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ABSTRACT OF THE THESIS

THE EFFECT OF TOTAL PARENTERAL NUTRITION (TPN) ON

ZINC (Zn) RETENTION IN THE TISSUES OF RATS

by

Martha M. Chisholm

Florida International University, 1995

Miami, Florida

Professor Evelyn B. Enrione, Major Professor

Zn is regularly added to TPN solutions, however, requirements

are poorly understood. This research investigated whether or

not the route of Zn intake (oral vs parenteral) changes Zn

concentration in rat tissues. Twenty-four male Fischer-344

rats were equally and randomly assigned to one of four groups

(n=6): control (CON), baseline (BS), orally fed (OF), and

intravenously fed (IV). After fifteen days of feeding, organs

and sera were collected and analyzed for Zn by atomic

absorption spectrophotometry. Of the nine tissues analyzed,

the Zn concentrations in the liver, kidney, and lung of the IV

rats were significantly higher (p<1.l) than those of the CON,

BS, and OF rats. Results indicated that rats fed

intravenously with Zn displayed increased Zn concentrations in

liver, kidney and lung tissues, and that the concentration of

Zn in the serum may not reflect tissue Zn levels. This

suggests that the route of Zn intake affects tissue Zn

concentration.
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Introduction

Zinc (Zn) nutriture is recognized as being important not

only for the healthy population but also for the acutely and

chronically ill patient experiencing and/or recovering from a

variety of medical conditions, especially those necessitating

total parenteral nutrition (TPN) (1, 2, 3, 4, 5, 6,7,8, 9,10,11,12).

Although trace elements, including Zn, are regularly added to

TPN solutions, requirements are poorly understood. This is

due to the lack of sufficient animal and human data which

would support specific recommendations for Zn requirements in

TPN solutions, and to the wide range of medical diseases which

alter Zn requirements and require TPN (2).

Despite the 1979 guidelines set forth by the American

Medical Association on parenteral trace element administration

(13), suboptimal body Zn nutriture continues to be a risk in

patients receiving TPN for long periods of time. In the

United States, studies which evaluate the effect of TPN on

trace element retention in body tissues have not been

completed. Few foreign studies have been conducted to

investigate changes in tissue Zn nutriture during TPN; these

have been limited by availability of tissues for analyses

(14), or have used a variety of Zn dosages unrelated to the

daily Zn requirement for rats (15,16) . It was apparent that

studies were needed to evaluate the effects of intravenous Zn

1



administration on tissue Zn retention, and to compare these

results to the effect which normal oral Zn intake has on

tissue Zn homeostasis. Previously, it was not clear how the

oral Zn requirement for rats related to the intravenously

administered requirement nor how this might change tissue Zn

concentration in specific organs. Therefore, this study was

developed to determine if the route of Zn intake (oral vs

parenteral) changes Zn retention in rat tissues.
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Review of Literature

Zn Nutriture with TPN Solutions

Historical Review

Zn deficiency was not diagnosed during the initial years

of parenteral nutrition because infusions could only be

administered for a few days (17,18,19). In the early 1960's

and 1970's, technical problems with hyperosmolar parenteral

nutrition solutions continued (17), preventing long-term

administration of the solutions. This preceded administration

of solutions through deep venous catheters (17,20,21,22),

which allowed longer parenteral nutrition infusions without

complications. There was no immediate concern about Zn

deficiency in patients, although reference to possible risk of

Zn deficiency was made (18,23).

Originally, the nitrogen components of the solution were

protein hydrolysates which were naturally contaminated with

trace elements (23,24). This contamination made Zn deficiency

relatively rare for early TPN patients (24). However, these

solutions contained protein hydrolysates and dextrose that

were heat sterilized (2). This heat sterilization process

formed sugar-amino acid complexes (2). These complexes bound

Zn and formed metal-sugar-amino acid complexes that resulted

in excessive loss of Zn in the urine and increased Zn

deficiency risk due to the inability to retain Zn



appropriately in the body (2).

In the mid to late 1970's, the protein source in TPN

solutions changed from protein hydrolysates to crystalline

amino acids, containing only L-amino acids. Because the

solutions no longer required heat sterilization (2,17), the

metal-sugar-amino acid complexes did not form and thus urinary

Zn loss was prevented (2), Conversely, it is documented that

infants fed parenterally lose Zn predominately through the

urine (rather than through the stool, as in orally-fed

infants) (2,12,24,25).

The use of crystalline amin9 acids without Zn

supplementation was an important factor in producing Zn

deficiency in adult patients receiving TPN. Highly purified

intravenous solutions, with minimal Zn contamination, were

related to an increased risk of Zn deficiency, as was the

concurrent altered plasma concentration of certain amino

acids. The Zn-binding amino acid, histidine, increased the

risk of renal Zn ultrafilterability, and along with cysteine,

promoted increased urinary excretion of Zn in animals and

humans (25,26,27). In 1977, Freeman and Taylor showed how the

administration of histidine, either orally or intravenously,

significantly increased (three to six times) urinary excretion

of Zn in rats, when compared to controls (27). However, no

clinical evidence of Zn deficiency was found after histidine

was administered for 43 days (27).

4



Nevertheless, by the late 1970's, because of the change

to crystalline amino acids, and the experiences with Zn

deficiency, it became apparent that formal recommendations

were needed for Zn supplementation in TPN (12,13).

Zn Supplementation Recommendations

In 1979, the Nutrition Advisory Group of the Department

of Foods and Nutrition, American Medical Association (AMA)

directed an expert panel to set guidelines for essential trace

element preparations for parenteral use (13). The AMA expert

panel modified the essential human dietary Zn requirements

(attained via balance studies, intestinal absorption and

excretory route studies), in order to develop guidelines for

intravenous Zn intake (13). They considered that the daily

dietary oral requirement for Zn was 10.1-11.5 mg/day, the

intestinal absorption factor was 10-40% (factors such as

phytate, fiber, calcium, and protein content of a meal could

affect Zn absorption), and the absolute daily oral requirement

for Zn was 2.5 mg/day when absorption losses were eliminated

(13).

Suggested daily intravenous Zn intake was 2.5-4.0 mg for

the stable adult and an additional 2.0 mg for adults in acute

catabolic states. For a stable adult with intestinal losses,

an additional 12.2 mg of Zn/liter of small-bowel fluid lost

was recommended, or 17.1 mg of Zn/kg of stool or ileostomy

losses. The panel stressed the need for frequent monitoring



of blood levels in these patients to provide proper dosage

(13).

In 1988, the Subcommittee on Pediatric Parenteral

Nutrient Requirements from the Committee on Clinical Practice

Issues of The American Society for Clinical Nutrition (ASCN)

published an update and extension of the 1979 statement by the

AMA expert panel (12) . The Committee of the ASCN stressed the

need to add Zn to TPN solutions for pediatric patients, even

for supplemental or short-term (less than four weeks)

parenteral support, since deficiency symptoms could develop

quickly if Zn status was poor or when there were significant

Zn losses (12). Daily intravenous recommendations for the

pediatric population were: 1) 400 pg/kg for premature infants

weighing less than 1500 grams and up to 3 kg, 2) 250 pg/kg for

full term infants less than 3 months old, and 3) 100 pg/kg for

full term infants older than 3 months and 50 pg/kg (maximum

5000 pg/day) for children up to 5 years old (12,13). After 5

years of age, the recommendations of intravenous Zn

supplementation for adults applied (13).

However, even with these recommendations, Zn deficiency

and/or negative Zn balance continued to be documented in

adults and children (1,8,9,10,11,12,28). A simple diagnostic

test such as serum Zn concentration was not reflective of body

tissue Zn status (14, 29, 30 , 31, 35) . Therefore, there was a

need to investigate the effects of parenteral Zn

6



administration and subsequent Zn concentration in body tissues

in order to add to the data about the Zn requirement necessary

to maintain Zn balance and homeostasis during intravenous

nutrition support.

Tissue Retention of Zn with TPN Administration

Only one study from Finland evaluated tissue retention of

Zn from Zn administered intravenously during TPN in humans

(14). Twenty-four malnourished surgical patients received one

of three different parenteral nutrition regimens, consisting

of total kilocalories predominantly as glucose, lipid or a

high amino acid (3 g AA/kg/day) solution. Liver and muscle

were biopsied for Zn and serum was collected (14).

The Zn concentration decreased in the liver and serum

regardless of the nutrition regimen (14). No changes in Zn

concentration were seen in muscle. Daily urinary Zn excretion

increased in eight patients, and the amount of daily

intravenous Zn the patients received was approximately that

excreted in their urine (14). Tulikoura and Vuori concluded

that daily supplementation of 1.9 mg of Zn in the parenteral

solution was inadequate, and that at least 5 mg of Zn daily

was necessary in their patients, if not more, and that these

recommendations were in accordance with the 1979 AMA

guidelines (13,14).

Tulikoura and Vuori's human study had several factors



which may have affected their results. First, the parenteral

solutions they used were not proportionately correct in

reference to recommended macronutrient distribution.

Kilocalorie intake was not equivalent among the groups and

protein intake was either too low or too high (14). High

protein intake has been previously documented to affect Zn

metabolism (32,33). Also since it was a human study,

limitations were expected on the variety of tissues available

for Zn analysis.

Although one human study demonstrated changes in tissue

Zn homeostasis, most of the information regarding tissue

retention of intravenously administered Zn has come from

animal studies, specifically the rat. Several foreign studies

investigated the effect of Zn in TPN solutions on Zn retention

in rat tissues.

Poriadkov et al. studied rats that received complete

intravenous nutrition for fifteen days and found growth of the

liver during parenteral nutrition followed by an increase in

Zn content in whole liver tissue (34). Yokoi et al. studied

six week-old, Sprague-Dawley male rats (160-180 g) that were

orally fed a trace element-deficient diet for two weeks (15).

There were three groups nourished for one week as follows:

Group A - TPN without trace element supplementation

(approximately 11 pg/kg body weight/day) ; Group B - TPN

supplemented with trace elements including zinc (approximately

8



1312 pg/kg body weight/day); and Group C - an oral diet

without trace elements (14.2 mg Zn/kg diet). A control group

(Group D) was fed an oral diet for three weeks supplemented

with trace elements (55.3 mg Zn/kg diet). The Zn

concentration in the plasma and liver of Group B was higher

than that of Group C (15). Heart, kidney, testis, muscle, and

tibia Zn concentrations remained constant between these two

groups (15). In general, plasma and tissue Zn concentrations

decreased during TPN without Zn, and this effect was prevented

by Zn supplementation in the TPN solution (15).

Matsuda et al, studied four groups of five-week old,

Sprague-Dawley male rats (180-210 g) (16). All were allowed

an acclimation period of one week prior to undergoing surgical

placement of a central catheter into the superior vena cava.

Treatments consisted of either an oral diet or TPN for one

week as follows: Group A - a Control group fed a synthetic

normal diet (approximately 34.43 mg Zn/kg diet); Group B -

received TPN without trace element supplementation; Group C -

had infused TPN supplemented with trace elements including Zn

(approximately 101 pg/kg body weight/day); and Group D -

received TPN supplemented with three times the dose of Zn

(approximately 302 pg/kg body weight/day), Groups B, C, and

D received lower daily intravenous Zn infusions when compared

to that received in a standard oral rat diet. The Zn

concentration in the brain, heart, kidney, tibia, plasma, and



whole blood decreased in Group B compared to control Group A

(16). The higher the supplemental Zn received by Groups B, C,

and D respectively, the higher the Zn concentration in the

tissues (16). This was seen most significantly in the plasma

Zn concentration, where Groups B, C, and D were different from

each other and Groups B and C had significantly lower Zn

concentration compared to control Group A (16). Also for

kidney, the Zn concentration of control Group A was higher

than for Groups B, C, and D (16). The authors found no

difference in Zn concentration in liver, femoral muscle,

testis, and spleen among the groups (16). However, since the

Zn concentrations fell in plasma and kidney, it was not

conclusive as to whether the Zn infusion in the TPN solution

of Groups C or D was adequate or inadequate to maintain tissue

Zn homeostasis, However, it was evident that dosage of

intravenous Zn plays a major role in certain tissue Zn

concentrations.

Yamato investigated the concentration of Zn in the serum

and organs of male Wistar rats (200 to 250 g) during TPN,

while they received solutions containing different

concentrations of Zn (35). The rats were divided into four

groups. Group A rats were fed orally a diet containing 60

mg/kg of Zn. Groups B, C, and D received TPN for one week.

Zinc from Zn sulfate was infused as follows: Group B received

TPN without added trace elements; Group C received

10



approximately 80 yg Zn/kg body weight/day; Group D received

approximately 4440 Mg Zn/kg body weight/day. In Group D, the

author found the Zn concentration increased in the liver,

kidney, small intestine, serum, muscle, and thigh bone, (as

well as in pancreas, skin, brain, and cecum) compared to

control Group A (35). In Groups B and C, the Zn concentration

decreased in the small intestine (it also decreased in the

serum in Group B), compared to control Group A; however, the

Zn concentration increased in their muscle and thigh bone

(reasons for this increase were not discussed in Yamato's

study) (35). The Zn concentrations in all other tissues in

Groups B and C were not significantly different from those in

Group A (35), Yamato has shown that about 80 Mg/kg body

weight/day of intravenous Zn could maintain normal Zn tissue

concentrations in rats not losing gastrointestinal fluids, and

that 180 Mg/kg body weight/day of intravenous Zn was necessary

to maintain positive Zn balance in rats with abnormal

pancreatic and bile loss (35). However, Matsuda et al. (16)

have shown that intravenous Zn infusions of 101 and 302 Mg

Zn/kg body weight/day produced lower plasma and kidney Zn

concentrations compared to controls consuming an oral diet

(even when considering that oral diet contained three times

the dietary Zn requirement for rats) . Therefore, Yamato's

results were not conclusive as to whether the Zn infusion in

the TPN solution of Group C (80 pg Zn/kg body weight/day) was

11



adequate or inadequate to maintain tissue Zn homeostasis,

although it seemed that 4440 Mg Zn/kg/day was excessive and

disrupted tissue Zn balance (35).

Matsuda et al. investigated the effects of intravenous

injection of a trace element supplement on zinc concentrations

in tissue and plasma of rats (mean weight 240 g) (36). After

a one week acclimation period, eating a normal diet, the rats

were treated for seven days by intravenous injection of a

trace element preparation containing Zn as follows: Group 1 -

approximately 78 g Zn/kg body weight/day; Group 2 -

approximately 784 pg Zn/kg body weight/day; Group 3 -

approximately 2352 pg Zn/kg body weight/day; and Group 4 -

approximately 7840 Mg Zn/kg body weight/day. The authors

found that neither 78 pg Zn/kg/day nor 784 pg Zn/kg/day

affected the zinc concentrations in tissues, except a

significantly higher plasma Zn concentration with 784 Mg

Zn/kg/day compared to controls and those receiving the lesser

amount (36). After receiving the larger dose of 2352 Mg

Zn/kg/day, Zn concentrations in the liver, kidney, tibia and

plasma of the rats increased significantly compared to

controls (36). With the largest dose of 7840 pg Zn/kg/day,

all the rats died, and Zn concentrations in their tissues

increased tremendously compared to controls (36). The authors

suggested that Zn concentrations in tissues and plasma were

appropriately maintained, compared to controls, with doses up

12



to approximately 784 pg Zn/kg/day, but that doses higher than

that would likely unbalance Zn homeostasis (36). This data

also supported the importance of intravenous Zn dosage on

tissue Zn concentrations and homeostasis, although difference

of a single one-time daily administration dose versus a 24-

hour continuous administration dose in TPN needed to be

considered.

In summary, differences found in various rat studies

evaluating the effects of intravenous Zn infusions on tissue

Zn retention were: 1) control rats which underwent a surgical

procedure to receive a central venous catheter had an added

variable that may have affected Zn metabolism and homeostasis,

2) control rats often received oral diets with higher Zn

content than that required, 3) results were not conclusive as

to the quantity of intravenous Zn which maintained tissue Zn

homeostasis, and 4) intravenous Zn infusion was not always

evaluated in the context of TPN. Therefore, collection of

additional data was indicated to evaluate how Zn in TPN

affects body tissue Zn status compared to Zn consumed from a

standard oral diet.

13



Methodology

Animal Management and Experimental Design

Twenty-f our male Fischer-344 rats (Harlan Sprague-Dawley,

Indianapolis, IN) weighing 140 to 160 grams (g) were housed

individually in stainless steel metabolic cages containing

wire-mesh bottoms, in an environmentally controlled room with

12-hour light and dark cycles. During the experimental

period, the temperature ranged from 18*C to 260 C and the

relative humidity ranged from 40% to 70%.

The animals had free access to an amino acid diet (AAD)

and distilled and deionized (DDI) (Mega-Pure, Barnstead Co.,

Dubuque, IA) water during an acclimation period of eight days

(Figure 1). Food consumption and body weights were recorded

every three days. Rats were equally and randomly assigned to

one of four groups (n=6): a control group (CON), baseline

group (BS), an intravenously fed group (IV), and an orally fed

group (OF).

On day nine of the experiment, all rats (except the CON

group) were anesthetized, and had a catheter surgically placed

into the superior vena cava. During a recovery period of four

days, all the rats were allowed ad libitum access to the AAD

and DDI water. On day thirteen of the experiment, the rats in

the BS group were anesthetized, exsanguinated and eviscerated

in order to determine baseline tissue values.

14



Figure 1. Experimental Design of Animal Management
and Nutritional Protocol

Day CON (n=6) BS (n=6) OF (n=6) IV (N=6)

1 Rats Rats Rats Rats
I I I I

AAD & AAD & AAD & AAD &
Water Water Water Water
ad lib ad lib ad lib ad lib

9 Surgery Surgery Surgery
I I I

AAD & AAD & AAD &
Water Water Water
ad lib ad lib ad lib

I I
13 Killed TPN

Initiated

TPN;
Water
ad lib

28 Killed Killed Killed

15



Total parenteral nutrition was initiated in the IV rats,

while the CON and OF rats continued to consume the AAD. All

rats continued to have ad libitum access to DDI water. The

rats were fed for 15 additional days with food intake and body

weights recorded every third day for the entire experimental

period. Feces and urine were also collected at that time. On

day twenty-eight of the experiment, all rats were killed in a

manner similar to that of the BS group.

The rats were cared for according to the Guide for the

Care and Use of Laboratory Animals (37) and the experiment was

approved by the Institutional Animal Care and Use Committee of

Florida International University.

Surgical Catheter Placement

A catheter was surgically placed into the superior vena

cava of all rats (except the CON group) by aseptic technique,

according to the methods of Enrione et al. and Popp et al.

(Appendix A) (38,39). The rats were anesthetized with an

intraperitoneal injection of sodium pentobarbital (30 mg/kg

body weight). After cleansing the ventral neck, mid-scapular

and suprascapular areas, a 3 cm incision was extended from

above the suprasternal notch up the ventral neck of the rat.

The right external jugular was dissected free and a small

incision was made in it. The beveled end of a silicone rubber

catheter (Silastic, Dow Corning Co., Midland, MI) was threaded
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2 cm down the external jugular and into the superior vena

cava. The catheter was secured in place and irrigated with

heparinized saline. The suprascapular area was recleansed and

a 2 cm incision was made. A 13-gauge needle was tunneled

subcutaneously from a dorsal incision through to the ventral

neck incision. The catheter was then threaded through the

needle and out the dorsal incision, and the needle was

removed. The catheter was then passed through a stainless

steel spring cable, secured with sutures and autoclips, and

the cable with the catheter was passed through a ventilation

hole of a metabolic cage top, and connected to a swivel on the

cage top. The rats were weighed with the cage top and then

placed in the metabolic cage.

Catheter patency was maintained with daily flushes of 0.5

mL heparinized saline (10 U/mL). At the end of surgery, 0.1

mL of the antibiotic cefazolin sodium USP 500 mg (Marsam

Pharm., Inc., Cherry Hill, NJ) was administered to four of the

rats in the IV group.

Diet and TPN Solution Preparation

The AAD, which was consumed orally, and the TPN solution

were formulated based on the nutritional needs for the growth

and development of a normal rat (Appendix B: Tables B1-B4)

(40,41). Both diets contained a mixture of all the amino

acids, carbohydrates (Appendix B: Table B1,B2), vitamins, and
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minerals required for rats (Appendix B: Tables B3-1, B3-2, and

B4). Fluoride was not added to the diets since no growth or

other benefit has previously been found from addition of

fluoride to rat diets (13,42).

Fat requirements for the rats also were provided

(Appendix C: C1, C2). In the AAD, the soybean oil and glycerin

were added in similar caloric ratios as provided in the

commercially-available, intravenous fat emulsion used in the

TPN solution. The small amount of egg yolk phospholipids

found in the intravenous fat emulsion was not present in the

AAD, however, it has previously been suggested that this

component contains no essential nutrients and can be

considered unnecessary in the oral diet (41).

Zinc was added as zinc sulfate (52.87 mg) to provide

respectively a final concentration of 12 mg Zn/Kg diet and

4.16 mg Zn/Kg TPN solution (12 mg Zn/2.886 Kg TPN solution).

Both the AAD and the TPN solution had similar kilocaloric

distribution. The AAD contained 3.84 kcal/g with 22.2% from

the amino acids, 68.6% from dextrose, and 9.2% from fat.

Nitrogen content of the AAD was 33.5 mg/g, or approximately

8.72 mg of N/kcal.

The TPN solution formulation is that described by Miyata

et al. (Appendix B) (42). The solution was infused at 1.7

mL/hour/day, and supplied 1.18 kcal/g or 1.32 kcal/mL

(specific gravity was 1.115 g/mL) . Approximately 21.7% of the
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kilocalories were from the amino acids, 67% from dextrose, and

11.3% from fat. Nitrogen content of the TPN solution was

10.08 mg/g, or approximately 8.54 mg of N/kcal.

Daily Zn intake was calculated by multiplying the Zn

concentration of the diet or TPN solution by the respective Zn

intake or infusion and dividing by three, during each three-

day collection period.

Preparation ofteaioAcid Diet (AAD)

The amino acid mixture was combined with the vitamins,

choline-chloride, and minerals and this was mixed with the

dextrose (Appendix C: Cl). The soybean oil and glycerin were

added to the other ingredients, and the completed mixture was

stored at 4*C.

Preparation of the TPN Solution

The amino acid mixture was combined with the dextrose,

slowly heated, and then cooled (Appendix C: C2). The minerals

and vitamins were mixed with the other ingredients, the

solution was filtered through a 0.22 micron filter (MSI,

Westborough, MA) , and was stored at 40C. One day prior to

infusion, the solution was passed again through a 0.22 micron

filter, then stored at 4C. Immediately prior to infusion,

the lipids and fat-soluble vitamins were added (Appendix C:

C2).
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Collection of Bamples

BSGroup:

On day 13 of the experiment, the BS rats were killed.

After exsanguination, the blood was placed in labeled

polystyrene tubes, coagulated and centrifuged. The separated

serum was pipetted into polystyrene tubes and frozen at -200C.

The liver, kidney, lung, heart, gastrocnemius muscle (left

leg), testicle, and femur bone (left leg) were dissected free,

rinsed with DDI water, blotted dry and weighed. After

dissection of the small intestine, residuals in the lumen were

removed, the tissue was rinsed with DDI water and blotted dry.

All tissues were placed in polystyrene freezer bags and frozen

at -200C. All feces and urine were frozen at -200 C.

Zn balance was determined by the following formula: Zn

balance = Zn intake - (fecal Zn + urine Zn).

CON, IV, and OF Grou s:

On day 28 of the experiment, rats in the CON, IV, and OF

groups were killed as previously described and femurs,

gastrocnemius muscles, viscera, and sera were collected by the

same method described for the BS group and frozen at -20C.

The consumption of AAD, infusion of TPN, and collections

of feces and urine were recorded every third day.

Preparation of Glassware for Bample Digestion

Prior to use, all glassware was soaked in a detergent
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solution, and rinsed with deionized water. The glassware was

then resoaked in a 20% nitric acid solution prepared with DDI

water, rinsed again with DDI water, and then rinsed with a

0.001 1 EDTA solution. A final rinsing with DDI water

completed the preparation of the glassware for sample

digestion (Appendix D).

Digestion of Samoles

In preparation for digestion, wet tissue samples, and

feces for each rat were weighed and placed in Erlenmeyer

flasks. Two-mL urine samples also were collected. National

Institute of Standards and Technology bovine liver (Standard

Reference Material {SRM} 1577b, NIST, Gaithersburg, MD) served

as quality control samples for tissues and feces (except bone

and sera). Two samples of non-fat milk powder (SRM 1549,

NIST, Gaithersburg, MD) were the designated quality controls

for the femur bone, and bovine serum (SRM 1598, NIST,

Gaithersburg, MD) was the quality control for the serum

samples. Two blanks, containing only digestion reagents, were

also prepared for each sample set.

A protocol by Hill et al. (43) was applied for the dry

ashing (43000) and wet digestion of all tissues (except sera) ,

urine and feces (Appendix D). An entire set of Erlenmeyer

flasks containing tissue or feces was placed into muffle

furnaces for dry ashing, prior to continuing with the wet
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digestion protocol using nitric acid and hydrogen peroxide

(Appendix D) (43). Samples were then transferred

quantitatively and brought to a final volume of 5 mL, poured

into polystyrene storage-tubes (washed with EDTA), and

refrigerated at 40C.

The urine was prepared for digestion by addition of

hydrogen chloride (HC1) and then digested according to the

protocol by Hill et al. (Appendix D) (43). Samples were

transferred quantitatively and brought to a final volume of

2.5 to 5 mL.

Sera were prepared for direct assay by AAS, and stored in

polystyrene tubes at -20C. There was no serum sample for one

rat in the CON, BS, and IV groups.

Analysis _of._Sample ls

Samples were prepared for AAS aspiration by appropriate

dilution with 0.1 1 HCl (or diluted with DDI water for serum) ,

to bring the Zn concentration of the samples within the range

of the standard. A flame atomic absorption spectrophotometer

(Perkin Elmer Model 5000, Perkin Elmer, Norwalk, CT) was used

to analyze the Zn concentration in the samples (Appendix D).

The spectrophotometer was stabilized after positioning of the

Zn lamp, setting the resonant wavelength, and igniting the

flame. The instrument was brought to equilibrium with a 0.1

14 HCl solution and calibrated using the appropriate Zn
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standards that were prepared to cover the linear absorbance

range (0.25 ppm to 2.00 ppm) of the trace element. Zn

standards were aspirated at the beginning of the sample

aspirations, and then every 5-10 samples to ensure appropriate

calibration.

Standard reference materials and blanks were aspirated

with their corresponding sample set. Triplicate sample

aspirations completed the sample analysis for Zn concentration

by AAS (Appendix D). The blanks analyzed with the sample sets

were negligible in their Zn concentrations, but were still

subtracted from the sample Zn concentration readings for

accuracy of total Zn content. Weights or volumes and

dilutions of the tissues, feces, urine, and sera were used

with their respective AAS readings to attain final Zn

concentration of the respective sample.

StatisticalAnalysis

Statistical analyses were completed to determine

significant differences among dietary groups for each dietary

treatment. Means for whole body weight, energy intake, total

Zn intake, total Zn output, Zn balance, and tissue Zn

concentrations were analyzed by a one-way analysis of variance

(ANOVA) (p<0.05). All values are expressed as means

standard deviation (SD).
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Results

DigcestionStnad

Standards for bovine liver, serum, and nonfat milk powder

were analyzed by the AAS. Certified values were 127 16 pg

Zn/g in bovine liver, 0.89 0.06 pg Zn/g in bovine serum,

46.1 2.2 pg Zn/g in nonfat milk powder, and analyzed values

were 119.6 5.1 jg Zn/g, 0.89 0.0 jg Zn/g, and 44.25 0.05

pg Zn/g respectively. Only one (of two) bovine liver

standards, analyzed with a feces set, was lower than the

certified range at 27.2 pg Zn/g.

Bod Weights

Rats gained an average of three g per day (Table 1) in

the first nine days. There was no significant difference in

the pre-surgical body weights (day 9) of the rats in the four

groups (Table 1). Body weights of the CON group from the pre-

surgical weight period to the feeding weight period (day 13)

was significantly higher (p<0.01) than the BS, IV, and OF

groups. The CON, IV and OF groups continued the respective

diet treatments (days 14-28), and the body weights did not

differ from the feeding weight to final weight (day 28).

Energy Intake

Energy intake during the acclimation period (days 1-9)
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did not differ significantly among the CON, BS, IV and OF

groups (Table 2). In the postoperative recovery period (days

10-13), the rats in the CON group consumed significantly more

food (p<0.o1) than the rats in the BS, IV and OF groups. The

rats in the CON, IV, and OF groups continued the respective

treatments (days 14-28), and no significant difference in

energy intake among the groups occurred.

DailY ZnIntake

Daily Zn intake during the acclimation period (days 1-9)

was not significantly different among the groups (Table 3).

While recovering from surgery (days 10-13), the CON rats had

a higher (p<0.01) Zn intake than did the BS, IV, and OF rats.

During the treatment period (days 14-28), the daily Zn intake

by the IV rats was significantly higher (p<0.01) than that of

the CON and OF rats. The IV rats received approximately 1000

pg Zn/kg/day, whereas the CON and the OF rats consumed

approximately 800 Jg Zn/kg/day.

Although feces and urine were collected every three days

from the recovery period (day 10), only two sets were analyzed

by AAS. The total Zn intake for Collection #3 (days 17-19) of

the experiment showed there was an approximately 20% higher

(p<0.O1) intake of Zn by the IV group compared to the CON and
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OF groups (Table 4). However, the total Zn intake for

Collection #6 (days 26-28) did not differ significantly among

the groups.

Total Zn output via urine and feces for Collection #3 and

Collection #6 showed no significant difference among the CON,

OF and IV groups, and Zn balance for Collection #3 and

Collection #6 did not differ among the groups.

Tissues

Zinc concentration in the liver (Figure 2), kidney

(Figure 3) and lung (Figure 4) was significantly higher

(p<0.01, p<O.O1, and p<0.01 respectively) in rats of the IV

group compared to those in the CON, BS, and OF groups. Small

intestine Zn concentration in the rats of the IV group was

significantly higher (p<0.03) than that of the CON and BS

groups, but did not differ from that of the OF rats (Figure

5). Zinc concentration in the small intestine of the OF rats

also was not significantly different when compared to that of

the CON and BS rats (Figure 5).

Zinc concentrations in serum (Figure 6), heart (Figure

7), muscle (Figure 8), testicle (Figure 9), and bone (Figure

10) were not significantly different among the four groups.
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Discussion

All the rats in this study consumed adequate food during

the acclimation period (days 1-9) to achieve normal weight

gain (an average gain of three g per day). Nutritional

adequacy was achieved by the AAD because it provided normal

growth and development of the rats; they consumed

approximately 12 g/day of the AAD. Normal weight gain

confirmed the acclimation of the rats to the laboratory during

those nine days.

The mean body weights for the groups were similar at the

time of surgery. After the catheter placement, the BS, OF and

IV rats had decreased food intake (approximately four g

AAD/day) that preceded the weight loss, reflecting a normal

response to the stress of surgery (42). This response

appeared uniform during the recovery period, as reflected in

the similar weight loss among the three groups. The final

body weight and consistent energy intake of the CON, OF and IV

rats throughout the treatment period (days 14-28), supported

the isocaloric and isonitrogenous properties of the AAD and

the TPN solution and the ability of the diet regimens to

support growth, development and anabolism in the rats.

However, during the treatment period, the OF group showed the

greatest food efficiency with an approximately 40 g weight
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increase in 15 days, compared to an approximately 30 g weight

gain for the CON and IV groups. Though the OF and IV groups

recovered from the surgery, the rats in the IV group never

developed beyond the pre-surgical state as evidenced by final

body weight. Thus the IV rats were exposed to an increased

level of stress compared with the OF rats, after surgery.

Daily Zn Intake

During the acclimation period the daily Zn intake was

constant in all the rats. Due to the decrease in food

consumption during the post-surgery recovery period, Zn intake

decreased in the BS, OF, and IV groups.

At the initiation of the diet-treatment protocol for the

OF and IV groups, the main focus was administering a TPN

solution that had isocaloric and isonitrogenous properties,

similar to an oral diet (41,42). In order to achieve

isocaloric and isonitrogenous properties, the TPN solution was

adjusted to attain the kilocalories and nitrogen that a rat

would receive orally each day, while also considering

appropriate daily intravenous infusion of fluids for a rat.

It was assumed that trace element concentration would have

adjusted accordingly, however this was not the case.

Calculations estimate approximately 20% more Zn was received

by the IV group (approximately 1000 pg Zn/kg body weight/day

for the IV group, versus 800 pg Zn/kg body weight/day for the

41



OF group).

The greater Zn intake by the IV group may not have been

the dominant factor in causing the increased Zn concentration

seen in some of the tissues, although it may have played a

role. Zinc availability, in combination with the sequestering

of Zn in certain tissues as a response to continuous stress

(44,45,46,47,48), may have been the dominant factors

contributing to increased Zn concentrations in some tissues of

the IV rats. The CON rats did not undergo surgery or stress.

The OF rats were exposed to the stress of surgery but were not

exposed to continuous stress (e.g. continuous IV fluids,

flushing of lines, antibiotics, etc.) as were the IV rats.

Zn Balance

Only two of the six three-day collection periods were

analyzed and therefore reflect limited information on the Zn

balance of the rats. The similar total Zn output among the

groups indicated that the IV rats did not necessarily excrete

more Zn than the OF rats even though they received more Zn.

Stress factors, retention and/or intravenous availability of

the 20% additional Zn received by the IV rats could have

resulted in the increased tissue deposition documented.

Positive Zn balance in the CON, OF and IV groups confirmed the

Zn adequacy of the TPN solution and the oral diet.

The OF and IV groups appeared more efficient in positive

42



Zn balance than the CON group as evidenced by higher Zn

balance values. In the IV group this can be explained by the

greater intake and availability of Zn. In both the OF and IV

groups, there appeared to be greater efficiency of Zn

retention as evidenced by the lower output values. It is

possible that after the post-surgery recovery period where the

OF and IV rats were exposed to stress and weight loss due to

decreased energy and Zn intake, these rats transitioned into

an anabolic phase (the OF rats more efficiently), resulting in

greater retention of Zn compared to the non-stressed CON rats.

Tissues

Liver and Serum:

The liver is a known site for activity of newly absorbed

Zn (45,49,50,51,52). Higher Zn concentration in the liver of

the IV rats may be reflective of metallothionien metabolism.

Once Zn is circulating in plasma, bound to albumin, it can

enter a liver cell as 1) free Zn in a labile pool, or 2)

become part of a metalloprotein Zn pool (45). Zinc in the

liver cell is generally distributed among metalloproteins

(which assist in Zn exchange) , organelles, and cell membranes,

among other cellular components (44,45). One of the most

widely studied metalloproteins is metallothionein (WET),

especially its activity in the liver, kidney, and intestine.

Metallothionein, a predominantly Zn-containing protein, seems
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to play a significant role in Zn homeostasis

(45,46,49,50,53,54). Even in the early years of Zn research,

it was noted that rats fed a high Zn diet (1000 mg/kg) for 10

days had a significant increase in the Zn concentration of

their liver, intestine, and kidney, the Zn likely bound to MT

(55). Similar results were found in the tissues of the IV

rats which received approximately 1000 pg Zn/kg/day

intravenously. In later years, Blalock et al. found that rats

fed increasing amounts of Zn in their diets had associated

increases in total MT in the kidney, but not in liver (56).

Other researchers have found increased liver Zn content with

increasing dietary Zn supplementation (52,55,57).

In the liver, certain physiological factors, including

trauma, stress, and inflammation, as well as the

administration of Zn can induce MT

(44,45, 46,47, 48, 53, 54, 58, 59). These inducers can promote

increased transcription of the MT gene, involving increased

synthesis of MT mRNA (44, 60) . This cycle then boosts Zn

accumulation in liver by increasing MT protein which binds Zn,

often decreasing serum Zn (44,45,46,48,49,60,61,62,63,64,65).

This redistribution of Zn may be a regulating and protective

mechanism of the body to assist the liver in having Zn

available for increased protein synthesis in response to

stress (i.e. to supply Zn for the enzymes required for DNA

synthesis) (44,45,47). The BS rats did not show this response
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four days after surgery, however, they received no substantial

nutrition during that time period. DiSilvestro and Cousins

have documented and postulated that serum Zn and hepatic MT Zn

may not always present an inverse fluctuation, in response to

stress events, and also that examining serum at only one

period in the experiment may result in failure to observe a

transient decline in serum Zn (48).

The present study documented a significant deposition of

Zn in the liver of the IV rats, however, no significant

difference in serum Zn concentration was seen among the

groups. It is possible that the greater Zn availability and

the approximately 20% higher Zn intake by the IV rats may have

prevented a drop in serum Zn that could have occurred in

response to the stress, inflammation, and/or intravenous Zn

infusion.

When in anabolism, after recovering from a catabolic

phase, other tissues have been documented to contribute to

maintaining serum Zn levels within normal limits, without

necessarily affecting the tissue Zn concentrations (29,31).

This contributory pool is believed to be located mostly in

bone, liver and plasma (29,31). It is also not known to what

extent some level of blood sample hemolysis (which can

increase serum Zn values) may have affected serum Zn

concentrations (14). It is evident that serum Zn is not

always reflective of body tissue Zn status (14,29,30,31).
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However, one of the goals of this study was to contribute

additional information on Zn metabolism to help shed light on

better ways to assess Zn status in humans. Some have

suggested examination of Zn concentration in the bile (35).

Others have suggested measurements of plasma MT concentrations

(29) and pancreatic y-glutamyl hydrolase enzyme activity (66) .

Nevertheless, it appears that until an accurate, standardized

Zn-analysis method is developed, it is imperative to consider

the developmental stage of the individual and to measure Zn

losses in stool, urine, and fistulas (if applicable) to

precisely determine Zn requirements during TPN.

Parenteral Zn has been shown to increase liver MT

expression (45,53,60). Richards and Cousins found that after

24 hours of intraperitoneally administered Zn sulfate, Zn-

binding-protein-Zn (MT-Zn) increased in the liver and the

small intestine, while serum Zn concentration decreased

significantly (where as at 8 hours serum Zn had been

substantially higher than controls) (50). However, in that

study, the authors found that 48 hours after the Zn injection,

MT-Zn had decreased in the liver (although not in the small

intestine) and the serum Zn was within normal limits (50).

Apparently, a single injection of Zn can vary the liver and

serum response in rats at different examination times. The IV

rats received continuous intravenous infusions of Zn sulfate,

which may have promoted an increase in liver Zn concentration.
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Huber and Cousins found that liver MT synthesis increased

after injection of Zn chloride in rats (67). Simple saline

injections have been documented to increase liver MT mRNA

(56), which can promote Zn retention. Therefore, a combination

of parenteral administration of Zn, possible inflammation, and

the general stress of the IV rats receiving continuous TPN as

a sole source of nutrition may have promoted increased liver

Zn concentration.

Zinc and its role in wound-healing in normal rats was

studied by Elias and Chvapil (68). The authors found that

after a skin incision wound, and subsequent Zn treatment, Zn

concentration increased in the skin wound area and in the

liver, but not in the serum. Further investigations indicate

(44,45,47,60), that stress inflicted by surgery may have been

an additional influence that caused the influx of Zn, into the

liver, in the IV rats when compared to controls. The greater

Zn availability and possibly the higher Zn intake in the IV

rats may have been additional factors causing a significantly

higher liver Zn concentration compared to the OF rats, who

also underwent surgery.

Small Intestine:

Sites of absorption and excretion, such as the small

intestine and the kidney, as well as the liver, seem to be the

sites of most activity for newly absorbed enteral and

parenteral Zn (31, 45, 50 , 51, 52, 53, 56, 69). Small intestine Zn
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concentration was increased in rats by feeding a high-Zn diet

(31). Parenteral administration of highly available Zn would

be expected to increase Zn concentration in the small

intestine of the IV rats, compared to controls. The

approximately 20% higher zinc intake by the IV rats may also

have played a role.

The reason why the small intestine Zn concentration of

the OF rats was not different from the CON and IV rats is

unclear. However, during the treatment period, the OF rats

apparently must have shared some similar characteristic(s)

with both the CON and the IV rats. Studies of rats during Zn

depletion-repletion diet regimens have documented increased Zn

concentration in the small intestine after rats were repleted

with Zn (31,50). During the recovery period, the OF and IV

rats entered a catabolic phase with documented weight loss and

negligible energy and Zn intake. They were then repleted

nutritionally for two weeks, prior to being killed.

Therefore, if the OF and IV rats had an increase in MT-Zn in

the small intestine due to Zn repletion, it was likely

tempered for the OF group (consuming an oral diet similar to

the CON group), after entering anabolism, yet this increase

may have supported their similarity in small intestine Zn

concentration to the IV rats. The IV rats continued to be

exposed to stress during the treatment period (e.g. continuous

intravenous infusion, flushing of lines, antibiotics, etc.),

48



where the OF rats did not.

Hempe et al. recently studied male CD-strain/Sprague

Dawley rats and found that administration of intraperitoneal

Zn sulfate increased MT gene expression in both intestine and

liver, and this may serve to regulate protective metabolic

changes occurring from high exogenous Zn intake (60). For

example, increased MT synthesis in the intestine may decrease

Zn absorption (60). Intraperitoneal administration of Zn

sulfate and Zn chloride also have increased the synthesis of

MT-Zn in the small intestine (50,53). If the IV rats received

a substantial amount of available, intravenous Zn, MT gene

expression may have promoted higher Zn concentration in their

small intestine compared to the CON rats. The BS group did

not receive parenteral nutrition and therefore would not be

expected to show this response.

Schneeman et al. have observed that bile, pancreatic

juice, and intestinal mucosa seem to be sources of endogenous

Zn (69). If the IV rats were not secreting as much bile and

pancreatic juice as the OF rats who were eating, liver Zn may

have been maintained better in the IV rats (especially since

liver bile outflow to the intestine is 1.5-2 times greater

than pancreatic juice (69)). Alternatively, the OF rats had

more opportunity to activate the bile system with enteral

feedings, and bile secretions into the intestine may have

caused the lack of significant difference in small intestine
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Zn concentration between the OF rats and the IV rats. Also,

the OF rats probably had a chance to reabsorb intestinal

secretions of bile Zn, adding to their overall Zn

concentration in the small intestine.

Neither inflammation nor infection were evaluated in the

rats of the present study. However, the rats response to

general stress and stress mediators, if present, may have

influenced intestinal Zn accumulation of the OF and IV rats

(70). The BS rats went through surgery but were killed prior

to initiation of feeding and probably did not have a chance to

experience further possible stresses.

Kidney:

The kidney has been mentioned as an active site for newly

absorbed Zn (31,45,51,52,56,71,72). This alone may be one

reason for significant increased kidney deposition of

intravenously administered and available Zn in the IV rats,

and in larger quantity than that received by the OF rats. As

in the small intestine, studies of rats during Zn depletion-

repletion oral regimens have documented that Zn concentration

increased in the kidney after Zn repletion (31) and that

kidney Zn concentration increased in rats by feeding a high-Zn

diet (51,52,55,57,71,72).

Blalock et al. have postulated that the kidney acts as a

Zn regulator which can control urinary output of Zn and/or

have a role in detoxification, as they observed when increased
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Zn-containing MT synthesis occurred in the kidneys of rats

consuming adequate or supplemented Zn diets (56) . Considering

the same can occur, especially in rats fed intravenous Zn,

this may explain the higher Zn concentration in the kidneys of

the IV group which received approximately 1000 pg Zn/kg/day

compared to the CON and OF rats who consumed approximately 800

Mg Zn/kg/day.

Increased urinary Zn output was not noticed in the

balance study during the two treatment period collections

analyzed. As in the study by Blalock et al., enhanced MT

production may have occurred in the kidneys of the IV rats

which may have been important in the processing of Zn to

prevent urinary loss of the trace element and to prevent

kidney and urinary tract damage (56).

It has been documented that, unlike the liver, most

physiological stress and its mediators do not appear to

promote substantial MT induction in the kidney (47).

Lung:

In the study by Chvapil et al., the lung was unable to

increase Zn content with increasing dietary Zn supplementation

(55). Kang et al. also reported that Zn concentrations of

lung tissue did not change following diets containing 1.3

gg/g, ss Mg/g, or 550 pg/g of Zn (57). Also Cousins and Lee-

Ambrose found that lung MT mRNA levels did not change

significantly by increasing dietary Zn intake (52).
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It has been shown previously that a substantially high

concentration of Zn (30 pg/g wet weight) in an organ was

necessary for production of Zn-thionein (53,54). Of the four

rat tissues demonstrating significantly elevated Zn

concentration, this finding was reflective, for the most part,

in the liver and kidney of the IV rats, and the small

intestine of the IV and OF rats. The Zn concentration in the

lung of the IV rats was well below 30 pg/g wet weight (23.46

pg/g 1.84), and yet the IV rats showed an appreciably higher

lung Zn content. However, it appears that in this population,

administration of a substantial amount of intravenously

available Zn increased lung Zn concentration significantly in

the IV rats.

Heart. Muscle, Testes. Bone:

The Zn concentration in heart, muscle, testes, and bone

of the rats was not affected by: 1) the stress of surgery, 2)

a higher Zn intake by the IV rats, and 3) two different routes

of nutritional administration. Similar studies have supported

these findings. In a study by Chvapil et al., the heart,

muscle, testes, and bone Zn concentration did not

substantially increase with increasing dietary Zn

supplementation (55). When Zn concentration of water ranged

from 2.5 to 40 pg/mL, no changes in the Zn content of heart,

leg muscle, testes, and liver were documented (72).

Sherman et al. suggest that in the rat heart, Zn is

52



mainly present as metalloproteins and metalloenzymes involved

With metabolic function and structural responsibilities (32).

Larsen and Sandstrom have also documented consistent heart Zn

concentration with increasing dietary Zn intake (51).

The Zn concentration in muscle appears to be maintained

very consistently (31,51), especially in rats fed Zn-adequate

diets (73). Giugliano and Millward documented no differences

in rat gastrocnemius muscle Zn concentration after the rats

received adequate (55 mg Zn/kg) or severely deficient (0.4 mg

Zn/kg) Zn diets fed in Zn-depletion or Zn depletion-repletion

diet regimens (31).

Although a study of rats during Zn depletion-repletion

diet experiments documented increased Zn concentration in the

testes after Zn repletion and that testes Zn concentration

increased in rats (as compared to baseline rats) by feeding a

high-Zn diet (31), Canton and Cremin studied the effects of Zn

depletion and repletion on rat tissue and found Zn

concentration maintained in the testes (66). Recently, MT has

been located in rat testes and other parts of the male

reproductive organs, and Nishimura et al. stated that this

"further supports the notion that MT may be physiologically

associated with Zn storage and transport... " in the testes

(74).

In rats, it appears that Zn continues to deposit in bone

when fed both Zn-adequate and high Zn diets (51,73). In a
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recent study, Zhou et al. have produced data suggesting there

are two Zn pools in the bone skeleton: 1) a quick turn-over

pool (10-20 % of total Zn) from which Zn is easily removed

when needed to meet soft tissue needs, and 2) a slow turn-over

pool from which Zn cannot be used without bone loss and a

decrease in growth (73). Giugliano and Millward have data

suggesting that Zn is conserved in body tissues during

catabolism or is redistributed from bone and released into

plasma where it is quickly taken up by other priority tissues,

such as muscle, to allow growth (31). This supports

consistency in muscle Zn concentration. This may also support

why the BS rats never showed any significant difference in

tissue Zn concentration compared to the CON rats, even though

they were killed immediately after undergoing a catabolic

post-surgical recovery period.

Zhou et al. found that with borderline Zn restriction,

rats release and use Zn from the bone's quick turn-over pool

to maintain Zn homeostasis, and that not until four weeks of

Zn restriction is a substantial decrease in rat growth seen

(73). Zhou et al. also agreed with King who postulated that

changes are not seen in plasma Zn concentrations until body Zn

homeostasis cannot be maintained by slowing of growth or

reduced Zn excretion (29,73). Since the CON, IV, and OF rats

were maintained in positive Zn balance, no need to mobilize

bone Zn stores probably arose (except for a possible
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utilization of the Zn rapid turn-over pool during the 4-day

recovery period for the BS, IV, and OF rats, where there was

a trend toward lower bone Zn concentration in the BS rats),

hence supporting the consistent bone Zn concentration in all

the groups.

Zinc Toxicity

The question of Zn toxicity arises when addressing higher

amounts of parenteral Zn compared to enteral Zn. The Zn

intake of the rats in either the OF or IV groups did not come

near the level of Zn intakes reported in the literature to

have adverse effects on rats. Nevertheless, the importance of

avoiding excess intake of Zn enterally is evident (57,75).

Even more important would be the concern of avoiding excess

intakes of Zn parenterally when no intestinal absorptive

factors are present.

Kang et al. divided rats into three groups and gave them

ad 1ibitum access to a commercially prepared Zn-deficient diet

containing 1.3 Ag Zn/g diet (57). Group A received just this

diet, Group B received the same diet supplemented with Zn

carbonate (55 pg Zn/g diet), and Group C received the same

diet supplemented with high amounts of Zn (550 Mg Zn/g diet)

(57) . Kang et al. found that the rats in groups B and C had

similar weight gain and food efficiency ratios (gram of body

weight gain per gram of food consumed), and proposed that a
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550 yg Zn/g oral diet was not toxic for the rats (57).

However, they found that the liver and kidney Zn

concentrations increased with higher dietary Zn intake, but

the iron concentrations of those tissues decreased with

increasing dietary Zn (57). Yamaguchi et al. have found oral

administration of 1000, 10,000 or 100,000 pg Zn/kg/day to

weanling rats for 30 days may (especially at the higher doses)

inhibit rat bone growth and calcification, and significantly

decrease femur bone weight and calcium content (75).

A TPN solution inadvertently providing 23 mg Zn/L daily

(instead of 2.3 mg Zn/L), in addition to approximately 3.1 mg

Zn/L of mean level Zn contaminant for a total of 25 to 26 mg

Zn/L daily, resulted in hyperamylasemia in 6 of 7 human

patients (76). None of the patients showed clinical signs of

pancreatitis (76).

A death occurred from an inadvertent infusion of 1.7 g of

Zn (7.4 g of Zn sulfate) over a 60 hour period in a women with

Crohn's Disease, receiving TPN (77). Symptoms prior to demise

included hypotension, pulmonary edema, diarrhea, vomiting,

jaundice, oliguria, cardiac arrhythmias, hyperamylasemia

without evidence of acute pancreatitis, acute anemia and

thrombocytopenia (77).

Tisue etetio ofZn ithTPNAdministration

The Russian study by Poriadkov et al. showed results
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consistent with this study, where liver Zn concentration

increased after receiving complete intravenous nutrition (34).

In the study by Yokoi et al., the daily Zn

supplementation in their TPN was similar (approximately 1312

hg Zn/kg body weight/day) to the present study's

(approximately 1000 pg Zn/kg body weight/day), and their Zn-

deficient diet contained similar Zn concentration (14.2 mg

Zn/kg diet) compared to the present study's diet containing

the requirement of Zn for rats (12 mg Zn/kg diet) (15). Their

results are similar to the present study's in the increase Zn

content seen in the liver with the TPN group compared to the

diet group, and the consistency of Zn content seen in the

heart, testis, muscle, and bone. It is possible that the

slightly higher infusion of Zn in their TPN group may have

been a factor in the higher plasma Zn concentration

documented.

The study by Matsuda et al. is dissimilar to the present

study since Zn concentration in the control oral diet was

almost three times more than in the Zn-requirement-containing

diet in the present study (16). Their Group B received only

trace amounts of Zn in the TPN, Group C received only 10 % of

the Zn the IV group received in the present study, and Group

D received only 31 % of the Zn the IV group received in the

present study. Yet muscle and testes showed constant Zn

concentration which affirms the Zn concentration stability in
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these tissues also seen in the present study. Since the bone

is a large mass of tissue, any variation in the bone Zn pool

found in the Matsuda et al, study was seen only when Zn intake

was substantially low in the TPN, Therefore, in the present

study, changes in the bone Zn pool would probably have been

likely only with substantially excessive Zn intake.

It is possible the lower Zn infusion in the TPN solution

by Matsuda et al. caused no significant change in their rat's

liver Zn concentration, but that the higher Zn infusion in the

IV rats of the present study did cause a change. Matsuda et

al. found varied kidney Zn concentration, depending on the Zn

infusion, and this helps support the higher kidney Zn

concentration in the IV group of the present study, which

received 20% higher Zn intake. The infusion of only 30 % of

the Zn the IV rats received in the present study, caused no

significant difference in Zn heart concentration between

Groups D and A in the Matsuda et al. study. The heart Zn

concentration in the present study also showed stability with

adequate to higher Zn intake.

In Yamato's study, a high Zn infusion with TPN showed

deposition of Zn in key tissues which reflects similar

findings in the present study (35). Although in Yamato's

study, Group D received 4.5 to 6 times the daily Zn of the

present study, Zn did deposit significantly in the liver,

small intestine, and kidney compared to controls. Zinc
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infusion was so high however, that serum, muscle and bone Zn

pools apparently also showed higher Zn concentration compared

to controls. still, unlike the present study, lung Zn

concentration did not differ compared to controls.

In another investigation, Matsuda et al. intravenously

injected four groups of rats for seven days with a trace

element preparation containing Zn (36). The second group of

rats received intravenous injections of Zn (784 psg Zn/kg body

weight/day) similar to the daily Zn infused in the TPN of the

IV rats in the present study (1000 jg Zn/kg body weight/day).

However, Matsuda et al. found that this dose of intravenously

administered Zn, for the most part, did not affect tissue Zn

concentration (except in plasma), as did the higher Zn doses

(36). However, rats in the present study were fed or infused

Zn-containing diets and TPN for twice as long as ones in the

study by Matsuda et al., and also received the trace element

in a form containing other nutrients (and over 24 hours daily,

rather than a single-dose daily). This may have improved Zn

metabolism and tissue availability, possibly having a role in

causing its tissue accumulation.

Matsuda et al. also found the highest dose of intravenous

Zn (7840 pg Zn/kg body weight/day) toxic and deadly, as it

killed all the rats in that group. Those rats received almost

eight times the dose of Zn administered to the IV rats in the

present study.
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In summary, intravenous administration of Zn in TPN can

cause elevations in tissue Zn concentrations in rats. In view

of these findings, more research is recommended to determine

intravenous Zn requirements and/or possible risk of toxicity

for long-term Zn administration.
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The effect of TPN on Zn retention in tissues of Fischer-

344 rats was evaluated and compared to rats consuming a Zn-

supplemented oral diet. Findings revealed:

1. The BS, OF, and IV rats experienced a 4-day catabolic

state during the recovery period after surgical catheter

placement. The OF and IV rats then entered a recovery

period with documented weight gain. The TPN regimen was

able to maintain the IV group rat weights during the

treatment period, but with no obvious growth beyond the

pre-surgery condition.

2. The IV group received an average of 20% more Zn daily

compared to the OF and CON groups (p<0.01), during the

treatment period, because the TPN solution was adjusted

in order to achieve isocaloric and isonitrogenous

properties, similar to an oral diet, and Zn concentration

did not adjust accordingly.

3. No significant difference was seen in fecal and urinary Zn

output among the groups, although the OF and IV groups

appeared to have greater efficiency of Zn retention, as

evidenced by lower output values, compared to the CON

group.

4. Rats receiving intravenously administered Zn from a TPN

solution had significantly higher Zn concentration in
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liver, small intestine, kidney, and lung (p<0.01, p<0.03,

P<O.O1, p<0.01 respectively). High availability of the

intravenous Zn and possibly the higher Zn intake were

contributing factors since these organs are known to have

high Zn metabolism.

5. Surgical trauma and the continuous TPN protocol were the

factors most related to the observed Zn redistribution and

concentration in the liver, kidney, lung, and intestine.

Overall, trauma and continuous stress appeared to have

greater effect on animal Zn status than did the concentration

of Zn in the nutrient source (IV versus oral). Serum Zn is

not the best parameter to determine Zn status during stress.

In view of these findings, more research is recommended,

especially with more detailed, long-term balance studies, to

assist in determining Zn needs in TPN. Future studies to

determine TPN needs in rats may include a study which allows

rats to reach pre-surgery weight before initiating TPN

treatment, and a study to compare bile Zn concentration versus

serum Zn concentration as a measure of Zn status.

Measurement of the effect of various dosages of

intravenous Zn administration on the rate and level of

increased MT mRNA production in the cell, may also assist in

determining Zn needs in TPN.
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APPENDICES

Appendix A
Surgical Catheter Placement

1. All surgical instruments, catheters and swivel assemblies
were doubly wrapped in autoclave paper and steam
sterilized at 125 *C for 20 minutes on the day prior to
the surgery.

2. During surgery, all autoclaved instruments and supplies
were placed on a 46 x 66 cm disposable impermeable sterile
drape (Sterile Drape, ABCO, Milwaukee, WI) by means of
aseptic technique (41). Surgical masks and sterile gloves
were worn during surgery and when working with materials
in the sterile field.

3. The ventral neck, mid-scapular and suprascapular areas
were shaved, and the animal was weighed. The rat was
restrained in supine position on an animal surgical board
and the ventral neck was thoroughly cleansed with povidone
iodine, 10% solution (ABCO Solution, ABCO, Milwaukee, WI),
using sponges held with a hemostat.

4. A 3 cm midline incision was extended from above the
suprasternal notch, up the neck. A surgical drape was
placed over the animal with an opening above the incision,
and the skin flaps were autoclipped to the drape opening.

5. The surgical site was again cleansed thoroughly with
povidone iodine. The right external jugular was dissected
free and two, 6 inch pieces, of 4-0 silk suture were
placed underneath the vein, about 0.5 cm apart.

6. The 4-0 silk closest to the tail was clamped with a
bulldog clamp. Bleeding was prevented by tension put on
the vein from the silk closest to the head.

7. A small incision was made into the vein, between the two
sutures. The beveled end of a silicone rubber catheter

(Silastic, Dow Corning Co., Midland, MI), 0.02 inches in
internal diameter and 0.037 inches in outer diameter, was
threaded 2 cm down the external jugular, into the superior
vena cava. The catheter was tied in place with 4-0 silk

sutures.
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8. The catheter was irrigated with heparinized saline through
a 1.0 ml syringe that had been attached previously to the
catheter. Blood was also drawn from the catheter to
assure correct catheter position.

9. The drape was folded on itself and the rat was rolled on
its side. The syringe and catheter were kept in the
sterile fold of the drape.

10. The suprascapular area of the back was cleansed with
povidone iodine and a 2 cm incision was made. Another
sterile surgical drape was placed over the animal with an
opening over the incision and the skin flaps were
autoclipped to the drape.

11. A 13-gauge needle was tunneled subcutaneously from the
dorsal incision, behind the front leg, through to the
ventral neck incision.

12. A bulldog clamp was used to occlude the catheter on the
ventral side to prevent an air emboli. The catheter was
then threaded through the needle and out the dorsal
incision. The needle was removed and the bulldog clamp
was moved to the dorsal side.

13. The dorsal drape is again folded and the rat placed
supine. The catheter was threaded through a stainless
steel, flexible spring cable containing a flange.

14. The catheter was secured with a suture and the ventral
incision was closed with auto clips. The flange on the
spring cable was sutured with 3-0 silk to the dorsal
interscapular fascia. The dorsal incision was closed
around the spring cable with autoclips supplemented with
sawing a 3-0 silk suture to assure a tight closure.

16. The spring cable with the catheter was passed through a
ventilation hole on the cage top and the catheter and
cable were attached to the bottom port of a swivel and
secured to the cage top.

17. A 3-cc syringe was attached to a 10 cm silicone rubber
catheter (0.02 inches in internal diameter and 0.037
inches in outer diameter) which was attached to the top
port of the swivel and the cage top.

18. HepariniZed saline (10 u/ml) was flushed through the
catheter. The incision areas were again cleansed with
povidone iodine. The rat was weighed with the cage top
and placed in the metabolic cage.
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Appendix B

Table B1. Formulation of the Amino Acid Diet and TPN Solution

Amino Acid Diet # TPN Solution
Ingredient (g/Kg Diet) (g/2886 g Solution)

Amino Acid
Mixture * 205.00 205.00

Dextrose 677.42 677.42

Minerals ** 74.869 74.869

Vitamins *** 1.770 1.771

Soybean Oil 34.20 -----

Glycerin 6.80--

Intralipid 10% @ 388.20 ml @@

Energy content: 3.84 Kcal/g diet
Nitrogen content: 33.5 mg/g diet

# Energy content: 1.18 Kcal/g TPN solution
Nitrogen content: 10.08 mg/g TPN solution
The gravity of the TPN solution is 1.115 g/ml

* Table 2
** Table 3-1; Table 3-2
*** Table 4

Intralipid 10%, Clintec Nutrition Company, Deerfield,
IL, 60015

@@ Added to 2886 g TPN solution
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Table . Composition of t Amino Acid fixture in t

Amino Acid Diet and TP Solution

Formulation t

Amino acid (g/kg AAD),, Requirements
(g/2886g i

s rt .c ci .3

L-Asparagine 6.94 4.00

T r i 8.02 5.00

L i 10.50

L-Glutamic Acid 20.00 40.00

L-Glutamine 21.86 ®_

® r tin .2 4.00

L-Glyciine 

3.60 L-Alanine 
5.7

L-Cysteine 2 ---

L-ZT l i 12.78 6.00

ine 5.84

n

L-Methionine 5.00 6.00

Is ci 10.56 5.00

L-Leucine 16.94 7.50

- nin 19.80 8.00

L-Histi'dine 5.46 3.00

® i 15.02 7.00

L-Tryptophan 2.48 1.50

L-Arginine 7.02 6.00

r Nutrient Requirements Laboratory is , 3r .,

3



1978 National Academy of Sciences, Washington, D.C.
** Non-essential amino acids used to meet the total protein

requirement
* Converted to glutamic acid in vivo

Non-essential amino acids not required for the rat

Table B3-1. Mineral Compounds in the Amino Acid Diet and TPN
Solution

Mineral Formulation in Amino Formulation in
Acid Diet TPN Solution

Compound (mg/Kg AAD) (mg/2886g TPN)

d-Gluconic Acid
Hemicalcium salt 54,867.76 54,867.76
(CH 107 . 1/2Ca)

Potassium Phosphate
Monobasic; Anhydrous 13,923.27 13,923.27
(KH2PO4)

Sodium Phosphate
Monobasic;Monohydrate 3,688.56 3,688.56
(NaH2PO4 . H2 0)

Manganese Chloride
(MnCl 2 .4H 20) 180.11 180.11

Magnesium Sulfate
Anhydrous 1,980.19 1,980.19
(MgSO 4 )

Ferric Citrate
(FeC6 H5O7) 153.51 153.51

Cupric Sulfate
Pentahydrate 19.69 19.69
(CuSO 4 .5H 20)

Zinc Sulfate
(ZnSO 4 .7H 2 0) 52.87 52.87

Potassium Iodine
(KI) 0.20 0.20

Chromium
Potassium Sulfate 2.90 2.90
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p Dodecahydrate
1 r 4 2

Sodium nice

(2 e 3 0.22 0.22

Table B3-2. Mineral Elements in the in Acid Diet and TPN
titan

,n r 1 Formulation-- Formulation t

in AAD in TPN Requirement
Element (mg/Kg AAD) (mg/2886g TPN) (mg/Kg Diet)

Calcium 51000.00 51000.00

Potassium sk 41000.99 41000.99 31600.00

Phosphorus r rOOO.00 41000.00 41000.00

Sodium fir**# 614.80 614.80 500.00

Manganese 50.00 50.00 50.00

Chloride t 500.00 500.00

Magnesium 400.00 400.00 400.00

Ire 35.00 35.00 35.00

Copper 5.00 5.00 5.00

i 12.00 12.00 12.00

Chromium 0.30 0.30 0.30

Selenium 0.10 .1 .1

Iodine .1 0.15 0.15

Fluoride -- 1.00

Sulfur 535.94 535.94 300.00

rye t nt of- L or
3rd ed., 1978, National Academy of Sciences,
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Washington, D. C.
* Includes calcium in d-gluconic acid, calcium

pantothenate
** Includes potassium in potassium phosphate,

potassium iodine, chromium potassium sulfate
Includes phosphorus in potassium phosphate, sodium
phosphate
Includes sodium in sodium phosphate, sodium
selenite
Includes chloride in manganese chloride, choline
chloride, thiamin hydrochloride, pyridoxine
monohydrochloride
Includes sulfur in magnesium sulfate, cupric
sulfate, zinc sulfate, chromium potassium sulfate

Table B4. Vitamins in the Amino Acid Diet and TPN Solution

Rat Amino Acid TPN
Vitamin Requirement * Diet Solution

(mg/Kg Diet) (mg/Kg AAD) (mg/2886g TPN)

Thiamin
Hydrochloride 4.00 4.00 4.00

(C12H17ON4 ClSHCl)

d-Biotin 0.20 0.20
(C1 0H1 N2035)

Riboflavin 3.00 3.00 3.00

(C1 H20N40)

Niacin 20.00 20.00 20.00
Niacinamide
(C6H6N20)

Vitamin B6  6.00 6.00 6.00
Pyridoxine
Monohydrochloride

(CH11N 3 .Hcl)

Calcium Pantothenate 8.00 8.00 8.00
D-Pantothenic Acid
Hemicalcium Salt

(0C1f0. /2Ca)
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Folic Acid 1.00 1.00 1.00
Pteroylglutamic Acid
(C1 H 9N106)

Vitamin B12  0.05 0.05 0.05
Cyanocobalamin
(C 8 8CoN 4,4P)

Menadione 0.5 0.5
(C1 H8 02)

or
Phytonadione 0.05 -- 0.05 **
(C31H4602)

Choline
Chloride 1,000.00 1,695.79 1,695.79
([2-Hydroxye-
thyl] trimethyl-
ammonium)
(CH 4 ClNO)

Retinol
Acetate 1.376 1.376 2.752 ***
(C 22H320 2)

Cholecalciferol 0.025 0.025 0.020 ***
(C27H44 0)

DL-a-tocopheryl 30.00 30.00 -----
Acetate
(CH 5203)

DL-a-tocopherol 30.00 30.00 ****
(C29H)50

Not required for the rat
* Nutrient Requirement of Laboratory Animals, 3rd ed.,

1978, National Academy of Sciences,Washington, D. C.
** Present in 25 Al Aquamephyton, Merck Sharp & Dohme,

Div. of Merck & Co. Inc., West Point, PA 19486
*** Present in 80 Al Injacom 100, Roche Vitamins and Fine

Chemicals, a div. of Hoffmann-La Roche Inc., Nutley, NJ
07110

**** Present in 113.6 Ml Rocavit E, Roche Vitamins and Fine
Chemicals, a div. of Hoffmann-La Roche Inc., Nutley, NJ
07110. Also included is 1.6 mg DL--tocopherol in
Injacom 100, Roche Vitamins and Fine Chemicals, a div.
of Hoffmann-La Roche Inc., Nutley, NJ 07110
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Appendix C

C1. Preparation Amino 1 i

1. Weigh following vitamins and combine er

i i Hydrochloride

(x 12 1? 1 C1

d-Biotin 0.20 mg

1t? 16 2 3 I

Riboflavin 3.00

17 20 4 6

Niaciin 20.00 mg
Niacinamide

6 6 2

3. " 1 6 6.00 mg
Sri in

Monohydrochloride

8H11 3" Cl

Calcium
D-Pantothenic Acid
Hemicalcium Salt

(CqHj ,5. 1/2 Ca)

Folic Acid 1.00 mg
Pteroylglutamic Acid

1 1 7 6

Vitamin 12 0. 05 mg
Y

88 144 14

Menadione 0.5 mg

11 H802)

oll

Chloride 1,695.79
((2-Hydroxye-
thyl]trimethyl-
ammonium)
(C5H14ClNO)

Retinol
Acetate 1.376 mg

7



(C22H32o2)

Cholecalciferol 0.025 mg

(C27 44o)

DL-a-tocopheryl 30.00 mg
Acetate

(C31, 5203)

* Total weight of vitamin mixture, includes choline
chloride, for 1 kg diet is 1769.941 mg.

2. Weigh the following minerals and add to vitamin-cholin
mixture:

d-Gluconic Acid 54,867.76 mg
Hemicalcium salt

(C6H1 7 .1/2Ca)

Potassium Phosphate 13,923.27 mg
Monobasic; Anhydrous
(F312P04)

Sodium Phosphate 3,688.56 mg
Monobasic; Monohydrate
(NaH2PO4. H20)

Manganese Chloride 180.11 mg
(MnCl2.4H20)

Magnesium Sulfate 1,980.19 mg
Anhydrous
(MgS04)

Ferric Citrate 153.51 mg

(FeC6 H50 7)

Cupric Sulfate 19.69 mg
Pentahydrate
(CuS04.511)

Zinc Sulfate 52.87 mg
(ZnS04.7120)

Potassium Iodine 0.20 mg
(K(I)

Chromium 2.90 mg
Potassium Sulfate

Dodecahydrate
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r O2

Sodium el nit 0.22
(Na2SeO3)

Total weight of minerals for 1 diet i 74,869.28 .

Grind vitamins-mineral mixture thoroughly together and
set aside.

Weigh following amino acids n i together:

DL-Aspartic i 6.36 g

L-Asparagine 6.94 g

L-Threonine 8.02 g

L-Serine 10.50

L-Glutamic Acid 20.00 g

L-Glutamine 21.86 g

L-Proline 20.24 g

L-Glyciine 3.60 g

L-Alanine 5.76 g

L® i

L-Valine 12.78

DL-Methionine 5.84 g

L-Methionine 5.00 g

- c ci

L-Leucine 16.94 g

L-Phenylalanine 19.80 g

® i i i e 5.46 g

L-Lysine 15.02

L-Tryptophan 2.48 g
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L-Arginine 7.02 g

* Total weight of amino acids in 1 kg diet is 205 g.

5. Weigh 677.42 g dextrose and add it to vitamin-mineral
mixture.

6. Add amino acid mixture to vitamins-mineral-dextrose
mixture.

7. Weigh 34.20 g soybean oil and 6.80 g glycerin and add to
above mixture and mix thoroughly.

8. Keep diet refrigerated at 4 0 C. Lasts up to two weeks in
refrigerator.
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C2. Procedure For Preparing 2588 al TPN Solution

- . Weigh following vitamins combine together-,

Thiamin Hydrochloride 4.00

12 17 4ClS Cl

d-Blotin 0.20 mg

o 1 203

Riboflavin 3.00 mg

I 46

Niacin 20.00 mg
icii

6

Vitamin 
rioi

0o r ri

c8 l l C3 ' l

Calcium Pantothenate 8.00 mg
D-Pantothenic Acid

Hemicalcium, Salt

(CgHlO,.1/2Ca)

Folic Acid 1.00 mg

royl u io of

1 1 7 6

Vitam 'in B,2 0.05 mg

y Canocobalamin

4 6 94 14

t Phytonadione 
0.05 mg

A 3'9 46 2

Choline

Chloride 1,695.79

([2-Hydroxye-

thyl]trimethyl-
ammonium)

C A4l

This vitamin mixture weighs (includes i chloride):

1738.09 .

2. Keep the above $ l separately.
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3. Weigh the following minerals and mix together.

Potassium Phosphate 13,923.27 mg
Monobasic; Anhydrous
(KH 2P0 4)

Sodium Phosphate 3,688.56 mg
Monobasic; Monohydrate
(NaH2P0 4 .120)

Manganese Chloride 180.11 mg
(MnCl 2 . 4H20)

Magnesium Sulfate 1,980.19 mg
Anhydrous
(MgS0

4)

Cupric Sulfate 19.69 mg
Pentahydrate
(CuS04 .5H20)

Zinc Sulfate 52.87 mg
(ZnS0 4.720)

Potassium Iodine 0.20 mg
(KI)

Chromium 2.90 mg
Potassium Sulfate

Dodecahydrate
(CrK(0 4) 2)

Sodium Selenite 0.22 mg
(Na25e0 3)

* Total weight of this mineral mixture is 19,848.01 mg.

4. Keep the above mineral mixture separately.

5. Weigh the following amino acids and mix together:

DL-Aspartic Acid 6.36 g

L-Asparagine 6.94 g

L-Threonine 8.02 g

L-Serine 10.50 g
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L-Glutamic Acid 20.00 9

- lint ine 21.86 g

L-Proline 20.24

L-Glycine 3.60 g

L-Alanine 5.76 g

L-Cysteine

L-Valine 12.78 g

DL-Methionine 5.84 g

L-Methionine 5.00 g

- sol ci 10.56 g

L-Leucine 16.94 g

- i 19.80 g

L-Histidine 5.46 g

L-Lysine 15.02 g

L-Tryptophan 2.48 g

- r i i 7.02 g

Total weight this amino acid mixture is 205 .

Measure 1,600 i of I water into a 33,000 ml beaker.

7. Weigh 54,867.76 - uc i acid i with the
i i i xture. Add the i amno-gluconic ci i xture
the I water.

8. Heat the I water iixture on a hot plate while stirring
i th an automatic stirrer

mixing time to a minimum).

Dissolve 153.51 ferric citrate 'in 40 ml DDI water 'in
separate beaker. Heat the ferric citrate

(not exceeding 50 OC). col the tsolution when the
ferric citrate dissolves completely.

10. Add 777.42 g dextrose to the o- 1 is i
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solution with the hot plate on "low" temperature. When
all nutrients are dissolved, cool solution to 22 WC.

11. Add all minerals, and then vitamins, to the solution on
the hot plate while stirring. Add DDI water to the
total volume of 2588 ml.

12. Filter solution to a sterile plastic container (Corning
Glass Works, Corning, NY): 600 ml/container.

13. Pipet 25 gl Aquamephyton (vitamin K) (Merck and Co.,
West Point, PA), to 2588 ml TPN solution.

14. Twenty-four hours before feeding, filter the TPN
solution into evacuation containers (Abbott
Laboratories, North Chicago, IL).

100 ml for two days
150 ml for three days

15. Store in refrigerator at 4 .C.

16. Immediately prior to infusion, add:

1). 388.20 ml Intraipid_10% (Clintec Nutrition Co.,
Deerfield, IL) to 2588 ml TPN solution.
(15 ml Intralipid/100 ml TPN )

2). 80 Ml Iniacom 100 (vitamin A & vitamin D)
(Hoffmann-La Roche, Nutley, NJ) to 2588 ml TPN
solution.

3). 113.6 Ml RocavitE (vitamin E) (Hoffmann-La Roche,
Nutley, NJ) to 2588 ml TPN solution.
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APPENDIX D

Zinc Analysis Procedure

Preparation and Digestion of Samples:

1. All glassware was soaked in a detergent solution
overnight and then rinsed with deionized water.

2. Detergent washed glassware was soaked in a 20% nitric
acid solution (made from 70% nitric acid and DDI water)
overnight. After rinsing with DDI water, the acid-
washed glassware was rinsed with 0.001 N EDTA solution
and then rinsed with DDI water.

3. Approximately 0.5 gram wet tissue samples were weighed
and transferred into a 50 ml Erlenmeyer flask. The
exception was weighing of the whole individual kidney,
testis, heart, and femur bone used for digestion. The
feces samples from the third collection (days 17-19 of
experiment) and sixth collection (days 26-28 of
experiment) were weighed and transferred into the
Erlenmeyer flask.

4. Two 0.5 gram bovine liver samples (SRM 1577b, NIST,
Gaithersburg, MD) were weighed for each tissue and feces
set (except femur bone and serum) and served as quality
controls. Two 0.5 gram samples of non-fat milk powder
(SRM 1549) were the designated controls for the femur
bone, and bovine serum (SRM 1598) was the control for
the serum samples. Two blanks, containing only
digestion reagents, were also prepared for each sample
set. Fifty-ml beakers were used to cover the Erlenmeyer
flasks containing the samples.

5. An entire set of tissue or feces was placed in muffle
furnaces randomly. Furnace temperature was increased
50*C/hour to 430 0 C and held at that temperature for 48
hours.

6. Samples were removed from the furnaces and cooled prior
to adding 0.10 ml of DDI water and 0.10 ml of 70% nitric
acid to each flask.

7, Hot plates were prepared in a laboratory hood, and
a set of sample tissue or feces was placed on them until
a temperature of 900C was reached. The samples were
then removed from the hot plates and cooled. After a
five-minute cooling, 0.5 ml of 50 % hydrogen peroxide
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was then added at 10 - 15 minute intervals. This cycle
was repeated four to five times with each sample set,
until all black carbon particles were digested.

8. After the last cycle, samples were evaporated to dryness
at 9000, cooled and 2.0 ml of DDI and 0.5 ml of 70 %
nitric acid were added to all flasks. Samples were
returned to the hot plates and heated at 9000 for 15
minutes to dissolve the residue.

9. After cooling, quantitative transfer of each sample was
completed to 5 ml volumetric flasks and adjusted to
volume with DDI water. Samples were then transferred to
polystyrene storage tubes washed with EDTA and
refrigerated at 40C.

10. The urine was prepared for digestion by addition of 20
Al of 36 % HCl. Two-ml samples of the urine were placed
in acid-washed borisilicate tubes and evaporated to
dryness in heating blocks at 9000. Then the digestion
protocol by Hill et al. (44) was followed, with a total
of 1.5 ml of Ultrex nitric acid added.

11. The urine samples were subject to the 15-minute heating
cycles at 9000 while adding 0.1 ml of 50 % hydrogen
peroxide per cycle. Samples were evaporated to dryness,
cooled, and DDI water and Hl were added. Samples were
reheated at 9000 for another 15 minutes, cooled, and
transferred quantitatively to a final volume of 2.5 to
5.0 ml with 0.1 1 Hl.

12. Sera were prepared for direct assay by AAS.

Analysis of Samples

13. A Perkin Elmer Flame Atomic Absorption Spectrophotometer
and Zn lamp analyzed the Zn concentration in the
samples. Acetylene gas and air were the fill and
oxidant for the flame.

14. Zinc standards (SRM 3168) were prepared in a 0.1 4 Hl
matrix at 0.25 ppm, 0.50 ppm, 1.00 ppm, 1.50 ppm, and
2.00 ppm concentrations. For serum, Zn standards were
prepared in a DDI water matrix at 0.25 ppm, 0.50 ppm,
and 0.75 ppm concentrations.

15. Samples were prepared for AAS aspiration by appropriate
dilution using an automatic diluter. Dilutions were
completed with 0.1 Hl (or with DDI water for the
serum). Standard reference materials were aspirated
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with their corresponding sample set. Bovine liver
standards were diluted 1:20 using 0.1 1 Hl. Milk
powder standards were diluted 1:10 using 0.1 4 HCl.
Bovine serum standards were diluted 1:5 with DDI.

16. Liver, small intestine, lung, heart, kidney, muscle and
corresponding blanks were aspirated after dilutions of
1:5 with 0.1 1 HCl. Serum and serum blanks were
aspirated after a 1:5 dilution with DDI, except two of
the samples which were diluted 1:10 with DDI. The
testicle and blanks were diluted 1:10 with 0.1 4 HCL and
the bone at 1:40. The feces and feces blanks were
diluted from 1:10 to 1:100 with 0.1 1 HCl.

17. The spectrophotometer was allowed stabilization time
after positioning the lamp, setting the resonant
wavelength, and igniting the flame. The parameters set
on the spectrophotometer were as follows:

ABS/CONC/E1: CONC AA/AA-BG/BG: AA
Energy: 58 Lamp MA: 15
Slit Height: 0.7 ) Peak: 213.9
Sample Aspirations: Triplicate
Aspiration Interval: 1.5 seconds

18. The instrument was brought to equilibrium with the 0.1 1
HCl solution and calibrated using the appropriate Zn
standard, prepared to cover the linear absorbance range
(0.25 ppm to 2.00 ppm) of Zn. This was usually
completed with the 1.00 ppm Zn standard (however,
calibration with 0.50 ppm Zn standard, in DDI, for
serum was used). A Zn standard was then aspirated to
ensure appropriate calibration.

19. Triplicate sample aspirations were then completed within
1.5 seconds and reading of the appropriate Zn standard
was completed every 5 to 10 samples to ensure the
spectrophotometer had not drifted from calibrated range.

20. If drift had occurred, the instrument was again brought
to equilibrium with the 0.1 M HCl solution, calibrated
if necessary, and the Zn standard was aspirated once
again to ensure appropriate calibration. The Zn
concentration reading of the samples was determined from
the mean concentration of the triplicate aspirations.

88



1. Detergent: Versa-Clean Detergent, Fisher Scientific
Co., Pittsburgh, PA

2. EDTA: Fisher Certified, ACS, Fisher Scientific CO.,
Pittsburgh, PA

3. Nitric Acid: 70% Trace Metal Grade, Fisher Scientific
Co., Pittsburgh, PA

4. DDI Water: For washing and reagent preparation; MEGA-
PURE, Barnstead Co., Dubuque, IA

5. DDI Water: Added in samples during digestion, except in
urine and serum; Reagent Grade, Baxter
Healthcare Co., McGaw Park, IL

6. Hydrogen Peroxide: 50%, Certified, Stabilized; Fisher
Scientific Co., Pittsburgh, PA

7. Hydrogen Chloride: 36%, Sub-Boiling, Distilled, Sea-
Star Chemicals, Vancouver, British
Columbia, Canada

8. Ultrex Nitric Acid: 70%, Baker, Phillipsburg, NJ

9. DDI Water: For dilution of samples before analysis;
MIllipore Corp., Bedford, MA

10. Acetylene: For flame in AAS; Air Products and
Chemicals, Inc., Allentown, PA

Standard Materials:

1. Bovine Liver: Standard Reference Material 1577b,
National Institute of Standards and
Technology (NIST), Gaithersburg, MD

2. Non-fat Milk Powder: Standard Reference Material 1549,
NIST, Gaithersburg, MD

3, Bovine Serum Standard: Standard Reference Material
1598, NIST, Gaithersburg, MD

4, Zinc Standard: Standard Reference Material 3168,
NIST, Gaithersburg, MD
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1. Electronic Analytical Balance: Model A-250, Denver
Instrument Co., Arvado, Co

2. Muffle Furnaces: Type 4800 Furnace, Barnstead Co.,
Dubuque, IA

3. Hot Plate: Model p11, Corning Glass Works, Corning,
NY

4. Automatic Diluter: Micro Lab M, Hamilton Co., Reno, NV

5. AAS: Perkin Elmer Flame Atomic Absorption
Spectrophotometer, Model 5000, Perkin Elmer,
Norwalk, CT

6. Zn Lamp: Perkin Elmer, Norwalk, CT
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