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ABSTRACT OF THE THESIS

Microcomputer Based System for the Study of

the Respiratory System in Newborns

by

Nelson Remberto Claure

Florida International University, 1990

Miami, Florida

Professor Wunnava V. Subbarao, Major Professor

A useful understanding of the respiratory system of premature infants and the

factors contributing to different physiological mechanisms and diseases requires extensive

clinical research. This project is the result of a need for a fast and reliable system to

process the information obtained from biological sources and to obtain results from which

different hypothesis can be tested.

This document presents a description of one such system and its different

subsystems. It describes the biosignals of interest as well as the stages they have to go

through in order to obtain an accurate and valid analysis.

The system is hardware and software oriented. The system hardware is subdivided

into instrumentation system, which is used to pick up and condition the signals, and a

data acquisition, monitoring and storage system, where the signals are digitized and

stored for later processing. The system software, which is the basic and principal

component of the project, participates in the hardware control for the data acquisition,

storage and monitoring, as well as the posterior stages of signal processing and analysis,

which constitute the key of the system.

The biosignals mentioned above can be classified as muscular or EMG,

respiratory, chest wall motion, and cardiac signals. The muscular signals are obtained

from measuring the electrical activity of the muscles participating in the process of

ventilation and the respiratory signals reflect mechanical characteristics of the lungs and
airway passages, the chest wall motion signals give a measurement to evaluate the cesmt
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CHAPTERI

INTRODUCTION

1.1 SYNOPSIS

The immature respiratory system of the premature newborn is object of different

research studies in order to obtain a useful understanding of its special characteristics,

its development, and diseases.

The information obtained from these studies is used to modify therapy that

newborns receive at the intensive care units. This information and new findings are also

contributions to the area of pediatric applied physiology.

The clinical research objective is to study the relation and interaction between

respiratory muscle activity, mechanics of the respiratory system, and the chest wall

stability in the premature newborns.

The design and development of this microcomputer-based system for the study of

the different components of the respiratory system in preterm infants is an application of

Bioelectrical and Computer Engineering. The microcomputer-based system is in general

a tool used for the analysis of the respiratory physiology in clinical research.

The different signals obtained from the respiratory system can be classified as

respiratory, chest wall motion, cardiac and muscular signals. This classification is based

on the type of hardware configuration necessary for their measurement.

The personal computer on which the system is based, is equipped with special

hardware and software, customized to the different needs of the research projects. The

signals mentioned above are digitized and stored for post acquisition processing and
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analysis.

Analog to digital conversion is performed using a special high performance A/D

circuit board installed as an expansion card and with a memory address assigned to it.

The software application and development necessary to execute this process is

performed using the best software technology available, which will allow us high sampling

rates as well as accuracy. The software is capable of switching back and forth between

monitoring and data storage status.

The signals collected are called raw signals, and contain noise contamination.

Therefore it is necessary to process these signals in order to obtain a reliable

representation of the parameters in which we are interested.

The most important part of this project is the signal processing. The design and

software implementation of the different filters and signal processing methods are

applications of digital signal processing theories and techniques.

The stages mentioned above would not have any valuable meaning without the

correct interpretation, to provide the researcher with the information necessary to test

hypothesis and reach conclusions. This is accomplished by the signal analysis stage

which provides the interpretation.

The software necessary to accomplish the different procedures mentioned before

was developed in C, which is a medium level programming language that provides

numerous routines and functions that make it one of the most popular languages. There

is also available a large number of libraries and object modules for different applications

such as signal processing, math, graphics, device drivers, etc, that are commercially

available.

This project is the result of a collaboration between Florida International University,
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Electrical Engineering Department, and University of Miami, School of Medicine,

Department of Pediatrics, Division of Neonatology.

1.2 CLINICAL RESEARCH PROTOCOL

The subjects studied using this system are premature newborns, who are life

supported at the Neonatal Intensive Care Unit at Jackson Memorial Hospital.

The study of respiratory physiology in premature newborns covers different areas

of the respiratory system. The laboratory procedures include different respiratory tests

applied to the patients. The signals are then collected by the computer system and the

information about the physiological response to the test are obtained from the signal

analysis. The research protocols evaluate central drive respiratory muscle activity and the

mechanics of the system, individually or as they relate to each other by relatively non-

invasive methods.

The analysis of ventilation and respiratory system mechanics are done on signals

obtained by spirometry, to be described later on. The respiratory measurements

determine respiratory timing, tidal volume,breathing frequency, lung compliance,

pulmonary resistance and the ventilatory response to various gas mixtures. The

information is obtained from the patient with appropriate measuring devices and

transducers, whose electrical output represents air flow, esophageal pressure, mouth

pressure and tidal volume, which is an integration of the air flow.

Another parameter of interest in the respiratory process is chest wall stability. Since

the chest wall of the preterm infants has visible paradoxical movement during breathing,

wherein chest motion is not always in phase with abdominal motion. It can decrease the

efficiency of the respiratory pump.

In neonates chest wall stability can be examined by changes in the circumference
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of the thoraco-abdominal system at two different levels, Rib cage and Abdomen, using

a pair of non-invasive inductance coils, one at each level.

Ventilation is achieved by the output of a central neural drive to the respiratory

pump which consists of the diaphragm and accessory muscles. A specific interest of

these project is analysis of the respiratory muscle activity, muscle parameters such as the

magnitude of electrical activity, timing, muscle fatigue, and spectral analysis are related

to the mechanisms described above.

The measurement of electrical activity in the muscles of respiration provides a

mean for studying muscular activity. These electromyographic examination gives

information about the magnitude of activity with peak and mean activity, activation and

deactivation times and frequency components of the signal. There are several muscles

participating in the ventilatory process, but this study is focused on five muscles:

Diaphragm, upper airway muscles: Posterior Cricoarytenoid and Genioglossus, and

accessory muscles: Intercostal and Abdominal, which are the major muscles for the

respiratory process available for surface electrode measurements.

1.3 ELECTRICAL ENGINEERING IN BIOMEDICAL SCIENCES

Electrical engineering in past decades has become the area in which the

technology has evolved faster than any other science. One important area of electrical

engineering is Bioelectrical engineering, in which the analysis and processing of biological

signals is the basic objective.

A signal is a mean to convey information. It is sometimes generated directly by the

original information source, in which case information about the structure or function of

the source can be directly obtained from the signal. However, when the signals available

do not directly yield the required information, applying special processing procedures to
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the signals may derive the relevant information.

General measurement and diagnostic systems are developed in order to extract

the desired information and convert it to a mode suitable for processing, storage, and

analysis. In subsequent steps, the signals can be classified according to its characteristics

and if needed, corrective measures may be taken.

The complexity of the biological system often introduces difficulties in the

measurement and processing procedures of biosignals. The biological system cannot be

uncoupled in such a way that subsystems can be monitored and investigated individually

because of their control linkages and many feedback paths. The biological system under

investigation must remain in its natural environment, so the signals produced by the

system are influenced by surrounding systems and inherently contaminated with the noise

produced by them.

The Biomedical signal instrumentation system must be designed so as not to

interfere with the biological system. Thus, noninvasive techniques should be applied, or

if this is not possible, the information must be inferred from signals noninvasively

available.

Biomedical signals are mechanical, chemical, or electromagnetic in nature. These

signals are presented for analysis as electrical signals by a variety of transducers.

1.4 DIGITAL SIGNAL PROCESSING, AN INTRODUCTION

In recent years, tremendous advances have been made in the area of digital

technology. Information is now most conveniently recorded, transmitted and stored in

digital form. As a result of this, digital signal processing has become an extremely

important tool.
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Digital signal processing (DSP), deals with the representation of signals as ordered

sequences of numbers and the numeric processing of those sequences. It estimates

characteristic signal parameters, and eliminates or reduces unwanted interference.

Classical Digital Signal Processing functions generally include: Digital filtering,

Discrete Fourier transforms, Signal modulation, Autocorrelation and Cross-correlation, and

some other techniques used for specific purposes.

DSP is applied in many areas of application, such as: Speech Signals Processing,
Processing of Seismic Signals, RADAR, Image Processing, and in this case, Biomedical

Signal Processing. New techniques are continuously developed in those areas, and in

some cases, techniques developed for a specific area, such as RADAR, can find

application in biosignal processing.

Some signal processing techniques described in this document were created

specifically for this project, while others are modifications of already known techniques to

make them suitable for the project's objectives and needs.

1.5 CHAPTERS ORGANIZATION

This document is divided into seven chapters and one appendix. The background

material in Chapter One provides a brief description of the areas in which this project is

involved, such as Bioelectrical engineering, Computer Engineering and Digital signal

processing.

Chapter Two includes information about the physiological and bioelectric principles

on which this project was designed and developed. It also presents the different

biosignals, their origins and classification.

Chapter Three describes the system hardware, the computer system, data
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acquisition system, and the instrumentation system.

The system software such as the operating system, the programming language

used for its development, the data acquisition software and some data file handling

programs are presented in Chapter Four.

Chapters Five and Six present the software development, which is the principal

objective of the project, which applies different digital signal processing techniques and

algorithms to the sampled raw data, as well as provides further analysis of the processed

signals. It presents a detailed description of programming techniques, file handling and

graphics features.

Being this an open ended system, Chapter Seven presents several enhancements

and recommendations, some of which are in actual development.

The appendix contains flow diagrams and example routines from the source codes.
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CHAPTERII

PHYSIOLOGICAL PRINCIPLES AND BIOSIGNALS

2.1 RESPIRATORY PHYSIOLOGY

Physiology is the science of processes and functions of living biologic systems.

Respiration is the process by which air is breathed, oxygen is extracted by the blood and

delivered to the tissues, and carbon dioxide is purged from blood to lungs and then

breathed out. Gas is brought to one side of the blood-gas interface by airways and blood

to the other side by the vessels. The airways consist of a series of branching tubes which

become narrower, shorter and more numerous as they penetrate into the lungs.

During inspiration, the volume of the thoracic cavity increases and air is drawn into

the lung. This increase in volume results from the contraction of the diaphragm, which

causes its descent and lowers the pressure within the thoracic cavity to more sub-

atmospheric levels. The intercostal muscles also contribute to this function, by elevating

the rib cage. At the end of inspiration the elastic lung returns passively to its pre-

inspiratory resting position.

There are three basic elements controlling the respiratory system: Peripheral

sensors that gather information, a central controller in the brain that coordinates the

information and has a central rhythm generator, and the effectors (respiratory muscles)

which act upon the airway and lungs to cause ventilation.

In the control of ventilation, the different muscles work in a coordinated manner,

directed by the central controller. There is evidence that some premature children have

uncoordinated respiratory muscle activity, especially during sleep [1].
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2.2 BIOSIGNALS

The respiratory system biosignals which this project deals with are classified as:

Muscular or Electromyograms (EMG), Respiratory, Chest wall motion, and Cardiac (EKG)

signals. This classification is based on the instrumentation system setup necessary to

obtain these signals, and on the signal processing and analysis software.

2.2.1 Respiratory Signals

Flow:[Liters/Min]

Flow is defined as the amount of gas that flows in and out the respiratory passages

with each breath, in a specific length of time. It is divided into inspiratory and expiratory

flow. Timing information derived from this signal, such as inspiratory time and total breath

time is very useful for analysis.

Frequency range: dc to 50 Hz [1].

Tidal Volume: [ml]

This parameter measures the quantity of gas exchanged with each breath, and is

defined as the simple integration of inspiratory and expiratory flow.

Frequency range: dc to 50 Hz [1].

Esophageal Pressure: [cm H2 0]

The esophagus is the feeding tube which extends from the pharynx to the

stomach. The pressure changes occurring within the chest as a result of the descent of

the diaphragm muscle during inspiration causes the lungs to expand, create negative

pressure on the outside of the lungs, and draw air into the lungs. This negative pressure

in the pleural space is transmitted to the esophagus and is used as parameter to measure

driving pressure.

Frequency range: dc to 50 Hz [1].
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Mouth Pressure: [cm H20]

The difference between the pressure in the pleural space, which is reflected in the

esophageal pressure measurement, and the pressure at the mouth, which is the is the

pressure lost in overcoming the resistance of external measuring devices, is the pressure

required to move air through the air passages into the gas exchange units.

Frequency range: dc to 50 Hz [1].

Figure 2.2.1

This figure shows the respiratory signals

(flow, esophageal pressure, mouth

pressure and tidal volume), the lines mark

points of onset of inspiration and

beginning of expiration for each breath.

2.2.2 Chest Wall Motion Signals

The chest wall movement is observed at two levels, abdomen and rib cage. The

transversal movement of the chest wall at these levels contains information about volume
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changes and timing.

Frequency range: dc to 5 Hz [1].

Figure 2.2.2

These are the ribcage and abdomen

motion signals, and their sum. The lines

indicate their time relation with the breath.

2.2.3 uscular Signals

The skeletal muscle consists of cells with excitable membranes. The muscle is

constructed from many separate fibers. These fibers contain two kinds of protein

filaments, actin and myosin. These are arranged in parallel interlacing layers which can

slide one into the other causing shortening of the muscle length. The sliding of the fibers

is caused by chemical reactions.

The generation of motion or force by the muscle is activated when the fiber

membrane is excited. There is an electrical potential across the surface membrane of a

skeletal muscle fibre in the resting (polarized state), the interior is charged about 75 mV

negative with respect to its surroundings. An action potential then propagates

(depolarizing) along the surface membrane of the fiber triggering chemical reactions that,
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in turn, cause fiber contraction. When a muscle contracts, the action potentials generate

an electric field that can be monitored by means of surface electrode. This field is a result

of the contribution of many fibers at different times and with different rates. The EMG

signal monitored this way will be a random signal with statistical properties that depend

on the muscle function [51.

The neuron that activates the muscle is the motor nerve. The motor neuron-muscle

connection is called neuromuscular junction or end plate. When the chemical substance

that serves as a transmitter (Acetylcholine) is released from the neuron's axon endings,

it diffuses toward the muscle membrane and is absorbed at the receptors sites, causing

potential change in the muscle membrane. If the potential change crosses the threshold

level, an action potential is generated and propagates along the muscle membrane. The

process of transmitter release, diffusion and reception lasts 0.5 to 1 msec [2].

All the muscle fibers innervated by a single motor nerve fiber are called a motor

unit. Usually muscle fibers of adjacent motor units overlap, allowing separate motor units

to contract in support of each other rather than entirely as individual segments.

The current densities generated by membrane activity cause changes in the

surrounding medium. The surrounding tissues, in which induced current changes occur,

are called the volume conductor. In most applications, the fields of the volume conductor

are monitored instead of the bioelectric source itself.

Muscle Fatigue:

Prolonged and strong contraction of a muscle leads to the state of muscle fatigue.

This result simply from inability of the contractile and metabolic processes of the muscle

fibers to continue supplying the same work output. The nerve continues to function

properly, the nerve impulses pass normally through the neuromuscular junction into the

muscle fiber, and even normal action potential spread over the muscle fibers, but the

contraction becomes weaker because of depletion of energy supplies in the muscle fibers

[6].
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The clinical research protocol is interested in the activity of the muscles described

below:

Diaphragm (DIA) EMG:

The diaphragm is the most important muscle of inspiration. It consists of a thin,

dome-shaped sheet of muscle which is inserted into the lower ribs and divides the

thoracic cavity from the abdomen. When it contracts, the abdominal contents are forced

downward and forward, and the vertical dimension of the chest cavity is increased. In

addition, the rib margins are lifted and moved out, causing an increase in the transverse

diameter of the thorax. This movement creates negative pressure in the pleural space

which acts on the outer surface of the lungs, drawing air into them [5].

Genioglossus (GGS) EMG:

This muscle is inserted to the Hyoid bone and into the body of the tongue, its

respiratory function is to move forward the tong in order to keep the upper airway open.

Posterior Cricoarytenoid (PCA)E MG:

This is one of the muscles that abducts the vocal cords in synchronization with the

activity of the diaphragm. It is an intrinsic muscle of the larynx and has alarge role to play

in lowering the resistance of the larynx when active. This is the site of the greatest

amount of spontaneous fluctuation in resistance within the airways, and the present study

is interested in its activity under stress condition.

Abdominal EMO:

The muscles of the abdominal wall are the most powerful expiratory and expulsive

muscles of respiration. They are subject to a rhythmic respiratory activation in addition

to their involvement in posture and other functions. During nose breathing their

contribution becomes appreciable at ventilation slightly above quiet breathing. As the

ventilation increases, the expiratory contribution of the abdominal muscles increases

progressively [5].
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Intercostal EMG:

The intercostal muscles, according to their name, are located between the ribs.

The external intercostal muscle is purely inspiratory in its activity [51.

2.2.4 Cardiac Signals

As the impulse passes through the heart, electrical currents spread into the tissues

surrounding the heart, and a small proportion of these spreads all the way to the surface

of the body. The electrical potential generated by the heart is known as electrocardiogram

(EKG). The electrocardiographic signal is composed by the occurrence of the PQRST

complex. The P wave is caused by electrical currents generated as the atria depolarize

prior to contraction. The QRS complex is caused by passage of the cardiac impulse

through the ventricles. The T wave is caused by currents generated as the ventricles

recover from the state of depolarization.

The electrical currents spreading through the tissues around the heart, influence

the measurement of electrical activity in those tissues. In this project the cardiac artifact

created by those currents in the respiratory muscle EMG is a non-desired contaminant

that makes it necessary to use special processing techniques for its extraction for EMG

signal validation. The cardiac or EKG signal is used as timing reference for these

extraction procedure.

2.3 SUMMARY

The respiratory system analysis is based on the activity of specific muscles and

some parameters of the breathing mechanics. Therefore, the biosignals used for analysis

are classified as muscular , respiratory, chest wall motion, and cardiac signals.

The parameters of the respiratory mechanics are calculated from the respiratory

14



signals group, which are: Flow, Tidal Volume, Esophageal Pressure and Mouth Pressure.

The electrical muscle activity information of the different muscles participating in the

respiratory process is related to these parameters.
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CHAPTERIll

SYSTEM HARDWARE

3.1 HARDWARE SYSTEM

A microcomputer system performs the functions required to obtain valid analysis

of the different parameters. This microcomputer system includes different expansion

devices and peripherals which provide the necessary capabilities to perform different

tasks. The peripherals and external devices which are necessary to obtain information are

an important part of the whole system. These devices are called the instrumentation

system, and serve as sensor devices to convert physiological information into electrical

signals.

As described before, the Hardware System is divided into three subsystems:

Computer, Data Acquisition and Monitoring, and Instrumentation. Figure 3.1 is a complete

block diagram of the Hardware setup.

3.2 MICRO COMPUTER SYSTEM HARDWARE

The system board is the primary part of the system and is sometimes called

motherboard. This is a large printed circuit board that holds most of the main electronic

parts. These include the processor and math coprocessor, as well as supporting

electronics such as the clock chip. The system board is also the computer's basic

complement of working memory and the read-only memory chips that hold the computer's

built-in programs. The system's storage devices are the hard disk drive, the diskette

drives and sometimes tape drives, that contain the application programs and data. The

power supply contains basically a large transformer to lower the voltage and a fan that
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provides a cooling air flow. The system includes space for a number of optional parts

called adapters. These cards plug into a row of sockets called expansion slots,

representing the systems's open architecture.

InstrmenttionNewborn

A "D ConversionAl

Monitor
ssor Software

Figure 3.1 Block diagram of microcomputer based system
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Our Syste, Hardware Configuration

The computer system used for this project is a PC's Limited 386 series machine

from Dell Computer Corporation [11. The following are some of the basic features;

Processor Speed;

This machine uses a 80386 microprocessor running at 16 MHz. To allow

compatibility this processor can emulate processing speeds to run software compatible

with 8088 and 80286 processors.

Static RAM:

Static Random Access Memory (SRAM) does not need the electronic refresh

required is systems using Dynamic RAM. This SRAM operates with zero wait states for

fast memory access.

Static Memory Board:

The Static Memory Board (SMB) supports up to 6 M bytes of static RAM on a 32

bit data bus. Instead of memory each 386 has a standard configuration of one megabyte

of SRAM on the SMB (can be increased up to 5 MB). The SMB moves information

around four bytes at a time (32 bits). The Static Memory Board operates at the full 16

MHz speed of the 80386 processor.

Dual Speed Input/Output bus:

The I/O bus operates either at 8 or 12 MHz, to allow the use of expansion cards

available for 80286 systems, without sacrifying the microprocessor's power and speed.

Expansion Slots:

This machine provides 7 expansion slots, for modems, video cards, multiple 1/O

ports.
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Video Display:

The system has an Enhanced Graphics Adapter (EGA) card, and comes with

FAST EGA mode enabled. When this mode is enabled, it takes much less time for the

system to update the screen.

Storage System:

The system includes a 1.2 megabytes floppy disk drive and a Hard drive provides

high speed, high capacity storage for programs and information. The hard drive is also

known as fixed disk, hard disk or Winchester drive. Our system has a 152 MB type 31

hard drive, with two partitions, drives C and D. Drive D contains most of the capacity and

contains the working directories.

Tape Drive:

The size of the data files makes it necessary to use of a 40 megabytes tape drive

used for large back up of large amounts of data, freeing disk space for new data.

Hardcopy Device:

The hardcopy device is a Fujitso DL2400 printer. It is a multi-purpose, 24-wire dot

matrix impact printer. It is compatible with most of the IBM Graphics printer and Epson

FX 80 codes. Prints up to 216 characters per second and it is connected at the first

parallel port.

3.3 DATA ACQUISITION ADMONITORING SYSTEM

A/D Conversion

An analog to digital converter changes continuously-varying analog signal into an

analog data value (a digital code of 0's and 1's), which is intelligible to a computer.
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DT2821 BOARD

The DT2821 board (Data Translation, Inc) is a high speed analog and digital 1/O

board designed to be used with a personal computer. This board is plugged into one of

the fully bussed expansion slots (2].

The board can be programmed to perform analog to digital (A/D) conversions;

digital to analog (D/A) conversions; and digital input and output (DIO) transfers. The

DT2821 series board can be configured to perform the analog I/O functions in

programmed 1/0 (P1/0) mode or direct memory access mode (DMA), both with or without

interrupt capability. The DMA interface is compatible with 16 bit data transfers and can

be selected to use DMA channel 5, 6, or 7. DMA buffers may be located anywhere in the

memory space of the computer and maybe up to 128 K bytes. Two DMA channels can

be configured to support continuous performance DMA, which is a data sampling method

that provides gap-free transfers of large volumes of data from memory or disk (D/A) or

to memory or disk (A/D) without any loss of samples.

It also contains an on-board programmable pacer clock, which can be used to

provide clock pulses to control the rate of conversions for the board's A/D and D/A

subsystems.

This board is connected to the signal conditioning stages through the DT707 screw

terminal, which is set up in a metallic box with BNC input connectors.

Base Address:

the base address is the lower I/O address location used by the DT2821 board. The

base address can be set anywhere between HEX 200 and HEX 3E0 in increments of 20

(hex). The board is actually set to the address HEX 240.

Overlap Mode A/D Operation:
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The DT2821 board A/D conversion subsystem is shown in the block diagram of

figure 3.3.2.
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first channel is applied to the multiplexer's address lines.

2. The programmable gain amplifier buffers the analog input, and may increase its

voltage level based on the associated gain bits. Since the analog input signal from the

transducer may be only +1.25 v maximum, an amplifier boosts the signal (by gain of

8) to a level required by the board's A/D converter.

3. A sample and hold circuit samples the selected analog signal from the multiplexer.

A trigger now marks the beginning of the scan.

4. On the first clock pulse (either internal or external) after the trigger, the sample and

hold circuit switches to hold and the A/D converter translates the analog signal held

by the sample and hold into a digital code. The next channel from the RAM

channel-gain list is loaded into the multiplexer.

Resolution:

The A/D system of the DT2821 board has a 12 bit resolution. The incoming analog

signal is converted into a binary number 12 bits long and can assume 4096 states. So

this converter can resolve differences on an analog signal as small as 0.024 % of the

selected analog input range.

Video Monitoring : WFS-200P Waveform Scroller Card

The WFS-200PC (DATAQ Instruments, Inc) waveform scroller circuit board is a

high performance waveform graphics interface [3]. It makes it possible real time data

display during data acquisition, and also allows post-acquisition data playback.

This card may display waveforms on several different monitors. It also supports the

IBM Enhanced Graphics Adaptor (EGA) card used in this system. For this application, this
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circuit board was preset to the hardware address HEX 308.

3.4 INSTRUMENTATION SYSTEM AND SIGNAL CONDITIONING SYSTEM

The biosignals instrumentation setup follows noninvasive procedures, which not to

interfere with the biological mechanisms of the respiration. The infants studied are asleep

and relatively familiar with the respiratory therapy and monitoring equipment used in the

intensive care unit. Thus, the instrumentation system is relatively a non-invasive system.

The instrumentation system, and most of the subsystems in this project, are

divided by hardware configuration into respiratory, chest wall motion, muscular (EMG),

and cardiac (EKG) instrumentation systems (see figure 3.4).

3.4.1 Respiratory Signals Instrumentation System

Flow Signal:

The air flow is measured by a Fleisch "00" pneumotach attached to the nostrils

by nasal prongs. The pneumotach is a laminar device used to measure the difference in

pressure created by the gas flowing through a wide bore tube of fixed length and radius.

The pressure difference is proportional to the flow and is applied at the two pressure ports

of a variable reluctance pressure transducer (Valydine MP45).

The variable reluctance pressure transducer translates the difference in pressure

to change in reluctance. Reluctance in the ratio of magnetomotive force to the total

magnetic flux. The deflection of the diaphragm due to change in pressure increases the

gap in the magnetic flux path of one coil, and causes an equal decrease in the other. The

reluctance varies with the gap, determining the inductance value.
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The output of the variable reluctance pressure transducer is connected to a

miniature carrier demodulator (Validyne CD 316), that converts the change in inductance

to an output compatible with strain gage systems. The flow signal is then conditioned

using a transducer amplifier (Gould 13-461550)[6]. This transducer amplifier is a single

channel, direct coupled, plug-in dc bridge amplifier. It is capable of measuring strain gage

based transducers, resistance temperature devices, and low level dc input signals.

Mouth and Esophageal Pressure:

The mouth or proximal airway pressure is measured through an air-filled catheter

attached to the side port of the adapter (nosepiece) in the nasal prongs, while the

esophageal pressure is measured by a wide bore water filled catheter in the lower third

of the esophagus. These catheters conduct pressure to a hydrostatic fluid pressure

transducer P23XL (Spectramed Inc.) [4] and have a flat frequency response in the band

of normal breathing frequency of infants. The most important part of this transducer is a

silicon chip linked to a metal diaphragm, onto which the strain elements of a Wheatstone

bridge are diffused. When the diaphragm is deflected the silicon chip is stressed, causing

an unbalance in the resistance of the bridge. This unbalance causes a proportional

electrical output which is sent for signal conditioning to the transducer amplifier described

above.

3.4.2 Chest Wall Motion Signals Instrumentation System

Chest wall motion is determined using respiratory inductance plethysmography

(Respitrace Corp.)[8], with closely fitting elastic bands, one band placed around the chest

at the level of the ribcage and the other around the abdomen at the level of the umbilicus.

The device consists of two coils of Teflon-insulated wire which zig-zag around the

bands mentioned before. The respiratory movements change the inductance of each coil

proportionally to the change in volume. The bands are connected to an oscillator module
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that provides approximately 20 m pp amplitude sine wave with a frequency of 300 KHz

[8].

This change in inductance is converted into a proportional direct current voltage

that can be amplified and recorded. The output signals from this device is conditioned by

a medium gain dc preamplifier (Gould 13-4615-00)[6]. This is a balanced common

medium gain preamplifier, with maximum sensitivity of 50 m full scale.

3.4.3 Muscular Si nals Instrumentation System

The respiratory EMG signals are detected by silver-silver chloride surface

electrodes. Three electrodes are attached to the infant for each muscle studied; two of

them are placed in the area of interest, and the third one, acting as a ground reference

is placed over a bony prominence, such as forehead or ankle. These three electrode

leads are connected to a fiber optic isolated differential bioamplifier and transmitter

(Coulburn S75-04B) [5], capable of carrying biopotential signals up to 1 Khz. Since this

transmitter is isolated from the system ground, it has a very high common mode rejection

ratio. The fiber optic cable driver uses an infrared light emitting diode (LED) to send the

modulated signal through the fiber optic cable. At the end of this cable the signal is picked

up by a fiber optic receiver (Coulburn S75-04)[5]. This receiver reconstructs the frequency

modulated signals and conditions them for amplitude, providing an output level of 1 volt

RMS [5].

The EMG signals are then band pass limited using an adjustable band pass filter

(Coulburn S75-36) with 48 dB/octave roll off [5]. The signals are band limited between 10

Hz and 500 Hz. These band limits have been determined by PSD analysis which shows

that more than 95 % of the signal lies below 500 Hz, while below 10 Hz the signals are

affected by low frequency noise.
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The only muscle instrumentation set up that is slightly different is for the Posterior

Cricoarytenoid or PCA; it is necessary to use a special ring electrode, which is a thin

catheter conducting two wires connected to a couple of silver rings at the end. The

catheter is introduced into the upper airway, where the PCA muscle is located.

3A.4 Cardiac Signal Instrumentation System

The electrocardiogram (EKG) is measured using the same type of surface

electrodes as used for EMG signal measurements. Three leads are placed in a special

configuration over the upper chest and connected to an isolated ECG/Biotach amplifier

(Gould 13-4615-65)[6]. This amplifier is a multifunction signal conditioner with both

isolated EKG and biological rate measurement capabilities.
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3.5 SUMMARY

The base of the system is its hardware configuration. The microcomputer digitizes

the signals coming from the instrumentation system which is divided into respiratory,

muscular (EMG), chestwall distortion and cardiac signals subsystems.

The signals are digitized using an A/D board inserted in one of the expansion slots

of the personal computer and the data is stored in the hard disk storage system.

During data acquisition the signals can be video monitored using a special card that

provides real time data displaying.

3.6 REFERENCES

[1] PC's Limited 386 Series, The Dell Computer Corporation, Austin, Texas, May

1987.

[2] DT2821 Series, By Data Translation, Inc., Marlborough, Maine, 1987.

[3] WFS-200PC Waveform Scroller Manual, Dataq Instruments, Inc., Akron, Ohio,

1987.

[4] Spectramed Models P23XL and P1 OEZ Transducers, Spectramed, Inc., 1987.

[5] Modular Instrument System , Coulbourn Instruments, Pennsylvania 1984.

[6] Medium Gain DC Preamplifier, Transducer Amplifier, ECG/Biotach Amplifier

Manuals, Gould Inc., Instruments Division, Cleveland, Ohio, 1981

[7] 80386 High Performance 32-bit Microprocessor, Advance Information, INTEL

Corporation, Santa Clara, California, April, 1986.

[8] RESPIGRAPH ti, NIMS, Inc. , Miami Beach, Florida.

27



CHAPTER IV

.Y 

TM4 

INTRODUCTION

The system software is based on the MS-DOS operating system. Different

application programs have been created and some commercial programs have been

adapted to perform the tasks necessary to transform the microcomputer system into a

powerful tool for the clinical research.

This chapter presents a description of the operating system that manages the

hardware resources of the computer. It also introduces the C language for a better

understanding of the software implementations described in this and following chapters.

The data acquisition software drives the hardware interface to the hardware

instrumentation system as well as to the computer resources.

4.2 MS-DOS OPERATING SYSTEM

The Disk Operating System (DOS) belongs to a class of computer programs that

are known as supervisors, control programs, or operating systems. The task of an

operating system is basically to supervise and direct the work, the operation of the

computer.

MS-DOS is partitioned into several layers that serve to isolate the kernel logic of

the operating system, and the user's perception of the system, from the hardware it is

running on. These layers are:
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BIOS (Basic I/O System)

. DOS Kernel

. The command processor (Shell) [1]

BIOS Module:

The BIOS contains the default resident hardware-dependent drivers for the

following devices:

Console display and keyboard (CON)

. Line printer (PRN)

Auxiliary device (AUX)

Date and time

Boot disk device (block device)

DOS Kernel:

The kernel is a proprietary program that provides a collection of hardware

independent services called system functions. These functions include the following:

. File and record management

Memory management

Character-device 1/O

. Spawning of other programs

Access to the real-time clock

Programs can access system functions by loading registers with function specific

parameters and then transferring to the operating system by means of a software

interrupt.

Command Processor:

The command processor or shell is the user's interface to the operating system.

It is responsible for parsing and carrying out user commands, including the loading and
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execution of other programs from disk. The default shell provided with MS-DOS is found

in a file called COMMAND.COM, which is a special class of program running under the

control of MS-DOS.

Loading MS-DOS:

When the system is started, program execution begins at address OffffH. This is

a feature of the 80x86 family of microprocessors. Systems based on these processors

are designed so that this address lies within an area of ROM and contains a jump

machine instruction to transfer control to system test code and ROM bootstrap routine.

The ROM bootstrap routine reads the disk bootstrap routine from the boot sector

of the disk into memory and transfers control to it. The disk bootstrap routine checks to

see if the disk contains a copy of MS-DOS (reads the root directory looking for IO.SYS

and MSDOS.SYS files); then the disk bootstrap reads them into memory and transfers

control to IO.SYS. The IO.SYS file that is loaded consists of two modules: BIOS and

SYSINT.

SYSINT is called by the BIOS initialization code. It determines the amount of

contiguous memory present in the system and then relocates itself to high memory. Then

it locates the DOS kernel to its final memory location and calls the initialization code in

MSDOS.SYS.

The DOS kernel initializes its internal tables and work areas, sets up the interrupt

vectors, and traces through the linked list of resident device drivers and initializes them.

At this point SYSINT calls the normal MS-DOS file services to open the CONFIG.SYS file,

which contains commands that enable the user to customize the MS-DOS environment.

The CONFIG.SYS file is loaded into memory and its commands are for processed,

memory is allocated for the disk buffer cache and the internal file control blocks used by

the handle file and record system functions. Any device drivers indicated in the
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CONFIG.SYS file are sequentially loaded, initialized and linked to the device-driver list.

Then SYSINT closes all file handles and reopens the console, printer and auxiliary

devices as standard devices. Finally, SYSINT calls the function EXEC to load the

command interpreter (COMMAND.COM as default).

EXEC Function:

Both types of programs are loaded in memory for execution by the EXEC function,

that is called by COMMAND.COM with the filename of a program. It can also be called

by other shells, or by another program that was previously loaded.

EXEC allocates a block of memory to hold the new program, builds the program

segment prefix (PSP) at its base, and then reads the program into memory above the

PSP. Then it sets up the segment registers and the stack and transfers control to the

program.

Program Segment Prefix:

The program segment prefix is a reserved area, 256 bytes long, that is setup by

DOS at the base of the memory block allocated to a transient program. The PSP contains

linkages to MS-DOS that can be used by the transient program, some information MS-

DOS saves for its own purposes, and some information MS-DOS passes to the program.

Loading .EXE Programs:

The MS-DOS loader always brings a .EXE program into memory immediately

above the program segment prefix, although the order of the code, data and stack

segments may vary. The .EXE file has a header, which is a block of control information

with a characteristic format. The size of this header varies with the number of instructions

that need to be allocated at load time (multiple of 512 bytes).

Before the MS-DOS transfers control to the program, the initial values of the code

segment register (CS) and instruction pointer register (IP) are calculated from the

information in the file header and the loading address. This information derives in the
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source code for one of the program's modules. The data segment register (DS) and the

extra segment register (ES), are made to point to the PSP so the program accesses the
environment-block pointer, command tail and other information. The initial contents of the

stack segment register (SS) and stack pointer register (SP) come from the header. This

information is obtained from the declaration of a segment with the attribute STACK in the

program's code. When a.EXE program finishes processing, it returns control to MS-DOS

through Int 21H Function 4CH.

Custom System Configuration and Initialization Files:

The computer system used for this project is configured using the CONFIG.SYS

that contains the following configuration commands.

SHELL sets the MS-DOS command processor to the COMMAND.COM located in the

directory c:\DOS\. e:nnnn specifies the environment size. /p keeps the secondary

command processor in memory and does not automatically return to the primary

command processor.

DEVICE sets a search path to find the device driver being added to the system. The

CONFIG.SYS file in this system installs the following devices: ANSI.SYS, allows you

use ANSI escape sequences in real mode. VDISK allowing you to create a virtual disk

(area of virtual memory that is used to emulate real disk). IBMCGI, IBMEGA and

IBMGPR (GSS GRAPHICS) are device independent interface to graphics devices.

Sets the number of buffers=25 and files=25.

BREAK=on sets the Ctrl-C check.

The AUTOEXEC.BAT file sets the PATH, that tells MS-DOS where to find external

commands. The SET command sets one string of characters in the environment equal

to another string for later use in programs.
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4+.3 DEVELOPING SOFTWARE IN C LANGUAGE

In recent years C has become the most useful programming language and almost

an industry standard. Because of that, a large number of software libraries, hardware

drivers and object modules are available for application in different areas such as

engineering, graphics, etc.

The C language is an ideal language for software development. It offers a selection

of data types and control structures while handling additional tasks like I/O, graphics,

math calculations and the handling of peripheral devices by additional libraries. Being a

medium level language, it can be interfaced with different programming languages such

as FORTRAN, PASCAL, BASIC, and ASSEMBLY.

The software developed for this project was implemented using a Microsoft C

compiler, Version 5.1 [31. The following is a brief introduction to the C language for a

better understanding of the software implemented for this project.

A C source file consists of preprocessor directives, declarations of variables, a

main function and other functions. Each function contains expressions and statements.

Preprocessor Directives:

This unique facility enable users to design programs that are modular, readable

and easy to use in different computer systems. These directives provide three important

features: include contents of a file into a program (file inclusion), replacing one string with

another (token replacement and macro processing), and compiling selected portions of

a program (conditional compilation).

Process Control:

One way to reduce software development time is to use existing source code. This

can be accomplished using function calls and even call routines written in another
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languages. In case the existing code is an executable file, the C library provides the

facilities that allow another program to be executed from your program (child process) or

spawning.

A process is an executable program in memory and its associated environment.

Anytime a program is run, a process is created. The program's environment is stored in

the PSP (Program Segment Prefix) and it includes all the information needed to execute

a program. This includes information about the location of its code and data in memory,

and record of files opened during execution.

Environment of a Process:

When MS-DOS is running, the user talks with a process running under

COMMAND.COM control. In this case the environment includes the variables PATH,

COMSPEC, PROMPT, INCLUDE, LIB, etc.

The environment variables are used to pass information to processes. C provides the

capacity to access environment variables using the library routines GETENV and

PUTENV, used to obtain the environment variable and alter it respectively. All the

changes made during the program to the environment will vanish because the program

environment is only a copy of the parent environment.

Command Line Arguments:

When the command line PROGRAM ONE TWO THREE is typed at the DOS

prompt, one two three are called command line arguments. In this command line,

PROGRAM has three arguments, the first one is an integer ARGC, containing the number

of command line arguments, being the first argument the full pathname of the program.

The argument ARGV is a pointer to an array of C strings, each containing one command

line argument. The environment is passed to a process in the same manner as the

command line arguments, ENVP is a pointer to an array of null-terminated strings, each

containing one environment setting.

34



Signals:

Signals are the ways the operating system interrupts a process when error

conditions (exceptions) occur. Each recognized exception has a routine to handle the

exception, and the library routine signal can be used to handle a particular signal, when

a signal occurs the appropriated handler is called. The raise function generates a signal

artificially.

Memory Layout:

C enables the user to request blocks of memory at runtime and release the blocks

when your program no longer needs them. Thus it is possible to design an application to

exploit all available memory in the system. This capabilities come in the form of a set of

library routines, called memory allocation routines.

File Handles:

The pathname of a file is not the only way to identify a file. When a file is created

or opened using the functions OPEN, SOPEN or CREAT, an integer identifier is returned,

this is called "handle" of the file. The handle is used by the system to access a structure

where certain pertinent information about the file is stored.

Input and Output Routines:

Input and output can involve reading from and writing to files in the disk or reading

input from the keyboard, sending output to the display screen or commands and

information to peripherals.

The C library supports three types of 1/O: Stream routines, low level file I/O

routines, and console-port 1/O routines. The stream routines refer to I/O performed using

the model of files as a stream of bytes together with a buffer associated with a file. The

buffer is a temporary storage area for the stream of bytes being read from or written to

the file. The low level routines are similar but they do not use the buffer. Console and port

1/O is the direct input and output to keyboard, monitor, and peripherals.
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System Calls:

The C library includes a set of functions that provide access to the BIOS and DOS

services from the programs. These functions help to obtain the full potential without

having to write in most cases, any assembly code. The assembly language instruction

INT generates an interrupt on a microprocessor, providing access to the BIOS and DOS

function object codes, no matter where they reside.

C Software Interrupts:

C provides the routines INT86 and INT86X for generating arbitrary software

interrupts. These routines accept the register settings in a union named REGS, which is

defined in the include file DOS.H and is the overlay of two structures, one named x of

type WORDREGS and the other named h of type BYTEREGS. The member x provides

access to the 16-bit word registers AX, BX, CX and DX, while the member h is used for

accessing the 8-bit halves AH, AL, BH, BL, CH, CL, DH and DL. The segment registers

ES, CS, SS and DS are passed via the structure names SREGS, also defined in DOS.H.

C Interface to DOS and BIOS:

The interface routine in the C library loads the registers from these data structures

before generating the software interrupt necessary to access the desired BIOS or DOS

service. Upon the return from the interrupt, the interface routine copies the register values

into another structure which is allocated and whose address is passed to the routine, This

allows the program to obtain the results or error codes returned.

4.4 DATA ACQUISITION SOFTWARE

4.4.1 Introduction

Data acquisition is used to interface between the real world of physical parameters

and the "artificial" world of digital computation and control. Sensors and transducers
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generate voltages that vary in proportion to the physical properties they measure. The

data acquisition software is one of the most important pieces in the project. This software

drives the data acquisition and storage systems at rates that will allow it to obtain

accurate information without signal distortion due to frequency aliasing.

There are two type of data acquisition required: Short term (1 minute) and long

term (several minutes). To accomplish these tasks, two types of software are available

for each type of data acquisition: CODAS (DATAQ Instruments) [4] and GETDATA.PRG

running under ASYST Scientific System [5].

4.4.2 Data Acquisition Setup

The data acquisition system configuration obtains the maximum performance

possible from the hardware resources. The CPU speed (16 MHz) limits the total sampling

rate to a maximum of 7000 samples per second. This factor reduces the capacity of the

system to seven channels for data collection, with the following configuration:

CHANNEL SIGNAL

1 Flow (FLO)

2 Esophageal Pressure (ESO) or Rib Cage Movement (RIB)

3 Mouth Pressure (PMM) or Abdomen Movement (ABD)

4 EMG signal #1, Diaphragm (DIA) or Abdomen (ABM)

5 EMG signal #2, Posterior Cricoarytenoid (PCA) or

Intercostal Lateral (INT)

6 EMG signal #3, Genioglossus (GGS) or Intercostal

Parasternal (PAS)

7 -Electrocardiogram (EKG)

This configuration can be altered according to the clinical research objectives.
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4.4.3 SamlinRate

Respiratory signals have very low frequency spectrum (50 Hz maximum), while the

muscular signals have frequency components up to 500 Hz. According to the Nyquist

theorem, the bandwidth of the EMG signals requires the sampling rate to be set at least

twice the bandwidth to avoid aliasing effect.

fs= 2*fm where fs is the sampling rate per signal, and fm is the bandwidth of the

signals.

The sampling rate chosen was 7000 Hz divided by the number of channels (7),

yielding a sampling rate per channel of 1 KHz.

4.4.4 CODAS Data Acquisition Software

CODAS is a commercially available engineering software package by Dataq

Instruments, Inc [41. This package was customized to the system setting up the size of

the system data buffers, the dual mode overlapping A/D conversion in the DT2821 board,

for maximum performance of the board and system in terms of speed, in order to obtain

the sampling frequency required with real time displaying of the signals.

This package is used for short term or a predetermined data acquisition time. It

requires file sizes of 860 KB for one minute collection. CODAS provides a variety features

such as:

. Real time displaying (generated by the WFS-200pc waveform scroller board).

. Control over data acquisition parameters such as gain, sampling rate, and number of

channels enabled.
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The CODAS software is used for real-time signal display during data collection,

which allows the monitoring of the signal quality, noise levels, breathing pattern and

movement of the patient, for an interactive data acquisition process.

CODAS Data File Architecture:

The CODAS data file storage format is presented in figure 4.4.5-a. It consists

basically of a header and the data itself. The header contains information such as the

number of channels enabled, sampling rates, gains and analog to digital conversion full

scale code. The header is 578 words long (each word is 2 bytes) [4].

The data is placed immediately after the header. The time multiplexed data stream

of seven channels coming from the A/D board is stored in 2 bytes words that contain the

value in two's complement binary format, where the fifth bit (D4) is the least significant

bit. Bit DO is channel 0 marker and is set to 1. See figure 4.4.5-b [41.
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4,4. ASYT Scientific System

ASYST has been designed by Adaptable Laboratory Software, Inc.[5]. It

incorporates features of standard computer languages, and it has its own application

environment. It contains prewritten software tools which can be used by themselves or

incorporated into the application programs. ASYST data acquisition modules supply tools

to input analog information from instruments.

ASYST Data Storage Format:

ASYST represents data in a bipolar range using offset binary configuration. The

A/D system input supports signals within the range of +/- 10 volts and the output range

is from 0 to 4096. The stream of data written in the destination file, contains the

multiplexed sampled values of each channel as shown in figure 4.4.6.

A/Ddaaalec

End of File

Figure 4.4.6 Program GETDATA.PRG storage format.

Concept of Direct Memory Access:

High performance analog I/O is necessary to comply with the sampling rates

mentioned above. Direct memory access (DMA) is one of the methods that allows high

speeds storing large amounts of data directly to disk with minimum software support

[5][1].
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Direct memory access is a process which allows acquisition to take place

independent of the computer's processor. This frees the processor to perform other duties

while the analog input or output takes place. DMA is a method for moving data from the

data acquisition system directly into memory using hardware capabilities built into the PC.

The important point here is that the data movement is accomplished entirely through

hardware; no software intervention is require to transfer the data.

The personal computer has seven DMA channels. It uses channel 0 for memory

refresh, channel 2 for floppy disk support, channel 3 for hard disk support; this leaves four

channels for DMA transfers. The DT2821 board is configured to use dual DMA using

channels 5 and 6.

Program:GETDATA.PRG (appendix A.1)

This program collects seven channels using direct memory access (DMA). The

sampling rate is set to 7000 Hz (1 kHz per channel) and it runs under ASYST system

environment. This program allows the signal acquisition time limited only by the storage

device. The rate of acquisition system writes 840 k bytes in the hard disk per minute.

ASYST supports the data acquisition hardware with a special configuration called

"template", that contains information about the number of channels enabled, and the type

of data transfers.

The following are the routines executed to accomplish the data acquisition:

1. Once the ASYST system is installed, the instruction LOAD GETDATA.PRG loads the

program automatically on to the system. The variables and the data array used for DMA

transfers are declared. Next, the A/D template is defined, with information about the

A/D board, number of channels, name of data array, and the type of DMA transfer.

2. The keyboard buffer is reset and the function keys F1 and F2 are assigned to

acquisition and exit functions respectively, displaying the options to the user.
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3. Once the key F1 is pressed, the destination file is opened by the routine MAKE.FILE,

that checks for file existence.

4. Then the routine START.ACQ takes control. The A/D system is initialized, sampling

rate is set, and the data acquisition is started.

5. The routine COLLECT controls the data acquisition procedure. The data buffer array

is divided in two parts, one half is being filled while the other half is written into the

destination file. The routine checks for A/D overruns, with the relation between the

BUFFER.INDEX and the time elapsed. This process continues until any key is

pressed, interrupting the acquisition.

6. Once the acquisition is stopped, the file is closed, and the system is reset and the user

may continue recording in a different file or exit the program.

4.5 FILE FORMAT TRANSLATION SOFTWARE

After the data acquisition procedure has finished, the data files containing the

signals are prepared for the next stages, which are signal processing and analysis

procedures. The data file handling software was developed to customize the different data

storage formats to the project's special needs.

The data acquisition system provides the system with two types of data file

formats, depending on the software used for that purpose. Thus, two separate programs

are necessary for data format translation: IMPORT.EXE and RETRIEVE.EXE. These

programs are also used to import files from the directories used for data acquisition into

the current working directory.
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Program: IMPORT.EXE (appendix A.2)

This program converts the data file collected with CODAS data acquisition software

to binary format without the file header. This conversion is necessary because of the

special data storage format that CODAS uses for its data files. As explained before,

CODAS stores data values in a two byte word, where the value is stored in two's

complement format, with its LSB value at the bit D4 of the first byte.

IMPORT.EXE performs the data conversion and imports the files containing seven

signals from its original directory to a working directory (with the extension .DAT), and

after this is done, it spawns separate processes to create a file containing the tidal

volume signal, which is obtained is the digital integration of flow. These processes are:

ONE-CH.EXE, INTEG.EXE and ONETO8.EXE. They extract the flow signal out of the

seven signals file, calculate the tidal volume signal, and then create a destination file with

the tidal volume signal incorporated, respectively.

Spawning a process is the execution of a child process, either by destroying the

parent process in memory or leaving it intact and returning to it when the child terminates.

The child receives a copy of the parents environment. (SPAWNL routine).

IMPORT.EXE performs the following tasks during execution:

1. Checks if there is enough disk space for the destination file. To do this, it uses the

_DOS_GETDISKFREE system call.

2. If there is enough disk space, it opens the original and the destination files, for buffered

input/output operation, with the directive FOPEN, which assigns it to the dat_file_hdi

structure of the type FILE.

3. The process gets into a loop where a buffer is read and each value is rotated bitwise
4 bits to the right. It continues until the signals are detected to be zero volts during a
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certain interval, or the end of file is reached, and then, both files are closed.

4. IMPORT.EXE spawns a child process called ONE-CH.EXE, that extracts the flow

signal and stores it in a temporary working file.

5. INTEG.EXE is a second process spawned by IMPORT.EXE. This program creates a

second temporary file containing the digital integration of the flow signal (Tidal Volume

signal).

5. The Tidal Volume signal is incorporated into the seven channels file, by the spawned

process ONETO8.EXE, that creates a file that contains eight signals.

Program: RETRIEVE.EXE

The GETDATA.PRG data acquisition program running under ASYST Scientific

System, stores data in offset binary format, with a 12 bit resolution. It means that there

is an offset of 2048 added to each number, to represent positive and negative voltage

values with numbers from 0 to 4096.

The program executes the same steps as IMPORT.EXE, except step # 3, where

the offset is extracted.

Other File Handling Programs

There are several tasks performed in the signal processing and analysis stages,
and it is necessary to present the processes that make it possible. The programs ONE-
CH.EXE, ONE-CH8.EXE, GET1OF8.EXE AND ONETO8 extract or insert one signal to

the stream of data from or to the file containing the multiplexed stream of seven or eight

signals.
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4.6 INTERVAL SELECTION AND SIGNAL DISPLAY SOFTWARE

Selected time intervals are selected from the files containing the "raw" or

unprocessed signals. This selection is based on signal quality (signal to noise ratio),

patterns of breathing, or intervals when a special test was applied to the patients.

The program SELECT.EXE displays the signals and enables the user to select

intervals and store them in defined files.

Program: SELECT.EXE (appendix A.3)

This program displays eight non-overlapping channels simultaneously. Its basic

function is to allow the user to select a desired interval for later processing and analysis.

The following are the basic features this program provides for modification of

display:

. Left and Right signal scrolling.

Gain and Offset adjustment.

Waveform compression.

. Timing information.

SELECT.EXE drives the WFS-200 PC waveform scroller board for signal

displaying, using subroutines provided in the WFSC.OBJ object module.

The different steps and features are accomplished as follows:

1. Opens files with extensions .DAT (original file with unprocessed data) and .SEL (file
that will contain the selected intervals) in binary form for buffered 1/O.

2. Sets the video mode (ERESCOLOR, EGA color card, 16 colors). Sets up the scroller

board, with the array SETARY, that contains information about channels enabled,
scaling factors, offset level, etc. Then it initializes the scroller board.
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3. Starts plotting the signals from right to left for the first time (routine FIRST_PLOT),

then by pressing assigned keys, it can start scrolling (routines SCREENSCROLL and

SCROLLING), adjust gains (routine GAIN), and adjust offsets (routine (setpos).

4. The routine TESTKEY checks for key pressing and controls flow according to the key

pressed.

5. If the interval(s) desired is(are) identified, the user mark the limits (routines

CHOOSELIMIT and SELECTING) and the program writes the data on the destination

file (routine SENDTOFILE).

This program keeps track of the file pointer position to change compression factors,

mark interval limits, and timing.

4.7 SUMMARY

The MSDOS operating system controls and supervises the operation of the

computer system. It consists of the basic input and output system (BIOS), the system

functions (Kernel) and the command processor (COMMAND.COM).

The application programs were developed using C programming language. This
language provides a wide variety of libraries and object modules that facilitate the

programming tasks.

The data acquisition stage is performed using CODAS (DATAQ Instruments) for

short term collections and monitoring, and the program GETDATA.PRG running under
ASYST Scientific System. The files collected with these systems contain the multiplexed

stream of seven channels of sampled data.

The use of two systems make necessary the use of data translation routines, and
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import from the original directories to the working directory. After the data is translated

to straight binary format, the system allows the user to observe the signals using the

program SELECT.EXE and select special intervals for analysis.
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CHAPTER V

DIGITAL SIGNAL PROCESSING AND SOFTWARE DEVELOPMENT

5. INTRODUCTION

The applications of digital signal processing have increased with the decrease in

cost of computer equipment, and its improvement in terms of speed. This has been

reinforced by the concurrent development of efficient numerical procedures (algorithms).

So it is common to find digital signal processing applied in many diverse areas, some of

which were applied in this project.

Since biological signals cannot be measured independently from their surrounding

environment, therefore such signals contain certain amount of artifact contaminants that

make analysis of unprocessed data inaccurate. The signal validation requires the

application of several filtering and noise extraction techniques, especially in the case of

the EMG or electromyographic signals.

5.2 PROCESSING OF EMG SIGNALS

5.2.1 Noise and Contaminants in the EMG Signals

In the measurements of respiratory muscle EMG activity in the neonate, the signals

detected by surface electrodes have very low amplitude. These signals are susceptible

to electrical noise and frequently they are contaminated by the systems surrounding the

muscle and the natural motion of breathing.

Low Frequency and 60 Hz Noise:

Low frequency noise detected in the signals is result of the natural breathing
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movements or some other kind of spontaneous movement of the patient. Part of this low

frequency noise is eliminated using a lower limit of 10 Hz in the Adjustable Band Pass

Filters described in Chapter Three.

The electrode leads behave like antennas, so that any other electromagnetic

activity may be picked up by them [7]. The 60 Hz noise in the system is produced by

such effect, and even though the Bioamplifiers described in Chapter Three have very high

CMRR at 60 Hz, there is still a good amount of noise seen in the unprocessed signals.

Cardiac EKG Artifact:

The electrical activity of the cardiac muscle spreads out through the surrounding

tissue, this electrical activity is picked up during the measurements of electrical activity

in the muscles relatively close to the heart.

This cardiac impulse is called EKG contaminant artifact, and its voltage amplitude

is relatively large compared to EMG activity affecting waveform and timing analysis of the

EMG signals. The frequency spectrum of the EKG contaminant overlaps the spectrum of

the EMG signals, distorting the PSD analysis of respiratory muscle EMG activity [6][8].

Figure 5.2.1 shows the Diaphragm EMG signal, contaminated with the intrinsic EKG

cardiac artifact and 60 Hz noise.

Figure 5.2.1

EMG signal (diaphragm muscle) with EKG

artifact contamination and 60 Hz noise.
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5.2.2 Filtering M Si nals

Finite Impulse Response Filters:

The filters whose impulse response is of finite duration are referred to as finite

impulse response (FIR) digital filters. For the FIR filter the response of the filter depends

only on the present and past input samples.

A causal non-recursive or FIR filter have difference equations of the form:

y(n) = SUM h(n) * x(n-k) where L represents a finite number of delays.

K= 0 to L

where h(n) represents the unit sample response.

and its frequency sample response is determined by:

n=oo

H(e'@ ) = SUM h(n) e-j@

n=-oo

where @ is the digital frequency, @ wT = 2*Pi / fs where fs is the sampling

frequency.

Characteristics of FIR digital filters [1]:

. FIR filters can be designed with linear phase. Linear phase is important for

applications where phase distortion due to nonlinear phase can degrade performance.
. FIR filters are inherently stable, that is, the impulse response is of finite length, and
therefore its output is bounded.

. Quantization noise due to finite precision arithmetic can be made negligible.

A disadvantage of FIR filters is that an appreciably higher order filter is
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required to achieve a specified magnitude response, thereby requiring more filter

coefficient storage.

Fourier Series Method for filter design:

1. Decide upon frequency response H(e@) which is determined by the application.
2. Determine the unit sample response h(n) that will produce the desired frequency

response.

3. Modify the unit sample response h(n) to produce a practical filter (size).
4. Implement the digital filter as a program, or microcoded digital signal processor,
or integrated circuit.

Gibbs Phenomenon;

Truncating the Fourier series results in FIR filters with undesirable oscillations in

the passband and stopband, which will result in slow convergence of the series. These

effect is known as the Gibbs phenomenon[1].

The Hamming Window:

To reduce the Gibbs phenomenon, a particular class of functions are used to
modify the fourier coefficients (impulse response). These time-limited weighting functions

are generally referred to as window functions, one of the most popular window function

is the Hamming window [2].

The Hamming window function is given by

0.54 + 0.46 cos (2*Pi*n/N-1) for abs(n) = < N-112

a(n) = {
0 otherwise
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The filter design procedure is altered only by the step added to alter the unit

sample response of the filter:

h(n) = h(n) * W(n) where W(n) is the window function.

Filter Design:

The FIR filter performs the following tasks:

Eliminate low frequency noise (movement) with a low bandpass limit of 20 Hz.

Eliminates 60 Hz frequency noise.

Sets up the highest frequency cutoff at 500 Hz.

The following steps describe the design of the filter:

1. The frequency response of the filter is setup to eliminate frequencies below 20 Hz,

to band stop frequencies between 57 Hz and 65 Hz, and to limit the spectrum at 500

Hz.

The frequency desired response of the filter is shown in figure 5.2.2.

0 for f < 20 Hz

1 for 20Hz<=f<= 57 Hz

Hd(f)= {0 for 57 Hz < f < 65 Hz

1 for 65 Hz <= f<= 500 Hz

2. Replacing this values in the integral to determine the unit sample response h(n) of the

filter.

Pi

h(n) = (1/ 2*Pi) * I Hd(e@) cos n@d@

-Pi
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3. The number of coefficients is truncated with +/- I terms which yields a filter with (21+1)

coefficients and a time window length of (2*I*T) seconds. For this application the filter has

129 coefficients, with a time window of 129 msec.

4. The filter coefficients are multiplied by the Hamming window coefficients.

5. The coefficients are then shifted to the right by 64 (I) terms to make the filter causal.

Figure 5.2.2 FIR fiRer dexign frequency respon.e

Software Implementation: FIREMG.EXE (appendix A.4)

The program FIREMG.EXE is a implementation of the filter design from the

previous section. This is finite impulse response filter with 129 coefficients.

Calling format: FIREMG ORIGIN-FILENAME DESTINATION-FILENAME

Program execution:

The following is a list of steps the program executes and the events that occur

during the filtering of the signals:

1. The program receives the origin and destination file names via the passing parameters

ARGC and ARGV.
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2. Files are opened for buffered 1/O, for read and write only.

3. The main program transfers control to the subroutine FILTERING(.

4. The number of time intervals or windows of data to be filtered is computed.

6. Computes the window coefficients and store them in the integer array WIN.

7. The filter coefficients are calculated, and multiplied by the window coefficients, the

modified coefficients are stored in the integer array H.

8. The program reads 129 data points into the input floating point array.

9. The filtered data is converted to integer format using the function FP2INT from the

Fortran library SMSFFT [10] and written into the destination file.

10. The program repeats steps 8 and 9 according to the computed number of signal

intervals, giving time information to the user with the function GETTIMEO, that uses the

system call _DOSGETTIME and the defined structure DOSGETTIME Oxc.

Function FP21NT: The Fortran library SMSFFT.LIB [10] that contains the function FP21NT

is provided with the application package 87FFT developed by Micro Way, Inc. The

function FP21NT converts floating point numbers to 16 bits integers in two's complement

format.

The calling format is FP21NT (source, destination, n, bits), where source and

destination are the source and destination arrays, n is the number of points to be

converted, and bits represents the number of significant bits on the destination (byte or

word).
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Processing Speed:

The high number of filter coefficients slows down the processing speed, but there

is trade off. It produces a more rapid transition when going from the passband to the

stopband, and the attenuation in the stopband is greater.

5.2.3 EKG ARTIFACT EXTRACTION

Introduction:

As explained in section 5.1.1, the presence of the contaminant EKG artifact on the

EMG signals cause serious problems for the analysis of such signals. The EMG signal

validation is a very important part of this project. Any posterior analysis of the signals

would become inaccurate if this artifact is not completely removed from the signals.

This section presents the technique used for this artifact extraction, preceded by

a review of the theory on which it is based.

Cross Correlation Coefficient:

The cross correlation coefficient is used to evaluate the similarity between two

sequences of the same size. It has a maximum value of one when the sequences are

identical (1].

The correlation coefficient r for two sequences X,Y of size n is defined as:

r = Covariance XY / (St.Dev X * St. Dev. Y)

EKG Artifact Extraction Technique:

For a better understanding of this technique it is necessary to review the following

terminology:
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Respiratory EMG signal: Electrical activity of the muscles associated with the

depolarization that accompanies contraction of the muscle.

EKG signal: Electrocardiographic signal, it is defined by the occurrence of the PQRST

complex, which accompanies cardiac muscle contraction.

QRS complex: The QRS complex is caused by passage of the cardiac impulse through

the ventricles that occurs every heart beat and is recorded as the EKG signal that it is

used in this system for timing purposes.

EKG artifact: This is the unwanted EKG contaminant artifact that is detected in the EMG

signals.

Standard Template: It is a sequence that represents certain repetitive event occurring on

the signals that has to be identified for processing purposes.

This technique is a modification of the Bloch technique [6] for extraction of the EKG

artifact from the respiratory electromyography (EMG). This technique is based upon the

timing relationship between the occurrence of the EKG complex and its contaminating

presence in the EMG signal.

The procedure is basically divided in two parts: The identification of an EKG artifact

within the EMG signal, and the extraction of subsequent occurrences of such artifact.

1. EKG Artifact Template Identification:

It is necessary to obtain a representative sequence (template) of the EKG artifact

from the EMG signal. The user is provided with the facility of scanning the EMG signal

along with the Flow, Esophageal Pressure and the EKG signal (program

GETTEMP4.EXE). It allows the user to identify the occurrence of an EKG artifact during
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an expiratory interval where there is usually no muscle activity, and manually select the

template containing a representative sequence of the contaminant.

When the user selects this template the program automatically separates two

templates, one containing the EKG contaminant artifact from the EMG signal (figure 5.2.3-

a), and the second template contains a representative QRS (figure 5.2.3-b) complex from

the EKG signal. This sequences are stored in a temporary file that will be used for the

extraction procedure.

Figure 5.2.3-a

EKG artifact contaminant template

obtained from diaphragm EMG during p

expiratory interval. Duration 175 ms.

Figure 5.2.3-b
>/

ORS complex template obtained from the

EKG signal. It will be used for detection of

cardiac muscle activity.

57



2. Searching for QRS Complexes:

The QRS complex template obtained by the user, is used by the program

CLEANEMG.EXE for an automatic searching procedure for the occurrence of the QRS

complexes.

For this purpose the program correlates the QRS complex with intervals of the

same length of the EKG signal (figure 5.2.3-c), obtaining a correlation coefficient that is

compared with an empiric threshold level previously set during programming. If the

calculated correlation coefficient is greater than the threshold level, the algorithm

searches for the occurrence of a peak on the correlation coefficient value by shifting the

QRS complex template one millisecond at a time. This gives a maximum time resolution,

in the order of milliseconds, to detect the occurrence of a cardiac QRS complex on the

EKG signal.

Figure 5.2.3-c

EKG signal, the algorithm identifies the

occurrence of each QRS complex using
this signal.

3. EKG Artifact Removal:

When the program has detected the occurrence of a QRS complex in the EKG

signal, it assumes the occurrence of an EKG contaminant artifact on the EMG signal at

the same point in time where the QRS complex was detected. This is the major difference

of this technique from the original technique, which searches for the occurrence of the

EKG contaminant artifact on the EMG signal itself. This modification is necessary to avoid
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errors detecting this artifact, since in some cases it is buried in the EMG signal, or the

EMG activity is coincidentally is similar to the EKG artifact causing false detections.

Once the EKG artifact is detected in time, the program checks if the EKG

contaminant encountered is a real artifact, with the cross correlation coefficient compared

with a second threshold level (lower). If the coefficient is above this threshold the

algorithm subtracts the EKG artifact template point by point from the EMG signal at that

point in time, leaving only the "pure" EMG activity.

The program shifts then the QRS template in time until a new complex is detected

and the procedure is repeated. Figure 5.2.3-d shows the same interval of figure 52.1

after the artifact has been extracted.

Figure 5.2.3-d

This is the EMG signal showed in figure

5.2.1 after filtering and EKG extraction.

Software Implementation: CLEANEMG.EXE (appendix A.5)

This program performs the functions mentioned in the previous section.

Calling format: CLEANEMG FILENAME.TWO FILENAME.TEM FILENAME.FLT

Where FILENAME.TWO is a file that contains the EMG and EKG signals, the file

FILENAME.TEM contains the templates of the EKG artifact and QRS complex mentioned
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above, and the file FILENAME.FLT will contain the EMG signal free of EKG artifacts.

Program execution:

The program goes through the following steps during execution:

1. Checks if it has received the right number of parameters, then it sets up the interrupt

signal handlers Ctrl-C (SIGINT) and Floating point Interrupt (SIGFPE).

2. Opens the three files for buffered 1/O.

3. Initializes variables PEAK (0.0) and LEVEL (0.9). PEAK is the variable that contains

the peak correlation coefficient when a QRS complex is identified, while LEVEL is the

threshold level variable, that contains the empirical level for identification of the QRS

complex occurrence.

4. Reads the QRS complex and EKG artifact templates into buffer arrays.

5. The control is transferred to the subroutine CROSS_CORRELATION(, that reads the

EMG and EKG signals, determines the occurrence of a QRS when a peak value on the

correlation coefficient is reached.

6. If a QRS complex is detected, it passes an array containing the EMG signal and the

EKG contaminant artifact template to the function CHECKARTIFACT that correlates

these two arrays.

7. If this second coefficient (variable COEFF_CHECK) is above 0.5 then the EKG

template is subtracted from the EMG signal, point by point.

8. Steps 4 to 7 are repeated until the end of file (EOF) is reached.

9. The program provides information to the user about execution times, number of QRS
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complexes detected and extracted.

10. At the end it closes the files and returns control to the calling process.

This program uses two interrupt handling subroutines: CTRLC_HANDLER and

FPERRHANDLER, that uses the library routine SIGNAL. It also uses the Fortran library

subroutine FP21NT described above.

The program GETTEMP4.EXE that is used for the EKG contaminant artifact and

the QRS complex templates selection, is a variation of the program SELECT.EXE from

chapter four. It scrolls 4 signals, and sends the selected interval to the destination file.

Processing Speed:

The processing speed of this programs is reduced because of the large number

of computation it requires for the cross correlation coefficient calculation. The accuracy

of the timing resolution is to the order of milliseconds, which increases the processing

time.

To accelerate the process, the program handles large data buffers, to avoid disk

access time. It also decreases the time resolution, and automatically increases it when

it detects the presence of cardiac activity.

5.2.4 Moving Time Aera e

Introduction:

One of the major difficulties in interpreting electromyograms (EMG) measured with

surface electrodes, is that the instantaneous value of the signal contains little information

about the mechanical response of the muscle [9]. The information needed from the EMG

signals is generally of two types. First the activation and deactivation times, and second,

as well as the magnitude of the electrical activity related to the average force of the

muscular contraction.
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Averaging several instantaneous responses point by point forms a composite

waveform representing the mean response. It also reduces the level of random noise in

the electrical response of the muscle.

In order to obtain this information the EMG signals are rectified and passed to an

averager filter which obtains the envelope of the composite rectified EMG signal as shown

in figure 5.24.

Figure 5.2.4

Output signal of the moving time averager

filter (see input signal in figure 5.2.1).

Moving Time Averaging Technique:

A moving time averager filter is an basically alow pass filter excellent for this type

of application because of its rapid dynamic response.

Digital Paynter Filter:

The third order digital lowpass Paynter filter is basically a three pole Butterworth

filter transformed to digital form [5].

Butterworth filters are characterized by maximally flat response in the pass band,

that is, there is a minimum amount of ripple on their frequency response for the

passbands.

The analog transfer function of this filter is the following [5]:
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H(s) =1 + s/ 2

(1 + 2s/wp) [1 + 1.2s/wp + 1.6(s/wp)l

where wp = Pi/Tp, being Tp the averaging interval. In our case the averaging

interval is 100 is. The averaging interval was chosen empirically, it makes the response

of the filter to follow the dynamic activity of the muscles.

Bilinear Analog to Digital Transformation:

This method for designing digital filters from an already designed analog filter may

be interpreted as a mathematical transformation from the s-domain (Laplace) to the z-

domain [1]. A primary advantage of the bilinear transformation is that it provides a one-to-

one mapping of poles and zeros from the continuous time S-plane to the discrete time

Z-plane. Since the entire imaginary axis on the S-plane is uniquely mapped onto the unit

circle in the z-plane, the bilinear transformation has a compression effect, known as

frequency warping, on the frequency response characteristics. This effect is alleviated by

prewarping critical frequencies and using scaling [3].

Scaling frequencies: H(s) = H(s) I
I s = s/ tan(wc/2) = s/tan(Pi*fc*T)

where wc is the cutoff frequency in radians and T is the sampling interval.

Using the bilinear transformation:

That is: H(z) = H(s)l

s= (z-1)/(z+1)
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This transformation may be written as: sz + s - z + 1 = 0

equation that shows this transform is linear in both domains (bilinear).

The transfer function of the Paynter filter is transformed using this method, to

obtain its transfer function in the Z domain (discrete):

H(z) = AO Z3 + Al Z2 + A2 Z + A3

BO Z3 + BiZ 2 + B2 Z + B3

and the inverse Z transform, yielding the differential equation:

y(n) = AO x(n) + Al x(n-1) + A2 x(n-2) + A3 x(n-3)

- B1 y(n-l) - B2 (y(n-2) -B3 y(n-3)

which can be easily implemented as a digital filter.

Software Implementation: MOVING.EXE (appendix A.6)

This program is the implementation of the digital Paynter filter for the moving time

averaging of the EMG signals. The input of these program is the rectified EMG signal

delivered by the program RECTIF.EXE, and the output is the filtered signal stored in a

file.

Calling format: MOVING FILENAME.EMG FILENAME.MTA

where FILENAME contains the rectified EMG signal and FILENAME.MTA contains

its moving time average.

Program execution:

The sequence of steps occurring during program execution is the following:
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1. The program calculates first the filter coefficients with the routine CALC_COEFFS(,

and the averaging interval is defined as Tp = 100 is.

2. The routine FILTERING() reads buffers of integers into the array buff getint, the

sequence is converted to floating point format for calculation.

3. Once the destination array is full the floating point sequence is converted to integer and

written into the destination file. This procedure is repeated until the end of file is reached.

5.3 PROCESSING OF RESPIRATORY AND CHEST WALL SIGNALS

5.3.1 Noise

The respiratory and chest wall motion signals have very good signal to noise ratios.

However, in some cases the signals are contaminated with high frequency and 60 Hz

noise [9].

The esophageal pressure is sometimes contaminated by cardiac motion artifact,

which is a non-electrical contamination. Instead, the heart movement depresses the

esophagus wall causing differences in pressure that are detected by the pressure

transducers (See figure 5.3.1-a).

The flow signal may also be contaminated, but in this case the contamination is

caused by the inertia of a mechanical one-way non rebreathing valve during changes in

the direction of the air flow, which causes some oscillation in the flow signal before it

opens completely (see figure 5.3.1-b).

65



Figure 5.3.1-a

Esophageal pressure signal contaminated

by the cardiac on the esophagus.

Figure 5.3.1-b MOM

Flow signal with valve noise.

5.3.2 Signal Smoothing

Elimination of noise is begun by using a low pass "smoothing" filter. This filter

eliminates frequencies above 10 Hz, eliminating high frequency noise and contaminants,

improving signal quality for later analysis. Figures 5.3.2-a and 5.3.2-b show the signals

mentioned showed before after smoothing.

Figure 5.3.2-a

Esophageal pressure after smoothing.
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Figure 5.3.2-b

Smoothed flow signal without valve _

artifact.

This filter is a digital first order lowpass filter of the form:

H(s) = 1/(1 + s/wc)

where wc is the cutoff frequency.

This filter is digitized using the bilinear transformation to obtain the Z transform of

the filter which is implemented as a digital filter:

H(z)= (AO z + Al)/(B0 z+ B1)

where

AO=wc B=wc+1

Al=wc B1=wc-1

yielding the equation:

y(n) = Ax(n) + Al x(n-1) - B1 x(n-1)

Software Implementationp SMOOTH.pEXE (endix A.8)

This program is the digital implementation of a lowpass filter.

Calling format: SMOOTH FILEDATA DATAFILTERED
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Where FILEDATA is a file that contains any of the signals mentioned above, and
FILTEREDDATA is the file that contains the signals after smoothing.

5 ida Volume: Digital Integration of Flo Signal

As described in chapter two, the Tidal volume is defined as the integration of the

air flowing in and out of the lungs [11]. The digital integration of the flow signal is

performed when the files containing the signals are imported from the data acquisition

directory to the working directory. This process is performed by the program

IMPORT.EXE that executes three child processes: ONE_CH8.EXE extracts the flow

signal from the file containing seven signals, INTEG.EXE performs the digital integration,

and ONETO8.EXE creates a file containing the original seven signals plus the Tidal

Volume signal added to the data stream.

The reason for adding the Tidal volume signal as an extra channel to the rest of

the signal is because during the process of selecting the breaths for analysis it is

important to have consistency in the lung volumes from breath to breath.

Discrete Approximation of Integration:

The process of integrating a continuous-time signal x(t) from an initial time tO the

time t is approximated by the difference equation:

y(nT) = T x(nT) + y(nT-T)

where y(nT) is the value of the integral at the sampling instant t = nT,

y(nT-T) is the value of the integral at the previous sample

t = nT - T, x(nT) is the value at t = nT of the sequence being integrated,

and T is sampling interval [1].

The machine computation of an integral always introduces potential for errors. In

this case the errors are minimal because the sampling interval is much smaller than the
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signal's interval.

Digital Integrator Design:

The mathematical formula for the area of a trapezoid can be used to develop the

difference equation that approximates the mathematical operation of integration.

The integral of a function x(t) can be interpreted as the area under the curve x(t)

vs t. The area under the curve during the interval (n-i)T to nT (using the trapezoid's area

formula) is [1]:

area = T * (x(n) + x(n-1)) / 2

if y(n) is the total area under the curve in the interval -oo to nT, and y(n-1) is the area

in the interval -oo to (n-1)T then:

y(n) = y(n-1) + T * (x(n) + x(n-1))/2

where T is the sampling interval.

Software implementation: INTEGEXE (appendix A.7)

The difference equation that represents the area under the curve of the sequence

x(t) can be easily implemented in a digital algorithm. It is basically the summation of the

previous value plus the increase in the area during the next interval.

The digital integration is performed by the program INTEG.EXE that is "spawned"

by the program IMPORT.EXE (see chapter three).

Calling format: INTEG FILENAME.FLO FILENAME.VOL

where the extensions .FLO and .VOL indicate the name of the files containing the

flow and Tidal volume respectively.
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5A4 FILTEIN CARDIAC SIGNALS

The cardiac signal or EKG is affected by the low frequency movement noise from

the breathing motion and the 60 Hz noise.

This signal is filtered using a FIR filter with the following frequency response:

H(f)= 1 for 20 <f < 50 Hz

I 0 elsewhere.

The EKG signal has most of its frequency contents between 20 and 50 Hz, which

includes the Q,R, and S waves. The P and T waves are eliminated because of they have

little influence on the EMG signal and they are not needed for our timing purposes.

The program FIREKG.EXE is the digital implementation of this filter. This filter was

implemented with the same basic algorithm used for the program FIREMG.EXE from

section 5.1. This filter has only 33 coefficients, requiring less memory space for

processing.

5.5 EMG SIGNAL PROCESSING MENU SYSTEM

The large amount of files and the sizes of each of them, required the creation of

a menu system for the signal processing of the EMG signals. This menu system is the

interface between the operator and the signal processing routines mentioned before.

Once the data files have been imported from the data acquisition directory to the

working directory (either by IMPORT.EXE or RETRIEVE.EXE), the Tidal volume signal

has been created and incorporated to the data stream, and the user has selected the

interval of interest (a portion of or the complete file), the files are ready to be processed

and prepared for posterior analysis. The files containing the selected interval are assigned
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with the extension .SEL (selected).

Software Implementation: PROCESS.EXE

The program PROCESS.EXE is the interface the user has for the execution of

those routines. This program guides the user through all the steps required for the EMG

signals processing.

Calling format: PROCESS FILE1 FILE2 ...FILEn

where FILE 1, FILE2..FILEn are the selected files, and they are checked for the

e xtension .SEL. This program allows a maximum number of twenty files. This number can

be increased, but it is not likely to have more than ten files per study.

The design of this program was based on the need for having an automated

system with the minimum amount of interaction with the operator. This automation

became a necessity because of the time required to process long data files, which are

on average 800 KB long, thus allowing the operator to perform other activities while the

signals are processed.

The filenames are passed to the program through the passing parameters ARGC

and ARGV, the filenames formatted and stored in a special structure called

FILETOANALYZE for posterior retrieval and processing. The string arrays containing

the filenames for the different signals and data files are setup using string handling

routines (STRCPY, STRCAT).

The following are the options the user is provided during the processing stage:

F1. Separate file into 8 channels

The selected files contain 8 different signals in a continuous stream of data. The

subroutine SEPARATEFILES inquires for the channel configuration and then spawns the

program GET1 OF8.exe that extracts one signal at a time and stores in file according to

the filename assigned to the structure FILETOANALYZE.
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F2. Filter EMG signals

After the signals have been separated into individual files, the EMG signals are

filtered with the programs FIREMG.EXE and the EKG signal is filtered with the program

FIREK.EXE. These filters produce some delay in the signals that is corrected with the

program DELAY.EXE. The filtered signals overwrite the noisy signals in the data files.

F3. Obtain Artifact templates

After the signals have been filtered, the control is transferred to the subroutine

SELECTTEMPLATES, that creates a temporary file containing the flow, esophageal

pressure, EMG, and the EKG signal. This file is then passed as parameter to the program

GETTEMP4.EXE , and the user scans the signals and selects the EKG artifact from the

EMG signal and the QRS complex from the EKG signal during an expiratory interval. This

sequences are stored in a file with the termination .TED.

F4. Extract EKG artifact from EMG

Once the templates have been selected, the operator initiates the extraction of the

EKG artifact. The control is transferred to the subroutine CLEANARTIFACT and it calls

a child process (program CLEANEMG.EXE) that performs the extraction of the artifact,

and outputs the cleaned signals into a temporary file.

F5. Performs F3 and F4 together.

F6. Performs F1 through F4.

F7 Moving time average

This option calculates the moving time average of the signals, the subroutine

CALC_MTA executes a child process (program MOVING.EXE) that receives as input any

EMG signal and outputs the moving time average of that signal. Once the moving time

averages (MTA) of the three muscles have been obtained, it creates a file with the

extension .MOV that contains the flow, Diaphragm MTA, Genioglossus MTA and the
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Posterior cricoarytenoid or PCA MTA.

r5.6 

SUMMARY

The software development for the processing of the EMG signals eliminates low

frequency noise from respiratory movement (breathing frequency of infants is 40 to 60

breaths/minute). It also eliminates 60 Hz electrical noise. The most important part of the

EMG signal processing is the extraction of the EKG artifact, to obtain an EMG signal that

is free from the EKG contaminant. Once the EMG signal is cleaned, it is passed through

a moving time averager for later analysis. The EKG signal that is used as timing

reference for the cleaning of the EMG signals is bandpass filtered.

The respiratory and chest wall motion signals are lowpass filtered or smoothed,

eliminating any high frequency noise content on these signals. The Tidal volume signal

is obtained from the digital integration of the flow signal.

The processing of the signals mentioned before is controlled by a menu system

that acts as interface between the user and the different subroutines and programs.
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CHAPTER VI

SINLSOFTWARE DEVELOPMENT AND SINLANALYSIS

.61 INTRODUCTION

The computer aided analysis of biological data augments the ability of the

researcher to identify certain activity patterns in the respiratory system. Without this tool,

certain analysis procedures would require lengthy calculations with a large potential for

errors.

The methods for analysis of different components of the respiratory system have

been adapted for computer aided analysis from pre-established criteria.

6.2 SOFTWARE DEVELOPMENT FOR DATA ANALYSIS

The software implemented for signal analysis requires graphics display of the

signals, and some special plotting functions for imparting important information to the

user.

The software for data analysis was implemented in Microsoft C Version 5.1, and

the graphics features were developed using GSSOGI Version 2.1, which is a special

graphics applications development tool kit [17].

GSSCGI is a device independent interface to graphics devices. It allows the

computer to control several devices simultaneously. GSSCGI provides for the output of

graphics primitives (such as lines and text) with control over primitive attributes

(such as color, size).
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The GSSCGI functions can be accessed through high level language calls, using

language bindings that access graphics functions directly as high level language calls

with formal parameters. This ensures computer independence.

GSSCGI provides a special binding that interfaces between the C program source

code and the CGI interface. The binding interface (MCLCGLLIB for Microsoft C) is linked

as an external function library after compilation; in this way the software developed is

completely portable across any compatible system.

GSSCGI is consistent with the "Computer Graphics - Interfacing techniques for

dialogue with graphical devices" developed by the American National Standards Institute

(ANSI) and the International Standards Organization (ISO), providing source code

portability, and device independence [17].

Raster Technology and Bitmaps:

The demand for high performance graphics systems and software has increased

in recent years. The tool utilized for this purpose is called raster technology and it is

based on television technology.

In the raster display, the refresh memory is arranged as a two dimensional grid or

array, with each screen location and memory location is referenced by a pair of

coordinates. Image refreshing is done by sequential raster scan through the display buffer

by scan line rather than by output primitive.

Each memory location defines one point element of the image, and they are called

pixels or pel's (picture elements). New graphic display systems can store and scan

images very quickly, so higher resolution and flexibility can be achieved with the

manipulation of the display buffer array, which is commonly called bitmap.

Device Drivers:
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There are two device drivers that are incorporated into the CONFIG.SYS system

file, IBMEGA.SYS and IBMGPR, that control the monitor and the hardcopy unit

respectively. The output devices are directed initially with the instruction SET in the

AUTOEXEC.BAT file. However, they can be redirected to obtain different type of output

such as hardcopy.

6.3 EMG SIGNAL ANALYSIS

The analysis of the EMG signals is focused in two important areas: electrical

characteristics of the composite EMG signal (moving time average of the EMG signals)

and the frequency contents of the EMG signal itself [5].

6.3.1 Analysis of Moving Time Averaged EGSignals

To obtain information about the mechanical response of the muscles it was

necessary to determine the moving time averaging (MTA) of the EMG signals measured

with surface electrodes (see Chapter Five).

The output signal of the MTA Paynter filter is analyzed using special software

developed for this purpose. The clinical research has interest in the following parameters:

1. Respiratory timing information.

The flow signal is used as a reference signal to obtain the timing patterns of

breathing. The points where inspiration begins and expiration ends mark the duration of

a complete breath, and is labeled Ttot (breath duration time). Ti is the inspiratory interval,

and Te is the expiratory interval.
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Determination of beginning and end of inspiration/expiration:

The algorithm identifies zero crossing points in the flow signal, that change from

negative to positive values, and thus marking the point of onset for of inspiration. Once

all the N beginning of inspiration points are marked, the algorithm assumes the existence

of N-1 breaths. The points of end inspiration or beginning of expiration are marked as the

zero-crossings between two beginning of inspiration points. The time between two

consecutive points marking beginning of inspiration is Ttot, while Ti is the time between

beginning of expiration and beginning of inspiration within that Ttot, and te = Ttot - Ti.

2. Baseline level or non-phasic tonic activity.

After the EMG signals have been processed, and show an acceptable signal to

noise ratio (3:1), they will still contain what is called baseline noise voltage level. The

EMG signals obtained from the respiratory muscles generally have phasic activity patterns

that coincide with the breathing. However in some cases the muscles have prolonged

tonic or non-phasic activity that can be confused with baseline noise levels.

Determination of the baseline level on the MTA of the EMG signals:

To determine the baseline level, the algorithm obtains the mean activity level of the

MTA EMG, this level is used as a threshold value to obtain the baseline level. Sets of

three points separated by 250 ms from each other are evaluated. Two slopes are

calculated between these three points, slope #1 is the slope between the first and the

second point, while slope #2 is the slope between third and second points. If the product

of both slopes is negative or zero, and slope #1 is negative while slope #2 is positive,

then the second point is included for the average of the baseline level points as a

minimum value if it is below the mean activity threshold obtained before. The algorithm

shifts one point in time and evaluates the next set of three points. All the second points

included for the average represent what we call the baseline activity level on the MTA of

the EMG signals.
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3. Peak and delta activity :

The moving time average of the EMG signals obtained with the Paynter filter

follows the dynamic response of the signals. This response reaches its maximum level

when the activity of the motor potential units (MUP) depolarizing within the muscle is

maximal. The delta peak activity is measured as the Peak activity, which is the difference

between the maximum value of the signal and the baseline level.

This information is valuable in determining motor output recruitment of additional

motor units and timing measurements.

Determination of peak activity level:

The peak activity level is simply obtained as the maximum value occurring on the

MTA signal during the interval Ttot. The point of occurrence is stored in memory as well

as the difference between these peak value and the baseline level.

4. Activation and deactivation time:

This parameters give information about the duration of the muscle activity, which

is useful for the determination of neural drive time, total activity, and timing relation with

the ventilatory process.

The muscle activation time is determined as the point when the signal reaches a

level above the baseline level. Deactivation time is determined as when the signal returns

to the baseline level after reaching a peak activity value.

Activation/Deactivation times determination:

Once the peak activity value is found, the algorithm searches in both directions for

the points where the activity returns to a baseline level for the first time. These points

mark the on-set and off-set of EMG activity.
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5. Total activity:

The total activity is proportional to the mechanical force the muscle exerts during

the total duration of activity. This parameter is obtained by the integration of the EMG

MTA signal during the activation and deactivation period.

Determining the total activity per breath:

The total activity of the muscle is determined by the area under the curve MTA of

EMG vs the duration of the interval between on-set and off-set of the activity.

Software Implementation: PLOTMTA.EXE (appendix A.9)

The algorithms used to determine the parameters mentioned above are

implemented in the program PLOTMTA.EXE. These algorithms were adjusted to the

characteristics of the signals, but they can be applied in many different areas.

Calling format: PLOTMTA FILENAME.MOV DESCRIPTIONTEXT

Where FILENAME.MOV is the file created by the program PROCESS.EXE and

contains four signals: Flow, MTA EMG diaphragm, MTA EMG Genioglossus, and MTA

EMG PCA. DESCRIPTIONTEXT is a character string for user information.

This program presents a graphic display of the files with extension .MOV that

contains the flow signal (channel 1), MTA of diaphragm muscle (channel 2), MTA of PCA

muscle (channel 3), and MTA of Genioglossus muscle (channel 4). It displays 2.5

seconds intervals of the four signals on the screen, which is approximately two complete

breaths. The user can scan the signals in both directions, and select the breaths that

contain the information that is considered important. The information per each individual

breath is averaged with all the information from the selected breaths and presented as

a final report.

Every time the user scrolls the signals (left or right), new information is displayed
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on the screen about the parameters mentioned before.

Program Execution:

Some of the subroutines executed by the program are included in appendix C. This

program written in C is linked with the library MCLGCI.LIB (Graphic Software Systems,

Inc.) for the graphic displaying of the signals.

1. The program requests the gain setting for the bioamplifiers, optic coupler receivers, and

the A/D board gain settings per channel, to calculate and output the signal's voltage

levels.

2. The program opens the workstation SCREEN and inquires for its bitmap. Then it reads

the first interval of data into a buffer which is plotted on the screen by the subroutine

LINES, which then calls the subroutine DETECTBREATHS.

3. The subroutine DETECTBREATHS calls another subroutine, CALOLINESVOLTS,

which obtains the baseline activity level for each of the three muscles. Then it obtains the

flow signal timing information such as Ttot, Ti, and Te, mentioned before. With this timing

reference the subroutine finds the peak activity on the MTA EMG signals, and the points

of on-set and off-set of activity.

4. The point of peak activity can be selected manually by the operator, as an additional

option, if the subroutine PLOTCURSOR is enabled by the user.

5. The values such as delta peak activity, total activity and the timing information is

calculated for each breath shown on the screen. The operator can individual breaths

when its characteristics meet preset limits, and the program will compute the mean value

from the string of selected breaths.

6. When the flow signal is contaminated by a valve artifact caused by the mechanic valve
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described in the Chapter Five, the user can exit the program and request signal

smoothing, and then return to the program. To do this, the program spawns the program

SMOOTH.EXE also described in the Chapter Five.

The program also makes some special key assignments to provide the user

features such as:

Report generation

. Include values for calculation of the mean

Signal magnification on screen

Scrolling of signals

Smoothing of the flow signal

The program outputs the following information on the screen for each complete breath

shown (see figure 6.3.1):

. Total activity

Peak activity value

Delta activity

. Baseline level

. Time from the beginning of the file in seconds

. Graphics display of the points of occurrence and magnitude of these

parameters.
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Figure 6.3.1

Screen output of the program PLOTMTAXE for the analysis of the EMG

activity on three muscles. The vertical lines mark points of beginning of inspiration and

expiration, points of maximum activity, and activation/deactivation times of the muscles.

The horizontal lines represent the baseline activity levels.

Hardcopy utility:

The display output of the program can be redirected to the hardcopy unit. This is

done by using the SET DISPLAY=IBMGPR instruction, and executing the program

PRINTMTA.EXE which is a variation of the program PLOTMTA.EXE, and performs the

hardcopy of the signals and calculates the parameters mentioned above automatically.
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6.3.2 Power Spectral Density Analysis of EMG Signals

Prolonged and strong contraction of the muscles can lead to muscle fatigue. The

mechanical response of the respiratory system may be reduced by this condition in the

respiratory muscles, specially the diaphragm, and it may lead to respiratory failure.

Different tests are applied to the patient to provoke changes in the mechanical

response of the respiratory muscles. The frequency content of the EMG signals contain

some valuable information related to onset of muscle fatigue.

The power spectral density of the EMG signals are characterized by the following

parameters:

1. Centroid Frequency:

The centroid frequency represents the arithmetic mean of the signals during the

frequency interval in which they are analyzed. It is defined as fc[Hz]:

fc = Sum' fi * P(i) for i = 0 to 500 Hz (for the respiratory EMG

signals).

Sum' P(i)

where fi represents the ith frequency interval in Hz, and P(i) is the power

magnitude at the ith frequency interval.

Some studies have proven that there is a shift in the centroid frequency during

muscle fatigue states as compared to normal muscle activity[ref I.
2. Total Power:

The total power is represented by:

P = sum' P(i) for i= 0 to 500
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3. High to low ratio:

The high to low ratio of the frequency spectrum is defined as the ratio between the

power of two frequency bands. For the analysis of the respiratory muscles spectrum this

frequency bands were selected as High: 150 to 350 Hz, and Low: 20 to 50 Hz.

Discrete and Fast Fourier Transform:

The Discrete Fourier Transform (DFT) is used in many applications, to transform

an ordered sequence of data samples from the time domain to the frequency domain, to

obtain spectral information about the sequence. The discrete Fourier transform is the

representation of a finite-duration sequence as a finite sum of exponentials.

The discrete Fourier transform pair can be defined as:

x(nT) = 1/N SumN- X(kDf) eJ(2PUN)nK

K=0

and X(kDf) = SumNA x(nT e-j(2 PWN)nk

n=0

where Df = fs/N represents the frequency spacing between coefficients, T

represents the sampling interval,and N is the period of the sequence [1].

The Fast Fourier Transform (FFT) is a fast algorithm for the computation of the

DFT, and its output is the same set of complex values. The FFT algorithm eliminates

most of the repeated complex products in the DFT. The ratio of computing is

approximately [3]: FFT computing time = logbase2) N

DFT computing time 2 N

Another advantage of the FFT is that requires less amount of storage space for
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the computation, because it overwrites the previous values. The FFT performs operation

over sequences of size N, where N is an integer power of two.

Real Radix-Two Fast Fourier Transform Utility:

The program implemented for the spectrum analysis of the EMG signals

(SPECTRUM.EXE described below) is based on the Real Radix-two Fast Fourier

Transform (RFFT) subroutine written in assembly language included in the signal

processing package 87FFT (Microway Inc.) [10J.

RFFT performs an in-place 1024 points radix-two FFT on real data and returns the

first N/2 + 1 complex numbers of the DFT.

Calling format: RFFT (array,exponent,norm,scale)

where array is a real array containing the data, the returned N12 + 1 complex

numbers are written in the same array, exponent is a positive integer power of two equal

to the number of data points, norm is the normalization mode, and scale is a scaling

factor.

Windows in Spectral Analysis:

When a data record is truncated, the single frequency component is "smeared" to

the sides of this frequency. This smearing effect is known as leakage.

A primary source of this leakage is the discontinuity introduced in the periodic

extensions by truncating the sequence, and it is common to use window functions to

avoid this phenomena. The fundamental idea of the window functions is to gradually taper

the data near the ends of the record, to avoid abrupt truncations.
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HAMMING WINDOW UTILITY:

In the program SPECTRUM.EXE, before the RFFT function obtains the 1024

points FFT, the sequence is multiplied by the HAMM window function utility, which smooth

and symmetrically tapers the real data sequence [10].

Calling format: HAMM(source, destination, exponent)

where source is a real array containing the 1024 points of the real data, destination

is the real array containing the windowed sequence, and exponent is equals to 10.

This window function is described as:

HAMM(n) = 0.54 - 0.46 cos[2 Pi n/(N-1)] n= 0,1..N-1 and N = 1024 in this case.

Software Implementation: SPECTRUM.EXE (appendix A.13)

This program calculates the Fast Fourier Transform of K non-overlapping intervals

of the EMG signals. Each interval is 1024 points long (1.024 secs.) and calculates the

average of the K frequency spectral densities, each of them 512 points long. The

frequency resolution is 1 Hz, and the maximum frequency represented is 500 Hz.

Calling format: SPECTRUM DATA.EMG DATA.FFT TEXTINFO

Where DATA.EMG is the file containing the processed EMG signal, DATA.FFT is

the file containing the average of K PSD's (512 integer numbers long), and TEXTINFO

is a string for user's reference.

Program Execution:

To obtain the average PSD and the parameters mentioned above the program
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executes the following steps:

1. The main function opens source and destination files, and calls subroutine CALC_FFT.

2. The subroutine CALCFFT calculates the number of K intervals (number of FFT's) to

be calculated and averaged.

3. CALC_FFT reads a 1024 integer points sequence, it is converted to floating point

format (INT2FP) and written in the complex structure array BUFF_FFT.

4. CALC_FFT modifies the sequence with the HAMM window function.

5. Then CALC_FFT performs a 1024 points FFT with the function RFFT, that outputs a

sequence of complex numbers into the BUFFFFT array.

6. This sequence is converted to polar form by the function POLAR (87FFT Microway

Inc.) and the real components are converted to integer format and written into a

temporary file.

7. After the EOF is reached, the programs calculates the average of sequences 512

points long from the temporary file and outputs the averaged sequence into the

DATA.FFT file.

8. Once the averaged PSD is calculated, the program calculates the centroid frequency,

Hi/Lo ratio, and total power.

Software Implementation: PLOTFFT.EXE (appendix A.14)

The 512 points integer sequence representing the normalized FF1 of the EMG

signals is the power spectrum of the signals from 0 to 500 Hz. To obtain visual
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information that is very useful for the researcher, this system is provided with the program

PLOTFFT.EXE that displays the periodogram of the PSD. Figures 6.3.2 a,b, and c show

the output display of this program for the PSD analysis of three signals.

Calling format: PLOTFFT DATA.FFT TEXTINFO

The passing parameters for this program are the same as for the program

SPECTRUM.EXE that calculates the PSD.

The software uses the GSSCGI functions for the graphics, and it provides features

as change in display gain, and frequency information.

Hardcopy utility:

A modified version of PLOTFFT.EXE is PRINTFFT.EXE that is executed after the

display output is redirected to the IBMGPR printer device, and prints the PSD of the EMG

signals.

Figure 6.3.2-a

Power spectral density of the diaphragm

EMG signal contaminated by EKG artifact

and 60 Hz noise. The EMG signal

spectrum is overlapped by the spectrum of

the EKG artifact higher in amplitude.
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Figure 6.3.2-b

PSD of diaphragm EMG signal after EKG

artifact removal, low frequency and 60 Hz

filtering.

Figure 6.3.2-c

Spectrum of the EKG signal after it was

bandpass filtered. This signal has similar

distribution as the contaminated EMG

signal.
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6.4 LUN MEHNC ANALYSIS

The analysis of the lung mechanical characteristics is based on the parameters

described next. This description also includes the methodology followed for their

calculation.

Total Pulmonary Resistance: [cmH2 0/L/s]

The pulmonary resistance is defined as the pressure difference between the mouth

pressure and the pleural pressure divided by the flow rate. This pressure difference is

required to overcome the resistance of the conducting airways and the viscous properties

of the lungs. It is measured in centimeters of water per liter per second. It is called total

pulmonary resistance because its value encompasses changes in both inspiratory and

expiratory phases of the breathing cycle, and includes lungs, airways and chest wall.

Total pulmonary resistance can be increased by a decrease in lung volume, airway

narrowing, or a change in density or viscosity of the air.

The method of calculation of the total pulmonary resistance used in this analysis

is the two-point method of Mead and Whittenberger [ref 16-grant]. This method of

obtaining the total resistance is based on the relation of the difference between the

esophageal pressure (PE), which approximates pleural pressure, and the mouth pressure

(PM) with the amount of air flowing in and out of the lungs at points of half tidal volume

(see sections 2.2.1 and 5.2.3) since it is important to compare values at equivalent

phases of the breathing cycle. As it is shown:

Tot R= PEinsp - e ins - ex

FLOWinsp - FLOWexp

(these parameters were measured at points of half tidal volume)
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Inspiratory and Expiratory Resistance: [cmH20/L/s]

The airway resistance is calculated separately during inspiration and expiration.

The method of calculation is based on the same pressure-flow relation explained

previously, and considers separately the pressure and flow points at half inspiratory and

expiratory tidal volume points (ref 16-grant].

Insp R = PEinsp - PMins_ Exp R = PEexp - PMex_

FLOWinsp FLOWexp

(measured at point of half tidal volume)

Compliance: [ml/cmH2O]

Compliance is defined as the volume change per unit pressure change. The

compliance or elasticity of the lung can be affected by various diseases, when the lung

remains unventilated during periods of time (apneas), and when the pulmonary venous

pressure increases engorging the lung with blood.

The method used for the calculation of compliance is based on the relationship

between the maximum tidal volume with the esophageal pressure at the point of

maximum tidal volume during each breath.

C = _VTmax (delta)

PE (delta) at max VT

It is measured as milliliters per centimeter of water.

Tidal Volume: [ml]

Tidal volume (VT) is the volume of gas inspired or expired during each respiratory

cycle. It is obtained by the integration of the air flow measured with spirometry and is

counted in milliliters. This integration uses the trapezoid area method described earlier.
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Timing Information: [msec]

The timing information about each breath is based on the intervals mentioned

earlier: Ttot, Ti, and Te.

Breathing Frequency: [breaths/min]

The breathing frequency (f) gives information about the respiratory rate of the

subject. It is the reciprocal of the total time (Ttot), measured in breaths per minute.

Minute Ventilation: [ml/min]

Defined as the volume of air breathed in and out during one minute time. It is the

product of the tidal volume (VT) and the breathing frequency (f), averaged from several

breaths.

Air Flow: [Us]

The maximum volume displaced in and out the lungs during one second, both in

inspiration and expiration, is given to the user as instantaneous values at half tidal volume

by the system.

Esophageal and Mouth Delta Pressures: [cmH2O]

The delta pressure is calculated as the difference between the maximum negative

pressure and the maximum positive pressure for both PE and PM. This value is also

given in centimeters of water.

Software Implementation: PLOTMEC.EXE (appendix A.1O)

The program PLOTMEC.EXE performs the calculation of the respiratory mechanics

parameters described above. This program as well as the program PLOTMTA.EXE from

the previous section uses the graphics functions provided by the GSSCGI graphics

development tools.
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For signal display and event markers,the software uses the same functions as the

previous programs. The algorithm of the program is basically the same as the program

PLOTMTA, except for the software methods used for calculation and calibration of the

signals.

Calling format: PLOTMEC FILE.MEC FILE.CAL TEXTINFO

The file FILE.MEC contains the following signals: Flow, esophageal pressure, and

mouth pressure. The file FILE.CAL contains the calibrating signals for each of the signals

respectively, and TEXTINFO is information that the operator gives to the program for

report generation.

Signal Calibration:

Calibrating the signals is basically obtaining the calibration factor that would

translate numeric to physical values.

A special calibration (.CAL) file is collected during the data acquisition procedure.

This file contains the values used for each of the respiratory signals recorded (flow, PM

and PM). These calibration values are obtained by applying known amounts of flow and

pressure to the transducers, and conditioned by the Gould amplifiers with the same

sensitivity levels used during the study.

The calibration files are divided into two files, one containing zero values (.ZER)

and another containing the pre-established values (.VAL). The values used are 10 cmH2O

for the pressure signals and 3 L/min for the flow signal.

Program Execution:

The following are the events which happen during program execution:
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1. The program prepares the filenames used for the file handling routine

MAKEFOUR.EXE that is used if the file FILE.MEC does not exist.

2. The calibration factors are obtained by the subroutine OBTAINCALIBRATION, that

reads the files .AL and .ZER, obtaining mean values for each of them, and the

reciprocal of the difference between means for each channel is the calibration factor.

3. The program reduces the artificially the sampling frequency of the four signals from

1000 Hz to 100 Hz executing the program FREQS100.EXE as a child process. THis

program extract one out of every ten points in time from the original sequences reducing

the sampling interval of the resultant signal.

4. Sets up the graphics displaying workstation and functions.

5. The subroutine LINES is called by the main function to display the signals on the

screen. This subroutine calls then the subroutine DETECTBREATHS.

6. DETECTBREATHS obtains first the points of beginning of inspiration and beginning

of expiration in the flow signal, as it was explained in the previous section (program

PLOTMTA.EXE). It also obtains the points of maximum inspiratory and expiratory flow.

7. Once M points of onset of inspiration have been detected, the number of breaths is

computed as N = M - 1. These points are used as zero reference for the esophageal and

mouth pressure signals, and used for offset extraction.

8. This subroutine then integrates the flow signal and obtains the tidal volume for each

breath. After the tidal volume is obtained, it finds the maximum value in the tidal volume,

and the points of half tidal volume occurrence during inspiration and expiration. With the

information available, compliance and tidal volume are now calculated.
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9. The points of half tidal volume are used for the calculation of the airway resistance

parameters.

The program monitors the keyboard for operator commands such as:

Select breaths to be included in the mean results

. Increase displaying gains

. Signal scrolling

Flow signal smoothing function

During program execution the information about the breath marked in the screen

as #1 is displayed in the screen (see figure 6.4):

Total, inspiratory and expiratory resistance

Compliance

Tidal volume

. Timing information from beginning of file

. Information passed by the operator

. Graphics display of timing and magnitude of the parameters mentioned

The rest of the parameters are not displayed on the screen, but the user is

provided with a written report for each selected breath and a report with the mean values

for all the breaths selected.
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Figure 6.4

Program PLOTMEC.EXE output screen. The vertical lines mark breath

timing, and points of half tidal volume for each breath. The results

displayed are calculated for the breath marked as "1".
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6.5 CHEST WALL DISTORTION ANALYSIS

The chest wall of premature newborns is characterized by excessive compliance

plus relative lack of stability as compared to term infants and older children.

The chest wall instability can lead to distortion during the breathing cycle which

may affect the pressure measured during breathing and also lead to inspiratory effort,
because of the wasted effort spent on producing this distortion.

The methodology for the analysis of the chest wall stability in the newborns is
based on the measurement of the thoracoabdominal motion at two levels: Ribcage (RC
or RIB) and abdomen (ABD). These signals are provided by the respiratory inductance

plethysmography (RIP).

The ribcage and abdomen motion signals were previously calibrated by the RIP,

using its Qualitative Diagnostic method [12] estimating the relative contribution of the RC

and ABD to the tidal volume.

To provide clinical research utility to this measurements it is necessary to analyze
the waveforms and obtain numerical means that would represent levels of distortion in
the chestwall.

To measure the levels of chestwall distortion, the system uses two methods of
waveform analysis: Total compartmental displacement / Tidal volume ratio, and the

difference in phase shift between the two waveforms (RIB and ABD).

Total Compartmental Displacement / Tidal Volume Ratio: (TCDNT)

The ribcage and abdomen excursions during breathing, represent outward
(positive) or inward (negative) displacements.
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During regular breathing and under no chest wall distortion condition, the individual

displacement of the ribcage and abdomen are synchronized, that is, they have outward

and inward displacement simultaneously. If the newborn's chestwall is distorting, the

individual displacements of the two compartments are opposite in direction(abdomen has

outward movement, while ribcage has inward movement).

The sequence resulting of the sum point by point of the two waveforms is a

representation of the tidal volume (VT) during each breathing cycle is called SUM,

representing the volume of air inspired or expired. The tidal volume VT parameter is

obtained from the summation of the SUM sequence over the inspiratory interval.

The total compartmental displacement (TCD) of the chestwall is defined total

movement inward and outward of both compartments. this parameter is the summation

of the absolute values of the SUM sequence over the same interval [12].

In the absence of chestwall distortion, the ratio TCDNT is the unity, and it

increases if the distortion level is greater.

Phase Shift Between Ribcage and Abdomen Displacements:

The difference in timing between the two waveforms is accentuated in the

presence of chestwall distortion, that is, the abdomen displacement motion is followed by

the ribcage displacement. The waveforms show that the ribcage signal (RIB) is still

decreasing while the abdomen signal (ABD) is already increasing.

This difference in phase is measured in degrees of distortion, which is the relation

between the lag time in the ribcage signal, measured from the beginning of the breathing

cycle (when it becomes negative) to the point it starts rising above the zero level, with the

total duration of the cycle. Where the lag time represents a fraction of the 360 degrees

cycle.

This relationship is based on the assumption that the ribcage compartment is filled
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with air only after the displacement is outward, that is the RIB signal becomes positive

after a negative period.

Software Implementation: PLOTDIS.EXE (appendix A.1 1)

The calculation of the phase shift and TCDNT ratio on the chest wall signals is

performed by the program PLOTDIS.EXE. This program is based on the methodology

described above, and provides graphics displaying of the events happening on the

chestwall, as well as obtaining numerical information of those parameters.

This program was implemented using the same graphics functions used in the

programs described in previous sections.

Calling format: PLOTDIS DATA.DIS TEXTINFO

DATA.DIS is a file created by the file handling routine MAKEFOUR.EXE that

includes the flow, ribcage and abdomen signals. TEXTINFO is information the user

passes to the program identification.

Program execution and procedures:

The program calculates the chestwall distortion parameters with the following

steps:

1. The main function of the program sets up the graphics workstations, and reduces the

sampling interval (FREQS100.EXE).

2. The subroutine LINES is called and plots the signal on the screen, then as in the

previous programs, the subroutine DETECTBREATHS obtains timing information about

the breathing cycle (Ttot, Ti, and Te).

3. The points in time where inspiration begins are taken as zero reference points for the

ribcage (RIB) and abdomen (ABD) signals, eliminating any offset level.
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4. Once the offsets are eliminated the SUM signal is computed as the addition point by
point of the RIB and ABD signals.

5. The subroutine DETECT_BREATHS detects the points of occurrence of the maximum
positive (array MAX_RCPOINTS) and negative (array MIN_ RCPOINTS) values in the
RIB signal, as well as the point where it returns to zero baseline (array
ZERORCPOINTS) after the negative incursion (distortion).

6. This subroutine calculates the summation of the absolute values of the SUM signal
over the inspiratory interval to obtain TCD, and obtains the VT as the summation of the
magnitude and sign values of the same sequence.

7. The phase shift is calculated as the division of the lag time calculated as
ZERO_RCPOINTS - INIT_INSP by the total breath time Ttot, and multiplied by 360
degrees.

The user selects specific breaths to obtain average distortion information. And the
distortion parameters per breath are shown in the screen (see figure 6.5).

Hardcopy Utility:

The program PRINTDIS.EXE is a modified version of the program PLOTDIS.EXE,
that outputs a hardcopy of the four signals, with the distortion parameters information. It
is accomplished by the redirection of the device graphics output to the IBMGPR driver.
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^Figure 6.5

Chest wall distortion analysis program output screen. The vertical lines
mark the points of maximum inward motion of the riboage, and the point
where it returns to its normal position.

6.5ANALYSIS OF TWO RESPIRATORY PRESSURES SIGNALS

The clinical research of the pulmonary functions on the newborn studies the
difference in magnitude and waveform shape of pressure signals measured at different

levels of the esophagus and the upper airway.

The comparison of two waveforms that are very similar between them in timing,
magnitude and shape, which is the case of pressure measurements of the same source,
at different points, require the application of special methods to detect these similarities
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or differences that for the human examiner would be impossible.

Cross Correlation and Linear Regression Methods:

The methodology for this analysis include the Linear regression, and Correlation.

The cross correlation coefficient function was described in section 5.1.3, and it is used

to measure the similarity between two sequences. If the sequences are identical this

coefficient is unity.

The linear regression is based on the approximation of a straight line that would

fit as a first approximation for predicting Y from X, where Y and X are two sequences of

size n.

In equation form: Y' = bO + bi Xj where Y' represents the predicted Y for a given

X , b is the regression intercept and bi is the regression slope.

The method to obtain bO and b1 is the known as the least squares method. The

values for bO and bi are determined from the data sequences in such a way as to

minimize the sum of squares of the deviations of each Y from its predicted value Y'.

The slope is defined as:

b1 = CovarianceXY = Sum XY- Sum X*Sum Y / n

VarX Sum XX - SumX*Sum X /n

and the intercept is defined as:

bO = Mean Y - b1 * Mean X

The analysis of the two waveform pressures uses the value of the slope as a

proportion factor between the two pressures, giving an idea of the difference in magnitude

levels.
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Software impeentatio PLOTPE.EXE (appendix A.12)

This program performs the evaluation of similarities between two signals (in this

case the two pressures) using a third signal (flow) as a timing reference.

This program was written in C language, and uses graphics functions of the library

MCLCGI.LIB from GSSCGI tool kit.

Calling format: PLOTPE DATA.PES TEXTINFO

The file DATA.PES is a file containing three signals: Flow, signal pressure 1, and

signal pressure 2.

Program execution:

1. The main function of the program opens the file for binary buffered reading, sets up

the graphic workstation.

2. Subroutine LINES plots the signals, and calls DETECT_BREATHS.

3. DETECTBREATHS obtains breathing timing information, and uses it to find zero

pressure baseline levels.

4. DETECTBREATHS also plots the two pressure signals in XY coordinates (PE1>X and

PE2>Y). It also calculates maximum positive and negative pressure values and the calls

the subroutine SLOPEREGRESSION.

5. SLOPEREGRESSION calculates the linear regression slope interval and the cross

correlation coefficient of the pressure sequences for each breath and displays the

information of breath #1 in screen (see figure 6.6).

The program displays the following information:

. Slope of the linear regression
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. Cross correlation coefficient

. Maximum positive and negative pressures

Timing information

Hardcopy utility:

As explained in previous sections, the hardcopy utility is provided by the redirection

of the graphics output to the printer when the program PRINTPE.EXE is executed. The

program PRINTPE.EXE is a modification of PLOTPE.EXE.

Figure 6.6

This figure is the screen display of the program PLOTPE.EXE. At the bottom

left, the xy plot of the two pressure signals is shown, the lines mark the points b

maximum pressures (positive and negative), beginning of inspiration (square), a n d

beginning of expiration.
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6.7 SUMMARY

This microcomputer based system for the study of the respiratory function in

premature infants provides independent analysis software for each of the components of

the respiratory system.

The muscle activity analysis provides information about magnitude, timing and

frequency contents of the muscles during the breathing cycle. The analysis of the lung

mechanics gives information about the parameters used to evaluate the condition and

function of the lungs and airways. The chest wall distortion analysis software detects and

presents information about the stability of the compliant chestwall of the newborns, while

the software for the analysis of the two pressures gives information to evaluate this

parameter in various locations.

The development of this software was based on various engineering, statistical and

physiological models adapted for the digital analysis of the signals.
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CHAPTER VII

SYSTEM ENHANCEMENT AND DISCUSSION

7.1 INTRODUCTION AND DISCUSSION

The development of this system combined areas of analog and digital electronics,

computer and software engineering, and human physiology.

The main effort in the development of the project was devoted to the

implementation of the software for data acquisition, signal processing, and analysis. The

result is a portable system, meaning it is a hardware independent system. Figure 7.1

shows a block diagram containing the software components of this system according to

its function.

The software for signal processing and analysis, even though it was originally

created for this specific application, can be applied in many different areas with further

custome procedures.

The algorithms and techniques used for signal processing were specifically

designed or adapted for this purpose. The analysis algorithms and computations are

adaptations of pre-established physiological relations, and they are based on specific

research aims of the medical counterpart.

An intentional feature of the system is that it is an open ended system, that is, its

development and applicability do not end with the material presented in this document.

The use of this system provides the clinical researcher the ability to accomplish

specific study aims that in time should provide a better knowledge of the respiratory

system in the premature infant.
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7.2 CARDIOVASCULAR SIGNAL ANALYSIS IN ANIMAL RESEARCH

As part of the system enhancements, and as result of the portability of the system.

There is a parallel system being developed for the study of the respiratory and

cardiovascular functions in newborn animals.

The software developed for the analysis of the pulmonary functions

(PLOTMEC.EXE), chest wall distortion (PLOTDIS.EXE), and comparison of two pressure

signals (PLOTPE.EXE) is actually being used for the study of these parameters in piglets

and rabbits. These programs were customized to the specific breathing patterns of these

animals, with some modifications in the source codes.

Application software being developed in present time for the analysis of

cardiovascular and ventilatory parameters, such as:

Minute ventilation

Pulmonary artery pressure measurements

Blood pressure measurements

7.3 COMPRESSED SPECTRAL ARRAY OF EMG SIGNALS

The power spectral density analysis of the EMG signals have been analyzed using

only the average of several intervals.

A new technique for the analysis of spectral densities is known as Compressed

Spectral Density Array, which is a tri-dimensional array of the frequency spectrum

changes in time. This technique is useful to measure the variation in time of the individual

frequency contents of the signal.

The graphics software required for this purpose would show a tri-dimensional view

of several PSD's, with time as the third variable.
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7.4 CARDIAC SINUS ARRHYTHMIA

The heart rate is monitored as the reciprocal of the time between two QRS

complexes in the EKG signal. The heart rate increases and decreases during the various

phases of the respiratory cycle, and during deep respiration this changes are greater.

During each respiratory cycle, the negative intrapleural pressure increases and

decreases, increasing and decreasing the effective pressure in the veins of the chest.

The relationship between the heart rate variability and the breathing pattern will be

correlated by the algorithm implemented.

7.5 INTERFACING WITH ULTRASOUND EQUIPMENT

One of the most interesting future enhancements of this system is the analysis of

signals obtained with ultrasound equipment based on the Doppler effect.

The ultrasound equipment is actually used for different non-invasive measurements

such as retinal blood flow, and cardiovascular flow.

The interfacing of the computer system with this sophisticated devices will be part

of the work planned for development and implementation with the software necessary for

the analysis of this information.

7.6 SUMMARY

The application of this system to different areas of clinical research requires some

enhancement and modification. The immediate enhancement and applicability of this

system is focused on the development of software for animal research, new techniques

for PSD analysis, cardiac sinus arrhythmia, and interfacing of the system with ultrasound

equipment for non-invasive measurements.
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APPENDIX A

SOFTWARE ROUTINES

.1 Data Acquisition: Proqram GETDATA.PRG

The program GETDATA.PRG is running under ASYST Scientific System
Environment. It collects 7 channels DMA, with 1000 Hz frequency sampling per channel.
The following are some of the most important subroutines of this program, preceded by
figure A.1 that shows its flow diagram.

113DATAPRG

6 ~ DM1A arrmy and varabes are initialized
A/D template defined for DMA

j} Keyboard reset and keys assigned
Destination Mie is opened

Start AD board

Divide buffer in two, one half is being filled

pp p while the second half is writen into fie.

Repeat ui interrupted by user
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Definition of DMA buffer array and A/D template for DMA:

DIM[ 14000 ] DMA.ARRAY DATA.BUF
DT2821
0 6 A/D.TEMPLATE ad7in
DATA.BUF CYCLIC DMA.TEMPLATE.BUFFER
A/D.INIT

Start Acquisition Procedure:

: START.ACQ
AD71N
1000. 7000. / CONVERSION.DELAY
A/D.INIT
A/D.IN>ARRAY(DMA)

Data collection subroutine:

: COLLECT
INTEGER
BEGIN

0 TIME :
BEGIN

1 TIME + TIME :
?BUFFER.INDEX

7000> UNTIL
TIME 1 = IF

." A/D OVERRRUN 1"CR
THEN
CURRENT.RECORD DUP
DATA.BUF
SUB[1 , 7000, 1]
RANDOM.PUT \ WRITES DATA
DUP 30 - 60 / DUP . 60 * - >>>
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\ TIME . ?BUFFER.INDEX .
CR
1 + CURRENT.RECORD
0 TIME:=
BEGIN

1 TIME + TIME :=
?BUFFER.JNDEX

7000 < UNTIL
TIME 1 = IF

." ND OVERRRUN 2." BELL CR
THEN
CURRENT.RECORD DUP
DATA.BUF SUB[ 7001 , 7000, 1]
RANDOM.PUT \ WRITES DATA
DUP 30 -60 /DUP,60 * - .">>".
\ TIME . ?BUFFER.INDEX .

CR \ PRINT RECORD TIME
1 + CURRENT.RECORD.:
?KEY
UNTIL

RANDOM.CLOSE

A.2 File Handling Program. IMPORT.EXE

IMPORT.EXE translates files from CODAS format to binary format. The following
is the subroutine that performs the data translation.

Disk space availability and file opening routine:

unsigned long total space, free space, bytesper cluster;
struct diskfree_t dfinfo;
struct stat info;
if(_dosgetdiskfree (4, &dfinfo) !=0)
{

printf ("error disk space");
exit(1);

}

bytesper-cluster = dfinfo.sectorsper cluster * dfinfo.bytesper sector;
free-space = dfinfo.avail_clusters * bytesper cluster;
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if ((dat_file hdl = fopen(argv[argc-2],"rb")) == NULL) /* file is */
/* opened in binary mode */

{
printf(stderr," couldn't open file /s\n",argv[argc-1]);
exit(1);

}
if ((datfile_out = fopen(argv[argc-1],"wb")) == NULL) /* file is *

/* opened in binary mode */

{
printf(stderr,"%s couldn't open file %s\n",argv[],

argv[argc-1 ]);
exit(1);

}
if(fstat(fileno(dat file_ hd), &info) !=O)
{

printf("error file size");
exit(1);

}
if(info.st_size > free_space)
{

printf("File size exceeds free space");
exit(1);

}

Data translation routine:

clearscreen(GCLEARSCREEN);
printf("\n Please wait....... ");
fseek(dat file hdl,+11 56,SEEK CUR);
ch = 0;
while(feof(dat_file_hdl)==0)
{
ch +=1;
numread = fread(buff firstget,sizeof(int),8000,dat_file_hdl);
for (i = 0; i < numread; i++)

buff_write[i] = bufffirstget[i >> 4;
numwritten = fwrite(buffwrite, sizeof(int),numread, dat_fileout);
}
printf("\n %d data buffers ",ch);
printf("\n information converted ");

116



Obtaining tidal volume signal by executing two child processes:

printf("\nFile / FLOW signal in ", argv[argc-1]);
spawnl(PWAIT,"one-ch8","one-ch8",argv[argc-1 ],"x1.vol", NULL);
spawnl(PWAIT,"integ","integ","x1.vol","x2.vol", NULL);
spawnl(PWAIT,"oneto8","oneto8",argv[argc-1 ],"x2.vol","xl vol", NULL);
remove (argv[argc-1 ]);
rename("x1.vol",argv[argc-1 ]);

A.3 Signal Displaying: SELECT.EXE

SELECT.EXE drives the WFS200PC waveform scroller card for signal displaying
of eight channels.

Arrays for WFS200PC card setup:

static int setary[24] = {8, /* channels enabled
4,4,4,5,3,3,3,8, /* scale factors
0,0,0,0,0,0,0,0, /* offsets */
1, /* trigger source */
0, /* trigger level/
0, /* trigger slope
10, /* display format */
1, /* scroll mode *
0, /* horiz res */
2}; /* vertical res */

static int color[8] = {4,6,5,7,4,6,5,7}; /* color */

Setup WFS200PC card and video graphics mode):
**************************************************************

clearscreen(GCLEARSCREE N);
setvideomodeERESCOLOR);

setadd(0x308); /* card address is HEX 308 */
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setup(setary); /* configure card function */
tcolor(color); /* colors per channel
init(); /* initialize card
blank(; /* clear

Subroutine for signal scrolling:

int i,span;
ldivt clock;
direct(di); /* direction right to left*/
print options(;
while(tstkey()
{

currentpos = ftell(dat file _hdl);
if (currentpos < 100)
{

_settextposition(1,1);
printf("Begining of data, hit RIGHT> ");
goto noscroll;

}
if (currentpos >= (filesize - 100))
{

settextposition(1,1);
printf ("End of data, hit HOME or < LEFT ");
goto noscroll;

}
numread = fread(buff _firstget,sizeof(int),8 datfile hdl);
totnumread= ftell(datfilehdl);
clock = Idiv(tot_numread,16000);

settextposition(22,70);
printf("%Id sec",clock.quot);
fseek(datfilehd,+numbytes,SEEK_CUR);
for (i = 0; i <8; i++)

{
plot(bufffirstget[i]); /* send infor to screen*/
delay();/* delay counter*/

}
}

noscroll: ;
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*

A.4 Signal Processing: FIREMG.EXE

This program is the digital implementation of a FIR filter for EMG signal processing.

Filtering subroutine:

int n, i, j, norm, bits,p, stop;
long m,filesize,k;
double h,angle;
static float win[129];
static float fir[129];
static float aux[129];
static float xxx[1 29];
static float yyy[129];
static int buffget int[129];
static int buff _outint[129];

/* Define a pointer (r) to the real array.
Note that the compiler will issue a warning message which can be
safely ignored. */

int *source,*dest;
float *r,*rr;
r = &xxx;
dest = &buff_outint;
rr = &yyy;
source = &buffgetint;
bits = 16;
n = 10;
m = 129;
filesize = file no(datfilehdl);
/* calc k intervals */
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k = filesize / 258;
printf("\n k = %Id intervals",k);

/* calc coefficients and apply Hamming window*/
forj = 0,h = 0.0; j < 129; j++,h++)

{
angle = 3.141592654 * (h - 64.00)/64.00;

win j] = 0.54 + .46*cos(angle);
if ((j-64) != 0)

fir[j]=win j] * (sin((h64.0)* 0.345575191 )-sin((h-64.0)*0.408407045)
-sin((h-640)*0. 125663706))/((h-64.00)*3.141592654);
if ((-64) == 0)
fir[64] = 0.94* win[64];
}

/* perform k reads, filter and send to file*/
for ( p = 0; p < k; p++)
{

_settextposition(15,15);
printf("Wait .. %d "p);
gettime();
/* read sequence and convert int to fp*/
numread= fread(buffgetint,sizeof(int),129 dat_file hdi);
for(j = 0; j< 129; j++)

xxx j] = buffgetint[j];
forj = 0; j< 129; j++)
{

yyyj] = 0.0;
for(i = 0; i< 129; i++)

{
if ((j - i) >= 0)

{
yyy[j] += (fir[i] * xxx j -i]);
I

if ((j - i) <0)
{

yyy[j] += (fir[i] * aux[1 29+(j-i)]);
}

}
}
for(j = 0; j< 129; j++)

aux[j] = xxx '];
fp2int(rr,dest,&m, &bits);
numwritten = fwrite(buff out_int,sizeof(int),1 29,dat_file_fit);
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A.5 Signal Processing: CLEANEM. EXE

This program removes the EKG contaminant from the EMG signal. The following
is the subroutine that performs the cross correlation between two sequences, keeps track
of previous coefficients and determines the occurrence of a QRS complex when the peak
coefficient is reached. Figure A5 shows the flow diagram of this program.

Obtain EKG artifact tempof te (fross EMG)
and lrS template (from EKG) during an

efxpratory interval u

Read ekg artifact templte
and QRS template

I Read sequences from
EMG and EKG signals

Comp1te cross corr coeff.
betwen EKG template and EKG C- signa

NO (shifts 1 point in time)

Peak coeff. was found.

Subfract point by point EMG artifact

fromn EG signal.

Extraction subroutine (implementation of cross correlation):

float square;
long m
int *sourcesigna1,*dest clean;
float *d st sig na1,*sourc ~clean;
i nt i,j,bits;

dest clea = &uffsignalint;
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sourceclean = &buffsignalout;
bits = 16;
m=16000;
for (j = 0; j < ((numread/2) - 175); j++)
{

for (i = 0; i < 175; i++)
buff signal-aux[i] = buff sig nalekg[j+i];

zxy = 0.0;
for (i = 0; i < 175; i++)

zxy += buff-signal-aux[i] * bufftempekg[i];
zx = 0.0;
for (i = 0; i < 175; i++)

zx += bufftempekg[i];
zy = 0.0;
for (i = 0; i < 175; i++)

zy += buff signalaux[i];
zxx = 0.0;
for (i = 0; i < 175; i++)

zxx += buff_temp _ekg[i] * bufftemp ekg[i];
zyy = 0.0;
for (i = 0; i < 175; i++)

zyy += buff signal aux[i] * buff signal aux[i];
square = (zxx - (zx * zx / 175.00));
if (square > 0.0)

rootl = sqrt(square);
square = (zyy - (zy * zy / 175.00));
if (square > 0.0)

root2 = sqrt(square);
coeff = (zxy - (zx * zy /175.00))/(rootl * root2);

if (coeff> level)
{
if (coeff > peak)

{
peak = coeff;
peak point = ];

I
if (coeff < peak)

{
settextposition(7,5);

printf("\n Extract artifact coeff = %f at
point = %d peak # %f" peak,peakpoint,counter);

check_artifact(peakpoint);
if(coeffcheck>0.5)
{
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printf("\n Extracted at point O ",peak-point);
counter +=1.0;

for (i = 0; i < 175; i++)
{

bufsignalemgout[peakpoint+i] =

(buff signalemg[peakpoint+i] - bufftempemg[i]);
}

}

}

if (coeff < level)
peak = 0.0;

}
joint();
fp2int(sourceclean destclean,&m,&bits);

A.6 Signal Processing: MOVING.EXE

This program is the digital implementation of a digital Paynter filter for moving time
averaging.

Calculating filter coefficients:

int i,j;
float denominator,interval,wpw3,w2;
/* averaging interval*/
interval = 100;
wp = 3.141592654 / interval;
w3=wp*wp*wp;
w2=wp*wp;
denominator = (3.2 + 4,0*wp + 3.2*w2 + w3);
aaa[0I = (wp + w3)/denominator;
aaa[1] = (3.0*w3 - wp)/denominator;
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aaa[2] = aaa[1];
aaa[3] = aaa[O];
bbb[0] = 1.0;
bbb[1] = (3.0*w3 + 3.2*w2 - 4.0*wp - 9.6)/denominator;
bbb[2] (30*w3 - 3.2*w2 - 4.0*wp + 9.6)/denominator;
bbb[3] = (w3 - 3.2*w2 + 4.0*wp - 3.2)/denominator;

Filtering the signals:

int i, j,norm, bits,stop;
float aux,gain;
long m;
static float xxx[100];
static float yyy[100];
static int buff getint[1 00];
static int buffoutint[l0O];

/* Define a pointer (r) to the real array.
Note that the compiler will issue a warning message which can be
safely ignored. */

int *source,*dest;
float *r,*rr;
r = &xxx;
dest = &buff out int;
rr = &yyy;
source = &buffget-int;
bits = 16;
m = 100;
for(j = 0; j < 2; j++)

{
initxxx ] = 0.0;
inityyy ] = 0.0;
}

while (feof(dat_file_hdl) == 0)
{

numread= fread(buff get_it,sizeof(int),1 00, dat_file _hdl);
int2fp(source,r,&m, &bits);
for(j= 0;j< 100; j++)
{

yyy j] = 0.0;
for(i = 0; i< 4; i++)
{
if ((j - i) >= 0)
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yyy~LI += (aaa[i] xxx j -i]);
if (( - I) <0)

yyy[j] += (aaa[i] * initxxx[3+j-i]);
}
for(i = 1; i< 4; i++)
{

if ((j - i) >= 0)
yyyU] -= (bbb[i] * YYyU -i]);
if (( - i) <0)
yyy[j] -= (bbb[i] * inityyy[3 +j-i]);

}

for(j = 97;j < 100; j++)
{
initxxxj-97] = xxx j];
inityyy j-97] = yyy o];
}

fp2int(rr,dest, &m, &bits);
numwritten = fwrite(buffout_int,sizeof(int),1 00,dat file fit);

}

AJ7 Signal Processing: INTEG.EXE

Digital integrator, integrates signals with 1 ms sampling period. Obtains the tidal
volume from the flow signal. INTEG.EXE is a process executed by program
IMPORT. EXE.

Integration subroutine:

{
int i, jnorm, bits,stop,k;
float aux,gain;
long m;
static float xxx[1 00];
static float yyy[100];
static int bufgetint[1 00];
static int buff_out_int[100];
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/* Define a pointer (r) to the real array.
Note that the compiler will issue a warning message which can be
safely ignored. */

int *source,*dest;
float *r,*rr;
r = &xxx;
dest = &buff_outint;
rr = &yyy;
source = &buffget_int;
gain = 1;
bits = 16;
m = 100;
for(j = 0; j< 1; j++)

{
initxxx[j] = 0.0;
inityyyj] = 0.0;
}

while (feof(dat_file_hdl) == 0)
{

numread= fread(buffgetint,sizeof(int),100 dat_file-hdl);
int2fp(source,r,&m, &bits);
for(j = 0;j < 100; j++)
{

if ((j - 1) >= 0)
yyy[j] = (0.0005 * (xxx j]+xxx j-1])) + yyy[j-1];

if((j-1)< 0)
yyy[j] = (0.0005 * (xxxU ]+initxxx[0])) + inityyy[0];

}
inityyy[0] = yyy[99];
initxxx[0] = xxx[99];
fp2int(rr,dest,&m, &bits);
numwritten = fwrite(buff_out_int,sizeof(int),1 00,dat file fIt);

}

**************************************************************

A.8 Signal Processing: SMOOTH.EXE
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SMOOTH.EXE is a digital first order lowpass filter. The following subroutine
calculates the filter coefficients, and the filtering itself is a variation of the filter
implemented in the program MOVING.EXE section A.6.

Calculation of filter coefficients:

{
int ij;
float wc,fs;
fs = 10;
wc=2* 3.141 592654*fs;
aaa[0] = wc/(wc+1.0);
aaa[1] = wc/(wc+1.0);
bbb[0] = 1.0;
bbb[1] = (wc - 1.0)/(wc + 1.0);

}

A.9 Signal Analysis: PLOTMTA.EXE

This program is used for the analysis of the moving time averaged EMG signals.
It handles software device drivers for graphics display. It plots four channels, with 2000
points per channel (2 seconds of activity). The following are some of the subroutines
implemented in this program.

The signals are stored in the following array:

Flow : buffch[0]
Diaphragm EMG : buffch[1]
PCA EMG : buffch[2]
Genioglossus EMG : buffch[3]

Procedure to open graphics workstation:

static int display[] = {1,1,1,1,1,1,1,1,1,1,1,1,
'D','!','S','P',L',A''Y, '};!

/* OPEN THE WORKSTATIONS */
error = v opnwk (display,&screen,screen_ out);
if (error == -1)
{

printf ("Error %d in display Open Ws",vqerror());
exit (-1);

}
box[0] = 0;
box[1] = 0;
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box[2] = screen _out[51];
box[3] = screen out[52];
/* inquire the screen bitmap and bitmap size */
vqd bitmap (screen,&scrmap,box);
v_clrwk (screen);

Plotting signals on the screen:

{
double value;
char string[20];

int stop,i,j,width;
vsLtype (screen,1); /*solid line*/

for (i = 0; i<4000;i++)
{

xy[i] = 5*i; /* Horizontal compression 5 pel's*/
i++;

}
for (i = 1,j=0; i<4000;i++,j++)
{

xy[i]=(gain[0] * buffch[0][j])+20000;
i++;

}

vslcolor (screen,colors[0]);
stop = vpline (screen,2000,xy);

for (i = 1,j=0; i<4000;i++,j++)
{

xy[i]=(gain[1] * buffch[1][j])+15000;
i++;

vsI_color (screen,colors[1]);
stop = vpline (screen,2000,xy); /*plot 2000 pts*/

for (i = 1,j=0; i<4000;i++,j++)
{

xy[i]=(gain[2] * buffch[21][])+1 0000;
i++;

vslcolor (screencolors[2]);
stop = vpline (screen,2000,xy);

for (i = 1 ,j=0; i<4000;i++,j++)
{
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xy[i]=(gain[3] * buffch[3][j])+5000;
i++;

vslcolor (screen,colors[3]);
stop = vpline (screen,2000,xy);
if (stop == -1)
{
printf ("Error %d in plotting Open Ws",vqerror();
exit (-1);
}

value = (ftell(dat _file _hdl)/(8*fs));
gcvt(value,1 0,string);
vgtext (screen,22000,2000,string);
v gtext (screen,26000,2000," secs."); /* time from beg. of file*/
value = 25/fs;
gcvt(value,10,string);
v_gtext (screen,10000,1500,string);
vgtext (screen,14000,1500," sec/div"); /*time per division*/

}

Calculation of baseline noise level:

{
int i,j;
int bufferaux[2000];
int slope 1,slope2,peak;
long mean _emg;
float root;
/* mean activity */
for (i=0,meanemg = 0;i<2000;i++)

meanemg += buffch[ch][i];
meanemg /= 2000.00;

/* find minimum points*/
for (i=750,j=0;i<1 250;i++)
{

slopel = buffch[ch][i] - buffch[ch][i-750];
slope2 = buffch[ch][i+750] - buffch[chl[i];
peak = slopel * slope2;
if ((peak < O)&&(slopel<slope2)&&(buffch[ch][i] < mean_emg))

bufferaux[j]=buffch[ch][i];
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}
}
for (i=0;i<j;i++)

meanbaseline[ch-1] += buffer_aux[i];
if ( >1)
{
mean_baseline[ch-1] /=(j);
}

}

Detect onset of inspiration from the flow signal (buffch[0]) and number of breaths:

zerocrossing=1;
slope = 0;
numberbreaths = 0;
firstpoint=buffch[][0];

for (i=1 ;i<2000;i++)
{

secondpoint=buffch[0][i];
zerocrossing = first point * second-point;
slope = second point - firstpoint;
if ((zerocrossing <= 0)&&(slope > 0))
{
xy2[0] = 10*i; /* vertical line*/
xy2[1] = 20000;
xy2[2] = 101;
xy2[3] = 5000;
vslcolor (screen,5);
vsl type (screen,2);
vpline (screen,2,xy2);
iit_insp[number_breaths] = i;
if(abs(secondpoint) > abs(firstpoint))

initinsp[numberbreaths] = i-1;
numberbreaths ++;

}
slope = 0;
firstpoint = secondpoint;

}
numberbreaths --;
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Detect maximal point of emg activity*/

for (j=0;j<numberbreaths;j++)
{

max-diaj]=buffch[1 ][initinsp j]];
for (i = iitinsp j]+1; i < init_e xp ; i++)
{

if (buffch[1][i] >= max_dia[j])
{
max_dia[j] = buffch[l][i];
max_diapoints[j] = i;

}
}
xy2[0] = 10*maxdiapoints];
xy2[1] = (gain[1] * buffch(1 ][max_ diapoints ']])+1 5000;
xy2[2] = 1 *maxdia pints ];
xy2[3] = (gain[0] * buffch[0][maxdiapoints[j]])+20000;
vslcolor (screen,6);
vsl_type (screen,1);
vpline (screen,2,xy2);

}
**************************************************************

Detect on set and off set of EMG activity
**************************************************************

for (=0;j<number_breaths;j++)
{

i=maxdiapoints j];
while (mean baseline[0] < buffch[1 ][i])

if (i<0) i=0;
if (i>1999) i=1999;
time_activitydia[0][] = i;
xy2[0] = 10*i;
xy2[1] = (gain[1] * buffch[1][i])+15000;
xy2[2] = 10*i;
xy2[3] = (gain[0] * buffch[0][i])+20000;
vslcolor (screen,2);
vsl_type (screen,1);
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vpline (screen,2,xy2);
i=maxdiapoints[j];
while (mean-baseline[O] <buffch[l1][i])

i--;
if (i<O) i=O;
if (i>1999) i=1999;
time activitydia[1][j] = i;
xy2[0I = 10*i;
xy2[1] = (gain[1] * buffch[1][i])+15000;
xy2[2] = 1 0*i;
xy2[3] = (gain[0] * buffch[][i])+20000;
vslcolor (screen,2);
vsl_type (screen,1);
vpline (screen,2,xy2);

A.1 Signal Analysis: PLOTMEC.EXE

Program implemented for the lung mechanics analysys. The setup, graphics
displaying, and onset of inspiration determination procedures are similar as the routines
presented in section A.9. The following are the most relevant subroutines implemented
for the analysis of the signals.

The signals are stored in the following array:

Flow: buffch[0]
Esophageal Pressure : buffch[1]
Mouth Pressure : buffch[2]
Tidal volume: buffch[3]

Determining calibration factors from calibration files:
**************************************************************

int ij;
float count,pe,pm,fl;
if ((dat-file val = fopen(filename _val,"rb")) == NULL)
{

fprintf(stderr," couldn't open file %s for calibration, check if exists\n",
filename_val);

exit(1);
}
if ((datfile zer = fopen(filename_zer,"rb")) == NULL)
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fprintf(stderr," couldn't open file %s for calibration, check if exists\n",
filename_zer);

exit(1);
}
printf("\nCalibrating signals.................."
pe=0 ;pm=0 ;fl=0 ;count=0;

while(feof(dat_file_val)==0)
{
num read = fread(buffplot,sizeof(int),40,datfile_val);
for (i=0;i<40;i++)

{
cal_flow+=buffplot[i];
i++;
cal_ s +=buf lot[i];
i++;

calpmm+=buffplot[i];
i++;

I
count += 10;
}
cal_flo /=count; /* calculation of max. cal. value*/
cal_eso /=count;
calpmm /=count;
pe=0 ;pm=0;fl=0 ;count=0;

while(feof(datfile_zer)==0)
{
num read = fread(buffplot,sizeof(int),40,dat_filezer);
for (i=0;i<40;i++)

{
fl+=buffplot[i];
i++;

pe+=buffplot[i];
i++;
pm+=butfplot[i];
i+;

}
count += 10;
}
fl /=count; /* zero values*/
pe /=count;
pm /=count;
caleso -= pe; /* max value - zero value*/
calpmm -= pm;
cal-flow -= fl;
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count = 1.0/caleso;
caleso = count*1o;
count = 1.0/caLpmm;
calpmm = count*10; /* 10 cmH2O*/
count = 1.0/cal_flow;
calflow = count*3; /* 3 1/mm *1
fclose(datfileval);
fclose(datfile zer);

Detect points of maximum tidal volume, and points of half tidal volume during
inspiration and expiration:

/* detect max volume*/
for (j=0;j<number breaths;j++)
{

maxvol[j]=buffch[1 ][init_insp j]];
for (i = initinsp[j]+1; i < initinsp +1]; i++)
{

if (buffch[3][i] > max volj])
{
max_vol] = buffch[3][i];
maxvolpoints '] = i;
}

}
/*detect half volumen during insp. and exp */

for (j=0;j<numberbreaths;j++)
{

halfvolinsp[j]=max vol ]/2;
for (i = init_insp[j]; i <maxvolpointsj]; i++)
{

if (buffch[3][i] == half_volinsp l)
halfvolinsppoints j] = i;

}

half_vole xp[j]=maxvol]/2;
for (i = max_volpoints[j]; i < init-insp j+1]; i++)
{

if (buffch[3][i] == half_vole®xp])
half_vol_e xppoints ] = i;

}
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Extract offsets in PE and PM:

for (i = 0; i < it_insp[]; i++)
{
buffch[1 ]i] = buffch[1 ][i] - buffch[1 ][initjnsp[]];
buffch[2][i] = buffch[2][i] - buffch[2][initminsp[0]];
}
for (i = initjinsp[number_breaths]+1; i <250; i++)
{
buffch[1 ][i] = buffch[1 ][i] - buffch[1][initinsp[numberbreaths]];
buffch[2][i] = buffch[2][i] - buffch[2][initinsp[numberbreaths]];
}

Calculation of compliance and tidal volume:

for (j=0;j<number_breaths;j++)
{

vtfj] = buffch[3][init-exp[j]];
vtUj] *= (1000.0*cal_flow/60.0);
compliancej] = buffch[3][initexp[j]];
compliance ] *= (cal flow *1000.0/60.0);
compliance j] /= - buffch[1][initexp[j]];
compliance~l /= (caleso);

}
vst_color (screen,1);
vgtext (screen,20000, 12000,"COMPLIANCE :");
value = compliance[0];
gcvt(value,10,string);
vgtext (screen,20000,1 1 000,string);
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v-gtext (screen,25000,11 000"ml/cmH2O");
vst_color (screen,1);
vgtext (screen,20000,1 OOO,"TIDAL VOLUME:");
value = vt[O];
gcvt(value,1 ,string);
vgtext (screen,20000,9000,string);
vgtext (screen,25000,9000,"ml");

Calculation of total resistance:

for (j=O;j<numberbreaths;j++)
{

totrj] = (buffch[1][half_volinsppoints[j]]
-buffch[1 ][halfvolexppoints ]]);

tot_rj] *= cal_eso;
dummy = (buffch[2][half_vol_insppoints j]]

-buffch[2][halfvolexppoints j]]);
dummy *= caLpmm;
totrj] -= dummy;
tot_rj] *= -60.0;
dummy = (buffch[][halfvol_insppoints j]]

- buffch[O][alf volexppoints ]]);
dummy *=calflow;
tot_rj] /= dummy;

}
vstcolor (screen,1);
vgtext (screen,20000,18000,"TOTAL RESISTANCE:");
value = totr[O];
gcvt(value,1 ,string);
vgtext (screen,20000,1 7000,string);
vgtext (screen,25000,1 7O,"cmH2O/l/s");

Calculation of inspiratory resistance:

for (j=;j<number breaths;j++)
{

insp iri] = ((buffch[1][half_vol_insppointsj]]
- (buffch1 ][initexp ]]/2))*caleso);

insprj] -= (buffch[2][half_volinsoppointsJ]]* alpmm);
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insprj] *= -60.0;
insprlj] /= ((buffch[O][half_vol_insp points j]])*ca flow);

vst_color (screen,1);
vgtext (screen,20000,16000,"INSP RESISTANCE:");
value = insp_r[];
gcvt(value,1 ,string);
vgtext (screen,20000, 15000,string);
vgtext (screen,25000,1 5000,"cmH2O/l/s");

Calculation of expiratory resistance:

for (j=0;j<number_breaths;j++)
{

exprj] = ((buffch[1 ][halfvol_exppointsj]]
- (buffch[1 ][initexp[j]]/2))*aleso);

exprj] -= (buffch[2][halfvol_exppoints j]]*calpmm);
exprj] *= -60.0;
e xprj /= (buffch[O][halfvol_exppoints[j]]* alflow);

}

vst_color (screen,1);
vgtext (screen,20000,14000,"EXP RESISTANCE:");
value = expr[0];
gcvt(value,1 ,string);
vgtext (screen,20000,13000,string);
vgtext (screen,25000,13000,"cmH2O/l/s");

All* Si*nal Analysis PLOTDIEXE

Program implemented for the analysis of chest wall distortion. The setup, graphics
displaying, and onset of inspiration determination procedures are similar as the routines
presented in section A.9 (program PLOTMTA.EXE). The following are the most relevant
subroutines implemented for the analysis of the signals.

The signals are stored in the following array:

Flow: buffch[0]
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Ribcage: buffch[1]
Abdomen : buffch[2]
Sum of RC and ABD: buffch[3]

Offset extraction from the RC and ABD signals using the onset of inspiration point
as zero reference:

for (j=O;j<number_breaths;j++)
{

for (i = init_insp j]+1; i < initinsp[j+1]; i++)
{
buffch[1 ][i] = buffch[1][i] - buffch[1 ][initinsp[j]];
buffch[2][i] = buffch[2][i] - buffch[2][init_insp[j]];
buffch[3][i] = buffch[2][i] + buffch[1][i];
}
buffch[1 ][init_insp[j]]= 0;
buffch[2][initinspj]]= 0;
buffch[3][init-inspUj]]= 0;

}

Detect zero, maximum and minimum excursion of the ribcage signal:

for 0j=0;j<number_breaths;j++)
{

maxrc ]=buffch[1 ][initinsp[j]];
mi rcj]=buffch[1 ][initinspj]];
for (i = initinsp ]+1; i < init-insp[j+1]; i++)
{

if (buffch[1 ][i] >= maxrc[jJ)
{
max_rc[j] = buffch[1][i];
maxrcpoints[j] = i;

}
}
for (i = init-ins pj]+1; i <maxrcpoints j]; i++)
{

if (buffch[1][i] <= min-rc[j])
{
min rc] = buffch[1][i];
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mi _rc points] = i;
}

}
for (i = min_rcpointsj]; i < maxrcpoints j]; i++)
{

if (buffch[1][i] >= 0)
{
zero_rcpointsj] = i;
i = maxrcpoints[j];
}

}
}

Calculation of tcd/vt ratio:

for (j=0;j<number_breaths;j++)
{

for (i = init_insp[j],tcd=0,vt=0; i < initex j]; i++)
{
tcd+=(abs(buffch[1 ][i])+abs(buffch[2][i]));
vt+=buffch[3][i];
}
tcd_f=tcd;
vt_f =vt;
tcdvtj ] = tcd/vt_f;

vstcolor (screen,1);
value = tcdvtfj];
gcvt(value,10,string);
vgtext (screen,20000,15000+(j*1 000),string);
value = j+1;
gcvt(value,1 0,string);
vgtext (screen,26000, 15000+*1 000),string);

}

Calculation of phase shift angle between RC and ABD signals:

for (j=0;<number breaths;j++)
2 {

angle[j] = ((zerorcpoints j] - initinsp ])*36o);
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angle[j] 1= (init_insp +1] - initinsp j);
value = angle];

vstcolor (screen,1);
gcvt(value,1 ,string);
v-gtext (screen,20000,10000+( *1OO),string);
value = j+1;
gcvt(value,1 ,string);
vgtext (screen,26000, 10000+(*1 OO),string);

}

A.12 Signal Analysis: PLOTPE.EXE

This program evaluates two pressure signals for waveform shape and magnitude
proportionality. The setup, graphics displaying, and onset of inspiration determination
procedures are similar as the routines presented in section A.9 (program
PLOTMTA.EXE). The following are the most relevant subroutines implemented for the
analysis of the signals. It plots signals in time (See section A.9) and also plot the two
pressures in XY axis.

The signals are stored in the following array:

Flow : buffch[O]
Pressure #1: buffch[1]
Pressure #2: buffch[2]

Extract pressure offsets with zero flow reference and outputs
XY-plot of two pressures with timing markers:

1* extract offsets in PE1 and Pe2 */

for (j=O;j<number breaths;j++)
{

for (i = init_insp[j]+1; i < iitinsp j+1]; i++)
{
buffch[1 ][i] = buffch[1 ][i] - buffch[1 ][init-insp[j]];

140



buffch[2][iJ = buffch[2][i] - buffch[2][initinsp j]];
}

/* plot xy on screen... */
vsl_ color (screen,8);
vsl-type (screen,1);
/* XY AXIS*/
xy[0] = 0;
xy[1] = 5000;
xy[2] = 10000;
xy[3] = 5000;
vpline (screen,2,xy);
xy[0] = 5000;
xy[1] = 0;
xy[2] = 5000;
xy[3] = 10000;
vpline (screen,2,xy);
/* plot xy pel pe2*/
for (i = 0,j=0; i < (init-insp[]-initinsp[0]);j++,i++)
{

xy j]=(2*gainl[1] * buffch[1][initinsp[0]+i])+5000; /* x *1

xy[j]=(2*gain[2] * buffch[2][init-insp[0]+i])+5000; /* y *

vslcolor (screen,5);
vsltype (screen,1);
vpline (screen,(init-insp[1]-init_insp[0]),xy);

**************************************************************

Calc max, min pressure values:

max pe1=buffch[1][initinsp[0]];
min pe1=buffch[1 ][init~insp[0]];
maxpe2=buffch[2][initinsp[0]];
minpe2=buffch[2][init~insp[0]];
for (i = initinsp[0]+1; i < init_insp[1]; i++)
{
if (maxpe < buffch[1][i])

{
maxpel = buffch[1][i];
maxpelpoint = i;
}
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if (minpel > buffch[1][i])
{
minpel = buffch[1][i];
minpepoint = i;
}

if (mx{ e < bfch[2][i])

{
maxpe2 = buffch[2][i];
maxpe2-point = i;
I -

if (minpe2> buffch[2][i])
{
Imin~e =uffch[2][i];min papint = i;

}

Calculation of linear regression slope and cross corr. coeff.

/* calling sequence*/
sloperegression(initinsp[1]-initinsp[0]);

v gtext (screen, 11000,1 000,"R.Slope=");
value = slopepressure;
gcvt(value,4,string);
vgtext (screen,15000,1000,string);
vgtext (screen, 11000,2000,"CORR=");
value = corrcoeff;
gcvt(value,4,string);
vgtext (screen, 1 5000,2000,string);

/* calculates slope regression and cross correlation coeff*/
slopereg ression(points)

int points;
{
int i,h,k;
float root 1 ,root2,square,zx,zy,zxy,zxx,zyy;
float pointf;

if ((points>0)&& (points<250))
{
zxy = 0.0;
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for (i = 0;. < points; i++)
zxy += buff signalpe1 [i] *buffsignlpe2[i;

zx = 0.0;
for (i = 0; i < points; i++)

zx += buff-signaL pe[i];
zy = 0.0;
for (i = 0; i <points; i++)

zy += bufsignalpe2[i];
zyy = 0.0;
for (i = 0; i <points; i++)

zyy += (buffsignaLpe2[i] * buffsignaLpe2[i]);
zxx = 0.0;
for (i = 0; i <points; i++)

zxx += (buffsignaLpel [i] * buffsignaLpel [i]);
pointf = points;
square = (zxx - (zx * zx / pointf));
slope pressure = (zxy - (zy * zx /pointjf))/(square);

/* correlation*/
square = (zxx - (zx * zx / pointjf));
if (square < 0.0)

{
printf ("error xx");
exit(1);
}

rooti = sqrt(square);
square = (zyy - (zy * zy / pointjf));
if (square <0.0)

{
printf("error yy");
exit(1);
}

root2 = sqrt(square);
if ((rooti*root2)>0.0)
corrcoeff = (zxy - (zx * zy /pointj))/(rootl * root2);
}

}
**************************************************************
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A,13 Sial Anlysis:SETU.X

This program obtains the PSD periodogram of the EMG signals. The following is
the routine that performs the 1024 points FFT.

Subroutine for FFT:

static struct complex {
float real;
float imag;
};

static float buffer plot float[51 2]; /*temporary*/
static int bufferplot fft[51 2];
it n, i, j,h, norm, bits,significant digits;
long m,mm;
double point;
static struct complex buff fft[1 024];
static int buff int[1024];
static double buff_write[512];

/* Define a pointer (r) to the complex structure (c) to handle real numbers.
Note that the compiler will issue a warning message which can be
safely ignored. */

float *source-ff;
int *destift;
float *r, scale,kreal;
r = &buff_fft;
destfft =&bufferplot_fft;
source_ff =&bufferplotfloat;
/* size of ffts */
bits = 16;
n = 10;
m = 1024;

/* calc k number of intervals 1024 points */
k = filesize / 2048;
kreal=k ;
/* perform k ffts and send to file*/
printf("\n\n\n\n Wait ..");
for (j = 0; j < k; j++)
{

/* read sequence and convert int to fp*/
numread= fread(buffjnt,sizeof(int),1024,dat_file hdl);
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bits = 16;
for (i = 0,h=0; 1 <1024; i++,h++)
{
buff_fft[h].real = buff_int[i];
i++;

buff_fft[h].imag = buff int[i];
}

/* Perform a 1024 points real FFT and convert the complex results
to polar (magnitude/phase) form. Note that integer m must be
a long integer. */

i=1;
norm=0;
scale=1.0;

/* hamming window*/
hamm (r,r,&n);

/* fft 1024 pts*/
rfft(r, &n,&norm, &scale);

/*convert to polar form and send to destination file*/
mm=512;

polar(r,r,&mm,&i);
for ( h = 0; h <512; h++)
buffwrite[h] += ((buff _fft[h].real * bufffft[h].real)/1024.00);

}

A.14 Sinal Aalyrsis: PLOTFFT.EXE

PLOTFFT.EXE displays the 512 points average periodogram stored in binary form
by the program SPECTRUMXE (A.1 3). It uses the same graphics procedure set up a
explained in section A.9.

Plotting two axis and periodogram:
**************************************************************

/* axis*/
xy[0] = 0;
xy[1] = 2000;
xy[2] = 0;
xy[3] = 22000;
vsl color (screen,15);
vsltype (screen,1 5);
vpline (screen,2,xy);
xy[0] = 0;
xy[1] = 2000;
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xy[2] = 20480;
xy[31 = 2000;
vpline (screen,2,xy);
/* read file*/
numread = fread(buffplot,sizeof(int),51 2,dat_file hd);
/* plot psd*/
for (i = 0; i<512;i++)
{

xy[0] = 401;
xy[1] = 2000;
xy[2] = 40*1;
xy[3] = (gain * (buftplot[i]))+2000;

vsl_color (screen,5);
vsl-type (screen,1 5);
stop = vpline (screen,2,xy);
if (stop == -1)
{
printf ("Error %d in plotting Open Ws",vqerror();
exit (-1);
}

}
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