
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-29-2004

Using neural networks for goal driven simulation
Maria F. Clavijo
Florida International University

DOI: 10.25148/etd.FI14060853
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Industrial Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Clavijo, Maria F., "Using neural networks for goal driven simulation" (2004). FIU Electronic Theses and Dissertations. 2383.
https://digitalcommons.fiu.edu/etd/2383

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.fiu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2383?utm_source=digitalcommons.fiu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

USING NEURAL NETWORKS FOR GOAL DRIVEN SIMULATION

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

INDUSTRIAL AND SYSTEMS ENGINEERING

by

Maria F. Clavijo

2004

To: Dean Vish Prasad
College of Engineering

This thesis, written by Maria F. Clavijo, and entitled Using Neural Networks for Goal
Driven Simulation, having been approved in respect to style and intellectual content, is
referred to you for judgment.

We have read this thesis and recommend that it be approved.

Kia Makki

Armando Barreto

Martha A. Centeno, Major Professor

Date of Defense: March 29, 2004

The thesis of Maria F. Clavijo is approved.

Dean Vish Prasad
College of Engineering

Dean Douglas Wartzok
University Graduate School

Florida International University, 2004

ii

C Copyright 2004 by Maria F. Clavijo

All rights reserved.

iii

DEDICATION

To my parents, Yolanda and Jose Clavijo, for their unconditional support

throughout these years, as it has been very difficult to be away from home. I have missed

them very much. I hope my success compensates for the time we have been apart. I love

you both.

To my boyfriend, Christopher Demchalk, for always being there. I could not

have done it without him. I love you very much "Mi Amor".

DEDICATORIA

A mis padres, Yolanda y Jose Clavijo, por su apoyo incondicional durante todos

estos a5os, ha sido muy dificil estar lejos de casa y los he extrafado mucho. Espero mi

exito pague el tiempo que hemos estado distanciados. Los quiero mucho a ambos.

A mi novio, Christopher Demehalk, por siempre estar ahi. No hubiera podido

conseguirlo sin 6l. Te amo mucho "Mi Amor".

iv

ACKNOWLEDGMENTS

First of all, I have to thank my major professor and dear friend Dr. Martha A.

Centeno. Thank you very much for being there for me all the time, anyday, anywhere.

Without you this thesis would not have been as enjoyable and gratifying as it was. I will

never forget you.

A special thanks goes to my friends from the ARISE Lab, especially Ramki

Sundaram and Mansi Srivastava. Mansi, thanks for your endless patience and for giving

me confidence everyday. Ramki, thanks for the midnight music; it inspired me 0, and

for staying late at the Lab even when you had finished your thesis.

Thanks to my friends, Laura Biaggini, Gertrudis Achecar and Melissa Carrion,

for taking me out to dinner and rescuing me, once in a while, from the Lab. Your

friendship is one of the best things that have happened to me in Miami.

Last but not least, I would like to thank the committee members for their

participation and valuable advice in this effort, and the ISE Department staff, especially

Nancy Urbina and Sylvia Sharpe, for all those little details that made my life a lot

simpler.

v

ABSTRACT OF THE THESIS

USING NEURAL NETWORKS FOR GOAL DRIVEN SIMULATION

by

Maria F. Clavijo

Florida International University, 2004

Miami, Florida

Professor Martha A. Centeno, Major Professor

An integration framework for Neural Networks (NN) and Goal Driven Simulation

(GDS) has been designed. It offers no constraints regarding number of variables (n>3)

and it does not have domain restrictions. The effectiveness of the framework was tested

by observing the computational time required for obtaining responses and for training,

and by assessing its accuracy for different scenarios. This framework has achieved the

automation objective set by GDS under a shorter time frame, as it reduces the time from

more than 42 hours to less than 14. A trained NN generates responses to queries almost

instantaneously. However, it requires time re-building and re-training new NNs when

changes are made to the system represented by the model. If these changes are rare, the

payoff is worthy as this approach gives users more flexibility.

vi

TABLE OF CONTENTS

CHAPTER PAGE

INTRODUCTION .. 1

1.1 Problem Statem ent 3

1.2 Goal and Objectives .. 12

LITERA TU RE REV IEW ... 13

2.1 G oal D riven Sim ulation 13

2.2 Neural Networks ... 14

2.3 Neural Networks and Simulation .. 17

INTEGRATION OF NEURAL NETWORKS AND GDS .. 19

3.1 Conceptual Framework for the Integration ... 19

3.2 Tools ... 24

3.3 Integration Methodology .. 27

EXPERIMENTAL PROTOTYPE.. 29

4.1 The Simulation Model .. 29

4.2 The ANN Model ... 32

4.2.1 Setting I/O Scenarios ... 32

4.2.2 Defining ANN Variables ... 34

4.2.3 ANN Architecture .. 35

4.2.4 Learni g Process.. 36

4.3 Integration Routines .. 39

4.3.1 Non-Expert User .. 43

4.3.2 Expert User .. 2

vii

4.4 NeuroShell 2 Applications Used ... 53

EX PERIM EN TA TION A AN A LY SIS .. 54

5.1 Handling of Multivariable Search Space .. 54

5.2 Train n N for GD S ... 56

5.3 Level of D ifficulty to Im plem ent NN -Based G D S ... 59

5.4 Other Lessons Learned ... 61

5.4.1 The Issue of Infeasibility ... 61

5.4.2 GMDH Architecture .. 63

5.4.3 A ccuracy of the N N -Based GD S 68

5.4.4 Im portance of Factors ... 70

RESEA RCH EFFORT SU M M A RY .. 71

6.1 Accomplishment of Proposed Objectives ... 71

6.2 Summary of Results .. 73

6.2 Research Significance ... 75

REFERENCES ... 77

APPENDICES .. 81

viii

LIST OF TABLES

TABLE PAGE

Table 1: Results with Different Training Times .. 39

Table 2: Integration Routines... 41

Table 3: NeuroShell 2 Applications... 53

Table 4: Training Times for the Experimental Prototype .. 57

Table 5: 95% CI for Training ANN (minutes)... 57

Table 6: Possible Scenarios for each Goal... 60

Table 7: Number of Combinations Original and Extended Ranges 63

Table 8: Outputs' Equations Generated by GMDH Architecture 65

Table 9: Average Difference for Both Approaches ... 68

Table 10: Specifications for Entities-ER ... 85

Table 11: Specifications for Work Areas-ER .. 85

Table 12: Specifications for Entities-Foundry... 92

Table 13: Specifications for Work Areas-Foundry.. 92

Table 14: 95% CI Training Time for NN-Based GDS .. 148

ix

LIST OF FIGURES

FIGURE PAGE

Figure 1: Training Neural Networks for Goal Driven Simulation..................................... 9

Figure 2: Alternate Feasibility Check .. 10

Figure 3: ANN and GDS Integration Framework.. 20

Figure 4: Portion of ASCII file to be fed to NeuroShell 2... 34

Figure 5: GDSMain Routine Interaction Flowchart .. 42

Figure 6: UserType and Users Menus forms ... 43

Figure 7: Events Program med for Non-Expert User 45

Figure 8: ENTRY Form... 45

Figure 9: OUTS Form .. 46

Figure 10: Changesform Form... 46

Figure 11: ResCapacity form... 46

Figure 12: ResServiceT Form.. 47

Figure 13: RoutTimes Form... 47

Figure 14: ChangesMain Routine Interaction Flowchart... 48

Figure 15: Aftertraining Form ... 50

Figure 16: Flowchart of the Interaction among Other ARENA Events........................... 51

Figure 17: Expertform Form .. 52

Figure 18: t-tests for the Difference of Means... 67

Figure 19: -test for Accuracy .. 69

Figure 20: ER Flowchart (Sevimoglu 2002).. 82

Figure 21: Foundry Flowchart (Lee 2002)... 91

x

CHAPTER 1'

INTRODUCTION

Goal Driven Simulation (GDS) does not seek to optimize results; rather it seeks a

feasible solution, which satisfies a preset objective or goal. In many real world instances,

management may not be interested in the true optimal, rather it may be interested in

determining the conditions under which it can offer a predefined level of service. In

response to this, research efforts have led to various approaches for Goal Driven

Simulation (GDS). However, these approaches have presented various difficulties during

its real world implementation. For instance, Alsugair and Chang (1994) developed a

system for civil engineering called Goal Driven Simulation System, which is not

applicable to other domains. Reyes (1998), Pefaloza (1999), and Jones (1999) developed

a more general heuristic for both terminating and non-terminating systems regardless of

domain, but it deals with only one variable. Sevimoglu (2002) extended Reyes's work to

include three variables, but she found out that the process of adding new decision

variables is not simple. Yet, general Goal Driven Simulation requires multivariable

heuristics to be of real value.

In addition to these drawbacks, it is necessary to include in the list of challenges

the complexity of the systems being studied. In complex systems the number of possible

Supported in part by NASA grants NAG10-0212 and NAGO1O-321.

1

configurations is large, and the search for the best one is time consuming, expensive, and

ineffective (Schewetman 2000).

This study has been based on the challenges of Goal Driven Simulation and on the

possibilities offered by Neural Networks technology to overcome them, namely to

facilitate the handling of n variables (n>3) with ease. Artificial Neural Networks (ANN)

have proven effective at dealing with hard-to-define problems (Issacson 1998) and are

considered masters in pattern recognition, which makes them an appealing technology to

perform Goal Driven Simulation in a more efficient fashion that the current algorithmic

approaches. Lee (2002) and Sevimoglu (2002) did an extensive study of the response

surface of a healthcare system and of a manufacturing system. Their study clearly shows

that there is a pattern, rather complex, but a pattern nonetheless that explains the

relationship between the inputs and outputs (I/O) of these systems even though these

systems are very distinct. The existence of similar patterns among diverse systems leads

one to pursue automated means to exploit these patterns in designing new systems. In

pursuing system configurations that yield a specific output, knowing precisely this

relationship is a must. It is here where the Neural Networks capabilities may help

significantly in recognizing the existing n-dimensional relationships found in many

systems that are modeled using simulation. The ANN technology has been applied to

situations where algorithmic solutions have fallen short solving mostly non-procedural

type of problems. Likewise, Goal Driven Simulation applications require handling

scenarios for which there are no algorithms to represent the I/O relationships.

An integration framework has been designed using a simple yet robust

methodology to integrate GDS and ANN. The resulting decision support system will

2

allow a non-expert user to make decisions with ease. An experimental prototype was

created to test this integration framework, which showed satisfactory results in achieving

the level of automation and transparency goals required by GDS. Experiments were done

to verify the accuracy of the results as well as the computational efficiency of the

methodology. Results from these experiments indicated that a GDS using NN is able to

predict the parameters for a given goal set almost instantaneously. However, some time

investment is needed when changes to the original system are reflected in the simulation

model; in these cases the NNs have to be built new. Yet again, the process remains

transparent to the user.

The remaining of Chapter 1 explains in detail the problem addressed, the goal and

the specific objectives of this effort. Chapter 2 provides a literature review on Goal

Driven Simulation, Neural Networks, and Neural Networks in Simulation. Chapter 3

describes the methodology used in this effort as well as the tools used. Chapter 4

illustrates the experimental prototype that was built following the proposed methodology.

Chapter 5 provides details of the experimentation and its results. Lastly, Chapter 6

summarizes the results and suggests extensions to this work.

1.1 PROBLEM STATEMENT

Computer simulation has evolved over the last 40 years, thanks to the research

done to improve its capabilities and to reduce its drawbacks (Kelton, et al. 1998). One of

the areas in which experts have been working is Goal Driven Simulation also known as

Goal Oriented Simulation. GDS can be achieved by means of two ways:

3

1) Embedding the simulation model within a high level programming language

application, or

2) Embedding the high-level program language GDS code within the simulation

model (Reyes 1998.)

Thus, far the second approach is the one that has been used the most. This has

been due in part to the tendency of simulation packages to be closed, not embeddable

systems. They do have connectivity windows that allow the package to control other

applications. Except for a few packages, such as Silk (Kilgore 2001), commercial

simulation packages cannot function as simple simulation engines. However, given the

pace at which software technologies are evolving, it is reasonable to suspect that vendors

of simulation packages will give customers the "engine only" option in a non-distant

future.

In the meantime, various research efforts have sought to make GDS a feasible and

robust approach for both, one-time simulation studies and every day simulation-based

decision-making. But although these efforts have yielded valuable knowledge, there are

still some challenges to meet to realize the full potential of GDS. Among these

challenges are:

A) How to automate GDS?

B) How to make GDS "knowledgeable"?

First of all, GDS must be automated (Sanchez 1994); in other words, any heuristic

for GDS must know how to drive the simulation model towards the goal. In one-time

simulation studies, GDS automation may not be critical as the simulation expert actually

looks at the outputs and is able to make an assessment of the situation and modify the

4

inputs accordingly. But, for simulation-based decision-making, automated GDS is

critical because, in most instances, the user of the simulation-based decision support

system (SBDSS) is not a simulation expert; hence, he or she may not know how to

change the inputs to the model to attain better results. The challenge then is: How do we

automate GDS?

In the 1980's, the challenges of automation were concentrated on hardware

technology and software incompatibility. Since then, hardware has evolved so much that

it is no longer a significant problem. Software has also evolved to a point in which

heterogeneous packages can communicate with each other. Thus, the challenges of GDS

automation now reside in making the GDS heuristic knowledgeable enough, so that it can

make decisions similar to those of a human expert.

A GDS heuristic must be a back-end that emulates the knowledge of a simulation

expert, including statistical knowledge (Jones 1999). To recreate this knowledge, it is

necessary to analyze the decision-making technique followed by the experts. In non-

automated GDS, once the simulation has been executed the expert examines the outputs

and determines if the goal was achieved or not. In the case when the goals are not

achieved, the expert has to decide which parameters to change and by how much

(Shannon and Prakash, 1990.) In automated GDS this process has been modeled by

using rules that relates the system's responses with an input parameter(s) change

(Umpress and Poch, 1987; Sevimoglu 2002.) These rules have been derived by empirical

observation of the response surface of the system under study. For example, if the goal is

to have a utilization of 70% or more, and the simulation outputs are yielding 45%

utilization, the inputs that need changing are number of resources and/or system demand.

5

Reyes et al. (1999) stated a set of questions that must be answered in order to

make GDS knowledgeable and useful in the real world. Answering these questions also

leads to a better understanding of how to automate GDS (challenge A). These questions

are:

1) Is the goal set feasible?

2) When should the simulation execution be halted to check the direction of the

results?

3) How to assess the direction of the results?,

4) If the results are going in the wrong direction, how should the inputs be

changed?, and

5) Where in the time line should the simulation be restarted?

Regarding question number 1, Reyes (1998) stated that, other than the scenarios

where the set goals have some degree of overlapping in the response surface, achieving

all the goals simultaneously may be infeasible. A GDS heuristic should know how to

determine the feasibility of the solution. In GDS, feasibility refers to the ability of

satisfying the goals of each and every one of the variables in the goal set (n>3)

simultaneously. No formal research has been done in this regard, but Reyes (1998) and

Sevimoglu (2002) have recognized that the nature of some of the most commonly used

output variables require contradictory adjustments to the input set. For example,

utilization of resources versus time in the system; usually, it is desirable to have a high

utilization of resources and a low time in the system, but the relation between them is

generally inverse.

6

Some of the previous research efforts have focused on improving the

computational aspect of GDS by predicting if the simulation outputs would reach the

targeted values without executing the entire simulation replication (Reyes 1998) or even

the entire run (Jones 1999). Reyes et al. (1999) Suggested that there are three ways to

determine when to halt the simulation run: 1) based on simulation length, 2) based on the

number of observations, and 3) based on the correlation coefficient value. The idea

behind halting the simulation run to predict if the goals would be achieved was to avoid

wasting time and computational resources. Even though computers are really fast

nowadays, the computational savings achieved by Reyes et al. (1999) exceed 75%, which

make them significant.

Assessing the direction of the results has been explored using statistical methods

such as confidence intervals and forecasting techniques. Reyes (1998) and Jones (1999)

used confidence intervals around the mean of the output values and specified that if 75%

of this interval does not overlap the goal range set by the user, the simulation should be

stopped and the inputs parameters should be changed. Although this approach seems to

work well, Sharda and Rampal (2000) have stated that ANN may be a better alternative

to perform this statistical task because ANN use a variety of techniques to "deduce a

result," such as, regression, discriminant analysis, logistic regression, and forecasting,

which could offer an option to determine the direction of the results during the simulation

execution.

Sevimoglu (2002), derived rules that relate the system response with input

parameters changes. These rules allow the determination of the step size, required by the

GDS technique to execute a change. In this particular aspect, ANN learning capabilities

7

may improve GDS by deriving the rules automatically and intrinsically, without the

participation of the modeler.

Question number 5 addresses the issue of where in the time line the simulation

should be restarted. In theory, if the system was performing adequately at time t, and

poorly at time t+1, then it should be restarted from the last known stoppage point with

adequate performance, in this case t (Jones 1999). Reyes et al. (1999) state that a

knowledgeable GDS should assist the user in the process of finding an alternative route

from the new starting point. No research has been done in regards to this issue. The

intent of not having to run the simulation again from time zero is based on time savings.

Perhaps because the computational speed has increased so much in the last few years, the

priority of this research question has declined significantly. With ANN, this question

becomes irrelevant because once the ANN is trained, there is no need to re-run the model.

Existing Goal Driven Simulation approaches present a limitation in handling the

search space because there are able to evaluate just a fraction of the immense range of

options available (Glover et al. 1999). In this aspect, ANN may be useful because they

are able to filter out solutions that are likely to perform poorly when the simulation is

executed (Laguna and Marti 2002). Thus, a more extensive examination of the search

space can be done in an efficient manner.

ANN mimic human neurons (Isaacson 1998); thus, they are able to learn by

receiving inputs with their correspondent set of outputs. The learning capabilities of

ANN offer an appealing medium to achieve the automation required by the GDS

technique. ANN have proven themselves useful in various domains (See Chapter 2).

The question now is how can Artificial Neural Network facilitate and improve Goal

8

Driven Simulation? To answer this question, it is necessary to examine the five questions

posed by Reyes et al. (1999). In this examination, one must keep in mind that the

objective of GDS is to find a set of inputs that satisfies the constraints of the system and

achieves the desired set of outputs (goals). But a Neural Network asks for "inputs" to

derive "outputs"; thus, for an ANN to work adequately in the context of GDS, the first

thing that must happen is that the "inputs" to the ANN must be the goal (outputs), and its

"outputs" must be the configuration (inputs). Therefore, the ANN has to be trained using

the outputs of the simulation model as "inputs" and the inputs of the simulation model as

"outputs" (Figure 1).

ns O u 0 t

s () Na N r ts

Figure 1: Training Neural Networks for Goal Driven Simulation

A trained ANN possesses a minimal reaction time; thus, the "outputs" could be

generated in a fraction of a second. This computational speed becomes handy when

checking the feasibility of the goal set (question 1). The feasibility of it depends on the

system constraints. So, it is necessary to include an Add-On subroutine written in a

programming language, such as Visual Basic for Applications (VBA) or similar, to test

the "outputs" against the users' requirements and the system' constraints that have been

defined in advance. In case of infeasibility, one of two scenarios may occur: 1) the set of

"outputs" given by the ANN differs notoriously from the values established by the user as

constraints of the system, or 2) the "outputs" given by the ANN are located within a

"reasonable" range from the values established by the user (Figure 2). The definition of

"reasonable" is subject to discussion; however, its intention is to describe the

"neighborhood" as used in optimization problems.

Figure 2: Alternate Feasibility Check

Question number 2 from Reyes et al. (1999) is concerned with when to halt the

execution of the simulation model. Because a trained ANN is knowledgeable enough to

predict "output" values just by entering a set of "input" values, running the simulation

model becomes unnecessary; therefore, this question becomes irrelevant when using

ANN. Similarly, question number 3 depends on the partial results obtained when the

simulation is halted. If the simulation is not run, this question becomes irrelevant as well.

Although question number 4 is also related to halting the simulation run, it is still

relevant even when using ANN. As it was discussed previously, once it is detected than

10

the "outputs" are infeasible, there are two possible scenarios. Concentrating in the

second scenario, where the "outputs" are located within a "reasonable" range from the

original values established by the user, there is a possibility of presenting these results to

the user as an alternate option, once he/she is willing to modify the current values of one

or more of the system's constraints.

Question 5 has lost its relevance in the last couple of years because of the increase

in computational speed, but speed is still a mandatory requirement for all of GDS efforts.

One aspect of GDS briefly mentioned by Reyes et al. (1999) and thoroughly

discussed by Sevimoglu (2002) is that of the goal set having more than three variables. It

seems that an ANN is capable of learning and determining Input/Output relations

regardless of the size of Input (I) and Output (0) vectors. This needed to be tested in

the context of Goal Driven Simulation. Two questions have high priority:

I. What would happen if one or more structural characteristics of the model

change?

II. Would the knowledge acquired by the Neural Network allow an early

detection of infeasibilities?

For question I, most likely it would be necessary to re-train the Neural Network

by using data generated from the modified version of the model. In the research done by

Sevimoglu (2002) a similar situation was presented, and she stated the high level of

difficulty of re-discovering the rules that relate inputs and outputs. For automation

purposes, mainly Simulation Based Decision Support Systems (SBDSS), if the ANN has

to be re-trained this process must take place on-line and in a timely fashion. On-line

training means that as soon as the modified simulation model generates outputs, these are

11

fed to the ANN and the training takes place without any user intervention. For question

II, it would be necessary to experiment with a trained ANN by feeding known infeasible

goals and analyzing the response of the ANN.

1.2 GOAL AND OBJECTIVES

The goal of this research is to develop a methodology to integrate Neural Network

technologies to simulation models to achieve a robust and flexible GDS framework.

To achieve the goal of this study, it was necessary to perform the following tasks:

1) Investigate Neural Networks in the context of simulation.

2) Develop experimental models. Two simulation models were built to serve as

test beds. One of the models was the one used by Sevimoglu (2002) (non-

terminating). The second one was the one used by Jones (1999) (terminating).

3) Design experiments. Three experiments were designed to answer the

following questions:

i) Can Neural Networks handle better the multivariable search space in

the context of Goal Driven Simulation?

ii) How difficult is it to train and re-train Neural Networks?

iii) How difficult is it to implement Neural Networks-Base Goal Driven

Simulation support systems?

4) Run experiments and draw conclusions.

Details on the exact methods and tools used to meet these objectives are given in

Chapter 3. Details on the experimentation and results are given in Chapters 4 and 5.

12

CHAPTER 2

LITERATURE REVIEW

2.1 GOAL DRIVEN SIMULATION

Simulation is arguably the most versatile and general-purpose tool available today

for modeling complex systems (Panayioutou et al. 2000). Computer simulation has

evolved over the last 40 years, thanks to the research done to improve its capabilities and

to reduce its drawbacks (Kelton, et al. 1998). One of the areas in which experts have

been working on is Goal Driven Simulation or Goal Oriented Simulation.

Goal Driven Simulation (GDS) refers to simulation modeling where a goal is to

be met in an automated fashion (Reyes 1998). In GDS, the inputs to the model are the

goals to be met, and the outputs are the required configurations to achieve those goals.

The importance of automation in GDS is based on the necessity of speeding up the

evaluation process in order to study real-world problems (Panayioutou et al. 2000).

Initial approaches to GDS have been classified as at-end GDS (changes to the

input parameters are made at the completion of the simulation run) and as on-line GDS

(ability to check the directions of the outputs of the model at intermediate points of the

simulation run; in other words, these approaches do not need to run the simulation to

completion unless the results are converging to the predefined goals) (Jones 1999). By

avoiding running the model to completion with the wrong set of input parameters on-line

GDS reduces the total execution time (Peialoza 1999, Reyes 1998).

13

On-line GDS has been applied to terminating systems (Jones 1999) and to non-

terminating systems (Reyes 1998), together with different statistical approaches including

confidence intervals and forecasting techniques (Pe5aloza 1999). Prototypes have been

developed for different scenarios with the purpose of validating the method and

establishing new procedures. Initial approaches to on-line GDS were applied to

terminating and non-terminating systems but manipulated a single variable. These

approaches although very valuable gave just partial results; "in the real world no system

is analyzed on one variable" (Sevimoglu 2002). Most realistic systems are of high order

and/or nonlinear, which precludes a direct solution (Sparks and Maghami 1998).

Sevimoglu (2002) applied on-line two variable GDS to a non-terminating system.

The results of this effort show that the simulation execution time is significantly smaller

when this approach is used instead of similar two variable approaches in at-end GDS.

Sevimoglu's effort also showed the high level of difficulty of adding new decision

variables to an existing model. Her on-line GDS two variable approach used code

written in Visual Basic for Applications (VBA) to assist the user in finding the solution

that satisfies the goal. This code describes the relations between inputs and outputs.

When the simulation conditions change the relations between inputs and outputs must be

reevaluated and, therefore, most of this code must be re-written.

2.2 NEURAL NETWORKS

The areas of application of ANN go from statistical and optimization problems to

music understanding. Artificial Neural Networks (ANN) were developed mimicking

14

human neurons, so they are able to learn by example receiving a set of inputs with their

correspondent set of outputs. ANN are considered masters in pattern recognizition and

have been used in hard-to-define type of problems. According to Krishnaswamy et al.

(2002), ANN are best applied when: 1) one can specify particular influences on a

phenomenon whose outcome is known with certainty, 2) the relationship cannot be

described, 3) the relationship is not necessarily linear, and 4) there are no known models.

According to Rich (1991), recent ANN architectures are characterized by:

" A large number of neuron like processing elements called perceptrons.

" A large number of weighted connections between the elements. The weights

in the connections represent in some manner the knowledge acquired by the

network.

" Distributed control.

" Emphasis in the automation of the learning process of internal representations.

ANN and their prediction capabilities are based on the training process performed

in the system. To perform a successful training, the data used for this purpose must be

gathered carefully, following closely the statement "garbage in-garbage out". In addition,

it is important to account with a spectrum of data scenarios from different types of

situations and present them to the ANN. This spectrum must focus on the points where

small changes of the inputs generate big changes in the outputs, if these points are

known. The selection and the amount of input and output pairs will depend on the final

goal of the training process and on the availability of the data itself.

An ANN must count with knowledge before it could participate in any type of

experiment. The knowledge in the ANN is defined as the weights located in each one of

15

the existing connections between nodes. By means of the training process the ANN

determines the weight between elements to obtain an output from a specific input; in

other words, it acquires knowledge. These weights can take positive or negative values.

If the weight is positive, it will push the activation of the target element upward. This is

called an "excitatory" connection. If the weight is negative, it will push the activation of

the element downward and it is called and "inhibitory" connection (Isaacson 1998).

The ANN learning process can be classified in one of two types, supervised or

non-supervised. The main difference between the two types of training is the presence of

training data or the lack of it. The supervised training provides the system with initial

training data, and once the training process is over, it provides the ANN with testing data

to validate the knowledge. On the other hand, for the non-supervised training, no training

data is given to the network. In this case, the ANN will use all the given information and

will group similar input values together. Later, by modifying the weights in the

connections, it will attempt to make the outputs of the similar inputs be similar as well

(Reed 1998). The more number of pairs used, the better will be the knowledge learned

by the ANN. Nevertheless, it is necessary to establish a trade-off between selecting

enough points for good training and keeping the number of training points down to

practical levels of computation (Sparks et al. 1998). Over-training the ANN is not

desirable.

Similarly, ANN training can take place off-line from data available in a database,

or on-line where the process that uses the neural network generates and feeds the training

data to the ANN without user intervention (Laguna 2002).

16

2.3 NEURAL NETWORKS AND SIMULATION

An increasing volume of research has combined Artificial Intelligence (AI) and

simulation in the past decade (Cho 2002). The integration between Al and Simulation

has been attempted using different approaches. These efforts have established that Al

could provide significant benefits in two main simulation areas: 1) the development of

the simulation model, and 2) the interpretation of the simulation results.

An example of interaction between Al and Simulation, in the scenario of GDS,

occurs when the simulation model interrogates the Knowledge Based System (KBS) to

find out if the current solution satisfied the preset objectives/goals or not (Centeno and

Standridge, 1992). A reverse way of interaction occurs when the KBS looks for the

solution, stops the search, and asks the simulation model for an answer. Later the Al

portion of the model goes back to a search process if the targeted value was not achieved

(Centeno and Standridge, 1992).

According to Erraguntla et al. (1994), the goals of the KBS Engines are:

* To support the designing process of a simulation model, which changes from

a description of the system and description of the user concerns to a question

that needs to be answered, and

* To support the interpretation of the simulation outputs.

From these two goals the second one is the most difficult to achieve. There are

different types of user concerns and the exact type of concern must be identified prior to

any other action. The different types of user concerns can be grouped as:

17

1) Concerns that can be answered directly by the model execution: These are

concerns related with measures of performance.

2) Concerns that require comparison of results with different simulation models:

this takes place when more than one alternative is considered, and it is

necessary to select the best among them.

3) Concerns related to optimization processes. This last group could be

considered the most difficult to deal with because in addition to an analysis of

the measures of performance, it also requires a heuristic analysis.

One type of AL is ANN technology, which has been used in conjunction with

simulation in some experiments. ANN captures the relationships existing between inputs

and outputs sets; this feature is able to represent the nature of a simulation model in a

more efficient computational way (Panayiotou et al. 2000). ANN are metamodels, which

may speedup the simulation process; therefore, a wider range of real-world situations can

be studied (Panayiotou et al. 2000).

ANN has been used in conjunction with continuous simulation for outcome

prediction in pallidotomy for Parkinson's disease (Hamilton et al. 2000). Because of the

limited number of operations performed in this field, most of the data to train the ANN

came from simulation outputs. Nonetheless, the network kept the flexibility to respond

appropriately to unusual inputs. No major work has been done to marry ANN and

discrete event simulation modeling.

18

CHAPTER 3

INTEGRATION OF NEURAL NETWORKS AND GDS

This chapter discusses how ANN can be used for GDS. A thorough literature

review helped to determine how best to integrate ANN and GDS. A software review was

also done to select a package to experiment with and test proposed concepts.

3.1 CONCEPTUAL FRAMEWORK FOR THE INTEGRATION

A conceptual framework for the integration of ANN and GDS is given in Figure

3. This framework has been designed with one objective in mind: to facilitate GDS for

the non-expert user of simulation to make accurate decisions with ease.

The framework supports:

1) Two modes of operation: training and daily usage.

2) Two types of users: expert and non-expert.

To provide this support, the framework requires several commercial of the shelf

(COTS) software. It needs:

1) A simulation engine.

2) A neural network engine.

3) A set of routines to interact with each of the two types of users.

4) A set of routines to receive, present, and transfer data in the appropriate

format.

19

N

USER NTRAC S M:ROC

Figure 3: ANN and GDS Integration Framework

The designation of expert refers to a knowledgeable person in the simulation

field. The expert user designs and builds the simulation model according to the system's

specifications and uses a customized interface to train the ANN with simulation data. A

translator is embedded in the framework to take the outputs of the simulation model and

feed the ANN. This translator takes care of the necessary communication protocol in

order to exchange information between the two packages. If the expert decides to make

20

changes to the current system, s/he must first modify the simulation model, generate new

simulation data, and then re-train the ANN. The expert may be interested in getting

responses from the ANN; thus, the same customized interface should provide for this

capability.

On the other hand, the non-expert user may require making changes to the model,

but these changes are restricted to a finite set of parameters: capacities of the resources,

duration of service times, and routing times. Any of these changes may involve re-

training the network but not always. For example, when the user decides to make

changes in the ranges of the resources' capacities, and the new ranges fall within the old

ones, training is not necessary since the already trained networks posses the knowledge

needed to intrapolate and to respond to the user inquiries. However, if the new ranges

fall outside the existing ranges on at least one of the two bounds (upper or lower), re-

training is always necessary. The trained networks cannot extrapolate to situations

(values) for which they were not trained. Similarly, when the user decides to make

changes to the service times and/or routing times of the model, re-training is always

necessary since these are given as specific constant values and not as ranges. All these

situations must be supported 100% by the framework, which should advice the user

whether re-training the ANN is needed. In the case when it is concluded that re-training

is required, new simulation data must be produced in order to re-train the ANN. Thus,

the framework should provide this user with the capability of transparently modifying the

simulation model and re-training the NN.

The daily usage is primarily for the non-expert user. The idea is that the non-

expert will query the NN-based GDS application on a regular basis (daily, weekly) to

21

determine how many of each resource should be on the schedule to meet a desired service

level. So, the non-expert user will provide the goals (desired level of service) through a

customized user interface; then, the ANN processes this information and provides the

user, in a nice report format, with the system's configuration that meets the desired level

of service.

The expert user has the capability of generating transformation equations. These

equations can be utilized to implement the prediction capabilities of a trained ANN even

in the absence of a specific NN engine.

The proposed design seeks to incorporate the most relevant aspects of GDS and

ANN according to the published literature (Chapter 2). Among these aspects are:

" GDS automation.

" Handling n>3 variables.

GDS must be automated, which means that all necessary processes should remain

transparent to the end-user (expert and non-expert). In the case of the non-expert user all

processes are 100% seamless and transparent because this user is involved exclusively in

the daily usage of the framework, and it does not need to be aware of any of the activities

taking place behind the scenes. For the expert user, the level of automation is narrowed

to management of the neural network engine and full access to the simulation package.

In case there are structural modifications to the existent model, the expert user must edit

and run the simulation model in order to generate data to re-train the ANN.

An important aspect of designing a GDS framework is the ability of it to handle

several variables simultaneously and easily. ANNs are able to handle multivariable

scenarios with ease after they have been designed and trained. Thus, in this effort all that

22

was required was an effective user interface to capture the desired number of variables,

including the set of goals, and a number of parameters used to define the configuration of

the system at any specific moment.

The last aspect considered in the design of the framework was the nature and

availability of the training data. In order to have a NN that mimics realistic situations, it

is necessary to present high quality data and a wide spectrum of scenarios. Since in this

effort a simulation model is being used to train the NN, the quality and quantity of the

data is fully controllable, and all statistical guidelines can be met with ease.

Based on the requirements of both types of users, it was established that the

framework requires:

a) A flexible simulation package with capabilities of interacting with other

packages.

b) A NN package, which could be embedded under a controlling application.

Integrating an ANN is dependent on the selection of the training technique. It

was concluded that a supervised training algorithm was the best alternative for

GDS because GDS requires the very good prediction capabilities obtained

under supervised training.

c) A high level programming language to implement the customized interfaces,

the translators of data, and the report generation.

23

3.2 TOOLS

A software review was done to determine which commercial packages were more

suitable to prototype the proposed framework. Two commercial packages had to be

selected to prototype the framework: one package to build the ANN, and one package to

build the simulation model.

One of Rockwell Software Inc. most popular and successful products is ARENA.

This product has been used by well-known organizations worldwide as a support tool for

their decision-making process. The ARISE Center at the Industrial and Systems

Engineering Department counts with one of the latest versions of this software. Further

ARENA possesses a VBA processor, and since the framework requires a high level

programming language, it was considered that ARENA VBA was sufficient to develop

the interfaces and the communication protocols required by the framework. Hence,

ARENA was selected as the COTS package to build the simulation model and the

integration routines.

The selection of the ANN package took a little more analysis because there was

not previous experience in this area. After conducting a preliminary evaluation of

capabilities, the selection was narrowed down to three packages: Neural Studio, Neuro

Solutions, and NeuroShell 2. After comparing the characteristics of the three packages,

NeuroShell 2 was identified as the software of choice because of its simplicity of use and

its assisted design module. A brief description of each one of the two other packages is

given in Appendix A.

24

NeuroShell 2 is one of Ward Systems experimental kits, which provides sixteen

classic Neural Networks architectures to choose from, and it is strongly recommended for

academic and research purposes. NeuroShell 2 is divided in three modules: beginners,

advanced, and runtime facilities.

The beginners' module allows the user to build simple networks with only one

hidden layer and using back propagation as the learning methodology. This does not

necessarily mean that this type of networks can be used exclusively to solve simple

problems; on the contrary, the resultant networks are complete and powerful prediction

and classification tools. The main assistance given by this module is the presetting of

default values for each one of the network's parameters such as, learning rate,

momentum, and number of hidden neurons. These network's parameters have the

following definitions:

Learning rate: Each time a pattern is presented to the network, the weights that

lead to an output node are modified slightly during training in order to produce a smaller

error the next time that the same pattern is presented. The amount of weight modification

is the learning rate times the error. In other words, learning rate is the level of adjustment

in the weights at each step of the training.

Momentum: If large learning rates are used the oscillation of weight changes

increases, and either the learning process is never completed or the model converges to a

solution that is not optimal. One way to allow fast learning without much oscillation is

by making the weight change a function of the previous weight change, which provides a

smoothing effect. Momentum is the proportion of the last weight change that is added to

the new weight change.

25

Number of hidden neurons: The default number of hidden neurons used by

NeuroShell 2 for a three-layer network (one input layer, one hidden layer, and one output

layer) is computed with the following formula (Ward Systems, 2003):

No. hidden neurons = - (No. inputs + No. outputs)+ No. patterns
2

Pattern: A single record of data used with training purposes.

The advanced module of NeuroShell 2 allows the user to design ANN by

selecting anyone of the sixteen types of architectures distributed under five different

learning paradigms: Back Propagation (BP), Unsupervised Kohonen (UK), Probabilistic

Neural Networks (PNN), General Regression Neural Networks (GRNN), and Group

Method of Data Handling or Polynomial Nets (GMDH). Within this option, it is possible

to set the scaling function for all types of networks but UK, and the activation function

for the BP networks exclusively. The purpose of scaling functions is to "scale" the input

data loaded into the ANN into a numeric range for which the ANN works efficiently.

Usually, these ranges are either binary [0,1] or bipolar [-1,1]. On the other hand, the

purpose of the activation function is to propagate data from a preceding layer to a

succeeding layer in an ANN. Numerous research efforts have been done in order to find

the ideal activation function; but yet there is no general agreement out of these efforts.

The activation functions most commonly used include logistic (sigmoid binary and

bipolar), linear, and hyperbolic tangent. Some characteristics that are important for BP

networks at the time of selecting an activation function are continuity, differentiability,

non-decreasing monotonic, and to approach asymptotically to the maximum and

minimum values.

26

The advanced module enables the user to generate various graphs for all type of

architectures, and it provides contribution factor values and bar graphs for BP networks.

Contribution factors are a rough measure of the importance of a specific input variable in

predicting the network's output, relative to the other input variables in the same network

(Ward Systems Group, 2003). These factors were used to compare the ANN results to

the conclusions drawn by Sevimoglu (2002), Correa (1999), and Jones (1999). This

module is also able to translate alphanumeric strings or symbols into values that can be

used by the ANN. This capability was not needed for this effort.

The third module (runtime facilities) allows the user to fire a trained NN from a

different program, in real time.

The initial experimentation to integrate ANN with GDS was done using the

beginners' module in order to acquire knowledge about how the software works and the

possibilities of interaction with other applications. After the first experimentation was

over, the advanced module was used to explore new options, namely new architectures.

Finally, the runtime facilities module was used to integrate the two technologies in a

working prototype.

3.3 MACRO STEPS OF THE INTEGRATION METHODOLOGY

Based on the requirements of the conceptual integration and the selected tools, the

methodology to integrate ANN and GDS is as follows:

1) Develop simulation model. In this particular case, it is an ARENA model;

however, it can be a model in any simulation package that allows the

27

interaction with a high level programming language. The difference resides

on whether the model is the driver of the framework or it is just embedded in

it. In the case of ARENA, the model is actually the driver as it executes VBA

routines at various events of its execution as explain in section 4.3.

2) Develop the ANN. An initial ANN must be provided by the designer, but also

appropriate VBA subroutines should be given so that the ANN can be re-built

when certain changes are made to the model as required by the design (section

3.1) and prototype (section 4.2).

3) Develop (program) routines to automate training of ANN. These routines

know how to get inputs from the user to change the model, how to re-run the

model, and how to re-build the ANN. For this effort these routines were

written in VBA for ARENA.

4) Develop (program) high level programming language routines to present and

manage the user dependent user interface.

28

CHAPTER 4

EXPERIMENTAL PROTOTYPE

This chapter describes a prototype of the integration. The prototype required

three main components: a simulation model, an ANN, and VBA routines. It is important

to keep in mind that the prototype has been developed with two goals in mind:

1) Experimental tool: Embedding an ANN can be done in several ways.

Recommending a "best" way for it in the context of GDS requires that a series

of experiments be done; thus, the need of an experimental prototype.

2) Feasibility assessment: An outcome of this effort is a theoretical framework

that others can use, its feasibility needs to be assessed.

The discussion of the experimental prototype is sectioned by the main

components of the integration framework (Figure 3):

a) Simulation model

b) Neural networks

c) Integration routines: discussed from the perspective of each user.

4.1 THE SIMULATION MODEL

Initially, two simulation models were considered for the present effort. The first

one corresponds to the model used by Sevimoglu (2002), and the second one corresponds

to the model used by Jones (1999). The selection of these two models obeyed first, to the

29

availability of simulation data, and second, to the possibility of studying and analyzing

two different types of systems. Sevimoglu (2002) studied an Emergency Room (ER),

which is considered a non-terminating type of system, whereas Jones (1999) studied a

manufacturing facility, which is considered a terminating type of system. Terminating

systems are easier to analyze than non-terminating ones because the starting and ending

conditions are defined by the nature of the system, and the initial condition is fixed. On

the other hand, non-terminating systems experience two phases, an initial transient phase

that depends on the starting conditions and an unchanging distribution phase that is

independent of the starting conditions (steady state). The understanding of the latter

phase, steady state, is the main interest during research because it leads to the

understanding of the system's behavior. Terminating systems rarely achieve steady state.

For the purposes of this research either a terminating or a non-terminating system could

have been chosen, but we decided for the non-terminating system used by Sevimoglu

(2002). It was expected that any conclusion that could be drawn from this complex

system could be generalized to a less complex system.

The ER model used by Sevimoglu (2002) classifies its patients according to their

illness condition in four categories, emergent, urgent, non-urgent, and stable. Regardless

the type of patient, they can arrive to the ER by any of the following means, by

ambulance, by fire rescue, or by themselves. If arriving by ambulance or by fire rescue, a

bed has to be available for the patient upon arrival; if not, the patient has to be taken to a

different hospital. If the patient arrived by its own means, a triage nurse initially

evaluates the patient and assigns a priority to it. The priority scale is as follows:

30

* Category 1: These patients are immediately placed on a bed after the Triage

nurse and the registered nurse perform an initial evaluation.

* Categories 2 to 4: These patients are taken to a registration representative

after the initial assessment done by the Triage nurse. Patients' category 2 wait

for a regular or an extra bed, patients category 3 wait for a regular, extra or a

fast track bed, patients category 4 wait for an extra or fast track bed.

After the registration process is over patients category 2 to 4 wait in the waiting

area until one bed is made available. Once a bed is made available, the patients wait for a

registered nurse to perform the initial evaluation. Then, the registered nurse informs the

doctor that there is a patient ready and explains to him/her the details of the initial

evaluation. Next, the doctor makes an examination and decides which further procedures

are required, including if the patient should be admitted, observed or discharged. If the

patient is to be admitted, some paperwork has to be done while the patient waits, and a

nurse or an assistant from the unit to admit the patient should come and escort the patient.

If the decision is to discharge the patient, the patient waits until the required paperwork is

processed. Finally, if the patient has to be observed the registered nurse must check on it

at regular basis. Specific numeric data for this model can be found in the work of

Sevimoglu (2002). A flow chart of the process of this test bed and detailed information

about the ARENA 5.0 simulation model is presented in Appendix B.

31

4.2 THE ANN MODEL

The ANN component of the prototype has been designed and built using

NeuroShell 2. For the framework, designing and building an ANN in NeuroShell 2 is a

relatively simple task because the software automatically generates the layers and

neurons needed. The framework is expected to have a trained ANN for the everyday

user; however, changes to the system's parameters may require the ANN to be re-trained.

Thus, the framework has been given the capability of automatically training an ANN

from scratch.

Whether manually or automatically, the steps to design and build an ANN are the

same. There are four elements that need to be provided in order to design and build an

ANN using NeuroShell 2:

1) A set of I/O scenarios.

2) Definition of independent and dependent variables.

3) Architecture to be used to build the actual layers.

4) Learning process.

Each of these elements requires the system designer to select the best option for

the GDS context.

4.2.1 Setting 1O Scenarios

Providing the set of I/O scenarios requires deciding how the set will be fed to

NeuroShell 2. There are two options: 1) import a data file, or 2) input the set manually.

For GDS, the set must be provided via file because since a simulation model generates

32

the scenarios, the number of scenarios is large. Thus, manual input is not an option.

NeuroShell 2 offers the alternative of importing ASCII files, binary files, or spreadsheet

files. Because the simulation package has a natural capability of exporting data to an

ASCII file, importing files on this format is the best alternative. The use of an ASCII file

is the best alternative when using ARENA; however, it is possible that other packages

may by default send their outputs to other types of files, e.g. Excel. The feasibility of the

framework does not rest on the I/O set being fed via ASCII, rather on the I/O set being

imported into the NN package, regardless of the file format chosen.

In the case of the ER model, generating the ASCII files meant running the model

for certain number of replications; each replication for a given length, and ensuring that

the outputs of this run are written in the required NeuroShell 2 format. A subroutine,

programmed in VBA for ARENA (Appendix D.7), takes care of sending the outputs to

the ASCII file. More details on this routine are given in section 4.3. Regarding the

requirements for the ASCII file, NeuroShell 2 calls for organizing the input and output

variables in independent labeled columns. Preferably the label names should not include

spaces because this could create a problem when importing the file into NeuroShell 2.

When importing the ASCII file into NeuroShell 2, it is necessary to specify if spaces, tabs

or commas separate the data. In our experimental prototype the data was separated by

using spaces; hence, including spaces in the columns label names would generate errors

at the time of importing the data file. The variables to be used as "outputs" of the ANN

should appear first in the ASCII file, and the variables to be used as "inputs" of the ANN

should appear immediately after. The objective of this layout is to facilitate the

automation of the experimental prototype; this is not a NeuroShell 2 requirement. It is

33

important to be aware that the order in which the variables are presented to NeuroShell 2

during training is kept constant for firing purposes. Each data row is expected to have the

same number of variables to ensure proper supervised learning process. NeuroShell 2

considers missing data as errors, and it ignores the row if one of the values is missing.

An example of the ASCII file distribution and labeling is presented in Figure 4.

NoBeds NoDoc NoNur AveQNur UtilNur
10 1 6 6.41904641059947E-02 0.763303951618937

18 1 6 6.78311940431272E-02 0.765156307010476
26 1 6 6.71479355835947E-02 0.766309049704611

34 1 6 6.67546140139281E-02 0.763607174700303

40 1 6 6.69715227827895E-02 0.766033743094173
10 2 6 0.067565694927857 0.765421042333161

Figure 4: Portion of ASCII file to be fed to NeuroShell 2

Importing the data file into NeuroShell 2 takes place by executing the NeuroShell

2's application Impascii.exe. This application is executed by using the shell statement in

a VBA for ARENA routine (Appendix D.4. 1). The process to import the data takes place

by sending keystrokes to it, using the sendkeys statement.

4.2.2 Defining ANN Variables

Once the data has been imported into NeuroShell 2, it is necessary to define

which variables are the independent variables ("inputs"), and which are the dependent

variables ("outputs"). Upon importing the data, NeuroShell 2 creates a data grid where

the columns are named using the labels of the columns in the ASCII data file.

To define the variable type, we must insert in each cell of the first row one of

three letters: I for Input, A for Actual output, or U for Unused (a blank cell is also read as

34

an unused variable). To give more flexibility to the experimental prototype, it was

decided that the user would have the option to select which and how many "inputs" to use

to predict the value of the "outputs". The ER model has 6 possible "inputs"; each one

with the possibility of being defined as variable type I or U. By the Multiplication Rule,

the total number of possible combinations is 64 (26), but the scenario where all the

"inputs" are defined as Unused (U) is not a valid scenario, leaving only 63 combinations.

Once trained, the ANN acquired knowledge is dependent and valid only for the

combination of I/O for which it was trained. Therefore, if we wanted the ANN to work

for all 63 combinations, an array of 63 ANN has to be trained independently. It is

important to note that the simulation model is run only once, and that only one ASCII file

is generated. The 63 combinations use the same file, and use only the variables in the

combination, skipping the other ones. This process gave as final result the generation of

63 different trained networks, but the end user is never aware of this. To automate this

process, a VBA subroutine was written (Appendix D.3.2).

4.2.3 ANN Architecture

The next step in building an ANN is to select the type of architecture to be used in

the actual layers of the network as well as the learning paradigm. NeuroShell 2 offers 16

different architectures grouped in five major learning paradigms. These five groups are:

Back Propagation (BP), Unsupervised Kohonen (UK), Probabilistic Neural Networks

(PNN), General Regression Neural Networks (GRNN), and Group Method of Data

Handling or Polynomial Nets (GMDH). Among them, the most popular one is the BP

35

learning paradigm. BP networks are one type of supervised networks and are known for

their ability to generalize well. For this effort, the BP architecture to build the actual

layers of the ANN was chosen.

4.2.4 Learning Process

The process of designing and building the ANN finalizes with the actual learning

procedure (training), where the ANN learns the relationships existing between the

"inputs" and the "outputs". In NeuroShell 2 the duration of this process is not preset and

the network keeps training until the user interrupts the process. The learning process

(training) is perhaps the most critical activity while building an ANN model. A critical

question is: how can it be determined that the ANN has learned enough? In real world,

there are basically two situations: 1) the training set consists of all possible sample cases

that will be encountered by the network, and 2) the number of possible sample cases is

infinite or at least very large, and where the training set is only a representative of this

enormous number of sample cases. In the first case, the learning process should continue

until it fails to make any perceptible progress. For the second case, the correct action is

to stop the learning process when the network gives the "best possible results" to patterns

that were not used during training (Ward Systems Group, 2003). The experimental

prototype used in this effort represents the second case since only a small group of all the

possible scenarios (sample cases) are used during training. Hence, a training stoppage

condition must be set in order to achieve automation. The number of scenarios used for

training is discussed further in Section 4.3.

36

One way of setting the stoppage condition is by stopping the training once the

"optimal point" has been reached. The optimal point is defined as the point where the

error obtained with the test set slowly begins to increase after reaching its lowest point.

The only problem with this approach is that the duration of the training process cannot be

correctly estimated, and such estimate is critical to automatically train the network.

Therefore, this approach is not convenient.

Another approach to detect the training stopping point is to use a sample of the

data set available, generating two different sets: one for training (training set) and one for

testing the level of training reached (test set). NeuroShell 2 offers the possibility of

extracting a testing set out of the original ASCII file. The purpose of the testing set is to

use it for testing during the training process (simultaneously) to achieve a balance

between the generalization and memorization capabilities of the network. This balance is

known as Calibration, and it avoids over training the networks. When using this testing

set during training, NeuroShell 2 displays the values of two very important variables for

training purposes: minimum average error (MAE) and number of epochs elapsed since

the last minimum occurred. Essentially, the goal is to minimize the average error without

consuming large amounts of time and while keeping the total number of epochs low. The

greater the number of epochs, the greater the risk of memorization. For BP networks,

NeuroShell 2 recommends to continue the training process until the numbers of events

since the minimum error (calculated in the testing set) is greater than 20,000 and

preferably lower than 40,000.

There are different methods to extract the testing set. Among the most popular

are random extraction of the Nth percent of the total sample, selecting one pattern every

37

Nth pattern, extracting all the patterns from row N thru M (where N and M are any two

rows in the data file), and selecting the testing set by a row marker, if any. There is no

preferred or recommended method to perform the testing set extraction. The only

recommendation is that it should not include patterns that are part of the training set.

Thus, this effort used the Nth percent random extraction method, for which, NeuroShell 2

recommends choosing a testing set size between 10 and 40 percentage of the total

sample. It is necessary to take into consideration the number of data points available.

For instance, the ER model has around 100 data points (scenarios), which prevents a

large testing set. In this experimental prototype, an N equal to 20 percent was selected.

In order to automate this task, it was necessary to conduct an experiment to

determine the adequate training time. Table 1 provides the results of this experiment,

where the number of events was set to be greater or equal than 20,000 since the last

minimum error on the testing set. It is clear from Table 1 that the minimum average error

for the training set decreases as the training time increases, while the error for the testing

set remains basically constant. Although the error for the training set could reach a lower

value with a higher training time, it was decided that a training time of 45 seconds is

good enough to reach a MAE, while reducing the risk of memorization. With this

training time the average number of events since the last minimum was 112,000,

although this number looks high if compare with the set value of 20,000, it was used in

order to improve the performance of the network with the training set (reduce the MAE

for the training set).

With a training time of 45 seconds, it will take 47.25 minutes to perform the

training required by the 63 ANN (45 seconds x 63 networks). Although it may seem as a

38

long time, it is necessary to remember that rebuilding the ANN macro network will occur

only when there are significant changes made to the simulation model parameters. After

the training process is over, the ANN is ready to be used (fired).

Table 1: Results with Different Training Times
Training Time Minimum Average Minimum Average Events since last

seconds) Error (Training) Error (Testing minimum (Testing)
15 0.07969298 0.22547542 78186
30 0.0737239 0.22547549 95514
45 0.06807132 0.22547542 112274
60 0.06621125 0.22547542 122822

Besides the training time, the network parameters that were defined in Section 3.2

have to be set before initiating the learning process. NeuroShell 2 provides default values

for these parameters according with the complexity of problem. Since the system being

modeled (ER) is a real world system, the level of complexity was set to complex. The

following are the recommended values given by NeuroShell 2 and used in the

experimental prototype:

a) Learning Rate (LiR) = 0.1

b) Momentum =0.1

c) Hidden Neurons = Depend on the number of inputs and outputs.

d) Pattern Selection = Random

4.3 INTEGRATION ROUTINES

The goal of the integration routines presented in this section is to achieve the

automation of the entire process with minimal to none user interaction. Further, the

39

framework calls for support two types of users: expert (rare usage) and the non-expert

(daily usage). Therefore, a variety of VBA routines are needed to have a functional

framework. These routines are classified as:

1) User Interaction Routines (UIR): Manage the interaction with each type

of user, offering appropriate options and reports to each one.

2) ARENA Control Routines (ACR): Manage the modification of the

simulation model and run it as needed.

3) NeuroShell 2 Control Routines (NCR): Manage the running of the ANN

either for querying a trained network, or rebuilding a macro ANN.

Translation routines belong to this category (Figure 3).

A list of these routines and their particular functionality is given in Table 2.

Because these routines are integrating two heterogeneous tools and the user, some of

them may belong to more than one category, but they are "mostly" of one. In the column

"called by" in Table 2, routines with and "(A)" are actually automatically triggered by the

stated ARENA events. In addition, a set of global variables and constants had to be

defined (Appendix D.1), and their values stored in the VARIABLES element whenever

necessary.

An overview of how the GDSMain routine triggers different routines to enable

the integration is presented in Figure 5. The ARENA simulation model has the master

control; hence, each one of the routines is executed at a particular event experienced by

the model as indicated in Figure 5 and Table 2. The RunBegin event invokes the

GDSmain routine (Appendix D.2.1),which decides what subroutines to call based on

user type (expert or non-expert) and the type of interaction selected by the user (to make

40

changes to the model, to fire an already trained network, or to quit the program). In

doing so, it displays the forms shown in Figure 6. Once the user makes a selection in the

UserType form, a global variable is set to the type of user: expert (1), or non-expert (2).

If the selection is to quit the program, this global variable takes the value of zero and the

subroutine CancelRun (Appendix D.2.2) is called.

Before continuing the discussion of the various routines, it is necessary to point

out that when the Cancel Button is chosen, the user will be taken either to the previous

user form or completely out of the system. Also, the design of the framework (Figure 3)

clearly shows that there are activities shared by both users. Hence, its prototype is

described from each user's perspective.

Table 2: Integration Routines
Routine Routines Names Functionality Called by

Tye
UIR GDSmain Coordinates routines to call based on user RunBegin

(Appendix type and choices. (A)
D.2) CancelRun Cancels the program setting the number of GDSmain

replications and replication length to 1.
ACR ChangesMain Oversees changes done to the model. GDS main

(Appendix CheckingRanges Checks if re-training is needed by comparing ChangesMain
D.3) the old and new capacities' ranges

SetScenarios Calculates and generates all combinations of GDSmain
capacities values to generate training data.

CheckReplications Every 15 replications stores the value of the RunEndReplication
measures of performance in an ASCII file (A)

and updates the variables of the model.

NCR NN2Using Opens the selected NN and coordinates all GDS-main
(Appendix actions required to fire the NN, and return

D.4) results to the user.

NN2Training Creates description file and imports the GDS main
ASCII file into NeuroShell. Extracts testing
set, sets the inputs, trains the NN, creates the

".def" file, and generates the VB code.
SelectingNetwork Selects appropriate network to use based on GDS main

user's inputs
RunNewANN Opens the selected NN and coordinates all RunEnd

actions required to fire the NN after the (A)
trainin is com leted.

NN2Querying Loads the ENTRY form for user reference GDS main
and calls the subroutines to use the already

trained NNs.

41

-yJ
.;. .

cO S 't in t

f

i

j

E t

1 ¬
L "r! t\y' ne

! . .,.___.......... ,._...._ j . k i!y.
t form

IZ X71 i

! lance; j

3 r' j i i ,^ x a ; t

} x p .. ' g y ?fiC _ j lorei 1". t a S C
, , c <f v N; l t7 S v:ai

a!IN N 20wery inn J

3 3

I e
t 3

IF t i .

f

l I j \\ Z {

Call

L
i f " 4 I I

r r r , {ti f Y

f or

E s

Figure 5: ODSMain Routine Interaction Flowchart

42

Figure 6: UserType and Users Menus forms

4.3.1 Non-Expert User

If the user is a non-expert, two options are given by the UserMenu form (Figure

6): 1) use the existing macro network (63 networks), or 2) make changes to the input

parameters that were used to train the existing networks. Since ARENA is the master

application in the prototype, the various routines are triggered from specific ARENA

model events as shown in Figure 7.

For using the existing set of networks, the form shown in Figure 8 is displayed.

The ENTRY form provides guidance and instructions for the user, in order to avoid

mistakes related with firing networks, as well as erroneous results due to the use of a

macro ANN that does not model the current characteristic of the system, i.e. the ranges of

the resources' capacities for which it was trained are no longer valid. Since this form is

asking for user inputs, a series of subroutines to check existence and consistency of the

data were developed (Appendix D.5). Once the user's goals have been collected, the

subroutine SelectingNetworks is called (Appendix D.4.2). This subroutine matches the

user input to a corresponding trained network; then, the subroutine NN2Using takes

43

control (Appendix D.4.3). NN2Using is a subroutine in charge of several tasks: opening

the neural network, entering the data given by the user, firing the neural network,

displaying the results, and closing the neural network when is no longer needed. To

display the results to the user, the form OUTS is used (Figure 9).

If the output given by the network is less than the lower bound set by the user's

range, the lower bound itself is presented as an answer for the system's configuration

because if it is possible to meet the goal with a level of resources below the range set by

the user, it is clear that the goal will be met with a level of resources equal to the lower

bound of the user's range. However, if the situation is the opposite, the output given by

the network is higher than the upper bound set by the user, the goals are infeasible under

the current ranges set by the user. In this case, a warning message regarding the

infeasible scenario is presented to the user along with the output given by the neural

network. It is important to remark that this detection of infeasibilities is possible if and

only if the ANN has been trained for a wider range than the one set by the user.

The Changesform form (Figure 10) offers 5 different options to make changes: 1)

to the resources' capacities, 2) to the service times, 3) to the routing times, 4) to continue

the process by submitting the changes, and 5) to cancel this action and go back to the

UserType form. Each option leads to other forms, capturing the values from the user and

transferring them to the ARENA model (Figure 11, Figure 12, and Figure 13). The

subroutine that manages all these activities is ChangesMain, its code is included in

Appendix D.3.1 and its flowchart is included in Figure 14.

44

n t' TaCT i e }'i __^..i := i. ? "^i ̂ '' c,;?4:rc'.l.Z. } ... Il ;; t i .. d'? .(lr i) ,3tlCi>¬ _ . _. , iF ._.____,

-z a i F Y I ;.._...._..._.._r.._._.,_._.._._.._...
f t .- s '.C 2 t : .

M ke . a "ae7 , es E'ND!^ctinE :d

L
,its

ru - Y es Yes

L' -........ '" ! 4 RNDRwEnd

epai..on t E

I(ENCRunBegr,
Ye s

Figure 7: Events Programmed for Ikon-Expert User

fi Target V a =m

Li

<.

F'fa gof _ _

of Polm

951

Wo: Sets the go& p

SAM,

f

Ses rx

CREEL EAT

4..a. i :.t 1. I ! 4ii

r

Figure 8: ENTRY Form

45

t 41 q 2 4 , a ;x. rtr=T cit f } ,f1 'E

'ra y,, # t a fk _ i of Bed f zu, ti r 1

s:

F . -f-fti __i of Z M1 t. E e { f L m,

rip 5e",
i f

i

1

r "

clone of A&

a

C

Figure 9: GUTS Form

r_._,_ -__ ._

t

Savo e iii ,i . _A,'! T

Rcjut rtg Times

Figure han esform Fo

B P- d- 11) 40

Figure 11: ResCapa.elty form

6

RUT,

y i?= _ +_

i_ 16' 13 ON-1 i

Stowe

_A.

i

F cure 12: R sServieeT Form

Cur rerf f 4e On
,, Ti ,

-T T

a? " t P

Oyu Am RaIng Run

mAmg ones. Beware that Map,
. wi t-; .e ,fir~r' e u or Y n the t_ , v.Eu4S;'.s2. H

urou i1es o

47

START

Cae? Yes 0More hanges
4

Re teve froni Relve frm

Figure 14:s Cag a Rapacnn es

Load rRoutT mnes Rotrieva from rm and rasf4rfocurrM ro 0e Me i c..urren, (,urrent capacites
tm stfrmservice tnimes toformn

RoutT tfmscretsriefr

ReYrvcTChcigsne

T ransfer new- routing CormT

esimes to the v5aab es
and update ARENA oeTasr

;'v

mode ~capaiies to Uthe

variables and update

times to the variabes
and updat ARENA

m ode;

M reChan rgs 1

END
Changesha n

.... .Figure 14; Changes ain Ro!tine interaction Flowchart

48

As explained before, some changes made by the non-expert user may require the

re-building and re-training of the ANN. If there is no need to train the ANN, the process

ends basically when RunBegin ends. But if training must be done, several ARENA

events call various routines, starting with the subroutine SetScenarios (Appendix D.2.2).

This subroutine generates all the scenarios for which the simulation model must run in

order to generate an adequate training file for the ANNs. Arbitrarily, every scenario runs

for 15 replications to achieve some statistical significance.

The number of possible scenarios for the ER model (Sevimoglu 2002) was

calculated as follows:

Levels per resource = MaxCapacity - MinCapacity +1

Beds =40-10+1=31 Nurses =10-6+1=5 Doctors=4-1+1=4

Number of Possible Combinations = 31 x 5 x 4 = 620

As each scenario had to run for 15 replications the total number of replications

was 9300 (620 x 15). With an average execution time of 0.31 minutes (Table 4) per

replication, the total time required to run all possible scenarios was computationally

inefficient (48.05 hours). Hence, it was decided to visit just a sample of the scenarios by

picking values in the input parameter range, using a given step size. To determine the

step size, the capacity range (Max. capacity - Min. capacity) of each one of the resources

was divided by 4 and then rounded to the closest integer.

Given that the ANN will be trained with as many training patterns as number of

scenarios are visited, it is important to warn the user when this value is too low (i.e. < 40)

since this situation will generate a poor performing network. For the BP architecture, as

49

the one used in this prototype, the resulting model is better if more training patterns are

used.

At this point the event RunBegin ends. The next ARENA events of importance

for this user are: RunBeginReplication, RunEndReplication, and RunEnd. The

RunEndReplication event, is programmed to calculate the average of the measures of

performance for every 15 replications, and stored them in an ASCII file to feed the ANN

(Appendix D.3.3). The CheckReplications routine varies the level of the resources every

15 replications and records the results in the ASCII file, 100% transparently to the user

(Figure 16).

Once the training data have been generated, the training occurs using the

subroutine NN2Training (Appendix D.4.1). This subroutine invokes all the actions

required for the training task: to import the training file, to extract the testing set, to

define the variables, to train the networks, and to generate the ".def' and the ".vb" file for

each one of the networks. Upon completing the training of the macro ANN, the user is

informed and given the option to interact with the newly trained networks, in a similar

way as it was explained at the beginning of this section (Figure 15).

Figure 15: Aftertraining Form

50

TART

TART

Run~nd~eplicaton(Run rndl pli c ation) iao ~ '(.t',_ l1 f' p 1 't ~tYE1

nd epiato No -. '. Rep _caion + 5Rp ain#=1? e r e
cnds is integer? abels

NoCreateo sh q

combina ion

- - --- Wrie measures of

eveis of service

T$Fyure 1 Last Rep Icateon? Yes a Ca NN2Tra Rvnge5 o1 service
RunEndRep cat on

ends

Start RunEnd

RunEnd eands

Figure 16: Flowchart uf the Interaction arnong Other ARENA Events

51

4.3.2 Expert User

For the expert user, the Expertform (Figure 17) offers two options: 1) to re-train

the ANNs and 2) to use the already trained ANNs (not a common task). If the expert user

decides to re-train the ANNs the program assists it by calling the subroutine SetScenarios

during the Run Begin Event, and calling the subroutine CheckReplications during the

Run End Replication Event, similarly as it does it for the non-expert user. If the expert

user decides to use the current ANNs, the interaction is the same as for the non-expert

user. The expert user is not assisted in the process of making changes to the simulation

model because it is assumed that he or she is a simulation expert.

Figure 17: Expertform Form

In addition, NeuroShell 2 has other capabilities that could be of the expert user's

interest. For example, one of the tasks that was time consuming in previous research

efforts was to determine the relationships among input and output variables into a

mathematical formula. In the past, Linear Regression was used for this purpose;

however, it has been suspected that the relations among the variables may not necessarily

be linear. By using the GMDH architecture instead of the BP one, it is possible to find

52

mathematical equations that define each output variable (one at the time) as a function of

the input variables, with indicators as to which variables are the most and least

significant. Within this architecture different levels of non-linearity can be used. It is

important to highlight that NeuroShell 2 does not recommend using these equations

instead of the results obtained directly from firing the ANN because the loss of accuracy.

Yet, this option can be a good approximation for situations where the NN software is not

available to the user.

4.4 NEUROSHELL 2 APPLICATIONS USED

The NeuroShell 2 package is designed as a group of different applications; each

one is in charge of performing a different task in the process of designing and building an

ANN. The applications used in this effort and their functionalities are listed in Table 3.

Although other applications are available in the NeuroShell 2 software package, only

those in Table 3 are needed for GDS.

Table 3: NeuroShell 2 Applications

Application Functionality
Im ascii.exe This application im orts a data file in ASCII format.
Netinput.exe It handles the definition of the independent and dependent variables (Inputs and

________________Outputs).

Testset.exe This application extracts the test set from the total data sample.
Begtrain.exe This application is in charge of the leaming process (training) for the beginners'

module and it uses BP network architectures
Dllprime.exe This application is in charge of generating the .def file, which is used to run the

trained ANN from a different aplication.

Srcgen.ex It generates the VB code to be included in the VBA editor of ARENA 5.0.

53

CHAPTER 5

EXPERIMENTATION AND ANALYSIS

This chapter describes the experiments performed with the prototype and their

results. Similarly, it presents testing done with variations of this prototype. Other

integration attempts are also discussed as well as the experiment performed with a

terminating system for comparative purposes.

The experimentation presented in this Chapter is intended to evaluate the

adequacy of NN for GDS by answering the following questions:

1) Can Neural Networks handle better the multivariable search space in the

context of Goal Driven Simulation?

2) How difficult is it to train a Neural Network?

3) How difficult is it to implement Neural Networks-Base Goal Driven

Simulation? Is it more efficient than previous approaches to Goal Driven

Simulation?

5.1 HANDLING OF MULTIVARIABLE SEARCH SPACE

Implementing the ANN technology does not have any restrictions regarding the

number of variables in its input and output vectors. The experimental prototype

presented in Chapter 4 was built using 6 input variables and 3 output variables; however,

this number can be increased or decreased with minor changes in the VBA subroutines

54

supporting the prototype. For instance, a second prototype was designed for the

terminating system (Foundry) used by Jones (1999). This prototype was built using the

original prototype as a template and the time it consumed was 3 hours.

The description of the system modeled with the new prototype is given in

Appendix C. The prototype of this system has 4 output variables (Number of lathes,

Number of Cover Grinders, Number of Ring Unloaders, and Number of Forklifts) and 8

input variables (Average Time in Queue and Utilization for the stations represented by

the output variables). This increment in the number of inputs and outputs did not have

any effect on the principles of the integration framework and most of the original

prototype was re-used. In fact, most of the time invested in designing this new prototype

was consumed on trivial changes such as user forms and new labeling of the variables,

while the changes to the main subroutines in charge of training and building the NN were

completed in minutes. The VBA Subroutines used in the new prototype are included for

reference in Appendix F. It is evident that NN technology does not have major

impediments to handle the multivariable search space. Moreover, because of its ability of

learning by example, the ANN can explore a bigger selection of scenarios without the

generation rules and with no further analysis from the user.

In addition, since the designing and training process is simple, different version of

the same network can be built in order to respond to different input scenarios, this feature

adds even more flexibility to the integration approach. The only constraint on increasing

the number of variables is time. Increasing the number of input variables used in the

simulation model increases the number of possible combinations (scenarios) and,

therefore, increases the number of replications. For example, the Foundry system with 4

55

output variables could have a total number of combinations ranging from 16 (24) to 1296

(64), which may not be computationally efficient due to time constraints.

According to Sevimoglu (2002), adding a variable requires an extensive Response

Surface Methodology (RSM) study of the impact of the variable on the outputs to

develop decision rules; then, these rules must be manually coded in VB or similar high

level programming language. All of these activities would take days, whereas adding a

variable when using ANN is a matter of hours. Therefore, despite the lack of

comparative data, it is possible to conclude, by common sense, that the use of ANN

technology for GDS facilitates the handling of a multivariable search space.

5.2 TRAINING NN FOR GDS

To determine how difficult it was to train a NN, in the context of GDS, it was

necessary: 1) to measure the time required to re-train and re-build a macro ANN, and 2)

to assess complexity of automating the training task. To measure the time for training,

the process was divided in two parts: a) the production of the training data, which

consisted of running the simulation model for a set number of replications, and b) the

process of importing the data into NeuroShell 2, defining the variables, extracting the

testing set, training the networks and finally generating the ".def" and ".vb" files. A total

of 10 trials were ran using a desktop computer with a Pentium 4 processor running at 2.

GHz and with 256 MB of RAM memory (Table 4).

56

Table 4: Training Times for the Experimental Prototype
Trial Combinations Number of Duration Part I Duration Part II

Replications (minutes) (minutes)
1 100 1500 468*
2 125 1875 639*
3 120 1800 436 *
4 72 1080 410 225
5 100 1500 425 355
6 100 1500 469 191
7 100 1500 569 169
8 125 1875 441 191
9 100 1500 642 287
10 130 1950 380 181

Average 107.2 1608 487.9 228.4
Minutes/Replication 0.3108

*Lost data due to operating system problems.

From the results (Table 4), 95% Confidence Intervals (CI) were built for the

following variables (Table 5): average time per replication, average number of

replications, and average training time for each one of the two parts. Details on the

construction of these CI are included in Appendix G.1.

Table 5: 95% CI for Training ANN (minutes)
Variable Lower Bound Average Upper Bound

Time per Replication 0.2582 0.3108 0.3634
Number of Replications 1418.21 1608 1797.8

Part 1: Generation Training File 420.26 487.9 555.54
Part 1I: Actual Training ANN 165.2 228.4 291.66

From the 95% CI for the average time spent per replication, it is possible to

observe the small variation that this variable presents: 95% of the observations are within

a range of 6 seconds. This was an expected outcome since all the runs are executed using

ARENA, without user intervention, and by using the same model every time. On

average, a replication takes 0.3108 minutes (19 seconds).

57

For the number of replications, the variability is high with a range of almost 400

replications. This was also an expected outcome given that the number of combinations

for one system's model can go from 8 combinations (2 possible values for each resource,

23) to 216 combinations (6 possible values for each resource, 63). Since the number of

replications depends directly on the number of combinations, the number of replications

could go from 120 (8x15) replications to 3240 (216x15) replications.

The training time for part I depends on two variables, the average time per

replication and the number of replications. The variation on the number of replications is

considerably high; therefore, the variation for the average training time part I is also high.

On average, it takes 487.9 minutes to run all replications to re-train the macro ANN.

Finally, the CI for the average training time part II shows a variation of more than

an hour. This was not an expected outcome since NeuroShell 2 always trained the same

number of networks (63) and all the variables of the training process are kept constant.

The only possible explanation could be the variation in the training file size. The size of

this file depends on the total number of possible combinations of the system. Other

presumable reason for this variation could be the behavior of the sendkeys statement that

is managing the execution of the program during the second part of the re-building and

re-training process. On average, it takes 228.4 minutes to execute part II of the training

process.

Based on these results, 97.5% of the training will take under 14 hours. Although

it seems a long time, two issues must be kept in mind: a) training will occur only on

special occasions, and b) one of these special occasions is adding variables, which under

previous approaches could take days not hours.

58

Further, this effort has demonstrated that under the proposed framework, training

and using the ANN is a relatively easy task for the end user because under the framework

the entire process is 100% seamless. It has been demonstrated that NeuroShell 2 can be

fully controlled from the ARENA environment. The programming capabilities to control

NeuroShell 2 are standard capabilities to any VB or VBA implementation (Shell,

sendkeys, etc.); hence, this feature of the framework is not ARENA dependant.

Furthermore, even though we have taken advantage of the various events that an ARENA

model experiences, most simulation packages have equivalent features (Start run, End

replication, etc.). The subroutines herein developed are robust and offer a wide range of

possibilities to the user; hence, there is no need to develop new algorithms or to program

new subroutines when the system is modified. Therefore, we can confidently say that

based on experimental results as well as in knowledge of simulation packages

technology, training an ANN for GDS is relatively easy task.

5.3 LEVEL OF DIFFICULTY TO IMPLEMENT NN-BASED GDS

In order to see if NN-Based GDS is more efficient than other approaches, the

effort done by Sevimoglu (2002) was used as point of comparison. In her research to

develop a multivariable heuristic for GDS, she had to determine the effect on the output

parameters per changes in the input parameters. Due to time constraints and the high

level of work involved in this task, she worked with only two goals simultaneously.

Since there are 6 possible goals to select from (Average Queue Time Nurses,

Doctor, and Beds, and Utilization of Nurses, Doctors, and Beds), it was necessary to

59

determine all the possible ways to select 2 goals out of the 6, C2 =15. For each one of the

2 variables, 6 different scenarios may occur (Table 6, Sevimoglu 2002).

Table 6: Possible Scenarios for each Goal
Scenario Condition

1L EZ--- B<C
2.C <CBandB<D
3.] A < C and B> D

4. A>CandD>B

5. A>CandD<B
6. C<B

Where:

A B : Model (Model 95% CI) C D : Goal (User Goal Range)

Using the multiplication rule, if each one of the variables has 6 scenarios and

there are 15 possible pairs, the total number of rules she had to derive was 540 (6x6x15).

In order to derive these rules, she had to run the simulation model for each one of the 540

configurations. Estimating that she ran each configuration for 15 replications (as in this

effort), the total number of replications was 8100. With an average time per replication

of 0.31 minutes (as obtained from the experiment in Section 5.2), the total time for this

task was 42 hours just to generate the data for the RSM. This value already exceeds the

worst case scenario of 14 hours under the NN-Based approach.

In order to extend her results to three variables, the possible number of ways to

select 3 goals out of 6 is equal to C6 =20. With three variables the total number of rules

to be derived increase to 4,320 (6x6x6x20), which would require 64,800 replications or

60

334.8 hours (14 days). These quantities do not include the amount of time needed to

conduct the analysis (RSM and rule derivation), which anecdotally, we know from

Sevimoglu that it takes a couple of days.

With these results is easy to realize that NN-Based GDS is more efficient than

several of the previous approaches since reduces the amount of time and effort required

to embed new knowledge into the system. Also, it is flexible to handle the multivariable

search space and robust to adapt to changes in the modeled system without requiring user

interaction.

5.4 OTHER LESSONS LEARNED

5.4.1 The Issue of Infeasibility

The implementation of NN-Based GDS was considerably simple from the

integration framework point of view. However, an issue remains unsolved: How to

determine if a goal set is infeasible?

When ANN were proposed for GDS, we had hoped to also be able to resolve the

issue of infeasibility of the goal set. We expected to have a practical and efficient

experimental tool to explore the neighborhood outside the allowable range of the input

parameters, and we do have such tool. In fact, NeuroShell 2 provides the necessary

equations relating I/O (Table 8).

NeuroShell 2 generates ANN that always gives an answer even when one does

not exist. NeuroShell 2 rounds its answers that fall outside the training range to either the

lower or the upper bound; therefore, the end user is not sure of the validity of the

61

response given by the ANN when its answer coincides with the boundaries of the

parameters. To overcome this ambiguity, we attempted to use the VB code generated by

NeuroShell 2 (Appendix B), and insert it into the VBA of the experimental prototype.

However, NeuroShell 2 generates one of these files for each one of the 63 networks,

which means that ARENA must select the appropriate file, at run-time, automatically.

But, the automation of the process is not possible with VBA for ARENA because it lacks

the #insert or #include statement, and it must compile all code before running.

An additional attempt to detect infeasibility was done by training the networks for

a range of resources' capacities wider than the one specified by the user. In this way,

when NeuroShell 2 rounds its answer to the upper or lower bound, the framework will be

aware of the infeasibility. However, this approach is still not capable of giving the user

the actual answer as it still gives the rounded approximation.

Training the ANN for a range two units wider than the original range may

increase the time consumed due to the number of combinations increasing, but it may not,

as shown in the example for the ER system where the increment on time consumption is

zero (Table 7). The maximum increment in the number of combinations that any variable

can present is two additional combinations. If the number of combinations for all

variables increases by two in a system of three output variables, the maximum increment

in the total number of combination will be:

Acomb = 2(combl * comb2) + 2(comb2 * comb3) + 2(combl * comb3) + 4(combl) + 4(comb2) + 4(comb3) + 8

Where,

Acomb = Increment in the total number of combinations

combi = Number of combinations variable i

62

It is important to notice that even though this increment looks considerable high,

an increment of two in the number of combinations occurs only in the presence of very

narrow ranges; therefore, the values of comb], comb2 and comb3 will be small.

Table 7: Number of Combinations Original and Extended Ranges
Original Extended

Variable Range Scenarios Comb Range Scenarios Comb
Number of Nurses [6-10] 6789 10 5 [5-11] 579 11 1 4
Number of Doctors [1-4] 1234 4 [1-5] 12 3 4 5 5

Number of Beds [10-40] 10 18 26 34 40 5 [9-41] 9 17 25 33 41 5
Total Combinations 100 100

5.4.2 GMDH Architecture

Additional experimentation was done using the GMDH architecture. The goal

was to evaluate the capability of ANN to obtain mathematical equations of the modeled

system and to establish the accuracy of these equations. These mathematical equations

relate the input and output variables. The GMDH architecture does not require the

extraction of a testing set. The learning process stops automatically when NeuroShell 2

determines that no further improvement is possible. To obtain the equations for each one

of the 3 outputs variables, each one of them was selected independently as unique output

while all the 6 inputs were used everytime to calculate the best formula. Selecting all the

inputs enables the GMDH architecture to decide which ones to use (not all inputs have to

appear in a particular formula); yet, if inputs are omitted (define as unused) the GMDH

architecture cannot use them regardless. A major drawback for this experiment was the

infeasibility to automate the generation of the equations, as the application within

NeuroShell 2 responsible for this task, Design.exe, cannot be controlled using the VB

63

statement sendkeys. Nonetheless, the experiment was executed and its results were

analyzed.

Table 8 gives the equations obtained for the ER system. The training ranges for

this example were: Nurses (6-10), Doctors (1-4), and Beds (10-40). In reading these

equations, let

X1 = Wqn = Average Queue Time Nurses

X2 = pn = Utilization Nurses

X3 = Wqd = Average Queue Time Nurses

X4 = pd = Utilization Nurses

X5 = Wqb = Average Queue Time Nurses

X6 = Pb = Utilization Nurses

A quick look at these equations clearly shows the complex polynomial nature of

the relationship between inputs and outputs of an ER system. This fact was suspected by

Correa (1999), Lee (2002), and Sevimoglu (2002) but they were not able to irrefutable

make the statement. With the help of NeuroShell 2, using GMDH, it is now easy to

ascertain that any linear relationship of I/O for an ER system is inappropriate.

64

Table 8: Out uts' Equations Generated by GMDH Architecture
Output Equations

A - 651 8 *2*(X3-0.07)-- 0 .4 9 *(2*X4-0.53) - 0.42+O,72*(2*(X5 -24.54)- 2*(X60.99) 10.01) K 0.01 2 . 28803) 001
B 089* (2 * (X4 - 0.53) 2 1x-098* 2* (X5 -24.54)1 062* 2* (X4 007)

-11. 01~ 28.0 2800.00 03

D 0,78* 2*(X4-0.53)-I)*(2*(X5-24.54)-
0.01 288 .03

E 26* 2*(X3-007) 2*(X4-053) 2*(X5-24.54) -0267 * X6-0.99)

0,0 0.0 288.03 0 0
F08*2*(X3-0.07) 1 *2*(X6-099) -0.8 2*(X2-0.76) * (~X- 24.54)087* * 0.0158* 0.01 28803

-02- 2*(X320.07)- 1 -0,25* 22(Y6-0.99) 2*(10006)

001 001 0
0,74** +038*[+0.9* 2*(X20.7

*0.01 0.01 0.01 *

0.84 2*(X4-0.53) 1 2 -* 2*(1 -0.06) 1 40.779*2*(Xl-0,06) 1 * 2*(X2-0.76)-
3* - * -0.01 0.01 0.01 0.01

2* X-0.) I * 2*((_-0__ 7 1 2* X-0 2* *(X4 -053)-0,67* ~ 0.0) - * 0.53) - .8* 0 2* (2 -(0.41 1
0.0 1 0.01

K ~~2.2 *2*(X1I .6)i *(2*(A'2-0.76)-1* 2*(X4- o.53)- + 0.49 * 2*(X6- 0.99) ®)
0.01 0.01 K 0.01 0.01)

L 1.3* 2*(X3-0.07) 2*(X6 -0.99) 1 3
001) 0.01

0.48 * 2*(X -. 7 +0.2+0.41* 2*(X4-0.53)- 1 (.7 2*(X5-24.54)-

0.01 0.01 288.03
N *(X6-099) 1 (.72*(X6-0.99) ,2 2*(X5-24.54) 1

-19 2 0.01 K 0.01) 1 K12 288.03

1.5* 2*(X6-0.99) 1 --1.3 2*(X3-0.07)- 1 * 2*(X6-0.99)- 1 0,82* (2*(X -0.06) 1)

0.01 0.01 0.01 0.01

P032 [2 (X6-0.99)2 906* ((6-0.99) - 13 u/2*(X1-0,06) 1 *2*(X6-0.99u 1-3*(0.01) 0.0 - 0.6 00*(2. 1

0.01 - .0.01 6) 1*2(30,01) i) 0 3*-

05*2*(X3-0.07) _ 67 2*(X1-0.06 _______ ___________X2 0.7)
05 00 1 -06 .1 ® * 00 1 -0. 001Number

30*1 (A + B+ C+D+ E+F)+11 0

Number 3* (G+H+1+J+K+L)+ +I
Doctors 2

Number
4 (+N+0+P+O)+ 1 6Nurses L2

From the last three rows of Table 8, it is possible to observe that NeuroShell 2,

under GMDH, establishes a probability factor to each combination of inputs, and then it

uses the Uniform Distribution to determine the output value; therefore, these 3 equations

can be generically represented as follows:

65

Let,

i = Output variable i

i = (1,2,3) = (number of beds, number of doctors, number of nurses)

a, = Lower bound of permissible range for output i

bU =Upper bound of permissible range for output i

7c&= Probability factor for output i

A+B+C+D+E+F+1 G+H+I+K+L+1
1, 2 2

M +1NO+ P+Q+1

2

Then o, = a, + r,(bi - a), which is the inverse transformation relation to generate

a uniformly distributed random variable.

A hypothesis test was designed to assess the accuracy of these equations:

HO : 8= 0

HI:8#0

Where 8 = pNN - PGMDH

pUGMDH = Output given by the GMDH equations

pNN = Output given by the trained NN

Since the ANN are sensitive to the initial weights of their connections, five

versions of the same ANN were created using different random seeds to generate the

initial weights. Then, their performance was averaged and compared against the GMDH

equations.

The results of the t-tests are summarized in Figure 18. For the variable Number

of Beds, the 95% Cl on the difference (-20.6330, -6.4337) does not contain zero;

66

therefore, we reject the null hypothesis (t=3.899>to025,29 =2.045). Since the CI falls below

zero, the GMDH equations give higher response values than the trained ANN. A similar

situation occurs for the variable Number of Nurses (95% CI-+ (-1.8310, -0.5690) and

t=3.890>tO.5a29=2.045). For the variable Number of Doctors, the 95% CI on the

difference (0.0427, 0.9573) does not contain zero; hence, we reject the null hypothesis

(t=2.236>to 02529=2.045). But for this variable, the 95% CI falls above zero, which means

that the GMDH equations give lower response values than the trained ANN.

In summary, there is enough statistical evidence to conclude that the results

obtained with a trained ANN and with the GMDH equations are different. Deciding

which one is better can only be done if each one of these two alternatives is tested against

the "real" output (that from the simulation model), which is done in the next section.

Paired Samples Test

Paired Differences

95% Confidence
Interval of the

Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig (2-tailed)

Pair 1 BEDSNN - BEDSGMDH -13.5333 19.01312 3.47131 -20.6330 -6.4337 -3.899 29 .001
Pair 2 DOCSNN - DOCSGMDH .5000 1.22474 22361 .0427 .9573 2.236 29 .033
Pair 3 NURNN - NURGMDH -1,2000 1.68973 .30850 -1.8310 -5690 -3.890 29 001

Figure 18: t-tests for the Difference of Means

67

Table 9: Average Difference for Both Approaches

Trial Number of Beds Number of Doctors Number of Nurses
NN IGMDH d NN PGMDH d; N GMDH

1 25 34 -9 2 2 0 8 9 -1
2 26 20 6 3 2 1 8 8 0
3 27 40 -13 3 1 2 7 9 -2
4 23 33 -10 2 1 1 9 6 3
5 23 41 -18 2 3 -1 9 8 1
6 27 35 -8 3 1 2 7 7 0
7 24 35 -11 2 4 -2 8 8 0
8 27 10 17 2 2 0 8 9 -1
9 25 28 -3 3 1 2 8 9 -1
10 24 40 -16 2 1 1 8 11 -3
11 25 6 -11 2 2 0 8 7 1
12 23 23 0 2 0 2 8 10 -2
13 24 57 -33 2 1 1 8 11 -3
14 27 15 12 2 2 0 8 10 -2
15 24 94 -70 3 1 2 8 9 -1
16 24 25 - 2 3 -1 8 9 -1
17 25 51 -26 2 2 0 8 11 -3
18 23 37 -14 2 1 1 8 10 -2
19 24 83 -59 2 1 1 8 12 -4
20 24 49 -25 2 0 2 8 9 -1
21 27 70 -43 2 0 2 8 10 -2
22 24 20 4 2 2 0 8 10 -2
23 23 18 5 2 2 0 9 12 -3
24 24 44 -20 2 0 2 8 12 -4
25 24 31 -7 2 1 1 8 11 -3
26 24 36 -12 2 2 0 8 9 -1
27 26 52 -26 3 3 0 8 6 2
28 24 24 0 2 3 -1 8 9 -1
29 25 36 -11 2 4 -2 8 9 -1

30 24 28 -4 3 4 -1 8 7 1

Average -13.5069 0.699231 -0.65138
STD 19.01393 1.096072 1.606528

5.4.3 Accuracy of the NN-Based GDS

To assess the accuracy of the trained ANN in relation to the responses from the

simulation model, a hypothesis test is required. Given that in Section 5.4.2, it was

concluded that the results obtained with a trained ANN differ from the ones obtained with

68

the GMDH equations, it was decided to perform hypothesis tests for both options, with

the hope of showing if one of the approaches is better than the other.

H0 :9=0

Where = ,pNN ~ S orG H ~ rs

ps = Response given by the simulation model

pGMDH = Response given by the GMDH equations

puNN = Response given by the trained NN

Independent hypothesis tests were performed for each one of the output variables.

The results of the t-tests are summarized in Figure 19.

Paired Samples Test

Paired Differences

95% Confidence
Interval of the

Std. Error Difference
Mean Std. Deviation Mean Lower Uper t df Sig. (2-tailed)

Pair 1 BEDSNN - BSIM 3000 11.01144 2.01040 -3.8117 4.4117 .149 29 882
Pair 2 BEDSGMDH - BSIM 13.8333 22.32686 4.07631 5.4963 22.1703 3.394 29 .002
Pair 3 DOCSNN - DSIM -.0667 1008066 .19730 -.4702 .3369 -.338 29 .738
Pair 4 DOCSGMDH - DSIM -.5667 1.67504 .30582 -1.1921 .0588 -1.853 29 .074

Pair 5 NURNN - NSIM .3333 1.49328 .27263 -.2243 .8909 1.223 29 .231
Pair 6 NURGMDH - NSIM 1.5333 1.83328 .33471 .8488 2.2179 4.581 29 .000

Figure 19: (-test for Accuracy

For the three variables (Number of Beds, Number of Nurses, and Number of

Doctors), the 95% CI on the difference with the trained ANN contain zero; therefore, we

fail to reject the null hypothesis on the three cases, which means that the ANN is given

statistically the same responses as the simulation model alone. On the other hand, the

95% CIs on the difference with the GMDH equations do not contain zero in the case of

69

Number of Beds and Number of Nurses; hence, we reject the null hypothesis. The latter

means that the GMDH equations are not matching the results of the simulation alone.

Further, since these CI fall above zero, the GMDH equations give higher values than the

"real" ones. The only case in which the GMDH equations give correct answers is for the

variable Number of Doctors.

Based on the results of the hypothesis tests for each one of the output variables, it

is concluded that the accuracy level observed with the trained ANN is superior than the

one observed with the GMDH equations. It is worth noting that the power of the test for

the GMDH equations is stronger than the one for the trained ANN.

5.4.4 Importance of Factors

An interesting result that NeuroShell 2 indicated is that the variable Number of

Nurses affects all the measures of performance. In her work, Correa (1999) had also

concluded that. The findings done by NeuroShell 2 provide additional strength to

Correa's statement. NeuroShell 2 indicates the significance of the variables via

contribution factors graphs. The definition of Contribution factor was presented in

Section 3.2.

70

CHAPTER 6

RESEARCH EFFORT SUMMARY

6.1 ACCOMPLISHMENT OF PROPOSED OBJECTIVES

The goal of this investigation was to develop a methodology to integrate ANN

technologies to simulation models to achieve a robust and flexible GDS framework.

Accordingly, a framework for the integration between ANN and GDS has been designed.

An experimental prototype has been built to model its concepts and to explore its

worthiness by experimentation. As a result, this effort presents the following integration

methodology:

1) Build and validate the simulation model.

2) Establish ranges of controllable input parameters and measures of

performance.

3) Establish combinations of input parameters to produce simulation data to train

ANN. Use variable step size so that the total number of levels for each input

parameter does not exceed 6.

4) Run the simulation for each combination, 15 replications each. Produce a data

file (ASCII, Excel, etc.)

5) Feed the resulting file to ANN software and train the networks, the number of

networks will be equal to (2inputs - 1). Use BackPropagation architecture to

design the ANN and train it for 45 seconds. Set the LR, momentum, number

71

of hidden neurons, and pattern selection, according with your knowledge of

the system, if not familiar with ANN set to the default values for a complex

system.

6) ANN-Based GDS is ready to use.

It had been proposed (Section 1.2):

1) Investigate Neural Networks in the context of simulation. NeuroShell 2 was

self-taught, and stand-alone experimentation with it demonstrated that it offers

many advantages for GDS. Among these are:

a) Once the ANN is trained, the simulation model does not need to be run

again to answer user's queries.

b) The ANN can be totally embedded in another application.

c) The ANN knowledge can be implemented without using NeuroShell 2 as

it generates a set of equations that can be implemented in any

programming language. However, the accuracy achieved with the

equations is less than the one achieved with the trained ANN.

2) Develop experimental models. One of the models (ER) was used to test the

integration routines. The other model was used to test the portability of these

routines from one model to another.

3) Design experiments. Once the framework was designed, different

experiments were performed to determine the level of difficulty of

implementing this approach as well as the efficiency of training an ANN for

GDS. The results from these experiments were then compared with the

72

results obtained by previous approaches to improve GDS. Conclusions of

these experiments are summarized in the next section.

6.2 SUMMARY OF RESULTS

This research has proven that is possible to integrate ANN and GDS, and that it is

more efficient than previous heuristic approaches.

This research started with two questions (Section 1.1):

1) What would happen if one or more structural characteristics of the model

change?

2) Would the knowledge acquired by the Neural Network allow an early

detection of infeasibilities?

This investigation has answered these questions as follows:

What would happen if one or more structural characteristics of the model

change? In previous approaches, it was required to make major modifications to the

already built system, i.e. generation of new decision rules. Using NN-Base GDS, the

knowledge of the NN must be modified according to the changes made to the system.

The leaming process (transfer of knowledge) takes place automatically, and it does not

require any expertise from the modeler.

Would the knowledge acquired by the Neural Network allow an early detection of

infeasibilities? ANN rounds its outputs to the lower or upper bound of the training range;

hence, detection of infeasibility is not straightforward task using NeuroShell 2. We

proposed two untested approaches that may take advantage of ANN:

73

a) To generate the VB code corresponding to the trained ANN, and manually

make the required modifications to avoid rounding.

b) To train the ANN for a wider range than the originally training range. This

approach will detect the infeasibility, but it will not give an exact response.

Summarizing, the following conclusions and deliverables have been obtained

from this effort:

1) It is possible to teach the ANN the existing relations between the inputs

and outputs variables of a simulation model.

2) A working experimental prototype has been built using the designed

integration framework. The prototype enables the user to select any

combination of input variables or all of them. Also, it advices the user

when no re-training is required, which represents savings on time.

3) A great reduction in designing time, and effort level from the modeler

standpoint was achieved; the time consumed was reduced from 42 hours

of simulation time and several days of RSM analysis (derivation of rules)

to at most 14 hours of simulation and NeuroShell 2 running time with no

user interaction. This research can be extended to larger number of

variables with minor changes to the existing prototype.

4) The designed framework can be applied to terminating or non-terminating

systems since the I/O pairs are collected at the end of the simulation run.

A prototype for Jones' (1999) terminating system was built as test.

5) Regarding the variables of the ER system, it was found that all measures

of performances are affected by the variable Number of Nurses. This

74

result confirms the conclusions reached by Correa (1999) and Sevimoglu

(2002) during their research.

6) Using the GMDH approach it was determined that the relations between

the input and output variables of the ER system are definitely not linear.

This confirms the speculations made by Correa (1999), Lee (2002) and

Sevimoglu (2002).

6.2 RESEARCH SIGNIFICANCE

This study marks a breakthrough in the field of GDS by integrating ANN

technology. Previous approaches for GDS were based on statistical and forecasting

techniques with good results, but the ANN approach appeared to be more promising and

it has been proven so.

As ANN is a self-learning system, the relationship between inputs and outputs are

established with lesser effort than previous approaches. Sevimoglu (2002) develop a

heuristic to establish the relationship between inputs and outputs by using the RSM.

While this approach is accurate, it is also time consuming. The time consumed

developing a multivariable heuristic for two variables was estimated as 42 hours of

simulation time, plus several days conducting the analysis of the RSM to derive the

decision rules. Hence, a trade-off must be achieved between time consumption and the

accuracy of the results for the GDS methodology. ANN can help achieving this trade-off.

Once the prototype has been built, it is estimated that the time required to generate the

simulation data and re-train the ANN is 14 hours (847.2 minutes) in the worst-case

75

scenario. It is important to remark that this estimated time corresponds to a model with 3

variables.

Previous research efforts in this area have shown that a change in the modeling

conditions requires re-doing a big portion of the model, which implies more time and

effort. In this research, it was determined the amount of time required to make the same

nature of changes in the ANN-Based GDS model was around 3 hours. These results

compared with the ones from previous approaches show considerable reductions.

However, there is one question that remains unanswered, the automated detection

of infeasibilities.

Although it was possible to automate the detection of infeasibilities, it was not

possible to automate the process of finding the values for which the goals would be

feasible. Additional programming or the application of other ANN principles can be

studied to answer this.

76

REFERENCES

Alsugair, A. M. and D. Y. Chang, 1994, "A Goal Driven Approach to Discrete Event
Simulation," Proceedings of the 1st Congress on Computing in Civil Engineering,
515-522.

Centeno, Martha A. and Charlie R. Standridge, 1992, "Databases and Artificial
Intelligence: Enabling Technologies for Simulation Modeling," Proceedings of
the 1992 Winter Simulation Conference, J. J. Swain, D. Goldsman, R. C. Crain,
and J. R. Wilson- (eds.), 181-188.

Cho, T. H., 2002, "Embedding Intelligent Planning Capability to DEVS Models by Goal
Regression Method," Simulation, 78(12), December 2002, 716-730.

Correa, Daisy, 1999, "A Study of Response Surface in Simulation of Emergency Room
Systems", Master's Thesis, Department of Industrial and Systems Engineering,
Florida International University, Miami, FL 33199.

Erraguntla, M., P. C. Benjamin, and Rick J. Mayer, 1994, "An Architecture of a
Knowledge-Based Simulation Engine," Proceedings of the 1994 Winter
Simulation Conference, J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F.
Seila (eds), 673-680.

Glover, F., J. P. Kelly, and M. Laguna, 1999, "New Advances for Wedding Optimization
and Simulation," Proceedings of the 1999 Winter Simulation Conference, P. A.
Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans (eds), 255-260.

Hamilton, J. L., E. Micheli-Tzanakou, and R. M. Lehman, 2000, "Neural Networks
Trained with Simulation Data for Outcome Prediction in Pallidotomy for
Parkinson's Disease," Proceedings of the 2 2 nd Annual EMBS International
Conference, July 23-28, 1-4.

Isaacson, E., 1998, "SIMNET: A Neural Network Model for Post-Tonal Segmentation,"
Society for Music Theory, Indiana University.

Jones, Jacqueline M., 1999, "On-line Goal Driven Simulation for Terminating Systems,"
Master's Thesis, Department of Industrial and Systems Engineering, Florida
International University, Miami, FL 33199.

Kelton, David W., Randall P. Sadowski, and Deborah A. Sadowski, 1998, Simulation
with Arena, Boston, MA, McGraw-Hill Companies, Inc.

77

Kilgore, Rick A., 2001, "Open-Source SML and SILK for Java-Based, Object-Oriented
Simulation," Proceedings of the 2001 Winter Simulation Conference, B. A.
Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer (eds), 262-268.

Krishnaswamy, C. R., E. W. Gilbert, and M. M. Pashley, 2000, "Neural Network
Applications in Finance: A Practical Introduction," Financial Practice and
Education, 75-84.

Laguna, M. and R. Marti, 2002, "Neural Networks Prediction in a System for Optimizing
Simulations," IIE Transactions, Vol 34, 273-282.

Lee, Marsha A., 2002, "Comparative Study of the Response Surfaces of two types of
Systems," Master's Thesis, Department of Industrial and Systems Engineering,
Florida International University, Miami, FL 33199.

Panayiotou, C. G., C. G. Cassandras, and W. Gong, 2000, "Model Abstraction for
Discrete Event Systems Using Neural Networks and Sensitivity Information,"
Proceedings of the 2000 Winter Simulation Conference, J. A. Joines, R. R.
Barton, K. Kang, and P. A. Fishwick (eds), 335-341.

Peialoza, Gabriela C., 1999, "A Forecasting Based Heuristic for On-line Goal Driven
Simulation," Master's Thesis, Department of Industrial and Systems Engineering,
Florida International University, Miami, FL 33199.

Reed, Russell and Robert Marks, Neural Smithing, The MIT Press, 1998.

Reyes, M. Florencia, 1998, "A Heuristic For On-line Assesment of Simulation Output for
Goal Driven Simulation," Master's Thesis, Department of Industrial and Systems
Engineering, Florida International University, Miami, FL 33199.

Reyes, M. Florencia, Martha A. Centeno, Khokiat Kengskool, and Shih-Ming Lee, 1999,
"Towards On-Line Goal Driven Simulation," Proceedings of 2 5 1h International
Conference on Computers and Industrial Engineering, S. M. Waly (ed), 466-469.

Rich, Elaine, Artificial Intelligence, McGraw-Hill, Inc., 1991.

Russell, C. S., A. S. Elmaghraby, and J. H. Graham, 1992, "An Investigation of a
Standard Simulation-Knowledge Interface," Proceedings of the 1992 Winter
Simulation Conference, J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson
(eds), 807-815.

Sanchez, P. J, 1994, "Simulation Statistical Software: An Introspective Appraisal,"
Proceedings of the 1994 Winter Simulation Conference, J. D. Tew, S.
Manivannan, D. A. Sadowski, and A. F. Seila (eds), 1311-1315.

78

Schewetman, H., 2000, "Optimizing Simulations with CSIM 18/Optquest: Finding the
Best Configuration," Proceedings of the 2000 Winter Simulation Conference, J.
A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick (eds), 268-273.

Sevimoglu, Tuba, 2002, "A Heuristic For Multivariable Goal Driven Simulation,"
Master's Thesis, Department of Industrial and Systems Engineering, Florida
International University, Miami, FL 33199.

Shannon, Robert E. and Subraminian Prakash, 1990, "Goal Directed Simulation
Systems," Proceedings of the 1990 International Industrial Engineering
Conference, 345-350.

Sharda, R. and R. Rampal, 2000, "Neural Networks and Management Science/Operations
Research," Department of Management College of Business Administration,
Oklahoma State University. httpjjctt.okstat.du/itorm s/guid e/nnp a er.htm.

Sparks. D. W. and P. C. Maghami, 1998, "Neural Networks for Rapid Design and
Analysis," American Institute of Aeronautics and Astronautics, 672-680.

Umphress, D. A. and Udo W. Pooch, 1987, "A Goal-Oriented Approach to Simulation,"
Simulation Series, 19 (1), 44-49.

Ward Systems Group, Inc., w.wardssescom, March 1 2 1h, 2004.

79

ADDITIONAL REFERENCES

Adam, A. and X. He, 2003, "Backpropagation of Pseudoerrors: Neural Networks that are
Adaptive to Heterogeneous Noise," IEEE Transactions on Neural Ne/works, 14
(2), 253-262.

Brown, A. and H. Yang, 2001, "Neural Networks for Multiobjective Adaptive Structural
Control," Journal of Structural Engineering, February 2001, 203-210.

Chance, F., 1994, "Simulation Statistical Software: An Introspective Appraisal,"
Proceedings of the 1994 Winter Simulation Conference, J. D. Tew, S.
Manivannan, D. A. Sadowski, and A. F. Seila (eds), 1311-1315.

Klahr, P., W. S. Faught, and G. R. Martins, 1980, "Rule-oriented Simulation,"
Proceeding of 1980 International Conference on Cybernetics and Society, 350-
354.

Molina, Luis A., Carlos Gandarillas, and Martha A. Centeno, 1996, "Goal Driven
Simulation Intelligent Back Ends: A State of The Art Review," Proceedings of
the 1996 Winter Simulation Conference, J. M. Chames, D. J. Morrice, D. T.
Brunner, and J. J. Swain (eds), 734-739.

Setyawati, B., R. C. Creese, and M. Jaraiedi, 2002, "Neural Networks for Univariate and
Multivariate Time Series Forecasting," Proceeding of the 2003 IIE Conference.

Shannon, Robert E., 1987, "Models and Artificial Intelligence," Proceedings of the 1987
Winter Simulation Conference, A. Thesen, H. Grant, W. D. Kelton (eds), 16-24.

Yu, Wen and Xiaoou Li, 2002, "Adaptive Control with Multiple Neural Networks,"
Proceedings of the American Control Conference, 1543-1548.

80

APPENDICES

APPENDIX A

A.1 ANN Software

Neural Studio: Software created by the CATE laboratory at Florida International

University. It is used in the Applied Neural Networks class offered by the Electrical and

Computer Engineering Department. Although a great tool, it requires some designing

knowledge in the area of ANN in order to create a working network. Before any

experimentation, the user has to define several parameters such as the number of neurons

per layer, number of connections between neurons, number of layers, and the weights

between connections. For a first-time user defining these parameters is not easy, and the

accuracy of the results obtained with the network depends greatly on the designing skills

of the modeler. The package offers the possibility to import training patterns from an

ASCII file. The user interface of the main page is too cluttered for the novice.

Neuro Solutions: Software by NeuroDimension-Inc. it possesses a very powerful

icon-based graphic user interface, which is very flexible. The software is able to generate

C++ code and DLL files, and it allows some level of control from Visual Basic, which is

ideal ARENA 5.0. Neuro Solutions includes a Neural Wizard to assist the designing

process of the networks; but, it requires a substantial amount of theoretical knowledge on

ANN. The type of network must be selected from the starting point and it is not equipped

with a beginners' section. For training it is able to import ASCII files, Excel files are not

supported. During training the main page gets cluttered and it is difficult to follow the

development of the network.

81

APPENDIX IB

"1 Test e

ER)

a
d

Has pa ie n dr x] 5 - of F ;c if i, e ak_ i. to 9
' ,, , ", u Nc -

"+.,..,V t" ,,,.. - i 3t iC '" ii ~ICI .1 4":

Amoy Wvvs

-e v=,,.

Nc

!_ w

s I f O, _

A l ' else v alp ak by
336 !';3 ,+ chase and Z Emeqen
j s

}fi + ' i l !5
fi

1 E T f'Q pa r' ,9 escorted

to a

I

liege Nwo
Inaae mom

t' H

j p 'a e l'. F r. .t,3! h R' j

l

i

I ?t e at a r - t 5i

I

e'

RR e

Figure 20: E Flowchart (Sevi _ oglu 2002)

82

Yes
s parn non sl Fas Track

urgeint or stable? empty?

Patient waits 0n w\a ting
?

rooC m to be admifiltted to-

the treatm'e nt area No No 4

Rgistere N urse (RN),
Nurse Assista..nt (;N/A) or

technicia n es orts
patient to a roam

Registered Nurse (RN)
Nurse Assistant (N/A) or

techrnician es orts
patient to fast track bed

R N,. N/A or Tech.
nsltrUcts/assi sts patient

to change into robe and
lay downm an stretcher

RNB performs iniitial
evaluabon

MdMa treatmlEn t

provided bythe

Figure 20b:ER Flowchart (Sevimoglu 2002) (Continued)

83

o TheRN chcks o the Pat ins ass ine a be

patient andc(,< e sote to a nringPaie t ea

discthee

-bu -h observatio time

Yosesii hc

Pafetosre o mRN repares patient f

Pandn essedteavesPtin i~e

Figure 2Pa:ieRt whr Svmgl 02 Cniud

Un4

B.2 ER Model Specifications

Table 10: Specifications for Entities-ER

Attributes Explanation
Arriveb By what means the patient arrives
Decision Decision of the doctor: observed, admitted or dischar ed

Doctortime The time the physician spends with the patient
Nursetime Time that the RN spends with the patients (differs b categoy)

observationtime Total time patients are observed in the ER
Pcatego Patient's category

Timein Time that the patient arrives to the system
tnowenteringloop To put a timestamp to the time that the patient enters the

Observation area logic
Whichbed To assign the bed the patient will be using

TOAQ Time when the patient enters a queue

Table 11: Specifications for Work Areas-ER

Stations Explanation
MyEntrance Logic for the entrance to the system

MyExit Final stage of the simulation and collection of statistics
registrationstation Logic for the registration process
TreatmentStation Logic for the treatment process

TriageStation Logic for the Triage Area
Waitingroom Logic for the waiting area

Resources
Bed Regular bed

Extrabed Extra bed
FT Fast Track Bed
MD Physician

Nurse Registered Nurse
RegistrationRep Registration Representative

Triagenurse Triage Nurse

Queues
MD Q Queue for the Physician

NurseQ I Queue for the Initial Nurse visit
NurseQ 2 Queue for the Nurse visit after the physician.
NurseQ 3 Nurse Queue for the observation check u

Re Re Q Queue for Registration Representative
Triage Q Queue of the patients waiting for the Triage Nurse

WaitQP2 Patients Catego 2 waitin for bed in the waitin room
WaitQP3 Patients Catego 3 waitin for bed in the waitin room

85

B.3 ER Experiment Frame Text Version

ATTRIBUTES: NICKNAMES:
1,doctortime,0: observe,1:
2,nursetime,0: emergent,1:
3,pcategory,0: ambulance,1:
4,arriveby,0: urgent,2:
5,whichbed,0: owncar,2:
6,observationtime,0: discharge,3:
7,decision,0: stable,4:
8,tnowenteringloop,0: nonurgent,3:
9,TOAQ; admit,2;

STATIONS: TALLIES:
1,registrationstation: 1,TWaitQP2:
2,waitingroom: 2,TWaitQP3:
3,TreatmentStation: 3,TWaitQP4:
4,MyEntrance: 4,Time ER 1:
5,MyExit: 5,Time ER 2:
6,TriageStation; 6,Time ER 3:

7,Time ER 4:
SETS: 8,TNurseQ_1:
1,BedsPl,Bed,extrabed: 9,TNurseQ_2:
2,BedsP2,Bed,extrabed: 10,TNurseQ_3:
3,BedsP3,FT,Bed,extrabed: ll,TMD Q;
4,BedsP4,FTBed;

RESOURCES:
1,Nurse,Capacity(6),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,):
2,MD,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,):
3,bed,Capacity(10),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,):
4,extrabed,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,):
5,RegistrationRep,Capacity(2) ,,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,)
6,FT,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,):
7, triagenurse, Capacity (2) ,,Stationary, COST (0.0,0.0,0.0) ,,AUTOSTATS (Yes,,);

QUEUES:
1,WaitQP2,FirstInFirstOut,,AUTOSTATS(Yes,,):
2,WaitQP3, FirstInFirstOut,,AUTOSTATS (Yes,,):
3,WaitQP4,FirstlnFirstOut,,AUTOSTATS(Yes,,):
4,nurseQ_1,LowValueFirst(pcategory) ,,AUTOSTATS(Yes,,):
5,NurseQ_2,LowValueFirst(pcategory) ,,AUTOSTATS(Yes,,):

6,NurseQ_3,LowValueFirst(pcategory) ,,AUTOSTATS(Yes,,):
7,triage_Q,LowValueFirst(pcategory) ,,AUTOSTATS(Yes,,):

8,MDQ,LowValueFirst(pcategory) , ,AUTOSTATS(Yes,,);

DSTATS:
l,nq(waitQP4),Number of patients 4 in waiting room:

2,NR(1),Nurse Busy:
3,NR(2),MD Busy:

4,NR(3),Bed Busy:

5,MR(MD),MD Available:
6,MR(Nurse),Nurse Available:
7,mr(bed),Beds Available:

8,NQ(waitQP3),Number of patients 3 in waiting room:
9,NQ(waitQP2),Number of patients 2 in waiting room:

10,nq(MD_Q),Number of patients in doctor q:
ll,nq(nurseQ_l),Nunber in nurse Q_1:
12,nq(nurseQ_2),Number in nurse Q_2:
13,nq(nurseQ_3),Number in nurse Q_3:
14,nr(l)/mr(1),util of nurse:

15,nr(2)/mr(2),md util:

16,nr(3)/mr(3),bed util;

86

COUNTERS:
1,arrivebyambulance, ,Replicate:
2,arrivebyowncar, , Replicate:
3,Patients No Beds,,Replicate:
4,Patients Leaving ER, ,Replicate:
5,People entering Waiting Room,,Replicate:
6,p2_goingforbed, ,Replicate:
7,p3_goingforbed, ,Replicate:
8,p4_goingforbed, ,Replicate;

EXPRESSIONS:
I,doctori,uniform(0.17,0.33):
2,doctor2,uniform(0.167,0.25):
3,doctor3,uniform(0.0167,0.083):
4,doctor4,uniform(0.0167,0.083):
5,nursei,uniform(0.5,1):
6,nurse2,uniform(0.5,0.67):
7,nurse3,uniform(0.33,0.67):
8,nurse4,uniform(0.05,0.5):
9,PatientTypeAmbulance,discrete(.435,1,.82,2,1,3):
10,PatientTypeOwnCar,Discrete(.026,1,.471,2,.967,3,1,4):
11,Observationl,max(0, (erla(1.02,4)-doctortime-nursetime)):
12,Observation2,Max(0, (max(norm(3.84,2.05),1.79)-doctortime-nursetime)):
13,Observation3,Max(0, (gamm(1.4,1.5)-nursetime-doctortime)):
14,Observation4,NAx(0, (max(norm(0.552,0.295),.257)-doctortime-nursetime))
15,admitted,uniform(0.35,0.5)+uniform(1/60,4/60):

16,discharged,uniform(0.35,0.5);

VARIABLES:
1,MaxNur,CLEAR(System),CATEGORY("None-None"),9:
2,MaxDoc,CLEAR(System),CATEGORY("None-None"),4:
3,MaxBeds,CLEAR(System),CATEGORY("None-None"),40:
4,Combinaciones,CLEAR(System) ,CATEGORY("None-None") ,120:
5,RecordW,CLEAR(System),CATEGORY("None-None"),1:
6,MinNur,CLEAR(System),CATEGORY("None-None"),6:
7,MinDoc,CLEAR(System),CATEGORY("None-None"),1:

8,MinBeds,CLEAR(System),CATEGORY("None-None"),10;

REPLICATE,
1500,0.0,5300,Yes,Yes,1000,,,24.0,Hours,No,No;

B.4 ER Model Frame Text Version

83$ CREATE, 1,0:expo(1/6):NEXT(84$);

84$ ASSIGN: arriveby=discrete(0.0818,1,1.0,2);
86$ COUNT: ArriveBy,1;

85$ ASSIGN: pcategory=ed(ArriveBy + 8);

87$ ROUTE: 0.0,MyEntrance;

5$ STATION, MyEntrance:MARK(Timein);

3$ BRANCH, 1,10:
If,ArriveBy==1,0$,Yes:
Else,2$,Yes;

0$ BRANCH, 1,10:
If,(nr(3)<mr(3)).or.(nr(4)<mr(4)),

7 9
$,Yes:

If, (nr(6)<mr(6)),82$,Yes:
Else, 6$,Yes;

79$ BRANCH, 1,10:

If,pcategory==1,7$,Yes:
If,pcategory==2,80$,Yes:
Else,81$,Yes;

7$ SEIZE, 1,Other:

87

Select(BedsPI,POR,WhichBed) ,I:NEXT(l$);
1$ ROUTE: 0.033,TreatmentStation;
80$ SEIZE, 1,Other:

Select(BedsP2,POR,WhichBed),1:NEXT(1$);
81$ SEIZE, 1,Other:

Select(BedsP3,POR,WhichBed),l:NEXT(1$);
82$ BRANCH, 1,10:

If,pcategory==1,6$,Yes:
If,pcategory==2,6$,Yes:
Else,81$,Yes;

6$ COUNT: Patients No Beds,1;
4$ DISPOSE: No;
2$ ROUTE: 0.033,TriageStation;

12$ STATION, TriageStation;
9$ QUEUE, triage Q;
10$ SEIZE, 1,Other:

triagenurse,l:NEXT(13$);
13$ DELAY: Uniform(0.0833,0.1667),,Other:NEXT(ll$);
11$ RELEASE: triagenurse,l;
14$ BRANCH, 1,10:

If,pcategory==1,15$,Yes:
Else,8$,Yes;

15$ BRANCH, 1,10:
If,(nr(3)<mr(3)).or.(nr(4)<mr(4)),19$,Yes:
Else,18$,Yes;

19$ SEIZE, 1,Other:
Select(BedsPl,POR,WhichBed),l:NEXT(16$);

16$ ROUTE: 0.033,TreatmentStation;
18$ COUNT: Patients No Beds,1;
17$ DISPOSE: No;
8$ ROUTE: 0.033,registrationstation;

21$ STATION, registrationstation;
22$ SEIZE, 1,Other:

RegistrationRep,1:NEXT(23$);
23$ DELAY: Expo(0.1667),,Other:NEXT(24$);
24$ RELEASE: RegistrationRep,1;

20$ ROUTE: 0.033,waitingroom;
25$ STATION, waitingroom;

26$ COUNT: People entering Waiting Room,1;

34$ BRANCH, 1,10:
If,pcategory==4,28$,Yes:
If,pcategory==3,30$,Yes:
Else,27$,Yes;

28$ QUEUE, WaitQP4:MARK(TOAQ);

38$ SEIZE, 1,Other:
Select(BedsP4,POR,WhichBed),1:NEXT(35$);

35$ TALLY: TWaitQP4,interval(TOAQ),1;

31$ COUNT: p4_goingforbed,1;

29$ ROUTE: 0.033,TreatmentStation;

30$ QUEUE, WaitQP3:MARK(TOAQ);
39$ SEIZE, 1,Other:

Select(BedsP3,POR,WhichBed),1:NEXT(36$);

36$ TALLY: TWaitQP3,interval(TimeWR),1;

32$ COUNT: p3_goingforbed,1:NEXT(29$);

27$ QUEUE, WaitQP2:MARK(TOAQ);

40$ SEIZE, 1,Other:
Select(BedsP2,POR,WhichBed),1:NEXT(37$);

37$ TALLY: TWaitQP2,interval(TOAQ),1;

33$ COUNT: p2_goingforbed,1:NEXT(
2 9

$);

46$ STATION, TreatmentStation;

47$ ASSIGN: nursetime=ed(pcategory+
4
):

doctortime=ed(pcategory);

49$ QUEUE, nurseQ_1:MARK(TOAQ);

48$ SEIZE, 1,Other:
Nurse,1:NEXT(61$);

61$ TALLY: TNurseQ_l,interval(TOAQ),l;

88

62$ DELAY: nursetime*1.5,,Other:NEXT(50$);

50$ RELEASE: Nurse,l;
52$ QUEUE, MD Q:MARK(TOAQ);

51$ SEIZE, 1,Other:

MD,1:NEXT(67$);
67$ TALLY: TMD_Q,interval(TOAQ),1;
63$ DELAY: doctortime,,Other:NEXT(53$);

53$ RELEASE: MD,l;
55$ QUEUE, NurseQ_2:MARK(TOAQ);
54$ SEIZE, l,Other:

Nurse,1:NEXT(68$);

68$ TALLY: TNurseQ_2,interval(TOAQ),1;

64$ DELAY: nursetime*0.25,,Other:NEXT(56$);
56$ RELEASE: Nurse,l;
44$ ASSIGN: decision=discrete(0.5,1,.75,2,1,3);
42$ BRANCH, 1,10:

If,decision==1,45$,Yes:
Else,43$,Yes;

45$ ASSIGN: observationtime=ed(pcategory+10): ARK(tnowenteringloop);
66$ DELAY: uniform(0.35,0.5),,Other:NEXT(58$); Time
between nurse checking

58$ QUEUE, NurseQ_3:MARK(TOAQ);

57$ SEIZE, l,Other:
Nurse,l:NEXT(69$);

69$ TALLY: TNurseQ_3,interval(TOAQ),l;
65$ DELAY: uniform(1/60,4/60),,Other:NEXT(59$);

59$ RELEASE: Nurse,l;

41$ BRANCH, 1,10:
If,tnow>=(observationtime+tnowenteringloop),60$,Yes:
Else,66$,Yes;

60$ ROUTE: 0.0,MyExit;

43$ DELAY: ed(decision+13),,Other:NEXT(60$);

73$ STATION, MyExit;

75$ BRANCH, 1,10:
If,pcategory==4,70$,Yes:

If,pcategory==3,76$,Yes:
If,pcategory==2,77$,Yes:

Else,78$,Yes;

70$ RELEASE: BedsP4(whichbed),l;
74$ TALLY: pcategory+3,interval(timein),l;

72$ COUNT: Patients Leaving ER,l;

71$ DISPOSE: No;

76$ RELEASE: BedsP3(whichbed),1:NEXT(74$);

77$ RELEASE: BedsP2(whichbed),I:NEXT(74$);

78$ RELEASE: BedsPl(whichbed),1:NEXT(74$);

89

APPENDIX C

C. Foundry Test Bed

The Foundry model used by Jones (1999) produces castings made of gray iron

including, covers, rings, grates, hoods, frames, and others. The first stage is the molding

process. Then, the castings are taken to a cooling yard for a rest period of 24 hours

before been taken to the finishing department. In the finishing department all the casting

are hanged from a conveyor, which takes them to the sand blast system for cleaning.

Following, the castings are routed to different machines according to their types. The

routes are as follows:

" Rings: The rings go to the lathe machines where they are machined in order

to obtain a perfect fit with the covers.

" Covers: The covers first go to the grinding stations where they are polished.

Then, they are transported to the lathe machines where they are machined in

order to obtain a perfect fit with the rings.

* Frames, grates, hoods, and boxes: They are transported to the grinding

stations to remove the excess of material.

All the castings on the finishing department must be transported to the final

storage to wait for shipping. The transportation is done by power conveyors, gravity

conveyors, and forklifts, and it can be done in batches or individually depending on the

casting. A flow chart of this test bed is given in Appendix C.

Specific numeric data for this model can be found in the work of Jones (1999).

90

M e t--arty '. .r , ': sr ri .

h _,r,

Part's Ila r r or'le i !a

rain conveyor to _

t isported a C ng th same o vv4o(depending on 1Y p'j

is me Pat a
Is -rarty N o, o- nng, cover

Fes

i s cover gF nder

yes queue W (30 or
i we)

Stare off ' e on

be -wr with

No gtirder t ue(,,, - s

avaiiabie then
; } 7'! , j Z to c'

is fui
a rf i

yei .. '... processed on ,4 a

376 r J!- ,

cover gain er,

off-hne or)
ne floor until 'atre No

queue A av; =e
then join queue.

Pan a e

an We

Par 5 Vari o ed
Coves are tonsported 16 at a tine to t ll Nv ayr? l: a
Frames am va"poNd 8 at a We forkhft
O.h _. y a i e !a Sp C,'t t.,., 8 cs;, iii - -

Figure 21: Foundry Flowchart (Lee 2002)

91

C.2 Foundry Model Specifications

Table 12: Specifications for Entities-Foundry
Attributes Explanation

Type Part type. I =Rings, 2 =Covers, 3 = Frames, 4 = Others
Timein Clock time the part arrives to the system.

Timeln Q Clock time the part arrives to a queue.
Timeln Res Clock time the art is ca able of seizin a resource.
EndTravel Clock time when the art arrives at a station, OW + TravelTime

ProcessTime Processing time for each part at each resource.
Travel Time Length of time a part takes to traverse to the next station.

BS Rings Batch size of rings created.
BS Other Batch size of frames and others created.

BS Covers Batch size of covers created.

Table 13: Specifications for Work Areas-Foundry
Stations Explanation
Arrive Logic for the real entrance to the system

Final Storage Final stage of the simulation where statistics are collected
R Lathe Unload Logic for rings

C Grinder Unload Logic for covers
Others Logic for frames and others

C Grinder Logic for covers being processed at the grinder
C Grinder Balk Logic for covers that balk when the grinder queue is too full

C Grinder Travel Logic for covers traveling to the lathe
Lathe Station Logic for processing at the lathe
R Lathe Balk Logic for rings that balk when the lathe queue is too full
C Lathe Balk Logic for covers that balk when the lathe queue is too full

O Travel Logic for frames and others traveling to final store
R Lathe Travel Logic for rings traveling to final store

C Lathe Travel Logic for covers traveling to final stora e
Resources

R Unld Ring unloader
C UnId Cover unloader
Cgrind Cover grinder
Lathe Cover lathe + Ring lathe

Forklift Forklift
(Queues ___________________________

A Travelg Queue arriving to the system_____
R Lathe Unloadq Queue for ring unloader

C Grinder Unloadq Queue for cover unloader
O Unloadq Queue for frames and others unloader

C Grinder Queue for covers bein rocessed at the rinder
C Grinder Balk Queue for covers that balk when the rinder ueue is too full

C Grinder Travel Queue for covers travelin to the lathe

Lathe Queue for lathe station

R Lathe Balk Queue for rings that balk when the lathe ueue is too full

C Lathe Balk Queue for covers that balk when the lathe ueue is too full
O Travelq Queue for frames and others traveling to final storae

R Lathe Travel Queue for rings travelin to final store

C Lathe Travel Queue for covers traveling to final store
Forklift Queue for units waiting for a forklift

92

C.3 Foundry Experiment Frame Text Version

ATTRIBUTES: QUEUES:
1,Type,: 1,ATravelq,FirstlnFirstOut,,AUTOSTATS(Yes,,)
2,Timeln: 2,0_Unloadq,FirstlnFirstOut,,AUTOSTATS(Yes,,):
3,TimeIn Q: 3,0_Travelq,FirstlnFirstOut,,AUTOSTATS(Yes,,):
4,Timeln_Res: 4,R_Lathe_Unloadq,FirstInFirstOut~,AUTOSTATS(Yes,,):
5,EndTravel: 5,Latheq,LowValueFirst(Type), ,AUTOSTATS(Yes,,):
6,ProcessTime: 6,RLathe Balkq,FirstlnFirstOut,,AUTOSTATS(Yes,,):
7,TravelTime; 7,RLatheTravelq,FirstlnFirstOut, ,AUTOSTATS(Yes,,):

8,CGrinderUnloadq,FirstlnFirstOut,,AUTOSTATS(Yes,,):
STATIONS: 9,C_Grinderg,FirstlnFirstOut,,AUTOSTATS(Yes,,):
1,Arrive: 10,CGrinderBalkq,FirstInFirstOut,,AUTOSTATS(Yes,,):
2,Others: ll,C_GrinderTravelq,FirstlnFirstOut ,AUTOSTATS(Yes,,)
3,0_Travel:
4,R_LatheUnload: 12,C_LatheTravelq,FirstlnFirstOut ,AUTOSTATS(Yes,,):
5,Lathe_Station: 13,C_LatheBalkq,FirstlnFirstOut,,AUTOSTATS(Yes,,):
6,RLatheBalk: 14,Forkliftq,FirstlnFirstOut,SHARED,AUTOSTATS(Yes,,);
7,RLatheTravel:
8,CGrinderUnload: COUNTERS:
9,CGrinder: 1,Numof Rings,,Replicate:
10,CGrinderBalk: 2,Num_ofCovers,,Replicate:
ll,CGrinderTravel: 3,Num_of_Frames,,Replicate:
12,CLatheBalk: 4,Numof_Others,,Replicate:
13,CLatheTravel: 5,BottleneckRings,,Replicate:
14,Final_Storage; 6,BottleneckCovers_Lathe,,Replicate:

7,BottleneckCovers,,Replicate:

8,Periods,, Replicate;

RESOURCES:
1,CGrind,Capacity(3),,Stationary,COST(0,0,0.0,0.0),,AUTOSTATS(Yes,,):

2,Lathe,Capacity(12),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,):

3,Forklift,Capacity(7),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,):

4,RUnld,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,):
5,C_Unld,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,);

SEQUENCES:
1,JobTypelRings,Arrive,TravelTime=Normal(26.43,1.30)&RLatheUnload,ProcessTime=0.03+Erla
ng(0.0255,6)&
Lathe Station,ProcessTime=Normal(3.5,0.412)&R_LatheTravel&FinalStorage:
2,JobType2_Covers,Arrive,TravelTime=Normal(30.2,1.30)&C_Grinder_Unload,ProcessTime=0.03+
Erlang(0.0255,6)&
C_Grinder,ProcessTime=Normal(0.852,0.272)&C_Grinder_Travel&LatheStation,ProcessTime=1.15+
1.85*Beta(1.58,1.54)&
C_LatheTravel&Final_Storage:

3,JobType3N4_Frames_N_Others,Arrive,TravelTime=Normal(22.13,1.30)&Others,ProcessTime=0.03+
Erlang(0.0255,6)&
O_Travel&Final_Storage;Final_Storage:
3,JobType3N4_Frames_N_Others,Arrive,TravelTime=MX(0,Normal(0.33,1.30))+21.8&Others,
ProcessTime=0.03+Erlang(0.0255,

6)&O_Travel&FinalStorage;

DSTATS:
1,NQ(Latheq):
2,NR(CGrind)/MR(CGrind),Util of CoverGrind:

3,NR(Lathe)/MR(Lathe),Util of Lathe:

4,NR(Forklift)/MR(Forklift),Util of Forklift:

5,NR(R Unld)/MR(R Unld),Util of RingUnloader:

6,NR(C-Unld)/MR(CUnld),Util of CoverUnloader;

VARIABLES:
1,BS Rings,CLEAR(System),CATEGORY("None-None"):

2,BSOther,CLEAR(System),CATEGORY("None-None"):
3,BSCovers,CLEAR(System),CATEGORY("None-None"):

4,MinResl,CLEAR(System),CATEGORY("None-None"),4:
5,MinRes2,CLEAR(System),CATEGORY("None-None"),T:
6,MinRes3,CLEAR(System),CATEGORY("None-None"),3:

7,MinRes4,CLEAR(System),CATEGORY("None-None"),2:

93

8
,MaxResl,CLEAR(System),CATEGORY("None-None"),17:

9
,MaxRes2,CLEAR(System),CATEGORY("None-None"),

2
:

10,MaxRes3,CLEAR(System),CATEGORY("None-None"),8:
11,MaxRes4,CLEAR(System),CATEGORY("None-None"),1

7
:

12
,Combination,CLEAR(System),CATEGORY("None-None"),360:

13,w,CLEAR(System),CATEGORY("None-None"),3;

SEEDS:
1,187 65,No;

REPLICATE,
1,0.0,30000,Yes,Yes,1500,,,24.0,Hours,No,No;

CA Foundry Model Frame Text Version

0$ CREATE, 1,0.0001::NEXT(1$);
1$ ASSIGN: BSRings=2:

BSCovers=2:
BSOther=0;

2$ SCAN: NQ(Latheq).gt.225;
3$ DELAY: Normal(5,.45),,Other:NEXT(4$);

4$ COUNT: Periods,1;

5$ ASSIGN: BSCovers=O:
BSRings=:

BSOther=4;

6$ SCAN: NQ(Latheq).lt.60:NEXT(1$);

7$ CREATE, BSRings,0.001:Uniform(0.64,0.66,1):ARK(TimeIn):NEXT(8$);

8$ ASSIGN: Type=1:
NS=1;

9$ ROUTE: 0.0,seq;
10$ CREATE, BS_Covers,0.001:Uniform(0.64,0.66,1):MARK(TimeIn):NEXT(11$);

11$ ASSIGN: Type=2:
NS=2;

12$ ROUTE: 0.0,seq;
13$ CREATE, BSOther,0.001:Uniform(0.64,0.66,1):ARK(TimeIln):NEXT(14$);

14$ ASSIGN: Type=Discrete(0.5,3,1.0,4):
NS=3;

15$ ROUTE: 0.0,seq;

16$ STATION, Arrive:MARK(TimenQ);

17$ ASSIGN: EndTravel=TNOW+TravelTime;

QArrive QUEUE, ATravelq;

18$ SCAN: TNOW.ge.EndTravel;

19$ TALLY: Difference _arrivaltravel,TNOW-EndTravel,1;

20$ ASSIGN: EndTravel=o;

21$ ROUTE: 0.0,SEQ;

22$ STATION, RLathe_Unload:ARK(Timeln_Q);

Q R Unload QUEUE, RLathe_Unloadq;

23$~ SEIZE, 1,Other:
R Unld,1:MARK(Timeln_Res):NEXT(24$);

24$ DELAY: ProcessTime,,Other:NEXT(25$);

25$ RELEASE: RUnld,1;

26$ ROUTE: 0.0,SEQ;

27$ STATION, Lathe_Station:MARK(Timeln_Q);

Lathe QUEUE, Latheq,376,Lathe_Balk;

28$ SEIZE, 1,Other:
Lathe,1:MARK(TimeIlnRes):NEXT(32$);

32$ TALLY: Type+4,Interval(TimelnQ),1;

29$ DELAY: ProcessTime,,Other:NEXT(30$);

94

30$ RELEASE: Lathe,l;
31$ ROUTE: 0.0,SEQ;
LatheBalk BRANCH, 1,10:

If,Type==1,33$,Yes:
Else,34$,Yes;

33$ STATION, RLathe_Balk:MARK(Timeln_Q);

35$ QUEUE, R_Lathe_Balkq;
36$ SCAN: NQ(Latheq).lt.376;

37$ COUNT: Type+4,1:NEXT(Lathe);

34$ STATION, CLatheBalk;
FloorsCoversLathe QUEUE, C_Lathe_Balkq;

38$ STATION, CGrinder_Unload:NARK(TimeIn Q);

Q_C_GUnload QUEUE, C GrinderUnloadq;
39$ SEIZE, l,Other:

C Unld,l:NEXT(40$);
40$ DELAY: ProcessTime,,Other:NEXT(41$);
41$ RELEASE: CUnld,l;
42$ ROUTE: 0.0,SEQ;

GStat STATION, CGrinder:MARK(TimeIn_Q);

Grind QUEUE, CGrinderq,30,FloorCovers;
43$ SEIZE, l,Other:

CGrind,l:MARK(TimelnRes):NEXT(47$);
47$ TALLY: TqueCGrinderq,Interval(TimeIn_Q),l;
44$ DELAY: ProcessTime,,Other:NEXT(45$);

45$ RELEASE: CGrind,l;

46$ ROUTE: 0.0,SEQ;

Floor Covers QUEUE, CGrinderBalkq;
49$ SCAN: NQ(C_Grinderq).lt.30;

50$ COUNT: BottleneckCovers,l:NEXT(Grind);

48$ STATION, C_GrinderBalk:MARK(TimeIn_Q):NEXT(Floor_Covers);

51$ STATION, C_Grinder_Travel:MARK(TimeIn_Q);

53$ ASSIGN:

EndTravel=TNOW+TRIA(5.266,8.121,91.449)+TRIA(0.417,0.828,2.691)+0.33;
Q_C_G_Travel QUEUE, CGrinder_Travelq;

52$ SCAN: TNOW.ge.EndTravel;

54$ TALLY: Differencecovergrindtravel,TNOW-EndTravel,1;

55$ ROUTE: 0.0,SEQ;

56$ STATION, Others:MARK(Timeln_Q);

Q_0_Unload QUEUE, OUnloadq;
57$ SEIZE, 1,Other:

R Unld,l:MARK(Timeln Res):NEXT(58$);

58$ DELAY: ProcessTime,,Other:NEXT(59$);

59$ RELEASE: R_Unld,l;

60$ ROUTE: 0.0,SEQ;

61$ STATION, C_LatheTravel;

65$ GROUP, ,Temporary:16,Last:NEXT(66$);

66$ ASSIGN:

EndTravel=TNOW+TRIA(6.896,10.110,14.541)+TRIA(0.167,0.707,2.06)+1.34;
62$ QUEUE, Forkliftq;

63$ SEIZE, l,Other:
Forklift,l:NEXT(QC_LTravel);

Q C L Travel QUEUE, CLathe _Travelq;

67$ SCAN: TNOW.ge.EndTravel;

68$ TALLY: Difference_coverlathetravel,TNOW-EndTravel,1;

64$ ROUTE: 0.0,seq;

69$ STATION, OTravel:MARK(Timeln_Q);
73$ GROUP, Type,Temporary:8,Last:NEXT(

7 4
$);

74$ ASSIGN:

EndTravel=TNOW+1.75+TRIA(0.930,2.049,115.34)+TRIA(0.167,23.023,46.279);
70$ QUEUE, Forkliftq;

95

71$ SEIZE, 1,Other:

Forklift,1:NEXT(Q_O_Travel);
Q_0_Travel QUEUE, OTravelq;
75$ SCAN: TNOW.ge.EndTravel;
76$ TALLY: Differenceothertravel,TNOW-EndTravel,1;
72$ ROUTE: 0.0,seq;

77$ STATION, RLatheTravel;
81$ GROUP, ,Temporary:6,Last:NEXT(82$);

82$ ASSIGN:
EndTravel=TNOW+TRIA(1.749,3.099,5.960)+TRIA(0.083,1.077,3.116)+1.58;
78$ QUEUE, Forkliftq;
79$ SEIZE, 1,Other:

Forklift,1:NEXT(Q R Travel);
Q_RTravel QUEUE, R_LatheTravelq;
83$ SCAN: TNOW.ge.EndTravel;
84$ TALLY: Difference_ringtravel,TNOW-EndTravel,1;
80$ ROUTE: 0.0,seq;

85$ STATION, Final Storage;
86$ RELEASE: Forklift,1;
87$ SPLIT::NEXT(88$);
88$ TALLY: Type,TNOW-TimeIn,l;
89$ COUNT: Type,1;

90$ DISPOSE: No;

96

APPENDIX D

D,1 Definition of Global Variables

Option Explicit
**************************** *********** ***** *************************** **** ***

'Variables used to call and fire an already trained ANN
'inarray#(), outarray#(): Define the size of the input and output arrays
'inputs%, output%: Take their value from the network that has been called
'netnumber%: Variable to assign a number to the network
'netisopen%: Variable to determine if a network has been opened or not
'defpath%: Variable to define the path to the correspondent NN network

Public inarray#(), outarray#()
Public inputs%, output%
Public netnumber%, netisopen%
Public defpath%

************** **** **

'The following functions are used to open, fire and close each one of the networks
'Declaring functions NS2-32.DLL

Declare Function OpenNet% Lib "Ns2-32.dll" (ByVal defpath$, netnumber%, inputs%,
output%)

Declare Function FireNet% Lib "Ns2-32.dll" (netnumber%, inputsarray#, outputsarray#)
Declare Function CloseNet% Lib "Ns2-32.dll" (netnumber%)

'Variables used to manage the training of the ANNs
'TotalComb: Stores number of possible combinations of resources' capacities
'w: Used to detect when to write the simulation outputs and change the level of services
'NeuralNetwork: Keeps track of the network selected by the user
'NNnumber: Takes the value of the network that must be fired by the user's inputs
'decision: Takes its value according with the interaction that a user has with the NN_GDS
'user: Defines which type of user is interacting with the prototype

'flag: Flag to indicate that the training file is ready

'changetype: Takes a value according with the change that the non-expert user selects
'experttask: Takes a value according with the interaction that the expert user selects

'unnecesary: Flag to indicate that the user has cancelled the process of make changes

'warning: Flag to warn the user when the number of training patterns is too low

Public TotalComb, w, changetype As Integer

Public NeuralNetwork As String

Public decision, user, flag, NNnumber As Integer
Public experttask, ranges, warning As Integer

Public unnecessary As Integer
Public Combo() As Variant

'Constants used to manage the changes requested by the user and to identify the of user

Public Const ChangeRes As Integer = 1
Public Const ChangeST As Integer = 2

Public Const ChangeRT As Integer = 3

Public Const Expert As Integer = 1
Public Const Nonexpert As Integer = 2

************ ***

'Variables used to make changes in the simulation model

'i,j,k,l,o,p: Used for tagged elements

'MinResl, MaxResl, MinRes2, MaxRes2, MinRes3, MaxRes3:

'Store lower/upper bounds of the ranges for the resources (1:Nurses, 2:Doctors, 3:Beds)

'TheModel: Definition of the Arena model name

'ResourceModule: Definition of the element "resources" as an Arena Module

97

'VariableModule: Definition of the element "variables" as an Arena Module

'ExpressionsModule: Definition of the element "expressions" as an Arena Module
'DelaylModule, Delay2Module, Delay3Module: Definition of block "delay" as Arena Module

'RoutlModule, Rout2Module, Rout3Module, Rout4Module, Rout5Module, Rout6Module:
'Definition of the block "route" as an Arena Module
'ReplicaModule: Definition of the element "replicate" as an Arena Module
'OUT: Definition of the Siman model name

Public i, j, k, 1, o, p As Integer
Public MinResl, MaxResl, MinRes2, MaxRes2, MinRes3, MaxRes3 As Integer
Public TheModel As Arena.Model

Public ResourceModule As Arena.Module
Public VariableModule As Arena.Module
Public ExpressionsModule As Arena.Module
Public DelaylModule As Arena.Module
Public Delay2Module As Arena.Module
Public Delay3Module As Arena.Module
Public RoutlModule As Arena.Module
Public Rout2Module As Arena.Module
Public Rout3Module As Arena.Module
Public Rout4Module As Arena.Module
Public Rout5Module As Arena.Module
Public Rout6Module As Arena.Module
Public ReplicaModule As Arena.Module
Public OUT As SIMAN

98

D.2 VBA UIR Subroutines

D.2.1 Subroutine GDSmain

Sub GDSmain()

;********k** ***************************

'Definition of local variables

'MoreInteraction Variable that determines when the loop stops

Dim StopProcess As Boolean
Dim MoreInteraction As Integer
Dim Hora

flag = 0: MoreInteraction = 1
unnecessary = 0: decision = 0: experttask = 0

Do While MoreInteraction = 1
Load UserType
UserType.Show

StopProcess = UserType.CancelButton.Cancel

Unload UserType

'When the user cancels the program, the replication lenght changes to one (1)

If StopProcess = True Then
MoreInteraction = CancelRun

Else
If user = Nonexpert Then

Load UserMenu

UserMenu.Show

StopProcess = UserMenu.CancelButton.Cancel

Unload UserMenu

If StopProcess = True Then MoreInteraction = CancelRun

'Make Changes
If decision = 1 Then

Call ChangesMain(unnecessary)
If unnecessary = 0 Then

Call SetScenarios
MoreInteraction = 0

End If
If unnecessary = 1 Then MoreInteraction = CancelRun

End If

'Use Current Neural Network
If decision = 2 Then

Call NN2Querying(unnecessary)
Unload ENTRY

End If

Else
Load Expertform

Expertform.Show

StopProcess = Expertform.CancelButton.Cancel

Unload Expertform

99

If StopProcess = True Then Norelnteraction = CancelRun

'Use Current Neural Network

If experttask = 1 Then
Call NN2Querying(unnecessary)
Unload ENTRY

End If

'Training new ANNs

If experttask = 2 Then
Call SetScenarios
Morelnteraction = 0

End If
End If

End If
Loop

End Sub

D.2.2 Subroutine CancelRun

Public Function CancelRun() As Integer

Set TheModel = ThisDocument.Model
i = TheModel.Modules.Find(smFindTag, "Replicas")
Set ReplicaModule = TheModel.Modules(i)
ReplicaModule.Data("NumReps") = 1
ReplicaModule.Data("Length") = 1
ReplicaModule.UpdateShapes
CancelRun = 0

End Function

100

D.3 VBA ACR Subroutines

D.3.1 Subroutine ChangesMain

Sub ChangesMain(unnecessary As Integer)

'Connecting to the model itself. The replication time is returned to its normal value.
'When the user cancels the program, the replication lenght changes to one (1).

Set TheModel = ThisDocument.Model
Set OUT = TheModel.SIMAN

i = TheModel.Modules.Find(smFindTag, "Replicas")
Set ReplicaModule = TheModel.Modules(i)
ReplicaModule.Data("Length") = 5300
ReplicaModule.UpdateShapes

'Declaring local variables
Dim MoreChanges As Integer
Dim StopProcess As Boolean
Dim STNP1, STNP2, STNP3, STNP4, STDP1, STDP2, STDP3, STDP4 As String
Dim STRR, STAT, STDT, STOT1, STOT2 As String
Dim RTETT, RTETTR, RTTTT, RTTTR, RTRTW, RTWTT As String

MoreChanges = 1

Do While MoreChanges = 1
changetype = -1

Load Changesform
Changesform.Show
StopProcess = Changesform.CancelButton.Cancel

Unload Changesform

If changetype = 0 Then
MoreChanges = 0: unnecessary = 0

End If

If StopProcess = True Then

MoreChanges = 0: unnecessary = 1

End If

If changetype = ChangeRes Then
'To show current capacities on the ResCapacity form as reference for the user.

i = TheModel.Modules.Find(smFindTag, "recursos")

j = TheModel.Modules.Find(smFindTag, "variables")
Set ResourceModule = TheModel.Modules(i)
Set VariableModule = TheModel.Modules(j)

Load ResCapacity

MinResl = VariableModule.Data("value(1,6)")
MaxResl = VariableModule.Data("value(l,l)")
MinRes2 = VariableModule.Data("value(1,

7
)")

MaxRes2 = VariableModule.Data("value(1,
2)")

MinRes3 = VariableModule.Data("value(1,8)")
MaxRes3 = VariableModule.Data("value(1,3)")
ResCapacity.MinCurCNurses.Caption = MinResl + 1

ResCapacity.MaxCurCNurses.Caption = MaxResl - 1

ResCapacity.MinCurCDoctors.Caption = MinRes2 + 1

ResCapacity.MaxCurCDoctors.Caption = MaxRes2 - 1

101

ResCapacity.MinCurCBeds.Caption = MinRes3 + 1

ResCapacity.MaxCurCBeds.Caption = MaxRes3 - 1
StopProcess = ResCapacity.CancelButton.Cancel
ranges = 0

ResCapacity.Show

Call CheckingRanges

If StopProcess = False And ranges = 0 Then

The values collected from ResCapacity form should be transferred to the variables
'and then to the Arena Model
'To determine infeasibility the ranges given by the user are increase by one unit up
and one unit down.

MinResl = Val(ResCapacity.MinNewCNurses.Text) - 1
MaxResl = Val(ResCapacity.MaxNewCNurses.Text) + 1
MinRes2 = Val(ResCapacity.MinNewCDoctors.Text) - 1
MaxRes2 = Val(ResCapacity.MaxNewCDoctors.Text) + 1
MinRes3 = Val(ResCapacity.MinNewCBeds.Text) - 1
MaxRes3 = Val(ResCapacity.MaxNewCBeds.Text) + 1

If MinResl <= 0 Then MinResl = 1
If MinRes2 <= 0 Then MinRes2 = 1
If MinRes3 <= 0 Then MinRes3 = 1

Inserting lower bound of resources capacities in RESOURCES element

ResourceModule.Data("CapExp(1)") = MinResl
ResourceModule.Data("CapExp(2)") = MinRes2
ResourceModule.Data("CapExp(3)") = MinRes3
ResourceModule.UpdateShapes

'Inserting upper bound of resources capacities in VARIABLES element for future use
(events)

VariableModule.Data("value(l,l)") = MaxResl
VariableModule.Data("value(1,2)") = MaxRes2
VariableModule.Data("value(1,3)") = MaxRes3
VariableModule.Data("value(1,6)") = MinResl
VariableModule.Data("value(1,7)") = MinRes2
VariableModule.Data("value(1,8)") = MinRes3
VariableModule.UpdateShapes

End If

Unload ResCapacity

End If

If changetype = ChangeST Then
'To show currente service times into ResServiceT form as reference for the user.

i = TheModel.Modules.Find(smFindTag, "expresiones")

j = TheModel.Modules.Find(smFindTag, "RRDelay")
k = TheModel.Modules.Find(smFindTag, "OBSDELAYl")

1 = TheModel.Modules.Find(smFindTag, "OBSDELAY2")

Set ExpressionsModule = TheModel.Modules(i)
Set DelaylModule = TheModel.Modules(j)
Set Delay2Module = TheModel.Modules(k)
Set Delay3Module = TheModel.Modules(l)

Load ResServiceT

ResServiceT.CSTNPl.Caption = ExpressionsModule.Data("expression(1,5)")
ResServiceT.CSTNP2.Caption = ExpressionsModule.Data("expression(1,6)")
ResServiceT.CSTNP3.Caption = ExpressionsModule.Data("expression(1,7)")

102

ResServiceT.CSTNP4.Caption = ExpressionsModule.Data("expression(1,8)")
ResServiceT.CSTDPl.Caption = ExpressionsModule.Data("expression(l,l)")
ResServiceT.CSTDP2.Caption = ExpressionsModule.Data("expression(1,2)")

ResServiceT.CSTDP3.Caption = ExpressionsModule.Data("expression(1,3)")
ResServiceT.CSTDP4.Caption = ExpressionsModule.Data("expression(1,4)")
ResServiceT.CSTAT.Caption = ExpressionsModule.Data("expression(1,15)")
ResServiceT.CSTDT.Caption = ExpressionsModule.Data("expression(1,16)")
ResServiceT.CSTRR.Caption = DelaylModule.Data("Duration")
ResServiceT.CSTOT1.Caption = Delay2Module.Data("Duration")
ResServiceT.CSTOT2.Caption = Delay3Module.Data("Duration")
StopProcess = ResServiceT.CancelButton.Cancel

ResServiceT.Show

If StopProcess = False Then

'The values collected from ResServiceT form should be transferred to the variables and

'then to the Arena Model

STNP1 = ResServiceT.NSTNPl.Text
STNP2 = ResServiceT.NSTNP2.Text
STNP3 = ResServiceT.NSTNP3.Text
STNP4 = ResServiceT.NSTNP4.Text
STDPl = ResServiceT.NSTDPl.Text
STDP2 = ResServiceT.NSTDP2.Text
STDP3 = ResServiceT.NSTDP3.Text
STDP4 = ResServiceT.NSTDP4.Text
STRR = ResServiceT.NSTRR.Text
STAT = ResServiceT.NSTAT.Text
STDT = ResServiceT.NSTDT.Text
STOTl = ResServiceT.NSTOTl.Text
STOT2 = ResServiceT.NSTOT2.Text

'Inserting new service times in the EXPRESSIONS element

ExpressionsModule.Data("expression(1,5)") = STNP1

ExpressionsModule.Data("expression(1,6)") = STNP2
ExpressionsModule.Data("expression(1,7)") = STNP3
ExpressionsModule.Data("expression(1,8)") = STNP4
ExpressionsModule.Data("expression(ll)") = STDP1
ExpressionsModule.Data("expression(1,2)") = STDP2

ExpressionsModule.Data("expression(1,3)") = STDP3

ExpressionsModule.Data("expression(1,4)") = STDP4

ExpressionsModule.Data("expression(1,15)") = STAT
ExpressionsModule.Data("expression(1,16)") = STDT
ExpressionsModule.UpdateShapes

'Inserting other service times into the corresponding DELAY blocks

DelaylModule.Data("Duration") = STRR
DelaylModule.UpdateShapes

Delay2Module.Data("Duration") = STOT1
Delay2Module.UpdateShapes

Delay3Module.Data("Duration") = STOT2

Delay3Module.UpdateShapes

Unload ResServiceT

End If
End If

If changetype = ChangeRT Then

'To show the current routing times on the RoutTimes form as reference to the
user.

i = TheModel.Modules.Find(smFindTag, "ETT")

j = TheModel.Modules.Find(smFindTag, "ETTR")

k = TheModel.Modules.Find(smFindTag, "TRTT")

103

1 = TheModel.Modules.Find(smFindTag, "TRTR")
o = TheModel.Modules.Find(smFindTag, "RTW")

p = TheModel.Modules.Find(smFindTag, "WTT")

Set RoutlModule = TheModel.Modules(i)
Set Rout2Module = TheModel.Modules(j)
Set Rout3Module = TheModel.Modules(k)
Set Rout4Module = TheModel.Modules(1)
Set Rout5Module = TheModel.Modules(o)
Set Rout6Module = TheModel.Modules(p)

Load RoutTimes

RoutTimes.CRTETT.Caption = RoutlModule.Data("Duration")
RoutTimes.CRTETTR.Caption = Rout2Module.Data("Duration")
RoutTimes.CRTTTT.Caption = Rout3Module.Data("Duration")
RoutTimes.CRTTTR.Caption = Rout4Module.Data("Duration")
RoutTimes.CRTRTW.Caption = Rout5Module.Data("Duration")
RoutTimes.CRTWTT.Caption = Rout6Module.Data("Duration")
StopProcess = RoutTimes.CancelButton.Cancel

RoutTimes.Show

If StopProcess = False Then

RTETT = RoutTimes.NRTETT.Text
RTETTR = RoutTimes.NRTETTR.Text
RTTTT = RoutTimes.NRTTTT.Text
RTTTR = RoutTimes.NRTTTR.Text
RTRTW = RoutTimes.NRTRTW.Text
RTWTT = RoutTimes.NRTWTT.Text

'Inserting new routing times into the ROUTE blocks in the model

RoutlModule.Data("Duration") = RTETT

RoutlModule.UpdateShapes

Rout2Module.Data("Duration") = RTETTR

Rout2Module.UpdateShapes

Rout3Module.Data("Duration") = RTTTT

Rout3Module.UpdateShapes

Rout4Module.Data("Duration") = RTTTR
Rout4Module.UpdateShapes

Rout5Module.Data("Duration") = RTRTW

Rout5Module.UpdateShapes

Rout6Module.Data("Duration") = RTWTT

Rout6Module.UpdateShapes

Unload RoutTimes

End If

End If

Loop
End Sub

104

D.3.2 Subroutine SetScenarios

Sub SetScenarios ()

#**************** *****************************

'Once the user has inputted the new capacities and/or service times and/or routing times
'it is necessary to set the stage for re-training process by generating all possible
'combinations of the capacities' values
'Defining local variables

Dim TotalRep As Integer
Dim StepSizel, StepSize2, StepSize3 As Integer
Dim NRepl, NRep2, NRep3 As Integer
Dim indexloopl, indexloop2, indexloop3 As Integer
Dim IndexLoopl, IndexLoopll, IndexLooplll As Integer
Dim IndexLoopA, IndexLoopB, IndexLoopC As Integer

NRepl = 0: NRep2 = 0: NRep3 = 0

'Connecting to the model to extract the value of the variables

i = TheModel.Modules.Find(smFindTag, "recursos")

j = TheModel.Modules.Find(smFindTag, "variables")

Set ResourceModule = TheModel.Modules(i)
Set VariableModule = TheModel.Modules(j)

MinResl = Val(VariableModule.Data("value(1,6)"))
MaxResl = Val(VariableModule.Data("value(l,l)"))
MinRes2 = Val(VariableModule.Data("value(1,7)"))
MaxRes2 = Val(VariableModule.Data("value(1,2)"))
MinRes3 = Val(VariableModule.Data("value(1,8)"))
MaxRes3 = Val(VariableModule.Data("value(1,3)"))

indexloopl = MinResl: indexloop2 = MinRes2: indexloop3 = MinRes3

'The total number of replications must be determined.

'The Step Size is variable and it depends on the range of the capacities.

'For each resource the total number of possible iterations is calculated.

If (MaxResl - MinResl) <= 5 Then

StepSizel = 1
NRepl = (MaxResl - MinResl) + 1

Else
StepSizel = CLng((MaxResl - MinResl) / 4)

If (MaxResl - MinResl) = 6 Then

NRepl = 4

Else
If MinResl + 4 * StepSizel >= MaxResl Then

NRepl = 5

Else
NRepl = 6

End If
End If

End If

If (MaxRes2 - MinRes2) <= 5 Then

StepSize2 = 1

NRep2 = (MaxRes2 - MinRes2) + 1

Else

StepSize2 = CLng((MaxRes2 - MinRes2) / 4)

If (MaxRes2 - MinRes2) = 6 Then

NRep2 = 4
Else

If MinRes2 + 4 * StepSize2 >= MaxRes2 Then

NRep2 = 5
Else

NRep2 = 6

End If

105

End If
End If
If (MaxRes3 - MinRes3) <= 4 Then

StepSize3 = 1

NRep3 = (MaxRes3 - MinRes3) + 1
Else

StepSize3 = CLng((MaxRes3 - MinRes3) / 4)

If (MaxRes3 - MinRes3) = 6 Then

NRep3 = 4
Else

If MinRes3 + 4 * StepSize3 >= MaxRes3 Then

NRep3 = 5
Else

NRep3 = 6
End If

End If
End If

'The total number of replications can be calculated

TotalComb = NRepl * NRep2 * NRep3

TotalRep = TotalComb * 15

'The following command will store the total number of combinations in an ARENA variable.

j = TheModel.Modules.Find(smFindTag, "variables")

Set VariableModule = TheModel.Modules(j)
VariableModule.Data("value(1,4)") = TotalComb

'The Replicate element must be found and modified.

i = TheModel.Modules.Find(smFindTag, "Replicas")

Set ReplicaModule = TheModel.Modules(i)
ReplicaModule.Data("NumReps") = TotalRep

ReplicaModule.UpdateShapes

'Now the combinations must be storaged in a file for later use.

'If the value of CLng((MaxRes - MinRes)/4) is equal to zero, it must be replaced by 1 in

order
'to avoid infinite looping

Open "C:\ThesisImportant\Combination.txt" For Output As #2

For indexloopl = MinResl To MaxResl Step StepSizel

For indexloop2 = MinRes2 To MaxRes2 Step StepSize2

For indexloop3 = MinRes3 To MaxRes3 Step StepSize3

Print #2, indexloopl, indexloop2, indexloop3
Next indexloop3

Next indexloop2
Next indexloopl
If (indexloop3 - MaxRes3) < StepSize3 Then

For IndexLoopl = MinResl To MaxResl Step StepSizel

For IndexLoopII = MinRes2 To MaxRes2 Step StepSize2

Print #2, IndexLoopI, IndexLoopII, MaxRes3

Next IndexLoopII

Next IndexLoopI
End If

If (indexloop2 - MaxRes2) < StepSize2 Then

For IndexLoopI = MinResl To MaxResl Step StepSizel

For IndexLoopIII = MinRes3 To MaxRes3 Step StepSize3

Print #2, IndexLoopI, MaxRes2, IndexLoopIII

Next IndexLoopIII

Next IndexLoopl

End If

If (indexloopl - MaxResl) < StepSizel Then

For IndexLoopII = MinRes2 To MaxRes2 Step StepSize2

For IndexLooplll = MinRes3 To MaxRes3 Step StepSize3

106

Print #2, MaxResi, IndexLoopil, IndexLooplill
Next IndexLoopIll

Next IndexLooplI
End If
If (indexloop3 - MaxRes3) < StepSize3 And (indexloop2 - MaxRes2) < StepSize2 And

(indexloopi - MaxResl) < StepSizel Then
Print #2, MaxResl, MaxRes2, MaxRes3

End If
If (indexloop3 - MaxRes3) < StepSize3 And (indexloop2 - MaxRes2) < StepSize2 Then

For IndexLoopA = MinResl To MaxResl Step StepSizel
Print #2, IndexLoopA, MaxRes2, MaxRes3

Next IndexLoopA
End If
If (indexloop3 - MaxRes3) < StepSize3 And (indexloopl - MaxResl) < StepSizel Then

For IndexLoopB = MinRes2 To MaxRes2 Step StepSize2
Print #2, MaxResl, IndexLoopB, MaxRes3

Next IndexLoopB
End If
If (indexloop2 - MaxRes2) < StepSize2 And (indexloopl - MaxResl) < StepSizel Then

For IndexLoopC = MinRes3 To MaxRes3 Step StepSize3
Print #2, MaxResl, MaxRes2, IndexLoopC

Next IndexLoopC
End If

Close #2

'Initializing the w Record

j = TheModel.Modules.Find(smFindTag, "variables")
Set VariableModule = TheModel.Modules(j)
VariableModule.Data("value(1,5)") = 1

End Sub

D.3.3 Subroutine CheckReplications

Public Sub CheckReplications()

'This subroutine is in charge of checking the number of replications and storing

'the statistics of interest when required

'vNRep, vMRep: Store current replication value, and the maximum number of replications

'CapaNurses, CapaDoctors, CapaBeds: Store the level of each one of the resources

'AvgTimeQNurses, AvgTimeQDoctors, AvgTimeQBeds, AvgUtilNurses, AvgUtilDoctors,

'AvgUtilBeds: Take the outputs of the simulation model every 15 replications

'NursesC, DoctorsC, BedsC: Change the level of the resources every 15 replications

'Tiempo, Hora: Establish stopping time of the total number of replications

Dim vNRep, vMRep As Integer

Dim CapaNurses, CapaDoctors, CapaBeds As Double

Dim AvgTimeQNurses, AvgTimeQDoctors, AvgTimeQBeds, AvgUtilNurses As Double

Dim AvgUtilDoctors, AvgUtilBeds, NursesC, DoctorsC, BedsC As Double

Dim Tiempo, Hora

'Connecting to the model

Set TheModel = ThisDocument.Model
Set OUT = TheModel.SIMAN

vNRep = OUT.RunCurrentReplication
vMRep = OUT.RunMaximumReplications

j = TheModel.Modules.Find(smFindTag, "variables")

Set VariableModule = TheModel.Modules(j)
w = VariableModule.Data("value(1,5)")

107

If vNRep = 15 * w Then

If w = 1 Then

'The values of the different possible combinations must be moved from the text file
'created in RunBegin to a VBA array one time.
'First we have to find the size of the array from the Variables Element

TotalComb = VariableModule.Data("value(1,4)")
ReDim Combo(1 To TotalComb, 3)

'Second the information is passed from the file to the array

Open "C:\ThesisImportant\Combination.txt" For Input As #3
For i = 1 To TotalComb

Input #3, Combo(i, 1), Combo(i, 2), Combo(i, 3)
Next i
Close #3

'The ASCII file where the training data is stored must be opened once for Output
(creation)
'and the columns' labels must be written

Open "C:\ThesisImportant\TrainingData.txt" For Output As #1
Print #1, "NoBeds", "NoDoc", "NoNur", "AveQNur", "UtilNur", "AveQDoc",

"UtilDoc", "AveQBed", "UtilBed"

'This is to store the statistics on the partial average results.
'First we have to find the modules and take the information about the capacities.

i = TheModel.Modules.Find(smFindTag, "recursos")
Set ResourceModule = TheModel.Modules(i)

CapaNurses = ResourceModule.Data("CapExp(1)")

CapaDoctors = ResourceModule.Data("CapExp(2)")
CapaBeds = ResourceModule.Data("CapExp(3)")

'Second we have to collect information about the measures of performance

AvgTimeQNurses = OUT.TallyAverage(8) + OUT.TallyAverage(9) +

OUT.TallyAverage(10)
AvgTimeQDoctors = OUT.TallyAverage(11)
AvgTimeQBeds = OUT.TallyAverage(l) + OUT.TallyAverage(2) +

OUT.TallyAverage(3)
AvgUtilNurses = OUT.DStatAverage(14)
AvgUtilDoctors = OUT.DStatAverage(15)
AvgUtilBeds = OUT.DStatAverage(16)

'Every 15 records the following values must be stored.

Print #1, CapaBeds, CapaDoctors, CapaNurses, AvgTimeQNurses, AvgUtilNurses,

AvgTimeQDoctors, AvgUtilDoctors, AvgTimeQBeds, AvgUtilBeds

Close #1

'After the values have been stored, the tallies and dstats must be cleared

OUT.StatisticsClearAll

'The new combination of capacities must be replaced on the Resources Element

If w <> TotalComb Then

ResourceModule.Data("CapExp(1)") = Val(Combo(w + 1, 1))
ResourceModule.Data("CapExp(

2
)") = Val(Combo(w + 1, 2))

ResourceModule.Data("CapExp(
3)") = Val(Combo(w + 1, 3))

ResourceModule.UpdateShapes

w = w + 1

108

'The value of w must be updated in the VARIABLES Element to use it later

VariableModule.Data("value(1,5)") = w
End If

Else

'After the ASCII file has been created it is opened for Append every 15 replications

Open "C:\ThesisImportant\TrainingData.txt" For Append As #1

'This is to store the statistics on the partial average results.

'First we have to find the modules and take the information about the capacities.

i = TheModel.Modules.Find(smFindTag, "recursos")
Set ResourceModule = TheModel.Modules(i)

CapaNurses = ResourceModule.Data("CapExp(1)")
CapaDoctors = ResourceModule.Data("CapExp(2)")
CapaBeds = ResourceModule.Data("CapExp(3)")

'Second we have to collect information about the measures of performance

AvgTimeQNurses = OUT.TallyAverage(8) + OUT.TallyAverage(9) +
OUT.TallyAverage(10)

AvgTimeQDoctors = OUT.TallyAverage(11)
AvgTimeQBeds = OUT.TallyAverage(1) + OUT.TallyAverage(2) +

OUT.TallyAverage(3)
AvgUtilNurses = OUT.DStatAverage(14)
AvgUtilDoctors = OUT.DStatAverage(15)
AvgUtilBeds = OUT.DStatAverage(16)

'Every 15 records the following values must be stored.

Print #1, CapaBeds, CapaDoctors, CapaNurses, AvgTimeQNurses, AvgUtilNurses,
AvgTimeQDoctors, AvgUtilDoctors, AvgTimeQBeds, AvgUtilBeds

Close #1

'After the values have been stored, the tallies and dstats must be cleared

OUT.StatisticsClearAll

'The new combination of capacities must be replaced on the Resources Element

If w <> TotalComb Then

ResourceModule.Data("CapExp(1)") = Val(Combo(w + 1, 1))
ResourceModule.Data("CapExp(

2
)") = Val(Combo(w + 1, 2))

ResourceModule.Data("CapExp(3)") = Val(Combo(w + 1, 3))

ResourceModule.UpdateShapes

w = w + 1

'The value of w must be updated in the VARIABLES Element to use it later

VariableModule.Data("value(1,5)") = w
End If

End If

End If

'If it ws the last replication, train ANNs

If vNRep = vMRep Then
'Feedback for the user

Tiempo = Now
MsgBox Tiempo

MsgBox "Training file has been generated"

Call NN2Training

'Feedback for the user

109

Hora = Now
MsgBox Hora
MsgBox "The new networks have been trained and you can use them now"
flag = 1

End If

End Sub

D.3.4 Subroutine CheckingRanges

Sub CheckingRanges()

'Checks if retraining is really needed or not
If Val(ResCapacity.MinNewCNurses.Text) >= MinResl And

Val(ResCapacity.MaxNewCNurses.Text) <= MaxResl Then
If Val(ResCapacity.MinNewCDoctors.Text) >= MinRes2 And

Val(ResCapacity.MaxNewCDoctors.Text) <= MaxRes2 Then
If Val(ResCapacity.MinNewCBeds.Text) >= MinRes3 And

Val(ResCapacity.MaxNewCBeds.Text) <= MaxRes3 Then
MsgBox "These ranges of level of resources do not require to re-train the

network." & "You can use the current ANN if these are your only changes."
ranges = 1

End If
End If

End If

End Sub

110

D.4 VBA NCR Subroutines

D.4.1 Subroutine TrainingNN2

Sub NN2Training()

* * * **************** *** ******** ****** **** *** *******

'NNOpen: Variable name for the execution of the NS2.exe application

'IMOpen: Variable name for the execution of the Impascii.exe application

'Testset: Variable name for the execution of the Testset.exe application

'Setinput: Variable name for the execution of Netinput.exe application

'Train: Variable name for the execution of the Begtrain.exe application

'Deff: Variable name for the execution of the Dllprime.exe application

'V~code: Variable name for the execution of the Srcgen.exe application
'Start: Timer used to allow the system to perform the orders given by sendkeys statement

'Contador: String version of "Contando" used to store each ".def" and ".vb" files

'Contando: Integer value that records which network number is being created ("counting")

'indexloop: Used in the loop to count the number of line

'lineas: Integer value that records how many lines are in the VB file ("lines")

'dummy, reference: Variables used to store temporarly the content of the VB file lines

Dim y, wl, w2, w3, w4, w5, w6, Contando, indexloop, lineas As Integer

Dim Start
Dim NNOpen, IMOpen, Testset

Dim Setinput, Train, Deff, VBcode
Dim dummy, reference

Dim contador As String

Contando = 0

'Creating the description file ".dsc"

NNOpen = Shell("C:\NeuroShell 2\Ns2.exe", vbNormalFocus)
AppActivate NNOpen

SendKeys "%FNChanges.dsc%S%FS%FX", True

'Importing the training data that have been allocated in the text file

IMOpen = Shell("C:\NeuroShell 2\Impascii.exe", vbNormalFocus)
AppActivate IMOpen

SendKeys "%FATrainingData.txt%O%FPChanges.pat%S %IB", True

AppActivate "ASCII File Import"

y = 3 ' Set duration.

Start = Timer ' Set start time.

Do While Timer < Start + y

DoEvents ' Yield to other processes.

Loop

SendKeys "{ENTER}", True

SendKeys "%FX", True

'Extracting testing set

Testset = Shell("C:\NeuroShell 2\Testset.exe", vbNormalFocus)

AppActivate Testset

SendKeys "%FSChanges.pat%O%EB", True

y = 3 ' Set duration.
Start = Timer ' Set start time.

Do While Timer < Start + y
DoEvents ' Yield to other processes.

111

Loop

SendKeys "{ENTER}", True
SendKeys "%FX", True

'Setting inputs and outputs

For wl = 0 To 1
For w2 = 0 To 1

For w3 = 0 To 1
For w4 = 0 To 1

For w5 = 0 To 1
For w6 = 0 To 1

If wl <> 0 Or w2 <> 0 Or w3 <> 0 Or w4 <> 0 Or w5 <> 0 Or w6 <> 0
Then

Setinput = Shell("C:\NeuroShell 2\Netinput.exe",

vbNormalFocus)
AppActivate Setinput
SendKeys "%FPChanges.patO{RIGHT}{ENTER}", True

SendKeys "{TAB}A{RIGHT}A{RIGHT}A{RIGHT}", True

If wl = 1 Then

SendKeys "I{RIGHT}"
Else

SendKeys "{BACKSPACE}{RIGHT}"

End If
If w2 = 1 Then

SendKeys "I{RIGHT}"

Else
SendKeys "{BACKSPACE}{RIGHT}"

End If
If w3 = 1 Then

SendKeys "I{RIGHT}"

Else
SendKeys "{BACKSPACE}{RIGHT}"

End If
If w4 = 1 Then

SendKeys "I{RIGHT}"
Else

SendKeys "{BACKSPACE}{RIGHT}"
End If

If w5 = 1 Then
SendKeys "I{RIGHT}"

Else
SendKeys "{BACKSPACE}{RIGHT}"

End If
If w6 = 1 Then

SendKeys "I"
Else

SendKeys "{BACKSPACE}"

End If
SendKeys "%SC", True

y = 3 Set duration.
Start = Timer Set start time.

Do While Timer < Start + y
DoEvents Yield to other processes.

Loop

SendKeys "%FX", True

'Training a simple NN

Train = Shell("C:\NeuroShell 2\Begtrain.exe", vbNormalFocus)

AppActivate Train

SendKeys "%FSChanges.pat%O{RIGHT}{TAB

5}{ENTER}%TS{RIGHT}{ENTER}", True

y = 45 'Set duration to 45 seconds.

Start = Timer ' Set start time.

112

Do While Timer < Start + y
DoEvents Yield to other processes.

Loop

SendKeys "%TI", True

y = 3 ' Set duration.
Start = Timer ' Set start time.
Do While Timer < Start + y

DoEvents Yield to other processes.
Loop

SendKeys "{ENTER}", True
SendKeys "%FE", True

Contando = Contando + 1

contador = CStr(Contando)

'Generating def file

Deff = Shell("C:\NeuroShell 2\Dllprime.exe", vbNormalFocus)
AppActivate Deff

SendKeys "%FCChanges.fig%O%FDChanges", True

SendKeys contador, True
SendKeys ".def", True
SendKeys "%S%GG", True

y = 15 ' Set duration.
Start = Timer Set start time.
Do While Timer < Start + y

DoEvents ' Yield to other processes.
Loop

SendKeys "{ENTER}", True
SendKeys "%FX", True

'Generating VB code

VBcode = Shell ("C:\NeuroShell 2\Srcgen.exe", vbNormalFocus)
AppActivate VBcode

SendKeys "{DOWN}%FCChanges.fig%O%FSChangesl", True

SendKeys contador, True

SendKeys ".vb", True

SendKeys "%S%GG", True

y = 15 Set duration.
Start = Timer ' Set start time.
Do While Timer < Start + y

DoEvents ' Yield to other processes.

Loop

SendKeys "{ENTER}", True

SendKeys "%FX", True

'Cleaning the VB code to remove innecessary information

Open "C:\Thesislmportant\Changesl" + contador + ".vb" For

Input As #100
lineas = 0
Do While Not EOF(100)

Line Input #100, reference

lineas = lineas + 1
Loop

Close #100
Open "C:\Thesislmportant\Changesl" + contador + ".vb" For

Input As #101
Open "C:\Thesislmportant\Changes" + contador + ".vb" For

Output As #102

113

Open "C:\ThesisImportant\Dummy.vb" For Output As #103
For indexloop = 1 To lineas

If indexloop < 7 Then
Line Input #101, dummy
Print #103, dummy

End If
If (indexloop >= 7) And (indexloop <= (lineas - 13))

Then

Line Input #101, dummy
Print #102, dummy

End If
If (indexloop > (lineas - 13)) And (indexloop <

(lineas - 9)) Then
Line Input #101, dummy
Print #103, dummy

End If
If (indexloop = (lineas - 9)) Then

Line Input #101, dummy

Print #102, dummy

End If
If (indexloop > (lineas - 9)) And (indexloop <

(lineas - 5)) Then
Line Input #101, dummy

Print #103, dummy

End If
If (indexloop = (lineas - 5)) Then

Line Input #101, dummy
Print #102, dummy

End If
If (indexloop > (lineas - 5)) Then

Line Input #101, dummy

Print #103, dummy

End If
Next indexloop

Close #101: Close #102: Close #103
Kill "C:\Thesislmportant\Changesl" + contador + ".vb"

Kill "C:\Thesislmportant\Dummy.vb"

End If
Next w6

Next w5
Next w4

Next w3
Next w2

Next wl

End Sub

D.4.2 Subroutine SelectingNetworks

Sub SelectingNetwork()

'Declaring local variables

'Networkarray Array that stored the different selection of inputs that could occur

'mycounter Variable used to set the position of any array in the Networkarray

'Referencia Used to create the Networkarray (Referencia, spanish work for Reference)

Dim y1, y2, y3, y4, y5, y6 As Integer

Dim Referencia As String

Dim Networkarray(1 To 63)

Dim mycounter, z As Integer

'Variables used to generated all possible combinations of inputs
and to detec

'which inputs were selected by the user

114

mycounter = 1
For yl = 0 To 1

For y2 = 0 To 1
For y3 = 0 To 1

For y4 = 0 To 1
For y5 = 0 To 1

For y6 = 0 To 1
If yl <> 0 Or y2 <> 0 Or y3 <> 0 Or y4 <> 0 Or y5 <> 0 Or y6 <> 0

Then

Referencia = CStr(yl) + CStr(y2) + CStr(y3) + CStr(y4) +
CStr(y5) + CStr(y6)

If NeuralNetwork = Referencia Then NNnumber = mycounter
mycounter = mycounter + 1

End If
Next y6

Next y5
Next y4

Next y3
Next y2

Next yl

End Sub

D.4.3 Subroutine NN2Using

Sub NN2Using(unnecessary As Integer)

'Declaring local variables
'Flags used to detect the value of the inputs selected by the user and to store these

values in the inarray
Dim y%
Dim looplndex As Integer

Dim Flags(1 To 6)

Dim outl, out2, out3 As Integer
Dim indexloop, NumberInputs As Integer

'Connecting to NeuroShell and opening the requested Neural Network

If Not netisopen Then

y = OpenNet("C:\Thesislmportant\Changes" + CStr(NNnumber) + ".def", netnumber,

inputs, output)
If y > 0 Then

MsgBox "Error returned from OpenNet: " + CStr(y) + ".", 16, "Error"

End If
End If

'Retrieving values from ENTRY form as Inputs and loading these values in the OUTS form

ReDim inarray#(inputs)

ReDim outarray#(output)

Load OUTS

'The labels are not active unless the specific input is selected to fire the network

OUTS.TNLabel.Enabled = False

OUTS.UNLabel.Enabled = False

OUTS.TDLabel.Enabled = False

OUTS.UDLabel.Enabled = False

OUTS.TBLabel.Enabled = False

OUTS.UBLabel.Enabled = False

For looplndex = 1 To inputs
If ENTRY.QNurses.Text <> "" Then

inarray(loopIndex) = Val(ENTRY.QNurses.Text)
OUTS.TNLabel.Enabled = True

115

OUTS.TNOUTS.Caption = Val(ENTRY.QNurses.Text)
ENTRY.QNurses.Text = ""

Else

If ENTRY.UNurses.Text <> "" Then
inarray(looplndex) = Val(ENTRY.UNurses.Text)
OUTS.UNLabel.Enabled = True
OUTS.UNOUTS.Caption = Val(ENTRY.UNurses.Text)
ENTRY.UNurses.Text = ""

Else
If ENTRY.QMD.Text <> "" Then

inarray(looplndex) = Val(ENTRY.QMD.Text)
OUTS.TDLabel.Enabled = True
OUTS.TDOUTS.Caption = Val(ENTRY.QMD.Text)
ENTRY. QMD. Text = ""

Else
If ENTRY.UMD.Text <> "" Then

inarray(looplndex) = Val(ENTRY.UMD.Text)
OUTS.UDLabel.Enabled = True

OUTS.UDOUTS.Caption = Val(ENTRY.UMD.Text)
ENTRY.UMD.Text = ""

Else

If ENTRY.QBed.Text <> "" Then
inarray(looplndex) = Val(ENTRY.QBed.Text)
OUTS.TBLabelEnabled True

OUTS.TBOUTS.Caption = Val(ENTRY.QBed.Text)
ENTRY.QBed.Text = ""

Else
If ENTRY.UBed.Text <> "" Then

inarray(looplndex) = Val(ENTRY.UBed.Text)
OUTS.UBLabel.Enabled = True

OUTS.UBOUTS.Caption = Val(ENTRY.UBed.Text)
ENTRY. UBed.Text = ""

End If
End If

End If
End If

End If
End If

Next

'Actual firing of the NN

y = FireNet(netnumber, inarray(l), outarray(l))

If y > 0 Then
MsgBox "Error returned from FireNet:" + CStr(y) + ".", 16, "Error"

End If

'Loading the results in the OUTS form

If unnecessary = 0 Then

If outarray(3) <= MinResl + 1 Then

OUTS.Nurses.Caption = MinResl + 1

Else
If outarray(3) > MaxResl - 1 Then

OUTS.Nurses.Caption = "N/A"

OUTS.InfeasibleNurses.Caption = "Your current upper bound of " + (MaxResl

- 1) + " in number of nurses does not allow to achieve your goal"

Else
OUTS.Nurses.Caption = Format$(outarray(3), "00")

OUTS.InfeasibleNurses.Caption = "N/A"

End If

End If
If outarray(

2
) <= MinRes2 + 1 Then

OUTS.Doctors.Caption = MinRes2 + 1

Else
If outarray(2) > MaxRes2 - 1 Then

OUTS.Doctors.Caption = "N/A"

OUTS.InfeasibleMD.Caption = "Your current upper bound of " + (MaxRes2 -

1) + " in number of doctors does not allow to achieve your goal"

116

Else
OUTS.Doctors.Caption = Format$(outarray(2), "00")
OUTS.InfeasibleMD.Caption = "N/A"

End If
End If
If outarray(1) <= MinRes3 + 1 Then

OUTS.Beds.Caption = MinRes3 + 1
Else

If outarray(1) > MaxRes3 - 1 Then
OUTS.Beds.Caption = "N/A"
OUTS.InfeasibleBeds.Caption = "Your current upper bound of " + (MaxRes3 -

1) + " in number of beds does not allow to achieve your goal"
Else

OUTS.Beds.Caption = Format$(outarray(1), "00")

OUTS.InfeasibleBeds.Caption = "N/A"
End If

End If
Else

If outarray(3) <= MinResl + 1 Then
OUTS.Nurses.Caption = MinResl + 1

Else
If outarray(3) > MaxResl - 1 Then

OUTS.Nurses.Caption = Format$(outarray(3), "00")
OUTS.InfeasibleNurses.Caption = "Your current upper bound of " + (MaxResl

- 1) + " in number of nurses does not allow to achieve your goal. Suggested value is

displayed for your reference."
Else

OUTS.Nurses.Caption = Format$(outarray(3), "00")
OUTS.InfeasibleNurses.Caption = "N/A"

End If

End If

If outarray(2) <= MinRes2 + 1 Then

OUTS.Doctors.Caption = MinRes2 + 1
Else

If outarray(2) > MaxRes2 - 1 Then

OUTS.Doctors.Caption = Format$(outarray(2), "00")
OUTS.InfeasibleMD.Caption = "Your current upper bound of " + (MaxRes2 -

1) + " in number of doctors does not allow to achieve your goal. Suggested value is

displayed for your reference."
Else

OUTS.Doctors.Caption = Format$(outarray(2), "00")
OUTS.InfeasibleMD.Caption = "N/A"

End If
End If

If outarray(1) <= MinRes3 + 1 Then

OUTS.Beds.Caption = MinRes3 + 1
Else

If outarray(1) > MaxRes3 - 1 Then

OUTS.Beds.Caption = Format$(outarray(1), "00")
OUTS.InfeasibleBeds.Caption = "Your current upper bound of " + (MaxRes3 -

1) + " in number of beds does not allow to achieve your goal. Suggested value is

displayed for your reference."
Else

OUTS.Beds.Caption = Format$(outarray(1), "00")
OUTS.InfeasibleBeds.Caption = "N/A"

End If

End If

End If

'Closing the NN after it has been used

y = CloseNet(netnumber)

End Sub

117

D.4.4 Subroutine RunNewANN

Sub RunNewANN()
'Declaration of local variables

Dim StopProcess As Boolean
Dim MoreRuns, unnecessary As Integer
unnecessary = 0
MoreRuns = 1

Do While MoreRuns = 1
Load Aftertraining
Aftertraining.Show

StopProcess = Aftertraining.CancelButton.Cancel

Unload Aftertraining

If StopProcess Then
MsgBox "Thanks for using this program"
MoreRuns = 0

Else
Call NN2Querying(unnecessary)

End If
Loop

End Sub

D.4.5 Subroutine NN2Querying

Sub NN2Querying(unnecessary As Integer)

'Declarin local variables
Dim StopProcess As Boolean

'This routine takes all the actions related with querying the already trained networks

Set TheModel = ThisDocument.Model
Set OUT = TheModel.SIMAN

j = TheModel.Modules.Find(smFindTag, "variables")
Set VariableModule = TheModel.Modules(j)

Load ENTRY

ENTRY.MinCurCNurses.Caption = VariableModule.Data("value(1,6)") + 1

ENTRY.MaxCurCNurses.Caption = VariableModule.Data("value(l,l)") - 1

ENTRY.MinCurCDoctors.Caption = VariableModule.Data("value(1,
7
)") + 1

ENTRY.MaxCurCDoctors.Caption = VariableModule.Data("value(1,2)") - 1
ENTRY.MinCurCBeds.Caption = VariableModule.Data("value(1,8)") + 1

ENTRY.MaxCurCBeds.Caption = VariableModule.Data("value(1,3)") - 1

ENTRY.Show

StopProcess = ENTRY.CancelButton.Cancel

'ENTRY form remains loaded but hiddent for th use of the following routines

If Not StopProcess Then

Call SelectingNetwork

Call NN2Using(unnecessary)

OUTS.Show
Unload OUTS

End If
End Sub

118

D.5 VBA Support Subroutines

Sub Letter(tecla As MSForms.ReturnInteger)

'Checks to make sure numeric values are entered
'tecla = Spanish work for "key", checks ASCII values of keys pressed

If tecla < 46 Or tecla > 57 Then
MsgBox "Please enter a numeric value."
tecla = 0

End If

End Sub

Sub Letterlnt(tecla As MSForms.ReturnInteger)

'Checks to make sure integer values are entered

If tecla < 48 Or tecla > 57 Then
MsgBox "Please enter an integer value."

tecla = 0
End If

End Sub

119

APPENDIX E

E.1 Example of VB Code Generated by NeuroShell

Dim netsum As Double
Static feature2(14) As Double

'outarray(1) is #_beds
'outarray(2) is #_doctors
'outarray(3) is #_nurses
'inarray(1) is AveQNurse
'inarray(2) is UtilNurse
'inarray(3) is AveQMD
'inarray(4) is UtilMD
'inarray(5) is AveQBed
'inarray(6) is UtilBed

If (InArray(1) < 0) Then InArray(1) = 0
If (InArray(1) > 10.359) Then InArray(1) = 10.359

InArray(1) = InArray(1) / 10.359

If (InArray(2) < 0.468) Then InArray(2) = 0.468
If (InArray(2) > 1) Then InArray(2) = 1

InArray(2) = (InArray(2) - 0.468) / 0.532

If (InArray(3) < 0) Then InArray(3) = 0

If (InArray(3) > 2.637) Then InArray(3) = 2.637

InArray(3) = InArray(3) / 2.637

If (InArray(4) < 0.106) Then InArray(4) = 0.106

If (InArray(4) > 0.979) Then InArray(4) = 0.979
InArray(4) = (InArray(4) - 0.106) / 0.873

If (InArray(5) < 0.465) Then InArray(5) = 0.465

If (InArray(5) > 5031) Then InArray(5) = 5031

InArray(5) = (InArray(5) - 0.465) / 5030.535

If (InArray(6) < 0.553) Then InArray(6) = 0.553

If (InArray(6) > 1) Then InArray(6) = 1

InArray(6) = (InArray(6) - 0.553) / 0.447

netsum = 0.1042796
netsum = netsum + InArray(1) * 1.006627

netsum = netsum + InArray(2) * -0.6878272

netsum = netsum + InArray(3) * 0.9260939

netsum = netsum + InArray(4) * 1.469276

netsum = netsum + InArray(5) * 0.7912758

netsum = netsum + InArray(6) * 0.3663329

feature2(1) = 1 / (1 + Exp(-netsum))

netsum = -0.3040561
netsum = netsum + InArray(1) * 0.7371953

netsum = netsum + InArray(2) * 2.447581

netsum = netsum + InArray(3) * 0.5535823

netsum = netsum + InArray(4) * 0.9191557

netsum = netsum + InArray(5) * -0.6306052

netsum = netsum + InArray(6) * -0.3387515

feature2(
2
) = 1 / (1 + Exp(-netsum))

netsum = 0.8736666
netsum = netsum + InArray(1) * -4.909794

netsum = netsum + InArray(2) * 0.1738508

netsum = netsum + InArray(3) * -0.2231777

120

netsum = netsum + InArray(4) * 0.1888949
netsum = netsum + InArray(5) * -3.22939
netsum = netsum + InArray(6) * -2.364963
feature2(3) = 1 / (1 + Exp(-netsum))

netsum = 1.376303
netsum = netsum + InArray(1) * 0.07068385
netsum = netsum + InArray(2) * -0.0350857
netsum = netsum + InArray(3) * -0.7291315
netsum = netsum + InArray(4) * -16.32992
netsum = netsum + InArray(5) * -2.29684
netsum = netsum + InArray(6) * -0.601949
feature2(4) = 1 / (1 + Exp(-netsum))

netsum = -2.001306
netsum = netsum + InArray(1) * 2.38802
netsum = netsum + InArray(2) * -2.828386
netsum = netsum + InArray(3) * -0.5921768
netsum = netsum + InArray(4) * -1.173817

netsum = netsum + InArray(5) * 7.261665

netsum = netsum + InArray(6) * 1.133806

feature2(5) = 1 / (1 + Exp(-netsum))

netsum = -0.5886854
netsum = netsum + InArray(1) * 0.0772596
netsum = netsum + InArray(2) * 4.488652

netsum = netsum + InArray(3) * -0.1507872

netsum = netsum + InArray(4) * -0.9915754

netsum = netsum + InArray(5) * 1.332071

netsum = netsum + InArray(6) * 1.277141

feature2(6) = 1 / (1 + Exp(-netsum))

netsum = -0.7312872
netsum = netsum + InArray(1) * 0.7232761
netsum = netsum + InArray(2) * 0.4206014
netsum = netsum + InArray(3) * 0.2214112
netsum = netsum + InArray(4) * 0.2579994
netsum = netsum + InArray(5) * 0.67212
netsum = netsum + InArray(6) * 0.1677995
feature2(7) = 1 / (1 + Exp(-netsum))

netsum = -0.1207742

netsum = netsum + InArray(1) * -3.367627

netsum = netsum + InArray(2) * -0.5818383

netsum = netsum + InArray(3) * -1.172969

netsum = netsum + InArray(4) * 0.1938878
netsum = netsum + InArray(5) * 5.607226

netsum = netsum + InArray(6) * 2.862845

feature2(8) = 1 / (1 + Exp(-netsum))

netsum = 0.07232291
netsum = netsum + InArray(1) * -1.174228

netsum = netsum + InArray(2) * 0.5826449

netsum = netsum + InArray(3) * -0.01743032

netsum = netsum + InArray(4) * -3.745018

netsum = netsum + InArray(5) * 1.747035

netsum = netsum + InArray(6) * 0.4398864

feature2(9) = 1 / (1 + Exp(-netsum))

netsum = 0.3268138
netsum = netsum + InArray(1) * -2.094425

netsum = netsum + InArray(2) * -1.241517

netsum = netsum + InArray(3) * -0.007554269

netsum = netsum + InArray(4) * 0.8405895

netsum = netsum + InArray(5) * 1.056902

netsum = netsum + InArray(6) * 0.8749657

feature2(10) = 1 / (1 + Exp(-netsum))

netsum = -0.1117487

121

netsum = netsum + InArray(1) * -7.109506
netsum = netsum + InArray(2) * 1.532805
netsum = netsum + InArray(3) * -0.5597914
netsum = netsum + InArray(4) * 0.3092887
netsum = netsum + InArray(5) * -2.191923
netsum = netsum + InArray(6) * 1.751261
feature2(11) = 1 / (1 + Exp(-netsum))

netsum = 1.153579
netsum = netsum + InArray(1) * -0.6705236
netsum = netsum + InArray(2) * 0.167992
netsum = netsum + InArray(3) * -0.1313259
netsum = netsum + InArray(4) * 2.44497
netsum = netsum + InArray(5) * -0.4890198
netsum = netsum + InArray(6) * 0.2461803
feature2(12) = 1 / (1 + Exp(-netsum))

netsum = -1.707224
netsum = netsum + InArray(1) * 1.425442

netsum = netsum + InArray(2) * 1.828459

netsum = netsum + InArray(3) * 2.210742

netsum = netsum + InArray(4) * 0.7633827
netsum = netsum + InArray(5) * -0.5835367

netsum = netsum + InArray(6) * -3.586008

feature2(13) = 1 / (1 + Exp(-netsum))

netsum = 1.623453

netsum = netsum + InArray(1) * 0.5754997
netsum = netsum + InArray(2) * -0.05540909

netsum = netsum + InArray(3) * -0.3254807

netsum = netsum + InArray(4) * 0.4176272
netsum = netsum + InArray(5) * -5.029757

netsum = netsum + InArray(6) * -2.107037

feature2(14) = 1 / (1 + Exp(-netsum))

netsum = 1.796285
netsum = netsum + feature2(1) * 2.517645

netsum = netsum + feature2(2) * 0.4948037
netsum = netsum + feature2(3) * -5.311374

netsum = netsum + feature2(4) * -0.0650139

netsum = netsum + feature2(5) * -3.724136

netsum = netsum + feature2(6) * 0.3030719

netsum = netsum + feature2(7) * 1.19422

netsum = netsum + feature2(8) * -4.369812

netsum = netsum + feature2(9) * 2.221775

netsum = netsum + feature2(10) * 2.710334

netsum = netsum + feature2(11) * -4.627873

netsum = netsum + feature2(12) * 0.2571157

netsum = netsum + feature2(13) * 3.835396

netsum = netsum + feature2(14) * 3.163106

OutArray(1) = 1 / (1 + Exp(-netsum))

netsum = 0.6977847
netsum = netsum + feature2(1) * -1.129638

netsum = netsum + feature2(2) * -2.135933

netsum = netsum + feature2(3) * -0.5673947

netsum = netsum + feature2(4) * 10.47204

netsum = netsum + feature2(5) * -1.8042

netsum = netsum + feature2(6) * 1.694486

netsum = netsum + feature2(
7
) * -1.139969

netsum = netsum + feature2(8) * 0.851368

netsum = netsum + feature2(9) * 3.468216

netsum = netsum + feature2(10) * -0.1665898

netsum = netsum + feature2(11) * -1.492202

netsum = netsum + feature2(1
2
) * -1.271609

netsum = netsum + feature2(1
3
) * -0.2631445

netsum = netsum + feature2(14) * 2.396252

OutArray(
2
) = 1 / (1 + Exp(-netsum))

122

netsum = 1.137034
netsum = netsum + feature2(1) * 0.01847009
netsum = netsum + feature2(2) * -1.062954
netsum = netsum + feature2(3) * -0.4108751
netsum = netsum + feature2(4) * 0.1466096
netsum = netsum + feature2(5) * -1.66192
netsum = netsum + feature2(6) * -3.215984
netsum = netsum + feature2(7) * -0.6938019
netsum = netsum + feature2(8) * -0.04847045
netsum = netsum + feature2(9) * 1.362473
netsum = netsum + feature2(10) * 3.452625
netsum = netsum + feature2(11) * -1.822165
netsum = netsum + feature2(12) * 1.784463

netsum = netsum + feature2(13) * -0.7882335

netsum = netsum + feature2(14) * 2.531423

OutArray(3) = 1 / (1 + Exp(-netsum))

OutArray(1) = CInt(30 * (OutArray(1) - 0.1) / 0.8 + 10)

If (OutArray(1) < 10) Then OutArray(1) = 10

If (OutArray(1) > 40) Then OutArray(1) = 40

OutArray(2) = CInt(3 * (OutArray(2) - 0.1) / 0.8 + 1)

If (OutArray(2) < 1) Then OutArray(2) = 1

If (OutArray(2) > 4) Then OutArray(2) = 4

OutArray(3) = CInt(10 * (OutArray(3) - 0.1) / 0.8 + 3)

If (OutArray(3) < 3) Then OutArray(3) = 3

If (OutArray(3) > 13) Then OutArray(3) = 13

End Sub

123

APPENDIX F

.I Definition of Global Variables

Option Explicit
**

'Variables used to call and fire an already trained ANN

inarray#(), outarray#(): Define the size of the input and output arrays

inputs%, output%: Take their value from the network that has been called

'netnumber%: Variable to assign a number to the network

'netisopen%: Variable to determine if a network has been opened or not

'defpath%: Variable to define the path to the correspondent NN network

Public inarray#(), outarray#()
Public inputs%, output%

Public netnumber%, netisopen%

Public defpath%

'The following functions are used to open, fire and close each one of the networks

'Declaring functions NS2-32.DLL

Declare Function OpenNet% Lib "Ns2-32.dll" (ByVal defpath$, netnumber%, inputs%,

output%)
Declare Function FireNet% Lib "Ns2-32.dll" (netnumber%, inputsarray#, outputsarray#)

Declare Function CloseNet% Lib "Ns2-32.dll" (netnumber%)

'Variables used to manage the training of the ANNs

'TotalComb: Stores number of possible combinations of resources' capacities

'w: Used to detect when to write the simulation outputs and change the level of services

'NeuralNetwork: Keeps track of the network selected by the user

'NNnumber: Takes the value of the network that must be fired by the user's inputs

'decision: Takes its value according with the interaction that a user has with the
NNGDS

'user: Defines which type of user is interacting with the prototype

'flag: Flag to indicate that the training file is ready

'changetype: Takes a value according with the change that the non-expert user selects

'experttask: Takes a value according with the interaction that the expert
user selects

Public TotalComb, w, changetype As Integer

Public NeuralNetwork As String

Public decision, user, flag, NNnumber As Integer

Public experttask, ranges, warning As Integer

Public unnecessary As Integer

Public Combo() As Variant

'Constants used to manage the changes requested by the user and to identify
the of user

Public Const ChangeRes As Integer = 1

Public Const ChangeST As Integer = 2

Public Const ChangeRT As Integer = 3

Public Const Expert As Integer = 1

Public Const Nonexpert As Integer = 2

'Variables used to make changes in the simulation model

'i,j,k,l,o,p: Used for tagged
elements

'MinResl, MaxResl, MinRes2, MaxRes2, MinRes3, MaxRes3:

'Store lower/upper bounds of the ranges for the resources
(1:Lathe, 2:RUnld, 3:CGrinder)

'TheModel: Definition of the Arena model
name

'ResourceModule: Definition of the element "resources"
as an Arena Module

'VariableModule: Definition of the element "variables" as an Arena Module

'ExpressionsModule: Definition of the
element "expressions" as an Arena Module

124

'DelaylModule, Delay2Module, Delay3Module: Definition of block "delay" as Arena Module

'RoutlModule, Rout2Module, Rout3Module, Rout4Module, Rout5Module, Rout6Module:
'Definition of the block "route" as an Arena Module
'ReplicaModule: Definition of the element "replicate" as an Arena Module
'OUT: Definition of the Siman model name

Public i, j, k, 1, o, p As Integer
Public MinResl, MaxResl, MinRes2, MaxRes2, MinRes3, MaxRes3, MinRes4, MaxRes4 As

Integer
Public TheModel As Arena.Model
Public ResourceModule As Arena.Module
Public VariableModule As Arena.Module
Public SequencesModule As Arena.Module
Public ReplicaModule As Arena.Module
Public OUT As SIMAN

125

F.2 VBA UIR Subroutines

F.2.1 Subroutine GDSmain

Sub GDSmain()

'Definition of local variables

'MoreInteraction Variable that determines when the loop stops

Dim StopProcess As Boolean
Dim MoreInteraction As Integer

Dim Hora

flag = 0: MoreInteraction = 1
unnecessary = 0: decision = 0: experttask = 0

Do While MoreInteraction = 1

Load UserType
UserType.Show

StopProcess = UserType.CancelButton.Cancel

Unload UserType

'When the user cancels the program, the replication lenght changes
to one (1)

If StopProcess = True Then

MoreInteraction = CancelRun

Else
If user = Nonexpert Then

Load UserMenu

UserMenu.Show

StopProcess = UserMenu.CancelButton.Cancel

Unload UserMenu

If StopProcess = True Then MoreInteraction = CancelRun

'Make Changes
If decision = 1 Then

Call ChangesMain(unnecessary)
If unnecessary = 0 Then

Call SetScenarios
MoreInteraction = 0

End If

If unnecessary = 1 Then MoreInteraction = CancelRun

End If

'Use Current Neural Network
If decision = 2 Then

Call NN2Querying(unnecessary)
Unload ENTRY

End If

Else
Load Expertform

Expertform.Show

StopProcess = Expertform.CancelButton.Cancel

Unload Expertform

126

If StopProcess = True Then MoreInteraction = CancelRun

'Use Current Neural Network
If experttask = 1 Then

Call NN2Querying(unnecessary)
Unload ENTRY

End If

'Training new ANNs
If experttask = 2 Then

Call SetScenarios
MoreInteraction = 0

End If
End If

End If

Loop
End Sub

F2.2 Subroutine CancelRun

Public Function CancelRun() As Integer
Set TheModel = ThisDocument.Model
i = TheModel.Modules.Find(smFindTag, "Replicas")
Set ReplicaModule = TheModel.Modules(i)
ReplicaModule.Data("NumReps") = 1

ReplicaModule.Data("Length") = 1

ReplicaModule.UpdateShapes
CancelRun = 0

End Function

127

F.3 VBA ACR Subroutines

F.3. Subroutine ChangesMain

Sub ChangesMain(unnecessary As Integer)

'Connecting to the model itself. The replication time is returned to its normal value.

'When the user cancels the program, the replication lenght changes to one (1).

Set TheModel = ThisDocument.Model
Set OUT = TheModel.SIMAN

i = TheModel.Modules.Find(smFindTag, "Replicas")
Set ReplicaModule = TheModel.Modules(i)
ReplicaModule.Data("Length") = 672 'A month in hours

ReplicaModule.UpdateShapes

'Declaring local variables
Dim MoreChanges As Integer

Dim StopProcess As Boolean

Dim STLUR, STLSR, STLSC, STGUC, STGSC, STOS As String
Dim TTR, TTC, TTFO As String

changetype = -1: MoreChanges = 1

Do While MoreChanges = 1
Load Changesform

Changesform.Show

StopProcess = Changesform.CancelButton.Cancel

Unload Changesform

If changetype = 0 Then

MoreChanges = 0: unnecessary = 0
End If

If StopProcess = True Then

MoreChanges = 0: unnecessary = 1

End If

If changetype = ChangeRes Then

'To show current capacities on the ResCapacity form as reference for the user.

i = TheModel.Modules.Find(smFindTag, "recursos")

j = TheModel.Modules.Find(smFindTag, "variables")

Set ResourceModule = TheModel.Modules(i)
Set VariableModule = TheModel.Modules(j)

Load ResCapacity

MinResl = VariableModule.Data("value(1,
4
)")

MaxResl = VariableModule.Data("value(1,8)")
MinRes2 = VariableModule.Data("value(1,5)")
MaxRes2 = VariableModule.Data("value(1,9)")
MinRes3 = VariableModule.Data("value(1,6)")
MaxRes3 = VariableModule.Data("value(1,10)")
MinRes4 = VariableModule.Data("value(1,

7
)")

MaxRes4 = VariableModule.Data("value(1,11)")
ResCapacity.MinCurCLathe.Caption = MinResl + 1

ResCapacity.MaxCurCLathe.Caption = MaxResl - 1

ResCapacity.MinCurCRUnld.Caption = MinRes2 + 1

ResCapacity.MaxCurCRUnld.Caption = MaxRes2 - 1

128

ResCapacity.MinCurCCGrinder.Caption = MinRes3 + 1
ResCapacity.MaxCurCCGrinder.Caption = MaxRes3 - 1
ResCapacity.MinCurCForklift.Caption = MinRes4 + 1
ResCapacity.MaxCurCForklift.Caption = MaxRes4 - 1
ranges = U
StopProcess = ResCapacity.CancelButton.Cancel

ResCapacity.Show

Call CheckingRanges

If StopProcess = False And ranges = 0 Then

'The values collected from ResCapacity form should be transferred to the variables
'and then to the Arena Model

MinResl = Val(ResCapacity.MinNewCLathe.Text) - 1
MaxResl = Val(ResCapacity.MaxNewCLathe.Text) + 1
MinRes2 = Val(ResCapacity.MinNewCRUnld.Text) - 1
MaxRes2 = Val(ResCapacity.MaxNewCRUnld.Text) + 1
MinRes3 = Val(ResCapacity.MinNewCCGrinder.Text) - 1
MaxRes3 = Val(ResCapacity.MaxNewCCGrinder.Text) + 1
MinRes4 = Val(ResCapacity.MinNewCForklift.Text) - 1

MaxRes4 = Val(ResCapacity.MaxNewCForklift.Text) + 1

'Inserting lower bound of resources capacities in RESOURCES element

ResourceModule.Data("CapExp(1)") = MinRes3
ResourceModule.Data("CapExp(2)") = MinResl
ResourceModule.Data("CapExp(3)") = MinRes4
ResourceModule.Data("CapExp(4)") = MinRes2
ResourceModule.UpdateShapes

'Inserting upper bound of resources capacities in VARIABLES element for future use

(events)

VariableModule.Data("value(1,8)") = MaxResl
VariableModule.Data("value(1,9)") = MaxRes2
VariableModule.Data("value(l,l)") = MaxRes3
VariableModule.Data("value(1,11)") = MaxRes4
VariableModule.Data("value(1,4)") = MinResl
VariableModule.Data("value(1,5)") = MinRes2

VariableModule.Data("value(1,6)") = MinRes3

VariableModule.Data("value(1,
7
)") = MinRes4

VariableModule.UpdateShapes
End If

Unload ResCapacity

End If

If changetype = ChangeST Then
'To show currente service times into ResServiceT form as reference for the user.

i = TheModel.Modules.Find(smFindTag, "secuencias")

Set SequencesModule = TheModel.Modules(i)

Load ResServiceT

ResServiceT.CSTLUR.Caption = SequencesModule.Data("value(1,
2
,1)")

ResServiceT.CSTLSR.Caption = SequencesModule.Data("value(1,3,1)")
ResServiceT.CSTLSC.Caption = SequencesModule.Data("value(1,5,2)")
ResServiceT.CSTGUC.Caption = SequencesModule.Data("value(1,2,2)")
ResServiceT.CSTGSC.Caption = SequencesModule.Data("value(1,3,2)")
ResServiceT.CSTOS.Caption = SequencesModule.Data("value(1,2,3)")
StopProcess = ResServiceT.CancelButton.Cancel

129

ResServiceT.Show

If StopProcess = False Then

'The values collected from ResServiceT form should be transferred to the variables and
'then to the Arena Model

STLUR = ResServiceT.NSTLUR.Text
STLSR = ResServiceT.NSTLSR.Text
STLSC = ResServiceT.NSTLSC.Text
STGUC = ResServiceT.NSTGUC.Text
STGSC = ResServiceT.NSTGSC.Text
STOS = ResServiceT.NSTOS.Text

'Inserting new service times in the SEQUENCES element

SequencesModule.Data("value(1,2,1)") = STLUR
SequencesModule.Data("value(1,3,1)") = STLSR
SequencesModule.Data("value(1,5,2)") = STLSC
SequencesModule.Data("value(1,2,2)") = STGUC
SequencesModule.Data("value(1,3,2)") = STGSC
SequencesModule.Data("value(1,2,3)") = STOS
SequencesModule.UpdateShapes

End If
End If

If changetype = ChangeRT Then
'To show the current routing times on the RoutTimes form as reference to the user.

i = TheModel.Modules.Find(smFindTag, "secuencias")

Set SequencesModule = TheModel.Modules(i)

Load RoutTimes

RoutTimes.CTTR.Caption = SequencesModule.Data("value(1,1,1)")

RoutTimes.CTTC.Caption = SequencesModule.Data("value(1,1,2)")
RoutTimes.CTTFO.Caption = SequencesModule.Data("value(1,1,3)")
StopProcess = RoutTimes.CancelButton.Cancel

RoutTimes.Show

If StopProcess = False Then

TTR = RoutTimes.NTTR.Text
TTC = RoutTimes.NTTC.Text
TTFO = RoutTimes.NTTFO.Text

'Inserting new routing times into the ROUTE blocks in the model

SequencesModule.Data("value(1,1,1)") = TTR

SequencesModule.Data("value(1,1,2)") = TTC

SequencesModule.Data("value(1,1,3)") = TTFO

SequencesModule.UpdateShapes

Unload RoutTimes

End If

End If

Loop
End Sub

130

F.3.2 Subroutine SetScenarios

Sub SetScenarios()

'Once the user has inputted the new capacities and/or service times and/or routing times

'it is necessary to set the stage for re-training process by generating all possible

'combinations of the capacities' values
'Defining local variables

Dim TotalRep As Integer
Dim StepSizel, StepSize2, StepSize3, StepSize4 As Integer
Dim NRepl, NRep2, NRep3, NRep4 As Integer
Dim indexloopl, indexloop2, indexloop3, indexloop4 As Integer
Dim IndexLoopl, IndexLoopll, IndexLooplII, IndexLooplV As Integer
Dim IndexLoopA, IndexLoopB, IndexLoopC, IndexLoopD As Integer

NRepl = 0: NRep2 = 0: NRep3 = 0: NRep4 = 0

'Connecting to the model to extract the value of the variables

i = TheModel.Modules.Find(smFindTag, "recursos")
j = TheModel.Modules.Find(smFindTag, "variables")

Set ResourceModule = TheModel.Modules(i)
Set VariableModule = TheModel.Modules(j)

MinResl = Val(VariableModule.Data("value(1,4)"))
MaxResl = Val(VariableModule.Data("value(1,8)"))
MinRes2 = Val(VariableModule.Data("value(1,5)"))
MaxRes2 = Val(VariableModule.Data("value(1,9)"))
MinRes3 = Val(VariableModule.Data("value(1,6)"))
MaxRes3 = Val(VariableModule.Data("value(1,10)"))
MinRes4 = Val(VariableModule.Data("value(1,

7
)"))

MaxRes4 = Val(VariableModule.Data("value(1,11)"))

indexloopl = MinResl: indexloop2 = MinRes2

indexloop3 = MinRes3: indexloop4 = MinRes4

'The total number of replications must be determined.

'The Step Size is variable and it depends on the range of the capacities.

'For each resource the total number of possible iterations is calculated.

If (MaxResl - MinResl) <= 5 Then

StepSizel = 1

NRepl = (MaxResl - MinResl) + 1

Else
StepSizel = CLng((MaxResl - MinResl) / 4)

If (MaxResl - MinResl) = 6 Then

NRepl = 4

Else
If MinResl + 4 * StepSizel >= MaxReal Then

NRepl = 5

Else
NRepl = 6

End If

End If

End If

If (MaxRes2 - MinRes2) <= 5 Then

StepSize2 = 1

NRep2 = (MaxRes2 - MinRes2) + 1

Else
StepSize2 = CLng((MaxRes2 - MinRes2) / 4)

If (MaxRes2 - MinRes2) = 6 Then

NRep2 = 4
Else

If MinRes2 + 4 * StepSize2 >= MaxRes2 Then

NRep2 = 5

131

Else
NRep2 = 6

End If
End If

End If
If (MaxRes3 - MinRes3) <= 4 Then

StepSize3 = 1
NRep3 = (MaxRes3 - MinRes3) + 1

Else
StepSize3 = CLng((MaxRes3 - MinRes3) / 4)
If (MaxRes3 - MinRes3) = 6 Then

NRep3 = 4
Else

If MinRes3 + 4 * StepSize3 >= MaxRes3 Then
NRep3 = 5

Else
NRep3 = 6

End If
End If

End If
If (MaxRes4 - MinRes4) <= 4 Then

StepSize4 = 1

NRep4 = (MaxRes4 - MinRes4) + 1

Else
StepSize4 = CLng((MaxRes4 - MinRes4) / 4)

If (MaxRes4 - MinRes4) = 6 Then

NRep4 = 4

Else
If MinRes4 + 4 * StepSize4 >= MaxRes4 Then

NRep4 = 5
Else

NRep4 = 6

End If

End If

End If

'The total number of replications can be calculated

TotalComb = NRepl * NRep2 * NRep3 * NRep4

TotalRep = TotalComb * 15

'The following command will store the total number of combinations
in an ARENA variable.

j = TheModel.Modules.Find(smFindTag, "variables")

Set VariableModule = TheModel.Modules(j)
VariableModule.Data("value(1,12)") = TotalComb

'The Replicate element must be found and modified.

i = TheModel.Modules.Find(smFindTag, "Replicas")

Set ReplicaModule = TheModel.Modules(i)

ReplicaModule.Data("NumReps") = TotalRep

ReplicaModule.UpdateShapes

'Now the combinations must be storaged in a file for later use.

'If the value of CLng((MaxRes - MinRes)/4) is equal to zero, it must be replaced by 1 in

order
'to avoid infinite looping

Open "C:\ThesisImportant\Combination.txt"
For Output As #2

For indexloopl = MinResl To MaxResl Step StepSizel
For indexloop

2
= MinRes2 To MaxRes2 Step StepSize2

For indexloop3 = MinRes3 To MaxRes3 Step StepSize3

For indexloop4 = MinRes4 To MaxRes4 Step StepSize4

Print #2, indexloopl, indexloop2, indexloop3, indexloop4

Next indexloop4

132

Next indexloop3
Next indexloop2

Next indexloopl
If (indexloop4 - MaxRes4) < StepSize4 Then

For IndexLoopl = MinResl To MaxResl Step StepSizel
For IndexLoopII = MinRes2 To MaxRes2 Step StepSize2

For IndexLoopI = MinRes3 To MaxRes3 Step StepSize3
Print #2, IndexLoopl, IndexLoopII, IndexLooplll, MaxRes4

Next IndexLoopIll
Next IndexLoopII

Next IndexLoopI
End If
If (indexloop3 - MaxRes3) < StepSize3 Then

For IndexLoopI = MinResl To MaxResl Step StepSizel
For IndexLoopII = MinRes2 To MaxRes2 Step StepSize2

For IndexLooplV = MinRes4 To MaxRes4 Step StepSize4
Print #2, IndexLoopl, IndexLooplI, MaxRes3, IndexLooplV

Next IndexLooplV
Next IndexLoopIl

Next IndexLoopI
End If
If (indexloop2 - MaxRes2) < StepSize2 Then

For IndexLoopI = MinResl To MaxResl Step StepSizel
For IndexLooplll = MinRes3 To MaxRes3 Step StepSize3

For IndexLooplV = MinRes4 To MaxRes4 Step StepSize4

Print #2, IndexLoopl, MaxRes2, IndexLooplll, IndexLooplV

Next IndexLooplV
Next IndexLoopIll

Next IndexLoopl
End If

If (indexloopl - MaxResl) < StepSizel Then
For IndexLoopIl = MinRes2 To MaxRes2 Step StepSize2

For IndexLooplIl = MinRes3 To MaxRes3 Step StepSize3
For IndexLooplV = MinRes4 To MaxRes4 Step StepSize4

Print #2, MaxResl, IndexLoopII, IndexLoopIII, IndexLooplV

Next IndexLooplV

Next IndexLoopIlI

Next IndexLoopII

End If

If (indexloop3 - MaxRes3) < StepSize3 And (indexloop2 - MaxRes2) < StepSize2 And

(indexloopl - MaxResl) < StepSizel And (indexloop4 - MaxRes4) < StepSize4 Then

Print #2, MaxResl, MaxRes2, MaxRes3, MaxRes4

End If
If (indexloop3 - MaxRes3) < StepSize3 And (indexloop2 - MaxRes2) < StepSize2 And

(indexloop4 - MaxRes4) < StepSize4 Then
For IndexLoopA = MinResl To MaxResl Step StepSizel

Print #2, IndexLoopA, MaxRes2, MaxRes3, MaxRes4

Next IndexLoopA

End If

If (indexloop3 - MaxRes3) < StepSize3 And (indexloopl - MaxResl) < StepSizel And

(indexloop4 - MaxRes4) < StepSize4 Then
For IndexLoopB = MinRes2 To MaxRes2 Step StepSize2

Print #2, MaxResl, IndexLoopB, MaxRes3, MaxRes4

Next IndexLoopB
End If

If (indexloop
2 - MaxRes2) < StepSize2 And (indexloopl - MaxResl) < StepSizel And

(indexloop
4 - MaxRes4) < StepSize4 Then

For IndexLoopC = MinRes3 To MaxRes3 Step StepSize3
Print #2, MaxResl, MaxRes2, IndexLoopC, MaxRes4

Next IndexLoopC

End If

If (indexloop
2 - MaxRes2) < StepSize2 And (indexloopl - MaxResl) < StepSizel And

(indexloop3 - MaxRes3) < StepSize3 Then
For IndexLoopD = MinRes4 To MaxRes4 Step StepSize4

Print #2, MaxResl, MaxRes2, MaxRes3, IndexLoopD

Next IndexLoopD

End If

If (indexloop
2 - MaxRes2) < StepSize2 And (indexloopl - MaxResl) < StepSizel Then

For IndexLoopC = MinRes3 To MaxRes3 Step StepSize3

133

For IndexLoopD = MinRes4 To MaxRes4 Step StepSize4
Print #2, MaxResl, MaxRes2, IndexLoopC, IndexLoopD

Next IndexLoopD
Next IndexLoopC

End If
If (indexloop2 - MaxRes2) < StepSize2 And (indexloop3 - MaxRes3) < StepSize3 Then

For IndexLoopA = MinResl To MaxResl Step StepSizel
For IndexLoopD = MinRes4 To MaxRes4 Step StepSize4

Print #2, IndexLoopA, MaxRes2, MaxRes3, IndexLoopD
Next IndexLoopD

Next IndexLoopA
End If
If (indexloop4 - MaxRes4) < StepSize4 And (indexloop3 - MaxRes3) < StepSize3 Then

For IndexLoopA = MinResl To MaxResl Step StepSizel
For IndexLoopB = MinRes2 To MaxRes2 Step StepSize2

Print #2, IndexLoopA, IndexLoopB, MaxRes3, MaxRes4
Next IndexLoopB

Next IndexLoopA
End If

If (indexloop4 - MaxRes4) < StepSize4 And (indexloopl - MaxResl) < StepSizel Then

For IndexLoopB = MinRes2 To MaxRes2 Step StepSize2
For IndexLoopC = MinRes3 To MaxRes3 Step StepSize3

Print #2, MaxResl, IndexLoopB, IndexLoopC, MaxRes4

Next IndexLoopC
Next IndexLoopB

End If

If (indexloop4 - MaxRes4) < StepSize4 And (indexloop2 - MaxRes2) < StepSize2 Then

For IndexLoopA = MinResl To MaxResl Step StepSizel

For IndexLoopC = MinRes3 To MaxRes3 Step StepSize3

Print #2, IndexLoopA, MaxRes2, IndexLoopC, MaxRes4

Next IndexLoopC

Next IndexLoopA

End If

If (indexloopl - MaxResl) < StepSizel And (indexloop3 - MaxRes3) < StepSize3 Then

For IndexLoopB = MinRes2 To MaxRes2 Step StepSize2

For IndexLoopD = MinRes4 To MaxRes4 Step StepSize4

Print #2, MaxResl, IndexLoopB, MaxRes3, IndexLoopD

Next IndexLoopD

Next IndexLoopB

End If

Close #2

'Initializing the w Record

j = TheModel.Modules.Find(smFindTag, "variables")

Set VariableModule = TheModel.Modules(j)
VariableModule.Data("value(1,13)") = 1

End Sub

F.3.3 Subroutine CheckReplications

Public Sub CheckReplications()

P * ** *** ** '#***i*********************************ki***** k* * 3r si *;* ** *' ** rk9c

'This subroutine is in charge of checking the number of replications
and storing

'the statistics of interest when required

'vNRep, vMRep: Store current replication value,
and the maximum number of replications

'CapaLathe CapaRUnld, CapaCGrinder, CapaForklift: Store the level of the resources

'AvgTimeQLathe, AvgTimeQRUnld, AvgTimeQCGrinder,
AvgUtilLathe, AvgUt lRUnld,

'AvgUtilCGrinder, AvgUtilForklift: Take the outputs of the simulation model every 15
rep

'LatheC, RUnldC, CGrinderC, ForkliftC: Change the
level of the resources every 15 rep

'Tiempo, Hora: Establish stopping time
of the total number of replications

Dim vNRep, vMRep As Integer

134

Dim CapaLathe, CapaRUnld, CapaCGrinder, CapaForklift As Double
Dim AvgTimeQLathe, AvgTimeQRUnld, AvgTimeQCGrinder, AvgTimeQForklift, AvgUtilLathe As

Double

Dim AvgUtilRUnld, AvgUtilCGrinder, AvgUtilForklift, LatheC, RUnldC, CGrinderC,
ForkliftC As Double

Dim Tiempo, Hora

'Connecting to the model

Set TheModel = ThisDocument.Model
Set OUT = TheModel.SIMAN

vNRep = OUT.RunCurrentReplication
vMRep = OUT.RunMaximumReplications

j = TheModel.Modules.Find(smFindTag, "variables")
Set VariableModule = TheModel.Modules(j)
w = VariableModule.Data("value(1,13)")

If vNRep = 15 * w Then

If w = 1 Then

'The values of the different possible combinations must be moved from the text file

'created in RunBegin to a VBA array one time.

'First we have to find the size of the array from the Variables Element

TotalComb = VariableModule.Data("value(1,12)")
ReDim Combo(l To TotalComb, 4)

'Second the information is passed from the file to the array

Open "C:\Thesislmportant\Combination.txt" For Input As #3

For i = 1 To TotalComb

Input #3, Combo(i, 1), Combo(i, 2), Combo(i, 3), Combo(i, 4)
Next i

Close #3

'The ASCII file where the training data is stored must be opened once for Output

(creation)
'and the columns' labels must be written

Open "C:\ThesisImportant\TrainingData.txt" For Output As #1

Print #1, "NoCGrinder", "NoRUnld", "NoLathe", "NoForklift", "AveQLathe",

"UtilLathe", "AveQRUnld", "UtilRUnld", "AveQCGrinder", "UtilCGrinder", "AveQForklift",

"UtilForklift"

'This is to store the statistics on the partial average results.

'First we have to find the modules and take the information about the capacities.

i = TheModel.Modules.Find(smFindTag, "recursos")
Set ResourceModule = TheModel.Modules(i)

CapaLathe = ResourceModule.Data("CapExp(2)")
CapaRUnld = ResourceModule.Data("CapExp(

4
)")

CapaCGrinder = ResourceModule.Data("CapExp(l) ")

CapaForklift = ResourceModule.Data("CapExp(3)")

'Second we have to collect information about the measures
of performance

AvgTimeQLathe = OUT.TallyAverage(5) + OUT.TallyAverage(6)
AvgTimeQRUnld = OUT.TallyAverage(13)

AvgTimeQCGrinder = OUT.TallyAverage(7)

AvgTimeQForklift = OUT.TallyAverage(14)

AvgUtilLathe = OUT.DStatAverage(2)

AvgUtilRUnld = OUT.DStatAverage(4)
AvgUtilCGrinder = OUT.DStatAverage(1)
AvgUtilForklift = OUT.DStatAverage(3)

'Every 15 records the following values
must be stored.

135

Print #1, CapaCGrinder, CapaRUnld, CapaLathe, CapaForklift, AvgTimeQLathe,
AvgUtilLathe, AvgTimeQRUnld, AvgUtilRUnld, AvgTimeQCGrinder, AvgUtilCGrinder,
AvgTimeQForklift, AvgTimeQForklift

Close #1

'After the values have been stored, the tallies and dstats must be cleared

OUT.StatisticsClearAll

'The new combination of capacities must be replaced on the Resources Element

If w <> TotalComb Then

ResourceModule.Data("CapExp(2)") = Val(Combo(w + 1, 1))
ResourceModule.Data("CapExp(4)") = Val(Combo(w + 1, 2))
ResourceModule.Data("CapExp(1)") = Val(Combo(w + 1, 3))
ResourceModule.Data("CapExp(3)") = Val(Combo(w + 1, 4))
ResourceModule.UpdateShapes

w = w + 1

'The value of w must be updated in the VARIABLES Element to use it later

VariableModule.Data("value(1,13)") = w
End If

Else

'After the ASCII file has been created it is opened for Append every 15 replications

Open "C:\ThesisImportant\TrainingData.txt" For Append As #1

'This is to store the statistics on the partial average results.

'First we have to find the modules and take the information about the capacities.

i = TheModel.Modules.Find(smFindTag, "recursos")
Set ResourceModule = TheModel.Modules(i)

CapaLathe = ResourceModule.Data("CapExp(2)")
CapaRUnld = ResourceModule.Data("CapExp(4)")
CapaCGrinder = ResourceModule.Data("CapExp(1)")
CapaForklift = ResourceModule.Data("CapExp(3)")

'Second we have to collect information about the measures of performance

AvgTimeQLathe = OUT.TallyAverage(5) + OUT.TallyAverage(6)
AvgTimeQRUnld = OUT.TallyAverage(13)
AvgTimeQCGrinder = OUT.TallyAverage(7)
AvgTimeQForklift = OUT.TallyAverage(14)
AvgUtilLathe = OUT.DStatAverage(2)
AvgUtilRUnld = OUT.DStatAverage(4)
AvgUtilCGrinder = OUT.DStatAverage(1)
AvgUtilForklift = OUT.DStatAverage(3)

'Every 15 records the following values must be stored.

Print #1, CapaCGrinder, CapaRUnld, CapaLathe, CapaForklift, AvgTimeQLathe,

AvgUtilLathe, AvgTimeQRUnld, AvgUtilRUnld, AvgTimeQCGrinder, AvgUtilCGrinder,

AvgTimeQForklift, AvgTimeQForklift
Close #1

'After the values have been stored, the tallies and dstats must be cleared

OUT.StatisticsClearAll

'The new combination of capacities must be replaced on the Resources Element

If w <> TotalComb Then

136

ResourceModule.Data("CapExp(2)") = Val(Combo(w + 1, 1))
ResourceModule.Data("CapExp(4)") = Val(Combo(w + 1, 2))

ResourceModule.Data("CapExp(l)") = Val(Combo(w + 1, 3))

ResourceModule.Data("CapExp(3)") = Val(Combo(w + 1, 4))
ResourceModule.UpdateShapes

w = w + 1

'The value of w must be updated in the VARIABLES Element to use it later

VariableModule.Data("value(1,13)") = w
End If

End If
End If

'If it ws the last replication, train ANNs
If vNRep = vMRep Then

'Feedback for the user
Tiempo = Now
MsgBox Tiempo
MsgBox "Training file has been generated"

Call NN2Training

'Feedback for the user
Hora = Now
MsgBox Hora
MsgBox "The new networks have been trained and you can use them now"

flag = 1

End If

End Sub

F.3.4 Subroutine CheckingRanges

Sub CheckingRanges()

'Checks if retraining is really needed or not
If Val(ResCapacity.MinNewCLathe.Text) >= MinResl And

Val(ResCapacity.MaxNewCLathe.Text) <= MaxResl Then

If Val(ResCapacity.MinNewCRUnld.Text) >= MinRes2 And

Val(ResCapacity.MaxNewCRUnld.Text) <= MaxRes2 Then

If Val(ResCapacity.MinNewCCGrinder.Text) >= MinRes3 And

Val(ResCapacity.MaxNewCCGrinder.Text) <= MaxRes3 Then

If Val(ResCapacity.MinNewCForklift.Text) >= MinRes4 And

Val(ResCapacity.MaxNewCForklift.Text) <= MaxRes4 Then

MsgBox "These ranges of level of resources do not require to re-train

the network." & "You can use the current ANN if these are your only changes."

ranges = 1
End If

End If

End If

End If

End Sub

137

F,4 VBA NCR Subroutines

F.A Subroutine TrainingNN2

Sub NN2Training()

'**

'NNOpen: Variable name for the execution of the NS2.exe application

'IMOpen: Variable name for the execution of the Impascii.exe application

'Testset: Variable name for the execution of the Testset.exe application

'Setinput: Variable name for the execution of Netinput.exe application

'Train: Variable name for the execution of the Begtrain.exe application

'Deff: Variable name for the execution of the Dllprime.exe application

'VBcode: Variable name for the execution of the Srcgen.exe application
'Start: Timer used to allow the system to perform the orders given by sendkeys statement

'Contador: String version of "Contando" used to store each ".def" and ".vb" files

'Contando: Integer value that records which network number is being created ("counting")

'indexloop: Used in the loop to count the number of line

'lineas: Integer value that records how many lines are in the VB file ("lines")

'dummy, reference: Variables used to store temporarly the content of the VB file lines

Dim y, wl, w2, w3, w4, w5, w6, w7, w8, Contando, indexloop, lineas As Integer

Dim Start

Dim NNOpen, IMOpen, Testset
Dim Setinput, Train, Deff, VBcode
Dim dummy, reference

Dim contador As String

Contando = 0

'Creating the description file ".dsc"

NNOpen = Shell("C:\NeuroShell 2\Ns2.exe", vbNormalFocus)

AppActivate NNOpen

SendKeys "%FNChanges.dsc%S%FS%FX", True

'Importing the training data that have been allocated
in the text file

IMOpen = Shell("C:\NeuroShell 2\Impascii.exe", vbNormalFocus)

AppActivate IMOpen
SendKeys "%FATrainingData.txt%O%FPChanges.patS %IB", True

AppActivate "ASCII File Import"

y = 3 ' Set duration.
Start = Timer ' Set start time.

Do While Timer < Start + y
DoEvents ' Yield to other processes.

Loop

SendKeys "{ENTER}", True

SendKeys "%FX", True

'Extracting testing set

Testset = Shell("C:\NeuroShell 2\Testset.exe", vbNormalFocus)

AppActivate Testset

SendKeys "%FSChanges.pat%D%EB", True

y = 3 ' Set duration.
Start = Timer ' Set start time.

Do While Timer < Start + y
DoEvents ' Yield to other processes.

138

Loop

SendKeys "{ENTER)", True
SendKeys "%FX", True

'Setting inputs and outputs

For wl = 0 To 1
For w2 = 0 To 1

For w3 = 0 To 1
For w4 = 0 To 1

For w5 = 0 To 1
For w6 = 0 To 1

For w7 = 0 To 1
For w8 = 0 To 1

If wl <> 0 Or w2 <> 0 Or w3 <> 0 Or w4 <> 0 Or w5 <> 0 Or

w6 <> 0 Or w7 <> 0 Or w8 <> 0 Then
Setinput = Shell("C:\NeuroShell 2\Netinput.exe",

vbNormalFocus)
AppActivate Setinput
SendKeys "%FPChanges.pat%O{RIGHT}{ENTER}", True

SendKeys "{TAB}A{RIGHT}A{RIGHT}A{RIGHT}", True

If wl = 1 Then

SendKeys "I{RIGHT}"
Else

SendKeys "{BACKSPACE}{RIGHT}"

End If
If w2 = 1 Then

SendKeys "I{RIGHT}"

Else
SendKeys "{BACKSPACE}{RIGHT}"

End If
If w3 = 1 Then

SendKeys "I{RIGHT)"

Else
SendKeys "{BACKSPACE}{RIGHT}"

End If
If w4 = 1 Then

SendKeys "I{RIGHT)"

Else
SendKeys "{BACKSPACE}{RIGHT}"

End If

If w5 = 1 Then

SendKeys "I{RIGHT}"

Else
SendKeys "(BACKSPACE}{RIGHT)"

End If
If w6 = 1 Then

SendKeys "I"

Else
SendKeys "{BACKSPACE)"

End If
If w7 = 1 Then

SendKeys "I"

Else
SendKeys "(BACKSPACE)"

End If
If w8 = 1 Then

SendKeys "I"

Else
SendKeys "{BACKSPACE}"

End If
SendKeys "%SC", True

y = 3 Set duration.

Start = Timer Set start time.

Do While Timer < Start + y
DoEvents Yield to other processes.

Loop

139

SendKeys "%FX", True

'Training a simple NN

Train = She.l("C:\NeuroShell 2\Begtrain.exe",
vbNormalFocus)

AppActivate Train
SendKeys "%FSChanges.pat%O{RIGHT}{TAB

5}{ENTER}%TS{RIGHT}{ENTER}", True

y = 45 'Set duration to 45 seconds.
Start = Timer ' Set start time.
Do While Timer < Start + y

DoEvents Yield to other processes.
Loop

SendKeys "%TI", True

y = 3 ' Set duration.
Start = Timer ' Set start time.
Do While Timer < Start + y

DoEvents Yield to other processes.

Loop

SendKeys "{ENTER}", True

SendKeys "%FE", True

Contando = Contando + 1

contador = CStr(Contando)

'Generating .def file

Deff = Shell("C:\NeuroShell 2\Dllprime.exe",

vbNormalFocus)
AppActivate Deff

SendKeys "%FCChanges.fig%O%FDChanges", True

SendKeys contador, True

SendKeys ".def", True
SendKeys "%S%GG", True

y = 15 ' Set duration.
Start = Timer Set start time.

Do While Timer < Start + y
DoEvents Yield to other processes.

Loop

SendKeys "{ENTER}", True

SendKeys "%FX", True

'Generating VB code

VBcode = Shell("C:\NeuroShell 2\Srcgen.exe",

vbNormalFocus)
AppActivate VBcode
SendKeys "{DOWN}%FCChanges.fig%O%FSChangesl", True

SendKeys contador, True
SendKeys ".vb", True
SendKeys "%S%GG", True

y = 15 " Set duration.

Start = Timer ' Set start time.

Do While Timer < Start + y
DoEvents ' Yield to other processes.

Loop

SendKeys "{ENTER}", True

SendKeys "%FX", True

140

'Cleaning the VB code to remove innecessary information

Open "C:\Thesislmportant\Changesl" + contador + ".vb"
For Input As #100

lineas = 0
Do While Not EOF(100)

Line Input #100, reference
lineas = lineas + 1

Loop
Close #100
Open "C:\Thesislmportant\Changesl" + contador + ".vb"

For Input As #101
Open "C:\Thesislmportant\Changes" + contador + ".vb"

For Output As #102
Open "C:\ThesisImportant\Dummy.vb" For Output As #103

For indexloop = 1 To lineas
If indexloop < 7 Then

Line Input #101, dummy
Print #103, dummy

End If
If (indexloop >= 7) And (indexloop <= (lineas

- 17)) Then
Line Input #101, dummy

Print #102, dummy
End If
If (indexloop > (lineas - 17)) And (indexloop

< (lineas - 13)) Then
Line Input #101, dummy

Print #103, dummy

End If
If (indexloop = (lineas - 13)) Then

Line Input #101, dummy

Print #102, dummy
End If

If (indexloop > (lineas - 13)) And (indexloop

< (lineas - 9)) Then
Line Input #101, dummy
Print #103, dummy

End If

If (indexloop = (lineas - 9)) Then
Line Input #101, dummy
Print #102, dummy

End If

If (indexloop > (lineas - 9)) And (indexloop

< (lineas - 5)) Then
Line Input #101, dummy
Print #103, dummy

End If

If (indexloop = (lineas - 5)) Then

Line Input #101, dummy

Print #102, dummy
End If
If (indexloop > (lineas - 5)) Then

Line Input #101, dummy
Print #103, dummy

End If
Next indexloop

Close #101: Close #102: Close #103

Kill "C:\ThesisImportant\Changesl" + contador + ".vb"

Kill "C:\ThesisImportant\Dummy.vb"

End If
Next w8

Next w7
Next w6

Next w5
Next w4

Next w3
Next w2

141

Next wl

End Sub

F..2 Subroutine SelectingNetworks

Sub SelectingNetwork()

************************ ***** ************************** ******* ****************

'Declaring local variables
'Networkarray Array that stored the different selection of inputs that could occur

'mycounter Variable used to set the position of any array in the Networkarray

'Referencia Used to create the Networkarray (Referencia, spanish work for Reference)

Dim yl, y2, y3, y4, y5, y6, y7, y8 As Integer

Dim Referencia As String

Dim Networkarray(1 To 255)

Dim mycounter, z As Integer

'Variables used to generated all possible combinations of inputs and to detec

'which inputs were selected by the user

mycounter = 1

For yl = 0 To 1
For y2 = 0 To 1

For y3 = 0 To 1

For y4 = 0 To 1
For y5 = 0 To 1

For y6 = 0 To 1
For y7 = 0 To 1

For yS = 0 To 1

If yl <> 0 Or y2 <> 0 Or y3 <> 0 Or y4 <> 0 Or y5 <> 0 Or

y6 <> 0 Then
Referencia = CStr(yl) + CStr(y2) + CStr(y3) +

CStr(y4) + CStr(y5) + CStr(y6)
If NeuralNetwork = Referencia Then NNnumber =

mycounter
mycounter = mycounter + 1

End If

Next y8

Next y7

Next y6
Next y5

Next y4

Next y3

Next y2

Next yl

End Sub

F.4.3 Subroutine NN2Using

Sub NN2Using(unnecessary As Integer)

'Declaring local variables

'Flags used to detect the value of the inputs selected
by the user and to store them

'in the inarray

Dim y%
Dim looplndex As Integer

Dim Flags(1 To 8)

Dim outl, out2, out3, out4 As Integer

Dim indexloop, NumberInputs As Integer

142

'Connecting to NeuroShell and opening the requested Neural Network

If Not netisopen Then
y = OpenNet("C:\Thesislmportant\Changes" + CStr(NNnumber) + ".def", netnumber,

inputs, output)
If y > 0 Then

MsgBox "Error returned from OpenNet: " + CStr(y) + ".", 16, "Error"

End If
End If

'Retrieving values from ENTRY form as Inputs and loading these values in the OUTS form

ReDim inarray#(inputs)
ReDim outarray#(output)

Load OUTS

'The labels are not active unless the specific input is selected to fire the network

OUTS.TLLabel.Enabled = False

OUTS.ULLabel.Enabled = False

OUTS.TRULabel.Enabled = False

OUTS.URULabel.Enabled = False

OUTS.TCGLabel.Enabled = False

OUTS.UCGLabel.Enabled = False

OUTS.TFOUTS.Enabled = False
OUTS.UFOUTS.Enabled = False

For looplndex = 1 To inputs

If ENTRY.QLathe.Text <> "" Then

inarray(looplndex) = Val(ENTRY.QLathe.Text)
OUTS.TLLabel.Enabled = True

OUTS.TLOUTS.Caption = Val(ENTRY.QLathe.Text)
ENTRY.QLathe.Text =

Else
If ENTRY.ULathe.Text <> "" Then

inarray(loopIndex) = Val(ENTRY.ULathe.Text)

OUTS.ULLabel.Enabled = True

OUTS.ULOUTS.Caption = Val(ENTRY.ULathe.Text)
ENTRY.ULathe.Text =

Else
If ENTRY.QRUnld.Text <> "" Then

inarray(loopIndex) = Val(ENTRY.QRUnld.Text)

OUTS.TRULabel.Enabled = True

OUTS.TRUOUTS.Caption = Val(ENTRY.QRUnld.Text)

ENTRY.QRUnld.Text =

Else
If ENTRY.URUnld.Text <> "" Then

inarray(looplndex) = Val(ENTRY.URUnld.Text)

OUTS.URULabel.Enabled = True

OUTS.URUOUTS.Caption = Val(ENTRY.URUnld.Text)

ENTRY.URUnld.Text = ""

Else
If ENTRY.QCGrinder.Text <> "" Then

inarray(loopIndex) = Val(ENTRY.QCGrinder.Text)

OUTS.TCGLabel.Enabled = True

OUTS.TCGOUTS.Caption = Val(ENTRY.QCGrinder.Text)

ENTRY.QCGrinder.Text = ""

Else
If ENTRY.UCGrinder.Text <> "" Then

inarray(loopIndex) = Val(ENTRY.UCGrinder.Text)

OUTS.UCGLabel.Enabled = True

OUTS.UCGOUTS.Caption = Val(ENTRY.UCGrinder.Text)

ENTRY.UCGrinder.Text = ""

If ENTRY.QForklift.Text <> "" Then

inarray(loopIndex) = Val(ENTRY.QForklift.Text)

OUTS.TFLabel.Enabled = True

OUTS.TFOUTS.Caption = Val(ENTRY.QForklift.Text)
ENTRY.QForklift.Text

Else

143

If ENTRY.UForklift.Text <> "" Then

inarray(looplndex) = Val(ENTRY.UForklift.Text)
OUTS.UFLabel.Enabled = True
OUTS.UFOUTS.Caption = Val(ENTRY.UForklift.Text)
ENTRY.UForklift.Text = ""

End If
End If

End If
End If

End If
End If

End If
End If

Next

'Actual firing of the NN

y = FireNet(netnumber, inarray(1), outarray(1))

If y > 0 Then
MsgBox "Error returned from FireNet:" + CStr(y) + ".", 16, "Error"

End If

'Loading the results in the OUTS form

If unnecessary = 0 Then
If outarray(3) <= MinResl + 1 Then

OUTS.Lathe.Caption = MinResl + 1

Else
If outarray(3) > MaxResl - 1 Then

OUTS.Lathe.Caption = "N/A"

OUTS.InfeasibleLathe.Caption = "Your current upper bound of " + (MaxResl

- 1) + " in number of lathes does not allow to achieve your goal"

Else
OUTS.Lathe.Caption = Format$(outarray(3), "00")

OUTS.InfeasibleLathe.Caption = "N/A"

End If

End If
If outarray(2) <= MinRes2 + 1 Then

OUTS.RUnld.Caption = MinRes2 + 1

Else
If outarray(

2
) > MaxRes2 - 1 Then

OUTS.RUnld.Caption = "N/A"
OUTS.InfeasibleRUnld.Caption = "Your current upper bound of " + (MaxRes2

- 1) + " in number of ring unloaders does not allow to achieve your goal"

Else
OUTS.RUnld.Caption = Format$(outarray(2), "00")

OUTS.InfeasibleRUnld.Caption = "N/A"

End If

End If

If outarray(l) <= MinRes3 + 1 Then
OUTS.CGrinder.Caption = MinRes3 + 1

Else
If outarray(1) > MaxRes3 - 1 Then

OUTS.CGrinder.Caption = "N/A"

OUTS.InfeasibleCGrinder.Caption = "Your current upper bound of +

(MaxRes3 - 1) + " in number of cover grinders does not allow to achieve your
goal"

Else
OUTS.CGrinder.Caption = Format$(outarray(1), "00")

OUTS.InfeasibleCGrinder.Caption = "N/A"

End If

End If
If outarray(4) <= MinRes4 + 1 Then

OUTS.Forklifts.Caption = MinRes3 + 1
Else

If outarray(4) > MaxRes4 - 1 Then
OUTS.Forklifts.Caption = "N/A"
OUTS.InfeasibleForklift.Caption = "Your current upper bound of " +

(MaxRes3 - 1) + " in number of forklifts does not allow to achieve your goal"

144

Else
OUTS.Forklifts.Caption = Format$(outarray(4), "00")
OUTS.InfeasibleForklift.Caption = "N/A"

End If
End If

Else
If outarray(3) <= MinResl + 1 Then

OUTS.Lathe.Caption = MinResl + 1
Else

If outarray(3) > MaxResl - 1 Then
OUTS.Lathe.Caption = Format$(outarray(3), "00")
OUTS.InfeasibleLathe.Caption = "Your current upper bound of " + (MaxRel

- 1) + " in number of lathes does not allow to achieve your goal. Suggested value is

displayed for your reference."
Else

OUTS.Lathe.Caption = Format$(outarray(3), "00")
OUTS.InfeasibleLathe.Caption = "N/A"

End If
End If
If outarray(2) <= MinRes2 + 1 Then

OUTS.RUnld.Caption = MinRes2 + 1

Else
If outarray(2) > MaxRes2 - 1 Then

OUTS.RUnld.Caption = Format$(outarray(2), "00")
OUTS.InfeasibleRUnld.Caption = "Your current upper bound of " + (MaxRes2

- 1) + " in number of RUnld does not allow to achieve your goal. Suggested value is

displayed for your reference."
Else

OUTS.RUnld.Caption = Format$(outarray(2), "00")

OUTS.InfeasibleRUnld.Caption = "N/A"

End If

End If

If outarray(l) <= MinRes3 + 1 Then

OUTS.CGrinder.Caption = MinRes3 + 1

Else
If outarray(1) > MaxRes3 - 1 Then

OUTS.CGrinder.Caption = Format$(outarray(1), "00")

OUTS.InfeasibleCGrinder.Caption = "Your current upper bound of +

(MaxRes3 - 1) + " in number of CGrinder does not allow to achieve your goal. Suggested

value is displayed for your reference."
Else

OUTS.CGrinder.Caption = Format$(outarray(1), "00")

OUTS.InfeasibleCGrinder.Caption = "N/A"

End If

End If
If outarray(4) <= MinRes4 + 1 Then

OUTS.Forklifts.Caption = MinRes4 + 1

Else
If outarray(4) > MaxRes4 - 1 Then

OUTS.Forklifts.Caption = Format$(outarray(4), "00")

OUTS.InfeasibleForklift.Caption = "Your current upper bound of " +

(MaxRes4 - 1) + " in number of forklifts does not allow to achieve your goal.
Suggested

value is displayed for your reference."
Else

OUTS.Forklifts.Caption = Format$(outarray(4), "00")

OUTS.InfeasibleForklift.Caption = "N/A"
End If

End If

End If

'Closing the NN after it has been used

y = CloseNet(netnumber)

End Sub

145

F.4.4 Subroutine RunNewANN

Sub RunNewANN()
'Declaration of local variables

Dim StopProcess As Boolean
Dim MoreRuns, unnecessary As Integer
unnecessary = 0
MoreRuns = 1

Do While MoreRuns = 1

Load Aftertraining
Aftertraining.Show

StopProcess = Aftertraining.CancelButton.Cancel

Unload Aftertraining

If StopProcess Then

MsgBox "Thanks for using this program"

MoreRuns = 0
Else

Call NN2Querying(unnecessary)

End If

Loop

End Sub

F.4.5 Subroutine NN2Querying

Sub NN2Querying(unnecessary As Integer)

'Declaring local variables

Dim StopProcess As Boolean

'This routine takes all the actions related
with querying the already trained networks

Set TheModel = ThisDocument.Model

Set OUT = TheModel.SIMAN

j = TheModel.Modules.Find(smFindTag, "variables")

Set VariableModule = TheModel.Modules(j)

Load ENTRY

ENTRY.MinCurCLathe.Caption = VariableModule.Data("value(1,
4
)) + 1

ENTRY.MaxCurCLathe.Caption = VariableModule.Data ("value(1,8)") - 1

ENTRY.MinCurCRUnld.Caption = VariableModule.Data("value(1,5)) + 1

ENTRY.MaxCurCRUnld.Caption = VariableModule.Data("value(1,9)") + 1
ENTRY.MinCurCCGrinder.Caption = VariableModule.Data("value(1,6)") +

ENTRY.MaxCurCCGrinder.Caption = VariableModule.Data("value(1,10)") -1

ENTRY.MinCurCForklift.Caption = VariableModule.Data("value(1,
7
)") + 1

ENTRY.MaxCurCForklift.Caption = VariableModule.Data("value(1,11)") - 1

ENTRY.Show

StopProcess = ENTRY.CancelButton.Cancel

'ENTRY form remains loaded but hiddent for th use
of the following routines

If Not StopProcess Then
Call SelectingNetwork
Call NN2Using(unnecessary)

OUTS.Show
Unload OUTS

End If
End Sub

146

F. VBA Support Subroutines

Sub Letter(tecla As MSForms.ReturnInteger)

'Checks to make sure numeric values are entered

'tecla = Spanish work for "key", checks ASCII values of keys pressed

If tecla < 46 Or tecla > 57 Then

MsgBox "Enter a numeric value."

tecla = 0
End If

End Sub

Sub Letterlnt(tecla As MSForms.ReturnInteger)

'Checks to make sure integer values are entered

If tecla < 48 Or tecla > 57 Then

MsgBox "Enter an integer value."

tecla = 0
End If

End Sub

147

APPENDIX G

G.1 SPSS

tr = Time per replication

, = Time for training part I

Til = Time for training part II

rl = Number of replications

Table 14: 95% CI Training Time for NN-Based GDS
Variable Tr jT11 7

Statistic____________

Mean 0.3108 487.9000 228.4286 1608
Mean Std. Deviation 0.02326 29.9015 25.84096 83.8987

Lower Bound (95%CI) 0.2582 420.2581 165.1980 1418.2078
Up er Bound (95%CI) 0.3634 555.5419 291.6591 1797.7922

5% Trimmed Mean 0.3107 485.3333 224.6984 1618.3333
Median 0.3123 454.5000 191.0000 1500.0000
Variance 0.00541 8940.989 4674.286 70390.000

Std. Deviation (STD) 0.07355 94.5568 68.36875 265.3111
Minimum 0.19 380.00 169.00 1080.00
Maximum 0.43 642.00 355.00 1950.00

Range 0.23 262.00 186.00 870.00
Inter uartile Ran e 0.1389 165.2500 106.0000 375.0000

Skewness -0.017 0.888 1.319 -0.508
Skewness STD 0.687 0.687 0.794 0.687

Kurtosis -0.834 -0.711 0.791 0224
Kurtosis STD 1.334 1.334 1.587 1.334

148

	Florida International University
	FIU Digital Commons
	3-29-2004

	Using neural networks for goal driven simulation
	Maria F. Clavijo
	Recommended Citation

	tmp.1474301709.pdf.IfsUT

