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ABSTRACT OF THE THESIS

MODE CHOICE MODELING WITH NEURAL NETWORK:

BOSTON AREA CASE STUDY

by

Soon Chung

Florida International University, 1997

Miami, Florida

Professor Y-K Lee, Major Professor

Demand forecasting is an essential element in the analysis of transportation systems. It is

concerned with the behavior of consumers of transportation services and facilities. We

choose geographic, demographic, and socioeconomic characteristics of consumers that may

affect the travel demand of each selected. We use an artificial neural network to predict travel

demand with characteristics selected from three different database sources: Census Summary

Tape files, TIGER/Line files, and Federal Transit Administration's National Transit GIS

database.

A neural network is an information processing system that is intensely parallel and neural

networks are capable of learning how to classify and associate input/output patterns. This

capability makes neural network a suitable approach for mode choice modeling for this
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study.

A neural network has two phases: the training and the testing. In the training phase, we find

weights between inputs and outputs, and in the testing phase, neural network calculates

outputs representing travel demand with weights from the training phase.
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CHAPTER I

INTRODUCTION

1.1 BACKGROUND

Demand forecasting is an essential element in the analysis of transportation systems. It is

concerned with the behavior of consumers of transportation services and facilities. Users

include travelers and shippers of goods in urban, interurban, and international transport

markets.

Early studies of major investments in regional highway networks and rapid progress in

computational technology have led to the development of procedures to forecast trips by

origins and destinations and traffic volumes on the links of a network. These modeling

procedures have been continually extended and improved and are being applied worldwide.

A major innovation in the analysis of transportation demand was the development of

disaggregate travel demand models based on discrete choice analysis methods. We are

clearly concerned, however, with the forecasting of aggregate demands. The usual analytic

approach is to subdivide the geographical area under study into zones. Then the origins and

destinations of all travelers in a zone are represented by a single point within the zone,

usually the geographical centroid. Aggregate travel demand models are directly estimated,

with data on travel behavior at some level of aggregation within a geographical zone that
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serves as an observational unit for the statistical analysis.

It has been shown that for a linear regression model of an aggregation of the data prior to

estimation will result in a loss of precision of the estimated parameters if the aggregate

groups are not homogeneous with respect to the values of the explanatory or independent

variables.

Despite these difficulties Berkson's method which is one of linear-in-parameters binary

choice model and least squares procedure should be considered when appropriate and will

generally be most useful under the following conditions (Ben-Akiva and Lerman, 1985):

* The available sample is extremely large, as is occasionally the case with air traffic data or

in some freight demand problems, where large samples of waybills may be available.

" The data are only available in aggregated form, as is often the case with the U.S. Census

data (aggregation in this case is to preserve the anonymity of respondents).

" The model structure uses only a small number of categorized variables so that the number

of cells is reasonably small.

" Each respondent to a survey is observed making a large number of repeated decisions so

that each individual's choices form a natural basis for grouping.

A neural network is an information processing system that is intensely parallel (Caudill and

Butler, 1992). Unlike traditional computer systems, neural networks are capable of learning
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how to classify and associate input/output patterns (Lippmann, 1987). This capability alone

makes neural networks a suitable approach for solving complex problems like forecasting

travel demand from socioeconomic and demographic components pattern received from

several different sources. In addition, neural networks are highly fault tolerant in the sense

that given an input pattern with noise or disturbance, neural networks are still capable of

recognizing that input and providing a correct output (Wasserman, 1989).

1.2 OBJECTIVE

Understanding those backgrounds mentioned above, we intend to examine an Artificial

Neural Network (ANN) for the analysis of travel demand with following issues:

* Is ANN applicable to travel demand analysis?

* What is the effect if the number of hidden or output units is changed?

* What is the effect if the order of input sequence is randomized?
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CHAPTER 11

ARTIFICIAL NEURAL NETWORKS

I.1 INTRODUCTION

An Artificial Neural Network (ANN) can be intuitively considered a mathematical model

that can mimic the relations between given inputs and outputs for any system of interest. By

learning these relations, the ANN adjusts itself to fit the designated system. In other words,

the ANN learning can be viewed as a function fitting process without the need of defining

the necessary functional form. Since the relations between the inputs and outputs may be

quite complex, most often it is difficult, if not impossible, to identify the functional form of

such complex relations. The ANN can be used to accurately predict the corresponding

outcomes of any inputs to the system. The learning process of the ANN is called training.

The ANN must be trained specifically for a particular system before it may be used.

Through the intensive connections between adjacent layer neurons, causal relations between

any input and output may be adequately captured. Therefore, ANN models may sometimes

provide more accurate predictions than conventional statistical models (Wang et al., 1992;

Sharda, 1992).

There are two main factors that describe an Artificial Neural Networks: its architecture and

its algorithm. There are many types of architecture such as perceptron, multi-layer

perceptron, Hopfield Net, and Kohonen Feature Map. The most basic one would be the
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perceptron, a one layer network which is limited in the mappings it can learn, while a

multilayer net (with one or more hidden layers) can learn any continuous mapping to an

arbitrary accuracy. In this paper, the most common single hidden layer feedforward ANN is

chosen. The training algorithms are almost all based on the backpropagation (BP) algorithm,

which is essentially a gradient descent method to minimize the total squared error of the

output computed by the net. Beside BP algorithm, there are the forwardpropagation

algorithm and the selforganization algorithm (Kinnebrock, 1992).

11.2 ARCHITECTURE

Determining an appropriate configuration of hidden neurons for a given problem is usually

troublesome. Hecht-Nielsen (1989) provides a proof that one hidden layer of neurons

(operating sigmoidal activation functions) is sufficient to model any solution surface of

practical interest, though his line of reasoning does not reflect the way in which existing

training algorithms operate, and in this sense is of little more than academic interest. An

alternative, more pragmatic proof that two hidden layers are sufficient is provided by

Lapedes and Farber (1988). In this case, it is shown that an appropriate combination of the

sigmoidal-shaped steps generated at neurons in the first hidden layer can be combined to

produce a bump-shaped feature (of any width and with its peak located at any position) at

a neuron in the second hidden layer.

Despite Hecht-Nielsen's (1989) proof, there are many solution surfaces that are extremely
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difficult to model using a sigmoidal network comprising one hidden layer. Certainly, two

hidden layers provide the greater flexibility necessary to model complex-shaped solution

surfaces, and are thus recommended as a starting point when developing a layered

feedforward network of sigmoidal neurons. In both cases, it needs to be shown that a

solution can be found readily using a single hidden layer, thus recommending such a

configuration as a starting point (Flood and Kartam, 1994).

Generally, there is no direct and precise way of determining the most appropriate number of

neurons to include in each hidden layer, and this problem becomes more complicated as the

number of hidden layers in the network increases. Graphically, it appears that increasing the

number of hidden neurons provides a greater potential for developing a solution surface that

fits closely to that implied by the training patterns. In practice, however, a large number of

hidden neurons can lead to a solution surface that, while fitting the training points closely,

deviates dramatically from the trend of the surface at intermediate points or that provides too

literal of an interpretation of the training points. In addition, a large number of hidden

neurons slow down the operation of the network, both during training and in use.

Conversely, an accurate model of some or all features in the solution surface may not be

achieved if too few hidden neurons are included in the network.

In an attempt to resolve this dilemma, a range of different configurations of hidden neurons

is normally considered, and that with the best performance is accepted (Flood and Kartam,

1994).
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A multi-layer ANN with one layer of hidden units (Z units) is shown in Figure 2.1. In this

study, output units are representing travel demand for each mode and input units are

containing socioeconomic and demographic variables1. The output units (Y units) and the

hidden units also may have biases. The bias on a typical output unit Yk is denoted by wOk; the

bias on a typical hidden unit Z is denoted voj. These bias terms act like weights on

connections from units whose output is always 1. The arrows denote the direction of

propagation of the input signal, hence the term feedforward, During the backpropagation

phase of learning, signals are sent in the reverse directon. This architecture can further be

extended to two or more hidden layers, but for this application to predict travel demand one

hidden layer might be enough.

11.3 BACKPROPAGATION ALGORITHM

Training an ANN by backpropagation (BP) involves three stages: the feedforward of the

input training pattern, the backpropagation of the associated error, and the adjustment of the

weights.

During feedforward, each input unit (Xi) receives an input signal and broadcasts this signal

to each of the hidden units Z,...,Z,. Each hidden unit then computes its activation and sends

its signal (z) to each output unit. Each output unit (Y) computes its activation (yk) to form

All variables used for input vectors are listed in Appendix A.
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Figure 2.1 Atificial Neural Network with One Hidden Layer
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the response of the net for the given input pattern.

During training, each output unit compares its computed activation yk with its target value

tk to determine the associated error for that pattern with that unit. Based on this error, the

factor 6 k (k = 1,..,m) is computed. 8k is used to distribute the error at output unit Yk back to

all units in the previous layer (the hidden units that are connected to Y4). It is also used later

to update the weights between the output and the hidden layer. In a similar manner, the factor

S (j = 1,..,p) is computed for each hidden unit Z,. It is not necessary to propagate the error

back to the input layer, but 6 is used to update the weights between the hidden layer and the

input layer.

After all of the S factors have been determined, the weights for all layers are adjusted

simultaneously. The adjustment to the weight wk (from hidden unit Zj to output unit Yk) is

based on the factor 6k and the activation zj of the hidden unit Z.. The adjustment to the

weight vij (from input unit X; to hidden unit Z,) is based on the factor 6j and the activation

x; of the input unit (Ravi Kothari, 1993).

11.3.1 Activation Function

An activation function for a backpropagation should have several important characteristics:

It should be continuous, differentiable, and monotonically nondecreasing. Furthermore, for

computational efficiency, it is desirable that its derivative be easy to compute. For the most
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commonly used activation functions, the value of the derivative (at a particular value of the

independent variable) can be expressed in terms of the value of the function (at the value of

the independent variable). Usually, the function is expected to saturate, i.e., approach finite

maximum and minimum values asymptotically (Ravi Kothari, 1993).

One of the most typical functions, and the one we used, is the binary sigmoid function,

which has a range of (0, 1) and is defined as:

1

S1+ e

with:

S= f 1 - fl)

This function is shown in Figure 2.2.

11.3.2 Initial Weights and Biases

The choice of initial weights will influence whether the ANN reaches an absolute minimum

(or only a relative -local minimum) of the error and, in that case, how fast it converges. The

update of the weight between two units depends on both the derivative of the upper unit's

activation function, and the activation of the lower unit. For this reason, it is important to

avoid choices of initial weights that would make it likely that either activations or derivatives
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Figure 2.2 Binary Sigmoid, range (0, 1)
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are zero, since the weight correction would be zero. The values for the initial weights must

not be too large, or the initial input signals to each hidden or output unit will be likely to fall

in the region where the derivative of the sigmoid function has very small value (saturation)

and the correction would be negligible. On the other hand, if the initial weights are too small,

the ANN input to a hidden or output unit will be close to zero and the correction would also

be negligible.

The procedure chosen to initialize the ANN was the most common one. The weights (and

biases) were initialized to random values between -0.5 and 0.5. The values need to be

positive and negative because the final weights after training may be of either sign. The

computer's random generator is seeded with the computer's clock and then pseudo random

numbers are generated.

11.4 PROGRAM ALGORITHM

11.4.1 Training Procedure

The classic sigmoid activation function was chosen and the standard BP algorithm was used

for net training. The algorithm employed (in meta-code) 2 is the following:

2 The complete source code for the ANN is listed in Appendix B.
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Step 0. Generate Neural Net in memory and initialize weights to random numbers in the

(-0.5, 0.5) range.

Step 1. While stopping condition is false, do Steps 2-9.

The stopping condition is that the average squared error be less than a given

maximum.

Step 2. For each training set, do Steps 3-8.

Feedforward:

Step 3. Each input unit (Xi, i = 1, . , n) receives an input signal xj and

broadcasts this signal to all units in the layer above (hidden units).

Step 4. Each hidden unit (Zj, j = 1, ... , p) sums its weighted input signals,

z~ in1
z- In = vi + Xi Vi

i-1

applies its activation function to compute its output signal,

1
zj = f (z in) - 1 +

and sends this signal to the output unit.

Step 5. The output unit (Yk, k = 1, ... , m) sums its weighted input signals,

y_ink =Wok + Z W k
j-1

and applies its activation function to compute its output signal,

13



Yk y ink )

Backpropagation of error:

Step 6. The output unit receives a target value corresponding to the input training

set, and computes its error information term.

=k - Yk)f (y-inlk)

calculates its weight correction term (used to update Wk later),

A wk = agkzZ

calculates its bias correction term (used to update Wok later),

AwOk = at,

and sends Sk to hidden layer units.

Step 7. Each hidden unit (Zj, j= 1, ... , p) sums its delta input (from units in the

layer above),

Cin1n = CSkW jk

multiplies by the derivative of its activation function to calculate its error

information term,

9J = _injf '(z_ inj)

calculates its weight correction term (used to update vi later),

Av, = as x,
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and calculates its bias correction term (used to update v0j later),

Av 0 ,j = aS1

Update weights and biases:

Step 8. The output unit updates its bias and weights (j= 0, ... , p):

W k (new) = Wk (old) + Aw

Each hidden unit (Zj, j = 1, . . . , p) updates its bias and

weights (i = 0, . ., n):

v,,(new ) = vij(old) + Avj

Step 9. Test stopping condition.

Step 10. Write net description, weights and biases to an output file.

Step 11. Test the trained net with a set of values not used for training.

where,

X; Input Layer Vector's ith neuron

x; ith input neuron's response

Zj Hidden Layer Vector's jth neuron

z jth hidden layer neuron's response

Yk Output Layer Vector's kth neuron

ye kth output layer neuron's response

tk kth output layer neuron's target value

v weight between input layer and hidden layer

15



w weight between hidden layer and output layer

Momentum Term

S Delta correction error

An iteration is one cycle through the entire set of training vectors. Typically 6,000 to 10,000

iterations were required for training the ANN. The previous program updates the weights

after each training pattern is presented, as opposed to a common variation in which the

weight updates are accumulated over an entire iteration before being applied (batch

updating).

The mathematical basis for the backpropagation algorithm is the optimization technique

known as gradient descent. The gradient of a function (in this case, the function is the error

and the variables are the weights of the net) gives the direction in which the function

increases more rapidly; the negative of the gradient gives the direction in which the function

decreases most rapidly. In this manner, by finding the gradient on a given point in the

hyperplane of the function one can find a minima where the squared errors are minimized.

This is similar to a river flowing down a mountain following the minimum resistance path.

It is then obvious that the minima found is not necessary an absolute minima (the lowest

point in the hole hyperplane) but might be a relative minima (a point which is lower than the

points around it in a small radius). This is one of the most critical drawbacks of the BP

algorithm.
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11.4.2 Feedforward Procedure

After training, a backpropagation neural net is applied by using only the feedforward phase

of the training algorithm. The application procedure is as follows:

Step 0. Initialize weights (from training algorithm).

Step 1. For each input vector, do Steps 2-4.

Step 2. For i = 1, , .. , n: set activation of input unit

Step 3. For j = 1, . . , p:

z_ ini = V0 j + xVi

= f(z_ in )

Step 4. For k = 1, .. .,m:

P
yJin = Wok + z ZWk

J-1

Yk = f (y ink)

17



CHAPTER III

DATABASE

111.1 STUDY AREA

Boston is the capital of Massachusetts and New England's largest city. Named for the

English port in Lincolnshire, England, the city is situated on a hilly peninsula, where the

Mystic and Charles rivers flow into Massachusetts Bay. The city proper is small in terms of

area and has a population of 574,283. The metropolitan area of Greater Boston is, however,

1,038 square miles, with a population of 2.6 million (Shen, 1995).

Boston is a major financial, insurance, educational, and industrial center in the New England

region. The development of facilities in the manufacturing of sophisticated electronics,

computers, and chemical has a great impact on the industrial structure of the metropolitan

area. Tourist industry has a significant impact in the Boston economy as well.

Being a city with over three hundred years of history, Boston has a densely developed central

business district, which remains strong till today. In addition to downtown Boston,

Cambridge is also a major employment center. Because the land has been highly developed,

large number of parking facilities are rare and street parking is limited. The lack of parking

combined with the road congestions provides the strongest incentive for using public transit.

In fact, Boston is ranked the fourth among the major U.S. metropolitan areas as having the
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highest number of workers (31.5%) using public transportation, following New York

City/New Jersey, Washington, D.C., and San Francisco (APTA, 1994).

Massachusetts Bay Transportation Authority (MBTA) was created in 1964 as the forerunner

of many regional transport planning and operating agencies. MBTA provides services to 78

towns and cities within its operating district and 52 non-member communities, serving 4.15

million people in 2,344 square miles of service area. The MBTA now operates 159 bus

routes, three heavy rail lines (Blue Line, Orange Line, and Red Line) and four routes, four

light rail (Green Line) routes, four trackless trolley routes, 11 commuter boat routes

(Shen,1995).

Three counties such as Suffolk County, Middlesex County, and Norfolk County were

selected for describing the metropolitan area of Boston, and they consist of total 586 census

tracks. Geographical and demographic factors of those census tracks that may affect the

travel demand were selected based on the study (Shen et al. 1994). Factors are described as

below:

* Distance to guideway transit station

Distance to the nearest guideway transit station is very important factor in choosing a transit

mode for commuting. In this study, the distance is defined as the distance from the station

to the centroid of the census tract studied.
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* Income

Total income is the algebraic sum of the amounts reported separately for wage or salary

income; net non-farm self-employment income; net farm self-employment income; interest,

dividend, or net rental or royalty income; Social Security or railroad retirement income;

public assistance or welfare income; retirement or disability income; and all other income.

Receipts from the following sources are not included as income; money received from the

sale of property; income from food stamps, public housing subsidies, medical care,

withdrawal of bank deposits; money borrowed; tax refunds; exchange of money between the

relatives living in the same household; insurance payments.

Family income is the summation of the incomes of all members of the family that are 15

years old and older. All persons with income not reported were assigned the reported income

of persons with similar characteristics.

* Place of work

Data on place of work refer to the geographic location at which workers carried out their

occupational activities during the reference week. The comparability of the 1980 and 1990

place of work census category was affected, because the data from the 1980 census was

based on one half of the full census sample and the data from the 1990 census was based on

the full sampling.

* Travel time to work

20



Travel time to work refers to the total number of minutes that it took the person to get from

home to work during public transportation, picking up passengers in carpools, and time spent

in other activities related to getting to work.

Race

The data for race represent self-classification by people according to the race with which they

most closely identify. Race categories include both racial and national origin or socio-

cultural groups. If a person could not provide a single race response, the race of the mother

was used. If a single race response could not be provided for the person's mother, the first

race reported by the person was used. The races include the following classification: White;

Black; American Indian, Eskimo, or Aleut; Asian or Pacific Islander, and Other Race

(includes entries such as multiracial, multiethnic, mixed, interracial, or a Spanish/Hispanic

origin group).

111.2 DATA PRE-PROCESSING

The data employed in the ANN training and testing was obtained from three sources: 1990's

Census Summary Tape Files, TIGER/Line files, Federal Transit Administration's National

Transit Geographic Information System database. The data were processed at the geographic

area levels called census tracts. Census tracts are subdivisions of counties with similar or

homogeneous population characteristics, economic status and living conditions. They were

delineated with the intention of being maintained over a long period of time so that statistical
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comparisons can be made from census to census. Census tracts are identified by a four-digit

basic number and may have two-digit basic suffix (U.S. Department of Commerce and

Bureau of the Census, 1992).

111.2.1 1990's Census Summary Tape Files (STF)

The Census Bureau offers the summary tape files (5TF) which contain the census tabulations

of specific areas. STF1 and STF3 are the most commonly used. STF2 and STF4 include

detailed tabulations by race and Hispanic origin that are rarely used in transportation

applications. STF1 is from the 100 percent count and includes information on household

relationship, sex, race, Hispanic origin, age and marital status. STF3 is from the sample

count or census "long form" (which in 1990 was a sample of 1 in 6 households nationwide,

and in 1980 also a sample of 1 in every 6, except for areas with population less than 2,500).

The long form included the same basic demographic and housing items as the short form,

as well as additional questions on social and economic characteristics and many housing

characteristics (GIS/Trans. Ltd., 1994).

For this study, the STF3 files were selected to perform the analysis. The Census data file is

segmented into 35 dBaseIII files, designated STF300ss.dbf through STF334ss.dbf, where ss

is the two-character state abbreviation and ma is for Massachusetts. The STF300 segment

contains the full 67 field identification section. Segments STF3O1 through STF334, each

contains eight identification fields repeated from the STF300 segment. Fields in the numeric
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data tables are named according to a convention which identifies the tables and the sequence

of the data items within the table (Bureau of the Census, 1992).

Since each state's information is contained in multiple multimegabytes database files, a

method had to be devised to extract the valuable information into more manageable files.

After carefully considering the available tools at the time, Microsoft's Microsoft Query (MQ)

was chosen due to its flexibility. With MO, we were able to perform Structured Query

Language (SQL) queries to the database, thus allowing us to formulate the searches of the

database in a plain English format. For example:

SELECT stf300ma.STATEFP+stf300ma.CNTY+stf300ma.TRACTBNA 'ID',

stf300ma.POP100 'Population'

FROM d:\stf300ma.dbf stf300ma

WHERE (SUMLEV = '140')

This previous example generates a column with the ID of the tract in a format that matches

the geographical data naming convention of TIGER/Line files; and also a column with the

population from the stf300ma.dbf file which corresponds to Boston. In this case, it is also

used a classification of SUMLEV, which allows to extract only the data at the census tract

level. MO also has the added benefit of being able to handle multiple file formats (dBaseIII,

Plain Text, FoxPro, and Excel to name a few), thus serving a double function of extracting

the data and translating it to a useful format. In this manner, once the data was extracted it

is available to save it as both a TAB separated text file and a dBaseIII database file.
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111.2.2 TIGER/Line Files

The geographic database used for this study is from the Census Bureau's Topologically

Integrated Geographic Encoding and Referencing (TIGER) system. The geographic database

is in the so called TIGER/Line files. This database system was created by the Census Bureau

in conjunction with the US Geological Survey. TIGER /ine files simply contain every street

and block type in the United States. TIGER/Line files' data is divided into three major types

of data: 1) Line features (roads, railroads, hydrography, etc.) 2) Landmarks (schools,

churches, parks, cemeteries) 3) polygons (geographic entity codes for areas). The line

feature and polygon information form the majority of data in the TIGER/Line files (U.S.

Department of Commerce and Bureau of the Census, 1992).

The TIGER/Line file structure consists of 14 record types that collectively contain

geographic information (attributes) such as latitude/longitude coordinates of linear and point

features, and area and polygon boundaries. A separate file exists for each of the 14 record

types for each county or county equivalent. The files are named TGRstcty.f5x, where st is

the Federal Information Processing Standard (FIPS) State Code, cty is the FIPS county code,

and x is the record type (U.S. Department of Commerce and Bureau of the Census, 1992).

For this study, st is 25 and cty can be 017 for Middlesex County, 021 for Suffolk County,

and 025 for Norfolk County.

TIGER/Line has a relationship with the 1990 Census Statistical Data. TIGER's digital
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description of the Nation's legal and statistical entities includes FIPS codes and the Census

Bureau codes so that these can be matched easily with the 1990 census data. For this study,

we are interested in performing the analyzes on geographic area levels called tracts. Census

tracts are identified by a four-digit basic number and may have two-digit basic suffix (U.S.

Department of Commerce and Bureau of the Census, 1992). The main information employed

from this database is the latitude and longitude of an internal point of the tract. There are two

available points per tract, one of them is the center of the tract which might not be contained

within the tract depending on the tract's shape, and a properly internal point which in most

cases is the same as the center but which in any circumstance is guaranteed to be internal.

111.2.3 F.TA.'s National Transit Geographic Information System database

The Federal Transit Administration is conducting a three-year project together with some

representatives from organizations such as the American Association of State Highway and

Transportation Officials, the Conference of Minority Transportation Officials, and others,

in order to develop a National Transit Geographic Information System. The Transit

Geographic Information System (GIS) will benefit the surface transportation planning

management; since, the system will facilitate the access to and association of relevant and

numerous transit data that will speed the decision making process (The Urban Transportation

Monitor, 1994).

The Transit GIS is being implemented in three stages. In the first stage, the most important
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to this study, the Transit GIS was established in headquarters, with a core group of in-house

GIS users that apply the new technology to enhance the quality and the content in FTA

reporting. The year of completion was 1994 and the GIS includes urban area maps showing

Rapid, Light, and Commuter Rail System Networks; HOV Facilities; People Mover System

Networks; Ferry Terminals and Routes; Intermodal Terminals; Routes maps for up to one-

half of public bus routes, stations, and maintenance facilities; and other features (The Urban

Transportation Monitor, 1994).

This data was available in the form of GIS databases compatible with the TransCAD GIS

package. The information provided consisted of two type of entities: points and lines. The

line entities describe elements such as Rapid, Light, and Commuter Rail Systems and

Routes. The point entities describe Junctions, Crossings and most important Stations. Each

data record was labeled with the type of element it described, so by applying a filter we were

able to obtain only records of STATION type. Once we had those records, we were able to

export this information to a dBaseIII database file. The information we required was the

latitude/longitude of the stations.

111.3 DATA PROCESSING

Once we had these three different data sources from the STF files, the TIGER/Line files, and

the FTA GIS database in their raw state, it was needed to consolidate this information into

one database. The information, however, required more processing in certain cases. For
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instance, the geographical information was meaningless as it was. It was necessary to

transform the latitude/longitude information into distances. However, the distance required

was the minimum distance to the closest station from the tract inner point. A program needed

to be developed to calculate this distance.

111.3.1 Distance Program

The program language chosen to develop this program3 was Visual Basic. The main factor

determining the choice was the fact that the required information (Station position and tract

center point) was contained in two different dBaseIII files. Visual Basic provided us with an

interface in the form of the Open Data Base Connectivity Layer (ODBC) which shielded us

from the intricacies of the database format, allowing us to simplify the programming task and

concentrate only on the distance algorithm. The algorithm essentially calculates, for each

tract, the distance to all the stations, writing to an output text file the shortest distance. The

distance was calculated by using the maximum arc method which takes into account Earth

curvature thus yielding a more precise value. The program also contemplates the use of the

Euclidean distance that although been less precise is much faster to calculate. However, it

was never required since the run time for the program in most cases was less than 15

minutes.

3 The complete source code for the distance is listed in Appendix C.
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111.3.2 Data Manipulation

After processing the data, it was required to further analyze it, and consolidate it in one

single file. This was done using Microsoft Excel 5.0. Since it was expected that certain

operations would be required to be performed on the data, a spreadsheet with its capability

of displaying and manipulating the information as a whole was the perfect tool for the task.

However, due to the extent of the information, the size of files grew roughly to 5 megabytes

in the end.

Once the data files were imported into Excel, it was needed to correlate the STF data with

the distance to the station data extracted from the TIGER/Line and the FTA GIS database

information. This was done based in the 'ID' field. The 'ID' field is the indexing number

given to each tract. It consists in a series of numbers resulting from the concatenation of the

State FIPS code, plus the county code plus the tract code within that county. For instance,

250173001 means:

1. State FIPS: 25 (Massachusetts)

2. County Code: 017 (Middlesex County)

3. Tract Number: 3001

In this manner each tract is indexed by a unique number. By sorting both data sets and

placing them together in one single worksheet, the final raw data was obtained. Further

checks were made to ensure that there was no mistake in the data. For instance, the number

of records in one table matched the number of records in the second. Also, every so many
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records the information was carefully checked to make sure the numeration was

synchronized. In this manner, Excel files for each of two sets of output were generated.

111.3.3 Generation of Input Files

The generation of the final files is a lengthy process in which the characteristics of the input

data must be taken into account. Once the input data was analyzed a mapping function was

devised to convert the data into an appropriate form suitable to be used in an ANN.

The obtained data from pre-processing, was analyzed to examine its suitability for ANN

training. It was discovered that input variables are generally distributed around the quite

small value of 0.05, as we can see in Figure 3.1. The graphs were generated with the input

variables and they represent the general tendency of the input data vectors. The data that

could be represented as a percentage of population, was divided by the maximum value for

each variable to obtain a normalized value. This value will have a range of (0, 1), thus being

exceptionally well suited for ANN training. However, due to the fact that in most cases most

of the data is concentrated in the lower (0, 0.1) range, a mapping function needs to be

introduced.

The main purpose of the mapping function would be to transform the input vectors into a set

of vector for which the distribution is closer to a normal distribution with the mean around

0.5. The function must also have a simple inverse function to in that manner transform the
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results from the ANN into a vector which can then be compared to the expected result to

assess the ANN quality.

Simply, a linear transformation was used. The linear transformation provided us with the

simplest function capable of changing the range of the input vectors so that most of them

were located in the (0.3, 0.7) range.

Once the Excel files were generated, it was necessary to extract the data into properly

formatted text files. The program for neural network was designed to process ASCII files.

ASCII is a standard method of encoding alphanumeric characters, essentially a standard DOS

text file. Excel provides an extremely simple export command that creates files with exactly

this format. However, all the data could not be used for training. It was necessary to further

divide the information into two separated files, one for training and another for testing. It was

decided to use approximately 50% of the data for training and 10% of the rest of the data for

testing. The files4 were saved in their preprocessed format, ready to be fed into the ANN for

the actual training and evaluation and it was done by Excel macro5 .

4 Sample file for training and testing is in Appendix D.

5 Excel macro to generate training and testing files is in Appendix E.
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11.3.4 Scenario

To apply the ANN to forecasting travel demand with different assumptions such as alteration

of the number of hidden neurons and output, randomization of the order of input sequence,

and application of transformation of method: normalization and transformation, four

scenarios were provided for preparing training and testing files.

In the first scenario, we decided to provide two sets of outputs which are 5 outputs and 6

outputs. 6 outputs consist of 6 different travel mode such as drive alone, carpool, bus,

subway and rail, walk, and other. Percentages of travel demand for each mode are described

in Table 3.1. For 5 outputs, bus and subway and rail are added together as public transit.

After we had database for two sets of output, second scenario was applied to transform both

database with normalization and linear-transformation. Therefore, we had 4 training and

testing files: normalized database for 5 output, linear-transformed database for 5 output,

normalized database for 6 output, and linear-transformed database for 6 output.

In third scenario, we randomized the order of input sequence for each case. Eight training

and testing files were prepared for assumptions through 3 scenarioes. However, changing the

number of hidden neuron was not performed because the ANN program was coded for this

case. We are able to change the number of hidden neurons when we train the ANN. By the

way, fourth scenario was needed for alteration of the number of hidden neurons and we
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choosed 3 different numbers such as 5, 10, and 20.
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CHAPTER IV

ARTIFICIAL NEURAL NETWORK MODELING

Once the training files were created, the actual training of the ANN was conducted. Even

though there seems to be a linear path followed, there were many iterations of algorithms,

programs, and input pre-processing before this final form was obtained. Essentially, the

ANN program requires the input of not only the training and testing vectors, but also certain

parameters of the ANN to be trained. Also, after training, the resulting ANN network needed

to be serialized in a manner that it could be regenerated for further use in the future.

IV.1 ARTIFICIAL NEURAL NETWORK TRAINING

To train the ANN, the program needs a description of the ANN to be employed and we need

to put parameters into a dialog box' provided by the program. The parameters required for

training and testing are listed below:

*Number of Input Neurons (Number of variables)

eNumber of Hidden Neurons

*Number of Output Neurons

*Learning Rate

*Momentum Factor (c)

6 Graphical Interface is shown in Appendix F.
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*Minimum Training Error

*Input file with a complete path

*Output file with a complete path

The number of input neurons is determined by the number of variables and since it was

decided that a certain set be employed for all the cases, a fixed number of 30 input was

established. However, even then it was decided not to hard code this into the program.

Therefore, the number of input variables is one of the parameters that must be passed to the

training program.

The learning rate determines how big the jump would be in the direction of the decreasing

error. Mathematically it determines the delta by which each weight should be corrected given

the direction of the decreasing error gradient. If the learning rate is too small, the ANN might

become trapped in a local minima, if too big it might never stabilize and oscillate

indefinitely. The learning rates employed varied from 0.5 to 0.001 and 0.5 was used for this

study.

The momentum factor is the parameter which helps networks learn faster by basing the

current weight changes proportionally on the previous weight changes. Generally, values

between 0.0 and 1.0 are used and for this study, 0.01 was used. If 0.0 is selected. the

momentum factor term is not used.
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The minimum training error enables the network to stop training when the specified error

value is reached. The training error is the sum of the squared differences between the outputs

and target values. Although values in the range of 0.1 are often used, 0.01 was used for this

study to get the extra accuracy.

The input file is the file obtained after the procedures explained in Chapter III. This file

contains the input vectors and the target values for the given vectors. It is with these values

that the ANN trains. The output file will contain the description of the ANN and the resulting

weights after training. This file is of importance because it allows the experimenter to save

a given network to be employed at a later time.

The error output file was saved automatically with ASCII text file format after each 100

iterations in the directory the program of ANN is located. It is important because it records

each 100 iterations average square error. The average square error determines the average

error squared between the ANN response to the training vectors and the target values and

shows how the training procedure progresses. Figure 4.1 shows how the average squared

error converges and the difference of the progress of the ANN training between with 5

outputs and with 6 outputs. In the legend, titles consist of three digit numbers and one

alphabet character. First number of title is for number of outputs and following two numbers

are for the number of hidden neurons. Last alphabet character is for the method of

transformation: N stands for normalization, T stands for linear-transformation, and R stands

for randomization. Figure 4.2 shows the difference of the progress of the ANN training
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between with the normalized training files and the transformed training files. Also, Figure

4.3 shows the difference of the progress of the ANN training with the training files between

in the normal order and in randomized order.

The main decision the training algorithm must take, is when to consider the ANN to be fully

trained. It was decided to stop the training whenever the average squared error reached a

critical value. The result of the training procedure is summarized in Table 4.1.

IV.2 ARTIFICIAL NEURAL NETWORK TESTING

After a particular network was successfully trained, it was tested with the file generated for

testing. The output file from an ANN training contains a description of the network and the

values for the different weights. With this file and the error output file, we were able to see

how well the ANN performed. Performance is understood as how high (worse) or low (best)

the average squared error for this ANN was when confronted to data it was not trained with

but that is closely related to the data used to train it. Results of the ANN's testing are

summarized in the following Table 4.2 and Table 4.3.

IV.3 DISCUSSION

After the training and testing of the ANN was completed, we had 14 files containing average

squared errors through the training procedure and 14 output files containing predicted travel
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demand from the testing procedure, according to four scenarioes assumed in Chapter 3.

These files were opened in Excel for further analysis and output values for travel demand

were compared to actual travel demands to evaluate the ANN's performance in forcasting

travel demand.

From average squared errors in error files, we are able to see the progress of the ANN's

learning procedure which is called the "ANN's training". Figure 4.1 contains errors curves

for 6 different cases. First error curve is for 5 outputs, 5 hidden neurons, and normalization.

Second error curve is for 5 outputs, 10 hidden neurons, and normalization. Third error curve

is for 5 outputs, 20 hidden neurons, and normalization. Fourth error curve is for 6 outputs,

5 hidden neurons, and normalization. Fifth error curve is for 6 outputs, 10 hidden neurons,

and normalization. Sixth error curve is for 6 outputs, 20 hidden neurons, and normalization.

Therefore, the effect of alteration of the number of hidden neuron and outputs is described

in this figure. We are able to see that average squared errors for 5 outputs are generally lower

than those for 6 outputs. Number of iterations of training for 5 outputs are less than number

of iterations for 6 outputs.

Figure 4.2 contains error curves for 6 different cases. First error curve is for 6 outputs, 5

hidden neurons, and normalization. Second error curve is for 6 outputs, 10 hidden neurons,

and normalization. Third error curve is for 6 outputs, 20 hidden neurons, and normalization.

Fourth error curve is for 6 outputs, 5 hidden neurons, and transformation. Fifth error curve

is for 6 outputs, 10 hidden neurons, and transformation. Sixth error curve is for 6 outputs,
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20 hidden neurons, and transformation. Therefore, the effect of transformation is described

in this figure. We are able to see that average squared errors for transformation are generally

lower than those for normalization.

Figure 4.3 contains errors curves for 4 different cases. First error curve is for 5 outputs, 10

hidden neurons, and normalization. Second error curve is for 5 outputs, 10 hidden neurons,

normalization, and randomization. Third error curve is for 5 outputs, 10 hidden neurons, and

transformation. Fourth error curve is for 5 outputs, 10 hidden neurons, normalization, and

randomization. Therefore, the effect of randomization of the input sequence is described in

this figure. We are able to see that randomization of input sequence did not affect the ANN's

training procedure.

Table 4.1 shows results of the ANN's training for all cases. 293 census tracts are used for

training. Numbers for high water mark are numbers of census tract satified minimum error

given at the beginning stage of training and if the ANN was fully trained numbers are

underlined as its appear in the table. Numbers without underline represent that the ANN was

not fully trained and the training process did not progress. The ANN training procedure was

stopped intentionally in these cases: the case for 5 outputs, 5 hidden neurons, and

normalization, the case for 5 outputs, 5 hidden neurons, and transformation, the case for 6

outputs, 5 hidden neurons, and normalization, the case for 6 outputs, 10 hidden neurons, and

normalization, the case for 6 outputs, 5 hidden neurons, and transformation, and the case for

6 outputs, 10 hidden neurons, and transformation.
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For the ANN's testing, 50 census tracts were selected, and input variables of these census

tracts are included in the testing files. With a testing file and an weight file which is the result

of training for each case, the ANN's testing was conducted. As results of testing, we have 14

output files containing normalized values for predicted travel demands.

Figure 4.4 shows actual travel demands for 'drive alone' with three predicted travel demands

for three different cases: the first case for 5 outputs and 5 hidden neurons, the second case

for 5 outputs and 10 hidden neurons, and the third case for 5 outputs and 20 hidden neurons.

Travel demands in this figure are those of 50 census tracts selected for testing and are

normalized to have a range of (0, 1). Predicted demands are closely matched to actual

demands with average errors: 0.0018 for the first case, 0.002 for the second case, and 0.0012

for the third case.

Figure 4.5 shows actual travel demands for 'carpool' with three predicted travel demands for

three different cases: the first case for 5 outputs and 5 hidden neurons, the second case for

5 outputs and 10 hidden neurons, and the third case for 5 outputs and 20 hidden neurons.

Travel demands in this figure are those of 50 census tracts selected for testing and are

normalized to have a range of (0, 1). Predicted demands are closely matched to actual

demands with average errors: 0.0091 for the first case, 0.0094 for the second case, and 0.01

for the third case.

Figure 4.6 shows actual travel demands for 'public transit' with three predicted travel
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demands for three different cases: the first case for 5 outputs and 5 hidden neurons, the

second case for 5 outputs and 10 hidden neurons, and the third case for 5 outputs and 20

hidden neurons. Travel demands in this figure are those of 50 census tracts selected for

testing and are normalized to have a range of (0, 1). Predicted demands are closely matched

to actual demands with average errors: 0.0052 for the first case, 0.0039 for the second case,

and 0.0036 for the third case.

Figure 4.7 shows actual travel demands for 'walk' with three predicted travel demands for

three different cases: the first case for 5 outputs and 5 hidden neurons, the second case for

5 outputs and 10 hidden neurons, and the third case for 5 outputs and 20 hidden neurons.

Travel demands in this figure are those of 50 census tracts selected for testing and are

normalized to have a range of (0, 1). Predicted demands are closely matched to actual

demands with average errors: 0.0047 for the first case, 0.0022 for the second case, and

0.0012 for the third case.

Figure 4.8 shows actual travel demands for 'other' with three predicted travel demands for

three different cases: the first case for 5 outputs and 5 hidden neurons, the second case for

5 outputs and 10 hidden neurons, and the third case for 5 outputs and 20 hidden neurons.

Travel demands in this figure are those of 50 census tracts selected for testing and are

normalized to have a range of (0, 1). Predicted demands are closely matched to actual

demands with average errors: 0.0039 for the first case, 0.0042 for the second case, and

0.0036 for the third case.
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Figure 4.9 shows actual travel demands for 'drive alone' with two predicted travel demands

for two different cases: the first case for 5 outputs and 20 hidden neurons and the second case

for 6 outputs and 20 hidden neurons. Travel demands in this figure are those of 50 census

tracts selected for testing and are normalized to have a range of (0, 1). Predicted demands are

closely matched to actual demands with average errors: 0.0012 for both cases.

Figure 4.10 shows actual travel demands for 'drive alone' with two predicted travel demands

for two different cases: the first case for 5 outputs, 20 hidden neurons, and normalization and

the second case for 5 outputs, 20 hidden neurons, and transformation. Travel demands in this

figure are those of 50 census tracts selected for testing and are normalized to have a range

of (0, 1). Predicted demands are closely matched to actual demands with average errors:

0.0012 for the first case and 0.0027 for the second case.

Figure 4.11 shows actual travel demands for 'drive alone' with two predicted travel demands

for two different cases: the first case for 5 outputs, 10 hidden neurons, and normal sequence

and the second case for 5 outputs, 10 hidden neurons, and randomized sequence. Travel

demands in this figure are those of 50 census tracts selected for testing and are normalized

to have a range of (0, 1). Predicted demands are closely matched to actual demands with

average errors: 0.002 for the first case and 0.0023 for the second case.

As shown in Table 4.2 and Table 4.3, average squared errors becomes smaller as the number

of hidden neurons are increased. It seems that linear-transformation did not affect results of
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the ANN's testing and randomization of the order of input sequence did not bring much

difference. However, we are able to have better testing results with 5 outputs than with 6

outputs. Even though the ANN was not fully trained, the testing results were acceptable with

average squared errors around 0.006.
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CHAPTER V

CONCLUSION

For this study, a Pentium Class computer with 24 MB of RAM and Windows95 were

employed. 6000 iterations of the ANN's training took about 24 hours, but testing the ANN

was performed in less than 10 seconds. The ANN needs long time for training to find out

weights between layers. Once we have weights, however, it doesn't take long time to apply

the ANN for forecasting.

Main objective of this study is to show whether the ANN is applicable to travel demand

analysis. Overall, it was demonstrated that the ANN is capable of forecasting travel demands

in the cases tested with an average of average squared errors of 0.0048 when the ANN was

satisfying both stopping criteria and 0.0058 when the ANN was satisfying one of stopping

criteria, but still an average squared error is less than error threshold.

Secondary objectives of this paper are to find out the effects of alteration of the number of

hidden neurons and output neurons and transformation of input vectors. Three transformation

methods were examined: Normalization, Transformation, and Randomization. It was found

that the training and testing of the ANN with smaller number of output neurons came up with

better results. Two sets of input database were prepared and each of these had 5 output

neurons and 6 output neurons. Comparing results of training and testing the ANN of these

two input database, average squared errors for 5 output neurons were generally lower than
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those for 6 output neurons and the number of training iterations for 5 output neurons was less

than the number of training iterations for 6 output neurons. In the case of hidden neurons,

increasing number of hidden neurons made average squared error converge to a given

minimum value, 0.01, faster so that the number of iterations of training was decreased.

Transformation of input vectors affect the ANN's performance by lowering the initial

average squared error during the ANN's training, but it did not affect the final result of

testing. It seems that randomization did not bring much differences for both training and

testing the ANN.

To improve the performance of the ANN adopted in this study, there are possibly several

changes can be recommended such as increasing the number of hidden layers, using other

activation functions (bipolar sigmoid function), using other transformation functions (

sigmoid function), and training the ANN by other algorithm.
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APPENDIX A

List of Input Variables

-White Male 16-29
-White Male 30-60
-White Male 65-Over
-White Female 16-29
-White Female 30-64
-White Female 65-Over
-Black Male 16-29
-Black Male 30-64
-Black Male 65-Over
-Black Female 16-29
-Black Female 30-64
-Black Female 65-Over
-Other Male 16-29
-Other Male 30-64
-Other Male 65-Over
- Other Fermale 16-29

Other Female 30-64
SOther Female 65-Over
SWorked in MSA/PMSA of residence Central city
-Worked in MSA/PMSA other
- Travel Time Less Then 14
- 14 to 29 minutes
- 30 to 44 minutes

45 or more minutes
-Worked at home

Distance to nearest Station
-Population Density (inh/sqmi)
-Per Capita Income 1989
-Per Capita Income White 1989

-Per Capita Income Black 1989
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APPENDIX B

Program Code for ANN

/1 Backpropagation training algorithm

#ifndef FFBACKPR_C
#define FFBACKPR_C

#include <conio.h>
#include <malloc.h>
//1// #include <mem.h>

#include "ut.h"
#include "uttypes.h"
#include "ff.h"

void BackpropagationTraining(FFSetupRec setup, WeightsRec weights,
TrainingRec TrRec, GetDataProc

GetNetwork nputOutput);

void Backpropagation(NetworkRec net, FVector DesiredOut, WeightsRec wts,
WeightsRec momentum, FFSetupRec setup){

1/ one hidden layer
int i,j,k;
float sum = (float)0.0, wtChange = (float)0.0;
double term = (double)0.0;
DVector iDelta = NULL;
FVector oDelta = NULL;
iDelta = AllocateDVector(1,setup.NOfHlNodes);
oDelta = AllocateFVector(1,setup.NOfOutputs);
forUj=1;j<=setup.NOfOutputs;j++)

oDelta[j]=DesiredOut[j]-net.yOut[j];
for= 1;j <=setup.NOfHlNodes;j++){

sum = (float)0.0;
for(k=1;k<=setup.NOfOutputs;k++){

term=oDelta[k] *wts.wo[j][k];
if(setup.SigmoidOut)

term *=net.yOut[k]*(1.0 - net.yOut[k]);
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sum += (float)term;

}
iDelta[j] = sum;

}
for(i=1;i<=(setup.NOftnputs + 1);i++)

for(j=1;j<=setup.NOfHINodes;j++){
wtChange =

(float)iDelta[j]*(float)net.xInp[i]*(float)net.hl[j]*((float)1.0-(float)net.hl[j]);
if(!setup.SigmoidOut)

wtChange *= (float)0.1;
wts.wi[i][j] +=setup.LearningRate*((1.0 - setup.alpha)*wtChange +

setup.alpha * momentum.wi[i][j]);
momentum .wi[i][j]=wtChange;

}
for(i=1;i<=setup.NOfHlNodes;i++){

for(j=1;j<=setup.NOfOutputs;j++){
wtChange = oDelta[j]*(float)net.hl[i];
if(setup.SigmoidOut)

wtChange*=net.yOut[j]*((float)1.0-net.yOut[j]);
else

wtChange *= (float)0.1;
wts.wo[i][j]+=setup.LearningRate*

((1.0 - setup.alpha) * wtChange+
setup.alpha*momentum.wo[i][j]);

momentum.wo[i]j ]=wtChange;

}
}

FreeFVector(oDelta,1);
FreeDVector(iDelta,1);
return;

I

void BackpropagationTraining(FFSetupRec setup, WeightsRec weights,
TrainingRec TrRec, GetDataProc

GetNetworklnputOutput){
int i,k;
float err,sumerr;
int *ShuffleList;
WeightsRec momentum = {0,NULL,NULL};
NetworkRec network = {(short)0,NULL,NULL};
FVector dOut = NULL;
DisplayRec display = {0,0,0,0,0,0};
FILE *outfile;
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#define OUTFORMAT "%9.4E\n"

AllocateNetwork(setup,&network);
momentum = Initialize Weights(setup,0);
sumerr = (float)0;
dOut = AllocateFVector(1,setup.NOfOutputs);
ShuffleList=(int *)malloc((sizet)(TrRec.NOf rainingItems+1)*sizeof(int));
display.iter = setup.Startter;
display.NbrTrItems = TrRec.NOflrainingltems;
SetupScreen (setup,display);
if(!AppOutputTextFile(&outfile, "errors.txt"))

exit(O);
while ((display.RightCount < TrRec.NOfTrainingltems) && !kbhit(){

display.RightCount = 0;
display.WrongCount = 0;
display.iter++;
if ((display.iter % 100) == )

if(!WriteWeights(weights, setup.files.OutWtsFileName, setup))
goto ExitProc;

fprintf(outfile,OUT_FORMAT,sumerr/TrRec.NOrainingItems);

}
ResetScreen (display);
gotoxy(1,25);
sumerr = (float)0;
if(setup.Shuffle)

shuffl(TrRec.NOfTrainingltems,ShuffleList);
for(i=1;i<=TrRec.NOfTrainingltems;i++){

if(setup.Shuffle)
k=ShuffleList[i - +1;

else
k=i;

GetNetworkInputOutput(setup,TrRec,k,network.xlnp,dOut);
Feedforward(network,weights,setup);
err = FFError(dOut,network.yOut,setup);
sumerr += err;
if(err>setup.ErrorThreshold){

display.WrongCount++;
Backpropagation(network,dOut,weights,momentur,setup);

}
else

display.RightCount++;
DisplayResults(setup,display,dout,nework.yout);

}
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if(display.RightCount > display.HighWater)
display.HighWater = display.RightCount;

display.LastRight = display.RightCount;
display.LastWrong = display.WrongCount;
}

if(!kbit()
cprintf("%c",BEEP);

else
getch(;

clrscr();
gotoxy(1,4);
cprintf("Total number of iterations used: %ld",display.iter);
gotoxy(1,6);
cprintf("High water mark: %3d out of %3ld.", display.HighWater,

TrRec.NOffrainingItems);
gotoxy(1,8);
if(!WriteWeights(weights,setup.files.OutWtsFileName,setup))

goto ExitProc;
gotoxy(1,15);
cprintf(" Weights saved to file: %s", setup.files.OutWtsFileName);
gotoxy(1,15);
cputs("Press key to clear: ");
getch);

ExitProc:
fclose(outfile);
clrscr();
free (ShuffleList);
FreeFVector(dOut,1);
FreeNetwork(&network);
Free Weights(&momentum);
return;

}

#endif
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// Feedforward algorithm implementation

#ifndef FFEEDFW_C
#define FFEEDFW_C

#include <conio.h>
#include <math.h>
#include <malloc.h>

#include "ut.h"
#include "ff.h"

void AllocateNetwork(FFSetupRec setup, NetworkRec *network);
void FreeNetwork (NetworkRec *network);
float FFError (FVector desired, FVector NetOut, FFSetupRec setup);
void Feedforward (NetworkRec TheNetwork, WeightsRec The Weights,

FFSetupRec TheSetupRec);

void AllocateNetwork(FFSetupRec setup, NetworkRec *network){
network->xlnp = AllocateFVector(1,setup.NOflnputs + 1);
network->yOut = AllocateFVector(1,setup.NOfOutputs + 1);
network->hl= AllocateDVector(1,setup.NOfHlNodes);
network->allocated = TRUE;
return;

}

void FreeNetwork(NetworkRec *network){
if(network->allocated){

FreeFVector(network->xlnp,1);
FreeFVector(network->yOut,1);
FreeDVector(network->hl,1);

}
network->allocated = FALSE;
return;
}

double sigmoid(double x){

if(x>5O.0) return 1.0;
if(x<-50.0) return 0.0;
return 1.0/(1.0 + exp(-x));

}
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float FFError(FVector desired, FVector NetOut, FFSetupRec setup){
int i;
float sum = (float)0.0;
for (i=1;i<=setup.NOfOutputs;i++)

sum += (desired[i] NetOut[i])*(desired[i] - NetOut[i]);
return (float)0.5*sum;
}

void Feedforward(NetworkRec net, WeightsRec weights,
FFSetupRec setup){

int i,j;
double wx = 0.0, whl=0.0;
net.xlnp[setup.NOflnputs + 1] = (float)1.0;
for(i=1;i<=setup.NOfHlNodes;i++){

wx=0.0;
for(j= 1;j<=(setup.NOfInputs+1);j++)

wx += weights.wi[j][i]*net.xInp[j];
net.hl[i]=sigmoid(wx);
}

for(i=1;i<=setup.NOfOutputs;i++){
whl = 0.0;
forOj=1;j<=setup.NOfHlNodes;j++)

whl+=weights.wo[j][i]*net.hl[j];
if(setup.SigmoidOut)

net.yOut[i] = (float)sigmoid(whl);
else

net.yOut[i] = (float)whl;

}
return;
}

#endif
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Program Code for Distance

Sub Extract ()
Dim SQLQuery As String
Dim OutLine As String
Dim ssSTF As Snapshot
Dim ssFTA As Snapshot
Din dFTALon, dFTALat As Double
Dim dSTFLon, dSTFLat As Double
Dim ID As Integer

SQLQuery = "SELECT STATEFP, CNTY, TRACTBNA, BLCKGR, INTPTLAT,
INTPTLNG "

SOL uery = SOL uery & "FROM" & tblSTFInput
SOL uery = SOL uery & " WHERE (SUMLEV = '140')"
MsgBox (SQLQuery)
Set ssSTF = dbSTFInput.CreateSnapshot(SQLQuery)
ssSTF.MoveFirst

SQLQuery = "SELECT LATITUDE, LONGITUDE, TYPE, ID"
SQLQuery = SQLQuery & "FROM" & tblFTAlnput
SQLQuery = SQLQuery & " WHERE (TYPE='STA')"
MsgBox (SQLQuery)
Set ssFTA = dbFTAnput.CreateSnapshot(SQLQuery)
ssFTA.MoveFirst

Open szOutFile For Output As 1 Len = 1024

Do Until (ssSTF.EOF)
dSTFLat = ssSTF("INTPTLAT") * .000001 * 3.14159 / 180
dSTFLon = ssSTF("INTPTLNG") * .000001 * 3.14159 / 180

ssFTA.MoveFirst
dFinal = 10000000
Do Until (ssFT.EOF)

dFTALat = ssFTA("LATITUDE") * .000001 * 3.14159 / 180
dFTALon = ssFTA("LONGITUDE") * .000001 * 3.14159 / 180
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If frmMain.optEuclidean.Value = True Then
distance = EuclDist(dSTFLat, dSTFLon, dFTALat, dFTALon)

Else
distance = SpherDist(dSTFLat, dSTFLon, dFTALat, dFTALon)

End If
If distance < dFinal Then

dFinal = distance
ID = ssFTA("ID")

End If
DoEvents
ssFTA.MoveNext

Loop

OutLine = ssSTF("STATEFP") & ssSTF("CNTY") & ssSTF("TRACTBNA")
OutLine = OutLine & "," & dFinal & "," & ID
Print #1, OutLine
ssSTF.MoveNext

Loop

MsgBox ("Process Finished")

End Sub

Function Arccos (angle As Double) As Double
Arccos = Atn(-angle / Sqr(-angle * angle + 1)) + 1.5708

End Function

Sub dbOpen (ByVal szRawFile As String)

Dim szPath As String
Dim szfile As String
Dim i, iPos As Integer

i = Len(szRawFile) -3
While Not (InStr(i, szRawFile, "\") <> 0)

i=i-1
Wend
szPath = Left(szRawFile, i)
szfile = Mid(szRawFile, i + 1, Len(szRawFile) - i - 4)
Set dbSTFInput = OpenDatabase(szPath, False, True, "dBASE III")
Set tblSTFInput = dbSTFInput.OpenTable(szfile)
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End Sub

Function EuclDist (ByVal pOneLat As Double, ByVal pOneLon As Double, ByVal
pTwoLat As Double, ByVal pTwoLon As Double) As Double

EuclDist = 3440.4 * Sqr((pOneLon - pTwoLon)^ 2 + (pOneLat -pTwoLat)^ 2)

End Function

Sub FTAOpen (ByVal szRawFile As String)
Dim szPath As String
Dim szfile As String
Dim i, iPos As Integer

i = Len(szRawFile) -3
While Not (InStr(i, szRawFile, "\") <> 0)

i=i-1
Wend
szPath = Left(szRawFile, i)
szfile = Mid(szRawFile, i + 1, Len(szRawFile) - i - 4)
Set dbFTAlnput = OpenDatabase(szPath, False, True, "dBASE III")
Set tblFTAInput = dbFTAlnputOpenTable(szfile)

End Sub

Function SpherDist (ByVal pOneLat As Double, ByVal pOneLon As Double, ByVal
pTwoLat As Double, ByVal pTwoLon As Double) As Double

SpherDist = 3440.4 * Arccos(Sin(pOneLat) * Sin(pTwoLat) + Cos(pOneLat) *

Cos(pTwoLat) * Cos(pOneLon - pTwoLon))

End Function
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,APPENDIX D

Sample File for Training and Testing

4 2 No. of input No. of outputs
minimum
0.000000 #Input minimum for inpout 1
0.000000 #Input minimum for inpout 2
0.000000 #Input minimum for inpout 3
0.000000 #Input minimum for inpout 4

0.000000 #Input minimum for output 1
0.000000 #Input minimum for output 2
maximum
1000.000 #Input maximum for input 1
1.000000 #Input maximum for input 2
0.300000 #Input maximum for input 3
0.400000 #Input maximum for input 4

100.0000 #Input maximum for output 1
56.00000 #Input maximum for output 2
training data
232.0000 #Input Data 1 for Training Set 1
2.000000 #Input Data 2 for Training Set 1
32323.00 #Input Data 3 for Training Set 1
2323.000 #Input Data 4 for Training Set 1

2.000000 #Output Data 1 for Training Set 1

3.000000 #Output Data 2 for Training Set 1
23.00000 #Input Data 1 for Training Set 2
2.000000 #Input Data 2 for Training Set 2
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APPENDIX E

Excel Macro for Training and Testing Files

Sub NData4Training()
Dim I As Integer

Sheets("Norm").Select
For I = 1 To 294

Range(Cells(I * 2, 2), Cells(I * 2, 36)).Select
Selection.Copy
Sheets("Sheet6").Select
Cells(I * 35 - 34, 1).Select
Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone,

SkipBlanks:=False, Transpose:=True
Sheets("Norm").Select
Application.CutCopyMode = False

Next I
End Sub

Sub NData4Testing()
Dim I As Integer

Sheets("Norm").Select
ForI= 1To50

Range(Cells(I * 11, 2), Cells(I * 11, 36)).Select
Selection.Copy
Sheets("Sheet7").Select
Cells(I * 35 - 34, 1).Select
Selection.PasteSpecial Paste:=xl Values, Operation:=xlNone,

SkipBlanks:=False, Transpose:=True
Sheets("Norm").Select
Application.CutCopyMode = False

Next I
End Sub

75



Graphical Interface
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