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ABSTRACT OF THE THESIS

A STUDY OF HYDRAULIC PROPERTIES OF HIGH LEVEL WASTE SIMULANT

by

Sudhakar N. Chodavarapu

Florida International University, 2004

Miami, Florida

Professor Shonali Laha, Major Professor

The purpose of this study was to determine the unsaturated hydraulic properties of

High Level Waste simulant by applying inverse modeling and parameter estimation

methods and data obtained by experiments.

Saltcake simulant was placed in column equipped with tensiometers and flow

meters. Variable pressure boundary conditions ranging from 100 to 500 cm were applied

along the column, outflow and the pressure head were measured with respect to time. The

experimental data was analyzed using an inverse modeling software and the van

Genuchten's hydraulic parameters for unsaturated porous media were determined. In

addition, the unsaturated hydraulic conductivities were obtained as a function of the

moisture content. Hydraulic conductivities ranged from 5.36E-5 to 4.29E-2 cm/hr. The

data was analyzed to determine the percentage reduction in storage capacity as a function

of applied pressure. The experimental results were compared with output from direct

simulations of interstitial fluid drainage from a column and showed good agreement.

While there are several studies on determining the saturated hydraulic

conductivities, this work demonstrates that the van Genuchten unsaturated model is a

valid model and can be applied for three dimensional modeling and for determining the

level of separation of radioactive waste (Cs 137) using interstitial fluid drainage.
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p fluid pressure of phase [psi]

pa air pressure [psi]
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A Angle between direction of flow and horizontal direction [-]
I Pore connectivity factor [-]

dC Diameter of the soil particles at 10% of cumulative grain size distribution
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P, Bulk density [kg/m3]

p Particle density [kg/m 3]

Vt Total volume occupied by the soil [m 3 ]

VSC Volume of voids in coarse-grained soil [m 3 ]
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The Savannah River Site (SRS) has 51 tanks containing about 30 million gallons of high-

level waste (HLW) from nuclear fuel reprocessing. Each tank contains varying amounts

of three types of waste, i.e., sludge, saltcake and salt solution. Sludge is insoluble and has

settled to the bottom of the tank. Sludge is only eight percent of the SRS waste volume

and has been estimated to be eleven million liters (Edwards et al 2002). The chemical

composition of the sludge includes high levels of radioactive elements including

strontium, plutonium and uranium mostly as hydroxides under very high pH. The

remaining ninety two percent of the SRS waste volume is salt waste. The interstitial fluid

may have high concentrations of cesium-137 and trace amounts of other radioactive

elements in the form of dissolved salts and it is considered as HLW. Salteake is the low-

level tank waste that consists primarily of sodium nitrate or nitrite crystals that resulted

from removal of water from previously neutralized waste supernatant liquid. The waste

that was stored in the underground storage tanks needs disposition because several

storage tank leakages occurred in the past at Hanford site]

The waste is stored in single shell and double shell storage tanks. DOE's single

shell tanks (SST) are potential environmental hazards because only a single barrier

contains the liquids and any breach in the barrier may cause contaminant spillage

(Ramirez et al 1996). In addition, the lifetime of the SST has been exceeded, therefore,

retrieval within the shortest time span is essential to prevent an environmental

catastrophe. To prevent the potential catastrophe and to reduce associated human health

'h1tta-,vww. han ford. ov/ press! 997/97- 04.1him
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and safety risks DOE plans to process these wastes for final disposition. The removal of

HLW costs hundreds of millions of dollars and will require over twenty years to

accomplish (Noyes et al 2003). DOE is investigating alternative methods and

technologies for HLW removal and processing, which include dissolution of high level

salts and supernatant drainage to separate the high activity components. Interstitial fluid

displacement by uncontaminated water has been suggested for preferential retrieval of

Cs-137 and consequent treatment of the waste (Staheli and Peters, 1998).

The radionuclide present at highest concentration in the underground storage

tanks is cesium-137. Most of the high level waste will be present in the interstitial fluid

and low-level waste in saltcake and sludge. Due to the porous nature of the saltcake and

cesium concentration being very much lower than saturation, most of the cesium-137

exists only in interstitial fluid (Brooke et al 1999). It can be removed from the saltcake by

displacing the contaminated interstitial liquid with uncontaminated liquid. Removing 70

to 90 percent of the interstitial fluid removes an equivalent percent of cesium and other

soluble radionuclides (Suggs et al 2002).

The waste removal process should be demonstrated experimentally before

implementing at the site. Laboratory experiments were conducted on the salteake

simulant that was prepared using different types sodium salts with similar porosity and

capillary pressure as that of the high-level waste at the site. To determine the hydraulic

properties of the saltcake an analogy of soil water in the vadose zone was used as

reference. A number of well-established mathematical models were developed to

determine the hydraulic properties of water in the soil. Experimental models developed

3



by van Genuchten (1980), Mualem and Richards (1964) have been used as the basis to

estimate the unsaturated hydraulic conductivity of the saltcake. These models were

developed using different types of soils of varied porosities and capillary pressures.

Laboratory experiments were conducted on these soils and mathematical relationships

were developed to determine hydraulic properties of the porous media. Because saltcake

has a similar porous nature, we conducted similar experiments with synthetic saltcake

and used similar mathematical relationships to determine hydraulic properties of the

saltcake.

4
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The following sections present the governing equations used to describe flow through

unsaturated porous media. These equations were developed from mass balance and

hydrological models.

2.1 Mass Balance

The mass balance equation includes two coupled equations for each phase (Bear

1979):

a
(pO)+V e(p)= F 1

at

where p= density of phase (kg/i 3), q =volumetric flux (or Darcy flux) (m/d), F =

a
source or sink of fluid (kg/m3 .d), 0= volumetric fluid content (dimensionless) -(p0) is

at

change of mass in a control volume in time, V. (pq) is divergence of mass flux in that

volume. The porosity of the fluid can be defined as:

0" +0W = 2

where 0,= air content, ,= water content, and = porosity

2. Darcy's Law

Darcy's Law describes the relation between the flux and the individual phase

pressures. From the momentum balance equations, generalized multiphase Darcy's law

may be expressed as:

6



q = -- (V p- pg) 3

Where, k = intrinsic permeability tensor of the medium (m2), k, = relative

permeability of fluid p =dynamic viscosity of fluid (kg/m.d), p = fluid pressure of phase

(kg/m.d2), g = acceleration due to gravity vector (m/d 2)

The pressure head is defined as

Ii 4
p.g

The relation between the permeability and non-linear conductivity tensor is given

by:

Pi gkkr Kk 

5

Where, p, = density of water at standard temperature and pressure (kg/m3 ), KS=

conductivity when the porous medium is saturated with fluid.

From Equations 3 and 4 Darcy's law can be written as

q=-K(Vh - i ) 6

iz = unit normal oriented downwards in the direction of the force of gravity, p, is

the density of air.
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The average flow velocity is defined as:

7
0

Where v = flow velocity (m/d), q= volumetric flux.

2.3 Constitutive Relations of Unsaturated Flow

Equations 1 and 3 describe the flow conditions in the system. There are several

unknowns in these equations. In order to close the system constitutive relations that relate

the unknowns must be specified. The solution of equations 1 and 3 require knowledge of

three constitutive relations pressure-saturation, relative permeability-saturation, and

density-pressure are required (Binning 1994). The fluid saturation is a function of the

difference between the pressures of the two fluids in the porous medium. The pressure

difference is called the capillary pressure (p,) and is defined as:

p. = pa -p, 8

Where pa = pressure of air or non-wetting phase, p,= pressure of water or wetting phase,

p, = capillary pressure, with corresponding definition for the capillary pressure head (he):

hC =h, -h" 9

One of the most commonly used functional forms to describe the pressure-

saturation relation is that of van Genuchten (1980):

8



r -+0, 10

(1+(ahe)")

0,, ,,a, n are used as fitting parameters with a given set of capillary pressure

saturation data. 0,, r are saturated water content and residual water content respectively,

a is the inverse of the air-entry value or bubbling pressure [1/cm], n is the pore size

distribution index.

1
S 11

[l + (ah)" ]'"l

Where a, n, m are van Genuchten's empirical constants affecting the shape of the

retention curve, S is the normalized water content.

2.4 Richards Equation

The governing equation for the two-dimensional Darcian water flow in a variably

saturated rigid isotropic porous medium is given in the following form of the Richard's

equation:

00 _ Dq _8 K = 8 K(-z -h) ]8F h1- -- -LK -- =-K]- -=--LK -+ K] 12at OZ a_7 aZ a az az a z

The functional form given above ignores the effects of hysteresis. For more

general drainage problems it may be useful to include hysteresis. Several computational

models have been developed by other authors including Kool and Parker (1987), and

9



Moridis and Reddell (1991) who proposed a secondary water recovery system based on

model results of unsaturated zone hysteresis.

The relative permeability is a function of fluid saturation, defined as

k,( )= S,1/2(1 u_,lM i,2 13

where m = 1- 1/n, Se = normalized water content

O, - Or S = '14

The governing 1-D partial differential equation for water movement in

unsaturated zone can be transformed to:

ao _ a h .1
K-- K - -sin(A) 15

at ax L x

where 0= 0(h) is the volumetric water content, h = h(x, t) is the matrix potential,

x is the position coordinate parallel to the direction of flow; t is the time; sin (A) is the

sine of the angle A between the direction of flow and the horizontal direction; K(h) is the

hydraulic conductivity of the soil at matric potential h. An angle A of zero degrees

corresponds to horizontal flow with x increasing from left to right; an angle of 90 degrees

corresponds to vertical flow with x increasing in the downward direction.

The nonlinear relationships near saturation can affect the performance of

numerical solution of Richard's equation in terms of accuracy and stability.

10



ao_ a F _ a1
- a=- L KK 16

The predictive Mualem model for the hydraulic conductivity function may be

written as

If(S.)
K(Se)=K Lf(1) j]1

with

S 1
f(.) -- d 18

f h(x)

where K is the unsaturated hydraulic conductivity, KS is the saturated hydraulic

conductivity, l is the pore connectivity parameter usually assumed to be 0.5, and Se the

effective saturation given by Equation 14

0=0 0+ 10' for h<0 19
I +(ah)"F

0=0 for h 0 20

K = KS [1-(1-S II')' 21

where O, and 0, are the residual and saturated water contents, respectively and in

which n and a are empirical shape parameters with m= 1-1/ n.

11



2.5 Initial and Boundary Conditions

The solution of equation 12 requires knowledge of the initial distribution of the

pressure head within the flow domain:

h(x,t)= h,(x) t=to 22

where h, is a function of x, to is the time when the simulation begins.

2.5a Boundary Conditions:

The coefficients in the above equation characterize the hydraulic properties of the

medium: fluid retention O(h) and hydraulic conductivity K(h) (m/s). These functions are

monotone increasing and constant in the saturated region (h>0), Soil columns are suitable

and frequently used method to determine the hydraulic retention. Column experiments

exhibit a flow regime only in one direction constituting a spatially one-dimensional

model.

The experiments involve draining a vertically oriented soil column of fixed length

with known initial pressure head distribution h(x) near saturation by slowly decreasing

the pressure head h(t) at the lower boundary. Mathematically this is modeled by Dirichlet

boundary condition. The flux at the upper boundary is adjusted to q=0, therefore a

homogeneous boundary condition is used. The flux f(t) is measured at the outlet at the

lower boundary

f(t) =q(L,T) 23

12



Further the pressure head g(t) is measured at the upper boundary:

g(t) = h(O,t) 24

The physical properties of the experiments allow us to assure that it suffices to

describe the flow in the column by the Richards equation in one spatial dimension.

Solving the model for given hydraulic functions 0 and K and assigning the measurements

f(t) and g(t) to 0 and K characterize the direct problem The inverse problem consists of

determining the hydraulic functions 0 and K from given measurements f(t) and g(t). In

general the inverse problem is ill-posed; therefore it is necessary to appropriate a

regularization strategy for stable solution.

13
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3.1 Experimental Methods

Jiri Siminek and co-workers (1999) performed infiltration experiments on a loamy

soil in the laboratory for the purpose of estimating the unsaturated hydraulic properties.

The soil was packed in a soil container with tensiometers arranged along the column at

different depths and was exposed to natural rainfall conditions. A time domain

reflectometer was installed at a required depth to measure the water content. Soil

hydraulic parameters were estimated and combined with numerical solution of the

Richards equation to estimate the unsaturated hydraulic conductivity (Jiri Siminek et al

1999).

Another experimental procedure was used by Schaap et al (2003) on soil samples

collected from boreholes at a site and taken to the laboratory to determine the unsaturated

hydraulic conductivity of the soil. The soil sample was kept in column with porous plate

on the bottom and connected to a graduated cylinder with a pressure transducer to

measure the water level. The column at the top was connected to a pressure regulator that

allowed air pressure ranging from 0 to 1 bar to be applied (Schaap et al 2003). The

sample was saturated and air pressure increased in periodic increments and measurements

were taken for each individual applied pressure. Every pressure increase drives water out

of sample, through the porous plate at the bottom into the burette where the time-series of

the outflow volume was recorded with a pressure transducer. When the flow stops, static

equilibrium exists and at this point the water retention was determined. The final water

content was determined by drying the samples at 105 C. This measurement also yielded

15



the bulk density of the sample. Saturated hydraulic conductivity was determined with the

constant head method, after the samples were used in the multi-step outflow method.

Hydraulic parameters were optimized using non-linear regression fit and unsaturated

hydraulic conductivities of the samples were determined using van Genuchten and

Mualem model (Schaap et al 2003).

3.11 Determining the hydraulic conductivity of the soil by means

of field scale drainage model

A field scale drainage model experiment was developed for sandy soil by

Severino and co-workers (2003). Neutron probes were installed at different locations to

measure the water content at different depths. Tensiometers were installed at the same

locations to measure the pressure head at these depths. After completion of field

measurements, soil samples were taken to the laboratory to determine the soil hydraulic

parameters. Least-squares optimization procedure using Levenberg-Marquardt algorithm

was used to estimate the parameters and hydraulic conductivity was determined using the

data obtained from the field and laboratory (Severino et al 2003).

3.1.2 Analysis of Unsaturated water flow in a large sand tank

Britta Schmalz and co-workers (2003) conducted an experiment in a large sand tank

filled with Columbia silt loam to determine the soil water relation in unsaturated zone.

The unsaturated soil hydraulic properties were described using Van Genuchten-Mualem

type expressions. Infiltration experiments were carried out using a large tank contained

16



three sloped sidewalls. The tank was filled with a layer of homogeneous sand.

Measurements of the pressure head were taken using two vertical tensiometers and the

water content using time domain reflectometer at eight different depths. The lower

boundary was separated into five compartments to obtain information about the spatial

variability of the discharge rate. Calculations were performed using adaptive time

stepping and boundary conditions (van Genuchten et al 2000). These experiments were

performed on different types of soils and hydraulic parameters were identified and listed

in Table 1. The hydraulic parameters residual water content ,, saturated water

content 0, inverse air entry value a , pore-size distribution index n , and saturated

hydraulic conductivity Ks were used in determining the unsaturated hydraulic

conductivity (van Genuchten et al 2000).

17



Table 1 Average Values of Van Genuchten Model soil hydraulic parameters for
major soil textural groups according to (Van Genuchten, 2000)

Or 0 a n Ks

Texture

[cm3/cm 3] [cm3/cM 3] [1/cm] [-] [cm/day]

Sand 0.043 0.43 0.145 2.68 712.80

Loamy Sand 0.057 0.410 0.124 2.28 350.20

Sandy Loam 0.065 0.410 0.075 1.89 106.10

Loam 0.078 0.430 0.036 1.56 24.96

Silt 0.034 0.460 0.016 1.37 6.00

Silt Loam 0.067 0.450 0.020 1.41 10.80

Sandy Clay Loam 0.100 0.390 0.059 1.48 31.44

Clay Loam 0.095 0.410 0.019 1.31 6.24

Silty Clay Loam 0.089 0.430 0.010 1.23 1.68

Sandy Clay 0.100 0.380 0.027 1.23 2.88

Silty Clay 0.070 0.360 0.005 1.09 0.48

Clay 0.068 0.380 0.008 1.09 4.80

3.2 Parameter estimation

The Brooks and Corey equation (equation 14) is one of the most important

empirical equations in determining the hydraulic properties. This equation was modified

by van Genuchten for more accurate description of observed soil hydraulic data near

saturation, especially for undisturbed and many fine textured soils. Van Genuchten

18



predicted K(h) as a function of 0(h) obtained with one of the statistical pore size

distribution model because hydraulic conductivity is extremely sensitive to small changes

in shape retention curve near saturation. The difference between the predicted K(h)

obtained from both Brooks Corey and Van Genuchten models shows extreme non

linearity for fine textured soils and less severe for coarse textured soils (van Genuchten

1980)

3.2 Predicting unsaturated hydraulic conductivity of porous

media based on the physical properties

The combination of non-similar media concepts to the one-parameter Brooks and

Corey model has been used to predict unsaturated hydraulic conductivity of various soils

(Zhuang et al, 2001). The theory of non-similar media concept consists of parameters

characterizing the soil physical variability available and to incorporate these into existing

models. The unsaturated hydraulic conductivity involves different parameters, which are

obtained through correlating water retention curve to hydraulic conductivity curve of

specific soil samples. The input parameters are soil bulk density, particle size

distribution, soil water retention characteristics and saturated hydraulic conductivity. The

methods generally used for estimating the unsaturated hydraulic conductivity are

confounded by the complex pore characteristic, which usually results in non-

homogeneous velocity field of water flow and in turn includes variability of soil

hydraulic properties.

19



More than 50 soils with textures ranging from sand to clay were selected from the

hydraulic database and used with different models. This non-similar media concept has

yielded accurate results when compared to other models such as Brooks-Corey model,

Van Genuchten and other models (Zhaung et al, 2001).

The saturated hydraulic conductivity was calculated from the grain-size

distribution of the sand according to the Hazen relationship (1996) (Britta Schmalz et al

2003):

KS = 41.76(djo)2 25

Where Ks is the saturated hydraulic conductivity and d 0 is the diameter of the

soil particles at 10% of the cumulative grain size distribution.

The grain size distribution was measured every 10 cm along the vertical profile as

well as horizontal profiles. The mean bulk density was measured at different depths. Soil

water retention functions were obtained from the pressure head and water content data

measurements taken in the sand tank during infiltration experiments. The methods of

estimating the soil hydraulic parameters assume Or and 0, are held constant. For this

purpose Or was set equal to 0 and 0, was set equal to porosity as calculated from the bulk

density at each depth and the particle density using the equation:

1 p p1 ~ 26

Where is the porosity, p, is the bulk density and p, the particle density.

20



The mean flux was computed for the five outflow compartments. The discharge

rates were distributed relatively uniformly along the lower boundary for all the simulation

runs, with slightly higher fluxes in the middle of the tank and along the portions of the

sidewalls. The analysis of this experiment concludes that the selected optimization

procedures produced different water retention parameter sets. The saturated water

content O, was estimated the most critical factor affecting all other soil hydraulic

parameters. In contrast, observed variabilities in the discharge rate with time is

reasonable with an average water retention curve using porosity for ,. This scenario

produced more realistic range in the measured water contents (Britta Schmalz et al 2003).

3.2.2 Assessment of the hydraulic characteristics of unsaturated

base-course materials

The measurement of soil water characteristics over a full range of matric suction

for well graded compacted granular materials requires large representative samples and

time-consuming laboratory experimentation. The samples were compacted and arranged

in layers at the optimum modified proctor conditions in a high mold. This mold was

instrumented with tensiometers to measure the matric suction and time domain

reflectometer probes to measure the water content at different levels. The tensiometers

measure the negative pressure pore-water pressure in the soil surrounding the probe.

Since the samples were tested at atmospheric pressure, pore-air pressure is equal to zero

and the matric suction (h = P, - p,) is h = -p,. The tensiometers were made with high

air entry ceramic cups with an air entry value of 100 kPa, which is maximum sustainable
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matric suction. The time domain refelctometer probes were composed of three stainless

steel rods with a spacing of 2 cm. A cable tester was used to send an electromagnetic

wave down a coaxial cable into the probe. The signal received by the tester is used to

determine the dielectric constant of the material, which is related to the volumetric water

content using specific calibration curves for all materials (Cote et al 1997).

The hydraulic conductivities for nearly saturated samples were obtained from

constant head permeability tests, at a controlled temperature. The samples were

compacted using modified optimum proctor water content and subjected to a constant

head flow of de-aired water in the vertical direction. Saturated hydraulic conductivity was

calculated using Darcy's Law.

The flow of water in compacted granular materials takes place through a complex

network of the interconnected pores, the size and dispersion of which depend on many

factors, such as degree of compaction and stability of the base-course materials. The

porosity of such well-graded materials is thus greatly affected by fine content.

The porosity of the coarse grained soil can be computed as

#-1=1' 1 27
V

where Vt is the total volume occupied by the soil, Vs, is the volume of the voids in

the coarse grained soil

Porosity of the fine fraction is obtained as f
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[j -28

The soil hydraulic parameters have the influence on the fine fraction porosity as

well as surface area of the fines fraction. Firstly, air entry value was related to both the

porosity and the fines content. When the air entry (ha) value is plotted against the fines

fraction porosity a relationship is obtained from the graph. The exponential relationship

between ha and #f is best expressed as:

log h, = 3.92 - 5.19#f 29

The pore size distribution index n can be related to specific surface area of the

samples Sf . The experimental function n as a function of S, and #f is

n = 0.385 -0.021# 1S6 30

The hydraulic conductivity of the soil depends on many factors like degree of

saturation, porosity and others. The comparison of hydraulic conductivity values must be

done for unique degree of saturation, which is usually set for 100%. The saturated values

of hydraulic conductivity were extrapolated from the experimental degree of saturation

achieved for hydraulic conductivity measurements. The relationship of saturated

hydraulic conductivity can be expressed as

log(K ,,,)= 9.94nf -12.64 31
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The saturated water content ,, which is equal to 100n, the basic hydraulic

parameters needed for calculating hydraulic conductivity were determined. The

unsaturated hydraulic conductivity of the soil was determined using the Brooks -Corey

and Van Genuchten Models (Cote et al, 1997).

3.2.3 Parameter Estimation and Identifiability Analysis

The van Genuchten (VG) curve and the Brooks Corey (BC) Curve were fitted to

the static water retention data using non-linear optimization. The objective function that

was minimized as (J. Simunek 1998)

0(b, 0) -Z[0* (h;) -0(h, b)] 32

Where No is the number of static retention measurements, 0* (h) is the water

content for measurement i at a pressure head of hi, 0(h;, b) is the water content estimate

by the VG or the BC equation, and b is the parameter vector consisting of ,0,, a and n

3.2. Inverse determination of unsaturated hydraulic parameters

After determining the hydraulic properties particle-size distribution of the sample

was measured using wet sieving. The particle size fractions were summarized into

different fractions and analyzed by log-linear interpolation.
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Parameter optimization is an indirect approach for the estimation of soil hydraulic

parameters for the transient flow. Inverse methods are typically based upon the

minimization of a suitable objective function, which expresses the discrepancy between

the observed values and the predicted system response. Soil hydraulic properties are

assumed to describe an analytical model with unknown parameter values.

The objective function #to be minimized during the parameter estimation process

may be defined as (Simunek 1998)

#(b,q, p)= vj w , * [q -(,ti)q 1 (x,t, b) +
J=I i=1

n, Wn [P r[i

j= _ i=l j=1

where the first term on the right hand side represents deviations between the

measured and calculated space-time variables. In this term mq is the number of different

sets of measurements at the time ti for the/11 measurements set at location x(r, z), q (x, i,

b) are the corresponding model predictions for the vector of optimized parameters b and

v1 and wi, j are the weights associated with a particular measurement set respectively. The

second term of equation 33 represents the difference between independently measured

and predicted soil hydraulic properties and hydraulic conductivity. The last term

represents a penalty function for derivations between prior knowledge of soil hydraulic

parameters and their final estimates.
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The inverse solution produces a correlation matrix, which specifies degree of

correlation between the fitted coefficients. The correlation matrix quantifies changes in

model predictions caused by small changes in the final estimate of a particular parameter,

relative to similar changes as a result of change in the other parameters. The correlation

matrix reflects nonorthogonality between two parameter values (Simunek 1998).

An important measure of the goodness of fit is the r2 value for the regression of

the observed, y, versus the fitted yi(b), values (J. Simunek 1998),

[ w3y y _

r2 - n 34

The r2 is the measure of the relative magnitude of the total sum of squares

associated with the fitted equation. This solution provides the upper and lower bounds of

the 95% confidence level around each fitted parameter.
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Conductivity of Porous Media - Considering HLW Salt

Cake
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The saltcake has porous nature similar to that of soil. The properties of soil-water

mixtures under saturated and unsaturated conditions have been extensively studied and

theoretical and experimental data are available (Schaap et al, 2002). It is assumed that the

wettability of the brine solution on the surface of the salt crystals will be similar to soil-

water relationship in the vadose zone and the same theoretical concepts will apply to the

modeling of the hydraulic properties of saltcake.

4.1 Multiphase Flow in Porous Media

The partially saturated zone is a multiphase system, consisting of three phases: the

solid phase of the soil matrix (or saltcake), gaseous and water phases. The unsaturated

zone has solid and fluid properties defined over the porous media continuum and are

based on mass conservation laws applied to each fluid phase present. The combination of

mass balance equations and appropriate constitutive equations results in a set equations

for the multi-phase unsaturated-zone system. To define these equations, the following are

the assumptions made (Binning, 1994):

" Three phases are assumed to be present in the system: solid, liquid and gas

phases. The solid phase is assumed to be immobile and consolidated. The gas and

liquid phases are assumed to be fully mobile, but are assumed to be immiscible.

" Problems will be considered on the time scale of a single infiltration event and so

evaporation is assumed to be negligible. For longer time scales water vapor

transport is an important mechanism of water movement and consolidation can

alter the porous material properties.
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" The media is assumed to be isothermal. Heat is an important variable in mass

transfer between phases but is neglected here.

" The porous media assumed to have different sizes of averaging volumes centered

at a point i.e., representative elementary volume (REV).

* The flow is assumed to be laminar and it follows the Darcy's law.

The saturation profile created after drainage results from a balancing of the

gravitational and capillary forces. Gravitational forces act to pull water downward, while

capillary forces act to retain water in the medium. Initially under free drainage,

gravitational forces dominate and water drains under unit gradient. As the water in the

soil drains to lower horizons the water content decreases and the capillary pressure

increases. Eventually, the gradient in the capillary forces equally oppose the gradient in

the gravitational forces and the water will be at equilibrium causing the drainage to cease

(Dicarlo et al, 2003). As the high level waste or the saltcake in SRS tanks has a porous

nature, the relationship between moisture content and the pressure head in the saltcake is

calculated using the correlations developed for soil by van Genuchten (1980).
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The experimental setup used in this study consisted of a column of height 40 cm and

diameter of 30 cm with an inlet for nitrogen gas and an outlet for the collection of drained

interstitial fluid. Two tensiometers were installed along the column to measure the

pressure head at different depths. At the inlet a pressure valve was connected to control

and measure the inlet pressure. The drained interstitial fluid at the outlet is collected in a

beaker that is kept on a weighing balance to monitor the weight of the solution with time.

The following are the major instruments that were used in this experiment.

5.1 Equipment

5.1.1 Tensiometer

The tensiometer used consists of a vacuum gauge connected with a tube to a

porous ceramic tip. The tube is filled with water and is normally transparent so the water

level within it can easily be seen. The ceramic tip is permeable, and the water in the tube

saturates it. The tip is placed in contact with the saltcake in the column. As water moves

from the tube into the saltcake, a partial vacuum is created and measured by the gauge.

This measurement is not a direct measurement of saltcake water content. Rather, it is a

measurement of saltcake water tension. The tensiometer reading is accurate as long as air

does not enter the tube, so the system must remain hydrated. Unlike water, air readily

expands and contracts as pressure changes, and therefore air in the tensiometer tube

causes inaccurate measurements. Even if the instrument does not have any leaks, air

dissolved in the water will accumulate during normal operation. This air must be

removed periodically by refilling the tensiometer with water to restore reliable operation.
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The tensiometer is connected to a current transducer. This is one of the most accurate

means of converting soil moisture tension measurements into a continuous analog output.

Figure 1 and Figure 2 show pictures of the tensiometer connected to a pressure

transducer.

Figure 1 Tensiometer with Ceramic Figure 2 Pressure tr ansducer
Porous cup

5.1.2 Pressure Transducer

The Model 5301 current transducer (Soil Moisture Equipment Corp., Santa

Barbara, CA) is one of the most advanced, versatile, accurate means of converting the

pressure head measurements to analog output. The standard current transducer

incorporates 0 to 1 bar range transducer and solid-state circuitry, which allows

continuous monitoring of the soil moisture suction time. When mounting the current

transducer the threads on the connection stem of the transducer line up with the threads in
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the plastic body tube of the tensiometer so that they enter easily. The current transducer is

screwed in the clockwise direction until the backup washer on the stem touches the body

of the tube and then the current transducer is unscrewed a portion of a turn until the top of

case is facing up. To verify the tensiometer or transducer assembly is working properly

first, dip the ceramic sensing tip of the tensiometer in water to fill the pores with water

and seal off entry of air. Leave the tip in water for a minute or two and remove the

tensiometer cap and support the tensiometer so that the vacuum hand pump can be

inserted at the top of the unit. Connect the DC power source to the power leads of the

current transducer and an ammeter to the output. When no vacuum is applied, the

ammeter should read 4 mA and this is the calibration checkpoint. The 12 to 40 V DC

power supply is connected to the power lead wires and an ammeter or data logger

connected to the output wires of the computer. All the data from the tensiometers were

recorded in the data acquisition system loaded on the computer. Figure 3 provides a

sketch of the tensiometers attached to the pressure transducer and data acquisition

system.
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Figure 3 Tensiometer attached to the pressure transducer

5..3 Vacuum Hand Pump

The vacuum pump model 2005G1 (Soil Moisture Equipment Corp., Santa

Barbara CA) supplies a source of vacuum for the soil water samplers and portable

extractor. This pump contains inlet valve and outlet valve so that continuous pumping is

accomplished with each stroke of the handle. Air or other fluids are pulled in at the tip

end and exhausted to the side through the fitting at the opposite end of the pump. A

maximum vacuum of 90 centibars can be obtained. The conical rubber tip on the end of

the vacuum hand pump is inserted into the filler end of the tensiometer body. The conical

tip held firmly against the cap seal in the body to create a seal. As the pump handle is

pulled out, suction will be created within the tensiometer to expand the air bubbles
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remaining after water fill. After each pumping tilt the vacuum hand pump slightly to

break the seal of conical tip and the ring. The pumping operation is repeated four to five

times to gradually remove all of the air.

5.1.4 Pressure Regulator

The Omega IP411 pressure regulator (Omega, Stamford, CT) needs an input of 4

to 20 mA, 0 to 10 V and 0-5 V signals and it will convert these analog signals to a

proportional linear pneumatic output ranging 0 to 20 psi. It has a silicon pressure sensor

and an electro pneumatic converter to provide the desired pneumatic pressure with

constant air consumption. Figure 4 and Figure 5 are the photographs of the pressure

controller and the data acquisition hardware,

Figure 4 Pressure Controller Figure 5 National Instruments data
acquisition hardware
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5.2 Data Acquisition

The data acquisition consists of three modules SCXI 1303, SCXI 1180, SCXI

1124 (National Instruments, Austin, TX). These three were connected with the pressure

transducers to record the pressure head in the column and also connected to the pressure

controller as output to maintain the specified pressure in the column. The data acquisition

system is connected to a PC which has the software Labview (National Instruments,

Austin, TX) installed in it. This Labview stores the data of pressure head based on the

time interval that was selected

The SCXI terminal blocks (National Instruments, Austin, TX) provide direct

connections to transducers at the screw terminal block located with full enclosure. This

block is especially designed for high accuracy thermo couple measurements, includes

isothermal construction that minimizes errors caused by thermal gradients between the

terminals. The SCXI 1124 is six channel-isolated source for static DC voltage or current

signals and 12 bit digital analog converter channels. It can be configured each channel for

voltage of current output. Each channel output ranges from 0 to 20 mA. This module is

software configurable program with each channel for voltage output ranges such as 0 to

IOV (National Instruments Handbook). The terminal blocks are interconnected and

finally connected to a computer. The pressure head data will be recorded on a timely

basis in the computer.
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5.3 Saltbed Simulant Preparation

5.3.1 Saltcake composition

Saltcake simulant was prepared using different varieties of sodium salts. The estimated

amount of salts were calculated based on the actual saltcake sample (minus the

radioactive components) sample amount and the estimated values used are listed in

Table2

Table 2 Saltcake simulant chemicals

Chemical Estimated Amount, kg

Sodium Aluminate 6.112

Sodium Hydroxide 2.641

Sodium Carbonate 6.566

Sodium Oxalate 0.139

Sodium Phosphate 1.130

Sodium Sulphate 0.946

Sodium Chloride 0.029

Sodium Nitrite 1.284

Sodium Nitrate 43.001

Water 88.041

Total1

(Less evaporate 4.9

GOAL, 0.0
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5.3.2 Steps in preparation of the saltcake simulant

1. A mixer and three band heaters were placed in a 30-gallon (136L) tank labeled

"Batch 1". The tare weight (tank, mixer, and heater) was recorded on the Data Sheet.

2. Deionized water was added to the tank until it was half-filled. The tank was placed on

a hot plate. A thermometer was added to the water to monitor the temperature.

3. 7.322 kg of sodium aluminate (NaAlO 2) was weighed using small beaker. Sodium

aluminate was added slowly to the water.

4. The sodium aluminate solution was heated to 50-60 C. 3.164 kg of sodium hydroxide

(NaOH) as solid pellets was added slowly and carefully. The remainder of the

chemicals was added in the order shown below. After each addition, the solution was

stirred long enough to allow the solid to dissolve. The heaters were adjusted at 50 0C

throughout the reagent addition.

e 7.867 kg sodium carbonate (Na2CO 3)

* 0.167 kg sodium oxalate (Na2C20 4 )

* 1.354 kg sodium phosphate dodecahydrate (Na3PO 4 '12H 20-0.25NaOH)

* 1.134 kg sodium sulfate (Na2 SO 4)

* 35 g sodium chloride (NaCl)

* 1.538 kg sodium nitrite (NaNO2)

* 51.515 kg sodium nitrate (NaNO3)
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5. The solution was allowed to evaporate. The goal of the evaporation and cooling

portion of the procedure is to produce saltcake slurry that contains approximately 5-

10% supernatant liquid after settling at ambient temperature.
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Figure 6 shows the picture of the experimental setup with all the components.

AkA

40 Cr

BlaQ Aqncitb

Figure 6 Experimnental Setup
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Results and Discussions
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6.1 Pressure Head

The experimental setup consists of 40 cm long column of with 30 cm length of saltcake

and was placed with two tensiometers to measure the pressure head inside the saltcake.

Tensiometers were installed with the porous cup centered 1 inch above the saltcake

surface. Variable pressure boundary conditions of 100, 200 and 500 cm were applied in

consecutive steps at 0, 20 and 107 hours, respectively. Tensiometers attached with

pressure transducers measured the pressure head. Readings of the pressure head were

recorded in the data acquisition system and plotted vs. time as shown in Figure 7. The

values in the graph are negative because the applied pressure is in the direction of

negative axis. Average measurement from the two tensiometers was taken as the actual

reading of the pressure head.
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6.2 Cumulative Outflow

Outflow rate increases initially when the step increase in pressure was applied and

it decreases with time. Cumulative outflow was calculated by integrating the outflow rate

with respect to time. Figure 8 shows the cumulative outflow curve with increased flux.

The maximum cumulative outflow of the saltcake reaches a value of 0.81 cm at the

applied pressure of 500 cm. At this point the equilibrium was reached and experiment

was terminated. The cumulative outflow values were shown as negative in the graph

because the flow is in the negative direction of axis.
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6.3 Moisture content

Moisture content is the percentage of water that is retained in the porous media.

Moisture content of the salteake is analyzed along the depth of the column for different

sampling times. The samples of the saltcake were collected at depths of 5, 15, 30 cm and

at the times of 0, 10, 100, 200, 300, 400, 500 hrs, respectively. Final water content was

determined by drying out the samples at 105 C. The average moisture content in the

column varies from 0.104 to 0.075 listed in Table 3. The moisture content in the column

at the measured depths were plotted with time along x-axis as shown in Figure 9. The

moisture content appears not to vary significantly with sampling depth, as indicated by

the results in Figure 9.
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Table 3 Average moisture content obtained from the experimental data

Time Experimental Moisture Content
[Hrs] [H

0 0.1034
5 0.0993

100 0.0834
200 0.0782
300 0.0766
400 0.0761
500 0.0758

Average .0O847

6.4 Hydraulic Parameters

One-dimensional single-phase water flow in unsaturated porous media can be

solved numerically using the Richard's equation and van Genuchten models. HYDRUS

1D is a finite element program developed by van Genuchten, which also performs inverse

analysis. It requires knowledge of six unknown hydraulic parameters that can be used to

determine hydraulic conductivity as function of moisture content (Durner et al, 1999).

The saturated hydraulic conductivity KS was determined as 2.77E-03 m/s from the

experiment drainage of interstitial fluid from saltcake done at HCET (Weger et al, 2003)

6.4. Parameter Optimization

Parameter Optimization is an indirect method for estimating porous media

hydraulic parameters from the transient flow data. Inverse methods are based on the

minimization of suitable objective function, which expresses the discrepancy between the

observed values and the predicted values. Initial estimates are then iteratively improved

during the minimization process until a value precision is obtained. The objective
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function to be minimized during the parameter optimization is defined as (Simunek et al

2000):

inn nVI

#(bq, p) = vjf iv [qj*(x,t,)-qj(x,ti,b) +
j=1 i=1

1vJLWi,,*(Oi)-pj(ib)r+,Zv[bj*-b
j=1 i=1 j=1

The minimization of the objective function is accomplished by using nonlinear

regression fit. This method combines descend methods and generates confidence

intervals for the optimized parameters (van Genuchten et al 1980) Table 4 shows the

estimated and optimized parameters. The error was calculated between two parameters.

The optimized parameters were estimated at 95 percent confidence limits.

Table 4 Comparison of parameters

Description Parameter Direct Inverse Units
Residual Water O 0.065 0071 [cm Icm ]
Content

Saturated water 0.41 0.3765 [cm cm
content
Inverse air entry a 0.075 0.05204 [1/cm]
value
Pore-size distribution n 1.89 2.36 [-]
index

Saturated Hydraulic K 1000 1000 [cm/hr]
Conductivit

Pore connectivity / 0.5 6.55 [-]
factor
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6.5 Hydraulic Conductivity

The measured values of pressure head from the tensiometer readings, moisture

content from the samples, and outflow from the column were used to calculate the

hydraulic conductivity of the saltcake using van Genuchten model. The van Genuchten

parameters ,.0 ,a, 1, , K, are obtained from the HYDRUS-1D software. Saturated

hydraulic conductivity was set to 2.77E-03 m/s in order to provide best fit for other

parameters listed in Table 4. Unsaturated hydraulic conductivity along the depth of the

column was calculated using HYDRUS software direct simulation.
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The determined hydraulic conductivity is plotted against the depth of the column at

different times from 0 to 500 hours in Figure 10. Initially at time t=0 hr there is no

change in the hydraulic conductivity and is shown as a straight line in Figure 10. The

hydraulic conductivity of the saltcake simulant ranges from 5.5E-05 cm/hr to 4,29E-02

cm/hr. As the time reaches 100 hours there was no variation of conductivity along the

depth of the column and as the time increases the conductivity attains a constant value

that is 5.5E-05 cm/hr for the time intervals between 200 and 500 hours. The variation of

average hydraulic conductivity with time is shown in Figure 11. At the applied pressure

of 100 cm the hydraulic conductivity was 4.29E-02 cm/hr and it reaches to 1.2E-02 cm/hr

with time. Further increase in the pressure from 200 to 500 cm indicates the minor

changes in the hydraulic conductivity and reaches to value of 5.5E-05 cm/hr.
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6.6 Direct analysis using inverse optimized parameters

The optimized parameters were used in the direct simulation to compare the

accuracy of the parameters. The outflow measurements from experiment and the

calculated outflow from direct simulation were compared and plotted vs. time. Two

curves showed a good fit with maximum error less than 0.6 percent.
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Table 5 compares the average moisture content obtained from the experimental

analysis with the moisture content resulting from direct simulation (using optimized

parameters). Figure 13 shows the moisture content from both the analyses was plotted

against time. Results show there was a good agreement between these data.

Table 5 Comparison of average moisture content from inverse parameters and
from experiment

Direct Simulation Experimental Moisture

Time Moisture Content Content Difference

0 0.1031 0.1034 0.2901

10 0.0989 0.0993 0.3693

100 0.0831 0.0834 04395

200 00771 0.0782 1.3640

300 0.0762 0.0766 0.5222

400 0.0757 0.0761 05256

500 0.0754 0.0758 0.5277

Average 0.5769 %
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6. Estimated Volume of Interstitial Fluid from Drainage

The percentage of interstitial fluid drained from certain volume of saltcake is as

follows:

The porosity of the salteake is 0.4 and air entry value is 0.1. As the saltcake is

unsaturated in the tank it consists of three phases solid, liquid and air.

Total volume of the interstitial fluid in the tank is

7*15*15*30*(0.4-0.1) = 6358 cm 3

Volume of the drained interstitial fluid at 100 cm of applied pressure where 0.15

cm represents the outflow measured at 100 cm applied pressure

0.15 *7*15*15 = 106 cm3

Percentage of fluid drained at 100 cm of applied pressure is

(106/6358) * 100 = 2.0%

Volume of the drained interstitial fluid at 200 cm of applied pressure where 0.6 is

represents the outflow measured at 200 cm applied pressure

0.6 * *15*15 = 424cm 3

Percentage of fluid drained at 200 cm of applied pressure is
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(424/6358) * 100 = 6.60%

Volume of the drained interstitial fluid at 500 cm of applied pressure where 0.81

represents the outflow measured at 500 cm applied pressure

0.81 * 2 *15*15 = 573 cm3

Percentage of fluid drained at 500 cm of applied pressure is

(573/6358) * 100 9.0 %

Table 6 Percentages of drained interstitial fluid from the tank

Pressure Average Total Volume Percentage

Cumulative Volume of of Drained Drained
[Cm]

Outflow [Cm] interstitial Interstitial

Fluid [Cm 3] Fluid [Cm 3]

100 0.15 6358 106 2.0

200 0.6 6358 424 6.6

500 0.81 6358 573 9.0

The Percentage of drained interstitial fluid was calculated for each step increase in

pressure (Table 6). For the experimental tank the drained percentages were calculated and

the average percentage was six percent was obtained. Figure 14 shows the increase in

drained percentage with increase in the pressure.
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Conclusions
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7.1 Conclusions

* This study showed that the high level waste simulant has hydraulic properties

that were approximated to unsaturated soil using van Genuchten's model for

unsaturated hydraulic properties.

* The hydraulic properties of the saltcake simulant were similar to the sandy loam

* This study can be used to predict the volume of interstitial fluid that can be

drained

7.2 Recommendations

" Test and compare the using other models like Mualem, Van Genuchten's

modified models.

* Run an independent test to validate estimated parameters for HLW

" Repeat this experiment for different high-level waste simulants

" Perform 3D Numerical Simulation of Tank drainage and compare with field

results (T-41 from SRS has available data)

" Perform parameter identifiability studies to determine ranges for which inverse

analysis provides unique set of parameters
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