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ABSTRACT OF THE THESIS 

MODIFIED PREDATOR-PREY (MPP) ALGORITHM FOR SINGLE- AND MULTI

OBJECTIVE OPTIMIZATION PROBLEMS 

by

Souma Chowdhury 

Florida International University, 2008 

Miami, Florida 

Professor George S. Dulikravich, Major Professor 

The aim of this work is to develop an algorithm that can solve multidisciplinary 

design optimization problems. In predator-prey algorithm, a relatively small number of 

predators and a much larger number of prey are randomly placed on a two dimensional 

lattice with connected ends. The predators are partially or completely biased towards one 

or more objectives, based on which each predator kills the weakest prey in its 

neighborhood. A stronger prey created through evolution replaces this prey. In case of 

constrained problems, the sum o f constraint violations serves as an additional objective.

Modifications o f the basic predator-prey algorithm have been implemented in this 

study regarding the selection procedure, apparent movement o f the predators, mutation 

strategy, dynamics o f the Pareto convergence, etc. Further modifications have been made 

making the algorithm capable o f handling equality and inequality constraints. The final 

modified algorithm is tested on standard constrained/unconstrained, single and multi

objective optimization problems.
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CHAPTER I -  INTRODUCTION

1.1 Research Objective

The Predator-Prey (PP) algorithm is an Evolutionary Multiobjective Optimization

(EMO) algorithm, which utilizes the dynamics of predator and prey interactions existing

in nature in search for optimal solutions. There are different forms of the Predator Prey

algorithm available in literature, but most o f them prove to be relatively incapable of

solving complex problems, when compared to other popular evolutionary optimization

algorithms. Consequently, there exist very few instances o f application of any form of the

PP algorithm to real world problems. Nevertheless, since the modus operandi of the PP

algorithm is significantly different from other standard EMOs, there is sufficient basis to

believe that the potentials of this algorithm have not been fully realized.

This research is directed towards the development o f a robust and computationally

inexpensive Modified Predator-Prey (MPP) optimization algorithm capable of handling

complex design optimization problems, through the assimilation of special features of

existing PP models, modifications of the same and addition o f certain new features.

Specific objectives are as follows:

1. Validation o f MPP with standard test cases consisting of two or more objectives, as 

well as cases with large number of design variables. Test cases analyzed are taken 

from the multi-objective optimization comparison by Zitzler et al. [1] and the design 

o f scalable test problems by Deb et a l  [2].

2. Development o f a single objective version of MPP (SOMPP) and subsequent 

validation with standard single objective test cases.
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3. Formulation and inclusion of legitimate constraint handling modules into both MPP 

and SOMPP and subsequent validation with standard constrained multiobjective 

optimization problems and constrained single objective problems such as developed 

by Hock and Schittkowskii [3] and Schittkowskii [4], respectively.

4. Application o f MPP to a practical problem, preferably in the fields o f fluid and 

thermal systems simulated using Computational Fluid Dynamics (CFD).

1.2 Multidisciplinary Design Optimization (MDO)

Typical real world systems, be it engineering, scientific, social or financial are comprised 

o f a large number o f variables and multiple output parameters. Skilled designers and 

systems analysts use their knowledge, experience and intuition to assign values to these 

variables in order to extract the most desirable performance from the process or the 

system in concern. However, due to the size and complexity o f the design task and likely 

involvement o f different disciplines, it becomes increasingly difficult even for the most 

competent designers to account for all the variables and constraints involved 

simultaneously. This calls for the application of relevant, efficient and robust 

mathematical models. Multidisciplinary Design Optimization (MDO) is the application of 

numerical algorithms for designing systems with or without inherent coupling between 

various disciplines, in order to achieve optimal performance in terms of desired 

parameter outcomes, cost and reliability.

Before the 1980’s, design optimization was mainly dominated by gradient based 

techniques, currently referred to as classical techniques that are a combination of 

optimality criterion and mathematical programming. Most practical systems/processes
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demand multi-objective optimization that is searching for feasible solutions 

corresponding to extreme values of one or more objectives (output parameters). In the 

case of multiple objectives, decision makers and designers would prefer a set of most 

suitable trade-off solutions, better termed as non-dominated solutions [5]. However, 

gradient based algorithms follow a point-by-point approach in search for better solutions, 

consequently leading to a single optimized solution. The last few decades have seen the 

development of optimization algorithms inspired by the principles o f natural evolution. 

These algorithms, often termed as Evolutionary Optimization Algorithms (EOA), utilize 

a set of multiple candidate solutions (population space) to follow an iterative procedure 

producing a final set o f the best compromise solutions, the graphical representation of 

these which is termed Pareto front [5]. In case of single objective problems, the Pareto 

front reduces to a single optimal solution known as the global minimum or global 

maximum. Genetic algorithm, differential evolution, particle swarm, ant colony, and 

predator-prey algorithms are some of the most prominent EOAs.

Most real world systems that demand optimized design are often subject to 

configurational and operational restrictions which should be taken into consideration 

during the process o f optimization. This necessitates optimization algorithms capable of 

producing solutions that are both optimum as well as feasible with respect to the system 

constraints. These system constraints can be modeled as mathematical constraint 

functions.
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1.3 PP -  Literature Review

In 1998, Hans Paul Schwefel proposed a new optimization algorithm [6] to search for 

Pareto-optimal solutions from a randomly generated initial population o f candidate 

solutions. This algorithm imitates the natural phenomena that a predator kills the weakest 

prey in its neighborhood, and the next generations of preys that evolve are relatively 

stronger and more immune to such predator attacks. However, this initial PP optimization 

algorithm seemed to have difficulty in producing well distributed non-dominated 

solutions along the Pareto front. Since then, several modifications of the above algorithm 

have appeared in literature. Deb [5] suggested an improved version of the algorithm 

which included certain new features, namely, the ‘elite preservation operator”, the 

‘recombination operator’ and the ‘diversity preservation operator’. A further modified 

version o f the algorithm was proposed by Li [7], where a dynamic spatial structure of the 

predator-prey population was used. It involved the movement of both predators and preys 

and changing population strength of prey. Some other versions o f the algorithm have 

been presented by Grimme et al. [8] and Silva et al. [9]. The former used a modified 

recombination and mutation model. The latter, predominantly a particle swarm 

optimization algorithm, introduces the concept of predator-prey interactions in the swarm 

to control the balance between exploration and exploitation, hence improving both 

diversity and rate o f convergence.

However, most o f the above versions find it difficult to produce well distributed set of 

Pareto optimal solutions in a limited number of function evaluations especially when 

dealing with problems with more than two objectives or significantly high number of 

decision (design) variables. In most practical applications o f optimization, the calculation

4



time for evaluating model functions dominate. This demands optimization algorithms 

capable o f producing dependable solutions while investing the minimum number of 

function evaluations possible. Moreover, the forms of the PP algorithm available in 

literature do not have the ability to handle constraints, which form an integral part of 

most practical problems.

1.4 Optimization in Aerodynamics

Such multi-objective evolutionary techniques have been widely employed in the 

aerospace industry for optimizing design and performance such as using genetic 

algorithms in the conceptual phase of aerospace vehicle design and satellite constellation 

design [10] and aerodynamic shape design with minimization of ‘drag to lift’ ratio [11, 

12]. The same also finds several applications in the field o f gas dynamics such as using 

evolutionary hybrid optimization for the design of internal convectively cooled 3-D axial 

gas turbine blades [13], optimizing hub and shroud geometry and inlet/exit flow 

parameters for each row of blades in a multistage axial flow turbine [14] and 

aerodynamic shape design o f turbine blades involving minimization o f total pressure loss 

across the 2D linear-airfoil cascade row [15].

5



CHAPTER II -  M ULTI-OBJECTIVE PREDATOR-PREY ALGORITHM

2.1 Overview

Any multi-objective optimization problem can be stated in its general form as follows:

Min/Max f , ( X ) ,  i = 

subject to

g f(x )< 0 , i = l,2 ,...,P  (1)

/*.(x) = 0, / = l,2,...,g  

xfL̂ < X; < xfu\  i = 1,2,...,nz

A solution X  is a vector o f m decision (design) variables that is x = (xl,x2,...,xm)T,

which is not unique in case of multiple objectives. The last set of constraints is called the 

variables bounds/limits, confining each decision variable xt to take a value within a

lower x\L̂ and an upper limit. They determine the boundaries of the decision

variable space D (also known as design variable space in case of MDO problems). The 

objective space is constricted by P  inequality and Q equality constraints and need not 

span over the whole region mapped onto by the bounded decision variable. The terms 

gj(x)  and hk(x) are called the constraint functions. Figure 1 shows the mapping between

the decision space and the objective space for a general unconstrained 3-variable/2-

objective problem. However, either the variable space or the objective space need not be

continuous. They may be discontinuous or even discrete as is the case with integer 

problems. At the same time, in certain problems the variable space is likely to be 

unbounded, in which case it becomes substantially difficult to search for optimal 

solutions without prior knowledge of a favourable starting region.
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x2
3 variab le s and 2 objectives

Figure 1 Variable space mapping onto the objective space

2.1.1 Feasible Space: In case of constrained problems, this objective space is curtailed 

to a smaller region called the feasible space. A solution should be within this feasible 

space in order to be a valid solution (feasible solution). Solutions lying outside the 

feasible space are called infeasible solutions. The above is illustrated in Figure 1.

2.1.2 Pareto Front: In most multi-objective problems the search for optimal solutions 

and the intermediate selection o f solutions are driven by the concept of dominance [5].

When two solutions are compared, the dominance criterion decides the better solution,

taking into account all the problem objectives simultaneously. It can be stated as follows; 

Solution A is said to weakly dominate solution B if,

1. The solution A is no worse than B in all the objectives.

2. The solution A is strictly better than B in at least one objective.

If either o f two competing solutions is not better than the other on the basis of the above 

criterion they are termed as non-dominated with respect to each other. The concept of 

dominance is illustrated in Figure 2.
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1
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3

 I----------------------- T------------ '

2
_____ J A

f l  (maximize)

Figure 2 Concept o f dominance in a maximization problem 

Figure 2 shows that solution 1 is non-dominating with respect to the other three solutions, 

as it is worse than the other three in objective fl but better in objective f2. Solution 2 is 

dominated by solutions 3 and 4 as it is worse than the latter two in both the objectives. 

Solution 3 is dominated by solution 4 as it is worse than 4 in objective fl though equal in 

objective f2. The above figure manifests another important dominance characteristic. 

When two solutions are independently non-dominated w.r.t. a third solution, it is not 

necessary that the former two solutions be non-dominated w.r.t to each other. Thus, non

domination demonstrates the apparent comparability of trade-off solutions in case of 

multiobjective problems.

Many multi-objective optimization algorithms use a population of decision variable 

sets in search for optimal solutions. This population can be divided into two major sets 

during any generation.

aM
|
x
E.
£
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1. The non-dominated set, which is comprised o f solutions that are not dominated by 

any other solution in the whole population {i.e. local optimal solutions), and

2. The dominated set, which is comprised of all the solutions excluded from the non- 

dominated set.

The solutions belonging to the non-dominated set during a particular generation form a 

hyper-surface in the objective space, called the Pareto front [5]. The Pareto front 

manifests as a curve in case of a 2-objective problem, and a 3D surface in case of a 3- 

objective problem. Solutions which are not dominated by any other solution in the whole 

feasible space are termed as globally optimal solutions, and the Pareto front constituted of 

these globally optimal solutions is called the global Pareto front. However, in case of 

non-conflicting objectives this hypersurface reduces to a single optimal point. Four 

different forms of Pareto fronts have been illustrated in Figure 3, for a 2-objective 

problem.

9



Figure 3 Pareto fronts for different forms of 2-objective optimization problem 

In order to have flexibility in an optimal system design it is necessary to compute a 

set o f best compromise solutions which are distinctly biased towards one or more 

objectives. Consequently, achieving a practically uniform distribution of solutions over 

the whole span o f the global Pareto front is as important as converging to the global 

Pareto front. Such efficient coverage of the Pareto front demands prominent presence of 

diversity among the members of the non-dominated population set, which becomes 

progressively unmanageable with increasing number of objectives.

1 0



2.2 Classical Methods and Their Drawbacks

Classical methods which are mostly gradient based search techniques, have long 

dominated the stage o f multi-objective optimization until mid 1990s. One of the most 

popular classical approaches is the weighted sum method, where the objectives are 

linearly combined to form a single composite objective function, i.e.

N f

f i x )  ~ wifi ( ^ 0  • The objectives have to be normalized in this case, which requires
»=i

some prior knowledge o f their range of magnitude. One combination of weights, w .,

yields only one single solution search [5]. Thus, the weighted sum method reduces to 

multiple explorations for single-objective optimal points, each corresponding to a 

particular combination o f weights. This technique has severe shortcomings, which are as 

follows.

1. Successful convergence to a point on the global Pareto front depends on the selection 

o f the initial solution.

2. Diversity among the Pareto solutions is highly sensitive to the user’s choice of 

weights.

3. this approach has an inherent tendency to converge to sub-optimum solutions (local

optima), especially in case of multi modal problems.

4. Are unable to handle problems with non convex Pareto fronts.

5. Are unable to handle problems with discontinuous search space.

6. Computational cost escalates exponentially with increasing number o f decision

variables and increasing non-linearity of the objective functions or constraint 

functions.
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7. Due to lack o f communication between different solutions, these classical algorithms 

rarely benefit when run on parallel machines.

2.3 Evolutionary Multi-Objective Optimization Algorithms (EMOs)

Evolutionary algorithms provide a stochastic approach towards optimization. They mimic 

the principles coined by Darwin and Mendel, which is, evolution occurs through selection 

and adaptation [11]. Evolutionary algorithms initiate with a randomly generated 

population of candidate solutions that evolve (improve) over generations through 

activities such as ‘selection’, ‘recombination/crossover’ and ‘mutation’. The decision 

variable values associated with a solution constitute the genotype o f the solution, and the 

corresponding objective function values for that solution constitute the phenotype. 

Depending upon the number system in which the genotype is represented, an 

evolutionary algorithm can be a binary-coded or a real-coded algorithm.

Since EMOs operate with a population of solutions, the outcome at the end of each 

generation is also a population o f solutions which gives them the ability to converge to 

the multiple optimal solutions in one single simulation run. Ample communication 

between the solutions with different genotype leads to more efficient coverage of the 

problem space. EMO algorithms can run on parallel machines for design optimization of 

complex systems/processes. There exist different types of multi-objective hybrid 

optimizers that make use o f such parallel computing. Two such well known multi

objective hybrid optimizers are MOHO [12] developed by Moral and Dulikravich and 

AMALGAM [13] developed by Vrugt and Robinson, both o f which apply a combination 

o f more than one EMO to solve a multi-objective optimization problem. MOHO (Multi-

12



Objective Hybrid Optimization software) consists of (i) Strength Pareto Evolutionary 

Algorithm (SPEA-2), (ii) Multi-Objective Implementation of the Single-Objective 

Particle Swarm algorithm (MOPSO) and (iii) Non-Sorting Differential Evolution 

(NSDE). They are applied in series controlled by a built in automatic switching algorithm 

that swaps the operating optimization algorithm based on several performance criterion 

w.r.t the problem being solved. On the other hand, in AMALGAM (Genetically Adaptive 

Multi-Objective Method), each constituent algorithm is employed in parallel, which 

contribute a portion o f the next generation’s population. The extent of the share (of 

population) for each contributing algorithm is dependent on their success of solution 

exploration in the preceding generations, w.r.t. the problem being solved.

The Modified Predator-Prey (MPP) algorithm is an EMO that imports certain features 

of the weighted sum approach as well. In addition MPP was enabled to deal with both 

linear/non-linear equality and inequality constraints.

2.4 Modified Predator-Prey (MPP) Algorithm [14]

Any general constrained multiobjective problem involving N f  objectives and m design 

variables can be reformulated as follows.

Minimize f  = f ( X ) ,  i = \,2,...,Nf 
subject to
g(. <0, / = 1,2,3,...,/?
ht =0, * = /? + l,/? + 2,...,/? + #

p ,q e  N

Where, X  is the design vector i.e. X  -  (Xj, x 2, x3,..., x m ) e  R

The constraints are added up to form the (N f  + 1)th objective in the following way,
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p  p+ q

Minimize f Nf+x = £ m a x ( g f,0) + £  max((ht (3)
i= l  / = p + l

where £ is the tolerance for equality objectives.

It should be noted that in case of maximization the corresponding objective function is 

multiplied by ‘-1’, to convert it into a general minimization problem. Also, a ‘greater than 

equal to’ inequality constraint is converted into a ‘less than equal to’ constraint by 

multiplying with ‘-1 ’.

The overall structure o f the modified predator-prey algorithm developed in this study is 

presented below in sequential steps.

1. A population o f N  candidate solutions/preys (“antelopes”) are initialized using 

Sobol’s [15] quasi random sequence generator.

2. The preys are placed on a two dimensional grid with connected ends hence having a 

toroidal nature as shown in figure 4. The grid is allowed to adjust its size dynamically 

according to the prey population size maintaining the dimensions I x J, where 

typically J = 5. Random members o f the prey populations are cloned and placed on 

the grid when N < I x J  in order to ensure all integer grid points are occupied by 

preys.
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Figure 4 Toroidal grid -  2D grid wrapped around in both directions 

3. M  number of predators (“lions”) is placed on the same 2D grid such that they 

occupy random cell centers. M  is determined by the following empirical formula,

N
M  = x N f  (4)

. 20 .

where, [r] is the lowest integer greater than r , r e  R +. Each predator is associated 

with a weighted value o f the objectives as follows.

N f

/ = 2 > y ;  (5)
1=1

Here, wl is the weight associated with the ith objective function, f .  is the ith objective 

function. The weights are distributed uniformly in case o f two-objectives problems 

(0 <  w, <1, w2 = l - w ,)  and using Sobol’s quasi random sequence generator [15] in

case o f problems with more than two objectives.

4. Predators are randomly located in the toroidal grid. Each neighborhood that contains 

a predator can be termed as an ‘active locality’ as shown in figure 5. In each of these 

localities/cells, the value of ‘ /  ’ as defined by equation (2) corresponding to the local
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predator, is calculated for each prey. The weakest prey (i.e. having the maximum 

value o f / )  is selected to be killed and replaced by a new prey produced by the 

crossover o f the two strongest local preys and subsequent mutation of the crossover 

child.

I

Figure 5 An active 4 prey locality/neighborhood in the toroidal grid 

5. However, this phylogenetic child prey qualifies to be accepted only if  it fulfills the 

following three criteria,

(i) The child is stronger than the worst local prey (based on /  calculated by 

equation 2),

(ii) The child is non-dominated [5] with respect to the other three local preys, and

(iii) the child is not within the objective space hypercube [5] o f the other three preys 

o f this locality.

Ten trials are allowed to produce a qualified child that satisfies the three criteria, 

failing which the weakest prey is retained.
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6. Upon completion o f the above predator-prey interactions in each active locality, the 

predators are relocated randomly. A probability based relocation criterion has been 

introduced here, which favours a fairly even distribution of the ‘number of 

visitations’ to each cell/locality by a predator. The relocation criterion is defined as 

follows:

if  cellcount[i, j ) >  cellcountâ + \, locate = no ^

else , locate = yes

Here, cellcount(i,j) is the cumulative number of times predators have visited the cell 

( i , j )  in previous generations, cellcountavg is the average of all cellcount(i,j) and 

(/, y ) is the randomly generated location on the 2D lattice. This new feature ensures

that every member o f the prey population irrespective o f its fixed location in the 2D 

lattice gets a reasonable opportunity of improvement.

7. After each generation, the non-dominated solutions in the prey population are copied 

to a secondary set called the ‘elite set’. Certain number of randomly selected elite 

solutions are incorporated into the main population (preys in the toroidal space) at the 

cost of some of the dominated solutions (dominated by atleast one other prey).

Specific features that have been modified or added to the PP algorithm during this 

research in order to enhance its efficiency and applicability are as follows.

2.4.1 Evolution: The generation of new solutions in each active locality is initiated by 

the crossover of the strongest two local preys (with respect to the corresponding /  

value). The blend crossover (BLX- a ), initially proposed by Eshelman and Schaffer [16]

17



for real-coded genetic algorithms (later improved by Deb [5]), is used in this algorithm. It 

is defined as follows,

Yi = (1  +  2 a ) u t - a

where, x f u) and x (2,/) are the parent solutions, x,iU+l) is the child solution and is the

With BLX - a ,  the location o f the offspring in the decision space depends upon the 

difference between the parent solutions [5]. This facilitates genetic recombination that is 

adaptive to the existing diversity in the parent population; a desirable characteristic for 

Pareto convergence.

This crossover child prey is then subjected to non-uniform mutation originally 

introduced by Michalewicz [17], and mathematically formulated as,

where yf(1,/+1) is the child solution produced from the parent solution x /1/+1), by mutation

of the ith variable, ;cJ.(t/) and xt{L) are upper and lower limits of the ith variable, r  takes a

Boolean value -1 or 1, each with a probability o f 0.5, r. is a random number between 0

and 1, t and tmax are the number of generations already executed and the maximum

allowed number o f generations, respectively, while b is a user defined parameter.

Non-uniform mutation favours creation of child solutions in the vicinity o f the parent 

solution, and the probability o f creating a child solution closer to the parent increases

random number between 0 and 1. A value of 0.5 is used for a  as suggested by Deb [5].

v /

(8)
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with increasing number o f generations. This provides a uniformly distributed search in 

the earlier generations and a relatively focused search in the later ones. A modified 

version o f this non-uniform mutation has been applied in MPP, which is as follows,

Here t and tmax are the number of function evaluations performed until then and

maximum allowed number o f function evaluations, respectively, (b = 1.5 determined 

empirically) and /? is the scaling parameter. The latter two factors monitor the order of 

magnitude, or in other words, the extent of mutation.

Both the crossover and mutation techniques employed here establish an adaptive 

search, which makes the MPP algorithm more economical with respect to function 

evaluations.

2.4.2 Dominance and C onstraint handling: The concept o f weak dominance [5] is 

applied here, according to which in case o f an unconstrained optimization problem, 

solution i is said to weakly dominate solution j  if  solution / is better than solution j  in 

atleast one objective and equal in all other objectives. However, in case o f a constrained 

optimization, the theory o f dominance is altered to give preference to feasible solutions or 

relatively less infeasible solutions. The modified definition o f dominance is the same as 

used in NSGA-II [18], which is as follows,

Solution i is said to constraint-dominate solution j  if

1. Solution i is feasible and solution j  is not.

v y

(9)
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2. Solutions / and j  are both infeasible, while solution i has a smaller net constraint 

violation than solution j  ,i.e. f N/+]l < f Nf+xJ (considering function minimization).

3. Solutions i and j  are both feasible, while solution i weakly dominates solution j . 

Due to the absence o f any penalty function method, the normal objectives 

( f k, V k < N f  + l ) and the net constraint violation objective ( f Nf+x), get similar

quantitative importance. This, together with the constraint-dominance criterion, favour 

feasible solutions, but also helps retain genetic traits o f infeasible solutions with 

substantially better objective values as well. This speeds up convergence to the Pareto 

front especially when it is located at the boundary of the feasible region. Nevertheless, it 

should be noted that unless the whole prey population lies in the infeasible region (in the 

objective space) the progressing Pareto front will always constitute of feasible solutions, 

because the Pareto front is formed by the non-dominated elite solutions.

2.4.3 Diversity Preservation: A multiobjective problem prefers a reasonably uniform 

distribution o f solutions along the whole span of the Pareto front. This calls for 

preservation o f diversity in the objective space. In other words, an efficient multi

objective optimization algorithm is expected to promote generation o f new solutions 

(evolution) that do not closely resemble their parents or other nearby solutions (in the 

objective space). Here, the concept of objective space hypercube is used as a qualifying 

criterion for new preys to assure diversity preservation. Each old local prey is considered 

to be at the centre o f its hypercube, the size of which is dynamically updated with 

generations and could be determined by the following equation [14]
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(10)

Here, co is the window size o f the hypercube and r/i is the half side length of the

2.4.4 Sectional Convergence (Biased Weighing of Objectives): A prominent 

drawback o f the original predator-prey algorithm is its tendency to converge to a small 

section o f the Pareto front due to absence o f local selection pressure chiefly based on 

non-dominance. A new and innovative concept of sectional convergence has been 

introduced [14] to deal with this possible lack of effective variation in the prey 

population. Instead o f the running the algorithm throughout for the same initial specified 

distribution o f weights, there is redistribution of weights within a small biased range 

(<1.0) after certain number of function evaluations. The redistribution is governed by the 

following equations in case of two-objective optimization problems. 

f (iterp-l)M + i

W2 = 1 -  w,

Here, iterpmax is the maximum allowed number of primary iterations, i.e., maximum 

number o f times redistribution is allowed, iterp is the present primary iteration, and i is

tVihypercube corresponding to the i objective.

W, (11)iterp max M  + 1

the ith predator. In case o f multi-objective optimization with more than two objectives, a 

different formula could be used [14] as shown below.
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max

N f
max

V

max

x0.75 ( 12)

Here, w' is the weight associated with the j th objective function for the ith predator and

w'max is the maximum allowable weight associated with any kth objective function ( k  *  j )

tV»
the j objective are distributed using Sobol’s [15] within the range 0 -  w'kmix. However in

This added feature involving biased distribution of weights does away with the often 

observable drawback o f PP which is its tendency to converge to a small section o f the 

Pareto due to absence o f selection pressure chiefly based on non-dominance. 

Nevertheless, such sectional convergence comes at the cost o f an increased number of 

function evaluations which might be necessary only in case of complex problems such as 

sharp discontinuities or mixed convex-concave Paretos or orders o f magnitude difference 

between the objective functions.

2.4.5 Elitism: In order to retain the genetic traits o f the best solutions it is necessary to 

introduce some form of elite preservation mechanism into the algorithm. This, when 

judiciously applied, accelerates the rate o f convergence to the Pareto front. In MPP the 

secondary set (elite set) consisting of the non dominated solutions from each generation

for the ith predator. The weights (w ‘k) associated with the objective functions other than

iterpthis case (i.e. problems with N f  > 2 ), — jq [s an essential condition.
N f
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is maintained at a fixed strength Ne using the clustering technique designed by Deb [5]. 

After each generation, certain randomly selected solutions/preys (from the main 

population), if  found to be dominated, are replaced from the 2D lattice by randomly 

selected elite solutions. This new additional attribute boosts the speed o f convergence of 

this algorithm. However, the allowed number of such replacements should be carefully 

chosen to avoid introducing excessive elitism. Here the total number of allowed 

replacements is always kept below y / .

2.4.6 Additional Features: During the course o f development of MPP a few other 

alterations/additional features were also implemented, but not included in the final 

version o f the algorithm. This was due to certain drawbacks associated with each one of 

them. A couple o f them are being presented here, keeping in mind that a more judicious 

application o f any o f these features, in the future, might help to improve the dependability 

or performance o f MPP or other similar evolutionary optimization algorithms. They are 

as follows:

• Controlled killing in active localities: Instead o f killing exactly one prey (the weakest) 

at each active locality during a generation, the predator was allowed to kill ‘ k  ’ 

number o f the weakest local preys depending on the ‘non-domination’ quality o f the 

locality. The value o f K for each locality was computed according to the following 

formula,

0 if  ne> 3
tc=i  1 if  3>ne>0  (13)

2 if  ne = 0
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where ne is the number of preys from that locality that qualified for the elite set when 

last updated (n e e  {1,2,3,4}). This reduced the required number of function

evaluations, but severely hindered further progress when solutions converged to a 

local Pareto front.

• Relocating preys: Like predators, preys were also relocated randomly within the same

N
2D lattice after every ‘ nm ’ iterations, where nm = —  .A  favourable genetic mixing

M

was observed, leading to greater diversity, but at the cost o f noticeably increased 

number o f function evaluations.

2.5 Numerical Experiments

MPP was implemented using C++ programming language. The objective functions were 

evaluated by the corresponding executable files. The C++ code simulating MPP is known 

as ‘mpp_cnstmt.cpp\ It compiles and runs successfully on both Windows and Linux 

workstations using Microsoft Visual C++ .NET for the former and KDevelop 3.1.1 for 

the latter operating systems.

2.5.1 Unconstrained 2-Objective Test Cases: MPP was tested to evaluate its 

performance by running it on some well known unconstrained two-objective test 

problems, with known analytical solution. The first six test cases analyzed are taken from 

the multi-objective optimization comparison by Zitzler et al. [1] namely the ZDT test 

cases. Two other popular test cases with known analytical solutions for the Pareto front 

which are the Fonseca and Fleming multiobjective problem no. 2 [19] and the Coello 

multiobjective problem [11] have also been used. All the eight test cases involve two-
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objective optimizations where both objectives are to be minimized. They are summarized 

in Table 1.

Table 1 Details o f the unconstrained 2-objective optimization test cases.

Problem m Variable
limits Objective Functions Analytical Solution

ZDT1 30 xi G [o>i]

f i = xi

g = l + 9 ±  *  h = 1 T
i=2m - \  y g

f i  = h.g

Set g  = \

ZDT2 30 *j e  [0,1]

f = xi
m X (  f  Vg  = i +9£ _ i  h = \ -  A  
i=2 " I - l  { g j

f i  = h.g

Set g  = \

ZDT3 30 x,. e [0 ,l]

f = xi
m

g  = l + 9 ^  '
/=2 m - 1
FT (

h = 1 - 1 —  -  — s in (l0 ;r/j) 
\ S  V S J

f i  = h.g

Set g  = 1

ZDT4 10
e  [0,1] 

x(. e [ -5 ,5 ]

f = xx
g  = l + 1 0 (w -l)

m
+ 2 ( JC»'2 - 10cos(4^’x/ ))

i=2

h = 1 -
V S  

f i  = h.g

Set g  = 1

ZDT5 11

^<=[0,1],
30 bit 

resolution 
xt e  [0,1],

5 bit 
resolution

f = \  + u (x l )

u[xi) = the number of ones in 

the bit vector form of x,.

Set g  = \0
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m 1

£ = 2 M u ( * , ) ) ’ h = - f
1=2 J 1

( 2  +  u ( x , )  i f u ( x , ) < 5  
v t u t x , ) )  =  <

| l  i f « ( x , . )  = 5

f i = h - g

ZDT6 10 * , e [ 0 , l ]

f x =  l - «

g  =  1 + 9

f 2 =  h - 8

-4jCjSin6|6 ^ j

(  m \ 025

£ * /  1 

- ^ 2—  , h = 1 -  

m  — \

\  J

-T
. z ,

Set g  =  \

Fonseca-
Fleming 3 x, g [-4 ,4] f x = l ~ e  

f i  = l ~ e

( x ~ L
I r l  ' ^

(  -  (  

x p  - Z

V /=lV

J)
J

i v

*i + ^ J

\

)

Coello 2 x , e  [0,1]

f i  = x.

/ 2 = ( 1+10*,)

/
1 -

1

f * T
^1+10*2 y

sin ( 
+ 10x2 v

\

8^-x,)
y

/ 2 = i - / 2
- / s i n  (8 / r / )

[Note: m = number o f variables]

To compensate for performance fluctuations induced by random generators driving 

the initial population and other genetic operators, the algorithm was run 30 times for 

25,000 function evaluations each in case of the six ZDT test cases and 2,000 function 

evaluations each in case o f the Fonseca-Fleming and Coello test problems. The concept 

o f sectional convergence was not implemented during these runs. The non-dominated 

plots are generated by making a union of the elite set (non-dominated set) o f the first five 

runs for each test case. The non-dominated set of the unions is then extracted and plotted
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as shown in figures 6-13. The user defined MPP parameters used for these test cases were 

as follows.

Table 2 User defined MPP parameters for unconstrained 2-objective test cases.

Parameter Value

Population size (# preys) 100

# Predators 10

Elite strength 40

Crossover probability 1.0

Mutation probability 0.05

Figure 6 Two-objective test case ZDT 1
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Figure 7 Two-objective test case ZDT 2

Figure 8 Two-objective test case ZDT 3
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Figure 9 Two-objective test case ZDT 4

Figure 10 Two-objective test case ZDT 5
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Figure 11 Two-objective test case ZDT 6

Figure 12 Two-objective test case of Fonseca & Fleming problem 2
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Figure 13 Two-objective test case of Coello

It is observed from figures 6-13, that MPP performs very well on the ZDT test cases 

when compared with the performances of some other well known algorithms as shown by 

Moral et al. [12] (given in Appendix A) as well as with one o f the more popular previous 

versions o f the predator-prey algorithm (given in Appendix B -  conditions being much 

relaxed). The same is exhibited in case of the Fonseca-Fleming and Coello test problems 

as shown in figures 12 and 13 respectively. In certain cases as in ZDT 1, 2 and 6 the 

solutions do not completely converge to the global Pareto. This is due to significant 

slowing down of the rate of convergence as the solutions approach the global Pareto. 

Nevertheless, it is evident from the above figures that the algorithm consistently produces 

a desirable spread of non-dominated solutions irrespective o f the nature of the Pareto 

front and without using the concept of sectional convergence.
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Two performance measures for evaluating the performance of multiobjective 

optimization algorithms have been developed by Deb et a l  [18]. The first performance 

metric, the gamma ( y )  parameter, is a measure o f the extent of convergence. The 

minimum of the Euclidean distances of each computed non-dominated solution from H 

uniformly distributed points on the ideal Pareto front (H=500) is calculated, the average 

o f which gives the value o f the gamma parameter. The other performance metric, namely 

the delta ( A ) parameter, gives a measure o f the spread of solutions along the computed 

Pareto front. It is calculated as follows,

N - 1 _

df  + dl + | di -  d  |
A = -------------- *=!----------------------------------------------------------------------------------------------------------(14)

d  y + d̂  + (N  — 1 j d

where, df  and dt - the respective Euclidean distances between the two extreme solutions 

and the corresponding extremities of the analytical Pareto front, dt- Euclidean distance 

between consecutive solutions and d  - mean of all d( (i = 1,2,3..., N). A perfectly

uniform distribution o f solutions along the computed Pareto front with existence of exact 

extreme solutions will give a delta value of zero. However, inspite of accurate 

convergence, the gamma parameter need not be zero, due to possible lack of coincidence 

of computed solutions and uniformly distributed analytical Pareto points.

Table 3 shows the values of these two parameters calculated for the eight cases studied 

here, and also the comparison of some them with that calculated by Deb et a l  [18] for 

NSGA-II. The same conditions have been used, i.e. a population of 100 solutions, 

subjected to 25000 function evaluations, for the six ZDT test cases. However, the 

Fonseca-Fleming and the Coello test cases involve 2000 function evaluations and hence
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the former has not been compared with the corresponding data of Deb et a l  [18], all of 

which are with respect to 25000 function evaluations.

Table 3 Performance parameters

Algorithm NSGA-II

(real)

NSGA-II

(binary)

MPP

Parameter

Problem

7 A 7 A r A

ZDT 1 0.0335 0.39 0.0009 0.46 0.0447 0.59

ZDT 2 0.0724 0.43 0.0009 0.44 0.1181 0.78

ZDT 3 0.1145 0.73 0.0434 0.58 0.0198 0.73

ZDT 4 0.5130 0.70 3.2276 0.48 0.6537 1.48

ZDT 5 NA NA NA NA 0.4282 1.49

ZDT 6 0.2966 0.67 7.8068 0.64 0.2334 0.71

Fonseca-Fleming NA NA NA NA 0.0082 0.42

Coello NA NA NA NA 0.0498 1.17

As seen from table 3, the performance o f MPP compares well with that of real coded 

NSGA-II, except in the case o f ZDT 2. The latter may be attributed to the vertical 

congregation o f points near the left boundary o f the Pareto front where an abrupt change 

in the value o f f 2 corresponding to very small values o f f x poses difficulty in properly

distributing ideal Pareto points in this region. However, in the case o f ZDT 3, the MPP 

seems to outperform both the real coded and the binary coded NSGA, in accuracy. As
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seen from figure 9, a fairly accurate and well distributed non-dominated solution set is 

computed by MPP in the case o f ZDT 4. Due to the high density o f solutions along the 

computed Pareto front, the deviation in d{ s exceed the average, d  , which accounts for 

the relatively high value o f A (>1), calculated in case of ZDT 4.

Difficulties encountered in converging to the ideal Pareto front in the case of ZDT 5, 

by other standard optimization algorithms have been claimed to be not trivial, as also 

confirmed by Deb et al. [18]. However during the course o f this study, it has been found 

that achieving acceptable accuracy in the case o f ZDT 5 to be relatively manageable as 

evident from figure 10 and table 3. But the above is true only when the correct order of 

precision is used in representing the decision variables and computing the objective 

functions. Failure to do so might be the very reason behind the relatively low accuracy of 

solutions computed by other optimization algorithms while dealing with ZDT 5.

Test case results presented in this work are generated without considering the 

concept/module o f sectional convergence. However, sectional convergence was 

experimented on during the study of MPP and a visual representation is exhibited in 

figure 9.
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Figure 14 Sectional convergence for ZDT 3 ( iterp = 5)

Figure 15 General convergence for ZDT 3 ( iterpmm = 0 )
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Figure 14 shows the location of solutions in the objective space at the end of each 

primary iteration ( iterp), where iterp = 0 represents the initial global progression of 

solutions, and iterp > 0 represents the sequential sectional convergence o f solutions to 

parts o f the Pareto. It is observed that though the progress of solutions is biased towards 

sections of the objective space going from right to left, the solution set as a whole always 

keeps moving towards the ideal Pareto. This is desirable and eventually leads to a well 

distributed set o f non-dominated solutions along the final computed Pareto front.

Figure 15 shows the progress o f solutions towards the ideal Pareto, in absence of the 

sectional convergence module. The solutions are plotted after intervals of 5000 (approx.) 

function evaluations. It is observed that the solutions converge noticeably faster during 

the initial stages o f MPP to form an intermediate Pareto. The subsequent progress of this 

intermediate front becomes more and more exhaustive in terms of function evaluations as 

it nears the global Pareto front.

2.5.2 Unconstrained 3-Objective Test Cases: Multi-objective optimization algorithms 

often demonstrate different behavior when working on problems with more than two 

objectives. The Pareto front is just a planar curve in two-objective problems which 

proliferates into a surface in three-objective problems, and then to a hypersurface of 

increasing dimensionality with every additional problem objective. This intensifies the 

necessity for careful preservation of diversity. Selection procedure based on either 

weighted sum o f objectives and weak domination criterion work very differently. For 

example, say in the case of a problem with N f  objectives ( N f  > 2 ), solution A has one 

objective better than solution B, while in all other objectives solution B ranks higher. 

Weighted sum would most likely recognize solution B as the better solution whereas



according to the principles o f weak dominance both solutions are non-dominated w.r.t. 

each other. Predator-Prey is unique in utilizing the principles of both selection 

procedures. However, the performance gain of such a characteristic can be appreciated 

only when the algorithm is tested on optimization problems with more than two 

objectives. Therefore, MPP is tested on two standard scalable 3-objective minimization 

problems developed by Deb et al. [2]. They are summarized in Table 4.

Table 4 Details o f the unconstrained 3-objective optimization test cases

Problem m
Variable

limits
Objective Functions

Analytical

Solution

DTLZ1 7 xi G [o,i] (  ’ ((* ,- 0 .5 ) 2 Y|
g =100 5 + y  v ’

 ̂ i=3 (^-cos(20^r(x). -0 .5 )) J J

f x = i : xixi ( \ + g )

f i = ^ x^ - xi ) ( x+ s )

A = \ ^ - xM x+g)

Xj = 0

j  = 3,4,..,7

t / . =  0-5
*=1

DTLZ2 12 ^  G [0,1] g  = | > ( -0 .5 )2
3

f \  = (l + g )cos(x 1̂ ' / 2)cos(x,/r / 2) 

f 2 = ( l  + g )cos(x 1̂ '/2 )s in (x 2̂ '/2 ) 

f 3=(\  + g ) s m ( x l7T/2)

Xj = 0.5 

7 = 3,4,..,12

Z / * 2=1
k=1

Due to similar reasons as in case of the ZDT test cases, both DTLZ test cases were 

run 30 times, 30000 function evaluations each, and the final Pareto front is formed by 

extracting the non dominated set from the union of the final elite sets of the first five
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runs. The user defined parameters specified in the algorithm for these test cases are 

presented in table 5.

Table 5 General MPP parameters for unconstrained 3-objective test cases

Parameter Value

Population size (# preys) 100

# Predators 10

Elite strength 40

Crossover probability 1.0

Mutation probability 0.05

Figure 16a 3-objective test case DTLZ1 with iterp = 0: view 1
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f1 +f2+f3

0.502
0.5015
0.501
0.5005
0.5

Figure 16b 3-objective test case DTLZ1 with iterpmax = 0 : view 2

Figure 17a 3-objective test case DTLZ1 with iterptnm -  3 : view 1
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Figure 18a 3-objective test case DTLZ2 with iterpmax = 0: view 1
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f1.f1+f2.f2+f3.f3
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1.04
1.03
1.02
1.01
1

Figure 18b 3-objective test case DTLZ2 with iterpmax = 0: view 2

Figure 19a 3-objective test case DTLZ2 with iterpmax = 3 : view 1
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Figure 19b 3-objective test case DTLZ2 with i t e r p = 3 : view 2

Different views o f the final Pareto front computed for the 3-objective problems 

DTLZ1 and DTLZ2 have been illustrated in figures 16 to 19. It is observed that MPP 

performs very well in producing Pareto solutions that are both reasonably accurate and 

well distributed along the Pareto surface. This is further evident when results from figures 

16-19 are compared with the performance of NSGA-II and SPEA on these problems 

(given in Appendix C). Sectional convergence scheme as seen from figures 17 and 19 

helps in covering the whole global Pareto front more effectively. Hence the boundaries of 

the global Pareto computed by MPP are crisply defined when using sectional 

convergence. However in case o f DTLZ2, sectional convergence proves to be 

computationally more expensive leading to relatively lower accuracy as seen from figure

19.
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Though it might seem over-optimistic to extrapolate the performance appreciation of 

MPP from 3 objectives to N objectives ( N >3),  Pareto fronts computed by MPP in case 

of the DTLZ test cases do indicate that MPP has the potential to achieve reasonably 

accurate well distributed Pareto solutions in case of optimization problems with higher 

number o f objectives; a quality not so common among the standard multi-objective 

optimization algorithms available in literature and practice.

2.5.3 Constrained Multi-Objective Test Cases: To examine the constraint handling 

capability of MPP, it was tested was three well known constrained 2-objective test cases 

studied by Deb et a l  [18]. Two standard test cases with known analytical solutions 

namely Binh multi-objective optimization problem no. 2 [20] and the Osyczka 

multiobjective optimization problem no. 2 [21] have also been tested for. All these test 

cases are 2-objective minimization problems and are summarized in table 6.
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Table 6 Details of the constrained 2-objective optimization test cases

Problem
m Variable

limits
Objective Functions Constraints

CONSTR 2
[0.1,1] 

x2 g  [0,5]

+

II 
it

x2 + 9x, > 6  

- x 2 + 9x, > 1

SRN 2
x i g  [-20,20]

f , = ( x l - 2 ) 1+(x2- \ f  

+ 2

f 2 =9xl - ( x 2- \ f

Xj2 + x22 < 225 

x, - 3 x2 < -10

TNK 2 x,.e[0,;r]

* 
X 

II 
H

s
; 

s
:

-x ,2 -  x22 + 1

(  (  ^
+0.1 cos 16 tan-1 —  < 0

V \ X2 j )

(x, -0 .5 )2 + (x 2 -0 .5 )2 < 0.5

Binh 2
Xj g  [0,5] 

xf e [0,3]

y; = 4x12+4x22 

f 2 = ( x i - 5 ) 2+ (x 2- 5 ) 2

(x, - 5 ) “ + x22 -  25 > 0

- ( ^  - 8 ) 2 - ( x 2 + 3)2 

+7.7 > 0

Osyczka 6

X, G [0,10] 

Xj G [0,10] 

Xi g [1,5]

Xj G [0,6]

Xj e  [1,5] 

X, G [0,10]

^25(x] - 2 ) 2>|

+ ( x 2 - 2 ) 2

f = ~  + (^ 3 - l)2 

+ (x4- 4 ) 2

,+ ( ^ s - l ) 2 J
f l  -  X\ +X22 +X32 

+ x42 + x52 + x62

x, + x2 — 2 > 0 

6 -  x, — x2 > 0  

2 + x, -  x2 > 0  

2 — x, + 3x2 > 0

4 - ( x3 - 3 ) 2 - x 4 > 0

(x5- 3 ) 2+.x6- 4 > 0
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Each constrained test case given in table 6 was run 30 times and the final Pareto front is 

formed in the same way as in the ZDT and the DTLZ test cases. However, the final 

Pareto fronts in case o f all the five constrained test cases (table 6) are constructed of only 

those elite set solutions that do not violate any o f the problem constraints, i.e. for the final 

Pareto solutions

p p+q
fm \ = Z maxU ’0) + Z  max((/j,.-£),0) = 0). (15)

i=l i=p+1

It is worth mentioning that MPP achieved full strength elite set, constituted of such 

feasible global Pareto solutions in each of these test cases. The user defined parameters in 

the algorithm pertinent to the constrained test cases are presented in tables 7 and 8.

Table 7 General MPP parameters for first three constrained 2-objective test cases

Parameter Value

Population size (# preys) 100

# Predators 10

Elite strength 40

Crossover probability 1.0

Mutation probability 0.05

# Primary iterations (sections) 0 ,3
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Table 8 General MPP parameters for last two constrained 2-objective test cases

Parameter Value

Population size (# preys) 100

# Predators 10

Elite strength 100

Crossover probability 1.0

Mutation probability 0.05

# Primary iterations (sections) 0 ,6

A higher number o f primary iterations and greater elite set strength were used in case of 

the Binh and the Osyczka problems as seen from table 8. This is to counteract the 

relatively greater difficulty in covering the whole Pareto front in these two test problems. 

The converged Pareto fronts computed by MPP in each of these test cases are shown in 

figures 20 to 24. The global Pareto front computed by Deb et al. [18], using NSGA-II and 

corresponding analytical solutions for the first three test cases are given in Appendix D.
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(a) (b)

Figure 20 Constrained 2-objective test case CONSTR with (a) iterpmax = 0, (b)

i t e rP  m ax =  3

MPP

Figure 21 Constrained 2-objective test case SRN with (a) iterpmax = 0, (b) iterpmm = 3
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f1

(a)

fi

(b)

Figure 22 Constrained 2-objective test case TNK with (a) iterpmax = 0 , (b) iterpnmx = 3

(a) (b)

Figure 23 Constrained 2-objective test case of Binh with (a) iterp max = 0, (b) iterpniax = 6
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(a) (b)

Figure 24 Constrained 2-objective test case of Osyczka with (a) iterpmm = 0, (b)

itcKp max =  6

The final Pareto fronts computed for SRN, TNK and Binh constrained multi-objective 

problems as shown in figures 21, 22 and 23 respectively are fairly accurate and well 

distributed. However, in the Binh problem there is significant improvement in 

performance when using the sectional convergence scheme (figures 23 a and b). In case 

of CONSTR and Osyczka constrained multi-objective problems (figures 20 and 24), 

though solutions converge to the global Pareto front, their distribution on the final Pareto 

is not uniform, even with the sectional convergence scheme. Overall, MPP compares well 

in performance, with other popular algorithms such as NSGA-II [18] and IOSO [22] 

(illustrated in Appendix D) in solving similar constrained multi-objective problems at the 

expense o f limited number of function evaluations. Nevertheless, appropriate 

implementation o f the sectional convergence scheme is necessary for certain problems, in 

order to attain a reasonable spread of solutions along the final Pareto front.
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The remarkable feature of MPP is its ability to consistently produce feasible Pareto 

solutions, irrespective o f the number or nature (i.e. linear or non-linear) of problem 

constraints involved. This is accomplished without normalization of any objective 

functions or constraint functions, or application of computationally costly penalty 

function methods.

Figure 25 Progress o f solutions towards the final Pareto front for TNK problem
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Figure 26 Progress o f solutions towards the final Pareto front for Osyczka problem 

Figures 25 and 26 demonstrate an immediate migration o f solutions into the feasible 

region and concomitant advancement towards the global Pareto front during the initial 

stages o f the algorithm. Hence, the pace at which MPP drives the population into the 

feasible domain and subsequently converges to the global Pareto front is appreciable -  a 

quality which may be attributed to the simultaneous application o f the added constraint 

objective (to be minimized) and constraint dominance criterion introduced by Deb et al. 

[18].
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CHAPTER III -  SINGLE-OBJECTIVE PREDATOR PREY ALGORITHM

3.1 Overview

Constrained single objective optimization can be defined as the maximization or 

minimization o f a single system parameter subject to certain geometric/process 

constraints, both o f which are dependent on a set of independent system variables (design 

variables). Depending on the nature of the objective function that maps the system 

variables to the dependent parameter and the nature of the constraints, a single objective 

optimization problem may be classified into several categories as represented by the 

schematic diagram shown in Figure 27.

Single non-linear obL /'"

Linear
constraints

Non-linear
constraints

ILP LP

INLP NLP

Discrete
variables

Continuous
variables

Figure 27 Classification of constrained single objective optimization problems 

[Note: LP -  Liner Programming, NLP -  Non-Linear Programming, ILP -  Integer Linear 

Programming, INLP -  Integer Non-Linear Programming]

3.1.1 Classical Methods and Their Drawbacks: Classical single-objective

optimization algorithms use gradient-based and heuristic-based search techniques [23,

24]. In contrast to such deterministic search principles, evolutionary algorithms follow
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stochastic search principles that mimic the process of natural evolution. Classical 

algorithms are relatively computationally inexpensive and reliable when solving single 

objective optimization problems with few design variables. However in case of problems 

with

(i) large number o f design variables

(ii) large number o f constraints

(iii) severe non linearity o f the objective function or constraint functions

(iv) multimodal objective functions (i.e. having multiple local extrema)

(v) discontinuous search space,

classical algorithms prove to be both unreliable and inefficient when compared to 

stochastic algorithms. Typical real world systems are often simulated using 

computational models instead o f a definite mathematical function mapping decision 

variables to the problem objective, in which case it becomes increasingly difficult to 

calculate gradients at different locations o f the problem space. Evolutionary algorithms 

on the other hand, use a set of random multiple solutions that gradually approach the 

global extrema over generations based on relative fitness and subsequent evolution. They 

do not require any gradient estimation. Consequently evolutionary algorithms are free 

from the inherent drawbacks of classical algorithms when dealing with complex single 

objective optimization problems. Hybrid optimizers o f the likes of HI and H2 developed 

by Colaco et al. [25] and Colaco and Dulikravich [26] employ a combination of the 

deterministic and stochastic/evolutionary algorithms hence utilizing the advantages of 

both types o f optimization techniques.
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3.1.2 Parent algorithm of SOMPP: The Single-Objective Modified Predator-Prey 

(SOMPP) algorithm has been derived from the parent algorithm Modified Predator-Prey 

(MPP) developed by Chowdhury et al. [14]. Any unconstrained single-objective 

optimization problem is treated as a two-objective optimization problem, where the 

second objective is just a clone of the first one. In case o f the constrained problems, all 

the equality and inequality constraints are collaged together to form a third objective and 

the problem is solved as a three-objective optimization problem. Nevertheless, the 

concerted constrained objective does not conform to the requirements of a general Pareto 

convergence. Therefore, this three-objective scenario is distinctly different from a generic 

three-objective optimization problem and treated accordingly by SOMPP.

3.2 Single Objective Modified Predator-Prey Algorithm (SOMPP)

Any general constrained single objective test problem is reformulated as follows.

Minimize f x = f ( X )
Minimize f 2 — f\ 
subject to
gt <0, i = 1,2,3,...,/?
h.= 0, i = p  + \ ,p  + 2,...,p + q 
p , q e  N

Here, X  is the vector o f design variables, i.e. X  = (x ,, x 2, x3,..., x m) e  R  

The constraints are added up to form the third objective

p

Minimize f } = £ m a x (g ,,0 )

p+q

+ Y , max((/i/ - f  ),0j
i= p+\

(17)
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3.2.1 SOM PP Version-1: The initialization and subsequent steps executed by the 

algorithm in each generation in solving a single-objective optimization problem are 

sequentially presented below. It should be noted that in the case of a maximization 

problem the function is multiplied by ‘-1’, to convert it into a general minimization 

problem.

First, a population o f N candidate solutions (prey) is created using Sobol’s [15] quasi 

random sequence generator to generate their vectors o f design variables. Using these 

values of design variables, objective functions for each candidate solution are evaluated.

Then, the prey are placed at nodes of a two dimensional grid with connected ends 

hence having a toroidal nature. The grid is allowed to adjust its size dynamically 

according to the population size maintaining the dimensions I x J, where typically J = 5. 

Random members o f the prey population are cloned and placed on the grid when 

N < I x J  in order to ensure that all grid points (all have integer co-ordinates) are occupied 

by prey.

Similarly, M predators are placed on the same 2D grid such that they occupy random 

cell centers (Figure 1). The value of M is determined by the following empirical formula.

where e  is the tolerance for equality objectives.

where, [r] is the lowest integer greater than r ,  r e R +, and N f  is the number of 

objectives. Each predator is associated with a weighted value o f the objectives as follows.

M  = max —  x N f  ,4^ 2 0  J
( a n i (18)

N f

(19)
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Here, w. is the weight associated with the ith objective function, and is the ith objective

function. The weights are distributed uniformly in case o f two-objective problems (from 

(0,1) to (1,0)) and using Sobol’s [15] algorithm in case of problems with more than two 

objectives (constrained problems). Predators are randomly located at the centers of 

quadrilateral cells drawn on an unfolded toroidal surface. Each neighborhood that 

contains a predator can be termed as an ‘active locality’ as shown in figure 1. In each of 

these localities/cells, the value o f /  as defined by equation 5 corresponding to the local 

predator, is calculated for each prey. The weakest prey, that is, the prey having the 

maximum value o f /  is selected to be killed and replaced by a new prey produced by the 

crossover o f the two strongest neighboring prey and a subsequent mutation of the 

crossover child.

The blend crossover (BLX- a ) [5] was used in this case.

yt =(1 + 2a)ui - a

Here, *.(U) and are the parent solutions, x((U+1) is the child solution and ui is the

(20)

random number between 0 and 1. A value of 0.5 was used for a  as suggested by Deb

[5].

Non-uniform mutation [5], as defined below, was used in this algorithm.

V J
x p

(21)
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Here, 10~* is the terminal order of magnitude of the extent o f mutation, y /1,/+1) is the 

child produced by mutation of the ith variable, xj{U) and x /z,) are upper and lower limits 

o f the ith variable, rt is the random number between 0 and 1, t and are the number of 

function evaluations performed until then and maximum allowed number of function 

evaluations, respectively, while b is the user defined parameter (b = 1.5 determined 

empirically) and j5 is the scaling parameter.

The child prey produced by crossover and mutation qualifies to be accepted only if it 

fulfills the following three criteria:

(i) The child is stronger than the worst local prey based on /  calculated by equation 2,

(ii) The child is non-dominated (Deb 2002) with respect to the other three local prey, and

(iii)The child is not within the objective space hypercube [5] o f the remaining three 

neighboring prey.

The basis for determining relative dominance between two solutions (solutions i and j) is 

the same as used in NSGA-II [18], which is as follows. Solution i is said to dominate 

solution j  if:

(i) Both solutions are infeasible, and solution i has lower value o f constraint violation 

than solution j (i.e. / 3' < f 3 )

(ii) Solution i is feasible and solution j  is infeasible.

(iii)Both solutions are feasible (or problem is unconstrained) and solution i has a lower 

objective value than solution j  (that is, f x‘ < f xJ).
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In case of the third criterion, each old local prey is considered to be at the centre of its 

hypercube, the size o f which is dynamically updated with generations and is determined 

by the following novel equation.

C0 10 (22) 
77, = cox min ( prey, f tM prey)
Here, 10_i is the terminal order of magnitude of relative window size, co is the window 

size of the hypercube and r]i is the half side length of the hypercube corresponding to the

iL

i objective. The first two criteria promote convergence towards the global minimum. 

The third criterion helps in maintaining diversity in the solution space in order to avoid 

converging to a local minimum. Ten trials were allowed to produce a qualified child that 

satisfies these three criteria, failing which the worst prey was retained.

Upon completion o f the above predator-prey interactions in each active, locality, the 

predators were relocated randomly. A probability based relocation criterion was 

introduced here, which ensures that each cell is visited, therefore favoring an even 

distribution o f the number o f visitations by a predator to each cell. The predator 

relocation criterion is defined as follows:

if  cellcoimt(i, j ) > cellcountm̂ +\, locate = no ^ 3 )

else , locate -  yes

Here, cellcount ( i , j )  is the number of times predators have visited the cell ( i , j )  in 

previous generations, ce llc o u n tavg is the average o f all ce llc o u n t ( i , j )  and ( i , j )  is the 

randomly generated location on the 2D lattice. This new feature ensures that every
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member of the prey population irrespective of its location in the 2D lattice gets fair 

opportunity o f improvement.

At the end o f each generation the objective value of the strongest prey (based on 

dominance criterion) is found and the algorithm checks for termination. The convergence 

or termination criteria are as follows:

(i) Maximum allowed number of function evaluations (fcallmax) has been exhausted, or

(ii) The best objective value searched by the algorithm has not changed during the last 

100 generations.

The dynamic reduction o f the window size o f the hypercube and the mean extent of 

mutation along the course o f generations introduces the desirable attribute of ‘adaptive 

shrinkage o f the search radii’ as solutions converge towards the global optimum.

The above steps summarize the basic version of SOMPP which can be termed as 

SOMPP Version-1. During the course this research, further alterations/additional 

techniques were also implemented causing minor to significant improvements in its 

performance. The improved versions of SOMPP are described in detail as follows

3.2.2 SOMPP Version-2 (Rank Based Predator Relocation): Localities with 

relatively stronger prey were designed to have a higher affinity o f attracting predators. 

The probability ‘ cellprofy . ’ o f locating a predator in a particular locality (co-ordinates

i, j  generated by a random number generator) is determined as follows.

cellrank, , = min
(  rank^j rankM j \  

\ran kMJ+x ranki j+], (24)
N  -  ce llra n k } 

cellprobi j  = ---------—------ -
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Here, cellrank. . is the rank of the cell/locality ( i, j ) and ranki j is the rank of the prey 

located at the grid point ( i, j  ), ranking being determined on the basis o f dominance. N  is 

the total number o f prey, hence equal to the maximum rank in the population. This 

feature speeds up convergence, but limits the domain of search in certain cases.

3.2.3 SOM PP Version-3 (Nine Prey Neighbourhood): Instead of the predator being 

located at the center o f a four-vertex quadrilateral cell, the predator is now located on the 

same grid nodes as prey and allowed to have access to all 8 preys around it as well as the 

prey at that very grid location (Figure 28).

Figure 28 An active 9 prey locality/neighbourhood on the grid drawn on an unfolded

toroidal surface.

This increases the neighbourhood scope of the predator from four to nine. Since prey are 

not relocated in SOMPP, this modification facilitates faster communication of genetics 

among prey irrespective o f their location on the unfolded toroidal surface grid, which in
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turn accelerates the rate of improvement of the prey population as a whole. However, this 

modification instills a tendency to converge to a local minimum.

3.2.4 SOMPP Version-4 (Global Elitist Crossover): Here, the worst prey in each 

active neighbourhood is replaced by the crossover of the strongest two prey in the entire 

prey population, instead of the strongest two local prey. Strength of the prey in this case 

is determined on the basis o f the objective value. This significantly decreased the number 

of function evaluations necessary, but promoted convergence to local minima. This might 

be avoided by selecting the parents for crossover out of the top ‘frac ’ fraction of the prey 

population based on dominance, instead of the two global prey with minimum objective 

values.

3.2.5 SOMPP Version-5 (Version-2 and Version-3 Combined with an Epidemical 

Operator): In this version of SOMPP, the concepts of nine-prey active neighborhoods 

and rank based relocation of predators are implemented simultaneously to promote faster 

convergence and better communication among the prey. However, the rank for each cell 

is calculated as the average o f the ranks of all the local prey in that cell. In addition to 

that, to counteract the possibility o f convergence to a local minimum, a concept o f an 

epidemic genetic operator was introduced as implemented by Cuco et al. [27] in the 

Epidemic Genetic Algorithm. If the objective value of the strongest prey does not change 

over a certain number of consecutive iterations, a part of the prey population is discarded 

and replaced with new population generated using Sobol’s [15] quasi-random sequence 

generator. This is implemented as follows.

if Nchng > 10,

1. Rank prey population by dominance.
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2. Discard weakest 0.0 < f w < 1.0 fraction of the prey population.

3. Set variable limits suitable to the order o f magnitude o f the remaining prey and 

generate N x f w new prey to replace the discarded ones.

Here, Nchng is the consecutive number of generations without any change in the 

objective value o f the strongest prey by a relative tolerance o f 10e-03.

3.2.6 SOMPP Version-6 (Version-5 with dominance based selection in active 

neighbourhoods): Here, the relative strength of the prey in an active locality is 

determined on the basis o f the dominance criterion instead of the weighted / .  value given 

by equation 5. In case of unconstrained problems, this has no additional influence 

because the dominance is merely based on the actual objective value. However, in case of 

constrained problems, this modification helps significantly in directing solutions into the 

feasible region first, before the process o f minimization takes over. This is because the 

dominance criterion [5] was designed so that feasibility has a preference over 

minimization. This in turn substantially reduces the domain of search at the later stages 

making the algorithm more robust and efficient.

3.3 Numerical Experiments

All six versions o f SOMPP are implemented using C++ programming language. The 

objective functions are evaluated by the corresponding external executable files. The C++ 

code simulating SOMPP is called ‘PPsingle_cnstmt.cpp’. It compiles and runs 

successfully on both Windows and Linux workstations using Microsoft Visual C++ .NET 

for the former and KDevelop 3.1.1 for the latter operating systems.
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3.3.1 Unconstrained Single Objective Test Functions: The basic SOMPP (Version-1) 

and the final SOMPP (Version-6) were both tested on ten well known unconstrained 

single objective test problems [28]. Details about these functions are given in table 9.

Table 9 Details of ten unconstrained single-objective test cases

Test

Function
m Objective Function 1 Analytical Solution

Griewank 2

m  V 2  m  (  V A
/ ( ^ 0  = £ --- ------ ftCOS —p  +1

m 4000 i f  \ f i )  

x.t e [-600,600]

f { X )  = 0, x ,= 0

Rosenbrock 2
/(AT) = 100(x2- ^ 2)J + ( 1 - ^ ) 2 

xfe [-2.048,2.048]

f ( X )  = 0, Xj = 1

Miele-

Cantrell
4

/ ( ^ ( ^ - ^ V i o o ^ - x , ) 6

+ (tan-1 (x3- x 4)) +Xj2 

xi E [—10,10]

f ( X )  = 0, Xj =0,

X2 = x2 = X4 = 1

De Jongl 2
/ ( * ) = ! > , 2

1=1

x,.e [-5.12,5.12]

f ( X )  = 0, Xj = 0

Rastrigin 2

m

/ ( 2 f )  = 10m -]T (x j2-1 0cos(2  j c x , ) )
1=1

x ,e  [-5.12,5.12]

f ( X )  = 0, Xj = 0
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Schwefel 2
n x ) = ± { - * H M ) )i=l

x, e [-500,500]

f ( X )  = 418.9829, 

x, =420.9687

Ackley’s

path
2

/
m

/ W = Z
/=1

V
a -  20, b = ( 

xi G [ 1*l]

m \  
Z cos(«,)

—ae ' m —e m
+a + e J

).2, c - 2 k

/ ( A > 0 ,  x ,= 0

Michalewicz 10

m

/ ( * ) = - !i=1

X,g[0 ,7t]

f  (  ( i x2 V
sin(x(.) sin -4 -  

\  V V 71 ) y

)2P
\

J f ( X )  = -9.66

Easom 2
/ ( X )  = -co s(x ,)co s(x 2)e ^  

x,.e [-100,100]

f ( X )  = - 1, * ,.=*

Goldstein-

Price
2

/ w =

x,e [-2,2

1 + (Xj + x +12)

( 19-14xj + 3x,2 -1 4 x 2 

^+ 6x,x2+3x22

(30+(2x, - 3 x2)2)2

f18-32x , + 12x,2 + 48x 

^ - 3 6 xjX2 + 27x22

\

\

U

2

)

\

/

/ ( * )  = 3,
Xj = 0, x2 = -1

[Note: m = number o f variables]

The user-defined parameters used in the SOMPP Version-1 and Version-6 algorithms in 

case o f the above test problems are summarized in table 10 respectively.
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Table 10 SOMPP Version-6 user-defined parameters for three single-objective test cases

Parameter Value

Population size (# prey) 10 x m

Crossover probability 1.0

Mutation probability 0.25

Maximum allowed function evaluations 10000

K  (mutation) 6

L (hypercube) 10

f w (epidemical operator for Version-6) 0.9

The test functions were run until one o f the following termination criterion was 

satisfied -  (i) ‘relative error in the computed minima’ < 10e-10 or (ii) the change in 

magnitude o f the instant computed minima for 100 consecutive generations < a relative 

tolerance o f 10e-03 or (iii) the maximum allowed number of function evaluations was 

exhausted. The relative error is calculated as follows.

relative error = “  (25)

\Mincomp- M i n \ ,  i f  Mm„„„( = 0

The history o f convergence for SOMPP Version-1 and Version-6 working on the above 

test problems are shown in figures 29 to 34.
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Function Evaluations

Figure 29 Convergence histories of the Ackley’s Path function, De Jong’s function 1 and

Easom function using SOMPP Version-1
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Figure 30 Convergence histories of the Ackley’s path function, De Jong’s function 1 and

Easom function using SOMPP Version-6
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Figure 31 Convergence histories of the Goldstein-Price’s function, Michalewicz’s 

function and Rastrigin’s function using SOMPP Version-1
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Figure 32 Convergence histories of the Goldstein-Price’s function, Michalewicz’s 
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Figures 29 to 34 demonstrate that the numerous modifications introduced in SOMPP 

Version-6 made it superior to SOMPP Version-1. The rate o f convergence has increased, 

and so has the accuracy of the problem. Version-1 performs better than Version-6 for 

only Michalewicz’s function. Further fine calibration of the extent o f mutation and the 

relative hypercube size together with allowing more function evaluations is likely to 

achieve better accuracy in finding the global minimum with both versions of SOMPP. 

The various output parameters resulting from these runs are summarized in table 10 and 

11.

Table 11 Output for the test problems discussed in table 9 using SOMPP Version-1

TP
Computed

Minima

Actual

Minima

Relative

Error

# Function 

Evaluations

Computing 

Time (s)

Griewank 0.0395046 0 0.0395046 8798 452

Rosenbrock 0.0003079 0 0.0003079 8140 417

Miele-Cantrell 0.0873523 0 0.0873523 9082 485

De Jongl 9.85E-11 0 9.85E-11 4078 217

Rastrigin 9.83E-11 0 9.83E-11 3481 186

Schwefel -837.961 -837.966 5.7E-06 1312 69

Ackley’s path 7.86E-06 0 7.86E-06 10000 608

Michalewicz -9.45616 -9.66 0.021101 10070 586

Easom -0.997203 -1 0.002796 1436 77

Goldstein-Price 3.00001 3 2.81E-06 6774 370
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Table 12 Output for the test problems discussed in table 1 using SOMPP Version-6

TP
Computed

Minima

Actual

Minima

Relative

Error

# Function 

Evaluations

Computing 

Time (s)

Griewank 5.28E-12 0 5.28E-12 5590 281

Rosenbrock 0.0003965 0 0.0003965 5485 288

Miele-Cantrell 3.82E-06 0 3.82E-06 6064 306

De Jongl 4.26E-12 0 4.26E-12 4926 278

Rastrigin 6.59E-12 0 6.59E-12 3576 200

Schwefel -837.961 -837.966 5.23E-06 1422 72

Ackley’s path 5.92E-12 0 5.92E-12 8422 466

Michalewicz -9.05829 -9.66 0.0622889 10020 506

Easom -999892 -1 0.0001079 1465 76

Goldstein-Price 3 3 5E-08 5247 263

It should be noted that in predator-prey algorithms the number of function evaluations 

made during each generation is not restricted to the population size. Hence, at times the 

total number of function evaluations made slightly exceeds the maximum allowed 

number of function evaluations as seen from table 6. It is seen from the table 4 that 

SOMPP performs well on all the unconstrained single objective test problems from table 

1, with the exception o f Michalewicz’s function.

3.3.2 Constrained/Unconstrained Single Objective Test Problem s by Hock & 

Schittkowskii: In order to thoroughly examine the potentials of SOMPP, the algorithm in 

its original version (SOMPP Version-1) was tested on the 293 constrained and
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unconstrained single objective test cases with known analytic solutions. These 293 test 

cases were derived from the collection of 395 linear/nonlinear test cases (actually 295 test 

problems) formulated by Hock and Schittkowskii [3] and Schittkowskii [4]. The number 

of variables involved in these 293 cases ranges from 2 to 100 as shown in figure 5. The 

number o f inequality and equality constraints range from 0 to 38 and 0 to 6, respectively.

Figure 35 Number of variables for each of the 293 test cases.

The user-defined parameters used in the SOMPP Version-1 algorithm in case of the 

above 293 test problems are summarized in table 13.
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Table 13 SOMPP Version-1 user-defined parameters for the 293 test cases

Parameter Value

Population size (# prey) 10 x m

Crossover probability 1.0

Mutation probability 0.1
rs

Maximum allowed function evaluations 20000

K  (mutation) 2

L (hypercube) 4

The prey population size used here is termed as ‘small set’ which is equal to ten times 

the number o f design variables. A tolerance of 10e-03 was used for equality constraints, 

that is, £ = 10-3. To compensate for performance fluctuations induced by random 

generators used in creating the initial population and other genetic operators, the 

algorithm was run 5 times for each of the 293 test problems resulting in a total o f 1465 

test runs. An explicit termination criterion was also implemented when relative error 

became less than 0.001. The final relative error for the computed minimum and the 

number of function evaluations exhausted in doing so for each of these test runs can be 

seen in figures 6 and 7.

72



108
§10® 

LU A
0,1 O4
«102<D
“ 10°

1 0 10

* ■
10
10"

'2t i j -  : i  a

.  V"

V
100 200 300

TP runs
400 'eOO 900 1000 

TP runs
1100  1200

TP runs TP runs

Figure 36 Relative errors o f computed minima for the 293 test problems (SOMPP

Version-1).
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Figure 37 Number of function evaluations made for each of the 293 test problems

(SOMPP Version-1).

It is evident from figure 36 that some of the test cases exhibit partial convergence 

with a relative error o f the order of around 1.0. This can be attributed to the presence of 

either multiple equality or inequality constraints (linear /nonlinear) or both in most of 

these test problems ([3], [4]). Some o f the test cases do not converge at all leading to a 

relative error o f orders above unity. This is primarily due to the lack o f any specified 

variable ranges for some of the design variables in the original publications. In such 

cases, a comprehensive range of -lOelO to +10el0 was assigned for each design variable. 

The number o f function evaluations varied significantly from problem to problem as seen 

from figure 37. Test problems (TP) from TP-80 onwards till TP-118 (test runs 400-590)
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have relatively high number of constraints leading to a higher number of function 

evaluations. Whereas test problems ranging from TP-190 to TP-210 as well as from TP- 

260 to TP-293 have a relatively high number o f design variables leading also to a higher 

consumption in terms of the number of the objective function evaluations.

Running all 293 test problems in series is extremely computationally time consuming. 

Consequently, a set of 13 test problems were chosen from among these 293 cases. These 

13 test cases involve number of variables ranging from 2 to 50 (with or without specified 

limits), number of equality constraints ranging from 0 to 6 and number of inequality 

constraints ranging from 0 to 38, thereby exhibiting varying degree and nature of 

complexity. Details pertinent to these test problems are given in table 14.

Table 14 Details o f the 13 test problems from the set o f 293

# TP m q P # TP m q P

1 1 2 0 0 8 118 15 0 29

2 37 3 0 2 9 246 3 0 0

3 44 4 0 6 10 251 3 0 1

4 55 6 6 0 11 301 50 0 0

5 75 4 3 2 12 393 48 2 1

6 110 10 0 0 13 395 50 1 0

7 112 10 3 0

Here, p  = number of inequality constraints, q = number o f equality constraints.

All the latter 5 versions of SOMPP (version 2 to 6) were tested on these 13 test 

problems. Each of these test problems was run 5 times on a small population size (10 x
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m) as before. The user-defined parameters used in the SOMPP algorithm in case of these 

13 test problems are summarized in table 15.

Table 15 SOMPP User-defined parameters for the 13 test cases

Parameter Value

Population size (# prey) 10 x m

Crossover probability 1.0

Mutation probability 0.25

Maximum allowed function evaluations 20000

K  (mutation) 3

L (hypercube) 6

It should be noted that, compared to table 3, a higher mutation probability was used to 

prevent intermediate convergence to local minima and subsequent stagnancy in the 

region o f the local minima. Higher values of K  and L were used to allow for higher 

accuracy.

The relative error o f the computed minima, the constraint violation o f the computed 

minima, and the number o f function evaluations exhausted for each of the 5 versions of 

SOMPP running on each o f the 13 test problems thus resulting in 65 runs can be seen in 

figures 38, 39 and 40 respectively.
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It can be observed from figure 38 that SOMPP Version-6 performs better than the 

other versions o f SOMPP in approaching the global minima. It also has the maximum 

potential in driving solutions into the feasible domain as seen from figure 39. In case of 

some of the constrained problems the data points are not visible in figure 39. This is 

because the constraint violation is zero, which means the final computed minima in these 

cases are feasible solutions, and hence cannot be represented in a logarithmic plot of 

figure 39. The pertinent output parameters relating to the most accurate solution (of the 5 

runs for each problem) for SOMPP Version-6 running on the 13 cases are summarized in 

table 16.
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Table 16 Output for the 13 test problems with SOMPP Version-6

TP
Computed

Minima

Actual

Minima

Relative

Error

Constraint

Violation

# Function 

Evaluations

Computing 

Time (s)

1 0.00701 0 0.00701 19291 989

37 -3454.06 -3456 0.00056 0 1347 69

44 -14.9708 -15 0.00195 0 5635 290

55 6.33959 6.3333 0.00098 0.996963 10952 568

75 5176.05 5174.41 0.00031 2.45536 3522 182

110 -45.7493 -45.7785 0.00064 2385 123

112 -0.05151 -0.47761 0.89215 0 20059 1045

118 751.617 664.82 0.130556 0 20031 1045

246 0.011518 0 0.011518 19696 1021

251 -3454.81 -3456 0.000345 0 294 15

301 0 -50 1 20052 1062

393 1.8623 0.86338 1.15699 0 20712 1192

395 19990.6 1.91667 10428.9 163.789 20150 1071

The significantly low accuracy and inability to find feasible solutions in case of TP- 

395 can be attributed to the fact that there were no specified variable limits for any of the 

50 design variables involved in this problem provided in the original publications [4].

SOMPP Version-6 being the most efficient and robust o f all the different forms of the 

SOMPP, was then tested on the entire set of 293 single objective test problems ([3], [4]) 

run 5 times each. The various user-defined parameters used were the same as given in
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table 5. The relative error of the computed minima, the number of function evaluations 

exhausted and the constraint violation of the computed minima for all the (293 x 5) test 

runs are displayed in Figures 41 to 43.

Figure 41 Relative errors o f computed minima for the 293 test problems (SOMPP

Version-6)
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Figure 42 Total constraint violation for each of the 293 test problems that are constrained

(SOMPP Version-6).

81



</) c o
§15000 ■

> o
C10000 • o
o c
3 c;n

20000

, »

I !f

100 200 300 400
TP runs

</> 
c o
§15000

15>0)
C 10000o'«f3oc
p  5000

¥
800 900

■ f

1000 1100 1200 
TP runs

400 500 600 700 800
TP runs

20000<n c o
§ 1 5 0 0 0

15>
LU
c 10000 o
o
c
3  5000  

%

1200 1300 1400 1500
TP runs

1600

Figure 43 Number o f function evaluations made for the 293 test problems (SOMPP

Version-6).

It is seen from figure 41 that SOMPP Version-6 performs well in achieving relative 

errors o f the order of less than 1.0, except for in cases which have a high number of 

design variables with unspecified variable limits. However, the most prominent 

improvement o f this version of SOMPP is its ability to find the feasible space in case of 

constrained problems (as shown in figure 42) irrespective o f the number and complexity 

of the inequality and equality constraints (whether linear or nonlinear). It should be noted 

that in many of these constrained problems the initial population is completely in the 

infeasible space. The inability to converge to the feasible space in case o f the last few test 

problems can be attributed to the involvement o f relatively high number o f unbounded
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design variables (from 20 to 50) as seen from figure 5. The number of function 

evaluations exhausted by SOMPP Version-6 is relatively high as shown in figure 43, 

which is expected as a substantial amount of functions evaluations are consumed in 

successfully searching for the feasible space in case of constrained problems.

The improved performance of SOMPP Version-6 becomes more evident from the 

histogram presented in figure 44.
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Figure 44 Comparison o f the frequency o f occurrence o f different orders o f magnitude of 

relative error in the computed minima between SOMPP Version-1 and Version-6 

Here frequency relates to the number o f test runs that converged to that particular order 

of magnitude o f relative error. It is seen from figure 44 that in case o f COMPP Version-6, 

noticeably more test cases have converged to relative errors o f orders o f magnitude less 

than 1.0 (higher histogram bars for log {relative error) < 0 ).
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CHAPTER IV -  CONCLUSIONS

Technological advancements in recent years have necessitated the efficient design of 

systems and processes in order to be competitive in the global market. However, design 

and performance optimization implemented during the same time has been limited to the 

use of experience and intuition of research personnel/field technicians and application of 

existing classical models in design. Optimization techniques/models on the other hand 

have undergone radical improvements, with the rise o f evolutionary [5] and hybrid [12,

25] optimization algorithms and robust modeling/interpolating/pattem searching 

techniques such as response surfaces [29, 30], artificial neural networks etc. Application 

of such techniques to real life systems whether engineering/scientific systems or financial 

systems, demands efficient optimization concepts that are simplistic in execution, provide 

reliable solutions and are computationally inexpensive.

The modified predator-prey algorithm provides one such means of searching for 

optimal solutions. This algorithm, both in its multi-objective version and the single 

objective version, with added constraint handling modules, has been tried and thoroughly 

validated against test problems of different types. The pertinent analysis results show that 

this algorithm is competent in producing dependable optimal solutions, and for certain 

cases even does better than most well known algorithms presently available in literature. 

Performance o f the constraint handling technique in driving solutions into the feasible 

domain at the expense of a reasonable number of function evaluations is also appreciable.

MPP employs the concept of weighted sum of objectives without any normalization 

of the objectives, which leads to relatively poor distribution o f Pareto solutions in certain 

complex multi-objective cases. Nevertheless, the inclusion o f the concept o f sectional
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convergence using biased weighing of objectives and careful hypercube sizing ensures a 

desirable distribution of the Pareto solutions even for these poorly behaved cases.

Single-objective optimization problems posed without explicit decision variable 

limits {i.e., unbounded problems) are likely to diverge. This issue was addressed by the 

relatively nascent concept o f epidemic operator [27], where a significant portion of the 

candidate solution population is replaced by new randomly generated candidate solutions 

within a practical range depending on the problem. Equality constraints pose severe 

threats against convergence, especially in problems with high number o f design variables, 

because they create an extremely constricted feasible region in a multi-dimensional 

search domain o f high order. However, SOMPP handles such problems with acceptable 

accuracy, without the application o f a computationally expensive penalty function 

method.

The modified predator-prey algorithm presents a concordant application o f the basic 

traits of evolutionary algorithms, classical weighed sum approach and certain ingenious 

techniques such as sectional convergence, hypercube operator, epidemic operator, etc to 

single- and multi-objective problems (constrained and unconstrained). A combination of 

such distinct features is rare in optimization literature and provides a foundation to 

construct robust composite optimization algorithms with features adaptive to both the 

problem and the progress o f the algorithm through the function space towards the Pareto 

front.

Future Work

The unconstrained multi-objective version of the modified predator-prey algorithm, i.e. 

MPP, is due to be incorporated into the hybrid optimizer MOHO developed by Moral and
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Dulikravich [12]. The modus operandi of MPP is conceptually different from the existing 

algorithms in MOHO. As discussed before, the performance of MPP is comparable to the 

performance o f MOHO on the ZDT test problems. Thereby, MPP is expected to 

contribute significantly to the versatility of MOHO in tackling complex real world 

optimization problems. This might demand some minor, but necessary changes to the 

C++ code simulating MPP. Addition of MPP to MOHO will be followed by testing the 

new MOHO with the same ZDT test cases to demonstrate the expected performance gain 

due to MPP and compute the percentage contribution of MPP in terms of function 

evaluations and execution time.

MPP is also in line to be applied on several real design problems presently under 

analysis within the MAIDROC research group. One o f them is ‘COOLNET’, a project 

which involves generation of three-dimensional cooling networks [31] for cooling of 

electronic components. An efficient operation o f such a thermo-fluids system calls for a 

design that incurs minimum pressure drop o f the cooling fluid flowing through the 

network and ensures maximum heat extraction from the electronic components. This 

poses a multi-objective problem which will be addressed accordingly by MPP where 

choice o f branching/sub-branching configuration, number o f levels/branches, lengths of 

each of the branches, and cross sectional area o f different branches are likely to be the 

design variables.

A complete multi-disciplinary design optimization package demands a combination 

of optimization algorithm(s) and a modeling/interpolating/pattem searching technique. 

Self Organizing Map (SOM) concept [32] is a type o f artificial neural network that is 

trained using unsupervised learning to produce a low-dimensional (typically 2D),
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discretized map o f the design space of the training samples. This makes SOM useful for 

visualizing low-dimensional views o f high-dimensional data, akin to multidimensional 

scaling, thereby seeking to preserve the topological properties of the design space. The 

synergy of SOM and MPP has the potential to form a complete MDO package, capable of 

addressing real world design problems. Such hybrid software will be developed and 

validated with standard test problems. Subsequently, it’ll also be applied to practical 

problems o f the likes of alloy optimization using available experimental data [33], 

weather prediction using measured/recorded field data, etc.
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APPENDICES

Appendix A: Performance of standard algorithms on the ZDT test cases [12]
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Figure 45 Results for test problem ZDT 1 using various standard algorithms
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Figure 46 Results for test problem ZDT 2 using various standard algorithms
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ZDT 3
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Figure 47 Results for test problem ZDT 3 using various standard algorithms
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Figure 48 Results for test problem ZDT 4 using various standard algorithms
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Figure 49 Results for test problem ZDT 5 using various standard algorithms
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Figure 50 Results for test problem ZDT 6 using various standard algorithms
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Appendix B: Performance of PP by Deb et al. [34] on standard test cases

a

Figure 51 Test problem ZDT 1 using PP Figure 52 Test problem ZDT 2 using PP

fi fi

Figure 53 Test problem ZDT 3 using PP Figure 54 Test problem ZDT 4 using PP

1.4

Figure 55 Test problem ZDT 6 using PP Figure 56 Test problem DTLZ 2 using PP
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cases [2]

Appendix C: Perform ance of NSGA-II and SPEA on unconstrained 3-objective test

Figure 57 Results for test problem DTLZ 1 using NSGA-II

Figure 58 Results for test problem DTLZ 1 using SPEA
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Figure 59 Results for test problem DTLZ 2 using NSGA-II

Figure 60 Results for test problem DTLZ 2 using SPEA
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Appendix D: Perform ance of NSGA-II [18] and IOSO [22] on constrained 2-

objective test cases

Figure 61 Results for test problem CONSTR using NSGA-II

Figure 62 Results for test problem SRN using NSGA-II
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Figure 63 Results for test problem TNK using NSGA-II

Objective N31

Figure 64 Results for Binh’s multi-objective problem no. 2 using IOSO
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Figure 65 Results for Osyczka multi-objective problem no. 2 using IOSO
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