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ABSTRACT OF THE THESIS 

MICROSCOPIC CHARACTERIZATION OF 

HYDROCARBON-POLYELECTROLYTE INTERACTIONS 

DURING COAGULATION

by

Vesna Dimitric Clark 

Florida International University, 1999 

Miami, Florida 

Professor Berrin Tansel, Major Professor 

The purpose o f this study was to investigate effectiveness o f polyelectrolyte in 

removal o f different hydrocarbons and to obtain information on settling velocity, size and 

density o f the floe. Image analysis technique provided multilevel data concerning 

interactions between hydrocarbons and polyelectrolyte. Captured images were digitized, 

enhanced by numerous filtering techniques and examined. Additional, video-monitoring 

system was used to provide information on settling velocity o f the floes. Results indicated 

that polyelectrolyte Cat-Floc 2953, in comparison to EB-5000, was more efficient in 

removal o f all hydrocarbons, which was supported with turbidity measurements, GS 

analysis and microscopic analysis.
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1. INTRODUCTION

Coagulation processes are usually used for the removal o f turbidity and suspended 

solids from contaminated water. The coagulation process destabilizes colloids and other 

suspended solids by the addition o f chemicals (coagulants) which agglomerate them into 

bigger floes, so that gravitational and inertial forces will predominate and affect the 

settling characteristics o f the particles. Within the last decade, the use o f polymers in 

water and wastewater treatment has been expanded for their ability to break down oil- 

water emulsions and form more dense floes.

Image analysis and video monitoring systems provided multilevel data 

concerning factors that influence effectiveness of cationic polyelectrolytes. The Image 

analysis system used in this study included a microscope, camera and Image-pro Plus 

software, while the video monitoring system was comprised of a camera, laser (as light 

source) and Flow Map 2.0 software. The image analysis system provided information on 

number, diameter, area o f oil droplets attached to floe and size of the floe. Statistical data 

and histograms were based on these measurements. Measurements including average 

settling velocity, cross-correlation velocity and direction o f flow were obtained by the 

video monitoring system and Particle image velocimetry (PIV).

The experimental designs included jar tests to identify the optimum conditions for 

removal o f the contaminants by coagulation. This was followed by Gas chromatography 

analysis both before and after coagulation, to provide data on removal efficiency of 

selected hydrocarbons. Turbidity and pH were also measured before and after addition of 

coagulants.
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Jar test results indicate that the application of Cat-Floc, a cationic coagulant, in 

the removal o f different hydrocarbons exhibited higher effectiveness than EB-5000. 

These findings were supported by chemical analysis results. EB-5000 produced denser 

floes which will be important for its application in sludge volume reduction, product 

water quality and effective solid-liquid separation processes, such as sedimentation, 

filtration and flotation.

Further research in the application of these polymers at higher hydrocarbon 

concentrations could provide more insight on existing relationships.
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2. OBJECTIVES

The purpose of this study was to provide multilevel data concerning interactions 

between hydrocarbons and polyelectrolytes, using the image analysis system. The 

primary objectives of the research are:

- to investigate the effectiveness o f polyelectrolytes in removal of different 

hydrocarbons from aqueous solutions;

to evaluate morphology of floe formation by the image analysis system;

- to characterize the removal o f oil droplets from oil-water emulsions by 

polyelectrolytes;

to measure effectiveness of different coagulants in terms of number and size of oil 

droplets attaching to the floe;

- to determine settling velocity, size and density of floes formed by the utilized 

polyelectrolytes.

3



3. LITERATURE REVIEW

The focus of this study was the application of the image analysis system to 

provide information on the effectiveness of specific polyelectrolytes in the removal of 

selected hydrocarbons from aqueous solutions. For these reasons literature review was 

concentrated on the coagulation process and different microscopic techniques for 

studying floe structure and floe characteristics. The applied techniques, and work 

completed on selected polymers and hydrocarbons, represent relevant and applicable 

research on the effectiveness o f coagulation process in removal of contaminants from 

surface water and provides information on floe properties.

3.1. Coagulation theory

Solid particles remain in water suspensions primarily due to their surface charges. 

Since similar particles carry the same electrical charge, they repel one another, rarely 

getting close enough to stick together. Particle size is also important: the smaller the 

particle, the greater is its surface charge to weight ratio (Regula, 1994). A solid, when 

broken into smaller pieces, has greater surface area per unit volume (specific surface 

area), more exposed charged particles and increased interparticle repulsion. A heavy 

concentration o f suspended solids causes more collisions and faster settling despite inter­

particle repulsions (Regula, 1994). The attraction of solid to water also plays a role in 

suspension separations. Hydrophilic or water- attracting materials like clays, silicates,
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and metal oxides are much harder to settle out than hydrophobic or water-repellent solids 

(Regula, 1994 andEdzwald, 1993).

The coagulation process involves the addition of a coagulant to fluid followed by 

rapid mixing, in order to destabilize the colloids and the other organic pollutants o f a 

contaminated mixture. Colloidal stability depends on the relative magnitudes o f the 

forces o f  attraction and the forces of repulsion. The attraction forces are due to Van der 

Waals forces, which are effective only in the immediate neighborhood o f the colloidal 

particle. The forces o f repulsion are due to the electrostatic forces of the colloidal 

dispersion. Initial destabilization o f particles occurs due to reduction in zeta potential. 

Zeta potential measures the charge o f the colloidal particles and is dependent on the 

distance through which the charge is effective. The higher the zeta potential, the greater 

are the repulsion forces between colloids; therefore, the more stable is the colloidal 

suspension. The destabilized particles aggregate due to provided agitation and Van der 

Waals attraction forces.

The primary mechanisms by which coagulation can remove organic contaminants 

involve colloidal destabilization, precipitation and coprecipitation steps (Randtke, 1988). 

Different chemical coagulants can induce destabilization o f particles by different 

mechanisms or combination o f mechanisms (Weber, 1972 and Dennett et al., 1996). 

Destabilization o f colloids can be induced by electrical double layer (EDL) compression, 

adsorption to produce charge neutralization, adsorption to permit interparticle bridging, 

and sweep coagulation (Randtke, 1988). Colloidal destabilization allows the removal o f 

the colloids by forming large floes that can be easily settled or easily filtered. Removal o f 

organic contaminants by coagulation depends on the magnitude to which the dissolved
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contaminants adsorb to other particles through chemical complexation, electrostatic 

attraction, hydrogen bonding or various other means. Adsorption of the organics onto 

floes is more effective than precipitation because of the trace quantities of the dissolved 

organics present in water (Randtke, 1988).

The fundamental purpose of slow mixing is to promote collisions between 

particles, for floe formation (particle flocculation). The process of flocculation has been 

theoretically described as the physical collision-agglomeration procedure carried out by 

various particle transportation mechanisms such as thermal motion (termed as Brownian 

movement), bulk transportation with fluid motion, and settling of particles (Weber, 1972 

and Tambo, 1991). Perikinetic flocculation refers to flocculation in which the 

interparticle contacts are produced by Brownian movement. In orthokinetic flocculation, 

the interparticle contacts are caused by fluid motion due to agitation. Flocculation caused 

by contacts resulting from differential settling, is a process in which rapidly settling 

particles overtake and collide with particles settling at slower rates. The frequency of 

particle contacts, and the rate at which particles grow, is controlled by the properties of 

water (temperature, viscosity, and density), the properties of particles (number 

concentration, density and size) and characteristics of slow mixing facilities such as 

detention time, flow pattern and mixing intensity (Regula, 1994). The design and 

operation of coagulation/flocculation systems are focused on the latter characteristics, 

because the designer and operator have little control over the properties of water and 

particles except particle destabilization (and possible production of particles by 

precipitation) accomplished by rapid mixing.
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Some solid-liquid separation processes such as sedimentation, flotation, filtration 

and membrane separation, always follow coagulation and flocculation. In order to 

improve the quality of formed floes, polymers can be utilized as coagulant aids or as 

primary coagulants (Tambo, 1991). Factors effecting polymer and bridging 

characteristics include ionic strength, presence of divalent or polyvalent cations and 

mixing intensity. Increase in ionic strength causes decrease in thickness of the electrical 

double layer and it is easier for an attached polymer to extend beyond the distance at 

which any substantial energy barrier against particle approach might exist. In polymer 

flocculation, the turbulence in the reaction vessel plays an important role in effective 

mixing, therefore slow mixing is imperative (Regula, 1994).

Coagulation is often very effective in removal of dissolved organic matter (DOM) 

depending on the charge, solubility and molecular size characteristics of the DOM. The 

efficiency of removing organic carbon is proportional to molecular size, where larger 

molecular-weight components are more easily removed. Hydrophobic constituents of 

DOM (humic and fiilvic acids) are preferentially sorbed on suspended colloidal particles 

(Dennett et al., 1996).

The coagulation process has been used for the removal of turbidity and could to 

some degree remove natural organic matter (NOM) which can function as a precursor to 

formation of disinfection by-products (DBP) (Krasner et ah, 1995). The concept of 

enhanced coagulation involves modification of coagulation conditions (type of coagulant, 

coagulant dosage and coagulation pH) in order to sustain effective turbidity removal and 

to provide increased removal of NOM (Krasner et ah, 1995). Higher dosage provides 

more metal (using aluminum salts) for either floe or complex formation; lower pH
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reduces the charge density of humic and fulvic acids, making them more hydrophobic 

and adsordable.

3.2. Hydrocarbons

Petroleum or crude oil, is a complex mixture of numerous hydrocarbons, 

primarily comprised of paraffins (alkanes), olefins (alkenes), naphtanes and aromatics. 

Principal liquid fuels are produced by fractional distillation of crude oils. Petroleum 

mixtures consist of more than 200 hydrocarbons, with each compound exhibiting 

different physical and chemical properties that control its fate and behavior in a specific 

environment.

The alkene groups, normally found in petroleum products are based on the type 

and degree o f processing involved. The cracking process of crude oils allows for the re­

formation of alkane chains. When a mixture o f alkanes (12 carbons or more) is converted 

at high temperatures (500°C), in the presence of a catalyst, the molecules break into 

smaller branched chains o f alkanes by radical substitution. The higher the desired octane 

content o f the fuel, the more branched the alkane chain becomes (Solomons, 1992). The 

degree o f branching of alkanes and alkynes in petroleum fuel oils is limited due to the 

cracking process.

Aromatic compounds found in petroleum based fuels are normally mono-cyclic or 

bi-cyclic six-membered rings with methyl susbstituted hydrogens. Compounds in this 

group include benzene, toluene, ethylbenzene, and xylene (BTEX). Separation techniques 

are based on the very diverse physical properties of these aromatic compounds.



Solubility is the partitioning of a chemical between the nonaqueous (free product 

layer) and water phase. Dissolution occurs as soluble petroleum hydrocarbons contact 

with water. Potential for dissolution is a function of each compound solubility and the 

presence of co-solvents. At higher original concentrations of mixed fuel, the insoluble 

layer becomes greater and the soluble portion of mixed fuels reaches a maximum 

dissolution in water.

Alkanes are mostly insoluble because of a high degree of carbon saturation. The 

solubility of petroleum hydrocarbons in water generally decreases as the carbon number 

increases for both chain and ring petroleum hydrocarbons. The addition of a second or 

third double bond increases solubility proportionally. The presence of a triple bond 

increases solubility more significantly than the presence of two double bonds. Therefore, 

the most water soluble petroleum hydrocarbons are those with the lowest molar volume 

and greatest aromatic characteristics (Solomons, 1992).

Many organic chemicals of environmental concern are hydrophobic. The less 

soluble a chemical in water, the more likely it is to sorb to the surfaces of sediments or 

suspended particles. The octanol/water partitioning coefficient, Kow, is related to the 

solubility of a chemical in water, and the higher the value the more a chemical tends to 

partition in the organic phase.

High molecular weight organics, those that are naturally hydrophobic, and those 

that posses functional groups able to result in their adsorption onto floe particles, are 

most likely to be removed by coagulation (Randtke, 1988). Sorption of hydrophobic 

compounds is often related to the organic content of the solids (sorbent) indicating a 

process of an organic-organic partitioning or absorption.
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The sorption mechanisms can be defined as: (1) physical adsorption due to van 

der Waals forces, (2) chemisorption due to chemical bonding or surface coordination 

reaction, and (3) partitioning of the organic chemical into organic a carbon phase of the 

particulates. Physical adsorption is a surface electrostatic phenomenon while surface 

coordination reactions result in a binding between the particulate binding site and the 

dissolved organic molecule. Dissolution of hydrophobic organic chemicals into the 

organic phase of the particulate matter is defined as partitioning (Schnoor, 1996).

Some characteristics and sources of selected hydrocarbons are presented in Tables

3.1 and 3.2.

Table 3.1. Some characteristics of selected hydrocarbons.

Compound Mol. wt. B .p. (°C) Sp. gr. Solubility 
mg/L at 
20 °C

log Kow

Decane 142.29 174.1 0.730 0.009

Toluene 92.1 110.8 0.867 515 2.73

Styrene 104.14 145.2 0.9045 280 2.95

m-xylene 106.16 139 0.864 0.16* 3.20

*Solubility at 25 °C
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Table 3.2. Common sources of selected hydrocarbons.

Compound Manufacturing
source

Users and 
formulation

Natural and 
Manmade source

Decane Petroleum refining Organic synthesis, 
solvent, rubber 
industry, paper 
processing industry

Constituents in 
paraffin fraction 
of petroleum

Toluene Petroleum refining, 
coal tar distillation

Benzene 
derivatives, 
medicines, dyes, 
solvent recovery 
plants

Coal tar and 
petroleum, 
gasoline (high 
octanol number),

Styrene Organic chemical 
industry

Synthetic rubber, 
plastics, resins and 
insulators

Gasoline (high 
octane number)

m-xylene Petroleum refining, 
coal tar distillation, 
organic chemical 
industry

Specialty chemical 
manufacture, 
solvent recovery 
plant

Coal tar, 
petroleum

As a major pretreatment for filtration, coagulation-sedimentation process was 

investigated for its potential to remove organic contaminants. Interactions between 

coagulants and organics (humic and salicylic acid), with different molecular weight 

ranges, in the absence of suspended solids, have been analyzed. Removal of low 

molecular weight organic compounds (salycilic acid) by alum coagulation was less 

effective and indicated adsorption and entrapment destabilization mechanisms. 

Destabilization o f humic acid was due to charge neutralization (Huang et al., 1996).
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3.3. Polymers

Within the last decade the use o f polymers in water and wastewater treatment has 

expanded considerably. Polymers are long-chained organic molecules, containing 

ionizable groups (carboxyl, amino, sulfonic groups) arranged along the chain and can be 

charged (polyelectrolyte) or neutral. Depending on their charge characteristics in water 

(positive, negative or neutral), they are grouped as cationic, anionic and nonionic 

polymers.

Organic polymers are comprised o f specific monomers linked linearly or in 

branched configurations and polymerized into high-molecular-weight substances. They 

are used in order to influence the stability and coagulation properties o f a dispersed 

system (Schwarz et al., 1997). The important characteristics, which affect the 

performance o f a particular polymer, are charge density, molecular weight, degree of 

branching, dosage rate and contact time. In comparison with standard coagulants, a 

polyelectrolyte has higher charge densities, can be applied in smaller doses and can yield 

formation o f large heaver floes (Lind, 1994). Different chemical coagulants can cause the 

destabilization o f colloids in different ways. Organic polymers destabilize colloids by 

charge neutralization and interparticle bridging (Weber, 1972; Shwarz et al., 1998 and 

Gray et al., 1997).

During the contact with colloidal particles, some of the functional groups of 

polymer adsorb at the particle surface, leaving the remainder o f the molecule extending 

out into solution (Reaction 1 in Figure 3.1). Bridging occurs when another particle, with 

vacant adsorption sites, connects with the extended segment of polymer and forms a link
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between them. If the second particle is not available, in time the extended segment of 

polymer may eventually adsorb on other sites on the original particle, therefore the 

polymer is no longer capable of serving as a bridge (Reaction 3 in Figure 3.1). Exceeding 

optimum dosage o f polymer can result into restabilized colloids, since no sites are 

available for the formation of interparticle bridges (Weber, 1972). Certain conditions can 

cause a system which has been destabilized and aggregated to restabilize by extended

R eaction 1
In it ia l Adsorption at the Optimum Polymei

-  o  !
Polymer Partic le

Dosage

0«stabinie<J 
Part Ida

/  s. Reaction 2 
[ 11106 fo rm a tio n

F lo e o u lo lio n

(p e rik in e tic  or
\  Orthofclnetia) 

Destabilized Particles
( 5 ^

Floe P a rt ic le
Reaction 7 

Secondary Adsorption of Poly mer

No con tact wiTh vaeont s ites 
y \  an another partic le

Destabilized P a rtic le  Restabilizad Partic le
Reaction 4 

Ini I ha I A dso rp tion  Excess 
Polymer Oosa<;e

Excess. Polymers
o

P c r t l c f e
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Figure 3.1 Schematic representation of the bridging model for the destabilization 
o f colloids by polymers (Weber, 1972).
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agitation. This occurs due to the breaking o f polymer-surface bonds and the subsequent 

folding back o f extended segments onto the surface of the particles (Weber, 1972).

Since competing reactions for adsorption and precipitation do not occur for 

organic polymers, high mixing intensities are not necessary. Interparticle bridging and 

breaking up o f aggregated floe, due to high intensities of turbulence, is important and 

controlling. Mixing energy is important in increasing the number o f collisions between 

particles and coagulant since faster and more efficient charge neutralization and 

flocculation would take place at higher mixing intensities. Improved mixing often lowers 

coagulant dosage, improves clarification, and enhances the action of other treatment 

chemicals (Lind, 1994).

One investigation reports the reaction mechanism and the effects o f aluminum 

salts, combined with cationic, anionic and nonionic polymers on flocculation processes, 

while using polyelectrolytes as flocculant aids (Narkins et al., 1991). Results indicated 

that lower doses o f each polyelectrolyte were required, turbidity removal was more 

efficient and the settling sludge characteristics were improved due to the usage of 

polyelectrolytes. Flocculation mechanism o f cationic polymer could have been either by 

charge neutralization associated with adsorption and bridging or bridging only. In 

general, all polymers formed well- settable floes by the interparticle bridging mechanism. 

This study provided information on the type o f coagulant to be used, process conditions 

and the concentration ratios o f each polymer and the aluminum salt in specific 

combinations.

The flocculation behavior o f oppositely charged polyelectrolytes (two-component 

system), as flocculants and retention aids, was examined (Petzold et al., 1996) by the
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different procedures such as polyelectrolyte titration, dewatering test and measuring the 

residual turbidity. This study was designed to improve the knowledge of dual systems for 

flocculation and especially to evaluate influence o f polyanion molecular weight. The 

results o f the study indicated that the flocculation mechanism depends upon the 

molecular weight o f a polyanion. Two different mechanisms of flocculation were 

possible: complexation between oppositely charged polymers, and patchwise adsorption 

combined with bridging.

The conditioning characteristics of kaolin sludge combined with different cationic 

polyelectrolytes was examined (Chang et al., 1998) applying the following methods: 

measuring the capillary suction time (CST), measuring the streaming current (SC), 

determining the moisture content o f dewatering sludge cake and measuring the floe size. 

According to their results, the moisture content o f the kaolin sludge system was found to 

depend on molecular weight, dosage and charge density o f the polyelectrolyte. When the 

SC value equals zero, the moisture content o f dewatered kaolin sludge cake reaches the 

maximum. The polyelectrolyte dosage necessary to minimize the CST value is 

independent of the molecular weight o f used polyelectrolytes.

The results o f the effect o f polyelectrolyte density and molecular weight on 

removal efficiency during an investigation o f oil flotation, indicated improved flotation 

performance with increase in polyelectrolyte charge density, while molecular weight had 

no effect on flotation (Gray et al., 1997). Turbidity removal advanced as floe size 

increased, indicating that raising the floe size was the dominant role o f the polyelectrolyte 

in improving flotation performance. Flotation became more robust to variations in
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polyelectrolyte concentration as the polyelectrolyte charge density decreased due to 

lowering adsorption-driving forces between the polyelectrolyte and oil.

3.4. Floe Density

Particle aggregates are formed in coagulation/flocculation processes, and in some 

cases are already present (in natural waters), where they can greatly influence the 

transport and fate of contaminants. The two most important properties of aggregates are 

their size and density, which can both have a significant influence on the effectiveness of 

solid-liquid separation processes, such as sedimentation, filtration and flotation. Sludge 

volume reduction, product water quality and overall process performance may depend on 

these floe properties (Glasgow et al., 1989).

The density o f the floe was estimated using Stokes’ Law. Since, Stokes’ Law is 

based on the settling o f single impermeable spherical particles in a laminar region 

(Reynolds Number <0.5). It is not ideal for the determination of floe density due to the 

heterogeneous structure and irregular shape of the floe (Droppo et al., 1997). The 

equation used to estimate floe density in this research was:

T 3 = l/1 8 D 2(pf - p w)g/p (1)

where:

to = settling velocity, m/s 

D = diameter o f floe, pm 

pf = wet density o f floe, kg/m3 

pw = density o f water, kg/m3
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* 2(a = dynamic viscosity (kinemetic viscosity x pW), Ns/m

to and D obtained by the image analysis and pw, p are constants for a given 

water temperature, the wet density pf o f the floe was calculated.

Factors such as floe composition (organic and inorganic properties), shape, 

porosity and water content can affect settling rate of a floe. Settling velocity and porosity 

increase with the floe size while density decreases with increase in floe size (Gregory, 

1997, Droppo et al., 1997, Bache et al., 1997). During the growth of a floe, the number of 

linkages to additional particles or floes increases creating additional pores. This increased 

porosity induces an increase in water content that forces the density of the floe towards 

the density of water and tends to reduce the settling velocity of the floe. Floes often have 

a density slightly greater than water and rather a low settling rate (Gregory, 1997).

Figure 3.2 presents a compilation of several existing floe density data in a single 

graph. Variations in chemical conditions, agitation, flocculant, dispersed-phase and 

methods of measurement were responsible for differing results. Polymer flocculated 

systems show larger densities than systems coagulated with inorganic acid salts. All of 

the results indicated steep increases in density as aggregate size decreased to within 600 - 

700 pm. This effect was very pronounced in polymer systems and reflected a change in 

dominant structural type (Glasgow et al., 1989). Knowledge o f settling velocity, density 

and porosity also is useful for the characterization of sediment environments and for the 

study and modeling of sediment and contaminant transport (Droppo et al, 1997).
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Figure 3.2 Compilation of floe density data from the literature (Glasgow et al., 1989).

Droppo et al. (1996 and 1997) investigated the structural matrix of floes in 

freshwater over a large range of magnification using correlative microscopic techniques. 

The importance o f floe characteristics (size, shape, density, porosity, organic 

composition, inorganic composition) on the physical (eg. transport and settling), chemical 

(eg. adsorbing/transforming contaminants and nutrients) and biological behavior 

(eg. biotransfromation and habitat development) of the floes were examined. The results 

indicated that internal structure of floe has significant impact on controlling floe 

behavior. The internal structure of freshwater floe is very complex and is often 

dominated by fibrillar material containing active microbial community within the floe.
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Figure 3.3 presents the interactive physical, chemical and biological factors influencing 

floe development.
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Figure 3.3 Interactive physical, chemical and biological factors influencing floe 
development (from Droppo et al., 1997).

The addition o f polymer can have a profound effect on development of both floe

size and settling rate, due to the reaggregation of fragments (Glasgow et al.,1989;

Gregory, 1997).
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Investigation of the many interesting features o f flocculation of both polystyrene 

latex and kaolin with cationic polyelectrolytes provided important estimates of adsorbed 

polymer layer thickness ( to be -0.06 pm) and the extent o f surface coverage (Glasgow et 

al., 1989). Such data are essential for modeling floe density changes during aggregate 

growth.

Bache et al. (1995) investigated the general correspondence between the optimal 

coagulation conditions identified in jar tests and optimal characteristics o f the floe. Floe 

properties display optimal behavior in response to the operating conditions for both 

colored waters and turbid suspensions, in terms o f floe properties: notably size, effective 

density and strength. In these experiments for determination o f floe strength, single-grid 

and multi-grid oscillatory mixers are used. Coagulation overdosing leads to reductions in 

the effective density and diminishing strength due to increasing water content and 

increasing fraction o f positively charged precipitate within the floe.
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4. IMAGE ANALYSIS SYSTEM

4.1. Image-pro Plus software

Image-pro Plus version 3.0 software (Media Cybernetics, Silver Spring, MD) 

perform imaging and analysis capability for acquiring, enhancing and analyzing captured 

images. The source images obtained in this study by microscope were digitized into 

pixels (picture elements). Enhancement techniques ranging from simple operations such 

as brightness and contrast adjustment, to the sophisticated and complex spatial and 

morphological filtering operations designed to improve and refine visual information, can 

be applied. The software provides the ability to:

- acquire data images from a camera or microscope;

read and write data images into all the standard image file formats;

- work with gray scale and color data;

- perform image enhancement using color or contrast filters including fast Fourier 

transforms (FFT), morphology, field flattening, background subtraction and other 

spatial and geometric operations;

- trace and count objects manually or automatically. Measure object attributes such as 

area, angle, perimeter, diameter, roundness, length, as well as characteristics o f the 

defined view area;

- view collected data numerically, statistically or in graphic form (histogram and 

scattegram);

sort and classify data according to predefined criteria. Color code o f objects by class.
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Prior to photographing the particles, a photograph was made o f a 1-mm divison scale 

at the 10X magnification. The photograph o f the scale was used to calibrate the image 

analysis system. Spatial calibration was completed prior to measuring actions.

Measured data were transferred to Microsoft’s Excel spreadsheet and displayed. The 

statistics data sheet provides the following statistics for each measurement:

Min.: the smallest value for each measurement. Number, placed below the stated 

minimum identifies the object possessing the minimum measurements.

Max.: number stated beneath maximum identifies maximum measurement.

Range: represents the difference between the maximum and minimum values for each 

specified measurement.

- Mean: define the average (mean) for each measurement

Std. Dev.: represent standard deviation for each measurement.

Two plotting devices, scattergram and histogram, are provided to allow 

visualization o f data in chart form. A scattergram can be used to illustrate a 

correlation between two measurements. Measurement histograms provide another 

way to present the measurement data and to illustrate the distribution o f the object 

population over a measurement range. The histogram’s X-scale identifies the 

measurement’s range (from its minimum value to its maximum value), and the Y- 

scale measures the number of objects within each measured interval.
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5. EXPERIMENTAL DESIGN AND INSTRUMENTATION:

5.1. Experimental Design

Standard jar tests were performed and the results were evaluated and compared 

based on data provided by the image analysis system. The definite removal of 

hydrocarbons was confirmed by GC (Hewlett Packard Model 5890, Series II) analysis. 

Subsequently, turbidity measurements provided data on the effectiveness o f applied 

coagulants. Settling velocity provided information on floe density. The design 

incorporated four variables and twenty settings; more details about design parameters are 

provided in the following sections. Table 5.1 provides the experimental variables and 

settings involved in the experimental work.
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Table 5.1 Experimental variables and settings.

I Variables Settings

I Source Water Pond water

Coagulant Cat-Floc 2953

EB-5000

Contaminant concentration 300 ppm

500 ppm

Contaminant type Decane

Toluene

m-xylene

Styrene

Unleaded gasoline

5.1.1. Source water

The sample site was chosen to provide information on surface water 

characteristics and floe structure. The pond water chosen contains dissolved organic 

matter, natural organic matter, humics, turbidity and other components, for which 

removal the coagulation process is effective. The coagulation treatment efficiency o f the 

contaminated water, by specific hydrocarbons, prior and posterior to contamination, was 

investigated. The important criteria in selecting these types o f source waters were to 

model a situation under which the coagulation process would treat these contaminated 

waters effectively. Surface water samples were collected from the pond located near the
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Engineering Applied Science building, Florida International University, Miami, Florida. 

Turbidity (Hatch Company laboratory turbidimeter) and pH measurements (Fisher 

Scientific pH meter) characterized pond water. The samples were contaminated with 

different petroleum hydrocarbons at concentrations ranging from 300 ppm to 500 ppm, 

and mixed for one-hour prior to coagulation experiments.

5.1.2. Coagulants

Polyelectrolytes are synthetic organic polymers used in order to bring removal of 

particles through adsorption and bridging. The selection o f Cat-Floc 2953 and EB-5000, 

used in this research, was based on the coagulant screening tests (refer to Appendix). The 

liquid cationic polyelectrolytes were obtained from Calgon Corporation (Pittsburgh, 

Pennsylvania). Cat Floe 2953 and EB-5000 (these are the trade names used by Calgon 

Corporation) were prepared by adding 1 milliliter o f polymer to 100 milliliters o f distilled 

water for ease o f handling as recommended by the manufacturer. Table 5.2 provides 

properties o f the coagulant used in the experiments.
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Table 5.2 Physical and chemical properties o f Cat-Floc2953 and EB-5000.

Parameter Cat-Floc 2953 EB-5000

Chemical
description

Acidic aqueous solution Acidic aqueous solution

Product class Cationic coagulant Cationic coagulant

Ingredients Poly(dimethyldiallyl- 
ammonium chloride) ~ 26% 
by weight

Hydrochloric acid 1-5% by 
weight

Sulfuric acid 1-5% by 
weight

Poly(dimethyldiallyl- 
ammonium chloride) ~ 26% 
by weight

Flash point >200°F >200°F

Boiling point >212°F Not available

Solubility in water Complete Complete

Specific gravity 1.18-1.20 at 25°C 1.15-1.20 at 25°C

PH 2.5-3.0 at 25°C 3.5-3.8 at 25°C

% volatile by 
weight

Not determined 65

Appearance Clear, pale yellow, slightly 
viscous liquid

Clear to slightly hazy, pale 
yellow liquid
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5.1.3. Contaminant concentration

The contaminants used in these experiments included decane, toluene, m-xylene, 

styrene and unleaded gasoline. The types of contaminants were selected based on the 

conditions required to emulate with the real world situation o f a water body contaminated 

with formerly selected hydrocarbons. The pond water was contaminated with each of 

these hydrocarbons, in concentrations of 300 ppm and 500 ppm. Hydrocarbons including 

decane, toluene, m-xylene and styrene were provided by Fisher Scientific Chemical and 

unleaded gasoline was obtained from a local gas station. Gas Chromatography analysis 

(Hewlett Packard 5890) using flame ionization detector (FED) were accomplished before 

and after coagulation process to detect the range and the amount of hydrocarbons 

removed from the sample. Floe density data were derived from settling velocity 

measurements.

5.2. Instrumentation

Coagulation unit

The coagulation unit used for the standard jar-tests was a six-paddle mechanical stirrer 

Model PB-700 manufactured by Phipps & Bird Inc., Richmond, VA. The unit had high 

and low adjustable speed controls with a maximum speed of 300 rpm.
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Gas Chromatograph

The samples, including decane, toluene, m-xylene and styrene, collected for GC analysis 

were prepared by the liquid-liquid extraction procedure using pentane as solvent. The 

GC unit was Hewlett Packard Model 5890, Series II equipped with DB-5 column (30m-x 

0.45 mm I.D.). The GC was programmed at 35°C for 6 minutes, increasing the 

temperature by 4°C/min reaching 55°C. Afterward, the oven temperature was increased 

at the rate o f 17°C/min up to 105°C. The temperature of 105°C was retained for the 

analysis for 1 minute. Helium at flow rate of 6.5 ml/min was used as carrier gas. Make up 

gas consisting o f nitrogen at a flow rate o f 30 ml/min, hydrogen at 28 ml/min, and 

compressed air at 280 ml/min were also used in the GC analysis. Gasoline analyses were 

accomplished with little changes in GC program. New set up started at temperature of 

30°C, retained for 6 minutes. The rate o f temperature increase was 6°C/min until 

reaching 130°C. Subsequently, the oven temperature was increased at the rate of 

15°C/min up to 180°C. The temperature o f 180°C was retained for the analysis for 8 

minutes and increased to 200°C at the rate 25°C/min. Helium with flow rate o f 6.8 

ml/min was used as a carrier gas.

Stock and working standards o f gasoline, styrene, toluene, decane and m-xylene were 

prepared and refrigerated, prior to the preparation o f daily standards. Standard calibration 

samples were used and the machine was calibrated. Before each set o f samples, solvent 

blanks were run to avoid any carry over o f the samples in the GC column. Finally the 

data printouts were standardized into a format for complete research data organization 

using computer software programs.
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The Olympus System Microscope, model BX40, is the universal optical system, provided 

by Olympus America Inc., Melville, N.Y.. The objective magnification ranged from 10X 

to 60X. In this research, the 10X objective magnification provided adequate enlargement 

of the floes and oil droplets. The microscope has built-in transmitted Koehler 

illumination 6V 30W Halogen bulb as light source.

Camera and camera adapter for Image Pro-plus software:

Camera adapter model CMA-D2 was mounted on a Sony Color video camera model 

DXC-107A/107AP. The DXC-107A/107AP is a color video camera, which uses a CCD 

(Charge Coupled Device), a solid state image sensor and three automatic shutter speed 

control (IRIS). The camera automatically adjusts the shutter speed for optimum exposure, 

even when using a lens with manual IRIS.

Turbidimeter and pH meter:

Hatch Company laboratory turbidimeter, model 2100N was used to provide measured 

data in NTU units. A machine was calibrated using formazin standard.

A Fisher Scientific pH meter, model AR50 was utilized and standardized prior to its 

application.

Particle Image Velocimetry system:

The Particle Image Velocimetry (PIV) system provided by DANTEC Inc., was used to 

obtain the velocity-vector plots containing both amplitude and flow direction for the

Microscope:
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whole visualized flow field with high accuracy and high resolution. The system includes 

four basic sub systems: visualization, camera, video recording and software for analysis. 

The stabilite 2017 ion laser was used as a continuous wave laser. The beam form CW 

laser was chopped into pulses by Dantec’s 80X41 electro optical shutter. Dantec’s 

camera 80C42 DOUBLE Image 700 may work in three modes. The most powerful 

operating mode is double-frame cross correlation mode. Captured images are transferred 

to PIV processor via the digital connector and host computer for data processing and 

analysis, and the images recorded by the camera where transffered to a video recorder to 

simultaneously show flow pattern.
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6. DATA COLLECTION AND ANALYTICAL METHODS

Initial screening tests were conducted to determine optimum dosages and 

effectiveness o f coagulants in terms of floe formation, floe size and turbidity removal. 

The screening tests were accomplished using the standard jar-test procedure. The most 

effective coagulants, Cat-Floc 2953 and EB-5000, as determined from screening tests, 

were subsequently used for coagulation studies.

After addition of contaminant at concentration 300 ppm or 500 ppm in pond 

water, the solution was mixed for 24 hours prior to jar tests. Solution samples of 500 ml 

volume, were placed into 1000 ml (1 liter) beakers. The standard jar test procedure 

includes addition o f coagulant in sample and mixing, with agitation rates of 300 rpm for 2 

minutes (rapid mixing), followed by 35 rpm for 15 minutes and a settling period of 20 

minutes. Turbidity and pH measurements were recorded before the addition of coagulant 

and after the coagulation process was accomplished.

Settling experiments were conducted after coagulation process was accomplished 

and floes formed. 400 mL of each solution was placed in a rectangular glass cell. Using 

the video monitoring system settling of floes was observed. A laser was used as the ideal 

light source for the camera due to its high intensity, directionality and easier optical 

control. Pixel images were acquired and then transferred to Particle Image Velocimetry 

2000 Processor via digital connector and host computer, for data processing and analysis. 

The host computer was equipped with Software Flow Map 2.0 (Flow Manager). Data 

were presented as average settling velocity vectors, cross-correlation velocity vectors and 

streamlines (direction o f flow).
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Afterward, the samples were refrigerated for a few hours to allow complete 

settling o f floes. Thirty ml o f coagulated water was measured and placed into a 

turbiditemeter. The data were reported in nephelometric turbidity units (NTU). After the 

first group o f hydrocarbons with concentration o f 500-ppm was analyzed, the same 

preparation and analyzing procedures were followed for 300 ppm water-contaminant 

mixtures.

The samples for organic analysis were prepared prior to and after the coagulation 

procedure. Subsequently, the samples were analyzed by a Gas Chromatograph (GC) unit 

equipped with Flame Ionization detector (FID) and direct flash injection liner, before and 

after coagulation processes to detect the range and amount of hydrocarbons removed 

from the samples. The samples collected for GC analysis were prepared by liquid-liquid 

extraction procedure using pentane as solvent. The extracted samples were placed in to 

2 ml auto sampler vials for GC analysis. Preparation of samples and complete chemical 

analysis were accomplished at the Drinking Water Research Center at Florida 

International University.

Samples were subsequently prepared for microscopic examination and image 

analysis. Water drops o f coagulated and noncoagulated water were placed on microscopic 

slides using Pasteur pipettes (Fisher Scientific). Slides are placed on microscopic stage of 

Olympus System Microscope and observed. Images o f floes were captured using Sony 

Color video camera CCD-IRIS. The camera was mounted on the microscope and 

connected to a computer, equipped with Image-pro Plus software. Photograph 1 displays 

the microscope, camera and computer setting. Data were collected and summarized at the 

section 7.
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6.1. Image-pro Plus analysis system

Image-pro Plus software, used simultaneously with microscope and camera 

derived multiple levels o f information from an analyzed sample. The images captured by 

microscope were investigated using measured objects attributes such as area, angle, 

perimeter, diameter, roundness, length, and characteristics o f the defined view area.

The spatial calibration was completed prior to measuring actions and the measurements 

are submitted in micrometers.

Predefined criteria such as diameter range of oil droplets were selected in order to 

compare data obtained from different images. Collected data were viewed numerically, 

statistically or in graphic form o f histogram and scattergram.

6.2. Microscopic Analysis

The microscope, Sony Color video camera and computer equipped with Image- 

pro Plus software were used as size and effectiveness analyzing tools for this study. 

Drops o f  coagulated water containing floes were collected with pipettes from beakers and 

placed on microscopic slides. Floes were observed with the 10X objective with a light 

source build in the microscope. Photographs taken by camera were digitized and 

analyzed using Image-pro Plus. Samples o f  noncoagulated contaminated water were 

subsequently prepared for microscopic examination and image analysis.
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6.3. Data Collection

Captured images of each hydrocarbon-pond water mixture, with Cat-Floc 2953 

and EB-5000, were saved and used for further analysis. Enhancement filtering techniques 

were applied to provide sharper images. The image analysis system was used to digitize 

the image and measure average diameter, area of the oil droplet attached on a floe and the 

area o f the floe. The measurements of the floes and oil droplets were provided in selected 

range. Statistical data of each image were automatically calculated and displayed in 

tables. The statistical data were exported to Excel worksheets. Histograms based on 

computed data provided by Image-pro plus software were created.

Calculations concerning the density o f floe were based on floe settling velocity 

measurements and utilization of Stock’s equation (1). Using the video monitoring system 

settling of floes was observed. A laser was used as the light source for the camera and 

Flow Map 2.0 software for analyzes. Obtained data were divided into average settling 

velocity vectors, cross-correlation velocity vectors and streamlines (direction of flow).
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7. RESULTS AND DISCUSSION

The results and discussion of the experimental work are divided into three 

sections. The first section emphasizes microscopic images and results based on 

microscopic observations. The second section presents chemical analysis of data and 

graphical representation. The third part contains measurements of settling velocity and 

calculations o f floe density.

7.1. Microscopic observations

Microscopic images of decane, toluene, xylene, styrene and gasoline were 

captured and analyzed in this order.

Figures 7.1 to 7.4 and Figures from 7.17 to 7.20 present the microscopic images 

of decane floes formed by coagulant Cat-Floc 2953. These floes exhibit larger number 

and diameter o f oil droplets entrapped (both on the surface and within the floe), 

compared to one formed by EB-5000. Graphical representation o f oil droplet distribution 

versus diameter (average) and area are provided on figures 7.4 to 7.8 for decane 

concentration 500 ppm coagulated with Cat-Floc 2953 and 7.21 to 7.24 for decane 

coagulated with EB-5000.

The observed floes generally were irregular in shape but tended toward circular 

shape. Cat-Floc 2953 formed large white floes (2-4 mm), visible with the naked eye. Size 

o f the floe can have significant implications for the modeling of contaminant movement
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as the larger floes will likely settle out much faster than the finer floes which travel with 

their associated contaminant, much further in the system.

In general, floes formed by EB-5000, had a low resolution due to their yellow 

color, resulting from the polyelectrolyte liquid. At lower concentration of 300 ppm, 

decane floes had appearance of less dense inner structure then EB-5000 floes at same 

concentration, which was supported with settling velocity data (Table 7.2)

Toluene images at concentration of 500 ppm are displayed as Figures 7.33 to 

7.36 excluding Figures 7.37 to 7.38, representing oil droplet sizes and diameters 

distribution. The floe structure appears heterogeneous in terms of spatial density across 

the floes with the presence of micro-pores. Some of the oil droplets were captured inside 

the oil-water emulsion bubbles, therefore limiting the feasibility to produce sharper 

images. The images of the floe sizes, produced by Cat-Floc 2953 occurs on the images 

larger than EB-5000 but this was not supported with settling velocity data, pointing out 

possibility of error. During preparation of floes for microscopic examination the floe 

structure was partially damaged due to pipette size used in sample preparation.

Area and diameter of m-xylene droplets are displayed on Figures 7.61 , 7.62 and 

7.67 and 7.68 for 500 ppm concentration and for 300 ppm concentration on Figures 7.73 

to 7.74 and 7.79 to 7.80. Pictures of floes are displayed on Figure 7.57 to 7.60 and 7.69 to 

7.72 for Cat-Floc coagulant and figures 7.63 to 7.66, and 7.75 to 7.78 for EB-5000. Floes 

obtained from EB-5000 have irregular shapes with large cavities inside the floe structure 

while the structure of Cat-Floc 2953 floes is more chain looking.

Figures through 7.81 to 7.86 are images and image analysis, concerning styrene 

with coagulant Cat-Floc at 500 ppm concentration while Figures 7.93 to 7.98 are images
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at 300 ppm concentration. Coagulant EB-5000 formed floes exposed on Figures 7.87 to 

7.90 for 500 ppm and Figures 7.99 to 7.102 for 300 ppm. Styrene floes formed with Cat- 

Floc 2953 have more dense looking structures than EB-5000, which contained some 

openings in internal structure.

Gasoline floes formed at concentration of 500 ppm and 300 ppm with Cat-Floc 

2953 are shown on Figures 7.105 to 7.108 and 7.117 to 7.120. Floes o f EB-5000 are 

presented on Figures 7.111 to 7.114 for 500 ppm and 7.123 to 7.126 for 300 ppm 

concentration. Gasoline floe shapes exhibit irregularities however without cavities inside 

the floes. Oil droplets are clearly visible inside the structure and on the surface of floe.
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Figure 7.1 Microscopic image of Decane floe at concentration of 500 ppm with Cat-Floc 
2953 at optimum dosage.

Figure 7.2 Microscopic image of Decane floe at concentration of 500 ppm with Cat-Floc
2953 at optimum dosage.
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Figure 7.3 Microscopic image of Decane floe at concentration of 500 ppm with Cat-Floc 
2953 at optimum dosage.
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Figure 7.4 Microscopic image of Decane floe at concentration of 500 ppm with Cat-Floc
2953 at optimum dosage.
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Figure 7.5 Distribution of Decane droplet diameter inside of Cat-Floc 2953 floe at 
concentration of 500 ppm, for microscopic image 7.1.

Figure 7.6 Distribution of Decane droplet area inside of Cat-Floc 2953 floe at
concentration of 500 ppm, for macroscopic image 7.1.



Figure 7.7 Distribution of Decane droplet diameter inside of Cat-Floc 2953 floe at 
concentration o f 500 ppm, for microscopic image 7.2.

Figure 7.8 Distribution of Decane droplet area inside of Cat-Floc 2953 floe at
concentration o f 500 ppm, for microscopic image 7.2.
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Figure 7.9 Microscopic image of Decane floe at concentration of 500 ppm with EB-5000 
at optimum dosage.

Figure 7.10 Microscopic image of Decane floe at concentration of 500 ppm with EB-
5000 at optimum dosage.
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Figure 7.11 Microscopic image of Decane floe at concentration of 500 ppm with EB- 
5000 at optimum dosage.

Figure 7.12 Microscopic image of Decane floe at concentration of 500 ppm with EB-
5000 at optimum dosage.
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Figure 7.13 Distribution of Decane droplet diameter inside of EB-5000 floe at 
concentration of 500 ppm, for microscopic image 7.9.

Figure 7.14 Distribution of Decane droplet area inside of EB-5000 floe at concentration
of 500 ppm, for microscopic image 7.9.
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Figure 7.15 Distribution of Decane droplet diameter inside of EB-5000 floe at 
concentration of 500 ppm, for microscopic image 7.10.

Figure 7.16 Distribution of Decane droplet area inside of EB-5000 floe at concentration
of 500 ppm, for microscopic image 7.10.
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Figure 7.17 Microscopic image o f Decane floe at concentration o f 300 ppm with Cat-Floc 
2953 at optimum dosage.

Figure 7.18 Microscopic image o f Decane floe at concentration o f 300 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.19 Microscopic image o f Decane floe at concentration of 300 ppm with Cat- 
Floc 2953 at optimum dosage.

Figure 7.20 Microscopic image o f Decane floe at concentration o f 300 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.21 Distribution o f Decane droplet diameter inside o f Cat-Floc 2953 floe at 
concentration o f 300 ppm, for microscopic image 7.17.

Figure 7.22 Distribution of Decane droplet area inside of Cat-Floc 2953 floe at
concentration of 300 ppm, for microscopic image 7.17.
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Figure 7.23 Distribution of Decane droplet diameter inside o f Cat-Floc 2953 floe at 
concentration o f 300 ppm, for microscopic image 7.18.

Figure 7.24 Distribution of Decane droplet area inside o f Cat-Floc 2953 floe at 
concentration o f 300 ppm, for microscopic image 7.18.



Figure 7.25 Microscopic image o f Decane floe at concentration o f 300 ppm with EB- 
5000 at optimum dosage.
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Figure 7.26 Microscopic image o f Decane floe at concentration of 300 ppm with EB-
5000 at optimum dosage.
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Figure 7.27 Microscopic image o f Decane floe at concentration o f 300 ppm with EB- 
5000 at optimum dosage.

Figure 7.28 Microscopic image o f Decane floe at concentration o f 300 ppm with EB-
5000 at optimum dosage.
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Figure 7.29 Distribution o f Decane droplet diameter inside of EB-5000 floe at 
concentration of 300 ppm, for microscopic image 7.25.

Figure 7.30 Distribution of Decane droplet area inside of EB-5000 floe at concentration
of 300 ppm, for microscopic image 7.25.
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Figure 7.31 Distribution o f Decane droplet diameter inside of EB-5000 floe at 
concentration of 300 ppm, for microscopic image 7.26.
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Figure 7.32 Distribution o f Decane droplet area inside o f EB-5000 floe at concentration
of 300 ppm, for microscopic image 7.26.
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Figure 7.33 Microscopic image o f Toluene floe at concentration 500 ppm with Cat-Floc 
2952 at optimum dosage.

Figure 7.34 Microscopic image o f Toluene floe at concentration 500 ppm with Cat-Floc
2952 at optimum dosage.
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Figure 7.35 Microscopic image o f Toluene floe at concentration 500 ppm with Cat-Floc 
2952 at optimum dosage.

Figure 7.36 Microscopic image o f Toluene floe at concentration 500 ppm with Cat-Floc
2952 at optimum dosage.
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Figure 7.37 Distribution of Toluene droplet diameter inside Cat-Floc 2953 at 
concentration of 500 ppm, for microscopic image 7.33.

Figure 7.38 Distribution of Toluene droplet area inside Cat-Floc 2953 at concentration 
of 500 ppm, for microscopic image 7.33.
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Figure 7.39 Microscopic image o f Toluene floe at concentration 500 ppm with EB-5000 
at optimum dosage.

Figure 7.40 Microscopic image o f Toluene floe at concentration 500 ppm with EB-5000
at optimum dosage.

57



Figure 7.41 Microscopic image of Toluene floe at concentration 500 ppm with EB-5000 
at optimum dosage.

Figure 7.42 Microscopic image of Toluene floe at concentration 500 ppm with EB-5000
at optimum dosage.
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Figure 7.43 Distribution of Toluene droplet diameter insideEB-5000 at concentration of 
500 ppm, for microscopic image 7.39.

Figure 7.44 Distribution of Toluene droplet area insideEB-5000 at concentration of 500
ppm, for microscopic image 7.39.
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Figure 7.45 Microscopic image of Toluene floe at concentration 300 ppm with Cat-Floc 
2953 at optimum dosage.

Figure 7.46 Microscopic image of Toluene floe at concentration 300 ppm with Cat-Floc
2953 at optimum dosage.
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Figure 7.47 Microscopic image of Toluene floe at concentration 300 ppm with Cat-Floc 
2953 at optimum dosage.

Figure 7.48 Microscopic image o f Toluene floe at concentration 300 ppm with Cat-Floc
2953 at optimum dosage.
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Figure 7.49 Distribution o f Toluene droplet diameter inside Cat-Floc 2953 at 
concentration o f 300 ppm, for microscopic image 7.45.

Figure 7.50 Distribution o f Toluene droplet area inside Cat-Floc 2953 at concentration of
300 ppm, for microscopic image 7.45.
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Figure 7.51 Microscopic image o f Toluene floe at concentration 300 ppm with EB-5000 
at optimum dosage.

Figure 7.52 Microscopic image o f  Toluene floe at concentration 300 ppm with EB-5000
at optimum dosage.
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Figure 7.53 Microscopic image o f Toluene floe at concentration 300 ppm with EB-5000 
at optimum dosage.

Figure 7.54 Microscopic image o f Toluene floe at concentration 300 ppm with EB-5000
at optimum dosage.
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Figure 7.55 Distribution o f Toluene droplet diameter inside EB-5000 at concentration of 
300 ppm, for microscopic image 7.51.

Figure 7.56 Distribution o f Toluene droplet area inside EB-5000 at concentration o f 300
ppm, for microscopic image 7.51.
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Figure 7.57 Microscopic image o f m-xylene floe at concentration o f 500 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.58 Microscopic image o f m-xylene floe at concentration of 500 ppm with Cat- 
Floc 2953 at optimum dosage.



Figure 7.59 Microscopic image o f m-xylene floe at concentration of 500 ppm with Cat- 
Floc 2953 at optimum dosage.
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Figure 7.60 Microscopic image o f m-xylene floe at concentration o f 500 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.61 Distribution o f m-xylene droplet diameter inside o f Cat-Floc 2953 floe at 
concentration o f 500 ppm, for microscopic image 7.57.

Figure 7.62 Distribution o f m-xylene droplet area inside o f Cat-Floc 2953 floe at 
concentration o f 500 ppm, for micrscopic image 7.57.
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Figure 7.63 Microscopic image o f m-xylene floe at concentration o f 500 ppm with EB- 
5000 at optimum dosage.

Figure 7.64 Microscopic image o f m-xylene floe at concentration o f 500 ppm with EB-
5000 at optimum dosage.
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Figure 7.65 Microscopic image o f m-xylene floe at concentration o f 500 ppm with EB- 
5000 at optimum dosage.

Figure 7.66 Microscopic image o f m-xylene floe at concentration of 500 ppm with EB-
5000 at optimum dosage.
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Figure 7.67 Distribution o f m-xylene droplet diameter inside o f EB-5000 floe at 
concentration o f 500 ppm, for microscopic image 7.63.

Figure 7.68 Distribution o f m-xylene droplet area inside o f EB-5000 floe at
concentration o f 500 ppm, for microscopic image 7.63.
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Figure 7.69 Microscopic image o f m-xylene floe at concentration o f 300 ppm with Cat- 
Floc at optimum dosage.

Figure 7.70 Microscopic image o f m-xylene floe at concentration o f 300 ppm with Cat-
Floc at optimum dosage.
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Figure 7.71 Microscopic image o f  m-xylene floe at concentration o f 300 ppm with Cat- 
Floc at optimum dosage.

Figure 7.72 Microscopic image o f  m-xylene floe at concentration o f  300 ppm with Cat-
Floc at optimum dosage.
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D iam eter (eve)

Figure 7.73 Distribution o f m-xylene droplet diameter inside o f Cat-Floc floe at 
concentration o f 300 ppm, for microscopic image 7.69.

Figure 7.74 Distribution o f m-xylene droplet area inside o f Cat-Floc floe at concentration
of 300 ppm, for microscopic image 7.69.



Figure 7.75 Microscopic image o f m-xylene floe at concentration o f 300 ppm with EB- 
5000 at optimum dosage.

Figure 7.76 Microscopic image o f m-xylene floe at concentration o f 300 ppm with EB-
5000 at optimum dosage.
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Figure 7.77 Microscopic image of m-xylene floe at concentration of 300 ppm with EB- 
5000 at optimum dosage.

Figure 7.78 Microscopic image o f m-xylene floe at concentration o f 300 ppm with EB-
5000 at optimum dosage.
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Figure 7.79 Distribution of m-xylene droplet diameter inside of EB-5000 floe at 
concentration o f 300 ppm, for microsscopic image 7.75.
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Figure 7.80 Distribution of m-xylene droplet area inside of EB-5000 floe at
concentration o f 300 ppm, for microscopic image 7.75.
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Figure 7.81 Microscopic image o f Styrene floe at concentration o f 500 ppm with Cat- 
Floc 2953 at optimum dosage.

Figure 7.82 Microscopic image o f Styrene floe at concentration o f 500 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.83 Microscopic image o f Styrene floe at concentration o f 500 ppm with Cat- 
Floc 2953 at optimum dosage.

Figure 7.84 Microscopic image o f Styrene floe at concentration o f 500 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.85 Distribution of Styrene droplet diameter inside o f Cat-Floc floe at 
concentration o f 500 ppm, for microscopic image 7.81.

Figure 7.86 Distribution of Styrene droplet area inside o f Cat-Floc floe at concentration
of 500 ppm, microscopic image 7.81.
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Figure 7.87 Microscopic image o f Styrene floe at concentration o f 500 ppm with EB- 
5000 at optimum dosage.

Figure 7.88 Microscopic image o f Styrene floe at concentration o f 500 ppm with EB-
5000 at optimum dosage.
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Figure 7.89 Microscopic image of Styrene floe at concentration of 500 ppm with EB- 
5000 at optimum dosage.

Figure 7.90 Microscopic image o f Styrene floe at concentration of 500 ppm with EB-
5000 at optimum dosage.
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Figure 7.91 Distribution o f Styrene droplet diameter inside o f EB-5000 floe at 
concentration o f 500 ppm, for microscopic image 7.87.

Figure 7.92 Distribution of Styrene droplet area inside of EB-5000 floe at concentration
of 500 ppm, for microscopic image 7.87.

83



Figure 7.93 Microscopic image o f Styrene floe at concentration o f 300 ppm with Cat- 
Floc at optimum dosage.

Figure 7.94 Microscopic image o f Styrene floe at concentration o f 300 ppm with Cat-
Floc at optimum dosage.
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Figure 7.95 Microscopic image o f Styrene floe at concentration o f 300 ppm with Cat- 
Floc at optimum dosage.

Figure 7.96 Microscopic image o f Styrene floe at concentration o f 300 ppm with Cat-
Floc at optimum dosage.
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Figure 7.97 Distribution of Styrene droplet diameter inside of Cat-Floc at concentration 
of 300 ppm, for microscopic image 7.93.

Figure 7.98 Distribution of Styrene droplet area inside of Cat-Floc at concentration of
300 ppm, for microscopic image 7.93.
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Figure 7.99 Microscopic image o f Styrene floe at concentration of 300 ppm with EB- 
5000 at optimum dosage.

Figure 7.100 Microscopic image o f Styrene floe at concentration of 300 ppm with EB-
5000 at optimum dosage.
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Figure 7.101 Microscopic image o f Styrene floe at concentration o f 300 ppm with EB- 
5000 at optimum dosage.

Figure 7.102 Microscopic image o f Styrene floe at concentration of 300 ppm with EB-
5000 at optimum dosage.
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Figure 7.103 Distribution o f Styrene droplet diameter inside o f EB-5000 floe at 
concentration o f 300 ppm, for microscopic image 7.99.

Figure 7.104 Distribution of Styrene droplet are inside of EB-5000 floe at concentration
of 300 ppm, for microscopic image 7.99.
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Figure 7.105 Microscopic image of Gasoline floe at concentration of 500 ppm with Cat- 
Floc 2953 at optimum dosage.

Figure 7.106 Microscopic image of Gasoline floe at concentration of 500 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.107 Microscopic image of gasoline floe at concentration of 500 ppm with Cat- 
Floc 2953 at optimum dosage.

Figure 7.108 Microscopic image of gasoline floe at concentration of 500 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.109 Distribution of Gasoline droplet diameter inside of Cat-Floc floe at 
concentration of 500 ppm, for microscopic image 7.105.

Figure 7.110 Distribution of Gasoline droplet area inside of Cat-Floc floe at
concentration of 500 ppm, for microscopic image 7.105.
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Figure 7.111 Microscopic image of Gasoline floe at concentration of 500 ppm with EB- 
5000 at optimum dosage.

Figure 7.112 Microscopic image of gasoline floe at concentration of 500 ppm with EB-
5000 at optimum dosage.
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Figure 7.113 Microscopic image of gasoline floe at concentration of 500 ppm with EB- 
5000 at optimum dosage.

Figure 7.114 Microscopic image of gasoline floe at concentration of 500 ppm with EB-
5000 at optimum dosage.
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Figure 7.115 Distribution of Gasoline droplet diameter inside of EB-5000 floe at 
concentration of 500 ppm, for microscopic image 7.111.

Figure 7.116 Distribution of Gasoline droplet area inside of EB-5000 floe at
concentration of 500 ppm, for microscopic image 7.111.
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Figure 7.117 Microscopic image of Gasoline floe at concentration of 300 ppm with Cat- 
Floc 2953 at optimum dosage.

Figure 7.118 Microscopic image of Gasoline floe at concentration of 300 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.119 Microscopic image of Gasoline floe at concentration of 300 ppm with Cat- 
Floc 2953 at optimum dosage.
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Figure 7.120 Microscopic image of Gasoline floe at concentration of 300 ppm with Cat-
Floc 2953 at optimum dosage.
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Figure 7.121 Distribution of Gasoline droplet diameter inside of Cat-Floc floe at 
concentration of 300 ppm, for microscopic image 7.117.
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Figure 7.122 Distribution of Gasoline droplet area inside of Cat-Floc floe at 
concentration of 300 ppm, for microscopic image 7.117.



Figure 7.123 Microscopic image of Gasoline floe at concentration of 300 ppm with EB- 
5000 at optimum dosage.

Figure 7.124 Microscopic image o f Gasoline floe at concentration of 300 ppm with EB-
5000 at optimum dosage.
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Figure 7.125 Microscopic image of Gasoline floe at concentration of 300 ppm with EB- 
5000 at optimum dosage.

Figure 7.126 Microscopic image o f Gasoline floe at concentration of 300 ppm with EB-
5000 at optimum dosage.
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Figure 7.127 Distribution o f Gasoline droplet diameter inside of EB-5000 floe at 
concentration o f 300 ppm, for microscopic image 7.123.

Figure 7.128 Distribution of Gasoline droplet area inside o f EB-5000 floe at
concentration of 300 ppm, for microscopic image 7.123
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7.2. Chemical Analysis

The chemical data analysis consisted of utilizing concentration (peak area) from 

the GC printouts and measurements before and after the coagulation process, for each 

hydrocarbon. Removal efficiency was defined as:

Hydrocarbon Removal Efficiency (%)

Where:

Cj = initial concentration of hydrocarbon

Cf= final concentration of hydrocarbon

Prior to GC analysis, coagulated hydrocarbon and noncoagulated samples were 

diluted. Table 7.1. displays concentrations prior and after the coagulation process was 

accomplished and efficiency of hydrocarbon removal, for both Cat-Floc 2953 and EB- 

5000 polyelectrolytes. Figure 7.129 and Figure 7.132 exhibited the noncoagulated sample 

concentration peaks at 500 ppm and 300 ppm concentrations of hydrocarbon mixtures 

including toluene, m-xylene, styrene and decane. Hydrocarbon peak areas after removal 

by Cat-Floc 2953 are presented in Figure 7.130, 7.133, 7.136, and figure 7.139. 

Hydrocarbon peak areas after removal by EB-5000 are presented in Figure 7.131, 7.134, 

7.137, and figure 7.140.
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Turbidity results are important due to Drinking Water Standard. Samples were 

measured for changes in turbidity (to monitor removal of suspended solids). All the 

coagulated samples showed little increase in turbidity removal by Cat-Floc 2953 due to 

increased molecular weight and charge of this cationic polymer compare to EB-5000 

(turbidity results presented in Appendix). Overall removal of hydrocarbons by Cat-Floc 

2953 was more efficient.

M-xylene is the most hydrophobic aromatic hydrocarbon and its removal was the 

most efficient in comparison to other hydrocarbons. The removal of decane, which is 

straight chain hydrocarbon, was extremely effective at higher concentration.
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Table 7.1. Removal efficiency of different hydrocarbons by polyelectrolytes

Contaminant Coagulant Q  (mg/L) Cf(mg/L) Removal 
efficiency,%

Decane 500* CF-2953 6.417 0.00 100

Decane 500* EB-5000 6.417 1.542 75.97

Decane 300* CF-2953 3.337 0.00 100

Decane 300* EB-5000 3.337 2.279 31.71

Toluene 500* CF-2953 4.584 2.527 44.87

Toluene 500* EB-5000 4.584 2.025 55.83

Toluene 300* CF-2953 5.118 1.897 62.9

Toluene 300* EB-5000 5.118 2.027 60.39

m-xylene 500* CF-2953 5.223 1.48 71.66

m-xylene 500* EB-5000 5.223 1.701 67.4

m-xylene 300* CF-2953 5.426 1.427 73.7

m-xylene 300* EB-5000 5.426 2.481 54.28

Styrene 500* CF-2953 5.996 2.389 60.16

Styrene 500* EB-5000 5.996 2.202 63.3

Styrene 300* CF-2953 5.689 2.067 63.67

Styrene 300* EB-5000 5.689 2.754 51.59

* Concentration o f hydrocarbons prior to dilution.
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Column: DB-5, 30m x 0.45 mm I.D., 1.27 pm
Carrier: helium at 6.5 mL/min
Oven: 35°C for 6 min., 35-55 at 4° C/min

55°C for 3 min., 55-105 at 17° C/min 
Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

T 1 ! 1 1 1---! 1 ! ! 1 I ! ! r
0 5 10

1. Toluene
2. M-xylene
3. Styrene
4. Decane

Figure 7.129 GC printout of noncoagulated sample at concentration of 500 ppm,
hydrocarbon-water mixture.
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Column: DB-5, 30m x 0.45 mm I.D., 1.27 pm
Carrier: helium at 6.5 mL/min
Oven: 35°C for 6 min., 35-55 at 4° C/min

55°C for 3 min., 55-105 at 17° C/min
Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

1--- !--- 1--- 1--- 1--- 1----1--- !--- 1--- 1--- 1--- 1--- 1--- !--- r
0 5 10

1. Toluene
2. M-xylene
3. Styrene

Figure 7.130 GC printout of Cat-Floc 2953, coagulated sample at 500 ppm hydrocarbon
concentrations.
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Column: DB-5, 30m x 0.45 mm I.D., 1.27 pm
Carrier: helium at 6.5 mL/min
Oven: 35°C for 6 min., 35-55 at 4° C/min

55°C for 3 min., 55-105 at 17° C/min
Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

J

1  ! ! 1 1 1 ! ! ! ! ! ! ! ! T
e 5 10

1. Toluene
2. M-xylene
3. Styrene
4. Decane

Figure 7.131 GC printout of EB-5000 coagulated sample at 500 ppm hydrocarbon
concentrations.
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Column: DB-5, 30m x 0.45 mm I.D., 1.27 |mi
Carrier: helium at 6.5 mL/min
Oven: 35°C for 6 min., 35-55 at 4° C/min

55°C for 3 min., 55-105 at 17° C/min 
Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

i — i— i— i— i— i— !— i— !— i— i i i i r 
0 5 10

1. Toluene
2. M-xylene
3. Styrene
4. Decane

Figure 7.132 GC printout of noncoagulated sample at concentration of 300 ppm,
hydrocarbon-water mixture.
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Column: DB-5, 30m x 0.45 mm I.D., 1.27 pm
Carrier: helium at 6.5 mL/min
Oven: 35°C for 6 min., 35-55 at 4° C/min

55°C for 3 min., 55-105 at 17° C/min 
Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

1

1. Toluene
2. M-xylene
3. Styrene
4. Decane

Figure 7.133 GC printout of Cat-Floc 2953 coagulated sample at 300 ppm concentration
o f hydrocarbon-water mixture.
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Column: DB-5, 30m x 0.45 mm I.D., 1.27 pm
Carrier: helium at 6.5 mL/min
Oven: 35°C for 6 min., 35-55 at 4° C/min

55°C for 3 min., 55-105 at 17° C/min
Injector: Direct injection liner with two restrictions 250° C
Detector: FID ,250° C

[ 4 i
1
11

1

3 l

2

— _jlL 1_____j.

1 — i— i— i— i— !— i— i— I— I— i— i— I— I— r
0 5 10

5. Toluene
6. M-xylene
7. Styrene
8. Decane

Figure 7.134 GC printout of EB-5000 coagulated sample at 300 ppm concentration of
hydrocarbon-water mixture.
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Column: DB-1, 30m x 0.53 mm I.D., 1.5 pm
Carrier: helium at 6.5 mL/min
Oven: 30°C for 6 min., 30-130 at 6° C/min

130-180°C for 8 min., at 15° C/min 
180-200°C at 25° C/min 

Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

A
  —

- i — i— i— i— !— i r
0 5

1---1---!--- !---1---!—I—r-
10 15

“! 1 1 !--
20

1—i—i— i—i—r
25

Figure 7.135 GC printout of noncoagulated sample at concentration of 500 ppm,
gasoline-water mixture.

T---1-
30
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Column: DB-5, 30m x 0.45 mm I.D., 1.27 pm
Carrier: helium at 6.5 mL/min
Oven: 35°C for 6 min., 35-55 at 4° C/min

55°C for 3 min., 55-105 at 17° C/min
Injector: Direct injection liner with two restrictions 250° C
Detector: F ID ,250° C

 1------ 1------ 1------ 1------ 1-------- !-----1------ 1------ !------ 1---- 1-------- !------ 1------ 1------ 1------1------- !------ 1------ 1------ 1------ !------ 1------ !------ 1-----------!--1------ 1------ 1------ T
0 5 10 15 20 25

Figure 7.136 GC printout o f Cat-Floc coagulated sample at concentration of 500 ppm,
gasoline-water mixture.
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Column: DB-1, 30m x 0.53 mm I.D., 1.5 pm
Carrier: helium at 6.5 mL/min
Oven: 30°C for 6 min., 30-130 at 6° C/min

130-180°C for 8 min., at 15° C/min 
180-200°C at 25° C/min 

Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

Figure 7.137 GC printout o f EB-5000 coagulated sample at concentration of 500 ppm,
gasoline-water mixture.
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Column: DB-1, 30m x 0.53 mm I.D., 1.5 [am
Carrier: helium at 6.5 mL/min
Oven: 30°C for 6 min., 30-130 at 6° C/min

130-180°C for 8 min., at 15° C/min 
180-200°C, at 25° C/min 

Injector: Direct injection liner with two restrictions 250° C
Detector: FED, 250° C

Figure 7.138 GC printout of noncoagulated sample at concentration of 300 ppm,
gasoline-water mixture.
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Column: DB-1. 30m x 0.53 mm I.D.. 1.5 um
Carrier: helium at 6.5 mL/min
Oven: 30°C for 6 min., 30-130 at 6° C/min

130-180°C for 8 min., at 15° C/min 
180-200°C, at 25° C/min 

Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

- i — i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— l— i— i— i— i— i— i— l— i— i— i— I— i— r—
e  i e  20 3 0

Figure 7.139 GC printout of Cat-Floc 2953 coagulated sample at concentration of 300
ppm, gasoline-water mixture.
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Column: DB-1, 30m x 0.53 mm I.D., 1.5 um
Carrier: helium at 6.5 mL/min
Oven: 30°C for 6 min., 30-130 at 6° C/min

130-180°C for 8 min., at 15° C/min 
180-200°C, at 25° C/min 

Injector: Direct injection liner with two restrictions 250° C
Detector: FID, 250° C

J IV

— i— i— i— i— i— i— i— I— I— I— i— r  
0 10

—i—i—!—!—r 
20 30

Figure 7.140 GC printout o f EB-5000 coagulated sample at concentration of 300 ppm,
gasoline-water mixture.
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7.3. Settling characteristics

Settling velocity and porosity increases with the floe size while density decreases 

due to formation of additional pores by linking to other particles and floes. Average 

settling velocity vectors are presented in Table 7.2. Figures 7.141 to 7.200 showed 

velocity profiles, cross-correlation velocity profiles and flow direction of floes.

Overall findings complied with findings of other researchers, that addition of 

polymer can have profound effect on development of both, floe size and settling rate. 

Settling velocity increases with the floe size while density decreases with increase in floe 

size. Estimated floe density results, for both polymers Cat-Floc 2953 and EB-5000, are 

presented on Figure 7.201.
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j" Compound
Coagulant Diameter xlO'6 

(m)
Average settling 
velocity (m/s)

Estimated floe
density
(kg/m3)

Decane*500 CF- 2953 395.05 0.003 1033.03

Decane*500 EB-5000 344.73 0.002 1028.56

Decane*300 C F -2953 228.68 0.007 1241.38

Decane*300 EB-5000 156.84 0.004 1293.65

Toluene*500 CF- 2953 241.12 0.008 1248.18

Toluene*500 EB-5000 260.90 0.016 1425.38

Toluene*300 CF- 2953 235.95 0.005 1161.29

Toluene*300 EB-5000 300.00 0.023 1462.65

Styrene *5 00 CF- 2953 343.50 0.005 1075.04

Styrene*500 EB-5000 295.00 0.005 1102.46

Styrene*300 CF- 2953 335.94 0.003 1046.60

Styrene *3 00 EB-5000 283.68 0.003 1065.78

m-xylene* 500 CF- 2953 271.00 0.014 1344.60

m-xylene *5 00 EB-5000 171.00 0.005 1306.26

m-xylene *3 00 C F -2953 234.43 0.004 1130.33

m-xylene *3 00 EB-5000 220.60 0.004 1147.75

Gasoline*500 CF- 2953 403.16 0.006 1065.12

Gasoline*500 EB-5000 250.49 0.001 1029.98

Gasoline *3 00 CF- 2953 326.06 0.006 1100.6

Gasoline*300 EB-5000 207.86 0.006 1250.49
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Vectors: 24 x 15
Substituted: 53

0.003 m/s

Figure 7.141 Average settling velocity vectors of Decane at concentration of 500 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 

Vectors: 24x15

0.010 m/s

Figure 7.142 Cross-correlation velocity vectors of Decane at concentration of 500 ppm,
coagulated with Cat-Floc 2953.
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Figure 7.143 Flow direction of Decane floes at concentration of 500 ppm, coagulated
with Cat-Floc 2953.

Vectors: 24 x1 5
Substituted: 38

0.002 m/s

Figure 7.144 Average settling velocity vectors of Decane at concentration of 500 ppm,
coagulated with EB-5000.



Cross-correlation
Vectors: 24x15

0.003 m/s

Figure 7.145 Cross-correlation velocity vectors of Decane at concentration of 500 ppm, 
coagulated with EB-5000.

Figure 7.146 Flow direction of Decane floes at concentration of 500 ppm, coagulated
with EB-5000.
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Vectors: 2 4 x1 5
Substituted: 62

0.007 m/s

Figure 7.147 Average settling velocity vectors of Decane at concentration of 300 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 24 x  15

0.013 m/s

Figure 7.148 Cross-correlation velocity vectors of Decane at concentration of 300 ppm,
coagulated with Cat-Floc 2953.
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Figure 7.149 Flow direction of Decane floes at concentration of 300 ppm, coagulated 
with Cat-Floc 2953.

Vectors: 2 4 x1 5
Substituted: 53

0.004 m/s

Figure 7.150 Average settling velocity vectors of Decane at concentration of 300 ppm,
coagulated with EB-5000.
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Cross-correlation
Vectors: 24 x 15

0.003 m/s

Figure 7.151 Cross-correlation velocity vectors of Decane at concentration of 300 ppm, 
coagulated with EB-5000.

Q  1 i i '  i  j — i— r : i i i i  r |  ! i  i  r r i  i  i i  [ i  i i  i  ' j " r i  t  t  j i i  i  i  |  i  i  i  i |  i  '  t  t
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Figure 7.152 Flow direction of Decane floes at concentration of 300 ppm, coagulated
with EB-5000.
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Vectors: 2 4 x 1 5
Substituted: 62

0.008 m/s

Figure 7.153 Average settling velocity of Toluene at concentration of 500 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 2 4 x 1 5

0.011 m/s

Figure 7.154 Cross-correlation velocity vectors of Toluene at concentration of 500 ppm,
coagulated with Cat-Floc 2953.
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Figure 7.155 Flow direction of Toluene floes at concentration of 500 ppm, coagulated
with Cat-Floc 2953.

Vectors: 24x15
Substituted: 86

0.016 m/s

Figure 7.156 Average settling velocity vectors o f Toluene at concentration of 500 ppm,
coagulated with EB-5000.



Cross-correlation
Vectors: 2 4 x1 5

0.022 m/s

Figure 7.157 Cross-correlation velocity vectors of Toluene at concentration of 500 ppm, 
coagulated with EB-500.

Figure 7.158 Flow direction of Toluene floes at concentration of 500 ppm, coagulated
with EB-5000.
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Vectors: 24 x 15
Substituted: 58

0.005 m/s

Figure 7.159 Average settling velocity vectors o f toluene at concentration of 300 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 2 4 x 1 5

0.007 m/s

Figure 7.160 Cross-correlation velocity vectors of Toluene at concentration of 300 ppm,
coagulated with Cat-Floc 2953.
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Figure 7.161 Flow direction of Toluene floes at concentration of 300 ppm, coagulated
with Cat-Floc 2953.

Vectors: 2 4 x 1 5
Substituted: 90

0.023 m/s

Figure 7. 162 Average settling velocity vectors o f Toluene at concentration of 300 ppm,
coagulated with EB-5000.



Cross-correlation
Vectors: 2 4 x 1 5

Figure 7.163 Cross-correlation velocity vectors o f Toluene at concentration of 300 ppm, 
coagulated with EB-5000.

Figure 7.164 Flow direction of Toluene at concentration of 300 ppm, coagulated with
EB-5000.
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Vectors: 2 4 x1 5
Substituted: 66

0.014 m/s

Figure 7.165 Average settling velocity vectors of m-xylene at concentration of 500 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 2 4 x 1 5

0.019 m/s

Figure 7. 166 Cross-correlation velocity vectors of m-xylene at concentration of 500
ppm, coagulated with Cat-Floc 2953.
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Figure 7.167 Flow direction o f m-xylene floes at concentration o f 500 ppm, coagulated 
with Cat-Floc 2953.

Vectors: 2 4 x 1 5
Substituted: 77

Figure 7.168 Average settling velocity vectors o f m-xylene at concentration of 500 ppm,
coagulated with EB-5000.
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Cross-correlation
Vectors: 2 4 x 1 5

0.015 m/s

Figure 7.169 Cross-correlation velocity vectors of m-xylene at concentration of 500 ppm, 
coagulated with EB-5000.
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Figure 7.170 Flow direction of m-xylene floes at concentration of 500 ppm, coagulated
with EB-5000.
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Vectors: 2 4x1 5
Substituted: 22

0.004 m/s

Figure 7.171 Average settling velocity vectors of m-xylene at concentration of 300 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 24 x 15

0.006 m/s

Figure 7.172 Cross-correlation velocity vectors of m-xylene at concentration of 300ppm,
coagulated Cat-Floc 2953.
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Figure 7.173 Flow direction of m-xylene at concentration of 300 ppm, coagulated with
Cat-Floc 2953.

Vectors: 2 4 x 1 5
Substituted: 47

0.004 m/s

Figure 7.174 Average settling velocity vectors o f m-xylene at concentration of 300 ppm,
coagulated with EB-5000.



Cross-correlation
Vectors: 2 4 x 1 5

0.006 m/s

Figure 7.175 Cross-correlation velocity vectors of m-xylene at concentration of 300 ppm, 
coagulated with EB-5000.

Figure 7. 176 Flow direction of m-xylene floes at concentration of 300 ppm, coagulated
with EB-5000.
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Vectors: 2 4 x1 5
Substituted: 40

0.005 m/s

Figure 7.173 Average settling velocity vectors of Styrene at concentration of 500 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 2 4 x1 5

0.005 m/s

Figure 7.174 Cross-correlation vectors of Styrene at concentration of 500 ppm,
coagulated with Cat-Floc 2953.
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Figure 7.175 Flow direction of Styrene floe at concentration of 500 ppm, coagulated with
Cat-Floc 2953.

Vectors: 24 x 15
SukttMU&ll 47

Figure 7.156 Average settling velocity vectors of Styrene at concentration of 500 ppm,
coagulated with EB-5000.



Cross-correlation
Vectors: 24 x  15

0.015 m/s

Figure 7.157 Cross-correlation velocity vectors of Styrene at concentration of 500 pm, 
coagulated with EB-5000.

Figure 7.158 Flow direction of Styrene floes at concentration o f 500 ppm, coagulated
with EB-5000.
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Vectors: 2 4 x 1 5
Substituted: 47

0.003 m/s

Figure 7.159 Average settling velocity vectors of Styrene at concentration of 300 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 2 4 x1 5

0.005 m/s

Figure 7.160 cross-correlation velocity vectors of Styrene at concentration of 300 ppm,
coagulated with Cat-Floc 2953.
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Figure 7.161 Flow direction of Styrene floes at concentration of 300 ppm, coagulated 
with EB-5000.

Vectors: 2 4 x 1 5
Substituted: 63

0.003 m/s

Figure 7.162 Average settling velocity vectors o f Styrene at concentration of 300 ppm,
coagulated with EB-5000.
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Cross-correlation
Vectors: 2 4 x 1 5

0.002 m/s

Figure 7.163 Cross-correlation velocity vectors o f Styrene at concentration of 300 ppm, 
coagulated with EB-5000.

Figure 7. 164 Flow direction of Styrene floes at concentration of 300 ppm, coagulated
with EB-5000.
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Vectors: 24 x 15
Substituted: 59

0.006 m/s

Figure 7.165 Average settling velocity vectors of Gasoline at concentration of 500 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 24 x 15

0.009 m/s

Figure 7.166 Cross-correlation velocity vectors of Gasoline at concentration of 500 ppm,
coagulated with Cat-Floc 2953.
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Figure 7.167 Flow direction of Gasoline floes at concentration of 500 ppm, coagulated
with Cat-Floc 2953.

Vectors: 2 4 x1 5
Substituted: 5

.4
A

v i f
A t

V
A \l I 
AM

A A

\

■ '\ ' J  
\ \ ' ' \ \ x \  1 1 » *

i '  i  H

\ I I

\! ■ \ \ ^  '  \  I I I |  / I I
)\ V 7 '  > 1 1 ' I I * ' ‘ 1 /

' 1 i i \ i \ i i m  t 1

V

/  /

1 1 1 1 1 1 1 1 1 1 1 I T T T T T I 1 1 1 1 1 1 1 1 1 1 1 1  I T T  I I I I I I I

v

Figure 7.168 Average settling velocity vectors of Gasoline at concentration of 500 ppm, 
coagulated with EB-5000.



Cross-correlation
Vectors: 24 x  15

0.001 m/s

Figure 7.169 Cross-correlation of Gasoline at concentration of 500 ppm, coagulated with 
EB-5000.

Figure 7.170 Flow direction of Gasoline floes at concentration of 500 ppm, coagulated
with EB-5000.
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Vectors: 2 4 x 1 5
Substituted: 49

0.006 m/s

Figure 7.171 Average settling velocity vectors of Gasoline at concentration of 300 ppm, 
coagulated with Cat-Floc 2953.

Cross-correlation 
Vectors: 2 4 x1 5

0.003 m/s

Figure 7.172 Cross-correlation velocity vectors of Gasoline at concentration of 300 ppm,
coagulated with Cat-Floc 2953.
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Figure 7.173 Flow direction of Gasoline floes at concentration of 300 ppm, coagulated 
with Cat-Floc 2953.

Vectors: 2 4 x1 5
Substituted: 68

0.006 m/s

Figure 7.174 Average settling velocity vectors o f Gasoline at concentration of 300 ppm,
coagulated with EB-5000.
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Cross-correlation
Vectors: 24 x 15

0.009 m/s

Figure 7.175 Cross-correlation of Gasoline velocity vectors at concentration of 300 ppm, 
coagulated with EB-5000.

Figure 7.176 Flow direction of Gasoline floes at concentration of 300 ppm, coagulated
with EB-5000.
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7.4. Research Limitations

The research work conducted had the following limitations:

1. The pond water quality parameters (turbidity, humics, and NOM) could not be 

controlled due to the main feed source being storm water runoff.

2. Volatilization of low molecular weight organics could not be controlled 

completely, even though they were mixed in closed containers. Volatiles could 

have escaped during the preparation process, the coagulation process and the 

preparation for GC analysis (stock solution).

3. Settling velocity calculations based on equation 1, considered the floe as an 

impermeable spherical particle, while most of the floes have heterogeneous 

structure and irregular shapes.

4. Floes microscopically analyzed may have been damaged during slide preparation 

due to the size of the pipette used.

5. Ionic concentration and pH effects were considered to be minimal for the duration 

of research work, nonetheless ionic strength and pH of a solution do effect, to a 

certain extent the coagulation process.
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Prior to settling velocity measurements, the hydrocarbon-coagulant flocculated 

solution was placed in glass cell by pouring the solution into the cell, could have 

cause breaking some o f the floes.



CONCLUSIONS

Higher removal efficiencies o f all hydrocarbons were achieved using coagulant 

Cat-Floc 2953, which was supported by GC analysis, turbidity measurements and 

microscopic analysis.

Floe density calculations confirmed the findings of other researchers, that increase 

in size o f a floe increases settling velocity but decreases density of the floe.

EB-5000 formed floes with more dense inner structure except for styrene at 

concentration 500 ppm and 300 ppm; m-xylene and gasoline at concentration of 

300 ppm.

Cat-Floc 2953 formed larger floes that settle out faster than floes produced by 

EB-5000.

Overall, high removal o f selected hydrocarbons from aqueous solution, with 

cationic polyelectrolytes were achieved using Cat-Floc 2953 and EB-5000.
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1. Optimum dosages of coagulants obtained from jar tests.

Contaminant
Concentration
(ppm)

Cat-Floc 2953 
(ml/L) EB-5000 (ml/L)

Decane 500 7 3
Decane 300 16 3
Toluene 500 4 3
Toluene 300 6 7
m-xylene 500 5 4
m-xylene 300 3 4
Styrene 500 5 3
Styrene 300 5 3
Gasoline 500 4 4
Gasoline 300 7 4

2. Turbidity and pH measurements of Decane at concentration of 500 ppm

Coagulant pH
Turbidity
(NTU)

No coagulant 7.75 12.6

Cat-Floc 2953 7.40 1.55

EB-5000 7.55 1.70
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3. Turbidity and pH measurements of Decane at concentration of 300 ppm

Coagulant pH Turbidity
(NTU)

No coagulant 8.20 6.01

Cat-Floc 2953 7.26 1.18

EB-5000 7.46 2.25

4. Turbidity and pH measurements of styrene at concentration of 500 ppm

Coagulant pH Turbidity
(NTU)

No coagulant 8.07 7.50

Cat-Floc 2953 7.43 0.40

EB-5000 7.74 0.69

5. Turbidity and pH measurements of styrene at concentration of 300 ppm

Coagulant pH
Turbidity
(NTU)

No coagulant 8.11 4.95

Cat-Floc 2953 7.36 0.35

EB-5000 7.71 0.76
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7. Turbidity and pH measurements of m-xylene at concentration of 500 ppm

Coagulant pH
Turbidity
(NTU)

No coagulant 8.08 15.20

Cat-Floc 2953 8.02 0.22

EB-5000 7.96 0.44

8. Turbidity and pH measurements of m-xylene at concentration of 300 ppm

Coagulant pH
Turbidity
(NTU)

No coagulant 7.83 4.01

Cat-Floc 2953 7.69 0.68

EB-5000 7.76 1.39

9. Turbidity and pH measurements of toluene at concentration of 500 ppm

Coagulant pH
Turbidity
(NTU)

No coagulant 8.24 0.79

Cat-Floc 2953 7.56 0.13

EB-5000 7.69 0.15
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10. Turbidity and pH measurement of toluene at concentration of 300 ppm

Coagulant pH
Turbidity
(NTU)

No coagulant 8.09 0.64

Cat-Floc 2953 7.41 0.24

EB-5000 7.52 0.31

11. Turbidity and pH measurement of gasoline at concentration of 500 ppm

Coagulant PH
Turbidity
(NTU)

No coagulant 8.00 22.80

Cat-Floc 2953 7.66 0.33

EB-5000 7.58 0.61

12. Turbidity and pH measurements of gasoline at concentration of 300 ppm

Coagulant PH
Turbidity
(NTU)

No coagulant 7.80 9.48

Cat-Floc 2953 7.53 0.21

EB-5000 7.55 0.71
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