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ABSTRACT OF THE THESIS 

EFFECTS OF A SWITCHGRASS BUFFER STRIP ON SOIL MICROORGANISMS 

NEAR A FIELD APPLIED WITH ENDOSULF AN 

by 

Cristina Clark-Cuadrado 

Florida International University, 2007 

Miami, Florida 

Professor Krishnaswamy Jayachandran, Major Professor 

A field study to detennine the effects of a switchgrass buffer strip (SBS) on soil 

microorganisms near a field applied with endosulfan was carried out. Soil samples were 

taken from a SBS and bare soil area downslope from a field applied with endosulfan at 

different distances, days, and two seasons (wet and dry). Soil samples were analyzed for 

endosulfan, soil fungi, and bacteria. Analysis of endosulfan concentrations was done by 

reversed-phase liquid chromatography. No endosulfan runoff was detected by this 

method. Analysis of soil fungi and bacteria was done by fungal and bacterial enumeration 

by plate count method on rose bengal agar and tryptic soy agar, respectively. 

Soil fungi and bacteria were higher in the SBS than in the bare soil area. Also, soil 

bacteria was higher during the wet season than during the dry season. The opposite trend 

was observed for soil fungi. 
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CHAPTER I 

INTRODUCTION 

Information on the effectiveness of buffer strips for the reduction of endosulfan 

runoff from agricultural fields is limited. Though studies have been conducted in the 

greenhouse (Mcrsie et al., 2005), field studies are needed to document the fate and 

transport of endosulfan and its effects on soil biology. Modeling the fate and transport of 

endosulfan through a vegetative buffer strip is needed to understand, predict, and prevent 

endosulfan contamination of waterways, soils, and ecosystems. Furthermore, few studies 

have evaluated the potential of switchgrass to reduce endosulfan pollution and improve 

soil quality when used as a buffer strip. 

Soil bacteria and fungi play a significant role in agricultural soils. Pathogenic soil 

bacteria and fungi receive significant attention from farmers and soil conservationists due 

to their negative effects on agricultural productivity. However. most soil bacteria and 

fungi are beneficial to soil, plant, and the environment. Bacteria and fungi play vital roles 

in agricultural soils and natural environments, such as their effect on organic matter 

turnover and nutrient cycling (Wood, 1989). There is limited information on the effects 

of endosulfan on soil bacteria and fungi. Information on the effects of endosulfan runoff 

passing through a switchgrass filter strip can help agricultural landowners manage their 

endosulfan applications and design of filter strips to prevent contamination of adjacent 

natural areas. Furthermore, this information can give fam1ers insight on possible 

secondary effects of endosulfan application on soil bacteria and fungi, helping them make 

more educated decisions about managing soil quality. 



The objectives of this study were to determine the effectiveness of a switchgrass 

bufier strip in reducing endosulfan runoff and to study the effects of endosulfan on soil 

microbial populations. Previous studies indicate that a switchgrass buffer strip will be 

more successful in abating endosulfan runoff than a bare ground soil (Lee ct al., 1998). 

However, butTer strips may also increase infiltration, thus causing problems for 

groundwater (USDA, 2002). The effects of endosulfan on soil bacterial and fungal 

populations were also studied, as well as the effects of a switchgrass buffer strip on soil 

bacterial and fungal populations adjacent to a field applied with endosulfan. Higher 

bacterial and fungal populations were expected in the soil of the switch grass buffer strip 

than in the bare soil strip. In addition, bacteria and fungi will increase with the distance 

from the point of endosulfan application. 
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CHAPTER II 

BACKGROUND OF RESEARCH 

The Use of Pesticides in Conventional Agriculture 

Conventional agriculture has often been blamed for the overall decline of 

ecosystem health. Since agricultural areas cannot be separated from the surrounding 

ecosystems, natural resource management must include agricultural as well as natural 

areas for healthier agroecosystems. Agricultural runofT frequently carries pesticides, 

heavy metals, and nutrients that are hannful to beneficial insects and animals, as well as 

endanger human health, fisheries, and tourism (UNEP, 1999). Some pesticides are lost to 

the atmosphere through volatilization, however most applied pesticides remain in the soil 

(Wright et al., 1993). Once in the environment, pesticides may be absorbed by plants and 

other organisms, chemically decomposed, volatilized, adsorbed onto soil particles, 

subjected to runoff: and leached through the soil profile (Rao et al. 2006). Urban 

development and agricultural operations have decreased the amount of vegetated areas 

along bodies of water able to absorb and stop or reduce the movement of pollutants 

before reaching the water bodies. 

Knowledge of the fate and transport of pesticides is essential in reducing off-site 

movement of these contaminants. Although pesticides may enter the environment from 

point sources (such as spills or improper disposal), nonpoint sources (such as agriculture) 

are the main contributors of pesticides into natural environments (EPA, 1992). The main 

properties of a pesticide affect its behavior after application are solubility, adhesion, 

degradation, and persistence. 
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Solubility: Pesticides that are soluble in water are likely to leach through the soil 

and contaminate groundwater. or flow with surface water and contaminate streams, 

rivers, lakes, or other bodies of water. In general, water solubilities of pesticides higher 

than 30 parts per million (ppm) have an increased tendency to leach down through the 

soil profile (Landon eta!., 1994). 

Adhesion: Pesticides often adhere to soil particles or organic matter through 

adsorption. Pesticides that adhere to soil particles have a lower leaching potential than 

water-soluble pesticides (Buttler et al., 2003). However, studies have shown that 

pesticide molecules that tightly adhere to soil particles may not be easily broken down by 

microorganisms (Landon et al. 1994) and may therefore persist longer in the 

environment. 

Degradation: Chemical reactions break down or degrade pesticides through time. 

Break down may occur through microbial degradation, chemical degradation (by 

chemical reactions not involving microorganisms), or photodegradation (light mediated 

chemical reactions). Degradation of a pesticide does not signify that the pesticide is less 

harmful. Often, the products of the degradation of pesticides are as or more harmful than 

the original pesticide and may persist longer in the environment. For example, research 

conducted by the United States Geological Survey (USGS) and Southern Illinois 

University scientists indicates that the metabolites of the pesticides chlorpyrifos and 

malathion are about 100 times more toxic than the parent compounds (Sparling et al., 

2007). 

Persistence: Persistence describes a pesticide's continuing existence in the 

environment. Persistence is measured by the amount of time it takes for half of the active 
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ingredient of the pesticide to degrade, otherwise known as its half-life. The half-life of a 

pesticide is dependent on the nature of the chemical itself and several environmental 

factors, such as soil type, temperature, light, moisture, microorganisms, etc. Persistent 

pesticides, including endosulfan, are considered to last in the environment longer than 6 

months (Moriarty, 1975). 

Endosulfan as an Agricultural Pesticide 

The chemical commonly called endosulfan was first used as a wood preservative; 

however, it was registered as a pesticide in 1954 to control agricultural pests such as 

aphids, spittlebugs, and whiteflies. Endosulfan is a restricted-use pesticide classified as a 

chlorinated hydrocarbon insecticide and acaricide. Chlorinated hydrocarbons, in 

particular organochlorine insecticides are considered to be persistent in the environment 

(EPA, 2002) and have a high potential to bioaccumulate in organisms. Their persistence 

and the fact that they require small amounts of applied chemical to achieve their goal 

keeps application costs low. Some well-known organochlorine insecticides are DDT, 

aldrin, dieldrin, heptachlor, chlordane, telodrin, difocol, and lindane (IUP AC, 1972). 

Endosulfan, like most other organochlorine insecticides, is banned in several countries 

due to its persistence in the environment and its toxicity to humans and animals (Kegley 

et al., 2007). However, endosulfan is not banned in the United States and is widely used 

for agricultural purposes. 

Endosulfan has undergone the United States Environmental Protection Agency 

(EPA) re-registration process several times with amendments to the label due to 

environmental and human health concerns and lack of data on the effects and behavior of 

endosulfan on several organisms (EPA, 2002). In 2000, residential use of endosulfan in 
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the United States was prohibited due to health concerns. The last re-registration of 

endosulfan under the EPA was in 2002 (EPA, 2002). Earlier in 2007, the European 

Commission proposed to include endosulfan in the list of Persitent Organic Pollutants 

banned under the Stockholm Convention (PANNA, 2007). 

The chemical name for endosulfan is 6,7,8,9, 1 0-hexachloro-1 ,5,5a,6,9,9a­

hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide, and its formula is 

C9H6CL60 3S (Figure 1). Commercial endosulfan is composed of two isomers: 70 percent 

a-endosulfan and 30 percent B-endosulfan, which have different properties (Kegley et al., 

2007). The a-isomer is more toxic, more volatile, and less water soluble than the P­

isomer. However, the B-endosulfan isomer is more persistent in the environment than the 

a-isomer (EPA, 2002). Both endosulfan isomers are metabolized initially to endosulfan­

sulfate via oxidation and hydrolysis (Sutherland et al., 2000). Endosulfan sulfate is even 

more persistent than the parent material (K won et al., 2005). Endosulfan sulfate then 

metabolizes into endosulfan-dioL endosulfan hydroxyether, and endosulfan-lactonc. 

These changes are shown in Figure 2. The toxicity of endosultan-sulfate to mammals is 

about the same as for the parent compound itself, whereas the diol, the hydroxyether, and 

the lactone can be considered nontoxic (IUPAC, 1972). These nontoxic metabolytes have 

a lethal dose (LD50) ranging from I 50-15000 mg/kg in rats, whereas the toxic endosulfan 

isomers have an LD50 of 18 to 160 mg/kg in rats (EXTOXNET, 1996). For the purpose of 

this study, only toxic forms of endosulf~m will be of interest. The molecular structure, 

molar mass, and solubility in water of the toxic forms of endosulfan can be found in 

Figure 1. The half life of commercial endosulfan and its metabolite endosulfan-sulfate 

ranges from 9 months to 6 years in soil (EPA, 2002). Endosulfan has a high affinity to 
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sorb to soil and is likely to be associated predominantly with suspended particles in 

runoff (EPA, 2002). 

Endosulfan is commonly sold commercially under the trade names Thiodan(RJ, 

Phaser@, and Thionex@. Technical grade endosulfan is sold as 95 percent active 

ingredient (a.i.). Endosulfan is also sold commercially as a 9 to 34 percent a.i. 

emulsifiable concentrate, and a 1 to 50 percent a.i. wettable powder found in wettable 

bags. It can be applied by groundboom sprayer, fixed-wing aircraft, chemigation, airblast 

sprayer, rights of way sprayer, low and high pressure hand wand sprayer, backpack 

sprayer, and dip treatment (EPA 2002). A 300- foot minimum spray drift buffer for 

aerial applications between the treated crop and environmentally sensitive areas or 

waterways is specified on the label. 

Endosulfan is an endocrine disruptor and a neurotoxin that acts as a contact and 

stomach poison to several agricultural pests (EPA 2002). Figure 3 includes a list of 

endosulfan's target pests. It can be used on a wide variety ofvegetables, fruits, cereals, 

ornamental shrubs, trees, vines, and herbaceous plants. Its main use in the United States 

is on cotton, tomatoes, potatoes, apples, tobacco, pears, cucumbers, lettuce, green beans, 

and squash (EPA, 2002). Endosulfan is a very persistent chemical that may stay in the 

environment for lengthy periods particularly in acidic media (EPA, 2002). 

Endosulfan has been found in areas that have never had endosulfan application, 

such as the Arctic region and several National Parks. Endosulfan is problematic for fish, 

amphibians, birds, and mammals. In fact, "Endosulfan was the most frequently detected 

insecticide in tadpole and adult from tissues in a California study" (EPA, 2002). It has 

been blamed for over 91 incidents of fish kills and damage to aquatic and semi-aquatic 
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organisms in the United States since I 97L mostly in California, South Carolina, and 

Louisiana. About 32 percent of these incidents were directly attributable to runoff (EPA 

2002). Endosulfan has also caused fish kills on five continents (EPA. 2002) and 

deformations. abnormalities, and death in animals and humans due to its application ncar 

them. Since endosulfan is highly toxic and has a high potential to bioaccumulatc in fish 

and other animals, this problem is of great concern. 

Endosulfan can be absorbed through the skin. In humans and mammals 

endosulfim affects the nervous system. Symptoms include imbalance, difficulty 

breathing, vomiting. convulsions, and loss of consciousness. The kidneys, liver, blood, 

and parathyroid gland are the organs most likely to be affected (EXTOXNET, 1996). 

Studies with cows, sheep, and pigs also show that endosulfan causes temporary blindness 

(for about a month) (EXTOXNET. 1996). Animals should not be allowed to graze on 

pasture that has been contaminated with cndosulfan. Applicators and handlers of 

endosulfan, though, are at most risk and should be particularly careful with the pesticide. 

Endosulfan Use in Miami-Dade County 

Miami-Dade County is a major agricultural producer. It is the county in Florida 

that has the second highest market value of agricultural products sold (NASS, 2004). The 

use of chemicals for agricultural production in Miami-Dade can negatively impact the 

soil, water, air and other natural resources of the area. In 2002, 10 million pounds of 

agrochemicals were used and recorded (Hapeman et al., 2002). The climate in Miami­

Dade, being warn1 most of the year, increases the amount of pests and weeds and the 

spread of pathogens in agricultural operations. Therefore, the amount of chemicals 

needed for high agricultural output is great. Heavy and frequent rainstorm events between 
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May and October cause pesticides and other agrochemicals to leach through or run off the 

surface of treated fields. South Florida's expansive aquatic, amphibian, and avian fauna 

(both permanent and migratory) are particularly at high risk to endosulfan poisoning. 

Several agrochcmicals including endosulfan have already been found in South Florida's 

canals, which drain into the Florida Bay, the Atlantic Ocean, and the Gulf of Mexico 

(Harman Fetcho, 2005). Agrochemicals can also easily enter the Everglades National 

Park due to its proximity to these agricultural lands. In Miami-Dade County, an annual 

average of over 45.5 grams a.i. of endosulfan per square kilometer of agricultural land is 

used, making Miami-Dade County one of the heaviest users of this pesticide in the 

country (Figure 4). In Miami-Dade County, most of endosulfan use is due in part by the 

continuous and heavy agricultural production of tomatoes, green beans, and squash. 

Use of Switchgrass in Buffer Strips 

Pesticides that bind to soil particles through adsorption, such as endosulfan, are 

transported with soil particles suspended in runoff (Buttler et al., 2003). Deposition of 

contaminated sediment in a body of water can lead to persistent environmental and health 

problems since the pollutant could be released slowly as the sediment gets stirred in the 

water. Vegetative filters, or buffer strips, are natural or manmade strips of herbaceous 

vegetation between disturbed areas, such as cropland, and areas that are environmentally 

sensitive, such as a river or a lake. Among other things, they are used to improve water 

quality by reducing sediment runoff and transport of nutrients, animal wastes, and 

pesticides from agricultural lands to water bodies. 

It is very important to have a shallow sheet flow through the filter strip for it to 

provide the benefits sought. Rills and gullies must be repaired immediately to prevent 
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areas of concentrated flow. The vegetation in buffer strips must also be mowed on a 

regular basis to promote thick vegetation (USDA, 2002). Trapped sediment needs be 

removed or redistributed as needed to prevent the formation of rills and gullies (USDA, 

2002). 

The conditions in vegetative filter strips, both biological and physical factors, 

favor increased water infiltration and therefore the reduction of dissolved contaminants 

carried in runoff (USDA, 2002). Studies indicate that water infiltration under buffers can 

be as much as five times higher than in adjacent cultivated fields and pastures (USDA, 

2002). T'his increase in soil infiltration is caused by several factors: The extensive root 

system in filter strips increases biological activity by supplying an energy source to soil 

organisms. These organisms, in tum, degrade pesticides and other contaminants. The 

increased organic matter found in filter strips improves soil aggregation and slows down 

runoff, reducing erosion of contaminated particles . 

Vegetative fi Iter strips have other benefits aside from their potential reduction of 

contaminants in runoff. They can serve as habitat and food for beneficial insects and 

wildlife, or as a corridor between two natural areas of suitable habitat for many species, 

increasing the animal's chances of finding food, water, shelter, and a suitable climate 

(USDA, 2002). 

Also, erosion control is another benefit of vegetative filter strips. Eroding banks 

can remove land, reducing its size and become sediment in the water. Soil particles 

suspended in the water damage aquatic habitat, degrade drinking water quality, and 

reduce water holding capacity in wetlands, lakes, and reservoirs (Schultz, 1995). Eroding 
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banks are also dangerous to farmers. Filter strips can act as a natural barrier, keeping 

equipment from rolling on steep ditches or riverbanks. 

To avoid damage to the vegetative filter strip, it is best to use vegetation that is 

resistant to the herbicides and other pesticides that will be applied upslope. Fescue is the 

most commonly used grass for filter strips (Blanco-Canqui et al., 2005), although 

canarygrass, and bermudagrass are also commonly used. Desirable grasses, though, will 

vary with the location and specific purpose of the filter strip. Native, tall, erect, stiff­

stemmed perennial grasses that produce dense vegetation and have extensive root 

systems are preferred and work best for filter strips. 

Switchgrass (Panicum virgatum L.), is a native wam1-season tall grass that 

tolerates drought, very wet conditions, and soils low in nutrients. It produces high yields 

with very low applications, if any, of fertilizer. Switchgrass also spreads through both 

seeds and rhizomes, fonning a thick sod. It has recently received attention as a grass for 

vegetative buffer strips and has proven to work better than other grasses in various 

studies. Blanco-Canqui et al. (2005), for example, found that switchgrass planted along a 

fescue vegetative buffer strip was more effective in reducing runoff than an only-fescue 

buffer strip ofthe same width. Mersie et al. (2005) found that a 19-inch wide strip of 

switchgrass reduced runoff from sediment coarser than 0.125 mm (fine sands and 

coarser) by 90 percent. In addition, switchgrass is adapted to a variety of climates (from 

wann, southern climates to colder, northern climates) and tolerant of triazine herbicides 

that may be used upslope in the field. Its use can prove useful throughout most of the 

United States. 
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Soil Microorganisms in Agricultural Lands 

Attention needs to be given to soil microorganisms in agricultural lands since they 

are an integral part in maintaining productive soils. Soil microorganisms decompose 

organic compounds (including some pesticides), cycle nutrients making them available to 

plants and other organisms, sequester carbon, suppress diseases malignant to agricultural 

crops, and play an integral role in water dynamics by creating soil aggregates (Wood, 

1989). 

Bacteria and fungi are the smallest of soil microorganisms, with a cell width of 

less than 1 )lm and 10 )lm, respectively (Wood, 1989). However, they are the most 

abundant organisms in the majority of soils. On average, there are between 106 and 109 

bacteria in a gram of soil (Wood, 1989), translating into about one ton of bacterial 

biomass in an acre of soil. Fungi are also found in large quantities in the soil. In 

agricultural lands, there can be several yards of fungi in one gram of soil, tens to 

hundreds of yards in one gram of prairie soil, and one to forty miles in one gram of 

coniferous forest soil (Tugel et al., 2000). 

Both bacteria and fungi have similar roles: they break down residue and cycle 

nutrients for plant use, produce compounds or have fungal hyphae that help create soil 

aggregates, and protect plant roots from disease-causing organisms by competing with 

them (Alexander, 1977). Since they are mostly aerobic, bacteria and fungi are present in 

higher abundance in the top 10 em of the soil surface (Alexander, 1977) and most active 

between Spring and Fall, after the last frost and before the first frost of the year (Tugel et 

al., 2000). Figure 5 indicates seasonal bacterial and fungal activity in grasslands or 

croplands. A study by Pietikainen eta!. (2005) also indicated that fungi and bacteria had 
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different temperature requirements: While fungal and bacterial growth rates had optimum 

temperatures of around 25-30 °C, fungi was more adapted to lower temperatures and 

bacteria was more adapted to higher temperatures. This temperature effect could have 

implications for the warm Miami-Dade soils. 

Fungi can live on the hard-to-metabolize organic material, such as woody debris. 

They are more dominant in acidic soils, such as those found in woodlands. Under dry 

conditions, fungi have an advantage over bacteria since they can use their hyphae to get 

to the moisture pockets in the soil (Bardgett, 2005). 

Bacteria are more numerous in areas where substrates that are easily metabolized 

exist, for example in the rhizosphere and around young plant residue (Alexander, 1977). 

They cannot move great distances and require moisture for reproduction and metabolism. 

In very dry or in anaerobic conditions, such as when the soil floods or becomes 

compacted, some bacteria can become dormant or die (Alexander, 1977). Highly acid or 

alkaline conditions tend to inhibit many common bacteria (Wood, 1989). The optimum 

pH for most species is near neutral. One of the most important features ofbacteria as a 

group is their biochemical versatility. Some species of bacteria, like Pseudomonas 5p., is 

able to metabolize a wide range of chemicals including pesticides. Thiobacillus 

ferrooxidans gets its energy from the oxidation of reduced sulfur compounds and ferrous 

ions (Wood, 1989). Several studies have successfully degraded endosulfan with the use 

of bacteria. Sutherland et al. (2000), for example, used a Mycobacterium strain to degrade 

technical endosulfan. Kwon et al. (2005) used Klebsiella pneumoniae to degrade 

endosulfan without formation of the toxic metabolite, endosulfan sulfate. Kumar et al. 
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(2006) have been able to degrade endosulfan with the use of S'tenotrophomonas 

maltophilia and Rhodococcus erythropolis. 
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CHAPTER III 

METHODOLOGY 

The procedures below were repeated twice: once during the wet season (June to 

October) and again during the dry season (November to March). For the purpose of this 

study, the wet season will be identified as WS and the dry season as DS. 

Plot design 

The plots are located in an open area at the USDA, Subtropical Horticulture 

Research Station in Miami, FL containing a Pennsuco Marl (coarse-silty, carbonatic, . 

hyperthermic typic fluvaquent) soil. A 10 x 15m section of land was cleared and graded 

to provide a 3 to 5° slope. The slope was created to produce runoff and move soil 

downslope (Figure 6). Several 3 m wide rows with 46 em row spacing of snap beans 

were planted along a 11.2 m long by 2.4 m wide strip in the center, upslope section of the 

field. Switchgrass buffer strips, alternating with strips of bare soil 1.8 m long by 2.8 m 

wide, were planted downslope from the edge of the bean field. For WS, the switchgrass 

was planted by direct seeding on the buffer strip areas. ForDS, the switchgrass was 

grown in trays for 4-5 weeks and transplanted as sod. Soil was raked to provide a smooth 

slope from the snap bean area to the buffer area. A sprinkler irrigation system was set up 

and used twice a week (if no rain occurred) to provide 1.3 em of water per irrigation. 

Figure 7 shows a picture of the test plot with the switchgrass buffer strip and strip of bare 

soil. Beans received 72 kg ha- 1 10-10-10 solid fertilizer broadcasted after emergence. 

Switchgrass received monthly applications of approximately 10 kg ha-1 liquid 10-10-10 

as a foliar spray. 
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Establishment of Switchgrass 

Establishment of switchgrass for the butTer strips was very difficult. In WS, the 

switchgrass \vas seeded onto the switchgrass buffer areas. Most of the switchgrass was 

ovettaken by weeds before the seeds had a chance to germinate. Several species of weeds 

composed of 60 to 70 percent of the buffer strips, with the remainder being switchgrass. 

The most commonly found weeds in the buffer strip are listed in Figure 8. EtTorts were 

made to maintain the plots weed-free by hand-weeding and re-seeding, but these were 

unsuccessful. 

Establishment of switchgrass in DS, was attempted by growing the switchgrass in 

trays, like sod, and then transplanting them to the location of the buffer strips. Although 

more switchgrass cover was achieved this way, the switchgrass could not fully compete 

with the weeds. About 20-30 percent of the switchgrass butTer strip was covered with 

weeds during DS. Furthennore, all the switchgrass that was transplanted as sod died by 

the time the experiment was completed. 

Endosulfan Application 

Once plants reached the 2-3 leaf growth stage endosulfan was applied at a rate of 

1.12 kg a.i. ha-1 with a backpack sprayer and hand wand as a foliar spray (Figure 9). The 

commercial brand Thionex® SOW (wettable powder, 50% a.i.), manufactured by 

Makhteshim Agan of North America, Inc., was used. Figure 10 indicates the dates of 

endosulfan application for WS and DS. 

Soil Sampling 

Soil in the switchgrass buffer strip and bare soil areas was sampled the day before 

endosulfan application and 1, 7, 14, 28, and 49 days after the day of application. Samples 
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were taken at 0.3, 0.9, and 1.5 m from the edge of the bean field in both the switchgrass 

buffer strip and bare soil areas. Soil samples, extracted with a 2 em diameter sampler to a 

depth of 18 em, were divided between depths of 0-6 em (upper layer), 6-12 em (middle 

layer), and 12-18 em (lower layer) from the soil surface. At each sampling date a 

different row was randomly selected and sampled in the switchgrass buffer strip and in 

the bare soil areas. Figure 10 indicates the days the soil was sampled for WS and DS. Soil 

samples were stored in labeled sampling bags at 4 °C for no longer than two weeks 

before analysis. 

Endosulfan Analysis 

Endosulfan was extracted from soil samples using the method described in 

Siddique et al. (2003). Three grams each of air dried soil sample was shaken with 10 mL 

of acetonitrile for 1 hour at 180 rpm on a New Brunswick Scientific Innova 2100 

platform shaker. Solid particles were allowed to settle and the slmTy was centrifuged with 

at 3400 rpm for l 0 minutes on a Fisher Scientific Marathon 8K bench-model centrifuge. 

The supernatant was decanted, and the resulting mixture was stored in glass vials in the 

dark at 4 oc for 5-6 weeks until analysis. Endosulfan was analyzed using reversed phase 

high performance liquid chromatography (RP-HPLC) for a-endosulfan, ~-endosulfan, 

and endosulfan sulfate. The mobile phase was acetonitrile:water (70:30 v/v) at a flow rate 

of 1 mL min- 1
• The injection volume was 20 J..!L. Standards for a-endosulfan, ~­

endosulfan, and endosulfan sulfate were purchased from Chern Service, Inc. Retention 

times were as follows: 8 min for endosulfan sulfate; 10.2 min for ~-endosulfan; and 11.4 

min for a-endosulfan. 
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Soil Microbial Analysis 

Soil microbial analysis was conducted for all soil samples collected at 0.3 and 0.9 

m from the edge ofbean field. Only the top layer (0-6 em from surface) was analyzed. 

Analyses were conducted in triplicate. Soil moisture content was detem1ined before 

analysis with a small part (10 g) of the soil samples. 

For soil fungi analysis, 1 g of each soil sample was diluted with normal saline 

solution (0.9% w/v ofNaCl) by 10-3, 104 and 10-5 mL and spread on dichloran-rose 

bengal (DRBA) agar for analysis offungi. To make 25 plates ofDRBA, 15.8 g of 

dichloran-rose bengal chloramphenicol agar from Becton, Dickinson and Company (BD) 

were stirred into 500 mL of deionized H20 in a 1 L glass container and loosely capped. 

Agar was then autoclaved at 121° for 15 min (liquids cycle) in a Harvey SterileMax 

steam sterilizer. Under aseptic conditions, 20 mL of the liquid agar was poured onto each 

media plate and allowed to congeal for one hour. Plates were closed airtight and stored 

upside-down at room temperature for one week. One 11L each of the diluted soil samples 

was then spread under aseptic conditions onto each media plate with a plastic spreader. 

Plates were closed with self-sealing film and stored upside-down in the dark at room 

temperature for analysis. Fungal enumeration was carried out at 24, 48, 72, 96, 120, 144, 

168, and 336 h. Recorded fungal counts were calculated with the equation 

where F 0 is the observed fungal counts on a media plate, W d is the dry soil weight, W w is 

the wet soil weight, and Fr are the recorded fungal counts used for analysis. 
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For soil bacteria analysis, 1 g of each soil sample was diluted with normal saline 

solution (0.9% w/v ofNaCI) by 10-5
, 10-6 and 10-7 mL and spread on tryptic soy agar 

(TSA) with cycloheximide for analysis of bacterial colonies. To make 25 plates ofTSA, 

1.5 g ofBD Bacto tryptic soy broth and 7.5 g ofBD Bacto agar were stirred with 500 mL 

of deionized lbO and loosely capped. Agar was autoclaved at 121° for 15 min. (liquids 

cycle). In a 10 mL beaker, 100 mg of Sigma cycloheximide was stirred with 7 mL of 

deionized H20 until dissolved. Cycloheximide solution was filtered aseptically with a 

200 nm filter into the agar container and stirred until evenly mixed. Under aseptic 

conditions, 20 mL of the liquid agar was poured onto each media plate and allowed to 

congeal for one hour. Plates were closed airtight and stored upside-down at room 

temperature for one week. One f.J.L each of the diluted soil samples was then spread under 

aseptic conditions onto each media plate with a plastic spreader. Plates were closed with 

self-sealing film and stored upside-down in the dark at 28 oc for analysis. Bacterial 

enumeration was carried out at 24, 48, 72, 96, 120, 144, 168, and 336 h. Recorded 

bacterial counts were calculated with the equation 

Br = Bo ( Wct ), 
Ww 

where Bois the observed fungal counts on a media plate, W d is the dry soil weight, Ww is 

the wet soil weight, and Br are the recorded fungal counts used for analysis. 

Statistical Analysis 

Statistically significant differences between fungal or bacterial populations in the 

bare soil areas and switchgrass filter strips during the tested days, distances, and seasons 

were determined post-experiment by an analysis of variance (ANOVA). The statistical 
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package SPSS (version 15) was used to calculate the one-way, two-way, and multivariate 

ANOV As for all possible interactions between cover, season, day, and distance. Data 

V•iere checked for normality prior to the ANOV A. Non-normal data were transformed 

using the mathematical transformation square root (~x +.05) for fungi and bacteria and 

rechecked for normality. Holm's sequential Bonferroni procedure was used for the three­

way comparisons. Statistically significant differences between treatments were 

determim:d at alpha (a)= 0.05. 
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Endosulfan Analysis 

CHAPTER IV 

RESULTS 

RP-HPLC analysis of the soil samples did not yield the characteristic signals for 

a, ~' and endosulfan sulfate. Endosulfan concentrations in the runoff from the bean field, 

if any, must have been below the RP-IIPLC detection limit of 0.3 ppm. The solutions of 

the extracted endosulfan from the soil samples have been saved and will be analyzed 

post-experiment by gas chromatography with electron capture detector (ECD-GC), which 

can detect endosulfan concentrations as low as 0.002 ppm. Samples analyzed by ECD­

GC will examined for a-endosulfan, ~-endosulfan, and endosulfan sulfate. 

Research performed by Joseph et al. (2007) on the same field plot as this research 

was conducted indicates that there were no statistically significant differences observed 

on soil respiration during the wet and dry seasons before and after endosulfan application. 

During the wet season, C02 levels averaged at 335.8j.tmol mor1
, soil moisture at 8.15 

mbar, and soil temperature at 28.0 °C. During the dry season, C02 levels were 281.1 

j.tmol mor1
, soil moisture 7.7 mbar, and soil temperature 21.9 °C. The pH of all soil 

samples was 7.8 ± 0.2. 

Soil Fungi 

As explained in the Methods section, soil samples were diluted to 1 o-3
, 1 0-4 and 

1 o-s mL before fungi analysis. Samples diluted to 1 o-3 mL had the most normal 

population distribution. The soil in dilutions 10-4 and 1 o-s mL was too diluted for fungal 

enumeration. Fungal counts for dilution 1 o-3 mL were mathematically transformed by 

using their square root for further analysis of soil fungi. For discussion purposes, the 
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results presented here take into consideration this mathematical transformation and the 

dilution factor. 

The ANOV A revealed a significant individual effect by season, cover, and day. 

The treatment interactions between season and cover; season and day; cover and day; 

season, distance and day; cover, distance and day; and season, cover, distance and day 

were also found to have a significant effect on soil fungi (p < 0.05) (Table 1). 

Season comparison: 

Overall mean fungal counts vvere significantly higher during DS than during WS 

(p < 0.0001) (Table 2; Figure 11). During WS fungal counts had a mean of3.504 and a 

95% confidence interval of2.764 and 4.243. During DS fungal counts had a mean of 

8.787 and a 95% confidence interval of 8.047 and 9.526. 

Cover comparison: 

Overall mean fungal counts were also significantly higher in the switchgrass 

buffer strip than in the bare soil areas (p < 0.0001) (Table 3; Figure 11). Fungal counts 

had a mean of 7.606 with a 95% confidence interval of 6.867 and 8.346 for the 

switchgrass buffer strip and a mean of 4.684 with a 95% confidence interval of 3.944 and 

5.423 for the bare soil areas. 

Day comparison: 

Overall mean fungal counts also significantly increased through time (p < 

0.0001 ). The fungal count mean for both seasons was 4.805 for day 0, 5.781 for day 1 

and 7.850 for day 28, though variation exits (Table 4; Figure 12). 
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Treatment interactions: 

Total soil fungi during WS was not significantly different between the bare soil 

and switchgrass buffer strip treatments (p = 0.080) (Table 5). Soil fungi had a mean of 

2.847 and a 95% confidence interval of 1.801 and 3.893 for the bare soil treatment For 

the switchgrass buffer strip, the mean soil fungi count was 4.161 with a 95% confidence 

interval of 3.115 and 5.207 (Table 6). There was more variability in the switchgrass 

buffer strip treatment at 0.9 m than for any other treatment or distance in WS (Figure 13). 

Total soil fungi was statistically different between treatments forDS (p < 0.0001) 

(Table 5). Soil fungi had a mean of 6.521 for the bare soil treatment and a 95% 

confidence interval of 5.475 and 7.567. For the switchgrass buffer strip, soil fungi 

averaged at 11.052 and had a 95% confidence interval of 10.006 and 12.098 (Table 6). 

There was more variability within treatments and distances for DS than for WS (Figure 

14). 

In the bare soil area at 0.3 m, fungal counts decreased by about 50% from day 0 

(mean= 3.804) to day 1 (mean= 1.831 ), but this difference was not found to be 

statistically significant (p = 0.128). The increase from day 1 to day 28 (mean= 8.786) at 

0.3 m was by about 500% and was found to be statistically significant at the a = 0.05 

level (Table 7, 8; Figure 12). At 0.9 m, the same trend was observed, with a small decline 

in fungal counts between day 0 (mean= 3.901) and day 1 (mean= 2. 789) that is not 

statistically significant (p = 0.387), followed by a significant increase in fungal counts (p 

= 0.002) between day 1 and 28 (mean= 6.993) (Table 7, 8; Figure 12). 

Fungal counts in the switchgrass buffer strip followed a different trend. At 0.3 m 

there was a significant increase in fungal counts (p = 0.006) between day 0 (mean= 
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5.632) and day 1 (mean= 9.290), then a significant decrease (p = 0.002) between day 1 

and day 28 (mean= 5.091). Fungal counts at day 0 and day 28 were not different (p = 

0.673) (Table 7, 8: Figure 12). At 0.9 m fungal counts increased significantly (p = 0.012) 

between day 0 (mean= 5.882) and day 1 (mean= 9.216), followed by a small increase 

between day 1 and day 28 (mean= 1 0.528) that was not significant (p = 0.308) (Table 7, 

8; Figure 12). 

Soil Bacteria 

Soil samples were diluted to 10-5
, 10-6 and 10·7 mL before bacterial analysis. 

Samples diluted to 1 o·6 mL had the most normal population distribution. The soil in 

dilution 1 o·5 showed too many bacterial colonies for analysis and the soil in dilution 1 o·7 

mL was too diluted to provide enough bacterial colonies for analysis. Bacterial counts for 

dilution 1 o·6 mL were mathematically transformed by using their square root for further 

analysis of soil bacteria. For discussion purposes, the results presented here take into 

consideration this mathematical transformation and the dilution factor. 

The soil bacteria ANOV A revealed a significant individual effect by season and 

day. The treatment interactions between cover and distance; season and day; distance and 

day; season, cover and distance; and season, distance and day were also found to have a 

significant effect on soil fungi (p < 0.05) (Table 9). 

Season comparison: 

Overall mean bacterial counts were significantly higher in WS than in DS (p < 

0.0001) (Table 1 0; Figure 15). During WS bacterial counts had a mean of 192.151 and a 

95% confidence interval of 181.257 and 203.044. During DS bacterial counts had a mean 

of 8.552 and a 95% confidence interval of -2.341 and 19.445 (Table 1 0). 
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Cover comparison: 

Overall mean bacterial counts were higher in the switchgrass buffer strip than in 

the bare soil areas, but this difference was not significant at the a = 0.05 level (p = 0.221) 

(Table 11, Figure 15). Bacterial counts had a mean of 105.100 with a 95% confidence 

interval of94.206 and 115.993 for the switchgrass buffer strip and a mean of 95.603 with 

a 95% confidence interval of 84.710 and 106.496 for the bare soil areas (Table 11 ). 

Day comparison: 

Overall mean bacterial counts significantly increased through time (p < 0.0001 ). 

The bacterial count mean for both seasons was 25.993 for day 0, 125.258 for day 1, and 

149.802 for day 28 (Table 1 2; Figure 16). 

Treatment interactions: 

Total soil bacteria during WS was not significantly ditrerent between the bare soil 

and switchgrass buffer strip treatments (p 0.159) (Table 13). Soil bacterial counts had a 

mean of 184.408, with a 95% confidence interval of 169.003 and 199.814 for the bare 

soil treatment. For the switchgrass buffer strip, soil bacterial counts averaged at 199.893 

with a 95% confidence interval of 184.487 and 215.298 (Table 14; Figure 15). 

Soil bacterial counts were not significantly different between bare soil and 

switchgrass buffer strip treatments in DS (p = 0.747) (Table 13), although bacteria in the 

switchgrass was slightly higher. The mean soil bacterial counts was 6. 797 with a 95% 

confidence interval of -8,608 and 22.202 for the bare soil treatment. For the switchgrass 

buffer strip, soil bacteria averaged at 10.306 and had a 95% confidence interval of -5.099 

and 25.712 (Table 14; Figure 15). 
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Bacteria increased steadily in the bare soil area from day 0 to day l to day 28 at 

the 0.3 m distance. On day 0 mean bacterial counts were 52.846. By day 1 mean bacterial 

count was 79.783, which was not significantly different at the a= 0.05 level (p = 0.158). 

The increase in bacterial counts between day 1 and day 28 was significant (p < 0.0001), 

averaging at 180.508 (Table 15, 16; Figure 16). At 0.9 m a different trend was observed: 

there was a significant increase (p < 0.0001) in bacterial counts between day 0 (mean= 

4.309) and day 1 (mean= 135.685). A small decrease in bacteria occurred by day 28, 

where the mean was 53.016. This decrease was not significant at the a= 0.05 level (p = 

0.034) (Table 15, 16; Figure 16). 

Bacterial populations in the switchgrass buffer strip followed a similar trend to 

that found in the bare soil area. At 0.3 m bacteria significantly increased from day 0 

(mean= 43.288) to day 1 (mean 84.846) (p = 0.032). Another significant increase 

occurred by day 28 (mean 163.782) (p < 0.0001) (Table 15, 16; Figure 16). At 0.9 m 

bacterial counts also increased significantly between day 0 (mean= 3.528) and day 1 

(mean= 200.720) (p < 0.0001 ). However, there was a significant decline in bacterial 

counts by day 28 (mean= 134.433) (p = 0.001) (Table 15, 16; Figure 16). 
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CHAPTER V 

DISCUSSION & CONCLUSIONS 

Use of S witchgrass Bufier Strips in South Florida 

Switchgrass is native to South Florida and a suggested species for buffer strips by 

the USDA (USDA, 1999). However, this experiment showed the complexities of 

switchgrass as the main vegetation in a buffer strip to reduce pesticide runoff due to the 

problems in establishment and maintenance. Other studies have had success in reducing 

contaminants using a switchgrass buffer strip (Blanco-Canqui et al., 2005; Mersie et al.. 

2005). The literature also indicates that Panicum virgatum is a hardy grass that tolerates 

drought, very wet conditions. poor soils, and can be weedy or invasive in certain 

circumstances (USDA, 2001 ). However, the unexpected hardships in establishing 

switchgrass faced during this study indicate otherwise. The poor establishment of the 

grass and high maintenance required to prevent weeds from overtaking the switchgrass 

buffer strip and keeping it alive makes it inefficient for use in buffer strips in practical 

scenarios. 

The difficulty in establishing the switchgrass might have been due to the tillage 

practice to the buffer strip area prior to switchgrass establishment. The seeds of weeds 

that were there prior to the experiment could have germinated when exposed to sunlight 

and taken over before the switchgrass seeds were able to germinate. Whether this is true 

or not, farmers and landowners do not want to spend their resources in establishing buffer 

strips that create complexities. Installation of buffer strips often does not benefit the 

landowners themselves, but the surrounding land, water, and environment. Herbaceous 

plants used for butTer strips should be easy to establish, very low maintenance, and 
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overall inexpensive to retain. They should also perform the task required, namely 

preventing sediment, pesticide, and nutrient runoff. 

An assessment of the location of the buffer strip should be done prior to 

establishing a grass for this purpose. Local grasses that efTectively reduce runoff and 

remain in the designated area throughout the year should be used first. Although there 

was natural switch grass adjacent to the test plot for part of the year, the grass ''moved'' as 

the weather changed and was eventually replaced by other grasses and broad leaf plants. 

The switchgrass ncar the test field seemed to prefer shaded areas, where weed 

competition is at a minimum. Farmers and landowners know their property best and have 

seen the succession throughout the years and weather events. They should work closely 

with experts to determine which grasses are best for them to use in butTer strips. 

Effects of Endosulfan Runoff on Soil Fungi and Bacteria 

Research performed by Joseph et al. (2007) on the same field plot as this research 

was conducted indicates that there were no statistically significant differences observed 

on soil respiration rates before and after endosulfan application. Soil respiration normally 

refers to the total outflow of C02 at the soil surface. It is the combination of biotic, 

chemical and physical processes. This is an indication that microbial respiration, a biotic 

process, was not affected by the application of endosulfan. 

The RP-HPLC endosulfan analysis did not provide any positive results because of 

the lower detection limit of 0.3 ppm, therefore, the specific effects of endosulfan on soil 

fungi and bacteria cannot be detem1ined. ECD-GC analysis of endosulfan concentrations 

in the soil is required to accurately measure lower concentrations of endosulfan in the soil 
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not detected by the RP-HPLC. The ECD-GC can detect endosulfan concentrations as low 

as 0.002 ppm to determine the effects of endosulfan on soil fungi and bacteria. 

It can be assumed that the runoff from the bean field did not contain amounts of 

endosulfan high enough to be deadly to most insects and higher animals at the 1.12 kg a.i. 

ha-
1 
application rate per the toxicity estimates provided in the EPA's ECOTOXicology 

database (EPA, 2007). Endosulfan concentrations causing mortality to bird species 

(LD5o) are above 690 ppm except for the Northern bobwhite (Colinus virginianus) and 

the Mallard duck (Anas platyrhynchos), whose LD50 are 42 and 28 ppm respectively 

(EPA, 2007). The LD50 of most insects, except for a few that are targeted by endosulfan, 

are also well above the 0.3 ppm detection limit of the RP-HPLC. No reptiles have an 

LDso of 0.3 ppm or less (EPA, 2007). However, an LD50 of 0.3 ppm or below is common 

in amphibians, some worms, crustaceans, and fish (Kegley, 2007). Endosulfan 

concentrations below 0.3 ppm might not cause death in most species; however, they can 

affect important neurological processes in several species causing imbalance, confusion, 

difficulty breathing, convulsions, temporary blindness, loss of consciousness, and even 

deformations. 

It is important to note that endosulfan is toxic to humans, animals, and insects. 

The results of our studies are not meant to replace or contradict the warnings and 

suggestions made by the EPA and other toxicity studies, or provided on the endosulfan 

pesticide label. This study imitated two yearly applications of endosulfan on a small field. 

The accumulation of endosulfan runoff could and probably would be greater along 

steeper sloping farmland, in larger fields, in fannland that is adjacent other fannland 
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using endosulfan. and in land that has had cndosulfan application for extended periods of 

time. 

EtTects of Switchgrass Buffer Strip on Soil Fungi and Bacteria 

Switchgrass had a positive effect on soil fungi and bacteria. The mean fungal 

counts for all seasons, distances, and days for the bare soil areas was 4.684. For the 

switchgrass buffer strip, it was 7.606 (Table 3). The mean bacterial count for the bare soil 

areas was 95.603. For the switchgrass buffer strip, it was 105.100 (Table 11 ). 

According to the Soil Biology Primer (Tugel et al., 2000) and other sources 

(Alexander, 1977; Wood, 1989; Bardgett, 2005) bacteria are more competitive when 

substrates that are easy to metabolize are present. This includes fresh, young plant residue 

and the compounds found near living roots. Bacteria are especially concentrated in the 

rhizosphcre, where plants produce certain types of root exudates to encourage the growth 

of protective bacteria. Fungal growth is also promoted with plant residue. The 

switchgrass in the bufTer strip and the exudates from its extensive root system encouraged 

growth of bacteria and fungi. The bare soil areas lacked this factor and therefore 

supported less bacteria and fungi. 

The results from this study indicate that buffer strips increase soil bacteria and 

fungi and may be able to filter harmful bacteria from agricultural fields befc)re reaching a 

body ofwater (Staddon et al., 2001; Boyer, 2006). As previously described, fungi and 

especially bacteria can metabolize a wide range of chemicals including pesticides (Wood, 

1989). Buffer strips can therefore decrease pesticide runoff by preventing the sediment to 

which pesticide adsorbs and by metabolizing the pesticides that reach it. Since bacteria 
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and fungi also cycle nutrients, fertilizer runoff can also be reduced by these soil 

organisms in the buffer strip. 

Seasonal Effects on Soil Fungi and Bacteria 

There was a significant difference in soil fungi and bacteria between the wet 

season and the dry season. Soil fungi more than doubled from the wet season to the dry 

season. The mean fungal count during the wet season was 3.504. During the dry season, 

it was 8.787 (Table 2). Season had an opposite effect for soil bacteria. During the wet 

season, the mean bacterial count was 115.688. During the dry season, it dropped to 

15.777 (Table 10). 

These results support the literature stating that, in drier conditions, soil bacteria 

die or go dom1ant and soil fungi has an advantage since they can use their hyphae to get 

to the moisture pockets in the soil (Bardgett, 2005). During the wet season, bacteria 

dominated in the soil. During the dry season, fungi dominated in the soil and bacterial 

numbers plummeted. The difference in soil fungi between the wet and dry seasons is not 

as great as the difference in soil bacteria because fungi also flourish in wet conditions. 
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Common name techni cal endosulfan alpha ( o:) endosulfan beta ( ~) endosulfan endosul fan sulfate 

Empirical formula CgH5CI60 3S CgH6CI60 3S CgH6CI50 3S C9H5CI6S04 
01 01 

~Qtr ~ ~ 01)- Cl 

S Cl . 

Molecular structure I . a 
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Cl O - S 0 a o-&" II 
Cl 
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0 

CAS registry number 115-29-7 959-98-8 33213-65-9 1031-07-8 

Molecular weiqht 406 .95 406 .93 406 .93 422 .90 

Solubility in water'" 60 to 1 00 11g/L 530 ~g/L 280 1-lg/L 117 to 220 ~g/L 
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Figure 2: Metabolism of endosulfan. From Ballschmitter et al., 1967. 
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Figure 3: Target pests of endosulfan, adapted from EPA (2002). 

Target Pests: 

Meadow spittlebug, Army cutworm, Aphids, Bean leaf skeletonizer, 
Cowpea curculio, Cucumber beetle, Flea beetle, Green stink bug, 

Leafhoppers, Mexican bean beetles, Cabbage looper, Cabbage worm, 

Cabbage aphid, Cucumber beetles, Whitefly, Cutworms, Thrips, 
Diamondback moth, Corn earworm, Boll weevil, Bollworm, Lygus bugs, 
Melonworm, Pickleworm, Rindworm, Squash beetle, Squash bug, 

Blister beetle, Potato beetle, Rose chafer, Pepper maggot, Cinch bug, 
Crown mite, June bug, Harlequin bug, Grape phylloxera, 
and Grape leafhopper. 

33 



Figure 4: Agricultural use of endosulfan in the United States in 2002 created by the US 
Dept. of the Interior (2002). 
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Figure 5: Seasonal microbial activity in a temperate grassland or cropland, 
created by Tugel et al.(2000). 
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Figure 7: Test plot with the switchgrass buffer strip (left) and strip of bare soil (right). 

Figure 8: List of weeds found in switchgrass buffer strips. 

Scientific name of weeds: 
Eleusine indica 

Commelina diffusa var. diffusa 

Seteria parviflora 

Hyrtis alata 
Spermacoce terminalis 

Spermacoce asurgens 

Rumex acetosella 

Cyperus polystachyos 

Phyllanthus amarus 
Bidens alba 

Cyperus surinamensis 
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Figure 9: Application of endosulfan with a backpack sprayer and hand wand as a foliar 
spray. 
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Figure 10: Important dates of experiment. 

Wet Dry 
Season (Summer to Fall 2006) (Winter to Spring 20071 

Planting of switchgrass June 7th, 2006 November 15th, 2006 

Planting of beans August 17th, 2006 December 20th, 2006 

Endosulfan application September 13th, 2006 January 25th, 2007 

Day 0 September 13th, 2006 January 25th, 2007 
Cl 

Day 1 c: September 14th, 2006 January 26th , 2007 
c.. 
E Day 7 September 20th , 2006 February 1st, 2007 

"' en Day 14 September 27th, 2006 February 8th, 2007 
·c; 

Day 28 October 11th, 2006 February22nd, 2007 en 
Day49 November 11th, 2006 March 14th, 2007 

Removal of bean plants October 18th, 2006 March 13th, 2007 
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Figure 11: Comparison of fungal count for bare soil and switchgrass treatments for wet 
and dry seasons. 
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Figure 12: Fungal count by day, distance, and plant cover. 
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Figure 13: Box plot of fungal count for wet season. 
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Figure 14: Box plot of fungal count for dry season. 

20.00 

15.00 ... 
Cl) 

c.. 
Ill-
.... 0 
Co 
::I-
0 )( 
o---ns ·-C)o 10.00 c: Ill 

~0 
c: c 
ns 
Cl) 

:::!: 

5.00 

0.00 

bare 

Cover 

43 

switchgrass 

Distance 

0 0.3 m 
~ 0 . 9 m 



Figure 15: Comparison of bacterial count for bare soil and switchgrass treatments for wet 
and dry seasons. 
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Figure 16: Bacterial count by day, distance, and plant cover. 
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Figure 17: Box plot of bacterial count for wet season. 
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Figure 18: Box plot of bacterial count for dry season. 
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Table 1: Fungal count ANOV A table. 

Source df Type Ill SS Mean 
F Value Sig. Square 

Season 1 502.384 502.384 103.132 < 0001 
Cover 1 153.74 153.74 31.561 <.0001 
Distance 1 11.879 11.879 2.439 0.125 
Day 2 116.018 58009 11.908 < 0001 
Season * Cover 1 46.578 46.578 9.562 0.003 
Season * Distance 1 2.735 2.735 0.562 0.457 
Cover * Distance 1 20.163 20.163 4.139 0.047 
Season * Cover* Distance 1 4.504 4.504 0.925 0.341 
Season* Day 2 117.719 58.86 12.083 <.0001 
Cover* Day 2 157.308 78.654 16.146 <0001 
Season * Cover * Day 2 6.512 3.256 0.668 0.517 
Distance * Day 2 9.383 4.691 0.963 0.389 
Season * Distance * Day 2 119.574 59.787 12.273 <.0001 
Cover * Distance * Day 2 59.886 29.943 6.147 0.004 
Season * Cover * Distance * Day 2 176.901 88.451 18.158 < 0001 

Table 2: Fungal count during wet and dry seasons. 

Season Mean Std. Error 
95% Confidence Interval 

Lower Bound Upper Bound 

wet 3.504 .368 2.764 4.243 
dry 8.787 .368 8047 9.526 

Table 3: Fungal count for bare soil and switchgrass buffer strip treatments. 

95% Confidence Interval 
Cover Mean Std. Error 

Lower Bound Upper Bound 

bare 4.684 .368 3.944 5.423 
switchQrass 7.606 .368 6.867 8.346 
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Table 4: Fungal count for days 0, 1, and 28. 

95% Confidence Interval 
Day Mean Std. Error 

Lower Bound Upper Bound 

0 4.805 .451 3.899 5.711 
1 5.781 .451 4.875 6.687 

28 7.850 .451 6.944 8.755 

Table 5: Pairwise comparisons between seasons and plant covers for fungal count. 

Season (I) Cover (J) Cover 
Mean 

Std. 
Difference Sig.(a) 

(1-J) 
Error 

wet bare switchqrass -1.314 .736 .080 
switchgrass bare 1.314 .736 .080 

dry bare switchgrass -4.531 (*) .736 .000 
switchgrass bare 4.531(*) .736 .000 

Based on est1mated margmal means 
* The mean difference is significant at the .05 level. 
a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Table 6: Fungal count by season and plant cover. 

Std. 95% Confidence Interval 
Season Cover Mean 

Error Lower Bound Upper Bound 

wet bare 2.847 .520 1.801 3.893 
switch grass 4.161 .520 3.115 5.207 

dry bare 6.521 .520 5.475 7.567 
switchgrass 11.052 .520 10 006 12.098 
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Table 7: Fungal count for bare soil and switchgrass buffer strip treatments, distance, and 
days 0. 1, and 28. 

Cover Std. Error 
95% Confidence Interval 

Distance Day Mean 
Lower Bound Upper Bound 

bare 0.3m 0 3.804 .901 1.992 5.616 
1 1.831 .901 .019 3.642 
28 8.786 .901 6.975 10.598 

0.9 m 0 3.901 .901 2.090 5.713 
1 2.789 .901 .977 4.600 
28 6.993 .901 5.181 8.804 

switchgrass 0.3m 0 5.632 .901 3.820 7.443 
1 9.290 .901 7.478 11.102 
28 5.091 .901 3.280 6.903 

0.9m 0 5.882 .901 4.070 7.694 
1 9.216 .901 7.404 11.027 
28 10.528 .901 8.716 12.340 
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Table 8: Pairwise comparisons between treatments and distance for days 0, 1, and 28 for 
fungal counts. 

Mean 
Cover Distance (I) Day (J) Day Difference Std. Error Sig.(a) 

(1-J) 

bare 0.3m 0 1 1.973 1.274 .128 
28 -4 982(*) 1.274 .000 

1 0 -1.973 1.274 .128 
28 -6 956(*) 1.274 .000 

28 0 4.982(*) 1.274 .000 
1 6.956(*) 1.274 .000 

0.9m 0 1 1.113 1.274 .387 
28 -3.091 (*) 1.274 .019 

1 0 -1.113 1.274 .387 
28 -4.204(*) 1.274 .002 

28 0 3 091(*) 1.274 .019 
1 4.204(*) 1.274 .002 

switch grass 0.3m 0 1 -3 658(*) 1.274 .006 
28 .541 1.274 .673 

1 0 3.658(*) 1.274 .006 
28 4 199(*) 1.274 .002 

28 0 -.541 1.274 .673 
1 -4.199(*) 1.274 .002 

0.9m 0 1 -3.334(*) 1.274 .012 
28 -4.646(*) 1.274 .001 

1 0 3.334(*) 1.274 .012 
28 -1.312 1.274 .308 

28 0 4 646(*) 1.274 .001 
1 1.312 1.274 .308 

Based on estimated margmal means 
* The mean difference is significant at the .051evel. 
a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
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Table 9: Bacterial count ANOV A table 

Source df Type Ill SS 
Mean 

F Value Sig. Square 

Season 1 606753.47 606753.47 574.205 <.0001 
Cover 1 162341 1623.41 1.536 0.221 
Distance 1 17.369 17.369 0.016 0.899 
Day 2 206278.463 103139.23 97.606 <.0001 
Season* Cover 1 645.304 645.304 0.611 0.438 
Season * Distance 1 0.049 0.049 0 0.995 
Cover • Distance 1 4942.549 4942.549 4.677 0.036 
Season* Day 2 190648.851 95324.426 90.211 <.0001 
Cover • Day 2 5919.055 2959.528 2.801 0.071 
Distance * Day 2 67918.033 33959.016 32.137 <.0001 
Season • Cover • Day 2 3244.854 1622.427 1.535 0.226 
Season * Cover * Distance 1 5456.6 5456.6 5.164 0.028 
Season * Distance * Day 2 66126.555 33063.278 31.29 <.0001 
Cover * Distance * Day 2 1979.374 989.687 0.937 0.399 
Season * Cover • Distance * Day 2 2351.5 1175.75 1.113 0.337 

Table 1 0: Bacterial count during wet and dry seasons. 

95% Confidence Interval 
Season Mean Std. Error 

Lower Bound Upper Bound 

wet 192.151 5.418 181.257 203.044 
dry 8.552 5.418 -2.341 19.445 

Table 11: Bacterial count for bare soil and switchgrass buffer strip treatments. 

95% Confidence Interval 
Cover Mean Std. Error 

Lower Bound Upper Bound 

bare 95.603 5.418 84.710 106.496 
switch grass 105.100 5.418 94.206 115.993 
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Table 12: Bacterial count for days 0, 1, and 28. 

95% Confidence Interval 
Day Mean Std. Error 

Lower Bound Upper Bound 

0 25.993 6.635 12.651 39.334 
1 125.258 6.635 111.917 138.600 

28 149.802 6.635 136.461 163.144 

Table 13: Pairwise comparisons between seasons and plant covers for bacterial counts. 

Season (I) Cover (J) Cover 
Mean 

Difference Std. Error Sig.(a) 
(1-J) 

wet bare switch grass -15.484 10.836 .159 
switch grass bare 15.484 10.836 .159 

dry bare switchgrass -3.509 10.836 .747 
switch grass bare 3.509 10.836 .747 

Based on est1mated margmal means 
* The mean difference is significant at the .05 level. 
a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments). 

Table 14: Bacterial count by season and plant cover. 

Season Cover Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
wet bare 184.408 7.662 169 003 199.814 

switchgrass 199.893 7.662 184487 215.298 
dry bare 6.797 7.662 -8.608 22.202 

switchgrass 10.306 7.662 -5.099 25.712 
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Table 15: Bacterial count for bare soil and switchgrass buffer strip treatments, distance, 
and days 0, 1, and 28. 

Cover Distance Day Mean Std. Error 
95% Confidence Interval 

LowerBound I UpperBound 

bare 0.3m 0 52.846 13.271 26.163 79.529 
1 79.783 13.271 53.101 106.466 
28 180.508 13.271 153.825 207.191 

0.9m 0 4.309 13.271 -22.374 30.991 
1 135.685 13.271 109.002 162.367 
28 120.486 13.271 93.803 147.168 

switch grass 0.3m 0 43.288 13.271 16.605 69.971 
1 84.846 13.271 58.163 111.529 
28 163.782 13.271 137.099 190.465 

0.9m 0 3.528 13.271 -23.154 30.211 
1 200.720 13.271 174.037 227.402 
28 134.433 13.271 107.750 161.116 
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Table 16: Pairwise comparisons between treatments and distance for days 0, 1, and 28 for 
bacterial count. 

Mean 
Cover Distance (I) Day (J) Day Difference Std. Error Sig.(a) 

(1-J) 

bare 0.3m 0 1 -26.937 18.768 .158 
28 -127 662(*) 18.768 .000 

1 0 26.937 18.768 .158 
28 -100 725(*) 18.768 .000 

28 0 127.662(*) 18.768 .000 
1 100.725(*) 18.768 .000 

0.9m 0 1 -131.376(*) 18.768 .000 
28 -116.177(*) 18.768 .000 

1 0 131.376(*) 18.768 .000 
28 15.199 18.768 .422 

28 0 116.177(*) 18.768 .000 
1 -15.199 18.768 .422 

switchgrass 0.3m 0 1 -41 558(*) 18.768 .032 
28 -120.494(*) 18.768 .000 

1 0 41 558(*) 18.768 .032 
28 -78.936(*) 18.768 .000 

28 0 120.494(*) 18.768 .000 
1 78 936(*) 18.768 .000 

0.9m 0 1 -197.191(*) 18.768 .000 
28 -130.904(*) 18.768 .000 

1 0 197.191 (*) 18.768 .000 
28 66.287(*) 18.768 .001 

28 0 130.904(*) 18.768 .000 
1 -66.287(*) 18.768 .001 

Based on est1mated margmal means 
* The mean difference is significant at the .05 level. 
a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
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Table 17: Pairwise comparisons between days and treatments for distances 0.3 and 0.9 m 
for fungal count. 

Mean 
Day Cover (I) Distance (J) Distance Difference Std. Error Sig.(a) 

(1-J) 
0 bare 0.3m 0.9m -.097 1.274 .939 

0.9m 0.3m .097 1.274 .939 
switch grass 0.3m 0.9m -.250 1.274 .845 

0.9m 0.3m .250 1.274 .845 
1 bare 0.3m 0.9m -.958 1.274 .456 

0.9m 0.3m .958 1.274 .456 
switchgrass 0.3m 0.9m .075 1.274 .954 

0.9m 0.3m -.075 1.274 .954 
28 bare 0.3m 0.9m 1.793 1.274 .166 

0.9m 0.3m -1.793 1.274 .166 
switchgrass 0.3m 0.9m -5.437(*) 1.274 .000 

0.9m 0.3m 5.437(*) 1.274 .000 
Based on est1mated margmal means 
* The mean difference is significant at the .05 level. 
a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 

Table 18: Pairwise comparisons between days and treatments for distances 0.3 m and 0.9 
m for bacterial count. 

Mean 
Day Cover (I) Distance (J) Distance Difference Std. Error Sig.(a) 

(1-J) 
0 bare 0.3 m 0.9m 48.538(*) 18.768 .013 

0.9 m 0.3m -48.538(*) 18.768 .013 
switchgrass 0.3m 0.9m 39.760(*) 18.768 .039 

0.9m 0.3m -39.760(*) 18.768 .039 
1 bare 0.3m 0.9m -55.901{*1 18.768 .005 

0.9m 0.3m 55 901C2_ 18.768 .005 
switch grass 0.3m 0.9 m -115.87 4(*) 18.768 .000 

0.9m 0.3m 115.874(*) 18.768 .000 
28 bare 0.3m 0.9m 60.022(*) 18.768 .002 

0.9m 0.3m -60.022(*1 18.768 .002 
switchgrass 0.3m 0.9m 29.349 18.768 .124 

0.9m 0.3m -29.349 18.768 .124 
Based on est1mated margmal means 
* The mean difference is significant at the .05 level. 
a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
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