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ABSTRACT OF THE THESIS

A DEFINITION AND MEASURE OF WORKFLOW MODULARITY

by

Dawn-Marie Chin

Florida International University, 2005

Miami, Florida

Professor Ronald Giachetti, Major Professor

The purpose of this study is to define and measure workflow modularity. There is an

increasing need for organizations to implement processes that can be easily configured to

offer distinctive capabilities compared to the competition. The concept of modularity

provides the foundation for organizations to design flexible processes.

The Event-Driven Process Chain (EPC) approach is used to model an example

workflow to illustrate. Based on the model of atomic tasks, rules are developed to guide

the creation of modules with high cohesion between tasks in a module and loose-coupling

between modules. Matrices of atomic tasks interdependencies are developed and tasks

are then clustered based on interdependence strengths.

The main deliverable is a mathematical model for defining and analyzing a modular

workflow to enable the creation of flexible workflow processes. The modularization

model represents tasks relationships that maximizes cohesion between tasks, minimizes

coupling between modules, while minimizing workflow time.
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CHAPTER 1

1 INTRODUCTION

The global economy is changing business practices. The failure or success of an

organization is frequently based upon the organization's ability to respond quickly to

changing customer demands and to utilize new technological innovations. The firm that

can offer greater varieties of new products/services with higher performance and greater

overall appeal will have the advantage to satisfy a complex set of customer requirements.

To be competitive, organizations need to implement processes that can be easily

configured to offer distinctive capabilities compared to the competition. In order to offer

a wide variety of products but maintain the economies of scale that comes from large

production runs many companies have started to utilize modular designs of both products

and services.

Modularity provides a rational means to enhance the flexibility of existing product or

process solutions. It has been adopted in a number of industries, such as automotive,

computer technology and software development. Much of the research on modularity as a

strategic approach has been to address four main concerns of new product development.

These concerns are: 1) a structured approach to dealing with complexity, which looks at

how to handle interacting and interdependent parts in complex systems, 2) responsive

manufacturing through flexibility/agility, which addresses the ability to rapidly change

processes in response to demand [1], 3) efficient deployment of stakeholder

requirements, and 4) a rationalized introduction of new technology, which refers to a
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structured approach to implement new technology and satisfy customer and other

stakeholder requirements.

Many enlightening studies have examined examples of modularity in product designs,

such as elevator systems, using standard component interfaces ([2], and the automobile

industry, where common components are used in many different models [3]. However

literature suggests that the strongest impact of product modularity has been in the

computer industry, where a family of computers of different sizes shared the same

instruction set and peripherals [4]. The benefits gained in the computer industry have

served as a prime example for companies to better handle product complexity by

breaking up products into subsystems, usually called modules.

Product modularity has a strong relationship with the modularity of processes and

resources [5]. Kusiak [5] recognized that in the analysis of a product, process or resource

model for modularity the perspectives presented to the user for validation and

optimization are common to all three models. Analysis of product modularity in several

cases [6-9] considers the corresponding life-cycle processes for product components.

However, despite all the work that's been done for product architectures, very little has

been done in exploring what constitutes an appropriate modularization of workflow

processes, namely tools for defining general modules. To be able to apply modularity

concepts to workflow processes requires an understanding of the key concepts of

modularity and workflows and how they are modeled to facilitate identification and

analysis of their components.

The remainder of this chapter examines the concepts of modularity, through

applications to product architectures, and the challenges and benefits gained. This is with
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a view to apply similar concepts to modularize workflows. The chapter also outlines

issues related to processes, workflows and the coordination of dependencies between

tasks and identifies aspects of modularity already implemented, and states the goals and

objectives of the research. Chapter 2 provides a review of relevant literature. Chapter 3

outlines the methodology in defining and measuring modular workflows. Chapter 4

outlines the approach taken to modularize workflows. Chapter 5 detail how to measure

the workflow modularity and Chapter 6 present conclusions and further work on modular

workflow redesign.

1.1 PROBLEM STATEMENT

Organizations are realizing the increasing need to implement processes that can be

easily configured to offer distinctive capabilities compared to the competition. The

concept of modularity provide the necessary foundation for organizations to design

different products/services, thereby reaping benefits of mass production, such as

economy of scale, increased feasibility of product/component change, increased product

variety, reduced order lead time, decouple risks [10],[11], and strategic flexibility [12].

Very little has been done in applying modularity concepts to workflow processes. This

may be due in part to that fact that even though modularity has been recognized as a good

design practice, there are still several issues being addressed. The main issue is a lack of

formal theory and tools for defining modules from a broad perspective. Kusiak [5] stated

that there is tremendous growth and potential in modularity, that can be realized by

moving outside of the current practice of applying modularity solely to products industry,

to redefining and enlarging the domain to include different processes and technologies,
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and incorporating product life-cycle cost in order to improve the quality of modules

developed.

In order to define modular workflows we need to answer the following research

questions:

* What are the key concepts of modularity?

* What is a process?

* What is a workflow?

* What is required to have a work process fragment, i.e. a process module?

* What makes a workflow process modular?

* How does one define process modules?

* How can one define coupling between modules?

* How does one determine potential workflow configurations?

* What effect will different configurations (flexible workflow) of modular

workflow have on key performance indicator such as timing?

* How can modularity be measured?

In searching for answers to these questions, it became obvious from published

literature that much of the research focused on understanding modularity concepts,

modular product designs and the measurement of modularity on product architectures.

There has been very little work investigating modularity concepts with respect to

processes.

Table 1 lists some examples of modular products that offer a large number of product

variations. Here we see the use of modularity to create loosely coupled component

designs through the standardization of component interface specifications, and product
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architectures composed of the relationships between components. These relationships are

defined by the specifications of inputs and outputs linking each component in a design

and component interface specifications. Loosely coupled components describes

components that enable substitution into different product designs, without requiring

redesign of other components [12]. The standardization of interfaces refers to loosely

coupled components that can be treated as a 'black box' [13].

Table 1: Examples of Products with Modular Designs

References Product Form of Modular Design

Langloin and Robertson [14] Personal Computers Personal computers consist

of modular components

such as hard disk drives,

flat screen displays, and

memory chips coupled

with a microprocessor chip

and enclosure.

Nevins and Whitney [15], Automobiles Modular components for

Tully [16] different models

Sanderson and Uzumeri [17] Consumer electronics 'Mixing and matching'

modular components in a

few basic designs for over

160 variations of Sony

5



References Product Form of Modular Design

Walkman

Sanchez and Sudharshan [18] Household electronics General electric uses

different modular doors

and controls on common

assemblies of enclosures,

motors, and wiring

harnesses on several

modules of dishwashers.

Cusumano [19] Software Modules of routines,

which can be combined to

create customized

applications programs.

Woolsey 20 Aircraft Common wing, nose, and

tail components allow

several models to be

leveraged by using

different numbers of

fuselage modules, creating

aircrafts of different

lengths and capacities.
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Much of the literature focuses on modularity measures, which focus on shared

relationships between components, respective interfaces, standard components,

substitutability of components and the impact of design alternatives. The literature

revealed that studies range from exploratory qualitative measures to quantitative

measures that apply optimization models to address manufacturing issues. Table 3 in

section 2.1.1 on page 26 details the various measures explored.

Some of these measures can be adapted for modularizing workflow processes, where

the similar issues regarding decomposability (i.e. modularization) and integration of

modules are being considered. Organizations are required to understand shared module

relationships, interfaces, and standardization of modules and substitutability of modules

across organization in to create processes that can be reconfigured easily and quickly

based on competition. The measurement approach presented by Gershenson [6] is

explored in measuring modularity in workflows, as it focused on similarities between

modules and their life-cycle processes and dependencies that exist between the modules

and processes.

Sanchez and Mahoney [12] used the concepts of nearly decomposable systems' to

investigate concepts of modularity in product and organizational designs. Their approach

examined the outputs of component processes that are partitioned into tasks that can be

operated autonomously and concurrently, which enabled a new approach to knowledge

management in modular organization designs. They concluded that embedded

coordination of standardized interfaces of modular architectures is attainable in other

'A nearly decomposable system is one in which interactions among sub-systems are
weak.
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processes and may be a new design approach for achieving increased flexibility and inter-

organizational connectivity among broadly de-integrating (loosely coupled)

organizations.

Therefore, similar to product designs, modular process designs can be defined by

specifying process modules2 with common activities that can be combined to create

customized process workflows. These modules will be loosely coupled to enable

substitution across organizations without requiring redesign, through the use of standard

module interface specifications.

A workflow is a process in an enterprise, which is coordinated by software called a

Workflow Management System [21]. Workflow management systems control the flow of

work and information, throgh the use of standardization mechanisms. Today, workflow

management systems provide a solution approach to rising issues including real-time

collaboration, information and flexibility, personalization (mass customization), quality

and function versus process. However, so far conventional workflow software only

covers individual functions, such as procurement or accounting, and not much focus has

been placed on the interaction of these functions within a process.

The problem of modularizing workflow processes requires determining an

appropriate measure of process modularity, defining the number of possible

configurations for a process and creating a model for analyzing these configurations.

2 Note that process modules hereby used in this paper to refer to modules in a process
design performing a function within a system of interrelated modules whose collective
functioning make up the process and whose relationships are defined by the inputs and
outputs linking modules in a design.
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1.2 GOALS AND SPECIFIC OBJECTIVES

The main goal of this research is to study the application of modularity concepts to

workflow processes. To accomplish this goal, the examples of approaches used in

modular product designs are adopted.

To achieve this goal, the specific objectives include:

1. Defining a modular workflow process,

2. Developing a mathematical model for defining modules of a modular

workflow process, including identifying potential configurations

3. Developing a measure for workflow process modularity,

Details on how each of these objectives is achieved are given in Chapter 2.
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CHAPTER 2

2 LITERATURE REVIEW

This chapter discusses research conducted in modularity and workflow management.

Section 2.1 focus on the key concepts of modularity through an examination of work that

has been done for modular product architectures, then outlines modularity measures that

have been explored, and finally details the modularity measure presented by Gershenson

[6]. Section 2.2 focuses on workflow processes, and Section 2.3 explores the application

of modularity concepts to workflow processes, including examples of commercial

workflow process systems. This review helps in understanding the key concepts of

modularity, processes, workflows and how they are modeled to facilitate identification

and analysis of their components.

2.1 MODULARITY

To handle complexity of large systems humans have learned to divide them into

smaller pieces and study each piece separately. Modularity is a concept that has been

used in various fields to divide these complex systems so they can be more easily

designed and managed. Baldwin and Clark [4] identified five key areas in the general

concept of modularity, including:

1. Interdependence within modules, which refers to the strong connections between

structural elements within module units

2. Independence across modules, which refers to the relatively weak connections to

elements in other units
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3. Abstraction, which enables the hiding of complexity of elements in a complex

system, by breaking-up the system into smaller simplified pieces

4. Information hiding, refers to design parameters that are hidden from the rest of

the system, and

5. Interfaces, which are descriptions on how the different modules interact. They are

the visible information, which constitutes the design rules.

Kamrani and Salhieh [22] referred to a sixth key area of modularity:

6. Design standardization, where standard components are shared.

Baldwin and Clark [4] also purported that a set of design rules must include

categories of design information, including a architecture of what modules will be part of

the system and their roles, interfaces on how the modules interact, and integration

protocols and testing standards that allow for designers to determine how well a system

works.

In exploring the concept of modularity many studies have been done on modular

product designs and the advantages gained from the use of standard components. The

remainder of this section will organize the studies based on the key areas of modularity

identified by Baldwin and Clark [4] and Kamrani and Salhieh [22].

Baldwin and Clarke [23] further studied modularity and how to manage in an age that

is fast adopting modular design concepts. They defined modularity as an efficient way to

build a complex design from smaller subsystems that can be designed independently yet

function together as a whole. They further expanded on a guide to modularity, through

the partitioning of information into visible information and hidden information, thus
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specifying which parameters will interact outside of modules and how these interactions

across modules will be handled.

Kamrani and Salhieh [22] studied modularity in product designs. They defined

modularity to be the process of producing units that perform discrete functions, that when

connected together provide a variety of functions. They identified that modular designs

should focus on minimizing interactions between components, which enable independent

design and production of these components. They also noted that product modularity can

be represented in several ways and are based on the types of combinations between

modules, which are determined by the type interactions between different modules in the

product. These include component-swapping modularity 3, component-sharing

modularity4, fabricate-to-fit modularity5 and bus modularity 6.

Yigit et al. [24] looked at the problem of optimizing modular products in

reconfigurable manufacturing system. They addressed the issue of determining optimal

number of module instances and selecting the optimum subset of module instances from

a large number of alternatives. The problem is first posed as a subset selection problem,

and then transformed into an integer nonlinear programming problem. The methodology

ere different product variants of the same product family are created by combining two

or more alternative types of components with same basic component or product (Kamrani
and Salhieh, 2000).

4 Different product variants of different product families are created by combining
modules sharing the same basic component (Kamrani and Salhieh, 2000).

5 Here one or more standard components are used with one or more infinitely variable
additional components (Kamrani and Salhieh, 2000).

6 A module can be matched with any number of basic components. This allows the

number and location in a product to vary (Kamrani and Salhieh, 2000).
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was proven to be a good tool for selecting module instances and for designing modular

products.

Kamrani and Gonzalez [25] proposed a genetic algorithm-based solution

methodology for modular design. They viewed modular design as the process of

producing units that perform discrete functions, which are then connected together to

provide a variety of functions. The modular design problem was formulated as set of

combinatorial optimization problem using the design for modularity methodology

introduced. A genetic algorithm (GA) and heuristic-based GA were proposed to solve the

problem.

Ethiraj and Levinthal [8] looked at modularity and innovation in complex systems.

They review modularity concepts and their application to addressing the problem of

designing, coordinating and managing complex systems. They defined modularity as a

general set of design principles for managing the complexity of large-scale

interdependent systems and highlighted two areas in which modularity can be deployed.

These included the 'real' underlying structure for a given design problem, giving the

partitioning and decomposition of tasks and the interfaces among design elements, the

'appropriate' number of modules. They proposed models based on these areas and

evaluated performance using a simulation model.

Later Gershenson, et al. [26] reviewed the research on measures and design methods

for product modularity. They concluded that from all the approaches, due to a lack of

understanding of what modularity is, there is a general lack of consensus on modularity

measures and modular product design methods. They highlighted the few areas of include

the overall structure of modularity measure, normalization of the measure and measures
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of independence and similarity. Conflicting areas include implementation of design, role

of the measure in the design method and impact on the inclusion of multiple life-cycle

stages.

Kusiak [5] reviewed product and process design with a modularity perspective. He

identified three key areas of unrealized potential and growth of modularity, namely,

product variety, technology variety and time. He also purported that the narrowness of

the domain is the main criticism of modularity, including lack of tools to define general

modules. He reviewed the approaches proposed to solve this problem, including the

mathematical programming notion, the biology-based notion, modularity algorithm, and

model evaluation. He also reviewed the IDEF methodology as a tool for process

modeling.

Mikkola and Gussmann [2] examined managing modularity of product architectures.

They defined modularity as a new product development strategy in which interfaces

(linkages) are shared among components in a given product architecture and are specified

and standardized to allow for greater substitutability (sharing) of components across

product families. They introduced a modularization function for analyzing the degree of

modularity in a given product architecture, considering components, degree of coupling

and substitutability. The function was applied to traction and hydraulic elevator systems.

The analysis captured the sensitivity and dynamics of the systems created by three types

of components (standard, neutral, and unique) and two types of interfaces (fundamental

and optional).

Standardization was also identified as a key area of modularity, namely in

specification of component relationships [12]. It can be achieved through the

14



identification of component functions and the minimization of interaction between a

component and the rest of the product [22].

Thormann and Brandeau [27] looked at approaches to determine the optimal level of

component commonality for end-product components that do not differentiate models

form customer's perspective. A mathematical program considering production, inventory

holding, setup and complexity costs were proposed for wire-harness design problem. To

solve small and medium-sized problems a branch-and-bound algorithm was used to find

optimal solutions and a simulated annealing algorithm used to find good solutions to

large-size problems. Both algorithms were applied to a wire-harness design. The optimal

solution showed a reduction in component variety and costs savings compared to the no-

commonality solution.

Worren et al. [28] explored modularity and its application to the home appliance

industry. They explored the premise that modular product architectures and process

architectures are prerequisites for efficient mass customization and cycle time reduction,

thus sources of increased strategic flexibility. Based on a conceptual model linking

market context, strategic flexibility, innovation orientation and organizational

architecture to firm performance, they sought to prove three propositions and two

research questions. Through the use of technology management and organizational and

strategic management theories, they concluded that model variety was related to firm

performance, product modularity was related to model variety, innovation climate was

correlated with modular processes, and codification and standardization are necessary

prerequisites for achieving hi levels of process flexibility. There was a complex

relationship between managerial cognition, market context and the use of modular
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architectures, and there was no significant relation between product modularity and two

indicators of strategic flexibility, new model introduction and new product introduction.

Table 2 below summarizes the key concepts of product modularity and outlines

similar concepts that can be adapted for modular process designs:

Table 2: Product Modularity vs. Process Modularity

Product Modularity Process Modularity

Shared interfaces among product modules Shared interfaces among process modules

[2, 12]

Standard interfaces [4, 7, 28] Standard interface specifications

Substitutability of components [4] Substitutable process modules

Product Architecture for arranging Process model for decomposing key

functional elements of the product [4] activities, with interactions within

modules

Loosely coupled components [4, 8, 12, 24, Loosely coupled modules

25]

In summary, the design of modular process will require that the modules of a process

be specified based on the following key concepts:

* Modules must have their main functional interactions within rather than

between modules,

* Modules consist of autonomous (independent) tasks, which refer to the

reduction of task interdependencies, throu the specification of standard

interfaces.
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* Modules consists of concurrent (parallel) process units that can operate

independently, performing discrete functions and can be tested in isolation

from the system.

* Modules are loosely coupled, enabling different independent modules to be

substituted (shared) across organizations process designs without requiring a

redesign of other modules.

2.1.1 Modularity Measurements

Based on the literature review of modularity measurements, the approaches seemed to

focus on shared relationships between components, respective interfaces, standard

components, substitutability of components and the impact of design alternatives. The

studies ranged from exploratory qualitative measures to quantitative measures that apply

optimization models to address manufacturing issues.

Table 3 outlines approaches that have been used to measure modularity in product

architectures.

Table 3: Measurements of Modularity

References Purpose Measure

Mikkola and Gassmann [2] Analyzing the degree of Modularization function

modularity in a given for analyzing the degree of

product architecture, modularity

considering variables such

as components, degree of

coupling, and
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References Purpose Measure

substitutability of

components

Ali and Gonzalez [29] Developing similar Genetic algorithm-based

components in designing method used in the

complex products solution of a set of

combinatorial optimization

problems

Fisher, et al. [30] Examining variations in Mathematical model,

component sharing and complemented with

identifying factors to optimization, simulation,

explain variation and regression analysis

Gershenson et al. [6] Measuring the degree of Mathematical model for

modularity of a product measuring relative

based on intra-module and modularity based on a

inter-module similarities modularity evaluation

and dependencies compared matrix of component

to all similarities and dependencies and

dependencies. similarities

Ulrich &Ellison [3 Developing a theory for Regression analysis based

determining when a firm on surveys of products.

can benefit from product-
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References Purpose Measure

specific component designs

Newcomb et al. [9] Measuring modularity A Mathematical model

based on the multiplication that is based on a product

of inter-module connections decomposition and module

and the average comparison approach

correspondence between

modules

Ulrich et al. [32] Estimating impact of Economic model to

designing alternatives on illustrate the relationships

the economic benefit of a among DFM, lead time

product and profits

Evans [33] Illustrating the application A non-linear programming

of standardization as an model

optimizing procedure

The following paragraphs focus on the approach presented by Gershenson et al. [6],

as this is the measure that has been adopted to measure modularity in a workflow process.

The measure is chosen because it focuses on creating modules that encourage

independence between components and all life-cycle processes in different modules, and

similarity within components and processes in a module. The authors presented a

mathematical model that measures the degree of modularity of a product based on intra-

module and inter-module similarities and dependencies compared to all similarities and
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dependencies between life-cycle process and components. The measure focuses on

shared relationships between components, respective interfaces, standard components,

substitutability of components and the impact of design alternatives.

Based on a breakdown of the product into it's components (using a component tree)

and process graphs outlining the life-cycle processes for each component, similarity and

dependency evaluation matrices were developed to compare the task and subtask of each

process with each component. The relationships were collected in an n x n matrix, where

the first value of each cell represents similarity weights and second value represents

dependency weights. Similarity referred to the same manner of processing components in

a module [7] and dependency relates to the component interactions arising from the

various processes the component undergoes. Using the weights of similarity and

dependency relationships, six possible relationships were evaluated, Component-

component dependency, component-component similarity, component-process

dependency, component-process similarity, process-process dependency and process-

process similarity. The evaluation of matrices considered the modularity facets of

attribute independence, where component attributes had fewer dependencies on attributes

in other modules; and process independence, where each task of each life-cycle process

of each component in a module had few dependencies on the process of external

components. These facets enabled the design of the product with increased independence

and similarity. The Relative Modularity (RM) was determined as follows:

Modularity = Sj,/(Sj+S,, ) + Dn/(Din+Dou)

Where:
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Si = Similarity within a module = 1
m=1 f-r j= +1k=1

Where, m number of modules in the product

r = first component in the module m and module n

s = last component in the module m and module n

T= number of processes under consideration

Sik is similarity between component i and task

Sjk is similarity between component] and task k

The value of Si is a root mean square of the similarities between the two components

and a life-cycle process. Sin allowed component process relationships to be measured and

has a positive effect as it involves grouping components with similar life cycles.

Sour: Similarities between the components of a module and each component external

to the module

A s-1 M s T

m= ~rn nm+1 j=r k=1

Where, ij are components not in the same module, and n is a module.

The value is based on the ratings of the component process similarity interactions for

each component outside a module. Souhas a negative effect on the modularity measure as

the approach reduces process similarities between components.

Dn: Dependencies between each component within a particular module = Component-

Process interactions + Component-Component interactions

,f s-1 s T
- Z( Df~J+ D1 )

m=1 s=r j=t+1k=1

Where: i, j are components in the same module
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Di is the dependence between component i and task k

D.j is the dependence between component] and task k

Dj is the dependence between component i and componentj

The value is based on the ratings of the component-component and component-process

dependence interactions for each component within a module. Di has a positive effect on

the measure as its important to group dependent component.

DOWr: Dependencies between the components of a module and each of the components

that are external to the module = Component-Process interactions + Component-

Component interactions

Ms- M s T

( Dk +D
m=1 i-r n m+2 j=r k=A

Where: i, j are components not in the same module

Dik is the dependence between component i and task k

Djk is the dependence between component j and task k

ij is the dependence between component i and componentj

The value is based on the ratings of the component-component and component-

process dependence interactions for each component outside a module. Dour has a

negative effect on the total measure as external dependencies are minimized for

independent process modules.
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A mechanical pencil, figure 1, was used to illustrate the measure.

Figure 1: View of a Mechanical Pencil highlighting the cone/tip, clutch/teeth, barrel and eraser
modules

The relative modularity was calculated from an evaluation of the matrix of

component interactions (similarity and independence) between all the components of the

pencil and the tasks involved in each process for each component. A 5-point weighting

scale for both similarity and dependency was used. This was illustrated for the cone/tip

assembly of the pencil considering only its components, function and manufacturing

interactions as follows:

Sin, Sont, Dr and Dou, were calculated using the above formulas for each of the

components. Once the calculations for Sin, ou, Din and Dout are done for all the four

modules of the mechanical pencil, the relative measure for the product was calculated by

summing the relative measures of each module, as shown below:

Module Si, out1  in~ out R

Cone/Tip 0 80 15 98 013

Teeth/Clutch 45 75 131 101 0.94

Barrel 0 20 5 39 0.11

Eraser 5 35 20 4 0.46

Total Relative Modularity O.87
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The pencil scored low with a relative modularity of 0.87, where the possible range of

values is 0 to 2. This value is useful only in comparing design options and for guiding

process redesign.

2.2 WORKFLOW PROCESSES

In addition to managing organizational functions such as purchasing, manufacturing,

marketing and sales, accounting, and human resources, many organizations are finding

they also need to manage processes, such as inventory management, receiving, product

development etc, which spans the functional units. It is these processes that necessitate

the definition and creation of workflows.

In examining a process and specifically a business process, Hammer and Champy [34]

defined a process as the collection of activities that create an output based on one or more

inputs. Basu and Blanning [35] defined a process as a set of tasks that connects one set of

information elements, the source, to another set of information elements, the target. All

the inputs for any task must be either in the source or in the output of some other task in

the process. Reijers [36] defined a business process as a collection of activities that takes

one or more kinds of input and creates an output that is of value to the customer.

For the purpose of this thesis, a process will be defined as the network of activities

and their relationships defined by objects/data elements that constitutes inputs to the

process, which are transformed to outputs of the process.

In examining workflows two types of workflows, cased-based workflows (routine),

which are more or less standardized workflows, which can satisfy a single instance of a

customer's request, such as a customer order production processing; and ad-hoc
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workflows (non-routine), which arise from specific, temporary needs of unique project

teams and are initiated when the customer's request is too specific to be worked on by

standardized case-based workflows.

Schal [37] defined a workflow as a unit of work generating products and services,

which are related to, or result in, customer satisfaction. He mentioned that workflows

have sequential and parallel steps that involve the movement of people, documents,

products and information. A workflow can be seen as the sequence and interrelation of

information, activities and communications within a process.

Later, The Center for Technology in Government [38] defined a workflow as the

movement of documents and tasks through a business process. A workflow can be a

sequential progression of work activities or a complex set of processes each taking place

concurrently, impacting each other according to a set of rules, routes, and roles. The

process-modeling techniques for defining the detailed routing and processing

requirements of a typical workflow were reviewed. The Center also reviewed workflow

management systems and how they are used in organizations to define and control

various activities in a business process.

The Workflow Management Coalition [39] based on ongoing research they have

conducted from 1993 through 1995, presented a workflow reference model that provided

a framework for the development of workflows and workflow management systems.

They defined a workflow as the automation of procedures where documents, information

and tasks are passed between participants based on defined rules to achieve business

goals. The model illustrated five major components and interfaces in the workflow
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architecture, including a process definition, workflow interoperability, invoked

applications, workflow client applications, and administration and monitoring.

Basu and Blanning [35] studied workflow analysis and the adaptation of processes to

specific circumstances. They defined a workflow as a specific collection of tasks,

resources and information elements in each circumstance, and as an instantiation of a

process. The information element being an atomic data item or data structure; tasks are

collection of information elements, having an input and an output; and resources being

the entity associated with one or more tasks, which must be available if the tasks are to be

executed. A meta-graph was proposed as means of representing workflows to enable

more effective design of organizational processes. The approach proved to be more

advantageous to other process modeling methods such as Petri-nets and UML state

charts, in that meta-graphs are able to give a single representational construct for system

components such as data, models and rules, and they support multiple perspectives.

Reijers [36] referred to a workflow as a business process that delivers services. It is

the control dimension of a business process, which is the dependency among tasks that

must be respected during the execution of the business process. He also identified four

basic components of workflows that are suitable for modeling in the context of business

process management, including a case component, describing each case that exist and

how they are created. This component answers the what of the basic process questions; a

routing component, which determines how cases are routed through the workflow,

thereby answering the how; an allocation component, which specifies the classes of

resources and which will take care of which work items, answering the by whom
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question; and an execution component, which determines when resources will actually

execute the work allocated to them, answering the when of the process questions.

For the purpose of this study a workflow is understood to refer to specific instance

(case) of a larger business process having its own activities, work items, resources and

objects/data elements defining its inputs and outputs that can be automated for efficient

progression of work to satisfy customer requirements. In our definition, we highlight

computer automation of the workflow as enables controlled efficient routing and

sequencing of tasks.

To manage the complexity and broad ranging links and interactions in workflows,

workflow management systems are used. Workflow management systems (WFM) enable

the standardization and automation of workflows. They allow the complete definition,

management and execution of workflows through the execution of software whose order

of execution is driven by a computer representation of the workflow logic. Many

workflow management systems exhibit common characteristics, which allows for

integration and interoperability between different products. Applications for workflows

are divided into four categories, production workflow systems, messaging-based

workflow systems, web-based workflow systems and suite-based workflow systems.

Examples of commercial workflow products in each category include, Work Center,

Lotus Forms, Group Wise Web Access, and Microsoft Office Exchange.

2.3 MODULAR WORKFLOW PROCESSES

Based on the literature review on the concepts of modularity and a workflow process,

it can be concluded that modular workflow processes can be achieved by specifying the

modules of a process architecture based on the following key characteristics:
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* A process architecture, defining the building blocks of the process and the

interactions between functional elements, that enables the definition of

autonomous process modules that can be operated concurrently,

* Modules with functional interactions within the modules rather than between

modules,

* Specifications of standard interfaces, defined by substitutable data elements

that can be shared between process modules and that defines how the modules

connect and communicate, and

* Loosely coupled process modules that will enable substitutability across

organizations with similar process designs.

Hence the modular workflow process will be obtained by partitioning and

standardizing the information into a process architecture specifying the modules that will

be pa of the process, interfaces detailing how the modules will fit, connect and

communicate (visible information) and standards for measuring the module's

performance.

Modularizing a workflow process presents similar problems as in modularizing any

system, including difficulty finding the most suitable set of sub-modules

(decomposition), and the difficulty of combining the separate sub-modules into an overall

solution (integration). Several approaches have been presented as to how to handle these

problems in modular designs.

This remaining section will explore literature on these concepts for modular

workflow process designs and how they can be developed.
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Sanchez and Mahoney [12] defined modular process architectures as decompositions

of the company's key activities into specific routines and interfaces that allow frequent

reconfiguration of processes, in the same way as for modular components in physical

products. That is, the definition, analysis and splitting apart of key activities and

specifying standardized component interfaces (relationships), that will allow for loose

coupling of modules. A process decomposition method that will enable process

simplification and well as concurrent processes, must allow for activities in the process

design to be modeled in a generic manner independent of the specific product being

designed. This method must recognize a product flow perspective, identifying inputs and

outputs; an information flow perspective, analyzing precedence constraints between the

design activities, thereby identifying information needed; and a resource perspective,

identifying external and internal resource constraints needed to transform inputs to

outputs (K r i and Salhieh, [23]).

Standard interfaces can be defined by examining the process module. This is the

complete unit of work that has an input and output and is supported by one or more

resources. The interfaces (relationships) between the inputs, outputs and resources will be

defined by the parameters of the process modules within the process architecture,

including the objects/data elements, tasks/activities, and resources. That is, a set of data

structures defined to contain all the inputs and outputs of the set of tasks/activities of the

workflow. These interfaces will describe how the modules will fit together, connect and

communicate [23].
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The Workflow Management Coalition (WMC) [39] defined five core interfaces of a

workflow, including a Workflow Definition Interface7, a Workflow Process Instance

Interfaces, a Workflow Activity Instance Interface and a Workflow Item Interfaces . A

process definition is realized by a process instance, which contains activity instances that

are realized by work items. Figure 2 illustrates how a business process can be

decomposed to define these base workflow interfaces:

Bu ns Prmce s

W2 W fIontewDfces
n nce

r 2: WC Workflow oointeae s Wr itinstace o the xecuing poces, inludin theset o actvitis an terratinhis8 WMC (1997) defines as an i ~ ~ nstancefapriurpocsdentonstep in worflowmode beig excute andis asocited ith proesswnstne

10 WMC (1997) defines as representation of task to be e fore i the context o

activity within a workflow process. It provides operations to access and modify attributes
of objects.
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Each interface is defined by data elements that are associated with a module of the

workflow process. The process instance is defined by objects/data elements of parameters

of all inputs, outputs and resources. Each process instance has different activity instances

of steps in the process that will require one or more resources or work items to perform

activities.

Browning [40] defined characteristics of information transfer interfaces necessary for

organizational integration. He mentioned that interfaces should be defined in terms of

what information needs to flow, where, when and how; tight-fitting in terms of task

assignment; permeable in terms of permitting and regulating information flow; mutable

in terms of altering information; efficient and free from undue bureaucracy and other

delays; documented to record information flow; measurable and adapted in terms of the

project's task, size, and stage.

Standardization of interface specifications and characteristics for information transfer

between modules will enable substitutability of process modules across process designs.

The process architecture will define the basic building blocks (tasks) of the process,

the mapping of functional elements and the specification of interfaces among interacting

modules. Each process module can be modeled as a domain, which defines the subset of

process to be modeled, with boundaries/relationships defining the interaction with

another domain through the exchange of events and results. These events and results will

be represented as physical or information objects (data structures) defining the module

interfaces.

Process models are used to collect and organize the data and knowledge about the

processes and in effect can be used to define process architectures. Davenport [14]
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defined a process model as containing a set of activities arranged in a specific order, with

clearly identified inputs and outputs. A standard process module can be developed based

on the process models. To model these processes several modeling methodologies have

been used:

Peterson [15] developed Petri Nets, a graphical process-modeling tool. It represents a

process as a network of places, transitions and arcs, and tokens to represent the state of

the system. The European Committee for Standardization [16] introduced Computer

Integrated Manufacturing-Open Systems Architecture (CIMOSA), a reference

architecture capturing both process functionality and process behavior. It decomposed the

process into function, information, resource and organization views.

Since in this study we are interested in the modeling and design of modular

workflows, that is enabling rapidly changing processes, producing different processes

without major redesign, and the ability to offer a wide variety of product/services to

customers, we will adopt the techniques of Event-driven process chain (EPC) to define

functions in a workflow process. The EPC model is explained in Section 3.3.

Modularity can therefore be achieved through the decomposition of the workflow

process into individual modules defined by the workflow interfaces, where each module

will include inputs, outputs, controls and mechanism and specifications for all interfaces.

Kamrani and Salhieh [22] stated that integration of the several functional elements in

a modular system must focus on similarities between the physical and functional

architecture of the design, and minimizing or eliminating the degree of interaction

(interfaces) between physical elements. Similarly for modular process designs,
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integration of the different modules will be based on similar criteria and the weakness of

the interfaces between modules will be a measure of the strength of the design.
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CHAPTER 3

3 RESEARCH METHODOLOGY

This chapter starts by defining key concepts of modularity and workflow processes,

and then reviews the research methodology, a modeling approach is then presented, and

then an example application that will be used throughout the next sections is outlined.

The chapter is organized to focus on the steps to define workflow modularity and to

measure modularity between components, with a view to achieving the following

objectives:

1. Definition of general rules for defining a modular workflow process

2. Analysis of an example workflow process that is used for illustration

3. Development of matrices to record task interdependencies

4. Development of clustering model for groupings tasks into modules

5. Measurement of a workflow modularity using adopted measure

3.1 DEFINITIONS

Definition 1: Modularity

Modularity is a concept that enables process flexibility and interchangeability through

the sharing of interfaces among autonomous process components. Modularity requires

strong cohesion (interdependence/similarity) between components within modules and

loose coupling (independence) across modules [4, 12].

Interdependence refers to the strength of the relationships between module

components, whereas independence refers to the weakness of the relationships that exists

between one module and another [4, 22].
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Concurrent, flexible processes created in design modularization where independent

block of tasks with interconnected, independent and hierarchical elements is the

foundation for this work.

Definition 2: Process

A process will be defined as the network of activities and their relationships defined

by objects/data elements that constitutes inputs to the process, which are transformed to

outputs of the process.

Definition 3: Workflow process

A workflow is understood to refer to specific instance (case) of a larger business

process having its own activities, work items, resources and objects/data elements

defining its inputs and outputs that can be automated for efficient progression of work to

satisfy customer requirements [35, 36]. Each workflow consists of a set of tasks/actions

(or atomic work unit) specifying the work to be accomplished. Figure 3 & 4 below

illustrates the definition of a workflow. Figure 3 shows the breakdown of a business

process, the set of linked activities, which can be manual or automated and each activity

c be further divided into individual tasks.
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Figure 3: Breakdown of Business Process

Figures 3 and 4 illustrate the fact that a workflow consists of one or more tasks, which are

realized by one or more work items.
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Definition 4: Modular Workflow Process

A modular workflow process will consist of loosely coupled, blocks of task with

interconnected, independent sets of resources and standard interfaces specifications,

defined by data elements specifying the interactions between tasks within blocks.

Definition 5: Workflow Process Module

A workflow process module is a component activity, consisting of interrelated atomic

tasks units, within a system of related modules that collectively make up a business

process. The component activities are independent of other activities in other modules

and there exists couplings within modules as a result of the interactions between tasks.

Definition 5: Process Function vs. Workflow Module Function

A process function refers to the functions/roles in the process that converts inputs

into outputs.

A workflow module function refers to the specific functions the module performs

within the process, for example the role of the 'invoicing module' in an order fulfillment

process is to process approved orders for fulfillment.

Based on the definition of the modular workflow process, the research seeks to define

a methodology for designing modular workflows and a modularity measure.
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3.2 DESIGNING MODULAR WORKFLOWS

In order to define modular workflows, it is necessary to study the interdependencies

between tasks to enable a better understanding of the task interactions how they can

efficiently grouped to maximize process objectives. A survey method is used, where

questionnaires are administered to people in the organization that are knowledgeable of

the process. This information is then used to develop process models for process. The

Event-Driven Process Chain (EPC), a business modeling technique is used, which is

explained in the next section.

Based on the process model, design structure matrices (DSM) are created based on

specified guidelines to evaluate the strength of the tasks interdependencies. In the matrix

row and columns headings would correspond to the workflow tasks and the cells will be

dependence weights based on relationships between tasks.

A clustering algorithm can be used to group tasks into modules based on the

workflow modularity objectives and guidelines. Once clustering is complete, modules

can then be measured for relative modularity. Figure 5 below outlines the design

approach to be followed to modularize a workflow.
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Figure 5: Modular workflow Design Methodology

33 WORKFLOW .DEING W T EVENT-DRIVEN PROCESS CHAIN (EPC)

The modeling will be based on the definition of workflow process obtained o

the survey of the process and will consider key aspects such as odeling the detailed

routing an processing requirements o the workflow, thereby capturing the operation an

information perspectives of the workflow. The operation perspective describes for each

pa of the workflow, the supporting operations, whereas the information perspective

describes data consumed and produced by the workflow.
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Therefore in defining the modularity of the workflow process, the workflow process

structure will be examined based on the basic framework for workflow definition as

defined in Section 3.1

This work supports the approach of modeling and measuring interdependencies

between tasks in a workflow [41]. As such, all analysis is done at the task level of

abstraction in order to capture the atomic work unit (tasks) of a workflow. EPC enable

the representation of the elements of the information and operation (function) views of a

workflow. This includes objects to represent events, functions, resources and information

and control flows, as shown in Figure 6 below:

Event DFunction
Process Path Unit

& DQynamnic0 connector

U nformnat on/ Main Proces
Material

D Component Process group

Figure 6: EPC objects
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In analyzing the atomic tasks, the measure considers the following modularity facets

in order to minimize dependence between modules and maximize cohesion between

tasks:

a) Interface Independence defined by minimal dependencies that exist between

component activities across modules, through their external interfaces. Each module uses

independent inputs and makes independent contributions to the organization [42].

b) Tasks Dependence defined by strong couplings between component tasks that are

grouped together in the same module. These require each other's inputs or outputs and

share resources to be completed [42].

Based on the facets, the following comparison is explored and correlated to the

modularity measure:

* Task - Task dependency, which occurs when tasks rely on each other with

respect to their information, resource or control flows. These tasks are

compatible with respect to the matching of outputs to inputs. That is, when

a task needs an input or an output from previous task for completion.

Once task analysis is complete, a comparison of activity modules is done with a view

to minimizing Activity - Activity dependencies to achieve loose couplings for process

redesign.
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The mathematical programming model is a set-partitioning integer nonlinear

programming (INLP) problem [43-45] that seeks to determine the optimal

grouping/assignment of all tasks in the workflow.

The decision variables in this model are binary integers that represent whether a task

is assigned to module or not.

The TNLP is constructed as a maximization problem that seeks to achieve the

following two goals: I) maximizes cohesion between tasks in a module and, 2) minimizes

coupling between modules of the workflow. The model has two types of constraints:

1. A module time upper limit set by performance requirements for the workflow,

gathered from time studies of the workflow

2. Interdependence relationships between tasks, determined from the DSM matrices

of task interactions.
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CHAPTER 4

4 MODULAR WORKFLOW DEVELOPMENT AND ANALYSIS

4.1 APPLICATION EXAMPLE

The example used throughout the next sections is the workflow of a

telecommunications company, which is in the long-distance domestic and international

market. The marketing strategy of the company is to focus on the growing US Hispanic

market and international calls between the US and Latin America. This case study*will

focus on the prepaid calling card process. A calling card is a card in set denominations

(eg. $10, $15, or $20) that customers purchase to make telephone calls. These cards can

be used from any telephone and for any type of call.

The Event-driven process chain business modeling technique was used to model the

prepaid calling card delivery process. The model of the process was created from

documentation done by analysts who analyzed the As-Is process through observation,

interviews and existing documentation.

Some keynotes on the process are the telecommunications company acts as a

"coordinator" for the entire process. The cards are printed by an outside vendor, and

distributed by an outside distributor who also collects payments, capacity on the network

to carry the calls is negotiated with a provider, and customer service is outsourced. The

company's actual task is the marketing of the prepaid cards. Figure 7 and Figure 8 shows

the EPC diagram for the marketing of the card to customers and the entire prepaid card

process. The process starts when the distributor submits a supply request and an

inventory report. Sales then evaluates the request and if approved generates a personal
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identification number (PIN) order. The PIN is used to track each card. The Prepaid

Manager then creates a CD-ROM of the PINs while marketing interacts with the Printer

to manufacture cards. The cards are then printed and based on the subscribed customers

the cards are activated.
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4.2 GENERAL GUIDELINES FOR DEVELOPING MODULAR WORKFLOWS

Based on the atomic tasks of the workflow obtained from process model, modularity

rules should be based on the general modularity criteria of:

* Independence (loose-coupling), and

" Interdependence (cohesion).

Guidelines for rules focus on information flows, material flows, resource requirements

and constraints/controls required for efficient execution of a workflow. This information

can be gathered from an analysis of the process.

A survey approach is used through questionnaires about the process to determine the

level of independence and interdependence, similar to the approach of Wybo & Goodhue,

[46]. These questionnaires are administered during the design/redesign of the workflow

as a means of capturing the various relationships between tasks.

The study and measurement of interdependence through studying workflow patterns

assumes that interdependencies arise from tasks [41]. This work will concur with this

assumption. Dependencies exist when tasks are connected by resource, information or

resource flows. Modular workflows must exhibit high cohesion between tasks within

modules and low coupling and increased concurrency between modules.

There are four basic types of tasks relationships or dependency types identified in

existing literature [42, 47-50].

a) Dependent (sequential), which is defined as when a task outputs a resource or

information that is an input to another task or when tasks are connected by

events.
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b) Independent (concurrent or uncoupled), which refers to two tasks that occur in

parallel and each task, is independent of the other.

c) Interdependent (coupled), which refers to a reciprocal dependency, when two

tasks occur in parallel and each task, requires an input from the other task.

To explore the various types of relationships, the taxonomy in table 4 is used to

differentiate the types of workflow interactions.

Table 4: Simple Taxonomy of Workflow Interactions

Information Refers to the need for data, document or signal exchanges

between two tasks, and defines the interface between tasks.

Resource Refers to the need for people, databases, machines, etc. to

enable exchanges between two tasks

Control Refers to the conditions required to produce correct
outputs, wich include constraints, regulations, etc.

In order to properly measure and characterize the dependencies, attributes of the

workflow will be defined. Giachetti [49] proposed an extended EPC model with

attributes of frequency, importance and timing, which will be adopted here. These

attributes are used to characterize the strength of dependence types for each workflow

interaction. These dependence types are defined and represented in EPC as, pooled

resources referring to functions that share resource; information sequential referring to a

function whose output resource being the input to another function; control sequential

referring to functions connected by events and/or connectors; and reciprocal to refer to

two functions occurring in parallel where each requires an input from the other.
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Information flow attributes are used to characterize the strength of pooled resources,

information sequential and reciprocal dependencies, and control flow attributes are used

to characterize the strength of control sequential dependencies.

Each interaction is quantified using a rating scheme that weighs interactions relative

to each other and are evaluated based on responses to questions on the workflow process,

as Table 5 illustrates:

Table 5: Workflow Interaction Quantification Scheme

Workflow Workflow Scale Interpretation

Interaction Attribute

Information/Resource Frequency 1 Quarterly How frequently does this

2 - Monthly information flow/resource

3 Biweekly exchange occur?

4 -Weekly

5 - Daily

6 - Hourly

7- Minute

Importance 1 -Not I information/resource

important sharing between tasks

3 - Dependent important?

but not required How important is the flow

to complete of information/resource

function exchange between the
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Workflow Workflow Scale Interpretation

Interaction Attribute

-- Very functions?

dependent and

necessary for

completion of

function.

Delay 1 - Quarterly or If information/resource is

more unavailable, how long can

2 - Monthly the function be delayed?

3 - Biweekly

4 -Weekly

5 - Daily

6- Hourly

7 - Minute

Control Importance 1 - Minor How important are

inconvenience constraints/regulations to

3 - Difficult but the execution of a function?

possible to How important is execution

function of a preceding function to

5 - Impossible the current function?

to function
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Workflow Workflow Scale Interpretation

Interaction Attribute

properly

Delay 1 - Quarterly or How long can the

more completion of preceding

2 - Monthly function be delayed

3 - Biweekly negatively when controls

4 -Weekly are not followed?

5 - Daily

6 - Hourly

7 - Minute

Note the frequency is omitted for control flow because in control flow sequential

interdependency the succeeding task is executed at the same frequency as the preceding

task.

Other general questions to gather more information about the interactions between

tasks in a workflow are listed below. These questions must be administered to people in

the organization that are knowledgeable about the business process (Browning [51] for

products). Questions include:

1) What inputs does each task need?

2) Where do these inputs come from (another tasks or out side the workflow)?

3) What outputs must each task produce?

4) Where do these outputs come from (another tasks or out side the workflow)?
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5) Given an activity, what other activities must be executed before to provide

information needed to execute this activity?

6) What activities can be executed without input from another activity?

7) If an activity cannot be performed, what other activities are affected, i.e. what

activities cannot be executed?

Independence relationships can be evaluated from the analysis of a component-based

design structure matrix (DSM) approach [50, 52], where all n individual functions are

compared in a n x n matrix and each element in the matrix represents weightings of each

attribute representing the dependency type. Each dependency type will be analyzed

separately.

This matrix formulation approach is applied broadly in manufacturing, and will be

explored in the evaluation of task interdependencies in the next section.
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4.3 EVALUATION OF TASK INTERDEPENDENCIES

Decomposition of the workflow into blocks of tasks is made possible through use of

matrices that enables the comparison of tasks based on their interdependencies. Based on

the weightings of interdependence (from Table 5) between the workflow tasks

(functions), n x n matrices are developed for each interdependence type. Each cell value

represents the strength of the interdependence between the tasks. Each row depends on

each column for each interdependence type and the values are sum of assigned

importance and delay weightings, normalized to between 0 and 1. Note that in the

example of the prepaid calling card process no reciprocal interdependence type was

found, as this was an extract of the process. Tables 6, 7 and 8 show the interdependence

matrices:

Table 6: Matrix of Information Sequential Interdependence Prepaid Calling Card Process
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Table 7: Ma of Control Sequential Interdependence for Prepaid Calling Card Process

Table 8: Mati of Pooled Resources Interdependence for Prepaid Calling Card Process

T t S

into sub-groupings.

54



4.4 CLUSTER ANALYSIS

In general the main objectives of workflow design and redesign is to decrease

throughput time required to handle cases, decrease the required cost of executing the

workflow, improving the quality of service delivered, and improve the ability of the

workflow to react to variations [36].

In clustering to form process modules the foremost consideration is to maximize

interactions between tasks within clusters (modules), while minimizing interactions

between modules. Clustering is done in two phases [52]:

1) Composite analysis of the various types of interdependencies and identifying the

sequence of tasks and the structure of the workflow.

2) Clustering of coupled tasks and establishing criteria for the management of all

interdependencies.

Phase1: Composite Analysis of Interdependencies

It is expected that most workflows be ordered sequentially because of the ease of

managing these flows as well as the quality associated with these flows. As such

information sequential interdependencies are considered easier to manage than pooled

resources, control sequential and reciprocal interdependencies. Reciprocal

interdependencies are the most difficult to manage in any organization as they require

more coordination effort [49], and are therefore considered the most important in

workflow design. These relationships are generally kept in the same module. Therefore in

my analysis the following weightings are given to each interdependence type based on

their relative importance, as shown in Table 9 below.
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Table 9: Relative Importance of Interdependency type

Interdependency Type Relative Weighting

Pooled Resource I

Information Sequential

Control Sequential3

Reciprocal5

Based on the relative importance weightings, the matrices of task interdependencies

were added to obtain a single 2-Dimensional matrix as shown in Table 10.

Table 10: Composite Matrix of Tas Interdependencies in e Workflow (Un-partitioned)

2 3

Th stucur of: th arxsas xamined, in te. s of tigtly coupled tasksIsrcttef ? a7 -i

(reciprocal relationships) adany other tasks that can be operated concurrently. However,

for the example workflow no reciprocal relationships were identified. In the actua
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workflow there are several reciprocal relations that must be identified in this phase of the

clustering. The procedure is adopted from [47].

Phase 2: Modularization Model - INLP

The composite matrix of task interdependencies is used to cluster tasks into modules.

The clustering process seeks to group strongly coupled tasks together due to their

complexity and separating weakly coupled tasks. The model focuses on the strength of

the interdependencies between tasks and the organizational units responsible for each

task. This is keeping with the view that interdependencies between tasks create a

coordination load on the organizational unit or actor responsible coordinating the tasks

[49].

We define a workflow that can perform i tasks that are assigned into j modules. Each

task takes time tj to be completed within a module, as illustrated in Table 11 below:

Table 11: Tasks Throughput times

Task (Functions) Throughput Time (t) Initial Department
(mins) Assignment

Generate supply request 5 Distributor

Generate inventory report 10 Distributor

Review supply request 5 Sales

Generate PIN order 2 Sales

Generate PO 2 Marketing

Generate order 10 Marketing
details/Request Prototype

rte CD-ROM i Prepaid Maaer
PTs
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Task (Functions) Throughput Time () Initial Department
(mins) Assi nment

Generate Prototype card 15 Marketing

Validate prototype card 5 Marketing

Generate Printing order 5 Marketing

Print Cards 30 Printer

Contact client & offer 5 Sales
-product _________________________

Enter & validate ANI 5 Sales

Enter client information 5 Sales
and validate address

Process & Control ANI 10 Sales
information
Enter residential & 5 Sales
Commercial information
Verify customer 5 Sales
information

Enter contracted clients 2 Sales

Generate sales and 5 Sales
Validation report

Activate/Deactivate cars 5 Sales

ng of Cards 5 Sales

Sending of AN files 30 Sales

Receiving LEC files & 10 Sales
updating database

Total Workflow Time 186
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Only one task can be completed at a time. At the start of the process there are m tasks

to be completed. The time taken to complete m tasks in a module T; must be less than the

total workflow time (i) (i.e. T; 19. Each task i require multiple data elements

(interfaces) defined by the strength of the interactions between tasks. Let Ijk represents the

interdependence strength between tasks i and tasks k. To formulate the ILP model to

determine the optimal tasks groupings and sequencing, the following constraints will be

considered:

1. Tasks are assigned to be completed one at a time to modules.

2. A module can be assigned zero or many tasks

3. Tasks with the strongest interdependences are considered first for assignment to a

module. If a module has no room for the task being considered, i.e. T W, a new

module must be started (called the First-Fit Decreasing Heuristic).

We define the following decision variables to capture the grouping/assignment of

tasks:

Xij= 1, if task i is assigned to module]

{,otherwise

X 1 1= 1, which represents the fact that we are starting with task 1 in module 1.

i = 1, 2,.........m tasks

j = 1,2,..........N modules, where N number of organizational units in the workflow.

Since all tasks need to be processed,

X, =1 Vi

h1(
X AveT V
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T ,,, W/IjIjave rag

Therefore the objective function is:

1) To maximize cohesion between tasks within a module,

Nm

MaximizeZ= ZX*I *X

2) To minimize couplings between modules

Nm

MinimizeZ= $ X=* X*
j=s i=] k=t I~j

Where k = 1, 2,...... m, and represents tasks compared to other task i, (i > k), within and

between modules.

To obtain one objective function,

N m m N mmm

MaximizeZ= ZZZX * Z *XX * X J*
j=1 H= k=1 j=1 i=1 k=1 I# j

The overall formulation becomes,
m NJ m m N m m

Maximize Z= X* * Xk - f X Xy * Ii
i=1 j=1 k=1 i=1 j=1 k=1 I#j

N

Subject to X =1 Vi
J=1

N

60
Y J Averages

javerage 6 "T ' T
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l=j+1....

The model is then tested in LINGO to obtain the optimal task assignment to modules.

The INLP model is illustrated in LINGO as:

MODEL:
SETS:

TASK /T1. .T7/: TIME;
MODULE /M1..M7/:;
TxT (TASK, TASK): D;
TXM (TASK, MODULE): X;

ENDSETS

MAX = COH - COUP;

COH = @SUM(MODULE(J):

@SUM(TASK (I)
@SUM(TASK(K)IK#NE#I: X(I,J)*X(K,J)*D(I,K))));

COUP= @SUM(MODULE(J) J#LE#2:
@SUM(MODULE(L) L#GT#J:

@SUM(TASK(I):
@SUM(TASK(K)IK#GT#I: X(I,J)*X(K,L)*D(I,K)))));

Constraints;

@FOR(TASK(I) :
@SUM(MODULE(J): X(I,J))=1);

@FOR(MODULE(J):

@SUM(TASK(I): X(I,J)*TIME(I)) <= 35);

@FOR(T x M: @BIN(X));

DATA:

D =

0 0 0 0 1 1 0
0 0 0 1 0 0 1
0 1 0 1 0 0 1
0 1 1 0 1 0 1
0 0 0 1 0 1 0
1 0 0 0 1 0 0
0 1 1 1 0 0 0;

TIME = 20 10 5 5 5 10 5;
ENDDATA
END
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The following steps summarize the approach:

Step 0. Workflow Decomposition: Breakdown the workflow into atomic tasks, then

compare each task to every other tasks based on the workflow interaction type and

quantification for all workflow attributes.

Step 1: Task Interdependency Analysis: Develop task-task interaction matrices for the

three interdependence types (Matrix A B & C, showing interdependence strengths

between tasks as cell values. The interdependence strengths are the sum of the weighs of

the all attributes of an interaction.

Step 2. Composite Interdependence Analysis: Add interaction matrix for each

interdependence type to obtain a composite matrix of task interdependencies (Matrix D).

Also identify any reciprocal relationships in matrix D for optimizing of task assignment.

These tasks must be in the same module.

Step 3. Modularization: Based on data of task times and average desirable workflow time

obtained from time studies of the workflow, and data on interdependence strengths, apply

INLP modularization model. Input model and data into Lingo and run model.

Step 4: Classification: Collect model output results and analyze optimal task assignments

to identify modules.

Step 5: Stop and create modularity matrix from output results.

Step 6: Review modularity matrix to ensure highly coupled tasks (reciprocal

relationships) are in the same module.
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4.5 TESTING AND VALIDATION OF THE MODULARIZATION MODEL

To test the model various size DSM for several product designs is inputted in LINGO

model and the results compared to known solutions of modularity matrices done by

Browning, Kusiak and Yassine [51, 53, 54]. Each time INLP model is run in LINGO the

solving time and the optimal task assignment were observed and compared. The

population of the matrix was also considered as a factor in comparing solution time. This

is calculated based on the size of the matrix and cell entries for task interactions. Table 12

illustrates the results obtained. Appendix I shows the LINGO output results and task

assignments obtained, which in most cases exactly matched the modules obtained by

other methods [51, 53, 54]. In other cases, such as the 14, 16 and 22 tasks comparisons

the tasks assignments to modules varied as the number of tasks increased and the

matrices were more populated.

Table 12: Model Validation - Comparison of known solutions

Number o umber of Matrix population Time to solve

tasks Modules (<15% considered sparse)

5 2 3% 2 seconds

7 2 35% 1 seconds

11 7 160 1 seconds

14 6 20% 34 seconds

16 9 9% 14 seconds

22 9 370 1 48 minutes

27 18 49% 9 hrs 13 minutes*

* Note Lingo solver was interrupted at this time, no optimal solution reached.
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The results of INLP model for the prepaid calling card example, which 8% populated, is

shown Table 13 below:

K 64
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Table 13: Modularity Matrix for Prepaid Calling Card example -INLP Model results

take toi bai an ;pia task. assgnen iirese sinfcaty The moeebc e
62 2

7 22

even more complex to solve when there is an increase in the number of tasks and more

interactions, that is, a more populated matrix. Inreality business processes consists of

several workflows with numerous different tasks depending on the size of the

organization, therefore designing for modularity with this model would be an inefficient

process, especially cons;idering the fact that several iterations would be required too btain

the most efficient assignment and sequencing of tasks.

It is with this in mind that we compare the model to Kusiak's [53 decomposition

algorithm for product design adrecommend a heuristic approach in the next sections 4.6

and 4.7, respectively.
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4.6 COMPARISON OF INLP MODEL TO KUSIAKS' DECOMPOSITION APPROACH

Kusiak [53, 55] presented a decomposition approach to address the modularity

problem for products. The approach is used for determining modules for different

products and for interpreting the different types of modularity. The approach views

modularity as the similarity of functional interactions within a module and the suitability

of inclusion of components in a module. A seven-step algorithm based on a component-

component interaction and suitability matrices of the product is used to determine

modules. The algorithm starts by setting upper bounds for the number of components in a

module and the cost of duplicating components. It then triangularize the interaction

matrix [55], rearranges the suitability matrix, then combines the two matrices to identify

modules. It continues optimizing by deleting and duplicating components based on set

conditions, and then analyzes the modularity matrix to classify modules according to

three axioms, for component-swapping modularity, component sharing modularity and

bus modularity, respectively. The approach is used at both the conceptual design and

detail design phases for optimal formation of modules and is applicable even in situations

where insufficient information is available. Table 14(a) and (b) below shows the results

for a desk lamp.
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Table 14 (a): Interaction and Suitability Matrx for Desk Lamp

1 2 34 5 78 9 0 11 1 2 3 4 8 01

11 372 10 1411_.- 3 1 28 10

3 1 1 2 2 1

/4 t8 5 9 a 8

9 1 9 u
1# 1 10 u1

Compard Mto the clustering approach presented in this thesis, the above approach

seem less complex, and therefore easier to obtain optimal modules. It is a

straightforward approach that allows design of various products with several components

at different stages in the desig process. The NLP model although it obtaineda

comparable optimal task assignment in 13 seconds forthe same desk lam example, as

shown in Table 15, it will fail to efficiently create modules in real applications when the

number of tasks increases.
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Table 15: Modularity Matrix from LNLP Model for Desk Lamp

The ILP is non-linea programming arbecause the larger the number of tasks to

be assigned the more complex the model becomes in achieving anoptimal solution as

illustrated in the previous section. Provided the decomposition clustering approach can be

easily adapted to workflow design, it should be a better approach to obtaining optimal

task assignments. Should thsapproach not be adaptable for workflow designs, the

heuristic presented in the next section ca be applied.

4.7 HEURISTIC DEVELOPMENT

The heuristic is based on the assignment of task to rnodules based on the

interdependence strengths, and is referred to as the Strongest-task-interdependence

heuristic. Tasks are balanced to rnodules N (N ! organizational units) considering the

interdependence strength between the tasks. Here tasks are added to organizational units

to be completed based on interdependence strength and the responsible organizational

unit. Ifthe interdependence strength (Ii) bee tasks i and tas k.' is geater than 1.67

(Iik !1.67 ), assign task to module. If a decision rnust be made between two or more
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tasks then the one with the strongest interdependence is added to relevant organizational

unit.

The conditions of the Strongest-task-interdependence heuristic are:

a) Tasks are assigned to modules by comparing the row elements ('information

input') to column elements ('information output'). The strongest

interdependence value results in an assignment to the module (organizational

unit) responsible for the task.

b) Assignment begins with task i = 1 in module j= 1

c) Highly coupled and reciprocal tasks are assigned to the same module. If both

entries ij and ji are filled this indicates two-interdependency or coupling

between the tasks. These tasks are considered to be complex and are assigned

to the same module. They are assigned first.

d) Interdependence strength must be greater than zero to be considered for

assignment. Note, if tasks in rows (and corresponding columns) i and j of the

interdependence matrix have no direct interfaces, then this indicates

independence (concurrency). Therefore these tasks are grouped into separate

modules.

e) The average time to complete all assigned tasks to a module (Tia,,) should not

exceed workflow cycle time (W). Note Tja, and W will be inputted based on

the specific workflow being modeled. Once the average workflow time is

exceeded, a new module is started.
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The procedure for the heuristic is as follows:

Step 1: Develop an interdependence matrix of all tasks to be performed to complete

the workflow.

Step 2: Identify organizational units responsible for each task.

Step 3: Dete mine average workflow cycle time from time studies of the workflow.

Step 4: Assign tasks to modules based on the above conditions.

a) Starting with task i = 1 and module j = 1, determine tasks to be assigned

based on the interdependence strengths. Highly coupled and reciprocal

tasks are assigned first.

b) Assign the task from the list with highest interdependence strength and

calculate total times of tasks already assigned to the module to ensure

workflow cycle time is not exceeded.

Step 5: Close assignment of tasks to module i once module time exceeds workflow

cycle time. Set i= i + 1 and go back to step 4. If there are no more unassigned tasks, the

procedure is complete.

Therefore based on the heuristic, and assuming a desired module time of 35 minutes

for the 186 minutes workflow outlined in table 11 above, the initial task assignment

shown in Table 16 is obtained:
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Table 16: Initial Task Assignent Heuristic

Th oulrt ati sas sow i tale17beow

T f

Sass eatdtak dpednc d gkMl 14 M di4ati nal 142 083 N x 0

4 52 001 2 5 I8 8 00 8 0

,. ,..31 _.__ _ ._ o_ _... __ . .___ _.._...8 2 3 0 20 x

2 7 0834

2 2 0743 2

23 20 83 N 10
Iotal 14d I
T1m (T83 0 30 32 20 30 10 28

The modularity matrix is as shown in table 17 below.

Table 17: Modularity Matrix for prepaid calling card: Heuristic approach

2345 89 0 4 18 9 20 2 23 2 18 1

1 22

2 077
17 2 2 0 0
9 071 710

10 27104700

45 0 83 1 0

17 0131
19 07132 1 9

20 0713 2. 20 20

The results of the heuristic approach gave 7 modules, (1,2,3,4,5,6), (7,8,9,10), (11),

(13,14,15,17,18,19), (20,21,23), (22) and (12,16). The INLP model obtained 6 modules,

(1,2,3,4), (6,8,9), (10,7,11), (5), (12,13,14,15) and (16,17,18,19,20,21,22,23). The results
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are comparable, however difference could be due to the subjectivity of tasks times and

the desired workflow cycle time. Also the heuristic focuses only on maximizing

interdependence strength between tasks in a module and does not consider interactions

across modules, as is the case with the INLP model. Nevertheless, the heuristic provides

a more straightforward approach to obtaining initial task assignments, which can be

further optimized based on the strength of observed interactions across modules.
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CHAPTER 

5 MEASURING MODULARITY IN THE WORKFLOW

The modularity measure used for workflows adopted concepts from the efforts of

Gershenson et al. [6], as outlined in Section 2.1 of the literature review. The measure was

chosen because it focused on creating modules that encourage independence between

components and all life-cycle processes in different modules, similarity in components

and processes in a module. The measure considers the module; it's components and tasks,

and the interactions between them to measure similarity and independence. Independence

referring to the minimal interactions between components in modules and similarity to

capture those components in the module that are processed in a similar manner, as

outlined below:

Modularity = [Si, /(Si, + Scut)] + [Di/(D + Dou)]

Where, Si, = similarity between components in a module

soo, = similarity between different modules

n = dependency between components in a module

Dut = dependency between different modules

In keeping with task-oriented view of workflows, an adaptation of this measure will

enable the analysis of workflows through distinguishing between the structure of a

workflow and dynamic state, the tasks and interdependencies between tasks. The

following will outline the adopted measure for workflows.

For a high degree of modularity, it is important to have a high degree of

interdependence (coupling) between component tasks within a module (Din) and minimal

dependencies between modules (Dout). Therefore since the focus is now on loose-
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couplings between modules the relative modularity presented focuses on tasks

interdependencies within and across modules.

The relative modularity measure applied is as shown below:

Relative Workflow Modularity = Dz, / (Di + D,,)

D~ uses the ratings of task-task comparisons within a module for all interaction types.

These values will be taken straight from the modularized matrix. Di, will have a positive

effect on the measure, as it's important to group dependent tasks.

Di, is defined here to refer to the dependencies between each task within a module

defined by the sum of pooled resource interactions, information sequential interactions

and control sequential interactions.

Ms-t s

Di2 = + Dk,)
m=1 r=r k=i+1

Where:

m is a module

M= number of modules in the workflow

r = first component task in the module m

s = last component task in the module m

i, k are component task in the same module

Dik is the dependence between component task i and task k

Dout uses the ratings of task-task interactions for each component task compared to

another component task outside a module for all interaction types. Dou, has a negative

impact on the total measure, as all external dependencies must be minimized to have

independent modules.
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Dut, is defined here to refer to the dependencies between component task of a module

and each component tasks that are external to the module,

M-Is-1 M s

Daut= "_ ik ( D ki

m=1 i=rl n=m+1 k=r2

Where,

i, k are component task not in the same module

Dik is the dependence between component task i and task k

The measure is applied to the modularized workflow obtained using the INLP model in

table 13 and that obtained using the heuristic in table 17. Outlined below is the

calculation for the relative modularity for each case.

1. Relative Modularity for the Modularized Workflow - INLP Model

MS-1 S
Din= (D +D

m=1 i=r k=i+1

Form = 1, r= 1

kD +Dk =(D 12 + D 21 D 13 +D 31 +D 14 +D 41) (D 23 +D 2 +D 24 +D 42 )+

(D 34  D43)

= (O +O.83 +2.25 + 4.5 + L 33)+ (O +0+O 0 13)+ (O +O)

= 10.21

Therefore total Din form = 1, 2, 3, 4, 5, 6

Dn = 10,21 14 +10.5 +8+ 11.75 = 54. 46

M-1 S-1 M S

Daut = ( E (D + D)
m=1 i=r, n=m+1 k=r2

Form 1, = 1, n = 2, 3,4, 5, 6
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15 23

Sum l= ZD4 + D + DI +Dk +ZDIk + Dk + ZDIk +Dkl DIk + Dk
k=6,8,9,10 k=7,10,11 k=5 k=12 k=16

0+0 1 0+0=

Sum1 2

15 23

ZD2k + Dk2 + ZD2k +Dk 2 + D 2k +Dk 2 + ZD 2 k + D 2 + ZD2k +Dk 2
k=6,8,9,10 k=7,10,11 k=5 k=12 k=16

= 0 + 0 + 1.25 + (0.83*4) + (0.83*4) = 11.21

15 23

Sum13= D 3 k + D3 + D 3 k + D3 + Dk + Dk 3  D 3 k + Dk3 + D 3 k +Dk 3
k=6,8,9,10 k=7,10,11 k=5 k=12 k=16

=0+ + +0+0=0

Sum14 =

D4k + 4 + +5 + 4 + Dk4 + 4k + k4
k=6,8,9,10 k=7,10,11 k=5 k=12 k=16

=0+2+0+0+0=2

Sumfor module I = 1 + 11,21+ 0+2=14.21

Total D,,r= 14.21 + 12 + 0+ 0 0 + 0 = 26.21

Therefore,

Relative Modularity for the Modularized Workflow - INLP results

= 54.46/ (54,46 + 26.21)= 0.68

2. Relative Modularity for the Modularized Workflow - Heuristic results

Total Di = 1456 + 7.5 + 0 + 575 + 4.5 + 0= 32.31

Total Dou = 25.7 + 10.5 + 2.5 + 7.5 + 2+0 = 482
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Therefore,

Relative Modularity for the Modularized Workflow - Heuristic results
= 32.31/ (3231 + 48.2) = 0.40

The modularized workflow obtained from the INLP results seems to be more modular

than that obtained with the heuristic, although both results scored low, 0.68 and 0.40,

where the possible range of values is 0 to 1. These relative modularity values are useful

to compare workflow design options and to guide the redesign process for creating

flexible workflows. Further optimization of task assignment could be done to increase

modularity by comparing the different modules and evaluating for task re-assignment.
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CHAPTE 6A

6 CONCLUSIONS AND FURTHER WORK

Modular design is important form of strategic flexibility [12], that is flexible

designs allow a company to respond to changing markets by creating product variants

derived from different combinations of existing or new modular components. Similarly

for modular workflow designs organizations can more efficiently reconfigure their

workflows to meet environmental changes.

This effort sought to define and measure workflow modularity. Three main objectives

were proposed:

1. Design a modular workflow process

2. Develop a mathematical model (OR model) to define modules of modular

workflow process, including identifying potential configurations

3. Develop a measure for workflow process modularity

An integer nonlinear programming model (INLP), called a modularization model was

used to cluster atomic tasks of a workflow into loosely coupled modules based on task

interdependencies and flow time. The model proved useful for modularizing small

workflows, however for larger workflows it is inefficient as a result of the increased

complexity in obtaining an optimal solution.

A heuristic that focuses on balancing tasks to modules based on interdependence

strength and the organizational unit responsible for the tasks provides a solution for larger

workflows. The heuristic proved to provide adequate results in less time.

In summary the following are the contributions of this work:
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4. A modular workflow design considering flow time and flexibility, two of the

most important performance measures in workflow design

5. An INLP optimization model for designing modular workflows that can be

adopted for small processes

6. A heuristic for creating modules that can be adopted for larger processes

From a research perspective, this effort has added to the continued work on business

process redesign and specifically on workflow analysis and design, through the

application of modularity concepts.

Additional research can be directed in the following:

1. Addition of decision variables and constraints to INLP model to handle

parallel processing of tasks.

2. Accommodation of additional measures of workflow performance such as

cost.
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APPENDIX 1

A. Lingo Results for 5 tasks DSM
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A1: Modularity Matrix
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Compare to optimal solution of Module 1 = {2, 5, 4), Module 2 = {1, 3}
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B. Lingo Results for 7 tasks DSM
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C. Lingo Results for 1 tasks S
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C 1: Modularity Matrix

2 7 8 1 1 0 10

2 2-
7- 7
3

11 11

3 3 1 1 2 2 2

1 1 1

1 4

1

1 9

10 1 10

Compare to optimal solution of Module l 7, 2, Module - 1 , 31
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D. Lingo Results for 14 tasks S
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L)1: Modularity Matrix
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Compare to optimal solution of Module 1 {4, 5, 8 Module 2 {13, 11, 6, 12}

Module3= {10, 3}, Module 4= {7, 14, 1}.

E. Lingo Results for 16 tasks DSM
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Compare to optimal solution of Module l= , , Module = , a 11,

Module a a a a

Lingo Results for 22 tasks DSM
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F 1: Modularity Matrix
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