

(xA
α
,Q2;α,p⊥

)

. (2.56)

Here, f
(b,j)
i/N

(

xA
α , Q

2;α,p⊥
)

is the bound nucleon PDF, which differs from the free nucleon

PDF due to immersion of the nucleon in the strongly-interacting nuclear medium. It is

indexed by j since the form of the medium modification is likely to differ for a nucleon

influenced primarily by the mean field and one whose dynamics are primarily influenced by

a small number of correlated partners. Accordingly, the j-nucleon SRC contribution to the

nPDF must be calculated by a separate convolution formula of the form Eq. (2.56) for each

j, and then added, to obtain the total nPDF.
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2.4.2 Motivation and evidence for two-nucleon SRCs

In the 1980s and 1990s a series of proton removal experiments that hinted at 2N SRCs were

performed with hard electron probes. These experiments are summarized in Refs. [22–24].

Lapikas [25] found in an analysis of the 1980s proton removal experiments [22, 23] that

only 60 to 70% of protons appear to occupy the valence orbitals generated by the mean

internucleon potential. By contrast, Hartree-Fock calculations predict 90% occupancy for

these orbitals [25], with the other 10% in orbitals above the Fermi level owing to long-

range correlations. On the other hand, it has been found that calculations which include

appreciable short range correlations induced by a tensor interaction can account for the

missing 20 to 30% of protons. In other words, it was predicted on the basis of spectroscopic

measurements that 20-30% of protons are in two-nucleon short-range correlations.

More recent experiments with high-energy electron and proton probes have more

directly demonstrated the existence of two-nucleon SRCs through triple-coincidence mea-

surements (cf. [26–28]). In these experiments, the probe and a removed proton are detected

and their momenta measured, allowing the missing momentum to be calculated. When the

removed proton is a member of a short-range nucleon pair, the missing momentum will be

almost entirely carried by the proton’s correlated partner, rather than shared by the bulk

of the nucleus. If another nucleon is detected that carries all of the missing momentum,

then a two-nucleon SRC was probed.

In addition to the existence of two-nucleon SRCs, such triple-coincidence experiments

have also studied their properties. In particular, several experiments [26, 27, 29, 30] have

demonstrated that the majority (& 90%) of 2N SRCs are proton-neutron pairs. This leads

one to expect that the light cone fraction distribution for such an SRC should follow the high-

momentum LCFD of the deuteron in its functional form. Additionally, several theoretical

and experimental studies (see [30–33]) have found that the pn dominance of 2N SRCs

increases the average momentum of a proton in neutron-rich nuclei, since fewer protons are

present to be paired with neutrons into SRCs.
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Another important property of two-nucleon SRCs has been studied by recent exper-

iments, namely the universality of the high-momentum functional form of the momentum

distribution. The universality is observed in low-Q2 quasi-elastic electron scattering exper-

iments, where the ratio

R(A,A′) =
A′

A

σeA(x,Q
2)

σeA′(x,Q2)
(2.57)

is measured, where the comparison nucleus A′ has typically been either 2H or 3He.

The earliest experiments with evidence for two-nucleon correlations in cross section

ratios were performed at SLAC. Frankfurt et al. [34] analyzed a series of electron-nucleus

scattering experiments at SLAC and found that Q2 & 0.9 GeV2 and xB & 1.4, the ratio

R(A, d) became roughly constant as a function of xB at fixed Q2, i.e., this ratio formed a

plateau. In the range 1.4 < xB < 2, Frankfurt et al. defined

a2(A) =
2

A

σeA
σed

, (2.58)

and extracted values of this factor for 3He, 4He, 12C, 27Al, 56Fe, and 197Au from the SLAC

experiments. While a2(A) itself was taken as an experimentally constrained parameter, the

existence of plataeus, as well as the functional form of the ratio R(A, d) as a function of x,

were predictions of [34] derived from their short-range correlation model. In their model,

the light cone distribution of nucleons in a nucleus scales like the light cone distribution of a

deuteron. a2(A) can be interpreted in this framework as a probability factor for two-nucleon

SRCs.

Later experiments at Jefferson Lab, in particular a CLAS experiment by Kim Egiyan

et al. [8, 35] and a Hall C experiment by Fomin et al. [36], measured electron scattering

cross section ratios for a range of nuclei in the region Q2 ≥ 1.4 GeV2 and xB > 1.5. Both

experiments found scaling plateaus, the former in the ratio R(A, 3He) for 4He, 12C, and 56Fe,

and the latter in the ratio R(A, d) for 3He, 4He, 9Be, 12C, 63Cu, and 197Au. Weinstein et

al. [7] converted the R(A, 3He) measurements of CLAS into a2(A) values using a calculated

R(2H, 3He).
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Cut diagram for two-nucleon SRC

p2N p2N

p1 p1

p2

V̂

×

Figure 2.6: Cut diagram for the LCFD of a two-nucleon SRC.

In summary, there is a large body of evidence for the existence of two-nucleon short

range correlations in nuclei, and a fair amount of experimental constraint on the properties

of 2N SRCs. It is well-known that the majority of two-nucleon SRCs occur in proton-

neutron pairs, and that the functional dependence of the momentum distribution follows

the high-momentum part of the deuteron distribution. Moreover, for a range of nuclei,

the scale factor a2(A) is well-known. These facts will constrain the theoretical analysis of

two-nucleon SRCs to follow.

2.4.3 Light cone fraction distribution for 2N SRCs

The empirical evidence for two-nucleon SRCs described in Sec. 2.4.2 points to a strong

dominance of NN pairs that both share the quantum numbers of the deuteron, i.e., are spin-

one and isospin zero, and share the functional form of the deuteron momentum distribution

at high momentum. Accordingly, the LCFD of the two-nucleon SRC is modeled after the

LCFD of the deuteron. In particular, the LCFD can be derived using light cone perturbation

theory, applied to the cut diagram in Fig. 2.6. For the cut diagram, the operator V̂ (α,p⊥)

given in Eq. (2.42) is placed on one of the internal nucleon lines.

First, the LCFD of the deuteron is derived, since the LCFD of 2N SRCs is modeled

after it. Since the deuteron consists of one proton and one neutron, and is an isospin

zero state, we should have fp/d(α,p⊥) = fn/d(α,p⊥), each of these being normalized to

Z = (A−Z) = 1. Using this normalization rule, together with the cut diagram of Fig. 2.6,
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we have

fp/d(α,p⊥) =
∑

sd

∫

dαnd
2pn⊥

2αn(2π)3

[

ūsdd (pd)Γdpn

(

∑

σn

uσnn (pn)ū
σn
n (pn)

)
∑

σp
u
σp
p (pp)ū

σp
p (pp)

p+p D(p−p )
(

∑

σ

a†p(p, σ)
α

2
δ(1)(α− αp)δ

(2)(p⊥ − pp⊥)ap(p, σ)

)

∑

σp
u
σp
p (pp)ū

σp
p (pp)

p+p D(p−p )
Γdpnu

sd
d (pd)

]

. (2.59)

The rules for creation and annihilation operators are applied, and the delta functions elim-

inate the integrations with help of the momentum conservation relations αp + αn = 2 and

pp⊥ + pn⊥ = pd⊥. Additionally, it is noted that

p+p D(p−p ) =
αp
2
p+d
(

p−d − p−p − p−n
)

=
αp
2

(

M2
d + p2

d⊥ −
m2
p + p2

p⊥
αp/2

− m2
n + p2

n⊥
αn/2

)

= αp
1

2

[

M2
d − 4

(

m2
N +

(αp − 1)2m2
N +

[

pp⊥ − αp

2 pd⊥
]2

αpαn

)]

≡ αp
1

2

[

M2
d − 4

(

m2
N + k2

)]

, (2.60)

where k2 is written as a shorthand for

k2 =
(αp − 1)2m2

N +
[

pp⊥ − αp

2 pd⊥
]2

αpαn
. (2.61)

It should be noted that k = |k|, where k is effectively the internal, relative momentum of the

proton-neutron pair corresponding to the light cone momentum fraction αp. In particular,

p⊥ − α

2
pd⊥ = k⊥ (2.62)

α = 2

√

k2 +m2
N + kz

2
√

k2 +m2
N

= 1 +
kz

√

k2 +m2
N

, (2.63)

37



and inverting these to find k2 gives Eq. (2.61). The result of these considerations is

fp/d(α,p⊥) =
∑

sd

∑

σp,σn

1

α(2− α)

∣

∣

∣

∣

∣

1√
2
√

2(2π)3

ū
σp
p (pp)ū

σn
n (pn)Γdpnu

sd
d (pd)

1
2

[

M2
d − 4

(

m2
N + k2

)]

∣

∣

∣

∣

∣

2

. (2.64)

Note that in this case pd⊥ = 0, but we have left pd⊥ present in these formulas in order to

obtain more general results. The deuteron light cone wave function is given by

ψ
(σN ,σs;s2N )
p/d (αN ,pN⊥) =

1√
2
√

2(2π)3

ū
σp
p (pp)ū

σn
n (pn)Γdpnu

sd
d (pd)

1
2

[

M2
d − 4

(

m2
N + k2

)] , (2.65)

which can be found by comparing to Eq. (2.45) with χp = Z
A = 1

2 , so that the factor of

√
χN =

√

1/2 =
√
21
2 . This gives us

fp/d(α,p⊥) =
∑

sd

∑

σp,σn

1

α(2 − α)

∣

∣

∣ψ
σp,σn;sd
p/d (k)

∣

∣

∣

2
, (2.66)

and due to the isospin symmetry, more generally,

fN/d(α,p⊥) =
1

α(2 − α)

∣

∣ψN/d(k)
∣

∣

2
. (2.67)

It should be noted here that
∣

∣ψN/d(k)
∣

∣

2
is the square of the light cone deuteron wave

function. This is related to the non-relativistic deuteron wave function |ψNR(k)|2 through

their respective normalizations. In particular, since the LCFD of the deuteron is normalized

to 1 for either N = p or N = n, and since the non-relativistic wave function is also

normalized to 1,

∫

dα

α(2 − α)
d2k⊥

∣

∣ψN/d(k)
∣

∣

2
=

∫

dkzd
2k⊥|ψNR(k)|2. (2.68)

One can show that dkz
Ek

= dα
α(2−α) , and accordingly

∣

∣ψN/d(k)
∣

∣

2
= |ψNR(k)|2Ek = |ψNR(k)|2

√

m2
N + k2. (2.69)
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This relationship is useful for performing numerical computations, since several potentials

exist for parameterizing the non-relativistic deuteron wave function.

With the LCFD of the deuteron in hand, it is necessary to relate it now to the LCFD

of two-nucleon SRCs in a nucleus. The observation that the high-momentum part of the

nuclear wave function behaves as a scaled version of the deuteron wave function requires,

at least for large k & kF (hence the step function), that one has

f
(2)
N/A(α,p⊥) = CNfN/d(α,p⊥)Θ(k − kF ). (2.70)

Since there are two CN (Cp for the proton and Cn for the neutron), there are two indepen-

dent quantities to be found. There are accordingly two constraints that fix their values. The

first comes from experimental studies of the cross section ratio R(x) = 2σeA(x)/Aσed(x),

which for x & 1.4 becomes a plateau with a nucleus-specific value a2(A). Since the wave

functions of the nucleus and deuteron take the same form at high (> kF ) momenta, the fact

that σeA = A
2 a2(A)σed suggests that (suppressing the step function for brevity)

f
(2)
p/A + f

(2)
n/A =

A

2
a2(A)

(

fp/d + fn/d
)

= Aa2(A)fN/d. (2.71)

The second constraint comes from the dominance of pn pairs in two-nucleon SRCs, and in

fact fixes Cp = Cn. If we make an approximation where each 2N SRC is a pn pair, then

every proton found in a two-nucleon SRC has a paired neutron, and vice-versa, so there

must be an equal number of protons and neutrons in 2N SRCs. Since f
(2)
N/A is normalized

to the number of nucleons of “flavor” N in a two-nucleon SRC, we thus have that f
(2)
p/A and

f
(2)
n/A are normalized to the same value, and therefore

f
(2)
p/A(α,p⊥) = f

(2)
n/A(α,p⊥) =

Aa2(A)

2
fN/d(α,p⊥)Θ(k − kF ). (2.72)

It is worth noting that the equality of f
(2)
p/A and f

(2)
n/A comes from defining the LCFD

to give the number of baryons of a particular flavor; cf. Eqs. (2.39,2.40). If instead one

had defined densities normalized to 1, effectively dividing the LCFD we have by Z for f
(2)
p/A
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and (A− Z) for f
(2)
n/A, then these would instead be unequal, with f

(2)
N = a2(A)

2χN
fN/d in both

cases. This has the consequence that a greater proportion of protons than neutrons have

high (> kF ) momentum in neutron-rich nuclei, and for increasingly asymmetric nuclei this

momentum imbalance is greatly enhanced. The reader should refer to Refs. [30–33] for more

information on momentum sharing in asymmetric nuclei.

It is important to note that while arbitrarily high k may contribute to the two-nucleon

SRC part of the LCFD, the highest α that can contribute is 2. For a nucleon in the 2N SRC,

the relationship between k and α is determined by Eq. (2.61), in which k grows arbitrarily

large for α arbitrarily close to 2. The α > 2 contributions to the nuclear LCFD can only

come from correlations of more than two nucleons.

2.4.4 Numerical computations of 2N SRC distributions

Numerical computations are presented for the LCFD with and without contributions from

two-nucleon SRCs. For these computations, mean field momentum distributions calculated

by Zverev and Saperstein [21] are used, and the Paris potential is used for the non-relativistic

deuteron wave function [37], in conjunction with Eqs. (2.67,2.69) in order to compute the

two-nucleon SRC contribution to the LCFD.

When accounting for two-nucleon SRCs, the values a2(
56Fe) = 5.58 (from [8,35]) and

a2(
208Pb) = 5.6 (a conservative estimate) are used to characterize their strengths. When

two-nucleon SRCs are accounted for, in order that the LCFD for the proton and neutron

be respectively normalized to Z and (A− Z), the mean field contribution must be diluted

by a factor of a
(N)
1 (A). It is found that for 56Fe, 29% of protons and 25% of neutrons are in

two-nucleon SRCs, so dilution factors of a
(p)
1 (56Fe) = 0.71 and a

(n)
1 (56Fe) = 0.75 are needed

for the mean field. Using the conservative estimate of two-nucleon SRCs in lead, one finds

32% of protons and 21% of neutrons in 208Pb are in two-nucleon SRCs, giving dilution

factors of a
(p)
1 (208Pb) = 0.68 and a

(n)
1 (208Pb) = 0.79.

Plots of the computations can be seen in Fig. 2.7, where the LCFD per nucleon, with

and without two-nucleon correlations, is presented. One can see that two-nucleon SRCs
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Plot of LCFD with 2N SRCs
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Figure 2.7: The per nucleon light cone fraction distribution fN/A(α), with p⊥ integrated
over.
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Feynman diagram for hadronic current of two-nucleon SRC

q
k′

k

pp

{kj}

p2N

pn

Figure 2.8: Diagram for 〈X | J+(0) | p2N , s2N 〉 given that a two-nucleon SRC was probed.

take away a slightly greater proportion of protons than neutrons from the mean field, and

that 2N SRCs additionally enhance the LCFD in the α & 1.2 region.

2.4.5 Convolution formula for PDFs of 2N SRCs

The formula for the contribution of two-nucleon short range correlations to the nuclear PDF

is derived here. The result will be a convolution formula, similar in form to the convolution

formula for the mean field contribution to the nPDF (see Eq. (2.54)). Since the mean field

and 2N SRC contributions to the nPDF will involve final states with different numbers of

removed nucleons, their contributions will add incoherently, just like their contributions to

the LCFD.

We proceed by finding the contribution that two-nucleon SRCs make to the nuclear

hadronic tensor, namely

W++
2N (pA, q) =

1

4πMA

∑

sA

∫

dX(2π)4δ(4)(pA + q − pX)

〈pA, sA | J+(0) | X〉〈X | J+(0) | pA, sA〉, (2.73)

where for the 2N SRC contribution, the final hadronic state is restricted to one with two

removed nucleons, one of which was destroyed. In particular, since 2N SRCs are dominated

by the isospin-zero dominance hypothesis, there will be one proton and one neutron removed

from the nucleus, and one of these two particles will be deeply probed by the incident virtual
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photon (with the individual contribution of each adding incoherently). The center-of-mass

motion of the pn pair is neglected, so the final hadronic state is characterized in this case

by (1) whether the proton or neutron in the SRC was probed; (2) the flavor i of the probed

parton; and (3) the Fock component F of the probed nucleon. With the SRC center-of-mass

motion and the degrees of freedom of the (A− 2)-nucleon remnant neglected, calculation of

the SRC’s contribution to the nPDF amounts to calculating the internal partonic structure

of the SRC, and multiplying by the probability that a 2N SRC occurs. The diagram for

calculating the matrix element 〈X | J+(0) | 2N〉 of the hadronic current in such a case is

given in Fig. 2.8. Since σeA = Aa2(A)
2 σed in the kinematic domain where 2N SRCs dominate,

the appropriate probability weight is Aa2(A)
2 . This weight is accounted for by introducing

a factor of

√

Aa2(A)
2 into each 2N vertex. Moreover, the threshold constraint Θ(k − kF )

is introduced, since the short-range interaction is not considered to have occurred in this

model unless the relative two-nucleon momentum passes the Fermi momentum threshold.

Using the diagram in Fig. 2.8 and the rules of light cone perturbation theory, we have

〈X | J+(0) | 2N〉 = ūλ
′

i (k
′)eiγ

+

∑

λ u
λ
i (k)ū

λ
i (k)

k+D(k−)





ns
∏

j=1

ū
λj
ij
(kj)



Γi,F/N

∑

λ u
σN
N (pN )ū

σN
N (pN )

p+ND(p−N )
ūσss (ps)

√

Aa2(A)

2
θ(k − kF )Γpnu

s2N
2N (p2N )

= 2p+Aei
√

2(2π)3ψ
(λ′,{λj};σN )

i,F/N (xN ,k⊥, {xj ,kj⊥};αN ,pN⊥)
√

Aa2(A)

2
θ(k − kF )ψ

(σN ,σs;s2N )
N/2N (αN ,pN⊥), (2.74)

where xN = k+/p+N and xj = k+j /p
+
N as in the mean field derivation, and the expression

above was found using the two-nucleon bound state wave function given by Eq. (2.65).

The four-dimensional delta function is given by

δ(4)



pA + q − k′ −
ns
∑

j=1

kj − ps − p(A−2)



 . (2.75)
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Since the “plus” and transverse components of the four-momentum are conserved at each

step, these parts of the delta function are given by

δ+ =
A

αNp
+
A

δ(1)



1− xN −
ns
∑

j=1

xj



 (2.76)

δ⊥ = δ(2)



pN⊥ − k⊥ −
ns
∑

j=1

kj⊥



 , (2.77)

and the “minus” component is found in the usual approximations (collinear, massless quarks

in the Bjorken limit) to be

δ− = p+Aδ
(1)

(

2(q · pA)−
AQ2

xNαN

)

=
xAp

+
A

2(q · pA)αN
δ(1)

(

xN − xA
αN

)

. (2.78)

This gives a contribution to the nuclear hadronic tensor of

W++
2N (pA, q) =

Aa2(A)

2

(p+A)
2

MA(q · pA)
xA
∑

i

e2i
∑

N

{

∫

dαN
αN

d2pN⊥
1

αNαs

∣

∣ψN/2N (αN ,pN⊥)
∣

∣

2

∫

dxNd
2k⊥

2xN (2π)3

ns
∏

j=1

dxjd
2kj⊥

2xj(2π)3

[

∣

∣ψi,F/N (xN ,k⊥, {xj ,kj⊥};αN ,pN⊥)
∣

∣

2

2(2π)3δ(1)



1− xN −
ns
∑

j=1

xj



 δ(2)



pN⊥ − k⊥ −
ns
∑

j=1

kj⊥





]}

(2.79)

=
(p+A)

2

MA(q · pA)
xA
∑

i

e2i
∑

N

∫

dαN
αN

d2pN⊥

[

f
(2)
N/A(αN ,pN⊥)

f
(b,2)
i/N

(

xA
αN

, Q2;αN ,pN⊥

)

]

. (2.80)

This produces a convolution formula of

f
(2)
i/A(xA, Q

2) =
∑

N

∫ 2

xA

dα

α

∫

d2p⊥f
(b,2)
i/N

(xA
α
,Q2;α,p⊥

)

f
(2)
N/A(α,p⊥) (2.81)

for the two-nucleon SRC contribution to the nuclear PDF. Notice that the upper bound

of the alpha integration is α = 2. Accordingly, xA ≤ 2 for a parton that originated in a

two-nucleon SRC.
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2.4.6 Motivation and evidence for 3N SRCs

Nucleons with a light cone fraction α > 2 and partons with a momentum fraction xA > 2

cannot originate from two-nucleon SRCs, so instead must originate within SRCs of three

or more nucleons. Short-range configurations of greater numbers of nucleons will become

increasingly unlikely, so after 2N SRCs the next most significant contributions to the nuclear

LCFD (and thus to the nPDF) will be from three-nucleon correlations. Already, three-

nucleon SRCs have comparatively little evidence demonstrating their existence, and several

experimental studies have conflicting results.

Three- and more-nucleon correlations were proposed as a possibility by Frankfurt and

Strikman [9], who stipulated an exponential decay of the nuclear light cone density with

α > 2, with the parametrization based on a fit of p + A → p + X data with 400 GeV

protons [38]. The ratio R(A, 4He) was predicted by this model to monotonically increase

at xB > 2.

A contrasting model was proposed by Vary [39], called the quark cluster model, where

the regions 1 < xB < 2, 2 < xB < 3, etc., were dominated by six-quark, nine-quark, etc.

clusters, respectively. The form of the partonic distributions (and thus of the structure

functions) should scale with respect to nuclear mass number, and the ratioR(A, 4He) should

form a series of rising plateaus—i.e., a staircase.

The first experimental data for cross sections at xB > 2 came from SLAC in the late

1980s [40, 41]. Donal Day et al. measured the cross section ratio R(56Fe, 4He), finding it

to agree with the prediction of Frankfurt and Strikman [9, 42]: it did not show a staircase

behavior, with only a 2N SRC plateau present in the region 1.4 < xB < 2.

Egiyan et al. reported measurements of electron scattering cross sections from CLAS

at Jefferson Lab [8] extending into the xB > 2 region, and did find a second, three-nucleon

plateau was present in the ratio R(A, 3He). Several values of a3(A), defined as

a3(A) =
3

A

σeA
σe3He

xB & 2.25, (2.82)
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were extracted from the data, namely a3(
4He) = 2.33± 0.12± 0.19, a3(

12C) = 3.05± 0.14±

0.21, and a3(
56Fe) = 4.38 ± 0.19 ± 0.33 [8].

Another Jefferson Lab experiment at Hall C [36] also measured the ratio R(4He, 3He)

for xB > 2, but in contrast to the CLAS experiment did not find a three-nucleon SRC

plateau. A note by Higinbotham and Hen [43] suggests that the finding of the CLAS

experiment may have been the result of bin migration, due to the bin size for the xB > 2

being smaller than the energy resolution allowed by CLAS.

The current status of three-nucleon SRCs is, therefore, ambiguous. It is not clear that

experiments which have probed xB > 2 have been performed at high enough momentum

transfer that universality should be expected to set in. It is also not clear whether a staircase

behavior in the cross section ratio R(A, 3He) (as predicted by Vary [39]) should be observed,

or instead a monotonic increase (as predicted by Frankfurt and Strikman [9]).

In light of this ambiguity, the possibility of three-nucleon SRCs is explored here within

a collinear framework, where the three-nucleon correlations are stipulated to occur via a

sequence of two-nucleon interactions at short range. This model expands upon on a previous

model by Frankfurt and Strikman [9], but is developed further. Moreover, this updated

model of three-nucleon SRCs incorporates the latest data about two-nucleon SRCs in the

description of the two-nucleon short-range interaction, in particular the pn dominance of

two-nucleon pairs.

2.4.7 Light cone fraction distribution for 3N SRCs

Unlike the two-nucleon SRC, the LCFD for a three-nucleon SRC cannot be modeled after

the LCFD of an A = 3 nucleus such as 3He. The spin and isospin of the 3N SRC are not

known, and moreover the SRC will only behave like a particular short-range configuration

that makes up a small part of the total A = 3 nuclear LCFD (which will also have a mean

field and a 2N SRC contribution). However, a LCFD of the particular 3N configuration,

which we call f3N (α,p⊥), is still defined and calculated using a cut diagram and light cone

perturbation theory rules; all that is needed is a model for the generation of the 3N SRC

and a normalization rule.
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Cut diagrams for three-nucleon SRC

3

κi pi 1
2

p′2

V̂

××

(a) ppn topology if p is probed.

3

κi pi 1
2

p′1

V̂

××

(b) pnn topology is p is probed.

Figure 2.9: Cut diagrams for calculating the short-range 3N LCFD.

There are two mechanisms which could potentially generate a three-nucleon SRC.

The first is a sequence of two short-range two-nucleon interactions, and the second is an

irreducible three-body interaction. The second mechanism results in a very high removal

energy contribution to the nuclear spectral function [44], and since the LCFD involves an

integral over removal energies, the contribution of this mechanism to the LCFD will be

small. Accordingly, irreducible three-body interactions are neglected as the 3N SRC is

modeled as arising from a sequence of two-body interactions. Such a model was originally

developed in [9], but will be developed further here, in particular by accounting for the pn

dominance for short-range two-nucleon interactions to predict a relationship between a2(A)

and a3(A).

For definiteness, we will suppose that the nucleon probed within the 3N SRC is a

proton, but the argument that follows is identical to that for a probed neutron if one

simply performs the transposition p ↔ n. Owing to the pn dominance of the two-nucleon

interactions at short distances, the 3N SRC will occur as a ppn or a pnn configuration. In

particular, there are two diagrams describing how a 3N SRC can be generated, depicted in

Fig. 2.9: Fig. 2.9a describes how a fast (α > 2) proton can arise from a ppn configuration,

and Fig. 2.9b describes how a fast proton can arise from a pnn configuration.

It will be shown that the functional forms of the LCFD contribution from each diagram

in Fig. 2.9 are identical, aside from some a priori unknown overall constants. Accordingly,

these constants can be factored out and combined, and then absorbed into one overall nor-

malization constant. A normalization rule is imposed on the LCFD for the 3N configuration,
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namely
∫ 3

0
dα

∫

d2p⊥f3N (α,p⊥) = 1. (2.83)

It should be noted that in a sense this normalization rule is somewhat artificial. The short

range configuration described by f3N (α,p⊥) is only significant for large α (or large p⊥),

but the normalization rule involves integration over small α as well. However, Eq. (2.83) is

a formal rather than a physical normalization rule. f3N (α,p⊥) is itself a formal quantity

that should be related to the physical LCFD of a three-nucleon SRC part of a particular

nucleus. The relationship between f3N (α,p⊥) and f
(3)
N/A(α,p⊥) is determined by two main

constraints: (1) the vertex for a short-range two-nucleon interaction should contain a factor

of
√

Aa2(A)/2, since Aa2(A)/2 is the probability weight for each two-nucleon interaction

occurring, and (2) each short-range interaction should occur at an internal (relative) k ≥ kF .

Formally, we write

f
(3)
N/A(α,p⊥) = A{a2(A)}2f3N (α,p⊥)Θ3N , (2.84)

where a2(A) is squared because
√

a2(A) will appear four times in any diagram, and Θ3N

symbolically indicates that the momentum threshold constraint has been imposed on each

interacting pair of nucleons. Internal momenta are functions of parameters that are inte-

grated over, so Θ3N does not signify a function that simply multiplies f3N (α,p⊥). The

factors of 1/
√
2 associated with each short-range pn vertex, as well as one factor of A, are

absorbed into the definition of f3N (α,p⊥).

It should be noted that Eq. (2.84) is inexact, since it does not consider isospin effects.

There will be corrections on the order of 1/A owing to isospin-dependent surface effects and

the combinatorics of selecting multiple nucleons, but these can be neglected for large nuclei,

and are neglected here.

Before proceeding to calculate the LCFD contributions from each topology in Fig. 2.9,

the notation to be used and an approximation scheme will be established. Prior to the short-

range two-nucleon interactions, all three nucleons in the configuration will be assumed to

be collinear, with equal forward momentum. These initial four-momenta will be denoted κi,

with κ+i = p+3N/3, κ
−
i = 3m2

N/p
+
3N , and κi⊥ = 0. Their (scaled) momentum fractions will
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be denoted βi = 3κ+i /p
+
3N = 1, and their helicities will be denoted ρi. Final state momenta

(in the middle of the cut diagram) will be denoted pi; momentum fractions will be denoted

αi = 3p+i /p
+
3N ; and helicities will be denoted σi. Intermediate states will use p, α, and σ

with primes.

ppn topology

Applying the rules for light cone perturbation theory gives

A {a2(A)}2f (a)3N (α,p⊥) =
1

8

∑

ρ1,ρ2,ρ3

∫

dp+2 d
2p2⊥

2p+2 (2π)
3

dp+3 d
2p3⊥

2p+3 (2π)
3

[

ūρ1p (κ1)ū
ρ2
n (κ2)ū

ρ3
p (κ3)

(
√

Aa2(A)

2
Γ(2,3)
pn

)(

∑

σ3

uσ3p (p3)ū
σ3
p (p3)

)∑

σ′2
u
σ′2
n (p′2)ū

σ′2
n (p′2)

p′+2 D(p′−2 )
(
√

Aa2(A)

2
Γ(1,2)
pn

)(

∑

σ2

uσ2n (p2)ū
σ2
n (p2)

)

∑

σ1
uσ1p (p1)ū

σ1
p (p1)

p+1 D(p−1 )
(

∑

σ

a†p(p, σ)
α

A
δ(1)(α− α1)δ

(2)(p⊥ − p1⊥)ap(p, σ)

)

∑

σ′1
u
σ′1
p (p1)ū

σ′1
p (p1)

p+1 D(p−1 )

(
√

Aa2(A)

2
Γ(1,2)
pn

)∑

σ′′2
u
σ′′2
n (p′2)ū

σ′′2
n (p′2)

p′+2 D(p′−2 )
(
√

Aa2(A)

2
Γ(2,3)
pn

)

uρ1p (κ1)u
ρ2
n (κ2)u

ρ3
p (κ3)

]

. (2.85)

The intermediate state denominators D(p′−2 ) and D(p−1 ) are examined first. For the first of

these, we have

D(p′−2 ) = (κ−1 + κ−2 + κ−3 )− (κ−1 + p′−2 + p−3 )

=
m2
N

κ+2
+
m2
N

κ+3
− m2

N + p2
3⊥

p′+2
− m2

N + p2
3⊥

p+3
, (2.86)

where we used the fact that p′
2⊥ = −p3⊥ in the collinear approximation. We define a total

momentum of the (2, 3) pair as

p+23 = p′+2 + p+3 = κ+2 + κ+3 , (2.87)
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and two relative light cone fractions

γ′2 = 2
p′+2
p+23

= 2− α3 (2.88)

γ3 = 2
p+3
p+23

= α3 (2.89)

for the (scaled by 2) fraction of the pair’s forward light cone momentum carried by each

nucleon. Naturally, these add to γ′2 + γ3 = 2, and it is worth noting that 0 ≤ α3 ≤ 2 is

related to the ranges 0 ≤ γ′2 ≤ 2 and 0 ≤ γ3 ≤ 2; the constraint on α3 comes from the

fact that, within the short-range configuration depicted in Fig. 2.9a, nucleon 3 only gets a

kick from a short range interaction with nucleon 2, so can carry at most the total forward

momentum of these two nucleons.

Now, within the collinear approximation where κ+2 /p
+
23 = κ+3 /p

+
23 = 1/2, we have

D(p′−2 ) =
1

p+23

(

m2
N

1/2
+
m2
N

1/2
− m2

N + p2
3⊥

γ′2
− m2

N + p2
3⊥

γ3

)

=
1

p+23

(

4m2
N − 4

[

m2
N + p2

3⊥
γ′2γ3

])

. (2.90)

The factor D(p′−2 ) is accompanied by p′+2 in the calculation of Eq. (2.85); multiplied together,

they give

p′+2 D(p′−2 ) = γ′2
1

2

(

4m2
N − 4

[

m2
N + p2

3⊥
γ′2γ3

])

≡ γ′2D̃23, (2.91)

where D̃23 is part of the denominator of a two-nucleon wave function (see Eq. (2.65)), if

we define a two-body relative light cone momentum (in analogy with Eq. (2.61)) for the

nucleon pair (2,3) as

k223 =
(γ′2 − 1)2m2

N + p2
3⊥

γ′2γ3
=

(1− α3)
2m2

N + p2
3⊥

α3(2− α3)
. (2.92)
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For the other intermediate state denominator, one has

D(p−1 ) = (κ−1 + κ−2 + κ−3 )− (p−1 + p−2 + p−3 )

= 9
m2
N

p+3N
−
(

m2
N + p2

1⊥
p+1

+
m2
N + [p1⊥ + p3⊥]2

p+2
+
m2
N + p2

3⊥
p+3

)

, (2.93)

where we have used the fact that p2⊥ = −(p1⊥ + p3⊥) in the collinear approximation. We

introduce now the total forward light cone momentum of the nucleon pair (1,2)

p+12 = p+1 + p+2 = κ+1 + p′+2 , (2.94)

as well as relative light cone fractions for members of the pair:

γ1 = 2
p+1
p+12

= 2
α1

3− α3
(2.95)

γ2 = 2
p+2
p+12

= 2
2− α1 − α3

3− α3
. (2.96)

Using these in the denominator factor D(p−1 ) and multiplying it by p+1 gives

p+1 D(p−1 ) =
γ1
2

{

p+12
p+3N

(

9m2
N − m2

N + p2
3⊥

α3/3

)

[

−p2
3⊥ +

m2
N + p2

1⊥
γ1/2

+
m2
N + [p1⊥ + p3⊥]

2

γ2/2

]}

=
γ1
2

{

[

4m2
N − 3

(

α3 +
1

α3
− 2

)

m2
N − 3

α3
p2
3⊥

]

− 4

[

m2
N +

[

p1⊥ + γ1
2 p3⊥

]2

γ1γ2

]}

=
γ1
2

(

m2
12 − 4

[

m2
N + k212

])

, (2.97)

where m2
12 is the invariant mass squared of the (1,2) pair, given by

m2
12 = m2

N

(

9p+12
p+3N

− p+12
p+3

)

− p2
3⊥

(

p+12
p+3

+ 1

)

= m2
N

(

9
3− α3

3
− 3− α3

3

)

− p2
3⊥
p+3N
p+3

=

[

10 − 3

(

α3 +
1

α3

)]

m2
N − 3

α3
p2
3⊥

= 4m2
N −∆. (2.98)
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Here,

∆(a) = 3

[

α3 +
1

α3
− 2

]

m2
N +

3

α3
p2
3⊥ ≥ 0 (2.99)

is the virtuality of the two-nucleon pair (1,2) in the intermediate state. It decreases the

invariant mass of the two-body state. For small transverse momenta and α3 ∼ 1, one

has m2
12 ≈ 4m2

N , which would allow Eq. (2.97) to be interpreted as the denominator of a

two-nucleon wave function, with a relative light cone momentum of

k212 =
(γ1 − 1)2m2

N +
[

p1⊥ + γ1
2 p3⊥

]2

γ1γ2

=
(3− α3)

2

4







(

2α1
3−α3

− 1
)2
m2
N +

(

p1⊥ + α1
3−α3

p3⊥
)2

α1(3− α1 − α3)






. (2.100)

It is still possible to interpret Eq. (2.97) the denominator of a two-nucleon wave function

even at moderately large ∆(a), although to do so would require k212 ≫ ∆(a), so that the

difference between 4m2
N − 4(m2

N + k212 and m2
12 − 4(m2

N + k212), which is ∆, is small relative

to the momentum scale at which the wave function is evaluated. This smallness of ∆/k212

would result in a small (and ideally negligible) error in the application of the 2N wave

function. Within the domain where this calculation applies, namely the generation of 3N

SRCs, one imposes the threshold condition k12 ≥ kF , which will guarantee k12 to be large

enough for this interpretation of Eq. (2.97) to be valid. For smaller k12 < kF which do

however appear in the normalization rule of Eq. (2.83), we simply neglect ∆(a), since to do

so is necessary for the construction of a two-nucleon wave function, and since f3N (α,p⊥) is

a formal definition for which the negligence of ∆ is valid in the physically relevant domain.

With the results of these calculations applied to Eq. (2.85), and with off-diagonal

(σ′2 6= σ′′2 ) terms neglected because of their relative smallness, we have

f
(a)
3N (α,p⊥) =

∫

dα3d
2p3⊥

α1α2α3

{

α1

γ1γ′2

}2

|ψ2N (k12)|2 |ψ2N (k23)|2

=

∫

dα3d
2p3⊥

α1α2α3

{

3− α3

2(2− α3)

}2

|ψ2N (k12)|2 |ψ2N (k23)|2 . (2.101)

52



The factor in the curly brackets { } and its effect on the normalization of f3N (α,p3⊥)

will be discussed following the derivation of f
(b)
3N (α,p⊥).

pnn topology

The rules of light cone perturbation theory are applied to the diagram in Fig. 2.9b, giving

A {a2(A)}2f (b)3N (α,p⊥) =
1

8

∑

ρ1,ρ2,ρ3

∫

dp+2 d
2p2⊥

2p+2 (2π)
3

dp+3 d
2p3⊥

2p+3 (2π)
3

[

ūρ1p (κ1)ū
ρ2
n (κ2)ū

ρ3
n (κ3)

(
√

Aa2(A)

2
Γ(1,3)
pn

)(

∑

σ3

uσ3n (p3)ū
σ3
n (p3)

)∑

σ′′1
u
σ′′1
p (p′1)ū

σ′′1
p (p′1)

p′+1 D(p′−1 )
(
√

Aa2(A)

2
Γ(1,2)
pn

)(

∑

σ2

uσ2n (p2)ū
σ2
n (p2)

)

∑

σ1
uσ1p (p1)ū

σ1
p (p1)

p+1 D(p−1 )
(

∑

σ

a†p(p, σ)
α

A
δ(1)(α− α1)δ

(2)(p⊥ − p1⊥)ap(p, σ)

)

∑

σ′1
u
σ′1
p (p1)ū

σ′1
p (p1)

p+1 D(p−1 )

(
√

Aa2(A)

2
Γ(1,2)
pn

)∑

σ′′′1
u
σ′′′1
p (p′1)ū

σ′′′1
p (p′1)

p′+1 D(p′−1 )
(
√

Aa2(A)

2
Γ(1,3)
pn

)

uρ1p (κ1)u
ρ2
n (κ2)u

ρ3
n (κ3)

]

. (2.102)

We proceed by calculating the intermediate state denominators. Firstly, we have

D(p′−1 ) = (κ−1 + κ−2 + κ−3 )− (p′−1 + κ−2 + p−3 ) = (κ−1 + κ−3 )− (p′−1 ) + p−3 )

=

(

m2
N

κ+1
+
m2
N

κ+3

)

−
(

m2
N + p2

3⊥
p′+1

+
m2
N + p2

3⊥
p+3

)

. (2.103)

To proceed, we now define relative momentum fractions for nucleons within the short-range

interaction. A superscript (b) is used to indicate that these fractions are defined for the

topology in Fig. 2.9b, and these fractions are compared to quantities calculated for the

topology of Fig. 2.9a (here indicated with a superscript (a)):

γ
′(b)
1 = 2

p′+1
p+13

= 2− α3 = γ
(a)
2 (2.104)

γ
(b)
3 = 2

p+3
p+13

= α3 = γ
(a)
3 . (2.105)
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With these momentum fractions, we have

p′+1 D(p′1−) =
γ′1
2

(

4m2
N − 4

m2
N + p2

3⊥
γ
′(b)
1 γ

(b)
3

)

=
γ′1
2

(

4m2
N − 4

[

m2
N +

(

k
(b)
13

)2
])

, (2.106)

where

(

k
(b)
13

)2
=

(γ
′(b)
1 − 1)2m2

N + p2
3⊥

γ
′(b)
1 γ

(b)
3

=
(1− α3)

2m2
N + p2

3⊥
α3(2− α3)

=
(

k
(a)
23

)2
. (2.107)

In other words, the factor p′+1 D(p′−1 ) in this topology is exactly equal to the factor p′+2 D(p′−2 )

in the other topology. As for the other intermediate state factor,

D(p−1 ) = (κ−1 + κ−2 + κ−3 )− (p−1 + p−2 + p−3 ) (2.108)

is the same in both topologies. Consequently, we have f
(b)
3N (α,p⊥) = f

(a)
3N (α,p⊥).

Formula and normalization of f3N

The LCFD for a short-range three-nucleon cluster is given by f3N (α,p⊥) = f
(a)
3N (α,p⊥) =

f
(b)
3N (α,p⊥), which is

f3N (α,p⊥) =
∫

dα3d
2p3⊥

αα3(3− α− α3)

{

3− α3

2(2 − α3)

}2

|ψ2N (k12)|2 |ψ2N (k23)|2 , (2.109)

where k12 and k23 are defined as in the Fig. 2.9a topology, namely by Eqs. (2.92,2.100). This

equation is found numerically to satisfy the normalization condition of Eq. (2.83). While

we cannot prove that this normalization condition is satisfied analytically, we can show that

its satisfaction is close to exact. Consider the integral

I3N =

∫

f3N (α,p⊥)dαd
2p⊥, (2.110)
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which is evaluated using the change of variables

γ1 =
2α

3− α3
k12⊥ = p⊥ +

α

3− α3
p3⊥

γ′2 = 2− α3 k23⊥ = −p3⊥,

which has a Jacobian

dαd2p⊥
α

dα3d
2p3⊥
α3

=
dγ1d

2k12⊥
γ1

dγ′2d
2k23⊥

2− γ′2
.

Also note several additional factors transform as

1

3− α− α3
=

1

1 + γ′2

2

2− γ1

3− α3

2(2− α3)
=

1 + γ′2
2γ′2

,

so that

I3N =

∫

dγ1d
2k12⊥

|ψ2N (k12)|2
γ1(2− γ1)

∫

dγ′2d
2k23⊥

{

1 + γ′2
2γ′2

} |ψ2N (k23)|2
γ′2(2− γ′2)

= 1 +

∫

dγ′2d
2k23⊥

{

1− γ′2
2γ′2

} |ψ2N (k23)|2
γ′2(2− γ′2)

, (2.111)

where the normalization rule for the light cone two-nucleon wave function was used. Exact

normalization of f3N (α,p⊥) fails by the average value of
{

1−γ′2
2γ′2

}

within a short-range two-

nucleon state, which is a small relativistic factor. Numerically, this correction is found to

be 0.0028, which is negligible.

The factor a3(A)

The factor a3(A) is defined in analogy to a2(A) for electron-nucleus scattering reactions,

namely

a3(A) =
3

A

σeA(x)

σe3He(x)
2.25 . x < 3, (2.112)
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supposing that this cross section ratio levels out into a plateau as Refs. [8,39] suggest. The

plateau, if it exists, is present by virtue of the universality of 3N SRCs in various nuclei; in

other words, the high light cone fraction (2 < α < 3) part of the nuclear LCFD imitates

the high-α part of the 3He nuclear LCFD. The formula for the 3N SRC contribution to

the LCFD, given by combining Eqs. (2.84,2.109), does not explicitly contain any factors of

a3(A), but instead contains factors of a2(A). In particular,

f
(3)
N/A(α,p⊥) = A {a2(A)}2

∫

dα3d
2p3⊥

αα3(3− α− α3)

{

3− α3

2(2 − α3)

}2

|ψ2N (k12)|2 |ψ2N (k23)|2 .

(2.113)

Universality of the 3N SRC part of the LCFD entails

f
(3)
p/A(α,p⊥) + f

(3)
n/A(α,p⊥) =

3a3(A)

A

(

f
(3)
p/3He

(α,p⊥) + f
(3)
n/3He

(α,p⊥)
)

, (2.114)

which in turn gives us

a3(A) =

(

a2(A)

a2(3He)

)2

. (2.115)

Eq. (2.115) allows for the values of the scaling plateaus in R(A, 3He) at x & 2.25

to be calculated using the known values of a2(A). These values have been calculated and

are presented in Table 2.1, where they are compared to the a3(A) values extracted from

a CLAS experiment at Jefferson Lab [8]. There is a systematic discrepancy between the

theoretical and experimental a3(A) values, with the former being consistently larger than

the latter. This may partly be due to the theoretical calculation not accounting for surface

effects, isospin asymmetry, or the combinatorics of selecting multiple nucleons—the last of

which is expected to be especially pertinent for small nuclei such as 3He and 4He. However,

these effects are expected to be small in large nuclei such as 56Fe where the discrepancy

persists.

Another possible explanation for the discrepancy is that the CLAS experiment did not

observe genuine three-nucleon SRC plateaus. A later Jefferson Lab experiment at Hall C [36]
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A Theoretical Experimental [8]

3He 1 1

4He 2.94 ± 0.18 2.33± 0.13

9Be 3.47 ± 0.25 —

12C 5.16 ± 0.36 3.18± 0.24

27Al 6.37 ± 1.46 —

56Fe 6.86 ± 1.03 4.63± 0.33

63Cu 6.16 ± 0.53 —

197Au 5.97 ± 0.54 —

Table 2.1: Values of a3(A) determined using Eq. (2.115) and the weighted averages of exper-
imental a2(A) values from Refs. [8,34–36]. These are compared to the a3(A) values reported
by CLAS [8]. There is a systematic discrepancy between theoretical and experimental val-
ues, which could be due either to experimental issues (cf. e.g., [45] for instance) or to an
incomplete theoretical description (such as isospin and selection combinatorics effects not
being accounted for).
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did not observe the three-nucleon plateau, and it has been reported that the plateaus seen

by CLAS may have been an artifact of bin migration due to low energy resolution [45].

Ultimately, the status of three-nucleon SRCs and the value of a3(A) remain ambiguous.

2.4.8 Numerical computations of 3N SRC distributions

In section 2.4.4, numerical computations of the two-nucleon SRC contribution to the LCFD

of 56Fe and 208Pb were presented. Here, three-nucleon SRCs are also accounted for. We

use the model described above to account for three-nucleon correlations. Numerically, we

find that three-nucleon SRCs are expected to constitute about 6-7% of the nuclear LCFD.

Accordingly, the dilution factors for the mean field contribution to the LCFD change as

such: For iron, a
(p)
1 (56Fe) = 0.64 and a

(n)
1 (56Fe) = 0.68; while for lead, a

(p)
1 (208Pb) = 0.62

and a
(n)
1 (208Pb) = 0.73.

In Fig. 2.10, plots of the numerical estimates are presented for fp/A(α) (with p⊥

integrated over). Since the three-nucleon SRC contribution is quite small compared to even

two-nucleon SRCs, log-scaled versions of the plots are also presented. In the log-scaled

plots, one can see the 3N SRCs already contribute significantly around α ≈ 1.6-1.7, but

are alone responsible for the survival of the LCFD beyond α > 2 (as two-nucleon SRCs

are kinematically forbidden from contributing to α > 2 when center-of-mass motion is

neglected). In the non-log-scaled plots, however, one can see that the three-nucleon SRCs

“take away” nucleons from the mean field, in particular from α ∼ 1, where the LCFD is

suppressed compared to the case when only the mean field and 2N SRCs contribute.

2.4.9 nPDF for 3N SRCs

The contribution to the nuclear PDF coming from 3N SRCs is now calculated. In this case,

the final state is characterized by (1) the isospin of the destroyed nucleon (p or n), (2) the

isospins of the other two removed nucleons (e.g., pn or nn if the destroyed nucleon was

p), (3) the flavor of the probed parton, and (4) the Fock component F of the destroyed

nucleon. Recall that the per nucleon LCFD for a characteristic short-range three-nucleon

configuration, f3N (α,p⊥), was normalized to 1 and that different topologies for producing
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Plot of LCFD with 3N SRCs
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Figure 2.10: The per nucleon light cone fraction distribution fp/A(α), with p⊥ integrated
over.
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Feynman diagram for hadronic current of three-nucleon SRC

q
k′

k

p1

{kj}

κ1
p2

p3

κ2
κ3

p′2

Figure 2.11: Diagram for the current 〈X | J+(0) | 3N〉.

a 3N SRC (which have different removed nucleon content) produced the same functional

form. The weight factors of
√

Aa2(A)/2 present at each two-nucleon vertex are overall

probability factors for short-range two-nucleon interactions to occur, and accordingly allow

one to calculate the 3N SRC contribution to the LCFD or to the nPDF using a single

diagram. In principle, since either topology can produce a 3N SRC, so each diagram should

be weighted by a probability factor (the factors adding to 1); however, the fact that both

topologies have the same dependence on external kinematics means only one diagram needs

to be calculated in practice. Thus, we do not need to perform a sum over topologies for the

3N SRC contribution to the nuclear PDF.

Additionally, for concreteness, we will suppose that the probed nucleon was a proton;

the total 3N SRC contribution to the nuclear hadronic tensor, W µν
3N , is found by adding an

otherwise identical term with the transposition (p ↔ n) performed.

With this in mind, and continuing to use the same notion as before, the matrix element

for the hadronic current is given by 〈X | J+(0) | 3N〉, the diagram for which is depicted in
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Fig. 2.11. Using the rules of light cone perturbation theory, the diagram evaluates to

〈X | J+(0) | 3N〉 = ūλ
′

i (k
′)eiγ

+

∑

λ u
λ
i (k)ū

λ
i (k)

k+D(k−)





ns
∏

j=1

ū
λj
ij
(kj)



Γi,F/p

∑

σ1
uσ1p (p1)ū

σ1
p (p1)

p+1 D(p−1 )

ūσ2n (p2)ū
σ3
p (p3)

(
√

Aa2(A)

2
Γ(1,2)
pn Θ(k12 − kF )

)∑

σ′2
u
σ′2
n (p′2)ū

σ′2
n (p′2)

p′+2 D(p′−2 )
(
√

Aa2(A)

2
Γ(2,3)
pn Θ(k23 − kF )

)

uρ1p (κ1)u
ρ2
n (κ2)u

ρ3
p (κ3)

=
2eik

+

xNγ1γ′2

∑

σ1,σ′2

{

ψ
(λ′,{λj};σ1)
i,F/p (xN ,k⊥, {xj ,kj⊥}; p1)Aa2(A)2(2π)3

ψ
(σ1,σ2)
2N (γ1,k12⊥)Θ(k12 − kF )ψ

(σ′2,σ3)
2N (γ′2,k23⊥)Θ(k23 − kF )

}

.

Since there are two sums (over σ1 and σ′2) at the amplitude level, the square of this matrix

element that will include off-diagonal interference terms. As before, we neglect these as

small in comparison to the diagonal terms, and accordingly move the σ1 and σ′2 sums

outside the square.

The delta function that appears in W++
3N (pA, q) is

δ(4)



pA + q − k′ −
ns
∑

j=1

kj − p2 − p3



 = 2δ+δ−δ⊥, (2.116)

where

δ+ = δ(1)



p+1 − k+ −
ns
∑

j=1

k+j



 =
A

αp+A
δ(1)



1− xN −
ns
∑

j=1

xj



 (2.117)

δ⊥ = δ(2)



p1⊥ − k⊥ −
ns
∑

j=1

kj⊥



 (2.118)

by virtue of conservation of the + and transverse components of momentum. The “minus”

delta function is given, in the collinear, massless quark approximation, by

δ− = δ(1)
(

M2
A

p+A
+

2(q · pA)
p+A

− Q2

xNαp
+
A/A

− m2
N + p2

2⊥
p+2

− m2
N + p2

1⊥
p+1

)

, (2.119)
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which in the Bjorken limit becomes

δ− =
xAp

+
A

2(q · pA)α
δ(1)

(

xN − xA
α

)

. (2.120)

Consequently, one has

W++
3N (pA, q) =

(p+A)
2

MA(q · pA)
xA
∑

i

e2i
∑

N=p,n

∫

dα

α
d2p⊥

[{

A {a2(A)}2

∫

dα3d
2p3⊥

αα3(3− α− α3)

(

(

3− α3

2(2− α3)

)

|ψ2N (k12)|2 Θ(k12 − kF )

|ψ2N (k23)|2 Θ(k23 − kF )

)}

{

∫

dxNd
2k⊥

2xN (2π)3

[

dxjd
2kj⊥

2xj(2π)3

]

δ(1)
(

xN − xA
α

)

2(2π)3δ(1)



1− xN −
ns
∑

j=1

xj





δ(2)



p⊥ − k⊥ −
ns
∑

j=1

kj⊥





∣

∣ψi,F/N (xN ,k⊥, {xj ,kj⊥}; p
∣

∣

2

}]

=
(p+A)

2

MA(q · pA)
xA
∑

i

e2i
∑

N=p,n

∫

dα

α
d2p⊥

[

f
(b,3)
i/N

(xA
α
,Q2;α,p⊥

)

f
(3)
N/A(α,p⊥)

]

,

(2.121)

where the two expressions in the big curly brackets
{ }

are the 3N SRC part of the LCFD,

and the bound nucleon PDF. Therefore, we have

f
(3)
i/A(xA, Q

2) =
∑

N=p,n

∫ 3

xA

dα

α

∫

d2p⊥
[

f
(b,3)
i/N

(xA
α
,Q2;α,p⊥

)

f
(3)
N/A(α,p⊥)

]

. (2.122)

2.4.10 Concluding remarks

In this section, the existing experimental evidence for two- and three-nucleon short range

correlations was reviewed, and information extracted from experiment was used in con-

structing a theoretical model of SRCs. The experimental status of three-nucleon SRCs is

ambiguous, but a model for 3N SRCs was constructed based on the hypothesis that they

arise from a sequence of short-range two-nucleon interactions, using the latest experimental
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phenomenology of two-nucleon SRCs. Light cone fraction distributions were constructed

for both the two- and three-nucleon SRC contributions to the nuclear LCFD, and convolu-

tion formulas were derived for the SRC contributions to the nuclear PDF. The convolution

formula for the PDF of a j-nucleon correlation takes the same form as the formula for the

mean field (with j = 1), namely that in Eq. (2.56).

2.5 Medium modifcations

The convolution formula of Eq. (2.56) allows for the nPDF contribution from processes

with j removed nucleons to be calculated, provided that one has the light cone fraction

distribution (LCFD) f
(j)
N/A(α,p⊥) and the bound nucleon PDF f

(b,j)
i/N

(

xA
α , Q

2;α,p⊥
)

. In the

previous section, the theoretical details necessary to construct the LCFD were developed,

and numerical computations were performed. Now, we shall explore the issue of medium

modifications, and determine how the bound nucleon PDF is to be calculated.

2.5.1 The unmodified PDF

The most straightforward, if naive, approach is to assume the bound nucleon PDF is equal

to the free nucleon PDF, i.e.,

f
(b,j)
i/N

(xA
α
,Q2;α,p⊥

)

= fi/N

(xA
α
,Q2

)

. (2.123)

To do as much ignores that the fact that the nucleon is immersed in a strongly-interacting

medium which can reasonably be expected to modify its dynamical properties. However,

in parallel with all nPDF calculations that do account for medium modifications, the naive

“no modifications” model of Eq. (2.123) shall be also be used as a point of comparison.

To begin, one can compare the no modifications model to experiment immediately,

together with the LCFD developed previously and an experimental parametrization of the

free nucleon PDF, in order to assess the importance of medium modifications. In particular,
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we compare the ratio R(A, d), given by

R(A, d) =
2

A

σeA(x,Q
2)

σed(x,Q2)
(2.124)

≈ 2

A

F
(A)
2 (x,Q2)

F
(d)
2 (x,Q2)

. (2.125)

One can use the relation

F2(x,Q
2) =

∑

i

e2i fi(x,Q
2) (2.126)

to calculate F2(x,Q
2) from PDFs, or else use this relation to write a convolution formula

for F2(x,Q
2) by placing it into Eq. (2.56). One finds that

F
(A)
2 (xA, Q

2) =

A
∑

j=1

∑

N=p,n

∫ A

xA

dα

∫

d2p⊥f
(j)
N/A(α,p⊥)F

(N ;b,j)
2

(xA
α
,Q2;α,p⊥

)

, (2.127)

where the superscript (N ; b, j) for the nucleonic structure function denotes that the nucleon

is bound and in a j-nucleon correlation (or the mean field in the case j = 1).

As it is, Eq. (2.127) is general; it can be simplified for the no modification model.

In the absence of medium modifications, the PDF (and thus the structure function F2)

for a nucleon will not be different for a nucleon in the mean field and a nucleon in a j-

nucleon correlation; these would only be different due to the nucleon experiencing different

dynamical influences. Thus, without medium modifications, Eq. (2.127) factorizes to

F
(A)
2 (xA, Q

2) =
∑

N=p,n

∫ A

xA

dα

∫

d2p⊥fN/A(α,p⊥)F
(N)
2

(xA
α
,Q2;α,p⊥

)

, (2.128)

where the nuclear LCFD is decomposed as in Eq. (2.41).

In order to demonstrate the necessity of accounting for medium modifications, we

use Eq. (2.128) to calculate the nuclear structure function F
(A)
2 (xA, Q

2) and the deuteron

structure function F
(d)
2 (xA, Q

2), using an empirical parametrization of the free nucleon

structure function given by Bodek et al. [46–48]. The values of R(A, d) obtained from this

parametrization is compared to experimental data from SLAC [4, 49] for 56Fe in Fig. 2.12.
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Plot of EMC ratio with no medium modifications
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Figure 2.12: The EMC ratio at Q2 = 10 GeV2, calculated using the Bodek-Ritche
parametrization of the free nucleon PDF [46–48] (no medium modifications present). Data
are from SLAC experiments: Stars (blue) are from [4]; circles (red) are from [49]. No
EMC ratio data currently exist for 208Pb.

Additionally, the EMC ratio expected for 208Pb in the convolution model without medium

modifications is also presented in this figure.

As can be seen in Fig. 2.12, the experimental values of R(A, d) fall well below the

theoretical calculations. This demonstrates the necessity of accounting for medium modifi-

cations in calculating the nuclear PDF.

2.5.2 The EMC effect

The discrepancy between the no modifications model for the nuclear PDF and actual exper-

imental results, as seen in Fig. 2.12, is known as the EMC effect, named after the European

Muon Collaboration. The effect was first seen in 1983, when the EMC measured the ra-

tio for muon scattering from iron and deuterium, expecting the ratio to be about 1 (with

deviations at high x owing to Fermi smearing) [1, 50]. The effect has been confirmed and

repeatedly measured by many other groups, such as by a Rochester-SLAC-MIT collabora-

tion [51,52], SLAC [4,49], BCDMS [53,54], the EMC [55,56], the NMC [57–60], HERA [61],

and Jefferson Lab [62,63].
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The dip in the ratio REMC and its shape are consistent throughout nuclei, and the

strength of the EMC effect is typically characterized by the slope in the region 0.35 <

x < 0.7 [62]. This strength tends to increase with A, but roughly saturates at large A.

Moreover, the EMC slope is roughly proportional to the local density of the nucleus being

considered [62], already suggesting that the EMC effect is likely to be due to dynamics in

the nuclear medium. Additionally, several theoretical works by Miller and Smith [64, 65]

rigorously demonstrate that the dip in REMC in the region 0.35 ≤ x ≤ 0.7 cannot be

accounted for by nucleonic motion alone, meaning that modifications of the quark and

gluon degrees of freedom of the bound nucleons do indeed need to be accounted for.

There is a consensus that the EMC effect is due to medium modification, but not about

how medium modification should be accounted for. A large number of differing theoretical

models exist, due to different assumptions made about the nature of medium modification

effects; for reviews of the EMC effect, cf. [5,6,66]. Several authors [67–69] have argued that

the strength of the EMC effect for a bound nucleon should be proportional to the first-order

approximation (in p2/m2) of the bound nucleon’s kinetic energy, or more precisely to the

off-shellness of the bound nucleon. Accordingly, higher-momentum nucleons are expected

to be more highly-modified than lower-momentum nucleons, and short range correlations

in particular are expected to be especially highly modified.

Recently, Weinstein et al. [7] noted a correlation between the strength of the EMC

effect (as characterized by the slope of the EMC ratio in the region 0.35 < x < 0.7) and

the strength of two-nucleon SRCs (as characterized by a2(A)). There appears to be a

direct linear correlation between these quantities, and Weinstein et al. [7] have used this

to make predictions for a2(A) for several nuclei. This correlation does lend credence to the

expectation that short range correlations are highly modified by the nuclear medium.
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Correctly defining xA

Data from DIS experiments meant to measure the EMC ratio tend to plot the ratio

F
(A)
2 (xB , Q

2)/F
(d)
2 (xB , Q

2) against the kinematic Bjorken scaling variable,

xB =
Q2

2mNν
, (2.129)

where mN is the mass of a free nucleon. However, this xB is not the scaling variable that

enters into the dynamics of QCD, including the convolution formulas of Eqs. (2.56,2.127).

Instead, the correct dynamical momentum fraction is given by

xA =
AQ2

2MAν
, (2.130)

which, for fixed values of Q2 and ν, gives different values for different nuclei. To find

a structure function ratio that reflects nuclear dynamics, and not kinematic effects, one

should evaluate F
(A)
2 (xA, Q

2) and F
(d)
2 (xd, Q

2) at the same values of x and Q2, and to

have xA = xd one would need to perform the measurement with different lab-frame energy

transfers ν for the deuteron and nuclear target.

However, in practice, experimental analyses are best done by using consistent binning

for directly measured kinematic quantities such as the final electron energy E′ and the

electron scattering angle θ for both the nuclear and deuteron targets, in order to cancel out

acceptance corrections. Accordingly, the ratio is most easily measured by using the same

xB value for both the nuclear and deuteron structure functions, so that xd 6= xA.

This means the ratio REMC(xB , Q
2) contains kinematic effects in addition to dynam-

ical effects. The deuteron is a loosely-bound system, meaning xd differs only slightly from

xB , whereas a heavy nucleus with a large binding energy per nucleon will have its xA value

shifted from xB by a greater amount. Thus the ratio REMC(xB , Q
2) compares the structure

functions of the deuteron and the heavy nucleus at different enough momentum fractions

that a deviation from the “no modification” model plot in Fig. 2.12 can be expected.

67



Plot of EMC ratio with x shifted
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Figure 2.13: The EMC ratio at Q2 = 10 GeV2, calculated using the Bodek-Ritche
parametrization of the free nucleon PDF [46–48] (no medium modifications present). 2N
and 3N SRCs are accounted for in this calculation. Data are from SLAC experiments: Stars
(blue) are from [4]; circles (red) are from [49].

The convolution formula for the nuclear PDF, in order to make the PDF a function

of xB , needs to be slightly modified. The nucleonic PDF requires xA/α as its argument,

and xA = AmN
MA

xB, so

f shifti/A (xB , Q
2) =

A
∑

j=1

∑

N=p,n

∫ A

AmNxB
MA

dα

α

∫

d2p⊥f
(j)
N/A(α,p⊥)f

(b,j)
i/N

(

AmNxB
MAα

,Q2;α,p⊥

)

.

(2.131)

It has been observed by several authors [70, 71] that presenting the EMC ratio as a

function of xB (so that xA 6= xd) instead of a function of xA = xd introduces an artificial

dip in the ratio for xB & 0.5, partially explaining the EMC effect. This explanation is

only partial, however; as can be seen in Fig. 2.13, where REMC(xB , Q
2) is compared to

REMC(xA/d, Q
2) as calculated within this work’s LCFD model, the “shifted” ratio still falls

far above the experimental data for the ratio. A dynamical account of medium modifications

is still required.
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The color screening model

In this dissertation, dynamical medium modifications are accounted for using the color

screening model, which was first introduced by Frankfurt and Strikman [42,67].

The color screening model is developed by considering that a nucleon does not have

a sharply-determined “size.” Its wave function is spread over a large number of possible

configurations, where the quarks and gluons making up the nucleon are distributed in

different ways. These include average-sized configuration (ASCs) where the radius of the

nucleon is close to its mean value, but they also include point-like configurations (PLCs)

where the partons making up the nucleon are compressed into a significantly smaller volume

than average.

Since the nucleon is color-neutral, any strong interactions that occur between nucleons

are due to higher-order moments (dipole, quadrupole, etc.), all of which become suppressed

when the distance between color-charged constituents is decreased. Accordingly, PLCs

interact more weakly than ASCs do. Since these configurations interact differently, their

modification due to immersion in the nuclear medium should differ as well. In particular,

the nucleon will tend to be in configurations that are more likely to bring the bound system

into a lower-energy state, meaning that PLCs are expected to be suppressed for bound

nucleons.

The change in probability has been estimated using non-relativistic perturbation the-

ory by Frankfurt and Strikman [42, 67]. In particular, since the PLC contribution to the

nucleonic PDF is expected to dominate when x & 0.6, the PDF should be suppressed by a

factor δ
(j)
A (k2, xN ), which depends on the nucleon momentum (or off-shellness) k2 as

δ
(j)
A (k2, xN & 0.6) =

1

(1 + z(j))2
z(j) =

k2

mN
+ 2ǫ

(j)
A

∆E
(j)
A

, (2.132)

where the superscript j denotes whether the nucleon is moving in the mean field (j = 1) or

is in a j-nucleon SRC. Additionally, ǫ
(j)
A is the mean binding energy per nucleon and ∆E

(j)
A

denotes the excitation energy of the nucleon in the nuclear medium.
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For xN < 0.45, it is supposed that no medium modification occurs, and for 0.45 <

xN < 0.6, δ
(j)
A (k2, xN ) is interpolated linearly:

δA(k
2, 0.45 < xN < 0.6) = 1 +

xN − 0.45

0.15

{

δA(k
2, xN & 0.6)− 1

}

. (2.133)

This neglects the enhancement of the bound nucleon PDF at small x, which can be seen in

the data in Fig. 2.12, and which is implied by the baryon charge sum rule. However, the

enhancement in this region owes to different dynamics than those at play at moderate and

large x, and accordingly is beyond the scope of this dissertation. For a review of nuclear

effects at low x, however, see Ref. [72].

The nucleon excitation energy ∆E
(j)
A is a dynamical parameter depending on local

medium effects, in particular on the spin and isospin configurations of the interacting nu-

cleons. Accordingly, it differs between a nucleon in the mean field and a nucleon in an SRC,

which is a large part of why the mean field and j-nucleon SRCs are modified differently.

For a nucleon in the mean field, the characteristic excitation energy is expected to be in the

range 300-500 MeV, namely between the excitation energies of a ∆ and an N∗ resonance.

The best fit to data occurs when ∆E
(1)
A ≈ 500 MeV, corresponding to the N∗ resonance.

However, for the deuteron, as well as for a nucleon in a two-nucleon SRC, the lowest ex-

cited state is expected to be a ∆∆ configuration, giving ∆Ed = ∆E
(2)
A ≈ 600 MeV. Since

the three-nucleon SRC is generated through a sequence of two-nucleon SRCs, we also take

∆
(3)
A = 600 MeV.

The binding energy in the mean field ǫ
(1)
A is taken to simply be the empirically-known

binding energy per nucleon. For two- and three-nucleon correlations, the binding energy is

neglected, since it is small compared to the kinetic energy of a nucleon in an SRC, which

will dominate z(j≥2).

Lastly, the momentum k depends on whether the nucleon is in the mean field or a

short range correlation. It corresponds to the light cone momentum of the bound nucleon

relative to the center of mass of either the nucleus (j = 1) or with respect to the j-nucleon
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cluster. In particular,

k2j=1 = (α− 1)2m2
N + p2

⊥ (2.134)

k2j=2 =
(α− 1)2m2

N + p2
⊥

α(2 − α)
(2.135)

k2j=3 = 2
(α − 1)2m2

N + p2
⊥

α(3− α)
. (2.136)

The j = 1 and j = 3 cases are approximations, and the j = 2 case is exact. In particular,

the j = 1 case is the non-relativistic approximation, and the j = 3 case assumes the relative

momentum between the spectators in the 3N SRC is small.

In effect, with these values for the parameters in mind, the contribution to the bound

nucleon PDF of processes that involve j removed nucleons is

f
(b,j)
i/N

(

xN , Q
2;α,p⊥

)

= fi/N
(

xN , Q
2
)

δ(j)
(

k2(α,p⊥), xN
)

. (2.137)

If the artificial shift in x due to comparing nuclear and deuteron PDFs at a fixed xB is to

be accounted for, then xN should be taken to be AmN
MA

xB
α ; otherwise, the argument should

be xN = xA
α .

The color screening model adequtely accounts for the EMC effect in 56Fe, as can be

seen in Fig. 2.14. It should be noted that this model has been developed to explain the

EMC effect within a restricted range of Q2, namely the region 2 ≤ Q2 < 200 GeV2, where

the EMC effect has so far been experimentally explored. To account for the EMC effect at

higher Q2, it is necessary to consider the evolution equation in Q2 for nuclear PDFs. This

will be done in the following section.

2.6 Evolution of nuclear PDFs

In principle, the convolution formula Eq. (2.56) is valid at any Q2 high enough that the

impulse approximation can be applied. However, the bound nucleon PDFs are not known

at high Q2. Their form at low Q2 can be parametrized using phenomenological models of

the EMC effect in order to account for medium modification, but there is a limited amount
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Plot of EMC ratio using the color screening model
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Figure 2.14: The EMC ratio at Q2 = 10 GeV2, calculated using the Bodek-Ritche
parametrization for the free nucleon PDF [46–48], with and without medium modifica-
tions accounted for by the color screening effect. 2N and 3N SRCs are accounted for in this
calculation. Data are from SLAC experiments: Stars (blue) are from [4]; circles (red) are
from [49].

of empirical data for the EMC effect at high Q2. Experiments done at CERN in the 1980s

measured the eA to ed cross section ratio at Q2 up to 200 GeV2, but with large errors on

both Q2 and the cross section ratio. At higher Q2, such as those accessible at the LHC

(going to 104 GeV2 and beyond), the extent of medium modifications (as well as their x

dependence) is unknown, and accordingly a simple application of the convolution formula

is insufficient to find the nuclear PDF.

However, the nuclear PDFs at high Q2 can be found from the low-Q2 PDFs using

DGLAP evolution [12–14]. In general, the DGLAP evolution equation describes the Q2

dependence of a hadron’s PDF through an integro-differential equation of the form

∂fi/h(x,Q
2)

∂ log(Q2)
=
α(Q2)

2π

∑

j

∫ 1

x

dy

y
Pij

(

x

y

)

fj/h(y,Q
2). (2.138)

Conceptually, the equation has the following interpretation: as one increases the momentum

resolution scale with which the hadron is probed, one looks “inside” partons; the low-Q2

partons are in a sense composite objects that are made up of high-Q2 partons, and by

increasing the resolution scale one sees deeper into the structure of the hadron and is able
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to see more partons5. Conversely, a parton of flavor i that is seen at high Q2 has some

probability of having been found inside a low-Q2 parton of flavor j, with the splitting

function Pij(z) characterizing this probability.

The DGLAP evolution formula of Eq. (2.138) needs to be modified slightly for nuclei,

since x now ranges up to A instead of 1. A simple guess would be that the upper limit of

the integral should be A instead of 1, but this can be shown rigorously. Eq. (2.138) applies

for the true momentum fraction xA
A , and substituting this for x in Eq. (2.138) gives

∂fi/A(xA, Q
2)

∂ log(Q2)
=
α(Q2)

2π

∑

j

∫ 1

xA/A

dy

y
Pij

(

xA
Ay

)

fj/A(Ay,Q
2),

where the functional dependence of the nuclear PDF on its argument is scaled by A since the

nuclear PDF conventionally takes A times the (true) momentum fraction as its argument.

Defining yA = Ay, one then has

∂fi/A(xA, Q
2)

∂ log(Q2)
=
α(Q2)

2π

∑

j

∫ A

xA

dyA
yA

Pij

(

xA
yA

)

fj/A(yA, Q
2). (2.139)

Since this section concerns nuclear PDFs in particular, the subscript A will henceforth be

omitted and it shall be understood that x and y are scaled momentum fractions.

For the sake of practical computations, it is often convenient to convert Eq. (2.139)

with a change of variables. One uses z = x
y , in terms of which

∂fi/A(x,Q
2)

∂ log(Q2)
=
α(Q2)

2π

∑

j

∫ 1

x/A

dz

z
Pij(z)fj/A

( z

x
,Q2

)

. (2.140)

The convenience of this formulation comes from the fact that the splitting functions Pij(z)

are actually distributions, and are defined in terms of how an integral of Pij(z) times a test

function is evaluated. This will be described in depth in the next section.

5 This interpretation is consistent with the modern view of the renormalization group, in which a quantum
field theory at low momentum resolution scales is an effective field theory which integrates out unknown
degrees of freedom [73].
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2.6.1 Leading order splitting functions

At leading order, the splitting functions Pij(z) were found by several authors [12–14] to be

(with i, j 6= 0):

Pij(z) ≡ δijPqq(z) = CF

[

1 + z2

(1− z)+
+

3

2
δ(1)(1− z)

]

(2.141)

Pi0(z) ≡ PqG(z) = TR
[

z2 + (1− z)2
]

(2.142)

P0j(z) ≡ PGq(z) = CF

[

1 + (1− z)2

z

]

(2.143)

P00(z) ≡ PGG(z) = 2CA

[

z

(1− z)+
+

1− z

z
+ z(1 − z)

]

+

(

11CA − 4TRNf

6

)

δ(1)(1− z). (2.144)

Here, CF = N2
c−1
2Nc

= 4
3 , CA = Nc = 3, and TR = 1

2 are Casimir invariants of QCD.

The quantity Nf denotes the number of active quark flavors. In particular, the splitting

functions given above were derived in a massless quark approximation: the quark that is

struck by a hard probe, as well as a parent quark which split into the probed quark, is

assumed to be massless in comparison to the hard interaction scale Q2. Quarks for which

m2
q > Q2 are “switched off,” and are considered inactive. Essentially, Nf is the number of

quark flavors for which Q2 is greater than the quark mass squared. In this scheme, quarks

may be “switched on” if Q2 passes the square of the quark mass, so care must be taken in

how this is dealt with; a quark mass prescription will be described in Sec. 2.6.2.

There are two distributions in the definitions of the splitting functions: the first is

the familiar Dirac delta distribution, and the other is the “plus” distribution 1
(1−z)+ which

was defined by Altarelli and Parisi as follows [14]: let f(z) be a test function for which

(1− z)−1 (f(z)− f(1)) is integrable over the domain [0, 1]. Then one defines:

∫ 1

0

f(z)dz

(1− z)+
=

∫ 1

0

f(z)− f(1)

1− z
dz. (2.145)

Note that the lower integration limit in this definition is 0, while the lower integration limit

in the DGLAP equation (2.140) is x/A. However, the definition of Eq. (2.145) is sufficient
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to prescribe how the plus distribution times a test function will integrate with any lower

limit. In particular, notice that

∫ 1

x

f(z)dz

(1− z)+
=

∫ 1

0

f(z)Θ(z − x)dz

(1− z)+
=

∫ 1

0

f(z)Θ(z − x)− f(1)Θ(1− x)

1− z
dz

=

∫ 1

x

f(z)− f(1)

1− z
−
∫ x

0

f(1)dz

1− z
∫ 1

x

f(z)dz

(1− z)+
=

∫ 1

x

f(z)− f(1)

1− z
+ f(1) log(1− x). (2.146)

For a lower integration limit of x
A , one needs to substitute x 7→ x

A here, including in the

logarithm.

2.6.2 Heavy quark scheme

Most of the formulas used in perturbative QCD, including the splitting functions Pij(z) in

the DGLAP evolution equation, and the dependence of the running coupling strenth α(Q2)

on Q2, are calculated in a massless quark approximation. In this approximation, the quarks

that participate in a reaction are assumed to be massless, which is justified by the hard

momentum transfer scaled Q2 being much greater than m2
q. This is always justified for the

lightest three quarks, since the domain at which pQCD can be applied always involves Q2

much greater than the squares of the up, down, and strange quark masses. However, pQCD

can be applied (including in the present work) at Q2 as low as a few GeV2. The mass of

the next-heaviest quark, the charm quark, is 1.29 GeV [3], meaning charm cannot always

be treated as massless.

Additionally, when m2
q ≫ Q2, the momentum transfer is insufficient to create a heavy

quark in the final state, and the (renormalized) heavy quark loop diagrams which contribute

to the running of α(Q2) are suppressed by powers of
m2

q

Q2 . Accordingly, quarks that are heavy

compared to Q2 are considered to be “inactive,” and their small contributions to the running

of the coupling strength and to DGLAP evolution, are neglected.

The regime where m2
q is comparable to Q2 is in principle more complicated, but to

a fair approximation, one can apply a scheme where the massless quark approximation is
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used at all Q2, but each quark flavor f is “switched on” when Q2 reaches some threshold

value Q2
f . The condition that α(Q2) be continuous across the thresholds imposes, at leading

order, that Q2
f = m2

f [10]. Accordingly, the scheme that shall be used in this work is that

given by Collins and Tung [10] in which a quark flavor is considered inactive for Q2 < m2
f

and active for Q2 > m2
f . Nf is the number of active quarks so, e.g., for Q2 < (1.29 GeV)2,

Nf = 3, while for (1.29 GeV)2 < Q2 < (4.5 GeV)2 (the mass of the bottom quark in the

MS scheme), Nf = 4.

The quark mass prescription of [10] also has the parameter ΛQCD appearing in the

expression for the running coupling strength α(Q2) as a function of Nf . This is required

by continuity of the coupling strength across the heavy quark thresholds. The values given

by the 2014 Particle Data Group [3] are:

Λ
(Nf=6)
QCD = (90.6 ± 3.4) MeV

Λ
(Nf=5)
QCD = (214 ± 7) MeV

Λ
(Nf=4)
QCD = (297 ± 8) MeV

Λ
(Nf=3)
QCD = (340 ± 8) MeV

in the MS renormalization scheme.

2.6.3 Next-to-leading order corrections

The next-to-leading order splitting functions have a considerably more complicated form

than the leading order splitting functions. They were first derived in Refs. [74,75], but can

also be found in Chapter 4 of [76] and the appendix of [77]. Just as with the leading order

splitting functions, there are contributions from delta and plus distributions that must be

properly accounted for.

The most significant challenge posed by NLO splitting functions is computational. At

next-to-leading order, the splitting functions Pqiqj for i 6= j are non-zero; it is, for instance,

possible to find an s quark inside a d quark because, at NLO, a d quark can radiate a gluon
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that splits into an ss̄ pair. Thus, the integro-differential DGLAP equations become highly

coupled.

It is, however, possible to decouple the DGLAP equations by using appropriate (singlet

and non-singlet) mixtures of quarks and anti-quarks, thus significantly reducing computa-

tion time. In particular, I employed Eqs. (4.97,4.98,4.99) of Ref. [76] in my code, evolved the

singlet and non-singlet mixtures according to the computational algorithm given in Sec. 2.6.4

below, and then inverted these equations to obtain the evolved “physical” nPDFs.

It will be shown in the following section that NLO evolution makes a negligible cor-

rection to LO evolution within the kinematic regime that this dissertation is concerned

with. It is for this reason that NLO is not described in depth here. NLO calculations were

performed in this work only to demonstrate their negligibility in the domain of interest.

2.6.4 Computational algorithm

A computational algorithm was written for applying the DGLAP equations (2.140) to pa-

rameterizations of nuclear PDFs. The algorithm essentially takes a collection of functions

fi/A(x,Q
2
ini) representing the nuclear PDFs (for a set of flavors i) as functions of x at a

given Q2 value, as well as the initial Q2 value and the target Q2 value to which the PDFs

should be evolved. The algorithm returns a collection of new functions fi/A(x,Q
2
fin) of x at

the final Q2 value. The user may decide whether evolution is to be done at leading order

or next-to-leading order.

The algorithm works as follows: first, an array of (N + 1) discrete x values {xn|n =

0, . . . , N} is created, and a grid of PDFs defined at these discrete x values is constructed.

The limiting values are chosen as x0 = xmin (which is a parameter that can be chosen by

the user, but is set to 10−5 by default) and xN = A. From the PDF grid, arrays for the

singlet and non-singlet linear combinations of PDFs described in Sec. 2.6.3 are constructed,

since their evolution can be performed much faster than for the “physical” PDFs.

The DGLAP equations (2.140) are then discretized. Special care must be taken when

discretizing the splitting functions, since they are distributions. In general, a splitting

function is a sum of three terms: an ordinary function, a Dirac delta distribution, and a
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“plus” distribution:

P (z) = PN (z) + Pδδ
(1)(1− z) +

P+(z)

(1− z)+
. (2.147)

Since the distributions are defined by how they integrate when multiplied by a test function,

one should write out:

∫ 1

x/A

dz

z
P (z)f

(x

z
,Q2

)

=

∫ 1

x/A

dz

z
PN (z)f

(x

z
,Q2

)

+ Pδf(x,Q
2)

+

∫ 1

x/A

1
zP+(z)f

(

x
z , Q

2
)

− P+(1)f(x,Q
2)

1− z
dz

+ P+(1)f(x,Q
2) log

(

1− x

A

)

. (2.148)

Several of these terms can be directly evaluated, while the others require numerical inte-

gration. In particular, the grid of z values over which the integration is done is chosen to

be identical to the x integration values, and a trapezoidal integration algorithm is applied,

so, for instance,

∫ 1

x/A

dz

z
PN (z)f

(x

z
,Q2

)

≈ 1

2

N
∑

n=1

[

PN (zn)

zn
f

(

x

zn
, Q2

)

+
PN (zn−1)

zn−1
f

(

x

zn−1
, Q2

)

]

(zn − zn−1). (2.149)

While trapezoidal integration may seem crude, it was shown by Miyama and Kumano [77]

that with a strategically-chosen mesh of x values based on the known functional behavior of

the PDFs, trapezoidal integration produces an excellent approximation. The scheme chosen

by Miyama and Kumano was to space x values logarithmically, in light of the well-known

f(x) ∼ 1
x behavior of the PDFs at small x. While the 1

x asymptotic form works well for

x . 0.1, it does not describe the behavior of PDFs at larger x. Accordingly, the mesh of

discrete x values used in the computational algorithm of the present work is different.
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x mesh and interpolation algorithm

To construct the mesh of discrete x values used in numerically solving the DGLAP equations,

the domain [xmin, A] (or [xmin, j] if only contributions of up to j-nucleon SRCs to the nPDF

are considered) was partitioned into three regions. Based on the different approximate

functional behavior of PDFs in these regions, the x values were spaced so that the PDF

would be evaluated more frequently in regions where it undergoes the most rapid change.

Firstly, in the region xmin < x < 0.1, the discrete x values chosen to be in the x array were

spaced logarithmically, with a greater density of x values closer to xmin, in light of the 1
x

asymptotic form at low x. Secondly, in the region 0.1 < x < 0.8, since the PDF does not

vary rapidly, x values were spaced uniformly. Lastly, in the region 0.8 < x < A, since the

PDF changes more rapidly at larger x (with an asymptotic form of (A−x)p for some power

p), the discrete x values chosen for the x array were spaced logarithmically, with greater

density towards x = A.

In formulas, the points making up the x mesh are chosen as follows:

xn = xmin

(

X1

xmin

)n/⌊N/3⌋
: 0 ≤ n ≤ ⌊N/3⌋ (2.150)

xn = (X2 −X1)
n− ⌊N/3⌋
2⌊N/3⌋ +X1 : ⌊N/3⌋ ≤ n ≤ 2⌊N/3⌋ (2.151)

xn = A+X2 −X2

(

A

X2

)(N−2⌊N/3⌋−n)/(N−2⌊N/3⌋)
: 2⌊N/3⌋ ≤ n ≤ N (2.152)

where X1 = 0.1 and X2 = 0.8 define the boundaries of the partitions, and where ⌊N/3⌋ is

the floor function of N/3, i.e., the largest integer that is less than or equal to N/3.

In addition to the placement of discrete x values on the x mesh, the approximate

asymptotic forms of the PDFs are used for defining an interpolation of fj/A(x,Q
2). This is

a necessary ingredient for the computational algorithm, as the x
zn

which the PDF takes as

an argument in Eq. (2.149) will not in general lie on the mesh. In the following, suppose

xa < x < xb, with xa and xb being neighboring points in the x mesh.

In the x < 0.1 region, the approximate asymptotic form is f(x) ∼ C
x . However, with

such an approximation, one has xbf(xb) − xaf(xa) ≈ 0, and xf(x) is known not to be
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constant for actual PDFs. Instead, xf(x) appears to be a slowly-varying function of log(x),

as can be seen in PDF parameterizations for the proton extracted from experimental data.

Accordingly, xf(x) is interpolated as a function that is approximately linear in log(x),

making the interpolation formula in the x < 0.1 region:

xf(x) = xaf(xa)
log (x/xb)

log (xa/xb)
+ xbf(xb)

log (x/xa)

log (xb/xa)
. (2.153)

In the 0.1 < x < 0.8 region, linear interpolation is used, since the PDF does not vary

greatly:

f(x) =

(

x− xb
xa − xb

)

f(xa) +

(

x− xa
xb − xa

)

f(xb). (2.154)

Lastly, in the 0.8 < x region, the interpolation used is based on the f(x) ∼ (A − x)p

asymtptotic form. One has

log (f(xb))− log (f(xa)) = log
(

1− xb
A

)

− log
(

1− xa
A

)

≈ − 1

A
(xb − xa) ,

i.e., the logarithm of the PDF is approximately linear in the x ∼ A region. Accordingly,

geometric interpolation is used for 0.8 < x:

log (f(x)) =

(

x− xb
xa − xb

)

log (f(xa)) +

(

x− xa
xb − xa

)

log (f(xb)) . (2.155)

Evolving Q2

The discretization of the integral in Eq. (2.140) has been described above; all that remains

is to discuss the discretization of the derivative with respect to log(Q2). While sophisti-

cated schemes for numerically approximating the solutions of differential equations, such

as the fourth-order Runge-Kutta method, are well-known, one can also apply the “crude”

approximation

∂f(x,Q2)

∂ log(Q2)
≈ f(x,Q2

b)− f(x,Q2
a)

log(Q2
b)− log(Q2

a)
, (2.156)
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given Q2
b/Q

2
a ≈ 1. If the given condition holds, then the full discretization of the DGLAP

formula of Eq. (2.140) is

fi/A(xn, Q
2
b) = fi/A(xn, Q

2
a) +

α(Q2
a)

2π

∑

j

{

P
(δ)
ij fj/A(xn, Q

2)

+ P
(+)
ij (1)fj/A(xn, Q

2) log
(

1− xn
A

)

+
(zl − zl−1)

2

N
∑

l=n

[

P
(N)
ij (zl)

zl
f
(inter.)
j/A

(

xn
zl
, Q2

a

)

+
P

(N)
ij (zl−1)

zl−1
f
(inter.)
j/A

(

xn
zl−1

, Q2
a

)

]

+
1

2

N
∑

l=n

(

zl − zl−1

1− zl

[

P
(+)
ij (zl)

zl
f
(inter.)
j/A

(

xn
zl
, Q2

a

)

− P
(+)
ij (1)fj/A

(

xn, Q
2
a

)

]

+
zl − zl−1

1− zl−1

[

P
(+)
ij (zl−1)

zl−1
f
(inter.)
j/A

(

xn
zl−1

, Q2
a

)

− P
(+)
ij (1)fj/A

(

xn, Q
2
a

)

])}

, (2.157)

where the superscript (inter.) signifies that the interpolation scheme described in Sec. 2.6.4

should be used to find the value of the PDF at e.g. xnzl . As written, Eq. (2.157) can be used

to numerically evolve a PDF over a small Q2 range.

For a Q2
fin ≫ Q2

ini, one should partition the domain of Q2 values between the initial

and final values into a mesh {Q2
0, Q

2
1, . . . , Q

2
M} for which Q2

0 = Q2
ini and Q2

M = Q2
fin, and

for which Q2
m+1/Q

2
m ∼ 1 for all m. Then, evolution from Q2

m to Q2
m+1 can be numerically

performed using Eq. (2.157), and one can evolve a PDF from Q2
ini to Q2

fin by applying

Eq. (2.157) M times, once for each interval in the Q2 mesh.

Convergence of evolution for mesh sizes

The computational algorithm for numerically solving the DGLAP equation Eq. (2.140)

through the discretization Eq. (2.157) has been fully described What remains is to choose

the sizes of the x and Q2 arrays in order to both optimize computation time and to produce

accurate results.

The DGLAP equation was numerically solved for different values of two parame-

ters: N , the number of intervals on the x mesh; and Q2
m+1/Q

2
m, the geometric spacing

between subsequent points in the Q2 mesh. The discretized DGLAP equation (2.157) was
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Plot of evolution computation with different x meshes

10−5 10−4 10−3 10−2 10−1 100

x

0

2

4

6

8

10

x
u
(x
)

Initial PDF

N = 20

N = 40

N = 80

N = 160

(a) Q2
m+1/Q

2
m = 5

10−5 10−4 10−3 10−2 10−1 100

x

0

2

4

6

8

10

12

x
u
(x
)

Initial PDF

N = 20

N = 40

N = 80

N = 160

(b) Q2
m+1/Q

2
m = 2

10−5 10−4 10−3 10−2 10−1 100

x

0

2

4

6

8

10

12

x
u
(x
)

Initial PDF

N = 20

N = 40

N = 80

N = 160

(c) Q2
m+1/Q

2
m = 1.4

10−5 10−4 10−3 10−2 10−1 100

x

0

2

4

6

8

10

12

x
u
(x
)

Initial PDF

N = 20

N = 40

N = 80

N = 160

(d) Q2
m+1/Q

2
m = 1.2

Figure 2.15: Comparison of evolution for different x mesh sizes for a given Q2
m+1/Q

2
m.

Initial Q2 is 10 GeV2, and final is 104 GeV2. Evolution is NLO.

numerically evaluated by evolving the CT10 parametrization of the proton PDF [78] from

Q2
ini = 10 GeV2 to Q2

fin = 104 GeV2 at next-to-leading order, using four different values of

both N and Q2
m+1/Q

2
m. The N values used were 20, 40, 80, and 160. The Q2

m+1/Q
2
m values

used were 5, 2, 1.4, and 1.2.

In Fig. 2.15, the results of numerical evolution of the proton PDF for different values

of N at fixed Q2
m+1/Q

2
m can be seen. It can be observed in this figure that the accuracy of

the fit saturates around N = 160, so an x mesh with 160 intervals is sufficient for accurate

solution of the DGLAP equation. In Fig. 2.16, the results of numerically evolving the proton

PDF at different Q2
m+1/Q

2
m values and a fixed N can be seen, and it can be observed that
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Plot of evolution computation with different log(Q2) step sizes
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Figure 2.16: Comparison of evolution for different Q2
m+1/Q

2
m values with a fixed x mesh

size. Initial Q2 is 10 GeV2, and final is 104 GeV2. Evolution is NLO.

the results converge for Q2
m+1/Q

2
m ≈ 1.2, which is a sufficiently small geometric spacing

between discrete Q2 values. Accordingly, the values N = 160 and Q2
m+1/Q

2
m = 1.2 are used

in the remainder of this dissertation for the evolution of nuclear PDFs.

2.6.5 Results of evolving nuclear PDFs

The nuclear PDFs obtained via the convolution formula (2.56) are obtained at Q2 =

10 GeV2. Now that the numerical DGLAP evolution algorithm has been developed, it

can be used to evolve these nuclear PDFs to the higher Q2 characteristic of high-energy

experiments such as those at the EIC and LHC.
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Comparison plot of LO and NLO evolution
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Figure 2.17: Comparison of LO and NLO evolution of nuclear PDFs for 56Fe. fiso =
Z
Au(x) +

A−Z
A d(x). Q2

ini = 10 GeV2 and Q2
fin = 104 GeV2. 2N and 3N SRCs are taken into

account, and medium modifications are not.

Firstly, it should be emphasized that the scope of this dissertation is focused on

moderate to large Bjorken x values, namely xA > 0.2 where the dominant effects are medium

modification and nucleonic motion. Because of this, leading order splitting functions are

sufficient; next-to-leading order corrections are mainly significant at x . 0.01. The relative

significance of NLO corrections to DGLAP evolution are shown for unmodified nuclear

PDFs in Fig. 2.17. It can be seen that the leading order is sufficient in the xA range of

interest.

The evolution of medium modifications was also studied. The approach taken here is

to define a ratio of the medium-modified nuclear PDF to the unmodified nuclear PDF, viz.

R
(mod.)
i/A (x,Q2) =

f
(mod.)
i/A (x,Q2)

f
(unmod.)
i/A (x,Q2)

. (2.158)

In Fig. 2.18, this ratio is plotted for two values of Q2. The difference in these curves

demonstrates the extent to which medium modifications themselves evolve. If medium

modifications did not evolve, then the convolution formula (2.56) could be applied with the

same medium modification model at any Q2, together with an empirical parametrization of

the free nucleon PDF obtained at this Q2. Since the ratio R
(mod.)
i/A (x,Q2) does change with
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Plot of evolution of medium modifications
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Figure 2.18: R
(mod.)
u/A (x,Q2) for 56Fe, at two values of Q2.

Q2, we instead to apply DGLAP evolution to obtain high-Q2 nuclear PDFs. It should be

noted, however, that the evolution of medium modifications is a small effect. Nonetheless,

for the sake of completeness, evolution will be used to connect the low-Q2 region (where

the form of the EMC effect is well-known) and the high-Q2 region.

Evolution trajectories

DGLAP evolution describes how high-Q2 partons are found within low-Q2 partons. As

one increases the momentum resolution scale with which a hadron is probed, the higher-Q2

parent parton radiates away part of its forward momentum, so in general the evolved PDF

is greater in the low-x and smaller in the high-x region, as can be seen for instance in

Figs. 2.15, 2.16, and 2.17.

The fact that high-x partons migrate to the lower-x region with evolution has potential

significance for high-Q2 experiments. The empirically unconstrained high-x region can

affect the evolution of PDFs in the moderate-to-low-x region. A high-x parton at e.g. Q2 ∼

10 GeV2 can become a moderate- or low-x parton at e.g. Q2 ∼ 104 GeV2.
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Conversely, at moderate- or low-x parton at Q2 ∼ 104 GeV2 may have originated

from a higher-x parton at Q2 ∼ 10 GeV2. Evolution trajectories [72] quantitatively describe

such a possibility. An evolution trajectory is a path through x-Q2 parameter space that

describes how much of a high-Q2 PDF at low x originated from the evolution of higher-x,

lower-Q2 partons, as opposed to having primordially been present. It is defined first by

choosing an initial high x0 and low Q2
0 at which the trajectory starts, and a cut-off PDF

f̃i/A(x,Q
2;x0, Q

2
0) given at Q2 = Q2

0 by

f̃i/A(x,Q
2
0;x0, Q

2
0) = fi/A(x,Q

2
0)Θ(x− x0), (2.159)

i.e., by cutting off the PDF at x < x0. For Q2 > Q2
0, one obtains f̃i/A(x,Q

2;x0, Q
2
0) by

applying DGLAP evolution. While the cut-off PDF is initially zero at x < x0, it will be

non-zero at these low x after evolution, since the x > x0 partons radiate away forward

momentum when they evolve. Conversely, any partons with x < x0 in the evolved cut-off

PDF came entirely from evolution. With the cut-off PDF defined as in Eq. (2.159), one

then defines a point x′ < x0, Q
2′ > Q2

0 as being on the evolution trajectory if

f̃i/A(x
′, Q2′;x0, Q

2
0) =

1

2
fi/A(x

′, Q2′),

i.e., a point in x-Q2 space is on the evolution trajectory when exactly half of the PDF

at that point comes from evolution. Evolution trajectories, defined as such, allow one to

determine how significant the contributions of higher-x partons are to the evolution of PDFs

at lower x, and accordingly to determine whether precise knowledge of the high-x region of

PDFs is necessary to predict the moderate- or low-x form of PDFs in different experimental

scenarios.

Evolution trajectories were plotted in Fig. 2.19 to determine the importance of the

high-x region of nuclear PDFs—especially the x > 1 region—to the form of PDFs at low

and moderate x values. As can be seen, in the low-x region, a significant portion of the
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Plot of evolution trajectories
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Figure 2.19: Evolution trajectories for 56Fe. 2N and 3N SRCs are taken into account, and
medium modifications are not. Evolution is leading order.

PDFs are due to evolution6, but in the moderate- and high-x regions, most of the partons

are “primordially” present, rather than being due to the radiation of higher-x partons. The

evolution trajectory which starts at x0 = 1 and Q2
0 = 10 GeV2 does not even reach x′ = 0.9

by the time Q2′ = 104 GeV2. Accordingly, precise knowledge of the x > 1 region of nuclear

PDFs is not necessary to describe the moderate-x region at high Q2.

2.6.6 Summary

In this section, the evolution of nuclear PDFs obtained at low Q2 ∼ 10 GeV2 was described.

The necessity of applying DGLAP evolution to determine the high-Q2 nuclear PDFs, rather

than using a convolution approach directly, was demonstrated. A computational algorithm

for numerically solving the DGLAP equations was elucidated, and the results of applying

this algorithm to nuclear PDFs containing short range correlations and medium modifica-

tions were given. With high-Q2 nuclear PDFs now obtained, they can be used to describe

high-energy scattering reactions, as will be described in the following section.

6 In fact, since the evolution was performed at leading order, at for x . 0.01 NLO contributions are
significant, the trajectories will be more extreme in this region with NLO corrections.
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2.7 Dijet production in proton-nucleus collisions

The majority of experiments probing the existence and properties of multi-nucleon short

range correlations (SRCs), as well as medium modification via the EMC effect, occur at low

Q2 where quasi-elastic contributions are significant. At x > 1 especially, where the cross

section is due almost entirely SRCs, quasi-elastic contributions at low Q2 completely domi-

nate over inelastic contributions that would allow the nuclear parton distribution functions

(nPDFs) to be directly probed. It is possible to study nuclear PDFs at low Q2 by using a

model of quasi-elastic scattering and subtracting off the quasi-elastic contribution, but this

procedure is highly model-dependent. Moreover, even when the inelastic cross section is

obtained in this fashion, it will contain higher-twist and target mass effects which become

significant at low Q2. Target mass effects are theoretically well-understood within the con-

text of the operator product expansion [79,80] but their framing in the quark-parton model

is problematic, and the exact procedure is debated (see [80] for a review of such efforts).

Higher-twist effects are less understood, and are often phenomenologically fit to data.

It would be a more ideal state of affairs to study SRCs and the EMC effect at large Q2

where these concerns become negligible. Large Q2 at 0.5 ≤ xA ≤ 3 in electron-scattering

experiments is difficult to achieve, since

W 2 −M2
A = Q2

(

A

xA
− 1

)

, (2.160)

meaning that a large center-of-mass energy needs to be achieved in order to probe such

kinematics. For instance, to study xA ∼ 1 for 56Fe at Q2 = 100 GeV2, one needs center-of-

mass energies exceeding 240 GeV, which is not realistically achievable for an electron beam

incident on a fixed target.

The most feasible way to attain high Q2, and thus to probe the deep structure of nuclei

and study nuclear PDFs, is to attain high center-of-mass energy, which can be accomplished

using beam collision experiments. The proposed Electron Ion Collider (EIC) is one method

of doing this. Another method, which can be accomplished using currently available devices,
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is proton-nucleus collisions. This section of the dissertation is concerned with the second

method. In particular, I demonstrate that nuclear PDFs can be studied using inclusive

dijet production in proton-nucleus collisions, and investigate whether information about

the EMC effect and SRCs can be extracted from this reaction. Special focus is given to

p-208Pb collisions at the kinematics of the Large Hadron Collider (LHC).

2.7.1 Formalism

The idea of using proton-nucleus collisions to study nuclear PDFs depends on an important

theoretical assumption which has not been rigorously proven [81], but has nonetheless been

found to be an invaluable guiding principle for hadronic collision experiments: namely,

that the hadron-hadron cross section factorizes in terms of universal parton distribution

functions, in the same way that deep inelastic scattering and Drell-Yan processes are known

to factorize [81].

In particular, the factorization formula for a hadron-hadron collision (between two

hadrons h1 and h2) is postulated to be [76]

σh1h2 =
∑

ij

∫ xmax
h1

0
dxh1

∫ xmax
h2

0
dxh2fi/h1(xh1 , Q

2)fj/h2(xh2 , Q
2)σ̂ij(ŝ, t̂, û;Q

2), (2.161)

where i and j are flavors of partons within the hadrons, and σ̂ij(ŝ, t̂, û;Q
2) is a hard partonic

cross section (with ŝ etc. being parton-level Mandelstam variables) that can be calculated

using perturbative QCD. The Q2 dependence of this cross section comes from the running

of the QCD coupling strength αQCD(Q
2).

The dijet production reaction in particular can be stated as

p+A→ dijet +X, (2.162)

where the kinematics of the two outgoing jets are fully determined. At the leading order

(LO) in pQCD, the contributing QCD processes are two-parton to two-parton reactions of

the form ij → kl, where i, j, k, l are parton flavors. The specific reactions allowed and their
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Feynman diagram for pA→ dijet +X
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Figure 2.20: Diagram of p+A→ dijet +X within the convolution formalism.

parton-level cross sections are given in Sec. 2.7.1. Since the subprocesses that contribute to

the dijet cross section at LO are all two-body scattering reactions, it is possible to extract

the light cone fractions xp and xA of the initial partons from measured jet kinematics, as

will be shown in Sec. 2.7.1. Since this procedure depends on being able to treat the reaction

as occurring through a two-body scattering subprocess, and this depends on the leading

order approximation, the use of leading order is justified in Sec. 2.7.1.

Jet kinematics

The analysis is done in the collider rest frame, since this is the frame in which detector

specifications such as resolution and acceptance are best known. The proton is considered

to move in the +z direction and the nucleus in the −z direction. Both of these have energies

far exceeding their masses, allowing their masses to be neglected; thus the only non-zero

components of pp and pA are p+p and p−A. The energy per proton for both initial hadrons

is a fixed quantity E0, which was given by E0 = 4 TeV for the LHC prior to its shutdown,

and will reach a maximum value of E0 = 7 TeV in its current run. Accordingly, p+p = 2E0

and p−A = 2ZE0. Computations are performed with both of these energy values.
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The total center-of-mass energy squared is given by the Mandelstam variable spA =

p+p p
−
A, but results from proton-nucleus collision experiments are typically given in terms of

the average center-of-mass energy per nucleon,
√

savg.NN , where s
avg.
NN = spA/A. For a 208Pb

nucleus and E0 = 4 TeV,
√

savg.NN ≈ 5.02 TeV, while for E0 = 7 TeV with the same nucleus,
√

savg.NN ≈ 8.8 TeV. In what follows, formulas will be stated in terms of
√

savg.NN rather than

E0 or spA, since this is conventional. In particular, it should be noted that

p+p =

√

A

Z
savg.NN (2.163)

p−A =
√

AZsavg.NN . (2.164)

It should also be noted that while
√

savg.NN is a fixed quantity given E0 and a particular

nucleus,
√
sNN is variable since it depends on the momentum of whichever nucleon within

the nucleus participates in the dijet production reaction.

At leading order, the pA collision results in an interaction between two partons, one

each from the proton and the nucleus. Their respective four-momenta are labeled p1 and

p2. Within the collinear framework, the partons have zero transverse momentum and are

massless, and each move collinearly with their parent hadron, meaning

p1 =
(

p+1 , 0;0
)

=
(

xpp
+, 0;0

)

(2.165)

p2 =
(

0, p−2 ;0
)

=
(

0,
xA
A
p−A;0

)

, (2.166)

where the light cone momentum fractions are given by

xp =
p+1
p+p

=

√

Z

A

p+1
√

savg.NN

(2.167)

xA = A
p−2
p−A

=

√

A

Z

p−2
√

savg.NN

. (2.168)

xA is given in terms of the “minus” component of the four-momenta involved rather than

the plus component, since p+A = 0 and p−A is large. Essentially, for the nucleus one should
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interpret p+A as the “energy” and p−A as the “forward momentum,” which amounts to ex-

changing + and − components of all four-vectors in the light cone treatment of the nucleus.

Accordingly, we define α = A
p−N
p−A

in this case.

The parton momentum fractions, besides kinematics of the initial state, depend on p+1

and p−2 . These can both be obtained from four-momentum conservation. In particular, the

two jets produced in the reaction (2.162) are generated at leading order by the fragmentation

of the two final state partons, which are ascribed four-momenta p3 and p4. In particular, p3

is the momentum of a jet in the central or proton-beam direction, while p4 is the momentum

of a jet in the nucleus-beam direction. Four-momentum conservation gives

p1 + p2 = p3 + p4 (2.169)

p+1 = p+3 + p+4 (2.170)

p−2 = p−3 + p−4 . (2.171)

What remains is to characterize p±3/4. Jet kinematics can be expressed in terms of two

quantities: the the transverse momentum pT of the jet, and the rapidity y, given by

y =
1

2
log

(

p+

p−

)

. (2.172)

This relation can be inverted to give

p+

p−
= e−2y. (2.173)

Given that the jet has a mass m, one has

p+p− − p2T = m2 (2.174)

p± =
m2 + p2T
p∓

, (2.175)
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which can be used to eliminate either of p± from Eq. (2.173). Defining the transverse mass

mT =
√

m2 + p2T , one has

p± = mT e
±y. (2.176)

In practice, one typically has experimental access not to the rapidity y and transverse

momentum pT , but to the pseudo-rapidity η and transverse energy ET , given by

η = − log tan(θ/2) (2.177)

ET = E sin θ, (2.178)

with θ being the angle between the beam direction and the jet, which is directly measured.

Moreover, it is ET rather than pT which is measured by hadron calorimeters. However, in

the limit that the jet mass goes to zero, we clearly have ET = pT , and

y =
1

2
log

(

p+ pz
p− pz

)

=
1

2
log

(

1 + cos θ

1− cos θ

)

= log (cot(θ/2)) = η. (2.179)

Since, at leading order, the jets in the considered reaction are generated by fragmenting

partons, and the partons are massless, the jet masses can be taken to zero and the relations

ET = pT and y = η can be used. Accordingly, p± can be given in terms of quantities

directly measured in a collision experiment, namely the angle of the jet with respect to the

beam, and the energy measured by a hadron calorimeter. The relation is

p± = pT e
±η = ET cot(θ/2) = E cos(θ/2). (2.180)

Quantities in what follows will be given in terms of pT and η, since these are the conventional

quantities in terms of which collider experiment results are given. Since the initial partons

are collinear with the beams, p3⊥ = −p4⊥ = pT , so we have p±3/4 = pT e
±η3/4 , and thus

p+1 = pT
(

e+η3 + e+η4
)

(2.181)

p−2 = pT
(

e−η3 + e−η4
)

. (2.182)
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Putting this result into Eqs. (2.167,2.168), we obtain

xp =

√

Z

A

pT
√

savg.NN

(

e+η3 + e+η4
)

(2.183)

xA =

√

A

Z

pT
√

savg.NN

(

e−η3 + e−η4
)

. (2.184)

The primary objective here is to look at large xA, either in the region xA & 0.6

or xA > 1, so that the EMC effect or SRCs can respectively be studied at the high Q2

characterizing LHC kinematics. Eq. (2.184) suggests three conditions be looked at for

maximizing xA:

1. Large pT .

2. Small or negative η3.

3. Small or negative η4.

In order to distinguish the jets from their parent hadron of origin, and in order to allow for

easier detection of one of the jets, the best configuration to look at involves one forward jet

and one central jet, i.e. one jet should be confined to |η| ≤ 2.5, and the other to 3 < |η| < 5.

We take η3 to be the pseudo-rapidity of the central jet, and η4 to be the forward jet. To

satisfy the condition that both pseudo-rapidities be “small or negative,” one should look

for jets with −5 < η4 < −3. This corresponds to a jet that is forward in the direction of

the nucleus beam.

Another important kinematic quantity is the Q2 of the reaction, which doubles as a

factorization scale used in the PDFs, and the renormalization scale used in the running of

the QCD coupling strength. The choice of Q2 that minimizes NLO contributions is −t̂,

which is given by

−t̂ = −(p1 − p3)
2 = 2(p1 · p3) = p+1 p

−
3 = p2T

(

1 + e−η3+η4
)

≈ p2T , (2.185)

with the last step holding due to the highly negative value of η4. (This approximation may

be inadequate, on the other hand, for processes involving two central jets, or for two jets
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that are collinear in the same direction.) Therefore, we take Q2 = p2T as the factorization

and renormalization scales.

Dijet cross section

For reaction (2.162), the factorization formula of Eq. (2.161) becomes

σpA =
∑

ijjk

∫ 1

0
dxp

∫ A

0
dxAfi/p(xp, p

2
T )fj/A(xA, p

2
T )σ̂ij→jk. (2.186)

In terms of differential cross sections, this means leaving out the integration. The parton-

level differential cross section is given by

σ̂ij→jk =
1

4(p1 · p2)
|Mij→kl|2
1 + δkl

(2π)4δ(4)(p1 + p2 − p3 − p4)
d3p3

2E3(2π)3
d3p4

2E4(2π)3
, (2.187)

where Mij→kl is the invariant Feynman amplitude for the ij → kl process, and the factor

of 1+ δkl is a statistical factor to prevent double-counting when the two final-state partons

are the same flavor.

The delta function in Eq. (2.187) can be rewritten

2δ(1)(p+1 − p+3 − p+4 )δ
(1)(p−2 − p−3 − p−4 )δ

(2)(p3⊥ + p4⊥),

the transverse component of which can be integrated out using the p4⊥ integration. The

remaining components are equal to

2A

p+p p
−
A

δ(1)
(

xp −
p+3 + p+4
p+p

)

δ(1)
(

xA −A
p−3 + p−4
p−A

)

.

These can be integrated out by the xp and xA integrations in Eq. (2.186), giving

σpA =
∑

ijkl

1

16π

2A

p+p p
−
A

1

4(p1 · p2)
fi/p(xp, p

2
T )fj/A(xA, p

2
T )

|Mij→kl|2
1 + δkl

dp3z
E3

dp4z
E4

dp2T . (2.188)
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Next, one can use dη = dpz/E and 2(p1 · p2) = xpxA
A p+p p

−
A to obtain

σpA =
∑

ijkl

1

16π

(

A

p+p p
−
A

)

fi/p(xp, p
2
T )

xp

fj/A(xA, p
2
T )

xA

|Mij→kl|2
1 + δkl

dp3z
E3

dp4z
E4

dp2T , (2.189)

and using the average center-of-mass energy per nucleon,
√

savg.NN , we have

d2σ

dη3dη4dp
2
T

=
∑

ijkl

1

16π(savg.NN )
2

fi/p(xp, p
2
T )

xp

fj/A(xA, p
2
T )

xA

|Mij→kl|2
1 + δkl

. (2.190)

Hard subprocesses and justification for LO

At leading order, an exhaustive list of partonic processes that can contribute to dijet pro-

duction in hadron collisions, along with their squared Feynman amplitudes, is given by

Combridge [82]. Each process involves partons of flavors i and j originating from the pro-

ton and the nucleus, respectively, and partons of flavors k and l that fragment into the

observed jets. The partons can be either a quark, an anti-quark, or a gluon, but the pro-

cesses that can occur are limited by flavor conservation.

At next-to-leading order (NLO), a dijet can be associated with either two or three

partons in the final state. This can occur if two of the partons are roughly collinear,

having very small differences in their rapidities and azimuthal angles; in particular, if ∆η2+

∆φ2 < R2, where R is the cone radius used for defining jets, then the two partons will

constitute a single jet. It is necessary to account for jets with finite radius in performing

NLO calculations, since three-parton dijets are needed to cancel infrared divergences in the

two-parton to two-parton Feynman amplitudes at NLO [83]. However, this would spoil

the kinematic relations Eqs. (2.183,2.184) that allow the light cone fractions of the initial

partons to be determined with jet observables.

Accordingly, it is necessary to verify the adequacy of the leading order approximation.

This can be done by performing a leading order calculation of the reaction (2.162) in the

case A = 1, i.e. for dijet production in a pp collision. The result of the calculation can then

be compared to experiment. In Fig. 2.21, a calculation of the two-fold differential cross
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Plot of LO calculation for pp→ dijet against experimental data
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Figure 2.21: Comparison of leading-order (LO) calculation of the two-fold differential cross
section using Eq. (2.196) to experimental data from ATLAS [84]. Proton PDF used is
CT10 [78].

section d2σ/dmJJd|y∗| (calculated below) to experimental data from ATLAS [84] is given.

The tight correspondence between LO theory and data justifies the use of the leading order

in the pA collision calculation.

The ATLAS data are given in terms of the rapidity y, but at leading order, where

the jets are massless, y = η, so these will be used interchangeably here. Let us now define

the rapidity of the dijet as a whole η̄ and the relative rapidity of the jets η∗, which is the

rapidity of either jet in the dijet center-of-mass frame, which are used by the ATLAS data

instead of η3 and η4. They are given by

η̄ =
η3 + η4

2
(2.191)

η∗ =
η3 − η4

2
. (2.192)

The Jacobian for transforming between the jet rapidities and these new rapidities is dη3dη4 =

2dη̄dη∗. Additionally, the ATLAS data are given in terms of the dijet mass mJJ , which is
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given by

m2
JJ = (p3 + p4)

2 = 4p2T cosh2(η∗) (2.193)

mJJ = 2pT cosh(η∗). (2.194)

The overall Jacobian for the transformation from (η3, η4, p
2
T ) to (η̄, η∗,mJJ) is given by

dp2Tdη3dη4 =
2pT

cosh(η∗)
dmJJdη̄dη

∗, (2.195)

and the two-fold differential cross section with respect to η∗ andmJJ is found by integrating

over η̄. Thus,

2d2σ

dmJJdη∗
=

4pT
cosh(η∗)

∫

dη̄
d3σ

dη3dη4dp2T
, (2.196)

where the three-fold cross section is given in Eq. (2.190).

2.7.2 The nuclear PDF

In order to calculate the cross section as given in Eq. (2.190), one needs the proton and

nuclear PDFs. One can use a phenomenological parametrization of the proton PDF; here,

the CT10 parametrization [78] is used. The nuclear PDF, especially for xA > 1, must be

determined theoretically, although the same CT10 parametrization is used as an input as

the “free proton PDF.” One similarly obtains a “free neutron PDF” by using the same phe-

nomenological parametrization, but transposing the u and ū with the d and d̄ distributions,

respectively.

The nuclear PDF can be obtained from a nucleon PDF by using the decomposition

into mean field and SRC contributions, Eq. (2.55), and finding each contribution with the

convolution formula Eq. (2.56) (which also holds for the mean field if we take j = 1 to

signify it). However, Eq. (2.56) takes the bound nucleon PDF, rather than the free nucleon

PDF, as its input. The modified PDF can be obtained from the free PDF by using a model

of medium modification, as described in Sec. 2.5. Since the models of medium modification

that currently exist are made to account for low-Q2 data, one must apply the modification
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at these low Q2, and then evolve the nuclear PDF that is obtained to high Q2 using DGLAP

evolution (which is described in Sec. 2.6). At last, this nuclear PDF can be used in Eq. (2.190

to obtain a differential cross section.

Several of these steps are model-dependent, so different models of the nuclear PDF

will be employed in the numerical estimates of this dissertation. The models will all follow

the light cone convolution formalism that we have developed, but selectively account for

specific phenomena within the formalism in order to gauge their relative significance. In

particular, the nuclear PDF will be found (1) with and without two- and three-nucleon

SRCs present, and (2) with and without medium modifications accounted for by the color

screening model of the EMC effect. I will additionally compare these results to a calculation

using a model by Frankfurt and Strikman [9]7 in order to compare my predictions to those

of a different model of nuclear dynamics.

With these caveats in mind, we can now proceed to estimate the dijet production

cross section, as will be done in the next subsection.

2.7.3 Numerical estimates

Here, I present numerical estimates for the cross section of dijet production in proton-nucleus

collisions. The nucleus considered here is 208Pb, which is used in nucleus beam experiments

at the Large Hadron Collider. Particular focus is placed on superfast partons, namely

partons with xA > 1, a condition which can be checked using measurable jet kinematics

and calculating xA via Eq. (2.184). It is necessary to elaborate on the kinematics considered

in light of this.

After elaborating on kinematics, numerical estimates of the three-fold differential cross

section (cf. Eq. (2.190)) will be presented for several models of the nuclear PDF, and for

beam energies of 4 and 7 TeV per proton. Afterwards, numerical estimates of partially and

fully integrated cross sections will be given for a variety of nPDF models, and estimates of

expected yields for xA bins will be presented.

7See Eq. (5.11) of [9].
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Kinematics considered

Large xA is a primary goal of this study, and accordingly kinematics which tend to maximize

xA are considered. As discussed above, this is accomplished by considering (1) large pT ,

(2) small η3, and (3) highly negative η4. The latter two conditions mean that the jet

originating from the proton will be a central jet, and the jet originating from the nucleus

will be a forward jet. The particular rapidity ranges considered are

−2.5 <η3 < 2.5 (2.197)

3 < −η4 < 5. (2.198)

There are two reasons for using a central jet from the proton rather than a backwards jet,

even though Eq. (2.184) tells us that a highly negative η3 would increase xA. First, there is

a larger cross section for production of central than backwards jets. Second, it is easier to

detect central jets. On the other hand, once one of the detected jets is fixed to be a central

jet, the other must be highly forward in the nucleus beam direction in order for xA to be

large. This is demonstrated graphically in Fig. 2.22.

The range of transverse jet momenta considered is broadly 40 GeV to 300 GeV. The

cross section falls very rapidly with pT , but the larger E0 (and thus
√

savg.NN ) gets, the larger

pT will have to be while keeping η3 and η4 fixed to maintain a given xA. Two values of E0

are considered in these estimates: E0 = 4 TeV, corresponding to
√

savg.NN = 5.02 TeV, and

E0 = 7 TeV, corresponding to
√

savg.NN = 8.8 TeV.

Three-fold differential cross section

The three-fold differential cross section can be calculated using Eq. (2.190). As discussed

above, a collection of different models of the nuclear PDF are considered in carrying out

the calculation. In particular, we estimate the three-fold dijet cross section by using the

convolution formalism for the nPDF developed in this chapter. In all the models considered,
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Plot of dependence of xA on η4

−6 −4 −2 0 2 4 6
η4

0.0

0.5

1.0

1.5

2.0

x
A

pT = 20 GeV/c

pT = 50 GeV/c

pT = 100 GeV/c

Figure 2.22: Dependence of xA on the rapidity η4 of the parton from nucleus, for several

transverse jet momenta. η3 = 0 and
√

savg.NN = 5.02 TeV in this plot.

the nuclear PDF decomposes into mean field and SRC parts according to Eq. (2.55), and

each contribution to the nPDF follows the convolution formula Eq. (2.56).

First, we consider the models of the mean field and SRC LCFD developed in this

chapter, but estimate the dijet cross section in the absence of any medium modifications.

This allows us to gauge the relative importance of the mean field versus SRC contributions.

In Fig. 2.23, the cross section (sans medium modifications) is plotted for three cases: a

purely mean field model of the nPDF, a model that includes 2N SRCs in addition, and a

model that includes 2N and 3N correlations. Fig. 2.23a shows the result of this computation

with a beam energy per proton of 4 TeV, and Fig. 2.23b for a beam energy of 7 TeV per

proton.

In Fig. 2.23, the cross section has only been plotted within the range 3 < −η4 < 5,

which limits the range of possible xA values, although in a pT -dependent way (see Eq. (2.184)

for the dependence). In particular, the range of xA values allowed will be proportional to pT ,

since the lower and upper limits (corresponding to −η4 = 3 and −η4 = 5, respectively) are
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Plots of pA→ dijet +X cross section without medium modifications
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Figure 2.23: Three-fold differential dijet cross section, in the absence of medium modifica-
tions.

both proportional to pT . This is why the fixed-pT curves are plotted for limited segments

of xA, and why these segments are smaller at smaller pT .

The most significant takeaway from Fig. 2.23 is that starting already at xA ∼ 1, and

for xA > 1, the differential dijet cross section is dominated by contributions from two-

and three-nucleon short range correlations. Accordingly, if one restricts their attention to

kinematics for which xA & 1, the effects of short range nuclear phenomena will certainly be

visible in the dijet production reaction.

Next, we account for nuclear medium modifications using the color screening model,

and compare the three-fold differential cross section calculated with medium modification to

the prior calculation done without medium effects. This allows us to gauge the importance

of medium modifications to the dijet cross section. Both two- and three-nucleon correlations

are accounted for in this calculation. The result of the computations can be seen in Fig. 2.24.

The color screening effect results in an expected suppression of the differential cross section

that becomes significant at larger xA, but which still leaves the differential cross section

larger than what would result from an unmodified mean field.
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Plots of pA→ dijet +X cross section in the color screening model

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
xA

10−3

10−2

10−1

100
101
102
103
104
105
106
107

d
3
σ
/d
η 3
d
η 4
d
p2 T

(p
b

/G
e
V

2
)

pT = 100 GeV

pT = 50 GeV

pT = 20 GeV √

savg.
NN

= 5.02 TeV

Unmodified

Color screening

(a)
√

savg.NN = 5.02 TeV (E0 = 4 TeV)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
xA

10−2

10−1

100
101
102
103
104
105
106
107
108

d
3
σ
/d
η 3
d
η 4
d
p2 T

(p
b

/G
e
V

2
)

pT = 100 GeV

pT = 50 GeV

pT = 20 GeV
√

savg.
NN

= 8.8 TeV

Unmodified

Color screening

(b)
√

savg.NN = 8.8 TeV (E0 = 7 TeV)

Figure 2.24: Three-fold differential dijet cross section, with two- and three-nucleon SRCs
accounted for.

Plots of pA→ dijet +X cross section compared to FS81 model
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Figure 2.25: Three-fold differential dijet cross section, with medium modifications accounted
for by the color screening model.
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Lastly, we compare the three-fold cross section calculated using the LCFD of this

dissertation to the LCFD of the FS81 model8. The FS81 model contains a degenerate

Fermi gas model of the mean field, an explicit model of two-nucleon correlations based on the

light cone density of the deuteron, and an exponential fall off for the light cone distribution

at high α which implicitly includes correlations between three, four, and more nucleons.

Since this model accounts for two-nucleon explicitly, as well as three- and more-nucleon

correlations implicitly, I compare its predictions for the diject cross section to the predictions

of this work’s LCFD. This comparison can be seen in Fig. 2.25. Most significantly, the

FS81 prediction tracks the 2N+3N prediction a little while longer than it does the 2N-only

prediction, but then diverges from both predictions and remains high, likely owing to the

implicit inclusion of many-nucleon correlations. In particular, the FS81 prediction follows

a straight line on the logarithmically-scaled plot, characteristic of exponential decay.

Partially and fully integrated cross sections

The three-fold differential cross section for reaction (2.162) becomes quite small at kine-

matics corresponding to xA > 1, so it may be effective to integrate over pseudo-rapidities

η3 and η4 in order to obtain a one-fold differential cross section, dσ/dpT . Statistics may be

too low to resolve a three-fold differential cross section, but by counting events over a range

of rapidities, there may be enough events to resolve SRCs in the dijet cross section.

The ranges integrated over are as follows: η3 is the rapidity of a central jet, so the

range −2.5 < η3 < 2.5 is used; and η4 is the rapidity of a forward jet in the nucleus beam

direction, meaning −5 < η4 < −3. The one-fold differential cross section is thus

dσ

dpT
=

∫ 2.5

−2.5
dη3

∫ −3

−5
dη4

2pTd
3σ

dη3dη4dp
2
T

. (2.199)

This integration will include superfast (xA > 1) nuclear partons, but it will also involves

partons with xA < 1. However, one can define a one-fold differential cross section for

xA > 1 events, since whether xA > 1 can be determined through measurable jet kinematics

8See Eq. (5.11) of [9].
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Plots of pA→ dijet +X cross section without medium modifications
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Figure 2.26: One-fold dijet differential cross section, without medium modifications ac-
counted for.

via Eq. (2.184. One simply has to count all the events in the considered pseudo-rapidity

ranges, and select for events corresponding to xA > 1, namely

dσ(xA > 1)

dpT
=

∫ 2.5

−2.5
dη3

∫ −3

−5
dη4

2pTd
3σ

dη3dη4dp2T
Θ(xA − 1). (2.200)

By comparing the one-fold differential cross sections of Eqs. (2.199,2.200), one can see the

range of pT where the cross section is dominated by superfast partons. In particular, if

the cross section is nearly identical for both calculations in some pT range, it means that

pT range is dominated by superfast partons, and thus extremely sensitive to short-range

nuclear phenomena.

Just as with the three-fold differential cross section, we proceed by comparing the

contributions made to the one-fold differential cross section by different nuclear and partonic

phenomena. We begin by gauging the relative significance of the mean field and two- and

three-nucleon SRCs by comparing cross sections results that selectively account for just

the mean field, or 2N and 3N correlations in addition, and for the time being neglect

contributions from medium modification effects. The result of this calculation can be seen

in Fig. 2.26.
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Plots of pA→ dijet +X cross section using the color screening model

40 60 80 100 120 140 160 180 200
pT (GeV/c)

10−5
10−4
10−3
10−2
10−1
100
101
102
103
104
105
106
107

d
σ
/d
p T

(p
b

/G
e
V

2
)

Full

Only xA > 1

√

savg.
NN

= 5.02 TeV

Unmodified

Color screening

(a)
√

savg.NN = 5.02 TeV (E0 = 4 TeV)

50 100 150 200 250 300
pT (GeV/c)

10−3

10−2

10−1

100
101
102
103
104
105
106
107
108

d
σ
/d
p T

(p
b

/G
e
V

2
)

Full

Only xA > 1

√

savg.
NN

= 8.8 TeV

Unmodified

Color screening

(b)
√

savg.NN = 8.8 TeV (E0 = 7 TeV)

Figure 2.27: One-fold dijet differential cross section, with two- and three-nucleon SRCs
accounted for.

As would be expected, the cross section is for the most part dominated by partons

with xA < 1. For most of the pT range considered, excluding xA < 1 events results in

the differential cross section decreasing by several orders of magnitude. However, the gap

between the total differential cross section and the superfast-partons-only cross section

decreases with increasing pT , eventually becoming zero. At pT ≈ 150 GeV for the E0 =

4 TeV cross section, or pT ≈ 260 GeV for the E0 = 7 TeV cross section, xA > 1 events make

up almost all of the one-fold differential cross section. Accordingly, one can study superfast

partons by specifically looking for jets above these transverse momenta.

Next, we gauge the importance of medium modification effects by again calculating

the one-fold differential cross section, but now accounting for medium modifications via the

color screening model. Two- and three-nucleon correlations, because they are significant in

the high-pT region, are accounted for. The result of this calculation is compared against the

previous unmodified calculation in Fig. 2.27. As in the case of the three-fold cross section,

medium modifications suppress the differential cross section, and this occurs primarily at

large pT . It is worth noting that at smaller pT , there is comparatively little suppression of

the total differential cross section, but the one-fold cross section for xA > 1 events is heavily

suppressed even at small pT .
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Unmodified Modified (no SRCs) Modified (SRCs) FS81 (modified)
√

savg.NN = 5.02 TeV (E0 = 4 TeV)

All xA 7.4 µb 6.4 µb 6.6 µb 6.5 µb

0.6 < xA < 0.7 0.93 µb 0.67 µb 0.74 µb 0.72 µb

0.7 < xA < 0.8 0.37 µb 0.23 µb 0.26 µb 0.26 µb

0.8 < xA < 0.9 0.12 µb 0.06 µb 0.08 µb 0.08 µb

0.9 < xA < 1 37 nb 12 nb 20 nb 21 nb

1 < xA 14 nb 2.0 nb 6.2 nb 6.8 nb
√

savg.NN = 8.8 TeV (E0 = 7 TeV)

All xA 58 µb 55 µb 55 µb 56 µb

0.6 < xA < 0.7 1.7 µb 1.2 µb 1.3 µb 1.3 µb

0.7 < xA < 0.8 0.60 µb 0.37 µb 0.43 µb 0.42 µb

0.8 < xA < 0.9 0.20 µb 0.11 µb 0.13 µb 0.13 µb

0.9 < xA < 1 59 nb 20 nb 33 nb 34 nb

1 < xA 21 nb 3.0 nb 9.3 nb 10 nb

Table 2.2: Estimates of integrated cross sections, for different bins of xA. Calculations
include two- and three-nucleon SRCs (except where otherwise stated).

In addition to one-fold differential cross sections, one can compute the fully integrated

cross section. Moreover, one can impose threshold constraints such as xA > 1, or on the

other hand xmin < xA < xmax for some xmin and xmax. For instance, we may ask how

much of the cross section comes from nuclear partons with 0.6 < x < 0.7, in order to see

whether medium modifications or short range correlations, for instance, have a big influence

on partons in this region.

In Table 2.2 I present a table of integrated cross sections in xA bins, as well as fully

integrated cross sections with all xA accounted for. Four models are considered in order to

gauge the relative importance of SRCs and medium modifications. First, the cross section

is calculated with the full LCFD, including short range correlations, but without medium

modification effects. Second, the cross section is calculated with medium modifications

but not SRCs accounted for. Third, modifications and SRCs are both accounted for: this

column is in effect the prediction of this dissertation. This prediction is compared to a

similar prediction made using the FS81 model for the nuclear light cone density, which has

been used with nuclear medium modifications accounted for.
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As can be seen in Table 2.2, medium modifications suppress the expected cross section,

especially at high xA; at xA > 1, the cross section decreases by as much as a factor of 2. This

is consistent with the expectations that (1) the EMC effect increases with the off-shellness

of the bound nucleon (which itself increases with the nucleon’s momentum), and (2) the

EMC effect is felt most strongly by nucleons in short range correlations. In particular, the

xA > 1 region is dominated by short range correlations, and this is where the EMC effect

most strongly suppresses the cross section.

There is lastly the question of whether these cross sections can expected to be realis-

tically measurable in light of the luminosities that the LHC is capable of. The integrated

luminosity for the one-month lead-proton collision run in 2013 was 35.5 nb−1 at CMS; this

will be used as the reference luminosity for yield estimates. For a beam energy per proton

of E0 = 4 TeV, there are about 200 expected xA > 1 dijet events, while for E0 = 7 TeV,

about 326 xA > 1 events are expected to occur. Both of these numbers are fairly small, so

when experimental resolution is taken into account, it may not be feasible to see evidence

of superfast quarks at the LHC. On the other hand, one can still use dijet production in

lead-proton collisions to study medium modifications of nuclei. xA > 0.6 is the classical

region of the EMC effect, and as many as 39000 events for E0 = 4 TeV, or 69000 events for

E0 = 7 TeV, can be expected. This makes the reaction under investigation an extremely

promising avenue for future studies of the EMC effect at very high Q2.

2.7.4 Conclusions concerning dijet production

In this section, dijet production in proton-nucleus collisions was investigated as a means

of studying nuclear QCD. In particular, the effects of short-range nuclear structure in the

form of both short-range nuclear correlations and medium modifications of bound nucleons

on the reaction cross section were investigated, and both phenomena were found to be

significant in the production rates for dijets with one central and one forward (in the nucleus

beam direction) jet. The effects were most pronounced when pT was large, namely around

150 GeV for a beam energy per proton of 4 TeV, or 250 GeV for a beam energy per proton

of 7 TeV. It is ambiguous whether superfast quarks in the nucleus (i.e., with xA > 1) can be

108



realistically be expected to be resolved, but around 200 or 326 (for beam energy per proton

of 4 TeV or 7 TeV, respectively) events corresponding to xA can be expected. On the other

hand, dijet production in proton-nucleus collisions is an extremely promising avenue for new

studies of the EMC effect at high Q2 = p2T , since the expected yields in the region xA > 0.6

are significant (39000 or 69000 events for E0 = 4 TeV or E0 = 7 TeV, respectively).

2.8 Summary

In this chapter, inclusive reactions were explored as a means of probing nuclear structure.

The exploration focused on two particular aspects of nuclear structure: firstly, whether

inclusive reactions could be used to indicate the presence of short range correlations be-

tween the nucleons composing the nucleus, thereby elucidating the conventional, hadronic

structure of the nucleus; and secondly, whether inclusive reactions could study medium

modifications of the bound nucleons making up the nucleus at a QCD level.

In order to explore these possibilities, a formalism for constructing nuclear parton

distribution functions was derived. Nucleonic motion, including motion within short range

correlations, is accounted for using a light cone fraction distribution (LCFD), the construc-

tion of which is made in analogy to the PDF of a hadron. The LCFD of two-nucleon

correlations was made to account for the latest phenomenology of 2N SRCs, and a LCFD

for three-nucleon correlations was developed based on the hypothesis that 3N SRCs arise

from a sequence of short-range two-nucleon interactions.

This formalism was applied, together with a model for medium modifications and a

modified DGLAP evolution equation, to make predictions for dijet production cross sections

in proton-nucleus collisions at the LHC. It was found that the presence of short range cor-

relations, as well as of medium modifications, made distinct predictions from the mean field

and no-modifications models for the high transverse momentum cross section. Therefore,

we conclude that inclusive reactions, particularly dijet production in p-A collisions, are a

viable means of studying nuclear structure.
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CHAPTER 3

Exclusive reactions

Exclusive reactions are preferred to inclusive reactions when studying the specific mecha-

nisms responsible for the production of particular hadrons, and when performing searches

for new particles, resonances, and bound states. For example, one may study the produc-

tion mechanism for a vector meson by looking for final states exclusively containing such a

vector meson and the target. Likewise, if it is possible to create a beam of vector mesons,

one could use an exclusive reaction of the form V +p→ V +p to study both the interaction

mechanism between the meson V and the proton, and the possibility of any meson-baryon

bound states that these particles form.

Realistically, experiments with heavy quarkonium (e.g., J/ψ) beams are not possible,

owing to the short lifetimes of the particles. However, it is with such short-lived particles

that the idea of the nucleus as a micro-laboratory can be utilized. J/ψ can, for instance,

be produced by a photon incident on a nucleon target. If such a photo-produced J/ψ then

scatters from another nearby nucleon, information about the J/ψ-nucleon interaction could

be extracted. Within a nucleus, both a nucleonic target for photoproduction and a nearby

nucleonic target for J/ψ scattering are present.

In this chapter, vector meson production from a deuteron target will be explored as

a possible venue for studying meson-nucleon interactions. The deuteron target is chosen

for its relative simplicity as a nucleus, and for the fact that it is a loosely-bound system.

In particular, the reaction γ + d → V + p + n, i.e., incoherent vector meson production,

accompanied by breakup of the target will be studied. This reaction is chosen because a

variety of recent experimental and theoretical studies have demonstrated the presence of a

rescattering peak due to final state interactions (FSIs), cf. [85–92].

3.1 General formalism

In order to theoretically describe incoherent vector meson production from the deuteron,

several prerequisites need to be addressed. One of these is the form of the sub-reaction
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(e..g, photoproduction from a constituent nucleon, meson scattering from the spectator)

amplitudes, which shall be addressed in Sec. 3.1.1. Another is the establishment of a

kinematic regime where the contributions of these sub-reactions to the overall cross section

can be unambiguously isolated. This regime is the eikonal regime, as a great deal of recent

experimental and theoretical work has establish, cf. [87, 89–96]. The generalized eikonal

approximation (GEA) is briefly discussed in Sec. 3.1.2. Lastly, it is necessary to give the

form of the relativistic deuteron wave function in such a regime, where energies may be too

low for the light cone formalism to apply. The virtual nucleon approximation (VNA) for

the deuteron wave function is used, which is discussed in Sec. 3.1.3.

After these prerequisites are addressed, the formalism for the reaction γ+d→ V +p+n

is developed at length in Sec. 3.2. Subsequently, the formalism is applied to investigates of

φ(1020) production in Sec. 3.3, and J/ψ production in Sec. 3.4.

3.1.1 The diffractive scattering amplitude

The optical theorem is a vital relationship for parameterizing the scattering amplitudes in

phenomenological descriptions. It relates the total cross section for a collision between two

incident particles, A and B, to the imaginary part of the forward scattering amplitude. It

is a consequence of the unitarity of the S-matrix [97] and the form it takes for the Feynman

amplitude M is:

Φ

2
σtot. = Im(Mii), (3.1)

where Φ = (2EA)(2EB)|vA − vB | is the flux of the initial state, which can also be written

Φ = (2EA)(2EB)|vA − vB | (3.2)

= 4
√

(pA · pB)2 −m2
Am

2
B (3.3)

=
√

[s− (mA −mB)2][s− (mA +mB)2] (3.4)

= 4
√
s|pi|. (3.5)

In the last equation, pi denotes the initial momentum in the center-of-mass frame.
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For diffractive scattering applications, it is useful to utilize a scattering amplitude

f(s, t) normalized so that, for forward scattering,

Im
(

f(s, t = 0)
)

= σtot.(s). (3.6)

From Eq. (3.1), it can be seen that

M(s, t) =
Φ

2
f(s, t). (3.7)

The amplitude f(s, t) is called the diffractive scattering amplitude. It can be related for a

two-particle to two-particle process AB → CD to the one-fold differential cross section dσ
dt

by:

dσ

dt
=

|f(s, t)|2
16π

. (3.8)

This makes relating the diffractive scattering amplitude to measured differential cross sec-

tions especially straightforward, thus further simplifying their parametrization and usage.

The diffractive scattering amplitude f(s, t) is especially useful for scenarios where

|t| ≪ s, where its parametrization has a simple form [98,99]:

f(s, t) = A(s)(i + α(s)) exp

(

B(s)

2
t+

C(s)

2
t2
)

, (3.9)

where A, B, C, and α are real-valued functions of s. The factors of 1
2 are present in the

exponent of Eq. (3.9) because, when Eq. (3.8) is used, one obtains a parametrization of the

differential cross section in the form

dσ

dt
=

[A(s)]2(1 + [α(s)]2)

16π
exp(B(s)t+ C(s)t2). (3.10)

The approximation C(s) = 0 is commonly used, often because the precision and t range

of experimental data available don’t allow for an accurate extraction of C [98]. Often,

experimental data for the diffractive regime do, however, match Eq. (3.10) with C = 0.

Since experimental values for dσ
dt are often plotted with a log-scaled y-axis against −t, the
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parameter B(s) (for a given value of s) appears in plots as the downward slope of the data

points. Accordingly, B(s) is called the slope factor for the reaction being measured.

This form of the diffractive scattering amplitude is largely justified by experimental

data, but there is some theoretical foundation for the form of Eq. (3.9) found within Regge

theory; cf. Ref. [99] for further information.

The parameter α(s) can in principle be calculated using dispersion theory [99]. How-

ever, in this dissertation, estimates will be taken from experimental measurements.

In the special case that a reaction of the form AB → AB is being parametrized,

A(s) = σtot.(s) in Eqs. (3.9,3.10). For other cases, such as photoproduction of vector

mesons, models exist for predicting the form of A(s), often with the help of experimental

parameters. Specific models for meson photoproduction shall be discussed in the following

sections.

3.1.2 The generalized eikonal approximation

The generalized eikonal approximation (GEA) is a method of calculating amplitudes for

multiple scatterings from a nuclear target using an effective Feynman diagram approach.

It was developed early on by Gribov [100] and Bertocchi [101], and later expanded by

other authors [85, 86, 95, 102] as a generalization of an earlier non-relativistic model by

Glauber [103] that treated the constituent nucleons as stationary targets. The eikonal

approximation, by contrast, conserves all four components of the total four-momentum,

and accounts for relativistic kinematics, making it well-suited for high-energy processes.

Achievement of the eikonal regime establishes several vital features that are necessary

to the present investigation. Firstly, it allows resolution of the deuteron target into two

constituent nucleons [90,101], one of which is directly struck by the incident probe. Secondly,

it allows interactions which occur after this initial probing of the struck nucleon—that is,

final state interactions—to be described as cleanly-separated rescatterings that occur in

sequence, each between two of the particles that appear in the final state [85, 86, 95, 102].

Thirdly, it allows for intermediate-state particles (other than the struck nucleon prior to

its being probed) to be treated as real, on-mass-shell particles [101]. Lastly, in the eikonal
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regime, there is a reduction theorem, due to Sargsian [86], which states that the same two

particles will not rescatter from one-another more than once.

In the case of deuteron disintegration, these properties of the eikonal regime allow for

the virtual nucleon approximation (VNA) of the deuteron wave function to be used [90,101],

and for the vector meson production amplitude to be fully given by diagrams involving no

more than two rescatterings. Moreover, the placement of intermediate particles on their

mass shells permits use of completeness relations for the numerators of intermediate-state

propagators, allowing for intermediate states to be given by Dirac spinors, polarization vec-

tors, etc. that are absorbed into on-shell sub-reaction amplitudes. It is this specific feature

of the generalized eikonal approximation which is pertinent to the present investigation,

since it means that the on-shell V N → V N amplitude appears in the amplitude for V

rescattering diagrams.

Establishment of the eikonal regime in the present reaction requires momentum trans-

fer at the γN → γN vertex on the order of −t ≥ 1 GeV2. This occurs when just one of

the nucleons in deuteron disintegration emerges with a momentum > 1 GeV. This necessity

shall be kept in mind when the γ + d→ V + p+ n reaction is investigated in the following

section.

3.1.3 Deuteron wave function in the virtual nucleon approximation

It is necessary to give a relativistic description of the deuteron wave function to describe

exclusive reactions at kinematics relevant to high-precision fixed target experiments, such

as those at Jefferson Lab. For this reason, we use the virtual nucleon approximation (VNA)

for describing the deuteron wave function.

The VNA treats the deuteron as consisting of a proton and a neutron, neglecting

higher Fock components. Accordingly, its domain of applicability extends up to about

700 MeV Fermi momentum [90]. It applies in situations where the generalized eikonal

approximation can be used, so that one of the two nucleons is struck by the internal probe,

with the other as a spectator. The VNA functions by placing the spectator on its positive-

energy mass shell. In the plane wave impulse approximation (PWIA), where the spectator
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already emerges from the deuteron on its mass shell, this placement is exact. For corrections

to the PWIA involving final state interactions, the VNA proceeds by evaluating the integral

over the zeroth component of the spectator’s four-momentum (the off-shell energy) as:

∫ ∞

−∞

dp0
(2π)i

f(p0)

p2 −m2 + iǫ
=
f(Eon)

2Eon
, (3.11)

where Eon =
√

m2 + p2 is the on-shell energy of the particle, and f(p0) represents other

p0-dependent functions present within the Feynman amplitude M.

Since the spectator nucleon is placed on its positive-energy mass shell, the complete-

ness relation /p +m =
∑

λ u
λ(p)ūλ(p) is exact for this nucleon, and can be applied to the

numerator of its propagator. For the virtual nucleon, this completeness relation may be

used as an approximation, and will be used as an approximation in this work, but calcu-

lations exist where the off-shell contributions to /p + m are also accounted for in specific

interactions (cf. [90] for an example in electrodisintegration of the deuteron).

The VNA deuteron wave function is given by [90]

ψ
(λ1,λ2;λd)
VNA (k) =

ūλ1(k)ū
λ2(−k)Γdpnχ

λd
√

(2Ek)2(2π)3Md(2Ek −Md)
, (3.12)

where χλd is the polarization vector of the deuteron, Γdpn is the deuteron-to-nucleons tran-

sition vertex (due to Blankenbecler and Cook, cf. [104]), and k = p1−p2

2 is the internal,

relative momentum of the nucleons.

Alternatively, if the struck nucleon momentum is labeled p1 and the spectator mo-

mentum p2, then the VNA wave function can be written

ψ
(λ1,λ2;λd)
VNA

(

p1 − p2

2

)

=
ūλ1 (p1)ū

λ2(p2)Γdpnχ
λd

√

(2E2)2(2π)3(m
2
N − p21)

. (3.13)

It is the form of Eq. (3.13) that is most helpful for reading the deuteron wave function from

Feynman diagram calculations. The equivalence of Eqs. (3.12,3.12) can be seen by noting

m2
N − p21 = m2

N − (pd − p2)
2 = 2(pd · p2)−M2

d =Md(2E2 −Md). (3.14)
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The normalization of the VNA deuteron wave function is [90]:

∑

λ1,λ2

∫

d3k
∣

∣

∣ψ
(λ1,λ2;λd)
VNA (k)

∣

∣

∣

2 2(Md − Ek)

Md
= 1. (3.15)

For the sake of numerical calculations, since the non-relativistic deuteron wave function is

normalized to 1, the relationship

ψ
(λ1,λ2;λd)
VNA (k) =

√

Md

2(Md − Ek

ψ
(λ1,λ2;λd)
NR (k) (3.16)

is used, with a numerical parametrization given for ψ
(λ1,λ2;λd)
NR (k). In this work, the Paris

potential is used in parameterizing the non-relativistic deuteron wave function [37].

3.2 Formalism for vector meson production with deuteron breakup

Vector meson photoproduction from a deuteron target is an especially promising avenue for

investigating nuclear QCD, with a view to the nucleus as a micro-laboratory. In particular,

the breakup reaction

γ + d→ V + p+ n (3.17)

is investigated as a means of studying vector meson-nucleon interactions. This reaction can

serve as a substitute for elastic vector meson scattering, e.g. V N → V N , in the absence of

vector meson beams. This is accomplished by a “rescattering” contribution to the reaction

(3.17), viz. the vector meson is photo-produced from one of the deuteron’s constituent

nucleons, and then subsequently scatters from the other nucleon. Characteristics of the

meson-nucleon interaction can be investigated by measuring the deviation of the deuteron

breakup cross section from the plane wave impulse approximation (PWIA). This will be

explained in more depth below.
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Geometry of γd→ V pn

θnl l

p

V

n

Figure 3.1: Geometry of the reaction γd→ V pn.

3.2.1 Kinematics and validity of eikonal approximation

The four-momenta of the deuteron, photon, vector meson, (final-state) proton, (final-state)

neutron are respectively denoted pd = (Ed,pd), q = (q0,q), pV = (EV ,pV ), pp = (Ep,pp),

and pn = (En,pn). The initial four-momenta of the proton and neutron while they’re inside

the deuteron are denoted with a prime symbol, i.e. they are p′p and p
′
n. The four-momentum

transfer to the deuteron is defined as

l = (l0, l) = (q0 − EV ,q− pV ) , (3.18)

with the invariant momentum transfer being t = l2. The direction of outgoing particles

will be characterized by the angle they make with respect to the vector momentum transfer

l, i.e. θXl for any final-state particle X. The angle θnl characterizing the direction of the

final-state neutron, for instance, is illustrated in Fig. 3.1.

This reaction will be considered in the lab frame, where the deuteron is at rest, so

pd = (md,0). Kinematics where the proton emerges with a large momentum (|pp| > 1 GeV)

and the neutron emerges with a small momentum will in particular be considered. Within

the plane wave impulse approximation, this means that the proton was almost certainly

struck by the incident photon, since the probability of the spectator having a momentum

> 1 GeV in the deuteron rest frame is vanishingly small. These kinematics also establish

the eikonal regime.
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The goal of using the reaction (3.17) to study the meson-nucleon interaction can

only be accomplished if it is possible to cleanly separate vertices for the photoproduction

(i.e., γN → V N) and meson-nucleon scattering (V N → V N) reactions. This can be

accomplished within the generalized eikonal approximation (GEA) [87, 89–96], which is

justified when the final momenta of the rescattered hadrons are on the order of a GeV or

above.

A major advantage of the eikonal approximation is that the pole values of propagators

in rescattering amplitudes can be taken, i.e. the intermediate-state hadrons can be taken

to be on their mass shells. This allows rescattering vertices for meson-nucleon or proton-

neutron scattering to be expressed through the amplitudes for real pn or V N scattering. In

the former case, well-known parameterizations of the proton-neutron scattering amplitude

can be used to make the problem more tractable. In the latter case, it is the scattering

amplitude for meson-nucleon scattering that is to be investigated, so being able to express

the cross section for reaction (3.17) in terms of this quantity is necessary.

The validity of the eikonal regime for reaction (3.17) is established by concentrating

on kinematics where the subprocess γN → V N has large momentum transfer, and where

exactly one of the nucleons emerges with a large momentum & 1 GeV. Within the plane wave

impulse approximation, this nucleon was the one upon which the vector meson was photo-

produced. One has to show, for a choice of kinematics, that the condition |pp| & 1 GeV.

There are five independent kinematic parameters in this reaction: there are 12 com-

ponents of four-momentum for the three final-state particles, together with 4 constraints

from four-momentum conservation and 3 more constraints from the mass shell condition.

We consider the coplanar case for simplicity; this fixes two of the five parameters. For

the remaining three, we fix the magnitude of the final neutron momentum |pn|, the angle

θnl between the neutron and the momentum transfer l, and the invariant four-momentum

transfer t = l2.

Experimentally, the neutron is the least likely particle to be detected; however, for

the sake of theoretical analysis, this is the most useful particle to fix the momentum of. If

the proton was struck, then the neutron was the spectator, and accordingly the neutron
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momentum is opposite and equal to the initial proton momentum in the plane wave impulse

approximation (PWIA).

The remaining kinematic parameters can be determined from the givens as follows.

First, |l| can be found by taking the four-momentum conservation formula,

pd + q = pp + pn + pV

pd + l = pp + pn,

and then isolating the pp term on one side and squaring, using p2p = m2
N

1 to eliminate

explicit pp dependence. This gives

(pd + l − pn)
2 = p2p

M2
d + t+m2

N + 2Edl0 − 2EdEn − 2l0En + 2pn · l = m2
N

(2En − 2Ed)l0 = 2|pn||l| cos θpl + (t+M2
d − 2EdEn).

This is an equation of the form

aE = 2b|p| − c, (3.19)

a = 2En − 2Ed (3.20)

b = 2|En| cos θnl (3.21)

c = t+M2
d − 2EdEn. (3.22)

To solve Eq. (3.19), both sides are squared, and the result is rearranged into a quadratic

equation.

a2(t+ |p|2) = 4b2|p|2 − 4bc|p| + c2

(a2 − 4b2)|p|2 + 4bc|p| + (a2t− c2) = 0, (3.23)

1 We take mp ≈ mn ≡ mN .
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Solutions of Eq. (3.23) with positive |p| are physically valid, and up to two may exist. A

closed form of the solution will not shed conceptual light on the kinematics, but one can

use Eq. (3.23), together with Eqs. (3.20,3.21,3.22), to compute |l|. With this, one also has

l0 =
√
t+ l2, EV = q0 − l0, and θV q from

l2 = q2 + p2
V − 2q · pV = q20 + E2

V −m2
V − 2q0

√

E2
V −m2

V cos θV q, (3.24)

thus giving all components of the four-vector pV . One also has l = q − pV as a result, and

can determine cos θnq from the angle addition formula

cos θnq = cos θnl cos θql + sin θnl cos θql cos(φnl − φql). (3.25)

In order to understand the φ terms in the coplanar case, one must define the orientation

of the reaction plane. If the reaction plane is called the xz-plane, and the photon beam

direction the z-axis, then we define the x direction to be the direction in which the vector

meson travels. With this definition, φV q = 0. For any other particle, φXq = 0 means the

particle is moving in the positive x direction (i.e., the same direction as the vector meson),

and φXq = π means it is moving in the negative x direction. The equation l = q − pV

will naturally produce φlq = π, and we take φnl = 0. With θnq, one now has pn, and the

remaining proton momentum can be determined through momentum conservation.

Now that all kinematic parameters can be determined, we can investigate the values

of pn, θnl, and t for which both the GEA, and the neglect of PWIA from the neutron can be

justified. In Fig. 3.2, the dependence of the proton and vector meson momentum on these

parameters is given for φ(1020) and JΨ. For J/ψ, at the threshold value (as calculated for a

stationary proton target) of −t = 2.23 GeV2, the approximation is justified at high spectator

momenta. For φ(1020), even at fairly high values of the invariant momentum transfer

(e.g. −t = 1.2 GeV2), one must be careful when considering high spectator momenta; at

pn = 600 MeV and small θnl, one cannot distinguish between the spectator and the struck

nucleon at the PWIA level.
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Angular distribution of final state momenta
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Figure 3.2: Dependence of the final-state momenta of the proton and vector meson on
the momenta and direction of the recoil neutron. Dashed (red), dotted (blue), and solid
(black) curves correspond to neutron momenta of 200, 400, and 600 MeV. (a) φ(1020), with
q0 = 5 GeV and t = −1.2 GeV2. (b) J/ψ, with q0 = 10 GeV and t = −2.23 GeV2.

3.2.2 Calculation of the amplitude and cross section

For the exclusive reaction (3.17), the cross section element is given by

dσ =
|M|2

4(q · pd)
(2π)4δ(4)(q + pd − pV − pp − pn)

d3pV
2EV (2π)3

d3pp
2Ep(2π)3

d3pn
2En(2π)3

, (3.26)

where initial polarizations are averaged over and final polarizations summed over; i.e. the

unpolarized case is considered. In the GEA framework, the matrix element M is expanded

in terms of the number of hadronic rescatterings. By the reduction theorem of Ref. [86],

the any pair of hadrons is vanishingly unlikely to interact more than once, so the expansion

can be made in up to two rescatterings, viz.

M = M0 +M1 +M2, (3.27)

where M0, M1, and M2 are the PWIA and single- and double-rescattering amplitudes,

respectively. These amplitudes shall be calculated in detail below.
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Since the neutron is difficult to detect, its presence in the final state will likely be in-

ferred from missing mass, while the proton and vector meson will be detected. Accordingly,

we integrate out the neutron momentum in Eq. (3.26). This gives:

dσ =
|M|2

2(sd −M2
d )

(2π)δ((pd + q − pV − pp)
2 −m2

N )
d3pV

(2EV )(2π)3
d3pp

(2Ep)(2π)3
. (3.28)

The remaining delta function is eliminated by integrating over the magnitude of the proton

momentum. This gives us

d5σ

d3pV dΩp
=

|M|2
2(sd −M2

d )

1

(2π)5
1

8EVEpEn

p3p
|pp · (vp − vn)|

, (3.29)

where the outgoing velocities are given by the relativistic relation v = p
E .

Plane wave impulse approximation

In the plane wave impulse approximation (PWIA), the reaction (3.17) is assumed to proceed

by the photoproduction of the vector meson V from a single nucleon within the deuteron.

The particles participating in the reaction are treated as plane waves, and final state in-

teractions between the hadrons are neglected. This is represented pictorially in Fig. 3.3.

The invariant matrix element M0 can be calculated using effective Feynman diagram rules

(cf. [86]), which give:

M(λV λpλn;λγλd)
0 = −ūλp(pp)ūλn(pn)φ†

λV
ν (pV )Γ

µν
γN→V N ǫ

λγ
µ (q)

/p′p +mN

p′2p −m2
N + iǫ

Γdpnχ
λd
d (pd). (3.30)

Here, Γdpn and ΓµνγN→V N are the covariant interaction vertices for the transitions d → pn

and γN → V N . The spin wave functions of the deuteron, nucleons, photon and vector

meson are denoted χd, u, ǫµ, and φν , respectively. The spin degree of freedom of each

particle is identified by a superscript.

Since we are working within the virtual nucleon approximation (VNA), only the

positive-energy pole is taken for the bound nucleon propagator. Moreover, the approxi-
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Feynman diagram for PWIA contribution to γd→ V pn

pn

pp

pV
q

pd
p′p

Figure 3.3: Effective Feynman diagram for the PWIA contribution to reaction (3.17).

mation completeness relation /p′p +mN ≈ ∑

λ′p
uλ

′
p(p′

p)ū
λ′p(p′

p) is used, although the four-

momentum of the bound proton is off-shell and defined through momentum conservation,

i.e. p′p = pd − pn. This enables us to use the VNA deuteron wave function of Eq. (3.12),

allowing us to gather the terms

ψ
(λd;λ

′
p,λn)

d (pn) = − ū
λ′p(p′

p)ū
λn(pn)

p′2p −m2
N

Γdpnχ
λd
d (pd)

√

2(2π)32En
(3.31)

together. Additionally, we use the invariant matrix element for vector meson photoproduc-

tion from the struck nucleon,

M(λV λp;λγλ
′
p)

γN→V N (sγN∗ , tγN∗) = ūλp(pp)φ
†λV
ν (pV )Γ

µν
γN→V Nǫµ(q)u

λ′p(p′
p), (3.32)

where sγN∗ and tγN∗ are the Mandelstam variables at the γN → V N vertex. Note that this

photoproduction amplitude is half-off-shell (i.e. the initial proton is off-shell), but we use

an on-shell spinor for the bound proton, accounting for off-shell effects only kinematically.

Earlier estimates [90] demonstrated this to be a valid approximation to be valid when

|p′
p|√
−t ≪ 1 and

|p′
p|√
s
≪ 1, both of which are satisfied for the kinematics considered.

With these caveats in mind, using the γN → V N amplitude and the VNA deuteron

wave function give the invariant PWIA amplitude, when inserted into Eq. (3.30), as

M(λV λpλn;λγλd)
0 =

√

2(2π)32En
∑

λ′p

M(λV λp;λγλ
′
p)

γN→V N (sγN∗ , tγN∗)Ψ
(λd;λ

′
pλn)

d (pn). (3.33)
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Single rescattering correction

In the GEA framework, there are up to four single rescattering diagrams to consider. These

are depicted in Fig. 3.4. The processes can be separated into two groups: one where the

proton receives its large momentum at the photoproduction vertex (Figs. 3.4a,3.4b) and one

where photoproduction occurs from the neutron, but the proton receives a large momentum

transfer due to the V N → V N rescattering (Figs. 3.4c,3.4d).

Feynman diagram for single rescattering contributions to γd→ V pn

pn

pp

pV
q

pd
p′p

p′V

p′n

(a)

pn

pp

pV
q

pd
p′p

p′n

p′′p

(b)

pp

pn

pV
q

pd
p′n

p′V

p′p

(c)

pp

pn

pV
q

pd
p′n

p′p

p′′n

(d)

Figure 3.4: Effective Feynman diagrams for the single rescattering contributions to reaction
(3.17).

The rescattering contributions will appreciably contribute to M only when one of the

hadronic vertices is hard and the other soft; two hard vertices will produce a negligible

scattering amplitude, since in the eikonal regime the t-dependence for scattering goes as

e−b|t|. A one-hard, one-soft scenario can be realized for the first three diagrams easily: for

Figs. 3.4a,3.4b, the hard vertex is the photoproduction vertex, and the soft the rescattering

vertex, while for Fig. 3.4c, the hard vertex is the rescattering vertex and the soft the

photoproduction vertex. For Fig. 3.4d, however, both vertices need to be hard in order to

produce high momenta for both the proton and the vector meson in the final state.
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In principle, a one-hard, one-soft scenario can be realized for Fig. 3.4d via a charge

interchange reaction, but this contribution will be negligible at the high spn in the present

scenario. Ref. [90] contains a detailed discussion of final state interactions, including the

charge interchange reaction, for d(e, e′N)N , and discusses the domain in which this contri-

bution is kinematically significant.

Due to the antisymmetry of the deuteron wave function, the diagrams of Figs. 3.4a,3.4c

enter with opposite signs. However, the contribution of Fig. 3.4c will be suppressed for

near-threshold production of heavy vector mesons, such as J/ψ, since the large −tthr. will

make the photoproduction vertex hard, producing a two-hard-vertices scenario. However,

at high energies, and for light vector mesons, the contributions of Figs. 3.4a,3.4c will largely

cancel, entirely canceling in the limit of very high energies. Accordingly, sensitivity of

reaction (3.17) to the meson-nucleon scattering vertex will only be possible to see in the

near-threshold limit.

Since the diagram of Fig. 3.4d is negligible, the Feynman amplitudes for Figs. 3.4(a-

c) will be calculated. These diagrams are calculated using effective Feynman rules. The

contributions of these diagrams to M1 are denoted M1a, M1b and M1c, and are in full:

M(λV ,λp,λn;λγ ,λd)
1a = −ūλp(pp)ūλn(pn)φλVπ (pV )

∫

d4p′n
(2π)4i

[

ΓρπV N→V N

Gνρ(p
′
V )

(p′V )
2 −m2

V + iǫ

ΓµνγN→V Nǫ
λγ
µ

/p′p +mN

(p′p)2 −m2
N + iǫ

/p′n +mN

(p′n)2 −m2
N + iǫ

Γdpnχ
λd
d

]

(3.34)

M(λV ,λp,λn;λγ ,λd)
1b = −ūλp(pp)ūλn(pn)φλVπ (pV )

∫

d4p′p
(2π)4i

[

Γpn→pn

/p′′p +mN

(p′′p)2 −m2
N + iǫ

/p′n +mN

(p′n)2 −m2
N + iǫ

ΓµνγN→V Nǫ
λγ
µ

/p′p +mN

(p′p)2 −m2
N + iǫ

Γdpnχ
λd
d

]

(3.35)

M(λV ,λp,λn;λγ ,λd)
1c = −ūλp(pp)ūλn(pn)φλVπ (pV )

∫

d4p′p
(2π)4i

[

ΓρπV N→V N

Gνρ(p
′
V )

(p′V )
2 −m2

V + iǫ

ΓµνγN→V Nǫ
λγ
µ

/p′p +mN

(p′p)2 −m2
N + iǫ

/p′n +mN

(p′n)2 −m2
N + iǫ

Γdpnχ
λd
d

]

, (3.36)

where Gµν(pV ) = gµν −pV,µpV,ν/m2
V is the numerator of the propagator of the intermediate

vector meson. The notation for the momentum of intermediate states is given in Fig. 3.4.
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From here, the derivations follow the prescriptions of the virtual nucleon approxi-

mation. First, the spectator nucleon to the photoproduction subreaction is placed on its

mass shell by taking only the positive-energy pole in the integration over the intermediate

spectator energy, viz.
∫ dp′0p/n
p′2p/n −m2

N + iǫ
= −i 2π

2E′
p/n

(3.37)

where E′
p/n = +

√

m2
N + p′2

p/n. Since this integration places the spectator on its mass

shell, the completeness relation /p′p/n + mN =
∑

λ′
p/n

u
λ′
p/n(p′

p/n)ū
λ′
p/n(p′

p/n) is exact for

the intermediate spectator (within the VNA prescription). For the other intermediate-

state nucleon, the completeness relation remains an approximation, but the approximation

is used as it is reasonable within the high-momentum transfer, high-energy regime, as

discussed above. In particular, introducing this approximate completeness relation for the

off-shell nucleon propagator (but leaving the numerator of the vector meson propagator

alone for now) allows the VNA deuteron wave function to be introduced into the invariant

amplitudes, giving:

M(λV ,λp,λn;λγ ,λd)
1a = −ūλp(pp)ūλn(pn)φλVπ (pV )

∑

λ′p,λ
′
n

∫

d3p′
n

(2π)3

[

√

2(2π)3

2E′
n

ΓρπV N→V N

uλ
′
n(p′

n)
Gνρ(p

′
V )

(p′V )
2 −m2

V + iǫ
ΓµνγN→V Nǫ

λγ
µ u

λ′p(p′
p)Ψ

(λ′p,λ
′
n;λd)

d (p′
n)

]

(3.38)

M(λV ,λp,λn;λγ ,λd)
1b = −ūλp(pp)ūλn(pn)φλVπ (pV )

∫

d3p′
n

(2π)3

[

√

2(2π)3

2E′
n

Γpn→pn

uλ
′
n(p′

n)
/p′′p +mN

(p′′p)2 −m2
N + iǫ

ΓµνγN→V N ǫ
λγ
µ u

λ′p(p′
p)Ψ

(λ′p,λ
′
n;λd)

d (p′
n)

]

(3.39)

M(λV ,λp,λn;λγ ,λd)
1c = +ūλp(pp)ū

λn(pn)φ
λV
π (pV )

∫

d3p′
p

(2π)3

[

√

2(2π)3

2E′
p

ΓρπV N→V N

uλ
′
p(p′

p)
Gνρ(p

′
V )

(p′V )
2 −m2

V + iǫ
ΓµνγN→V Nǫ

λγ
µ u

λ′n(p′
n)Ψ

(λ′n,λ
′
p;λd)

d (p′
p)

]

. (3.40)

The plus sign in Eq. (3.40) comes from the antisymmetry of the deuteron wave function

under a p-n swap, i.e., must have the opposite sign of Eq. (3.38).
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There is a remaining propagator denominator (i.e., factor of the form p2−m2+ iǫ) in

each amplitude: from the vector meson propagator in M1a and M1c, and from the proton

propagator in M1b. In each case, the four-momentum transferred at the rescattering vertex

is introduced as K = pn − p′n, and the propagator is rewritten in terms of K.

For the propagator in M1a, we find

(p′V )
2 −m2

V + iǫ = (pV + pn − p′n)
2 −m2

V + iǫ = (pV +K)2 −m2
V + iǫ

= 2pV,z (∆1a −Kz + iǫ) , (3.41)

where

∆1a =
K2 + 2K0EV − 2K⊥ · pV

2pV,z
. (3.42)

To proceed with the integration, a key feature of eikonal scattering is used: the rescattering

amplitude is soft and dominated by small-angle scattering, i.e. K2
z ≪ K2

⊥, meaning that

K0 and K2 are approximately equal to their Kz = 0 values. Additionally, ∂∆1a
∂Kz

∼ Kz
pV,z

≪ 1,

so we may take ∆1a to be independent of Kz in the eikonal regime. Ultimately, this has

the effect of linearizing the propagator denominator: the term 2pV,z (∆1a −Kz + iǫ) in

Eq. (3.41) is now linear in Kz. Additionally, the integration over p′
n in Eq. (3.38) can be

rewritten as an integration over K, the z-component of which can be integrated using the

identity
∫

f(z)dz

∆− z + iǫ
= −iπf(∆) + P

∫

f(z)dz

∆− z
, (3.43)

where the symbol P indicates that the Cauchy principal value of the integral is to be taken.

In applying the decomposition of Eq. (3.43) to M1a, we are separating M1a into

on-shell and off-shell parts. The condition ∆1a = Kz imposed by the delta function in

the decomposition corresponds to the on-mass-shell condition for the intermediate vector

meson, since it this equality occurs when (p′V )
2 = m2

V . This term in the composition shall

henceforth be called the pole term, with the other being called the principal value term.

Because the pole term corresponds to the intermediate vector meson being on its mass shell,

the completeness relation Gνρ(p
′
V ) =

∑

λ′V
φν

(λ′V )(p′
V )φ

∗
ρ
(λ′V )(p′

V ) can be used for the pole
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term contribution to M1a. With this relation in use, spin wave functions can be gathered

into invariant amplitudes for the γN → V N and V N → V N subprocesses, giving

M(λV ,λp,λn;λγ ,λd)
1a,pole =

i

4pV,z

∑

λ′V ,λ
′
p,λ

′
n

∫

d2K⊥
(2π)2

[

√

2(2π)3

2E′
n

M(λV ,λn;λ
′

V ,λ
′
n)

V N→V N (sV N , tV N )

M(λ′V ,λp;λγ ,λ
′
p)

γN→V N (sγN∗ , tγN∗)Ψ
(λ′p,λ

′
n;λd)

d (pn,z −∆1a,pn,⊥ −K⊥)

]

(3.44)

for the pole term. Here, as in the PWIA amplitude, the invariant amplitudes appearing on

the right-hand side are functions of the Mandelstam variables for their respective transitions.

For the other two rescattering amplitudes, similar decompositions of the remaining

propagators are possible. For M1b, we have

(p′p)
2 −m2

N + iǫ = (pp + pn − p′n)
2 −m2

N + iǫ = (pp +K)2 −m2
N + iǫ

= 2pp,z (∆1b −Kz + iǫ) , (3.45)

where

∆1b =
K2 + 2K0Ep − 2K⊥ · pp

2pp,z
, (3.46)

giving a pole part of the amplitude equal to

M(λV ,λp,λn;λγ ,λd)
1b,pole =

i

4pp,z

∑

λ′p,λ
′′
p ,λ

′
n

∫

d2K⊥
(2π)2

[

√

2(2π)3

2E′
n

M(λp,λn;λ′′p ,λ
′
n)

pn→pn (spn, tpn)

M(λV ,λ
′′
p ;λγ ,λ

′
p)

γN→V N (sγN∗ , tγN∗)Ψ
(λ′p,λ

′
n;λd)

d (pn,z −∆1b,pn,⊥ −K⊥)

]

. (3.47)

For M1c, we have

(p′V )
2 −m2

V + iǫ = (q + p′n − pn)
2 −m2

V + iǫ = (q −K)2 −m2
V + iǫ

= 2q0 (Kz −∆1c + iǫ) , (3.48)

where

∆1c =
m2
V −K2

2q0
+K0, (3.49)
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giving a pole part of the amplitude equal to

M(λV ,λp,λn;λγ ,λd)
1c,pole = − i

4q0

∑

λ′V ,λ
′
p,λ

′
n

∫

d2K⊥
(2π)2

[

√

2(2π)3

2E′
p

M(λV ,λp;λ
′

V ,λ
′
p)

V N→V N (sV N , tV N )

M(λ′V ,λn;λγ ,λ
′
n)

γN→V N (sγN∗ , tγN∗)Ψ
(λ′n,λ

′
p;λd)

d (−pn,z +∆1c,−pn,⊥ +K⊥)

]

. (3.50)

For the principal value (PV) parts of each amplitude, the notation is simplified by

introducing half-off-shell amplitudes for the V N → V N and pn→ pn subprocesses, allowing

us to write the following:

M(λV ,λp,λn;λγ ,λd)
1a,PV =

1

2pV,z

∑

λ′V ,λ
′
p,λ

′
n

∫

d2K⊥
(2π)2

P
∫

dKz

2π

[

√

2(2π)3

2E′
n

M(λV λn;λ
′

V λ
′
n)

V ∗N→V N (sV ∗N , tV ∗N )

M(λ′V λp;λγλ
′
p)

γN∗→V N (sγN∗ , tγN∗)
Ψ

(λ′p,λ
′
n;λd)

d (pn,z −∆1a,pn,⊥ −K⊥)

Kz −∆1a

]

(3.51)

M(λV ,λp,λn;λγ ,λd)
1b,PV =

1

2pp,z

∑

λ′V ,λ
′
p,λ

′
n

∫

d2K⊥
(2π)2

P
∫

dKz

2π

[

√

2(2π)3

2E′
n

M(λpλn;λ′′pλ
′
n)

p∗n→pn (sp∗n, tp∗n)

M(λV λp′′;λγλ
′
p)

γN∗→V N (sγN∗ , tγN∗)
Ψ

(λ′p,λ
′
n;λd)

d (pn,z −∆1b,−pn,⊥ +K⊥)

Kz −∆1b

]

(3.52)

M(λV ,λp,λn;λγ ,λd)
1c,PV = − 1

2q0

∑

λ′V ,λ
′
p,λ

′
n

∫

d2K⊥
(2π)2

P
∫

dKz

2π

[

√

2(2π)3

2E′
p

M(λV λp;λ
′

V λ
′
p)

V ∗N→V N (sV ∗N , tV ∗N )

M(λ′V λn;λγλ
′
n)

γN∗→V N (sγN∗ , tγN∗)
Ψ

(λ′n,λ
′
p;λd)

d (−pn,z +∆1c,pn,⊥ −K⊥)

Kz −∆1c

]

. (3.53)

The notation V ∗ and p∗ signify that these particles are off-shell in their intermediate states.

The amplitudes are estimated numerically by simply using the on-shell counter-parts for

the subreaction amplitudes, but using off-shell kinematics in the computation. In any case,

it is important to note that the approach of using reaction (3.17) to study the on-shell

meson-nucleon scattering amplitude can only be used if the PV parts of the rescattering

amplitudes are neglected.
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Double rescattering correction

Lastly, in the GEA framework, there are up to four double rescattering diagrams to consider.

These are depicted in Fig. 3.5.

Like with the single rescattering diagrams, these are split into two categories. Firstly,

Figs. 3.5a,3.5b correspond to processes with hard meson photoproduction from the proton,

followed by two rescatterings of the hadrons in the final state. They differ only in that

in Fig. 3.5a, the meson-proton rescattering occurs before the proton-neutron rescattering,

while the opposite occurs in Fig. 3.5b. These diagrams will make a significant contribution

to the overall matrix element M only when the two rescattering vertices are soft.

On the other hand, Figs. 3.5c,3.5d are essentially copies of Figs. 3.5a,,3.5b respec-

tively, but with the proton and neutron swapped. Since the kinematic situation under

consideration corresponds to a fast proton and a slow neutron in the final state, one of the

scattering vertices involving the proton must be a hard sub-reaction. In particular, in order

that the neutron end up slow in the final state, the proton-meson rescattering in particular

must be hard. In order to achieve a scenario where this is the only hard vertex (as two

or more hard vertices will suppress the amplitude considerably), the vector meson must

be light, or the energies considered high. Therefore, for photoproduction of heavy vector

mesons as threshold kinematics, Fig. 3.5c is suppressed. However, for light vector mesons or

high photon energies, Fig. 3.5c will be appreciable, and will largely cancel Fig. 3.5a in the

high energy limit. This is due, just as in the single-rescattering case, to the antisymmetry

of the deuteron wave function under a proton-neutron swap. On the other hand, Fig. 3.5d

is suppressed at all energy scales. Since there is a slow proton-neutron pair, the relative

momentum of which is integrated over, the application of a closure relation is warranted

as an approximation, meaning Fig. 3.5d does not make any appreciable contribution to

the invariant amplitude beyond the contribution that Fig. 3.4d makes, which is already

negligible.

The derivation follows the steps of the GEA, as before. Firstly, the full amplitude is

written out using effective Feynman diagram rules. Secondly, the energy of the spectator
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Feynman diagram for double rescattering contributions to γd→ V pn

pn

pp

pV
q

pd
p′p

p′V

p′n

p′′n
p′′p

(a)

pn

pp

pV
q

pd
p′p

p′V

p′n
p′′np′′p

(b)

pp

pn

pV
q

pd
p′n

p′V

p′p

p′′p

p′′n

(c)

pp

pn

pV
q

pd
p′n

p′V

p′p p′′pp′′n

(d)

Figure 3.5: Effective Feynman diagrams for the double rescattering contributions to reaction
(3.17).

nucleon is integrated over, and the positive energy pole is taken. This allows completeness

relations to be used for the intermediate states of the spectator, and at the same time,

an approximate completeness relation is used for the struck nucleon, allowing terms to be

gathered into the VNA deuteron wave function. The remaining propagator is decomposed

into pole and principal value parts, as in Eq. (3.43), after the propagator is (approximately)

linearized through a change of variables. Due to the fact that already M2 ≪ M1, and

principal value parts of integrals are suppressed relative th the pole parts, only the pole

terms for the double rescattering amplitudes will be considered here. Lastly, completeness

relations are used for the remaining intermediate states, justified by the fact that the pole

terms place these states on their mass shells, and the remaining terms are gathered into

subprocess amplitudes.
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First, using the effective Feynman rules for Fig. 3.5a, we have

M(λV ,λp,λn;λγ ,λd)
2a = −ūλp(pp)ūλn(pn)φ∗πλV (pV )

∫

d4p′n
(2π)4i

∫

d4p′′n
(2π)4i

[

Γpn→pn

/p′′p +mN

(p′′p)2 −m2
N + iǫ

/p′′n +mN

(p′′n)2 −m2
N + iǫ

ΓρπV N→V N

Gρν(p
′
V )

(p′V )
2 −m2

V + iǫ

ΓµνγN→V Nǫ
λγ
µ (q)

/p′p +mN

(p′p)2 −m2
N + iǫ

/p′n +mN

(p′n)2 −m2
N + iǫ

Γdpnχ
λd

]

, (3.54)

where the momenta are as notated in the figure. Next, integration over p′0n and p′′0n is used

to put the neutron on its positive-energy mass shell, and exact completeness relations are

subsequently used for the intermediate neutron states. This gives:

M(λV ,λp,λn;λγ ,λd)
2a = −ūλp(pp)ūλn(pn)φ∗πλV (pV )

∑

λ′nλ
′′
n

∫

d3p′
n

(2π)3

∫

d3p′′
n

(2π)3

[

1

2E′
n

1

2E′′
n

Γpn→pnu
λ′′n(p′′

n)ū
λ′′n(p′′

n)
/p′′p +mN

(p′′p)2 −m2
N + iǫ

ΓρπV N→V N

Gρν(p
′
V )

(p′V )
2 −m2

V + iǫ

uλ
′
n(p′

n)Γ
µν
γN→V Nǫ

λγ
µ (q)

/p′p +mN

(p′p)2 −m2
N + iǫ

ūλ
′
n(p′

n)Γdpnχ
λd

]

. (3.55)

Next, the approximate completeness relation /p′p+mN ≈∑λ′p
uλ

′
p(p′

p)ū
λ′p(p′

p) is used for the

struck proton, so terms can be gathered into the VNA deuteron wave function. This gives

M(λV ,λp,λn;λγ ,λd)
2a = −ūλp(pp)ūλn(pn)φ∗πλV (pV )

∑

λ′pλ
′
nλ

′′
n

∫

d3p′
n

(2π)3

∫

d3p′′
n

(2π)3

[

√

2(2π)3

2E′
n

1

2E′′
n

Γpn→pnu
λ′′n(p′′

n)ū
λ′′n(p′′

n)
/p′′p +mN

(p′′p)2 −m2
N + iǫ

ΓρπV N→V N

Gρν(p
′
V )

(p′V )
2 −m2

V + iǫ

uλ
′
n(p′

n)Γ
µν
γN→V Nǫ

λγ
µ (q)uλ

′
p(p′

p)Ψ
(λ′p,λ

′
n;λd)

d (p′
n)

]

. (3.56)

Next, the integration variable is changed, with the purpose of allowing the remaining prop-

agator denominators to be linearlized. We define

K = pn − p′′n (3.57)

K ′ = p′′n − p′n. (3.58)
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For the remaining proton propagator (i.e., the one not absorbed into the VNA wave func-

tion),

(p′′p)
2 −m2

N + iǫ = (pp + pn − p′′n)
2 −m2

N + iǫ = (pp +K)2 −m2
N + iǫ

= K2 + 2EpK0 − pp ·K⊥ − pp,zKz + iǫ

= 2pp,z(∆2a −Kz + iǫ), (3.59)

where we have

∆2a =
K2 + 2EpK0 − 2pp ·K⊥

2pp,z
. (3.60)

For the vector meson propagator,

(p′V )
2 −m2

V + iǫ = (pV + p′′n − p′n)
2 −m2

V + iǫ = (pV +K ′)2 −m2
V + iǫ

= (K ′)2 + 2EVK
′
0 − pV ·K′

⊥ − pV,zK
′
z + iǫ

= 2pV,z(∆
′
2a −K ′

z + iǫ), (3.61)

where in this case

∆′
2a =

(K ′)2 + 2EVK
′
0 − 2pV ·K′

⊥
2pV,z

. (3.62)

Just as in the single rescattering case, these are (approximately) linearizations of the prop-

agator denominators, because ∆
(′)
2a has a weak dependence on K

(′)
z , i.e. a nearly zero deriva-

tive. Thus we may evaluate ∆
(′)
2a when K

(′)
z is zero, and then set K

(′)
z = ∆

(′)
2a for the pole

part of the decomposition (3.43). As discussed above, the principal value parts of both

denominators are neglected as small compared to an already small correction, so the pole

values are used for both propagators. This justifies use of completeness relations for the
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remaining propagator numerators, giving

M(λV ,λp,λn;λγ ,λd)
2a = − 1

4pp,zpV,z

∑

λ′pλ
′
nλ

′′
pλ

′′
nλ

′

V

∫

d2K⊥
(2π)2

∫

d2K′
⊥

(2π)2

[

√

2(2π)3

2E′
n

1

2E′′
n

ūλp(pp)ū
λn(pn)Γpn→pnu

λ′′n(p′′
n)u

λ′′p (p′′
p)

ūλ
′′
n(p′′

n)φ
∗
π
λV (pV )Γ

ρπ
V N→V Nφ

∗
ν
λ′V (p′

V )u
λ′n(p′

n)

ūλ
′′
p (p′′

p)φ
λ′V
ρ (p′

V )Γ
µν
γN→V Nǫ

λγ
µ (q)uλ

′
p(p′

p)

Ψ
(λ′p,λ

′
n;λd)

d (pn,z −∆2a −∆′
2a;pn,⊥ −K⊥ −K′

⊥)

]

. (3.63)

Finally, terms are gathered into sub-reaction amplitudes, giving

M(λV ,λp,λn;λγ ,λd)
2a = − 1

4pp,zpV,z

∑

spins

∫

d2K

(2π)2

∫

d2K′

(2π)2

[

√

2(2π)3

2E′
n

1

2E′′
n

M(λp,λn;λ′′p ,λ
′′
n)

pn→pn (pp, pn; p
′′
p, p

′′
n)

M(λV ,λ
′′
n;λ

′

V ,λ
′
n)

V N→V N (pV , p
′′
n; p

′
V , p

′
n)M

(λ′V ,λ
′′
p ;λγ ,λ

′
p)

γN→V N (p′V , p
′′
p; pγ , p

′
p)

Ψ
(λ′p,λ

′
n;λd)

d (pn,z −∆2a −∆′
2a;pn,⊥ −K⊥ −K′

⊥)

]

. (3.64)

Next, Fig. 3.5b is evaluated. The effective Feynman rules give

M(λV ,λp,λn;λγ ,λd)
2b = −ūλp(pp)ūλn(pn)φ∗πλV (pV )

∫

d4p′n
(2π)4i

∫

d4p′′n
(2π)4i

[

ΓρπV N→V N

/p′′n +mN

(p′′n)2 −m2
N + iǫ

Gρν(p
′
V )

(p′V )
2 −m2

V + iǫ
Γpn→pn

/p′′p +mN

(p′′p)2 −m2
N + iǫ

ΓµνγN→V Nǫ
λγ
µ (q)

/p′p +mN

(p′p)2 −m2
N + iǫ

/p′n +mN

(p′n)2 −m2
N + iǫ

Γdpnχ
λd

]

, (3.65)

where the momenta are as depicted in Fig. 3.5b. From here, integration over p′0n and p′′0n

places the neutron on its mass shell in its intermediate states, which also allows application

of the completeness relation. An approximate completeness relation is also used for the

struck proton, so terms can be absorbed into the deuteron VNA wave function. The two

remaining propagator denominators—for the proton (with four-momentum p′′p) and the
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vector meson—are dealt with, as before, by (approximately) linearizing the denominator.

The following intermediate four-momenta are defined:

K = pn − p′′n (3.66)

K ′ = p′′n − p′n. (3.67)

For the intermediate vector meson state, this gives us

(p′V )
2 −m2

V + iǫ = (pV +K)2 −m2
V + iǫ

= K2 + 2K0EV − 2KzpV,z − 2K⊥ · pV,⊥ + iǫ

= 2pV,z(∆2b −Kz + iǫ), (3.68)

where

∆2b =
K2 + 2K0EV − 2K⊥ · pV,⊥

2pV,z
. (3.69)

For the intermediate proton state, we have

(p′′p)
2 −m2

N + iǫ = (pp +K ′)2 −m2
N + iǫ

= (K ′)2 + 2K ′
0Ep − 2K ′

zpp,z − 2K′
⊥ · pp,⊥ + iǫ

= 2pp,z(∆
′
2b −K ′

z + iǫ), (3.70)

where

∆′
2b =

(K ′)2 + 2K ′
0Ep − 2K′

⊥ · pp,⊥
2pp,z

. (3.71)

The Delta terms are evaluated when K
(′)
z = 0, since they are approximately independent

of K
(′)
z . With the denominators effectively linearized, the propagators are decomposed into

pole and principal value parts, the latter of which are neglected as comparatively small. The

pole parts put the intermediate particles on their mass shells, and accordingly completeness
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relations are used. Finally, terms are gathered into sub-reaction amplitudes. The result of

applying all these operations is

M(λV ,λp,λn;λγ ,λd)
2b = − 1

4pp,zpV,z

∑

spins

∫

d2K

(2π)2

∫

d2K′

(2π)2

[

√

2(2π)3

2E′
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1

2E′′
n
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′

V ,λ
′′
p)

V N→V N (pV , pp; p
′
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′′
p)

M(λp,λ′′n;λ
′′
p ,λ

′
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′′
n; p

′′
p, p

′
n)M

(λ′V ,λ
′′
p ;λγ ,λ

′
p)

γN→V N (p′V , p
′′
p; pγ , p

′
p)

Ψ
(λ′p,λ

′
n;λd)

d (pn,z −∆2b −∆′
2b;pn,⊥ −K⊥ −K′

⊥)

]

. (3.72)

Lastly, Fig. 3.5c is evaluated. The effective Feynman rules give

M(λV ,λp,λn;λγ ,λd)
2c = −ūλp(pp)ūλn(pn)φ∗πλV (pV )

∫

d4p′p
(2π)4i

∫

d4p′′n
(2π)4i

[

Γpn→pn

/p′′p +mN

(p′′p)2 −m2
N + iǫ

/p′′n +mN

(p′′n)2 −m2
N + iǫ

ΓρπV N→V N

Gρν(p
′
V )

(p′V )
2 −m2

V + iǫ

ΓµνγN→V Nǫ
λγ
µ (q)

/p′p +mN

(p′p)2 −m2
N + iǫ

/p′n +mN

(p′n)2 −m2
N + iǫ

Γdpnχ
λd

]

, (3.73)

where the four-momenta are as depicted in Fig. 3.5c. The integration is over p′p rather

than p′n, due to the proton being the spectator to the photon-nucleon interaction in this

diagram. The energy integrations performed for this diagram are over p′0p and p′′0n , which

put the proton in the pre-photoproduction intermediate state and the neutron in the post-

photoproduction intermediate state on their mass shells. With these hadrons on their

mass shells, exact completeness relations can be used. An approximate completeness rela-

tion is additionally used for the struck neutron, so terms can be absorbed into the VNA

deuteron wave function. It is important to note that for this diagram, a minus sign will

be picked up, due to the proton-neutron swap relative to Fig. 3.5a. Next, the remain-

ing intermediate hadron propagators—the proton state after meson-proton rescattering,

with four-momentum p′′p and the vector meson—can be approximately linearized by using
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a change of momentum variables. We define

K = pn − p′′n (3.74)

K ′ = p′n − p′′. (3.75)

The denominator for the remaining proton propagator is

(p′′p)
2 −m2

N + iǫ = (pp +K)2 −m2
N + iǫ

= K2 + 2K0Ep − 2KZpp,z − 2K⊥ · pp,⊥ + iǫ

= 2pp,z(∆1c −Kz + iǫ), (3.76)

where

∆1c =
K2 + 2K0Ep −K⊥ · pp,⊥

2pp,z
. (3.77)

The denominator for the intermediate vector meson propagator is

(p′V )
2 −m2

V + iǫ = (q +K ′)2 −m2
V + iǫ

= (K ′)2 + q0K0 − q0Kz −m2
V + iǫ

= 2q0(∆
′
1c −Kz + iǫ), (3.78)

where

∆′
1c =

(K ′)2 −m2
V

2q0
+K0. (3.79)

As above, ∆
(′)
1c is approximately independent of K

(′)
z , and accordingly can be evaluated

when K
(′)
z = 0, thus linearizing the denominators. Eq. (3.43) is then used to decompose

each propagator into a pole and PV part, the latter of which is neglected as small. Finally,

for the pole part, the mass shell relations are valid, making completeness relations exact;
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these are used, and terms are gathered into sub-reaction amplitudes, and we have

M(λV ,λp,λn;λγ ,λd)
2c = +

1

4q0pp,z

∑
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∫

d2K

(2π)2

∫

d2K′

(2π)2

[

√

2(2π)3

2E′
p

1

2E′′
n

M(λp,λn;λ′′p ,λ
′′
n)

pn→pn (pp, pn; p
′′
p, p

′′
n)

M(λV ,λ
′′
p ;λ

′

V ,λ
′
p)

V N→V N (pV , p
′′
p; p

′
V , p

′
p)M

(λ′V ,λ
′′
p ;λγ ,λ

′
p)

γN→V N (p′V , p
′′
n; pγ , p

′
n)

Ψ
(λ′n,λ

′
p;λd)

d (−pn,z +∆2a +∆′
2a;−pn,⊥ +K⊥ +K′

⊥)

]

. (3.80)

Considerations for numerical estimates

In the following two sections, the formalism developed here will be applied to diffractive

photoproduction of φ(1020) and J/ψ accompanied by deuteron breakup. Before proceeding

to specific applications of the formalism, however, some considerations should be explored

regarding how numerical estimates should be performed and presented.

To begin, while the formulas derived for M0, M1a, etc. are presented in terms of sub-

reaction amplitudes such as MγN→V N and so on, it is most useful to parametrize reactions

in terms of the diffractive scattering amplitude f(s, t). After Eq. (3.7), we write

M(λC ,λD;λA,λB)
AB→CD (s, t) =

ΦAB
2

f
(λC ,λD ;λA,λB)
AB→CD (s, t), (3.81)

where ΦAB is as given in Eqs. (3.2-3.5). The diffractive amplitude is useful in particular

because it is normalized so that Im(f(s, 0)) = σtot.. Thus, for the special case A = C and

B = D, we can, assuming helicity conservation, parametrize the diffractive amplitude in

the form

f
(λC ,λD;λA,λB)
AB→CD (s, t) = σtot.AB (s)[i+ α(s)] exp

(

b(s)

2
t

)

δλAλCδλBλD . (3.82)

For the case of the pn → pn sub-reaction, existing data is used to parametrize the

diffractive scattering amplitude. Values for σtot.(s), α(s), and b(s) are extracted from SAID

data [105] for low energies and from Particle Data Group data [106] at high energies, with

the region between connected by a cubic spline.
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For the case of the V N → V N sub-reaction, since the vector meson-nucleon interac-

tion is the object of study in this work, the parametrization of Eq. (3.82) is used in numerical

computations with varied values of the slope factor bV N and the total cross section σtot.V N in

order to study the sensitivity of the overall γd→ V pn cross section on these parameters.

Finally, for the γN → V N sub-reaction, existing parameterizations of the photopro-

duction amplitude are used. The forms of these parameterizations will be elaborated on in

the specific φ(1020) and J/ψ sections.

Besides the parametrization of sub-reaction amplitudes, another consideration to bear

in mind is the presentation of the computations. This will be geared towards being useful

for experimental searches. Absolute cross sections are notoriously difficult to measure, so

ratios of cross sections will be presented in addition to absolute cross sections. While it is

theoretically enlightening to present ratios of the form

σfull
σPWIA

,

(where σ is shorthand for the five-fold differential cross section of Eq. (3.29)) it is impossible

in real experiments to turn off higher-order diagrams and measure only the PWIA cross

section to feed into such a ratio. Instead, estimates will be presented in the form of ratios

R =
σ
(

p
(2)
n

)

σ
(

p
(1)
n

) , (3.83)

i.e. between the five-fold cross section measured at two different values of the spectator

(neutron) momentum.

3.3 Photoproduction of φ(1020) mesons

Photoproduction of φ(1020) from nuclear targets has attracted a great deal of interest due

to the large φ-N cross sections measured in these reactions; cf. Refs. [107,108] for example.

Specifically, these experiments measured the γA → φA cross section and analyzed the
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reaction in a Glauber model framework in order to extract the φ-N cross section, finding

values varying between 16-70 mb [109].

These large φ-N cross sections are interesting because they contradict the predictions

of the vector meson dominance (VMD) model. VMD considers the physical (as opposed

to the bare) photon to be in a superposition of different hadronic states with the quantum

numbers of the bare photon, i.e. the photon has a probability of being found to be various

odd-parity, neutral vector mesons. VMD predicts a relationship between the γN → V N

and V N → V N differential cross sections, namely of the form

(

dσ

dt

)

γN→V N

=
e2

f2V N

(

dσ

dt

)

V N→V N

, (3.84)

where fV N is a coupling constant for the V -N interaction. (See Refs. [98, 110] for more

details about VMD.) The prediction for the φ-N cross section from vector meson domi-

nance is σφN ≈ 11 mb [111], significantly less than the values found from rescattering in

nuclear target experiments. The variety of values measured for σφN has led to speculation

about medium modifications of the φ meson, and thus variation of σφN within the nuclear

medium [109].

In recent years, several experiments have measured phi photoproduction from a deuteron

target specifically [96,109,112,113]. Ref. [112] studied both incoherent and coherent φ pho-

toproduction, in the reactions d(γ, pK+K−)n and d(γ,K+K−)d respectively. Incoherent

production in the photon energy range Eγ = 1.65-3.59 GeV suggested a φ-N cross section

in excess of 20 mb. Coherent production also showed the presence of φ-N rescattering, with

measured cross sections in excess of the PWIA prediction, but could not decide between the

VMD model (with σφN ≈ 10 mb) and the larger cross section measurements. In particular,

choosing the slope factor to be a large value (e.g., BφN ≈ 10 GeV−2 [88]) in addition to the

total φ-N cross section gave coherent γd→ φd cross sections consistent with the predictions

of VMD [96,112].

We show, however, that the breakup reaction γ + d → φ + p + n is sensitive enough

to the φ-N interaction to distinguish between these models. In order to demonstrate this,
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the formalism of Sec. 3.2 is applied to photoproduction of φ(1020) in particular, for both

models of the φ-N interaction. The formalism is applied in the energy range that coherent

production was explored in a JLab experiment [96], and the γN → φN photoproduction

amplitude is parametrized based on a Pomeron exchange model from Ref. [98]2, namely:

fγN→φN(s, t) =

(

s

1 GeV2

)αR(t)−1

A(i + α(s)) exp

(

1

2

(

Bt+ Ct2
)

)

, (3.85)

where αR(t) = 1.14 + (0.27 GeV−2)t is the Regge trajectory predicted by the model, and

the parameters A = 0.372 GeV−2, B = 4.8 GeV−2, and C = 1.7 GeV−4 are taken as

constants. (n.b. that, according to Ref. [98], different sets of φ photoproduction data from

proton targets can only be made consistent by taking into account a non-zero quadratic

coefficient C.) Additionally, the factor α(s) = −0.5 is taken from Ref. [98].

The vector meson dominance model models fφN→φN(s, t) after fγN→φN (s, t) as con-

tained in Eq. (3.85), but with the normalization set so that Im(fφN→φN (s, 0)) = 10 mb, in

accordance with the optical theorem and the VMD prediction for the φ-N cross section. By

contrast, in the “30-10” model of Laget [88] (named for σφN = 30 mb andBφN = 10 GeV−2),

we use a simpler parametrization for the φ-N diffractive amplitude:

fφN→φN(s, t) = σφN (i− α(s)) exp

(

1

2
Bt

)

, (3.86)

with α = −0.5 taken in this case too.

With the prerequisites for modeling the sub-reactions in hand, we first proceed to

produce numerical estimates for φ photoproduction from the deuteron in the plane wave im-

pulse approximation, and with the contributions of M1a (φ-neutron rescattering) and M1b

(proton-neutron rescattering) taken into account. Such estimates are presented in Fig. 3.6,

for an incident photon energy of q0 = 5 GeV and momentum transfer −t = 1.2 GeV−2,

for three values of the spectator neutron momentum (pn = 100, 200, and 400 MeV). Here,

σ is notational shorthand for the differential cross section σ ≡ d5σ/d3pV dΩp as given in

2
cf. Eqs. (3.85b,3.85c) of ibid.
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Angular distribution of γd→ φ(1020)pn (single resc. approx.)

0 20 40 60 80 100 120 140 160 180
θnl (degrees)

103

104

σ
(n

b
/G

e
V

sr
2
)

pn = 100 MeV

VMD model

PWIA

φ-n resc.

p-n resc.

Both

(a) VMD model, pn = 100 MeV
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(b) “30-10” model, pn = 100 MeV
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(c) VMD model, pn = 200 MeV
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(d) “30-10” model, pn = 200 MeV
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(e) VMD model, pn = 400 MeV
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(f) “30-10” model, pn = 400 MeV

Figure 3.6: Angular dependence of the φ photoproduction cross section at different neutron
momenta, for both the VMD and “30-10” models of the φ-N interaction. These plots
consider the contributions due to rescattering of the proton and the φ from the spectator
neutron. q0 = 5 GeV and −t = 1.2 GeV2.
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Eq. (3.29). Figs. 3.6a,3.6c,3.6e employ the vector meson dominance model to describe the

φ-n interaction, while Figs. 3.6b,3.6d,3.6f employ the “30-10” model of Laget.

Two features of these plots are immediately striking: the first is that, depending on

the neutron momentum, there are valleys (for pn = 200 MeV) or peaks (for pn = 400 MeV)

in the angular distribution of the cross section, due to the φ-n and p-n rescatterings. The

small-angle (θnl ≈ 10◦) valley/peak is due to the φ-n rescattering, whereas the larger-angle

(θnl ≈ 70◦) valley/peak is due to the p-n FSI. The second striking feature is that the size

of the φ-n rescattering peak differs between the models, with the “30-10” model predicting

a significantly larger rescattering peak.

The distinction between the 200 MeV valleys and the 400 MeV peaks is due to the

single rescattering contribution entering with an overall opposite sign from the PWIA con-

tribution. At low neutron momenta (e.g., pn = 100 MeV), the rescattering contribution

is too small for the destructive interference to be visible. At moderate neutron momenta

(e.g., pn = 200 MeV), the destructive interference manifests as two valleys in the differential

cross section—one due to the φ-N rescattering contribution, and one due to p-n rescatter-

ing. At high neutron momenta (e.g., pn = 400 MeV), the single rescattering contribution

becomes so large that the cross section is increased overall at specific kinematics, despite

the destructive interference between the PWIA and rescattering contributions. This results

in peaks at pn = 400 MeV at θnl values where pn = 200 MeV saw valleys.

The particular locations of the valleys and peaks can be understood in terms of the

reaction geometry, as seen in Fig. 3.1. Rescattering of a particle from the spectator produces

the largest contribution when the scattered hadron is roughly perpendicular to the scatterer.

Since the proton has a greater momentum than the neutron, this means the p-n rescattering

peak or valley should occur between 45◦ < θnl < 90◦; for |pp| & 2|pn|, for instance, the

peak should occur at about θnl & 60◦, where a rescattering peak can be clearly seen.

The presence of a p-n rescattering peak at this angle is also well-known from deuteron

electrodisintegration [85–87,89–92].

Deuteron breakup accompanied by meson photoproduction, by contrast, contains a

second valley or peak at a smaller value of θnl. This is due to meson-nucleon rescattering.
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Angular distribution of γd→ φ(1020)pn (double resc. approx.)
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(a) VMD model, pn = 400 MeV
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(b) “30-10” model, pn = 400 MeV

Figure 3.7: Angular dependence of the φ photoproduction cross section at pn = 400 MeV,
for both the VMD and “30-10” models of the φ-N interaction. These plots compare the
PWIA against cross sections with single- and double-rescattering contributions. q0 = 5 GeV
and −t = 1.2 GeV2.

As can be seen in Fig. 3.1, the meson-nucleon rescattering peak is expected to occur at

smaller values of θnl than the p-n rescattering peak. This feature is present in Fig. 3.6, and

was previously found to exist by a previous theoretical calculation [88].

Next, we explore the contribution of M1c to the φ(1020) production amplitude, as well

as the contribution of double rescatterings. Numerical estimates can be seen in Fig. 3.7.

M1c is the amplitude for the φ meson to be produced from the slow-moving neutron,

and then to subsequently rescatter from the proton, giving the latter a large “kick” to

a high-momentum state. Its contribution, when added to the contributions of the other

single-rescattering amplitudes, can be seen in the dash-dotted (blue) lines of Fig. 3.7. Due

to the antisymmetry of the deuteron wave function, M1c has an opposite sign from M1a,

and accordingly partially or fully cancels the valley or peak produced by the former. The

double rescattering amplitudes, additionally, enter with an overall opposite sign from the

single rescattering amplitudes, thus partially canceling the latter’s contribution.

As discussed in Sec. 3.2.2, it is conducive to the purpose of studying φ-N rescatter-

ing to look at ratios of the differential cross section at different spectator momenta (cf.

Eq. (3.83)). Since, as can be seen in Fig. 3.6, there are rescattering peaks in the cross
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Ratio of angular distributions of γd→ φ(1020)pn
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(a) VMD model
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Figure 3.8: Angular dependence of the ratio defined in Eq. (3.87), for two models of the
φ-N interaction. q0 = 5 GeV and −t = 1.2 GeV2.

section at pn = 400 MeV and valleys at pn = 200 MeV, taking the ratio

Rφ =
σ(pn = 400 MeV)

σ(pn = 200 MeV)
(3.87)

will enhance the visibility of the rescattering peaks.

In Fig. 3.8, numerical estimates of Rφ (as defined in Eq. (3.87) are presented for both

the VMD and the “30-10” models of the φ-N interaction. Fig. 3.8a employs vector meson

dominance, whereas Fig. 3.8b uses the “30-10” model.

It can be seen that these two models predict starkly different behavior for the ratio

Rφ. Even qualitatively, vector meson dominance predicts no φ-N rescattering peak, due

to the contributions from M1a (Fig. 3.4a) and M1c (Fig. 3.4c) canceling almost perfectly;

however, in the “30-10” model, the cancellation is imperfect, and the φ-N scattering peak

survives. Quantitatively, the “30-10” model predicts a cross section ratio that is about an

order of magnitude greater at θnl ≈ 10◦ than VMD.

It is worth discussing why the cancellation between M1a and M1c are (nearly) per-

fect for one model and imperfect for the other. The nearly perfect cancellation in the VMD

model is due to the photoproduction and φ rescattering amplitude having the same t depen-

dence as the photoproduction amplitude (as is an assumption of vector meson dominance).
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Moreover, whereas for Fig. 3.4a, one has

tγN→φN = (pp − p′p)
2

tφN→φN = (pn − p′n)
2,

the formulas for t for the contribution of Fig. 3.4c are instead

tγN→φN = (pn − p′n)
2

tφN→φN = (pp − p′p)
2.

In other words, the formulas for t are switched between the sub-reactions. Since in the

VMD model, the t dependence of both sub-reactions is the same, the t dependence of M1a

and M1c is identical in VMD, and these amplitudes enter with a relative minus sign due to

the isospin asymmetry of the deuteron wave function. Therefore, nearly perfect cancellation

occurs between these contributions.

By contrast, the “30-10” model of the φ-N interaction predicts different t dependence

for the φ photoproduction and rescattering sub-reactions. Accordingly, the cancellation is

imperfect, at least at the relatively low energy range considered here. At specific kinematics,

the cancellation will still be perfect. Firstly, if the proton and neutron are produced with

equal momenta on opposite sides of the scattering plane (making l parallel to the z axis),

then the kinematic symmetry would result in perfect cancellation. Secondly, at sufficiently

large photon energies, the kinematic constraints which guarantee a one-hard, one-soft vertex

scenario are not present, so tγN→φN and tφN→φN will take on similar values, resulting in

near-perfect cancellation between M1a and M1c.

To conclude this section, the breakup reaction (3.17) for V = φ is able to effectively

discriminate between two models of the φ-N scattering interaction at low energies. Ac-

cordingly, we suggest that it be used to complement other methods of studying the φ-N

interaction, especially at near-threshold energies.
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3.4 Photoproduction of J/ψ mesons

Photoproduction of J/ψ in deuteron breakup reactions will be studied here in three dif-

ferent kinematic regimes: firstly, for near- (but above-) threshold kinematics, in Sec. 3.4.1;

secondly, for below-threshold kinematics in Sec. 3.4.2; and lastly, for extremely high-energy

kinematics in Sec. 3.4.3. Examining J/ψ photoproduction in these different kinematic

regimes will allow different features of the eikonal dynamics of final state interactions to

manifest. In particular, for near-threshold kinematics, the rescattering peaks and valleys

seen in Sec. 3.3 for φ(1020) production will be visible for J/ψ production as well. For

below-threshold kinematics, the requisite kinematic conditions for J/ψ production will sup-

press FSIs and render their effects invisible. Lastly, for extremely high energies, different

rescattering mechanisms (i.e., from Figs. 3.4a,3.4a) will cancel each other out near-perfectly,

resulting in the absence of a J/ψ-N rescattering peak at these energies.

3.4.1 Near-threshold J/ψ production

Near-threshold photoproduction of J/ψ is especially pertinent to Jefferson Lab in light of

the 12 GeV energy upgrade [114]. The threshold for photoproduction is defined as on a

proton target, and occurs when the J/ψ meson and the target proton are both at rest in the

center-of-mass frame. Accordingly, sthr. = (mp+mΨ)
2. In the lab frame, where the proton

is initially at rest, a threshold s value entails (pγ + pp)
2 = m2

p + 2mpEγ = (mp + mΨ)
2,

making the formula for the threshold photoproduction energy

Ethr. =
m2

Ψ + 2mpmΨ

2mp
≈ 8.2 GeV, (3.88)

given a J/ψ mass of mΨ = 3.09 GeV. J/ψ photoproduction in particular is a worthwhile

subject of study at near-threshold kinematics because such kinematics guarantee the ap-

plicability of the generalized eikonal approximation. In particular, at threshold, one has a
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large |t| value. Since, in the center-of-mass frame, Eγ =
s−m2

p

2
√
s

and EΨ =
s+m2

Ψ−m2
p

2
√
s

, we have

tthr = (q − pΨ)
2 = m2

Ψ − 2
(sthr. −m2

p)(sthr. +m2
Ψ −m2

p)

4sthr.

= m2
Ψ − (2mpmΨ +m2

Ψ)(2mpmΨ)

2(mp +mΨ)2

= − m2
Ψmp

mp +mΨ
≈ −2.23 GeV−2. (3.89)

Above but close to the production threshold, a range of t values will be available, but as long

as the photon energy is kept close to 8.2 GeV, the minimum |t| value will be large and the

eikonal regime will be established. |tthr.| is sufficiently high for J/ψ that the perturbative

expansion of QCD is applicable, allowing multi-gluon exchange models to be explored as a

photoproduction or rescattering mechanism. By contrast, using Eq. (3.89) with the φ(1020)

mass in place of the J/ψ mass produces a threshold t value closer to −0.5 GeV−2.

Near-threshold J/ψ production is studied here as a means of exploring the J/ψ-N

interaction, the nature and strength of which are currently not well-understood. The vec-

tor meson dominance model suggests a total J/ψ-N cross section of around 1 mb [115]

at high energies, but similar to the case of φ(1020), experimental data suggest a higher

cross section, on the order of 3.5 mb [116]. On the theoretical side, different models of J/ψ

production based on perturbative QCD make different predictions for the cross section’s

energy dependence. For instance, leading-twist pQCD calculations using a two-gluon ex-

change mechanism [117] predict a monotonically increasing energy dependence that asymp-

totically approaches a fixed high-energy value, thus suggesting a low J/ψ-N cross section

for near-threshold kinematics. On the other hand, other models attempt to account for

non-perturbative effects and make yet larger predictions for the low-energy J/ψ-N cross

section, one estimate going as large as 17 mb [118].

To ascertain the sensitivity of the breakup reaction (3.17) to the strength and nature of

the J/ψ-N interaction, we use a cross section ratio, just as in the case of φ(1020) production.

Since the higher J/ψ mass allows for higher spectator momenta to be explored while still

maintaining the requirements of the eikonal regime (cf. Fig. 3.2b), we take the ratio this
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time to be

RΨ =
σ(pn = 600 MeV)

σ(pn = 200 MeV)
. (3.90)

The larger value of pn is chosen in the numerator in order to maximize the rescattering

effects.

Since the sub-reaction amplitudes for J/ψ production from a constituent nucleon and

J/ψ rescattering from the spectator do not factorize, care must be taken in treating the

γN → J/ψN amplitude, which may be strongly energy-dependent near threshold. For this

reason, two models of J/ψ photoproduction, from Ref. [119], are examined and used in our

numerical estimates.

The first model considers photoproduction to be dominated by the leading-twist, two-

gluon exchange contribution [119]. Eq. (3) from ibid. parametrizes the differential cross

section based on this model as

dσ

dt
=

N 2
2g

16π

(1− x)2

e

Bt

, (3.91)

where we have taken the liberty of absorbing several constants from Eq. (3) of Ref. [119]

into the overall normalization constant N 2
2g (which has been squared and divided by 16π so

that it is a linear constant in the scattering amplitude), and to evaluating the phase space

factor. In [119], x was taken to be

x =
2mpmΨ +m2

Ψ

s−m2
p

=
s− sthr.
s−m2

p

(3.92)

and we take the same value of x here, giving

dσ

dt
= N 2

2g

(

s− sthr.
s−m2

p

)2

eBt. (3.93)

This allows the diffractive scattering amplitude parametrization of Eq. (3.9) to be used,

with C = 0 and

A2g(s) = N2g

(

s− sthr.
s−m2

p

)

. (3.94)
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We find that a normalization constant of N2g = 1.35 GeV−2 gives an accurate fit to ex-

isting J/ψ photoproduction data from SLAC [120]. The slope factor B is given a slight t

dependence in the form

Beff.(t) =
4

1 GeV2 − t
. (3.95)

as suggested by a theoretical study of the nucleon’s two-gluon form factor [121]. A low-

energy slope factor of B = 1.25 GeV−2 was measured in a Cornell experiment [122], although

with threshold value of tthr. = −2.23 GeV−2, one has Beff.(tthr.) ≈ 1.24 GeV−2, thus

reproducing the required low-energy form.

In addition to a two-gluon exchange model, Ref. [119] considered a possible dominance

of a three-gluon exchange mechanism in the photoproduction of J/ψ. Near threshold, after

all, the phase space is very limited, and this may favor a coherent interaction of all three

valence quarks in the nucleon with the charmonium state. For this model, we take Eq. (4) of

Ref. [119], as before absorbing constants into the overall normalization factor and evaluating

the phase space factor to get:

dσ

dt
=

N 2
3g

16π
eBt. (3.96)

Comparison with Eq. (3.9) gives C = 0 as before, and

A3g(s) = N3g, (3.97)

where a normalization constant of N3g = 0.35 GeV−2 fits the Cornell data [122] for J/ψ

photoproduction. Since the three-gluon form factor of the nucleon is not well-known, we

adopt the constant value B = 1.25 GeV−2 determined by ibid.

In Fig. 3.9, predictions for the ratio RΨ as defined in Eq. (3.90) are given for both

the two- and three-gluon exchange mechanisms. For both models, the diffractive J/ψ-

N scattering amplitude is parametrized in the form of Eq. (3.9), with σΨN = 5 mb and

B = 1.25 GeV−2. As in the φ(1020) case, there are two rescattering peaks, with the peak

at θnl & 60◦ due to proton-neutron rescattering and that at θnl ≈ 30◦ due to J/ψ-nucleon

rescattering.
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Ratio of angular distributions of γd→ J/ψpn
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(a) Two-gluon mechanism
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Figure 3.9: Angular dependence of the ratio defined in Eq. (3.90), for the (a) two- and (b)
three-gluon exchange models of J/ψ photoproduction. Assumes σΨN = 5 mb. q0 = 10 GeV
and t = tthr. = −2.23 GeV2.

Fig. 3.9 demonstrates that the reaction (3.17) shows sensitivity to the energy de-

pendence of the J/ψ photoproduction mechanism. There is a strong qualitative difference

between the predictions of the models, with the J/ψ-N rescattering peak barely visible

in the two-gluon model—in fact, likely to be invisible in light of uncertainties in any ex-

perimental search. Quantitatively, the ratio RΨ is greater for the three-gluon than the

two-gluon mechanism by a factor of ∼ 2 at θnl ≈ 30◦. Moreover, at θnl ≈ 75◦ (near the

kinematic limit), the two-gluon mechanism produces a dip in the ratio Rφ not present in

the three-gluon model.

This dip is due to the factor of (s − sthr.) in A2g(s). When θnl close to the upper

limit, the angle between the outgoing proton and the J/ψ is smaller (see Fig. 3.1), thus

making sγp = m2
p+m2

Ψ+2EpEψ− 2pp ·pΨ, which enters into A2g(s) in the PWIA, smaller

and thus closer to sthr.. This effect is less pronounced when single-rescattering corrections

are taken into account because the s that enters into A2g(s) isn’t exactly (pp + pΨ)
2 for

the rescattering diagrams. Moreover, the fact that the rescattering peak is present at θnl

where the PWIA cross section begins to decrease is what makes the J/ψ-N rescattering

peak so difficult to see for the two-gluon exchange mechanism; the effect of the rescattering

correction does more to lessen the falloff of the cross section with increasing θnl than to
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Angular distribution of γd→ J/ψpn
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(a) Two-gluon model, pn = 100 MeV
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(b) Three-gluon model, pn = 100 MeV
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(c) Two-gluon model, pn = 200 MeV
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(d) Three-gluon model, pn = 200 MeV
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(e) Two-gluon model, pn = 600 MeV
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(f) Three-gluon model, pn = 600 MeV

Figure 3.10: Angular dependence of the J/ψ photoproduction cross section at different
neutron momenta, for both the two- and three-gluon models of J/ψ photoproduction. These
plots consider the contributions due to single and double rescattering against the PWIA.
q0 = 10 GeV and −t = −tthr. = 2.23 GeV2.
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produce a peak. This can also be seen in Fig. 3.10, where the absolute differential cross

section is given for the two- and three-gluon models.

Ratio of angular distribution of γd→ J/ψpn (multiple σΨN)
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Figure 3.11: Angular dependence of the ratio defined in Eq. (3.90) with different J/ψ-N
cross sections, using the two-gluon parameterization of [119]. Estimated at q0 = 10 GeV
and −t = 2.23 GeV2. Includes all diagrams.

Despite the largely-invisible peak for the two-gluon model with σΨN = 5 mb, the

rescattering peak may be more prominent if the J/ψ-N cross section is larger, as some

models [118] suggest. For this reason, and because it is our intent to study the sensitivity

of the breakup reaction (3.17) to the total J/ψ-N cross section, we present in Fig. 3.11

estimates for the ratio RΨ with different values of this cross section. The peak does in fact

become more prominent with higher J/ψ-N cross sections, and therefore we conclude that

near-threshold J/ψ photoproduction accompanied by breakup of the deuteron target can

distinguish between different predictions for σΨN .

3.4.2 Below-threshold J/ψ production

“Below-threshold” production from a deuteron target is possible because the energy thresh-

old for production from a more massive target is smaller. For coherent production, one can

find the minimum needed photon energy by substituting md for mp in Eq. (3.88), giving a
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production threshold energy of about 5.6 GeV. For incoherent production, accompanied by

deuteron breakup, an additional few MeV are needed to break apart the deuteron, but “sub-

threshold” production is still possible in the sense that J/ψ can be produced at energies

below the threshold for production from a free proton target.

From the perspective of the GEA, in which the J/ψ meson is considered to be pro-

duced from one of the deuteron’s constituent nucleons, sub-threshold production is possible

because the struck nucleon is already in motion prior to being struck. If this nucleon is

moving opposite to the incident photon, then the photon has a higher energy—possibly

above-threshold—in the nucleon’s rest frame. In other words, one must satisfy, in the

PWIA, the condition

(q + p′p)
2 > sthr.. (3.98)

One can rewrite Eq. (3.98) in terms of a condition on the magnitude of the proton momen-

tum |p′
p| needed to allow for J/ψ production to occur, as a function of the photon energy

and the initial proton angle. In particular, one has threshold |p′p| when

M2
d +m2

N − 2Md(Md − E′
p) + 2q0(E

′
p − |p′p|) = sthr.. (3.99)

This can be arranged into an equation of the form of Eq. (3.19), the solution of which is

explained in Sec. 3.2.1.

A plot of threshold values for |p′p| is given in Fig. 3.12, for various proton-photon

angles, as a function of the incident photon energy. For all angles, the threshold momentum

goes to zero as q0 → Ethr. = 8.2 GeV, since this is the energy at which J/ψ can be produced

from the free proton. For especially small photon energies, such as those close to the from-

deuteron production threshold of 5.6 GeV, the threshold momentum becomes extremely

large, exceeding 700 MeV, where the applicability of the virtual nucleon approximation is

expected to break down. Moreover, the phase space available for J/ψ photoproduction at

energies these low is extremely limited, making production at such energies exceedingly

unlikely. Accordingly, we examine here sub-threshold energies that are close to threshold,

namely q0 = 7 GeV.
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Plot of Fermi momentum needed to effect subthreshold J/ψ production
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Figure 3.12: The threshold value of the bound proton momentum for J/ψ photoproduction,
as a function of photon energy for various proton-photon angles.

At sub-threshold kinematics, final state interactions are expected to be negligible.

M1c is expected to be negligible upon examination of Eq. (3.50), since −tthr. is large and

q0 is small. M1a and M1b are also expected to be suppressed, since their pole parts impose

the kinematic conditions:

pnz = p′nz +∆1[a/b]. (3.100)

Momentum conservation at the d→ p+ n vertex further implies that

pnz = −p′pz +∆1[a/b] = −|p′
p| cos θ′p ++∆1[a/b]. (3.101)

Since ∆1[a/b] is positive (cf. Eqs. (3.42,3.46)) and cos θ′p is negative for any sub-threshold

energy, we have pn,z as a large, positive number. This increases ∆1[a/b] (which is a mono-

tonically increasing function of pnz), making M1[a/b] small.

In Fig. 3.13, we present numerical estimates of the sub-threshold J/ψ photoproduction

cross section at q0 = 7 GeV, for both the two- and three-gluon exchange mechanisms of
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Angular distributions of γd→ J/ψpn below threshold
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(a) Two-gluon model, pn = 200 MeV
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(b) Three-gluon model, pn = 200 MeV
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(c) Two-gluon model, pn = 400 MeV
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(d) Three-gluon model, pn = 400 MeV
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(e) Two-gluon model, pn = 600 MeV
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Figure 3.13: Sub-threshold angular dependence of the J/ψ photoproduction cross section at
different neutron momenta, for both the two- and three-gluon models of J/ψ photoproduc-
tion. These plots consider the contributions due to single and double rescattering against
the PWIA. q0 = 7 GeV and −t = −tthr. = 2.23 GeV2.
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Ref. [119]. It can be seen in this figure that FSIs are indeed mostly suppressed at sub-

threshold kinematics. One exception is an appreciable increase in the cross section for the

two-gluon model at θnl where the PWIA cross section dips due to s ∼ sthr., but this is due

to the PWIA cross section being even more heavily suppressed for the two-gluon model at

these kinematics.

Since there is little distortion from FSIs at sub-threshold kinematics, and since these

kinematics require high internal momentum within the deuteron, the break-up reaction

(3.17) below the from-proton production threshold may prove a fruitful means of probing

the high-momentum structure of the deuteron.

3.4.3 Collider-energy J/ψ production

In Sec. 3.3, we saw that (nearly) perfect cancellation between M1a (Fig. 3.4a) and M1c

(Fig. 3.4c), resulting from anti-symmetry of the deuteron wave function, can occur in spe-

cific circumstances. In particular, cancellation between these contributions is expected to

occur when the momentum transfers for the sub-reactions γN → V N and V N → V N are

nearly equal. This does not happen for near-threshold kinematics because of the high −tthr.
entering into the γN → V N vertex, and because a scenario with two hard (high-t) vertices

is exceedingly unlikely. However, as the incident photon energy increases, the minimum

value of −t needed to effect photoproduction decreases to zero, meaning at sufficiently high

energies, complete cancellation between M1a and M1c should occur.

In order to explore this cancellation, we have numerically estimated the cross section

for J/ψ photoproduction in the breakup reaction (3.17) at collider energies. Since s is much

higher than the models in Ref. [119] were developed at, we parametrize the s dependence

of the diffractive scattering amplitude using a leading-order pQCD model from Ref. [123].

In this parametrization, the function A(s) entering into Eq. (3.9) takes the form:

A(s) = Nαs(µ
2)xGT (x, µ

2), , (3.102)
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where GT (x, µ
2) is the gluon structure function of the target at a factorization scale µ2.

After Ref. [123], we take µ2 =
m2

Ψ
4 and x =

m2
Ψ

sγN∗
. For parameterizing GT (x, µ

2), we used

the CJ12 next-to-leading order partonic distribution functions [124], and in Eq. (3.9) we

take α = −0.2 and C = 0 (as done previously), and we use a high-energy value for the slope

factor B = 4.73 GeV−2 found by HERA [125].

Angular distributions of γd→ J/ψpn at high energies
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Figure 3.14: Angular dependence of the J/ψ photoproduction cross section at collider
energies, given t = −1.5 GeV2 and pn = 400 MeV. Assumes σΨN = 5 mb.

In Fig. 3.14, we present numerical estimates of the cross section for three increasingly

high photon energies: 30 GeV, 100 GeV, and 1 TeV. These results are presented at a more

moderate spectator momentum of pn = 400 MeV. The dashed (green) line for each energy

estimates the cross section in the absence of contribution from M1c, and produces a J/ψ-
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N rescattering peak at θnl ≈ 20◦ at all three energies. However, once the contribution

from M1c is taken into account (as in the dash-dotted [blue] and solid [black] lines), nearly

complete, if not entirely complete cancellation of the rescattering peak occurs. At 30 GeV,

the cancellation is nearly complete, with the rescattering peak contributing only a few

percent to the cross section, while at 1 TeV the cancellation is perfect and the J/ψ-N

rescattering peak has vanished. At extremely high energies, overall FSI effects are due only

to p-n rescattering.

3.5 Summary

Using the virtual nucleon approximation, the cross section for γ + d → V + p + n was

calculated in the domain of large momentum transfer (i.e., −t ≥ 1 GeV2). This kinematic

domain established the applicability of the generalized eikonal approximation, which allowed

one of the nucleons to be identified as “struck” by the incident photon, and the other to

be a spectator to the γN → V N sub-reaction. The GEA also allowed for the final state

interactions to be calculated as rescatterings of on-mass-shell particles.

The results calculated in this chapter indicate that the γ + d → V + p + n reaction

allows information to be extracted regarding φ(1020)-nucleon and J/Ψ-nucleon interactions

by the presence of rescattering peaks in the angular distribution of the cross section. At

low (near-threshold) energies, there are two peaks in the angular distribution, one due to

the proton-neutron rescattering (as seen in previous studies), and the other due th meson-

nucleon rescattering; it is this latter peak that allows for the meson-nucleon scattering

process to be studied. Most significantly, the size of the meson-nucleon rescattering peak,

together with other aspects of the angular distribution, allows for different models of the

meson-nucleon interaction to be distinguished, in addition to the overall magnitude of the

meson-nucleon total cross section.

Sub-threshold and high-energy extensions of the calculation, however, did not present

a meson-nucleon rescattering peak, albeit for different reasons. In the sub-threshold regime,

final state interactions were overall suppressed. On the other hand, in the high-energy

limit, the contributions of meson production from different nucleons, together with the
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antisymmetry of the deuteron wave function, produced a destructive interference which

eliminated the J/Ψ-nucleon rescattering peak.
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CHAPTER 4

Conclusions

In the preceding chapters, calculations were performed for inclusive and exclusive hard pro-

cesses involving nuclear targets. These calculations investigated the use of nuclear targets

to investigate several elusive aspects of QCD, including both the QCD structure of the

nucleus itself, and several currently unknown aspects of photo-hadron production with the

use of the nucleus as a micro-laboratory. Overall, it is concluded that the nucleus is a very

promising venue for investigating new aspects of QCD.

In Chapter 2, inclusive reactions were studied as a means of elucidating nuclear struc-

ture. In particular, cross sections for inclusive dijet production in proton-nucleus collisions

were calculated at the operating kinematics of the Large Hadron Collider, with a focus on

high-pT jets. There were two aspects of nuclear structure that these calculations shed light

on. Firstly, hard QCD processes (such as dijet production) could be used to further studies

of the conventional, nucleonic structure of the nucleus. In particular, QCD processes such

as dijet production are sensitive to the presence and strength of two- and three-nucleon

short range correlations, which have previously been studied only in low-Q2, quasi-elastic

regime. The high-Q2 kinematics characteristic of high-pT jets, however, will allow for SRCs

to be seen in the purely inelasic regime. Secondly, hard dijet production is sensitive to the

same nuclear modifications of the bound nucleons’ parton distributions that have previously

been seen in deep inelastic lepton scattering experiments.

The conclusions derived in Chapter 2 were calculated in a framework developed

throughout the chapter, which accounted for the latest phenomenology of short range corre-

lations by explicating the light cone fraction distribution (LCFD) of the nucleus, which was

defined in analogy to the parton distribution function of a hadron. A model of three-nucleon

correlations was developed at length, on the basis of a hypothesis that three-nucleon SRCs

arise from a sequence of two-nucleon short range interactions. For nucleons in the mean

field, as well as nucleons in both two- and three-nucleon correlations, a convolution formula

was derived to calculate the nuclear parton distribution function from the LCFD and the
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PDFs of the bound nucleons. A low-Q2 model of medium modifications was then applied

to the nucleons present in two- and three-nucleon correlations, as well as those in the mean

field, to account for EMC effect.

A computational algorithm for evolving nPDFs from low Q2 to the high Q2 character-

istic of high-pT dijet reactions was created. The optimal parameters were investigated, and

the code was then applied to obtain the high-Q2 nPDFs necessary for the dijet production

calculation.

For the dijet production reaction, the applicability of leading order perturbative QCD

was successfully established within the relevant kinematic domain, thereby allowing the

hard QCD subprocesses contributing to dijet production to be represented as two-parton

to two-parton scattering reactions. Within this approximation, the initial kinematics of

the partons contained in the initial-state proton and nucleus could be fully determined by

measurable jet kinematics, allowing events corresponding to xA > 1 in particular to be

selected for. It is such events that most faithfully elucidate the presence of short range

correlations. Numerical estimates of cross sections and expected yields for xA > 1 events

were given, and calculations were also presented for the 0.6 < xA < 1 region—the classical

region of the EMC effect—were also given in order to demonstrate the sensitivity of the

dijet production reaction to medium modifications.

In Chapter 3, the deuteron was theoretically studied as a micro-laboratory for investi-

gating elusive aspects of exclusive QCD processes that are difficult to study or to accomplish

in proton target experiments. In particular, vector meson production from a deuteron tar-

get, accompanied by breakup of the target, was investigated as a means of studying both

vector meson photoproduction mechanisms, and the interactions between vector mesons

and nucleons. It was found that the eikonal regime could be established for this reaction by

focusing on knocked-out protons with high final state momentum, thereby allowing clean,

unambiguous separation of the sub-reactions contributing to the overall reaction.

Differential cross sections for photoproduction of φ(1020) and J/ψ in particular were

presented, and it was found that two rescattering peaks were present in the predicted an-

gular distributions. This is compatible with previous observations of a single rescattering
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peak in deuteron electro-disintegration experiments, known to be due to final state inter-

actions between the proton and neutron. The presence of a second rescattering peak in

the photoproduction reaction, due to a final state interaction between the produced vec-

tor meson and the spectator nucleon, is new to this reaction, and is the observable that

allows meson-nucleon scattering parameters to be investigated. Through the presence and

size of the rescattering peak, φ photoproduction in the deuteron breakup reaction can dis-

tinguish between φ-N scattering models that were previously found to be undecidable in

non-breakup, coherent production from the deuteron. Additionally, J/ψ photoproduction

in this reaction can distinguish between two- and three-gluon exchange models for the J/ψ

photoproduction mechanism, and it can gauge the overall strength of J/ψ-N scattering.

The deuteron breakup reaction was studied largely at kinematics that are achiev-

able at Jefferson Lab with the 12 GeV energy upgrade, meaning experimental tests of the

predictions contained herein may be possible to achieve in the near future.
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