
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-14-2001

Multilevel data compression techniques for
transmission of audio over networks
Craig Chin
Florida International University

DOI: 10.25148/etd.FI14060803
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Electrical and Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Chin, Craig, "Multilevel data compression techniques for transmission of audio over networks" (2001). FIU Electronic Theses and
Dissertations. 2336.
https://digitalcommons.fiu.edu/etd/2336

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F2336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2336?utm_source=digitalcommons.fiu.edu%2Fetd%2F2336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MULTILEVEL DATA COMPRESSION TECHNIQUES FOR TRANSMISSION OF

AUDIO OVER NETWORKS

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Craig Chin

2001

To: Interim Dean Richard Irey
College of Engineering

This thesis, written by Craig Chin, and entitled Multilevel Data Compression Techniques
for Transmission of Audio Over Networks, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Dr. Jean Andrian

Dr. Tadeusz Babij

Dr. Subbarao Wunnava, Major Professor

Date of Defense: March 14, 2001

The thesis of Craig Chin is approved.

Interim Dean Richard Irey
College of Engineering

Dean Douglas Wartzok
Division of Graduate Studies

Florida International University, 2001

ii

DEDICATION

I dedicate this thesis to my father whose encouragement and support was essential to the

success of this endeavor, and the memory of my mother, whose open love and nurturing

helped me to be a better man.

iii

ACKNOWLEDGMENTS

I would like to thank the members of my committee for their assistance in the completion

of this thesis. Their input was most sincerely appreciated. I give special thanks to Dr.

SubbaraoWunnava, who sought to guide me through to the completion of my thesis in

spite of trying physical ailments. Thanks also to Dr. Jean Andrian and Dr. Tadeusz Babij

for the indispensable input they made towards the completion of this thesis. I must also

thank Mrs. Pat Brammer who was instrumental in the success of not only my thesis, but

every endeavor that I was involved in during my master's program at FIU.

iv

ABSTRACT OF THE THESIS

MULTILEVEL DATA COMPRESSION TECHNIQUES FOR TRANSMISSION OF

AUDIO OVER NETWORKS

by

Craig Chin

Florida International University, 2001

Miami, Florida

Professor Subbarao Wunnava, Major Professor

With the spread of the Internet into mainstream society, there has come a demand for the

efficient transmission of multimedia information. Accompanying the drive to find more

efficient ways of utilizing limited transmission bandwidth is a need to find novel ways of

compressing data. This thesis proposed the utilization of transform coding compression

techniques for the transmission of audio data across networks. The Discrete Cosine

Transform (DCT) and the Discrete Sine Transform (DST) were the primary transforms

utilized. This thesis investigated the viability of utilizing individual transforms, as well

as, nested modifications of these transforms for compression purposes. These techniques

were compared to those already in existence. Viability was determined using objective

compression measures. It was found that transform coding techniques gave a useful

alternative to the techniques in existence. A voice-over-IP (VOIP) application that

utilized one of the transform coding techniques was implemented.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION .. 1

1.1 Data Com pression Overview .. 1
1.2 Existing Audio Com pression Techniques 1
1.2.1 D ifferential Encoding..1
1.2.2 Transform Coding...4
1.2.3 Analysis/Synthesis Schemes ... 5
1.2.3.1 Analysis/Synthesis Schemes Overview ..
1.2.3.2 The Channel Vocoder ... 6
1.2.3.3 The Linear Predictive Coder (LPC) .. 8
1.2.3.4 Code Excited Linear Prediction (CELP) ... 10
1.2.3.5 Sinusoidal Coders ... 11
1.2.3.6 Mixed Excitation Linear Prediction (MELP) ... 12
1.3 M otivation for Research ... 12

2 COMPRESSION PERFORMANCE MEASURES .. 15
2.1 Com pression Perform ance M easures Overview ... 15
2.2 Com pression Ratio .. 16
2.3 Rate ... 17
2.4 M ean-Squared Error (M SE) .. 17
2.5 Signal-To-Noise Ratio (SNR) 17

2.6 Peak-Signal-To-Noise Ratio (PSNR) ... 18
2.7 Practical Exam ples .. 18

2.7/.1 ADPC Sy1 stem s .. 19

2.7.2 CELP Systems .. 21

3 TRANSFORM CODING COMPRESSION TECHNIQUES 23
3.1 Linear Transform s ... 23
3.2 The Significance of Decorrelation in Transform Coding Schemes 23
3.3 Transform s of Interest...24
3.3.1 Karhunen-Loeve Transform .. 24

3.3.2 Discrete Cosine Transform ... 28

3.3.3 Discrete Sine Transform ... 29

3.4 Performance Evaluation of Transform Coding Techniques 31
3.4.1 Variance Distribution ... 31
3.4.2 Residual Correlation ... 31
3.5 M otivation for U se of N ested Com pression Techniques 40

4 NETW ORK APPLICATIONS 41
4.1 Introduction...41

vi

4.2 The Client-Server Paradigm ... 41
4.3 The Socket Interface ... 43
4.4 Socket Procedures ... 44

5 COM PRESSION PERFORM ANCE ANALYSIS ... 49
5.1 Perform ance Analysis Overview ...
5 .2 R esu lts ... 5 5
5.3 Performance Analysis Observations 66
5.4 Assessm ent of Perform ance Analysis Results .. 67

6 APPLICATION IM PLEM ENTATION .. 68
6.1 Application Overview .. 6
6.2 Application Software Description.. 70

7 CONCLUSIONS AND RECOM M ENDATIONS ... 77

7.1 General Conclusions ... 77
7.2 Contributions of Thesis W ork .. 78

REFERENCES .. 81

APPENDIX .. 83

vii

LIST OF TABLES

TABLE PAGE

2.1. ADPCM Compression Performance Data (Bandwidth 200 - 3200 Hz) 20
2.2. ADPCM Compression Performance Data (Bandwidth 200 - 2400 Hz) 20
2.3. ADPCM "Residual Encoder" Compression Performance Data (Bandwidth 0 - 2900

Hz) ... 20
2.4. Simulation Results for Variable-Bit-Rate Low-Delay CELP (VBR-LD-CELP) Coder

... 22

3.1. Variance Distribution For a First-order Markov Process Defined by p= 0.9 and
N = 8. I is Ith Transform Coefficient ... 32

3.2. Variance Distribution For a First-order Markov Process Defined by p= 0.9 and
N = 16. I is Ith Transform Coefficient .. 33

3.3. Variance Distribution For a First-order Markov Process Defined by p = 0.9 and
N = 32. I is Ith Transform Coefficient .. 34

3.4. Residual Correlation Left Undone for a First-Order Markov Process p = 0.9 and
N = 8 3 7

3.5. Residual Correlation Left Undone for a First-Order Markov Process p= 0.9 and
N = 16 ... 3

3.6. Residual Correlation Left Undone for a First-Order Markov Process p = 0.9 and
N =32 39

5.1. Performance Measure Results Taken For File Sample- .raw Using the Specified
Compression Algorithms ... 57

5.2. Performance Measure Results Taken For File Sample-2.raw Using the Specified
Compression Algorithms ... 57

5.3. Performance Measure Results Taken For File Sample-3.raw Using the Specified
Compression Algorithms ... 57

5.4. Performance Measure Results Taken For File Sample-4.raw Using the Specified
Compression Algorithms ... 57

5.5. Performance Measure Results Taken For File Sample-5.raw Using the Specified
Compression Algorithms ... 58

5.6. Performance Measure Results Taken For File Sample-6.raw Using the Specified
Compression Algorithms ... 58

5.7. Performance Measure Results Taking the Mean of the Results of All Audio Files
Using the Specified Compression Algorithms ... 58

5.8. Performance Measure Results Taken For File Sample- .raw Using the Specified
Compression Algorithms ... 62

5.9. Performance Measure Results Taken For File Sample-2.raw Using the Specified
Compression Algorithms ... 62

5.10. Performance Measure Results Taken For File Sample-3.raw Using the Specified
Compression Algorithms ... 62

5.11. Performance Measure Results Taken For File Sample-4.raw Using the Specified

viii

Compression Algorithms 62
5.12. Performance Measure Results Taken For File Sample-5.raw Using the Specified

Compression Algorithms 63
5.13. Performance Measure Results Taken For File Sample-6.raw Using the Specified

Compression Algorithms .. 63

5.14. Performance Measure Results Taking the Mean of the Results of All Audio Files
Using the Specified Compression Algorithms .. 63

7.1. Average Compression Ratio/SNR Performance of Selected Transform Coding
Algorithms ... 80

iX

LIST OF FIGURES

FIGURE PAGE

1.1. A D PCM System ...
1.2. Analysis/Synthesis Block Diagram .. 7

1.3. The Channel Vocoder Receiver ... 7
1.4. An LPC Receiver ... 9
1.5. Block Diagram of MELP Decoder ... 13
3.1. Taking the Discrete Fourier Transform of a Sequence .. 30
3.2. Taking the Discrete Cosine Transform of a Sequence 30

3.3. Variance Distribution for Various Discrete Transforms for N = 8 and p = 0.9 32
3.4. Variance Distribution for Various Discrete Transforms for N = 16 and p = 0.9 33
3.5. Variance Distribution for Various Discrete Transforms for N 32 and p = 0.9 35
3.6. Residual Correlation Versus the Correlation Coefficient p for N = 8 37
3.7. Residual Correlation Versus the Correlation Coefficient p for N = 16 38
3.8. Residual Correlation Versus the Correlation Coefficient p for N = 32 39
4.1. Client - Server Interaction ... 42
5.1. SAMPLE-1 .. 50
5.2. SAMPLE-2 .. 50

5.9. SAMPLE-3 .. 51

5.4. SAMPLE-4 .. 51

5.5. SAMPLE-5 .. 52
5.6. SAMPLE-6 .. 52
5.7. Compression Ratio Performance of Specified Compression Methods59
5.8. Rate Performance of the Specified Compression Methods 59
5.9. MSE Performance for the Specified Compression Methods 65
5.10. SNR Performance of the Specified Compression Methods 60

5.11. SR Performance of the Compand, DST, and DCT Compression Methods
(M agnified plot) .. 6 1

5.12. Compression Ratio Performance of Nested Transform Compression Methods 64

5.13. Rate Performance of Nested Transform Compression Methods 64

5.14. MSE Performance of Nested Transform Compression Methods 65

5.15. SN Performance of Nested Transform Compression Methods 65

6. 1. Application Structural Diagram ... 69

6.2. Voice-over-IP Application Flowchart .. 71

6.3. Console Main Menu Interface for VOIP Application 72
6.4. Console Audio Recording Interface for VOIP Application 72

6.5. DCT Compression Flowchart .. 74

6.6. DCT Expansion Flowchart .. 75

Chapter 1 Introduction

1.1 Data Compression Overview

Data compression is the art or science of representing information in a compact form.

These compact representations are created by identifying and using structures that exist in

data.

There are two classes of data compression techniques: lossless compression and lossy

compression. Lossless compression involves no loss of information. This means that the

original data can be recovered exactly from the compressed data. Lossy compression

involves some loss of information. This implies that the data that has been compressed

cannot be used to recover the original data [1].

1.2 Existing Audio Compression Techniques

There are three major classes of audio compression techniques:

1. Differential Encoding

2. Transform Coding

3. Analysis/Synthesis Schemes

1.2.1 Differential Encoding

Differential Encoding schemes take advantage of the fact that audio sources,

especially speech sources, show a high degree of correlation from sample to sample.

1

These schemes predict each sample based on past source outputs and only encode and

transmit the differences between the prediction and the sample value. The differences are

used, because when a source output does not change greatly from sample to sample this

means the dynamic range (the variance for uniformly distributed sources) of the

differences is smaller than that of the sample output itself. This allows the quantization

step size to be smaller for a desired noise level, or quantization noise to be reduced for a

given step size. Figure 1.1 shows the basic layout of a differential encoding system. This

system is called a Differential Pulse Code Modulation (DPCM) system.

An Adaptive DPCM (ADPCM) system is one in which the quantizer and the

predictor are made adaptive. This means that the quantization step size will be altered by

the quantizer based on the prevailing local input signal characteristics. For the predictor,

it means that the predictor coefficients of the prediction equation are changed by the

predictor in accordance with local input signal characteristics.

The International Telecommunications Union (ITU) has published

recommendations for a standard ADPCM system, recommendations include: G.721,

G723, and G.726. G.726 supercedes G.723 and G.721. The G.726 recommendation

allows for ADPCM systems at rates of 40, 32, 24, and 16 kbps. The recommendation

assumes that the speech output is sampled at a rate of 8000 samples per second, so rates

of 40, 32, 24, and 16 kbps correspond to 5 bits per sample, 4 bits per sample, 3 bits per

sample, and 2 bits per sample respectively. Comparing this to the PCM rate of 8 bits per

sample, this would result in compression ratios of 1.6:1, 2:1, 2.67:1, and 4:1 respectively

[1].

2

A

n
do

Can

I...TANTI E

Pn

a-------- ------------------------- ®----__--__ -- _®____-
a i

! !
! n r
! p

! r

! 1
! !

! i

! i

! p

! p

1 !

a r
! g

! n !
! p

! Xn r
! p

PREDICTOR
! p

! p

1 p

1 p

! p

! p

! p

r

" ®_.®.. .. _. -_----------------------------------. _-.®--_____a

ENCODER

A + A

do Xn_

PREDICTOR

DECODER

FIGURE 1.1 A DPCM SYSTEM

3
m

1.2.2 Transform Coding

Transform coding involves the application of a set of mathematical functions, referred

to as a transform, to a sequence of samples so that another sequence of values may be

produced. The motivation for using such transforms for data compression applications is

that the sequence of transformed values often possess characteristics that make them

more amenable to compression coding, that is, the information or energy of the original

sequence may be confined to only a few elements of the transformed sequence. This

allows us to selectively encode and transmit only those elements of the transformed

sequence that possess sufficient information, and hence data compression is

accomplished. It should be noted that the transforms used are reversible, that is, the

original sequence can be obtained from the transformed sequence by applying the

appropriate inverse transform.

We can also analyze the transform process in terms of changes in statistics between

the original and transformed sequences. It can be shown that we obtain the greatest

amount of compaction when we use a transform that decorrelates the input sequence, that

is, the sample-to-sample correlation of the transformed sequence is zero.

There are number of transforms that may be used for compression applications.

These include:

1. The Discrete Cosine Transform (DCT)

2. The Discrete Sine Transform (DST)

3. The Fourier Transform

4. Wavelet Transforms

4

The most popular transform techniques today are the DCT and wavelet transforms.

The DCT has been applied to a number of wideband audio coding applications. The

applications include the ATRAC algorithm used in the MiniDisc system from Sony,

Dolby AC-2 and AC-3 algorithms, the MPEG layer III algorithm [1, 3]. Wavelets have

not been generally applied to audio compression techniques, however wavelet

decomposition will form the basis of the JPEG 2000 standard for image compression [1].

1.2.3 Analysis/Synthesis Schemes

1.2.3.1 Analysis/Synthesis Schemes Overview

Analysis/Synthesis schemes rely on the availability of a parametric model of the

source output generation process. With such a model, the transmitter analyzes the source

output, extracts the model parameters, and transmits this information to the receiver. The

receiver utilizes the model along with the transmitted parameters to synthesize the source

output.

The transmitter does not send a direct representation of the source output samples. It

actually sends to the receiver information instructing it how to reconstruct these output

samples. This parametric information for some sources can be made significantly smaller

in size than a direct representation of the source output samples. Hence

analysis/synthesis schemes are useful for data compression applications.

One source that is amenable to modeling is speech. Speech is produced by forcing air

through an elastic opening called the vocal cords. This action generates sound, and this

5

sound is modulated into speech as it traverses the vocal tract. This physical process can

be modeled into a speech synthesizer as shown in Figure 1.2. In Figure 1.2, the

excitation source models sound generation, while the vocal tract filter models the vocal

tract.

At the transmitter, analysis of the speech is performed. The speech is divided into a

number of segments. For each segment an excitation signal and the parameters of the

vocal tract filter are determined. This information is transmitted to the receiver where the

excitation signal is synthesized and used to drive the vocal tract filter so that a speech

signal may be generated.

The various types of analysis/synthesis schemes are described in the following

sections

1.2.3.2 The Channel Vocoder

In the channel vocoder transmitter, the speech input is analyzed at regular intervals by

a bank of bandpass filters called analysis filters. The energy output of each filter is

estimated and transmitted to the receiver.

In addition to the filter output estimates, the transmitter also makes a decision as to

whether the segment of speech being analyzed is voiced, as in the case of the sounds /a/

/e/ /o/, or unvoiced as in the case of sounds /s/ /f/. Voiced sounds tend to have a

psuedoperiodic structure, and the period of the fundamental harmonic of such a sound is

called the pitch period. So the transmitter also forms an estimate of the pitch period,

which is sent to the receiver.

6

EXCITATION VOCAL TRACT SPEECH
SOURCE FILTER

FIGURE 1.2 ANALYSIS/SYNTHESIS BLOCK DIAGRAM

From anal sis lter 1

SYNT HESIS

NOISE

SOURCE

SYNTHESISVoicd/uvoied eciionFILTERnI

From analysis filter n

FIGURE 1.3 THE CHANNEL VOCODER RECEIVER

7

At the receiver, the vocal tract filter is implemented by a bank of bandpass filters

called synthesis filters. Based on whether a speech segment is deemed to be voiced or

unvoiced, either a periodic pulse generator or a pseudo-noise source is used as the input

to the synthesis filter bank. The period of the pulse generator is acquired from the pitch

period estimate from the transmitter, and the input is scaled by the energy estimate at the

output of the analysis filters. See Figure 13.

The channel vocoder is the predecessor to several of the analysis/synthesis speech

compression techniques used today, but is presently not one of the popular techniques in

use [1].

1.2.3.3 The Linear Predictive Coder (LPC)

In a linear predictive coder the vocal tract is modeled by a single linear filter, whose

output yn is related to the input sn by the following equation:

M

Yn = bjy-_ + Gen
i=I

Where G is the called the "gain" of the filter.

A block diagram of an LPC filter is shown in Figure 1.4.

As shown in the diagram, the input to the vocal tract filter is either a noise source or a

periodic pulse source, based on whether the speech segment was reckoned to be voiced or

unvoiced at the transmitter. The transmitter will also send the pitch period, if the

segment is voiced, and the vocal tract filter parameters.

8

(Unvoiced)

NOISE

SOURCE

V/Uv
switch --

VOCAL TRACT Speech
FILTER

(Voiced)

PULSE

SOURCE

Pitch

FIGURE 1.4 AN LPC RECEIVER

9

An LPC scheme is used in the 2.4 kilobit U.S. Government standard, Federal

Standard 1015, for secure voice communication, known informally as LPC-10 [1, 3].

1.2.3.4 Code Excited Linear Prediction (CELP)

One of the drawbacks of an LPC system is that regardless of how accurate a pitch

period estimate is, the use of a periodic pulse excitation that consists of a single pulse per

pitch period leads to a "buzzy twang". A CELP system seeks to improve on an LPC

system by using a codebook of excitation signals instead of the periodic pulse and

psuedonoise generators.

At the transmitter, the vocal tract parameters are obtained using LPC analysis. The

transmitter then excites the filter with entries from the codebook. The difference the

original speech segment and the synthesized speech segment is determined by using a

perceptual weighting filter. The codebook entry that generates the minimum average

weighted error is declared the best match. The index of the best match entry is sent to the

receiver along with the parameters for the vocal tract filter.

CELP algorithms are used for compression purposes in the U.S. Government

Standard, FS 1016, as a 4.8 kbps coder, and in the ITU G.728 standard as a low-delay 16

kbps coder [1, 3]. An algorithm closely related to CELP algorithms, called the Regular

Pulse Excitation with Long-Term Prediction (RPE-LTP) algorithm was adopted as a

standard for digital cellular telephony by the Group Speciale Mobile (GSM)

subcommittee of the European Telecommunications Standards Institute (ETSI) at a rate

of 13 kbps [1, 3].

10

1.2.3.5 Sinusoidal Coders

Sinusoidal coders form excitation signals from a sum of sine waves of different

amplitudes, frequencies, and phases. The excitation signal is of the form:

L

en =Za cos(n c, +V,)
!=1

Where the number of sinusoids L required for each frame depends on the contents of the

frame.

The vocal tract filter is a linear system; this means that its output has the same

frequency as its input though they differ in amplitude and phase. This implies that the

synthesized speech of a sinusoidal coder is of the form.

L

Sn = ZA Cs(nw +)
1=1

From this we can see that the number of parameters required to represent an

excitation sequence is the same as the number of parameters required to represent

synthesized speech. Therefore, sinusoidal coders directly estimate the parameters

required to synthesize the speech and transmit these to the receiver.

The two most popular sinusoidal coding techniques today are the Sinusoidal

Transform Coder (STC) and the Multiband Excitation coder (MBE). A version of the

MBE coder, called the improved MBE (IMBE) coder has been adopted by Inmarsat as a

11

standard for satellite voice communications, and by the Association of Police

Communications Officers (APCO) as the standard for law enforcement [1, 3].

1.2.3.6 Mixed Excitation Linear Prediction (MELP)

The MELP algorithm uses the same LPC filter to model the vocal tract. It however

uses multiband mixed excitation for its excitation signal. The mixed excitation consists

of a filter signal from a noise generator plus a contribution that depends directly on the

input signal. A block diagram of an MELP system is shown in Figure 1.5.

The MELP coder was selected to be the new federal standard for speech coding at 2.4

kbps by the Defense Department Voice Processing Consortium (DDVPC) [1].

1.3 Motivation for Research

The scope of the IP telephony industry is expected to increase significantly over the

next decade. The International Data Corporation (IDC) predicts that global IP telephony

will grow from an estimated 2.6 billion minutes in 1999 to more than 88 billion minutes

in 2003. It also predicts that global revenues will increase from $600 million to $13.4

billion over the same period [2]. This growth is being stimulated by the savings that can

be made by using the Internet to bypass regular telephone networks, and by a push in the

multimedia industry to provide integrated voice, video and data services over one

network. The technology does suffer presently from having a lower sound quality than

that provided by the Public Switched Telephone Network (PSTN). IP telephony

12

Aprierc DPTV

NOISE SHAPING SPCRLFourierLPC
nitudesSYNTHESIS

FILTER

NOISE SHGPIN
GENERATOR FILTER GI

PULSE

DISPERSION
FILTER

Synthesized speech

FIGURE 1.5 BLOCK DIAGRAM OF MELP DECODER

13

also suffers from excessive delays in full-duplex applications and from unreliable

connections. Since this technology still requires improvement, there are opportunities for

research and new innovations in this field.

The majority of voice-over-IP applications today utilize analysis/synthesis schemes to

implement the data compression necessary to render such applications functional. This

thesis will investigate the applicability of multilevel transform coding techniques for the

implementation of a voice-over-IP application. It will be determined whether or not these

methods of data compression can provide comparable or even superior compression

performance to those presently in use.

The thesis will also seek to develop a rudimentary voice-over-IP application, and

investigate some of the obstacles that are encountered in the development of such an

application. This application can form the framework for future research and

development of voice-over-IP technology.

This thesis will also provide a fundamental understanding of the variety of

compression techniques that are utilized in the area of audio/voice compression, with a

special emphasis on transform coding techniques. It can therefore serve as an

introductory document to novices in the field of audio/voice compression techniques.

The thesis will also provide an introduction to the compression performance measures

used to provide measurable evaluations of compression performance techniques. It will

also provide a means of determining these measures in the instance that these

compression techniques are applied to raw voice data files, that is, a software application

was written to determine these measures for such files (eval.exe).

14

Chapter 2 Compression Performance Measures

2.1 Compression Performance Measures Overview

In order to determine whether one compression algorithm is more efficient than

another algorithm we must specify some measures of performance that will allow us to

evaluate individual algorithms and have them compared to each other. Such performance

measures are described in this section. The performance measures described here will

seek to quantify the amount of compression, and how closely the reconstruction (system

output) resembles the original (system input).

For lossy compression it is necessary that we ascertain the difference between the

reconstructed data and the original, in order for us to determine the efficiency of the

compression algorithm. The difference between the original and the reconstruction is

called distortion [1].

With regards to speech compression algorithms there are two groups of methods for

assessing speech quality: subjective assessment, and objective assessment. Subjective

assessment methods seek to determine the speech quality of a system output by utilizing

the observations of human listeners. Objective assessment methods seek to predict

speech quality based on objective measures of the physical parameters and properties of a

speech signal.

Since the ultimate judge of speech quality is the human listener, subjective

assessment methods are generally deemed to be more accurate. The major disadvantage

of subjective speech assessment is that in order to obtain subjective speech quality data

15

with good reliability and reproducibility large investments in terms of technical

equipment and manpower are required [6]. Commonly used subjective test methods are

Absolute Category Methods, Degradation Category Methods, Detectability Methods,

Comparison Category Methods, and Threshold Methods. One widely used method is the

direct evaluation of the speech quality by an Absolute Category Rating (ACR). In this

method the subject is presented with short groups of unrelated sentences that were passed

through a system under test. Typically the subject's task is to rate his or her impression

on a five-point scale with absolute categories [6]. For example these categories may be

classified as: bad, poor, fair, good, and excellent [7]. An estimate of the quality is then

obtained from the arithmetic mean of the responses of all subjects. This quantity is called

the mean opinion score (MOS) [6].

Objective assessment methods often show considerable deviation from subjective

assessment methods and are generally considered to be less accurate. However they are

often more easily implemented and cheaper as well. Most objective assessment methods

are based on some arithmetic manipulation of the Signal-to-Noise Ratio (SNR) [6]. The

method of choice for speech quality assessment for this thesis is the SNR, because of its

simplicity and ease of implementation.

2.2 Compression Ratio

The compression ratio is the ratio of the number of bits required to represent the data

before compression to the number of bits required to represent the data after compression

[I].

16

Example: A 40 kilobyte image file is compressed into a 10 kilobyte file. This yields a

compression ratio of 4:1.

2.3 Rate

Rate is simply the average number of bits required to represent a single sample for the

compressed representation [1].

Example: For the example mentioned previously, if we assume that the original image

file used 8 bits/pixel, then the rate for the compressed file would be 2 bits/pixel.

2.4 Mean-Squared Error (MSE)

The mean-squared error is one of the primary measures used to determine the average

distortion between the original and reconstructed data sequences. It is given by the

following equation [1].

2 N

N PZ=

Where a2 = mse

x~ = source output sequence

yn = reconstructed sequence

N = number of samples in sequence

17

2.5 Signal-To-Noise Ratio (SNR)

The signal-to-noise ratio gives a means of measuring the distortion relative to the input

signal. The SNR is the ratio of the average squared value of the source output and the

mse. It is given by [1]:

2

SNR=--

Where (2 = average squared value of the source output

G-2 = mse

The SNR in decibels is given by [1]:

2

SNR(dB) =10 logi 1
ad

2.6 Peak-Signal-To-Noise Ratio (PSNR)

The peak-signal-to-noise ratio gives the size of error relative to the peak value of the

signal. The PSNR is given by [1]:

2

PSNR(dB) =10 log10
ad

Where xpeak = peak value of the signal

18

2.7 Practical Examples

This section seeks to detail some real-world examples in which the performance

measures described previously are used to verify the quality of existing speech

compression algorithms.

2.7.1 ADPCM Systems

The first set of ADPCM system evaluation information was obtained from [4]. This

reference source contains two SNR versus bit rate plots for three forms of coders:

logarithmic PCM, ADPCM (with adaptive quantizer and a simple first-order predictor),

and Adaptive Delta Modulation (ADM). The results were obtained from computer

simulations that used as coder input, a bandpass-filtered male utterance of "A lathe is a

big tool." Two bandwidths were considered: 200 - 3200 Hz and 200 - 2400 Hz. The

ADPCM system utilized a sampling frequency of 6.6 kHz.

Tables 2.1 and 2.2 were obtained by extrapolation from these plots at bit rates that

are of significance in present-day applications. The compression ratio values were

obtained by comparing the bits/sample values obtained for the ADPCM system to the

standard 8 bits/sample value used for PCM coders.

The second set of ADPCM system evaluation information was obtained from [5].

This reference source introduces an "improved system for speech digitization using

adaptive differential pulse-code modulation (ADPCM)". The system uses an adaptive

19

predictor, an adaptive quantizer, and a variable length, source coding scheme. The

system is called the "residual encoder".

BIT RATE (kbps) BITS / SAMPLE COMPRESSION SNR (dB)
(BIT RATE / 6600) RATIO

16 2.42 3.3 11.9
24 3.63 2.2 17.3
32 4.85 1.65 23.2
40 6.06 1.32 28.3

TABLE 2.1 ADPCM Compression Performance Data (Bandwidth 200 - 3200 Hz)

TABLE 2.2 ADPCM Compression Performance Data (Bandwidth 200 - 2400 Hz)

BIT RATE (kbps) BITS / SAMPLE COMPRESSION SNR (dB)
(BIT RATE / 6600) RATIO

16 2.42 3.3 14.2
24 3.63 2.2 21.3
32 4.85 1.65 28.8

TABLE 2.3 ADPCM "Residual Encoder" Compression Performance Data

(Bandwidth 0 - 2900 Hz)

BIT RATE (kbps) BITS / SAMPLE COMPRESSION SNR (dB)
6BIT T / 6400) RATIO

16 2.5 3.2 17.8

24 3.75 2.13 23.8
32 5 1.6 26.2

20

The SNR performance of the "residual encoder" is detailed in a SNR versus bit rate

plot. The SNR for the residual encoder was measured using the following three

sentences.

1) "Cats and dogs hate each other" (male speaker).

2) "Move the vat over the hot fire" (male speaker).

3) "The pipe began to rust while new" (female speaker).

The input data was low pass filtered at 2900 Hz and sampled at 6400 samples /s.

The table of values was obtained by extrapolation from the plot at bit rates that are of

significance. The compression ratio values were obtained by comparing the bits/sample

values obtained for the residual encoder system to the standard 8 bits/sample value used

for PCM coders.

2.7.2 CELP Systems

The CELP system under performance analysis can be found in [10]. It is a variable-

bit-rate low-delay CELP (VBR-LD-CELP) coder that operates at a nominal rate of 16

kbps, but has bit rate range of 24 kbps to 12.8 kbps. The performance of the algorithm

was tested using three male and three female speech files, each of about 3 seconds in

length. The segmental SNR (refer to [7]) was the performance measure used to evaluate

the algorithm for both the 16kbps and 24 kbps modes. The values obtained are shown in

Table 2.4.

21

Table 2,4 Simulation Results for Variable-Bit-Rate Low-Delay CELP (VBR-LD-

CELP) Coder

Speech File Seg. SNR (d)

16 kbps 24kbps Gain

Male-I 17.0 21.4 4.4

Male-2 15.7 20.7 5.0

Male-3 15.2 19.5 4.3

Female-I 19.4 23.6 4.2

Female-2 21.2 25.7 4.5

Female-3 20.9 24.6 3.7

Average 18.2 22.6 4.4

22

Chapter 3 Transform Coding Compression Techniques

3.1 Linear Transforms

A one-dimensional linear transform may be expressed as shown below.

N-I

On xian i
i=0

Where O, = transformed sequence

Xn = original sequence

This transform is called the forward transform.

The original sequence may be recovered using the inverse transform.

N-I

Xn = Z bnj
i=O

These 1-D transforms may be expressed in matrix format as shown below.

O=Ax

x=BO

Where A and B are NxN matrices.

The forward and inverse matrices are inverses of each other, that is, AB = BA =

The transforms that will be discussed will all be orthonormal transforms. An

orthonormal transform has the property that the inverse of the matrix is simply its

transpose, that is, B = A~I = AT.

23

3.2 The Significance of Decorrelation in Transform Coding Schemes

The key factor for a transform coding technique being able to perform data

compression applications is the ability of the technique to decorrelate the input signal.

What follows is an intuitive discussion of the process of decorrelation that will serve to

better explain how such a process can aid in data compression applications [8].

Suppose we desire to transmit a sinusoid across a medium. The signal can be

transmitted as a sampled waveform, with each sample being sent in a sequential manner.

The greater the number of sampled values transmitted will result in a better

reconstruction at the receiver end. However, it is known that all that is required to

reconstruct a deterministic sinusoid is its magnitude, phase, frequency, starting time, and

the fact that it is a sinusoid. Thus, assuming no degradation by the medium, only five

parameters need to be transmitted to reconstruct the signal at the receiver. From an

information theoretic point of view, the sampled values of the sinusoid are highly

correlated, and the information content of the transmitted signal is low. On the other

hand, the five parameters of magnitude, phase, frequency, starting time, and shape are

completely uncorrelated, and have the same amount of information content as the

sampled values. It is the goal of transform coding techniques to represent a correlated

input signal as completely uncorrelated pieces of information, thereby reducing the

number of pieces of information required to represent the corresponding signal.

24

3.3 Transforms of Interest

3.3.1 Karhunen-Loeve Transform

The Karhunen-Loeve Transform (KLT) is a data-dependent transform that adjusts to

the changing characteristics of a non-stationary source output. The rows of the discrete

Karhunen-Loeve transform consist of the eigenvectors of the auto-covariance matrix.

The auto-covariance matrix for a random process X is a matrix whose (i,j)th element [R]i

is given by [1]:

[R] = E[X X n1 .I

The procedure for obtaining the KLT is described in the following paragraphs [8].

We seek to obtain the best representation of a given random signal with regards to mean-

square error (MSE). Consider N sample points of a zero mean random vector x given by:

x = x(0), x(1),..., x(N 1)T

If {Di} is a set of linearly independent vectors spanning the N-dimensional vector

space, vector x can be expanded in terms of ci's:

N-1

r=0

where Xi are the coefficients of expansion given by

Xi =< iCi > / < e,, > For i= 0,1, ... , N-1.

And <., .> denotes the inner product.

25

The vector x can be represented by the N coefficients Xi, as well as, the N signal

values x(i). If only the first D coefficients (D < N) are significantly different from zero,

then the vector x can be well represented by the D coefficients instead of N coefficients

in the {D}space. This means that data compression and bandwidth reduction are

possible.

The truncated representation of vector x is given by:

D-1

icO
i=Q

The MSE with regard to the truncated version is given by:

N-1 N-1

c=E L Xiii,ZXi6i)1
i=D i=D

Where E is the expectation operator.

For orthonormal basis functions we have

If vector x is real

N-1

c=ELXN-1

2]

1=D

This equation can be reduced further to

N-1

li=D

N-r

i= D

26

It should be noted that auto-covariance matrix is given by:

[A>= ExxJ

If one seeks to minimize the MSE by the proper choice of basis functions, subject to the

orthonormality condition mentioned previously, one obtains the following:

{g6- Pij-1,i>-

This leads to the following characteristic equation

([A]- P [IN =0 For i = 0, 1, ... , N-1

Where p is the Lagrange multiplier introduced for the purpose of satisfying the

constraint, and [IN] is the NxN identity matrix. From the characteristic equation we see

that the minimization of the MSE involves solving for the corresponding eigenvalues.

The set of basis vectors obtained will diagonalize the auto-covariance matrix [A]. Let []

be the set of eigenvectors given by:

Then

#0-J A0]|= d'ag[p, ,--- ., PN-1

Based on the forgoing, the MSE due to truncation is given by:

N-1

a=D

and we note that F is minimized by ranking the eigenvalues pi in descending order.

The set of basis vectors {I} form the bases for the KILT expansion, and a matrix

consisting of N such eigenvectors constitute the KLT matrix.

27

The following properties make the KLT an optimal transform [8].

1) It completely decorrelates the signal in the transform domain.

2) It minimizes the MSE in bandwidth reduction or data compression.

3) It contains the most variance (energy) in the fewest number of transform

coefficients.

4) It minimizes the total entropy of the sequence.

If the source output is non-stationary, its auto-covariance function changes with time.

This means that the auto-covariance matrix changes with time, and the KLT will have to

be recomputed. For a transform of reasonable size, these computations are significant.

Also, since the auto-covariance is calculated from the source output, this information is

not available at the receiver. Therefore, the incurred overhead in transmission, combined

with significant computations generally negate the advantages gained by the optimal

KLT, and render this transform impractical [1].

3.3.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a non-data dependent transform that

provides energy compaction performance that approaches the KLT for strongly correlated

sources [1, 8]. The rows of an NxN DCT-I matrix C are given by [1]:

28

cos (2J+1)if i=O0, j=0,1,...,N -1
N 2N

[C L =2rW

LJcos (2j+1)i i=1,2,..., N -1, j= ,1,..., N -1
N 2N

The DCT can be derived from the Discrete Fourier Transform (DFT). It provides better

compression performance than the DFT. The reason for this is that in order to obtain the

DFT coefficients of an N point sequence we assume the sequence to be periodic with a

period N. The effect of this is shown in the Figure 3.1.

This representation introduces sharp discontinuities at the beginning and then end of

each periodic sequence. The DFT represents these sharp discontinuities by having non-

zero high frequency coefficients. Since these discontinuities occur only at the beginning

and end of the N point sequence, their effect needs to be canceled out within the

sequence. To do so, the DFT adjusts the other frequency coefficients accordingly. When

the high frequency coefficients are removed during the compression process, the

coefficients used to compensate for these high frequency coefficients introduce additional

distortion in the reconstructed sequence.

The DCT can be obtained using the DFT by mirroring the N-point sequence to obtain

a 2N-point sequence. The DCT is first N points of the 2N-point DFT. As shown in

Figure 3.2 this 2N-point DFT does not possess any sharp discontinuities at the edges.

29

3.3.3 Discrete Sine Transform

The Discrete Sine Transform (DST) is a non-data dependent transform that provides

energy compaction performance close to the KLT when the source does not have a high

degree of correlation [1, 8]. The elements of an NxN DST-IV transform matrix are given

by:

[2 .i. +1 1)j+1) i, j=0,1,..., N -1
' N+1 N+1

30

FIGURE 3.1 TAKING THE DISCRETE FOURIER TRANSFORM OF A
SEQUENCE

(b

FIGURE 3.2 TAKING THE DISCRETE COSINE TRANSFORM OF
A SEQUENCE

31

3.4 Performance Evaluation of Existing Transform Coding Techniques

3.4.1 Variance Distribution

When using transform coding techniques for data compression, some of the

compression is obtained by the removing some of the transform coefficients from the

transformed sequence. It is desirable to have only a few coefficients with large variances

(energy) with the remaining transform coefficients possessing small variances. This will

allow the coefficients with small variances to be removed without a large MSE occurring

between the original and reconstructed signals. Therefore the variance distribution

among the transform coefficients is indicative of how well the transform will be able to

compress data.

Tables 3.1 - 3.3 and Figures 3.3 - 3.5 illustrate the variance distribution for various

discrete transforms for a first-order Markov process when p = 0.9 for N = 8, 16, 32 [8].

The tables and figures indicate that, in general, the DCT-II variance distribution

decreases more rapidly than the other discrete transforms, including the DST-I and DST-

II transforms.

3.4.2 Residual Correlation

Another method of determining the performance of a discrete transform is determine

how well it can decorrelate a given sequence. The optimal KLT transform completely

decorrelates a Markov-I sequence. Other discrete, suboptimal transforms can be judged

32

TABLE 3.1 Variance Distribution For a First-order Markov Process Defined by

p = 0.9 and N =8. I is Ith Transform Coefficient.

I WHT ST DCT-1 DST-1 DST-I CMT DFT DLT
1 6.185 6.185 6.185 5.76 5.384 6.185 6.185 6185
2 0.863 0.989 1.006 0.931 0.823 0.992 0.585 0.989
3 0.305 0.345 0.346 0.661 0.74 0.346 0.585 0.332
4 0.246 0.146 0.166 0.222 0.246 0.153 0.175 0.173
5 0.105 0.105 0.105 0.197 0.333 0.1 0.175 0.113
6 0.104 0.104 0.076 0.093 0.145 0.105 0.103 0.083
7 0.103 0.063 0.062 0.08 0.24 0.057 0.103 0.067
8 0.088 0.063 0.055 0.056 0.088 0.062 0.088 0.057

1 -- WHT

CT

DT

01 -DT

001

Transform Coefficients

Figure 3.3 Variance Distribution for Various Discrete Transforms for N = 8 and

p = 0.9

33

TABLE 3.2 Variance Distribution For a First-order Markov Process Defined by

p = 0.9 and N = 16. I is Ith Transform Coefficient.

HT CHT WHT DCT-I DFT ST (SHT)1 (HHT)1 (HHT)2 DST- DST-I CMT DLT
1 9.8346 9.8346 9.8346 9.8346 9.8346 9.8346 9.8346 9.8346 9.8346 9.218 8914 9.835 98346
2 2,5464 2.5364 2.536 2.9328 1.8342 2.8536 27765 2.5364 2.5364 2.64 2.458 2.885 2.8532
3 0.8638 0.8635 1.02 12108 1.8342 11963 1.0208 1.0209 1.0209 1.468 1.433 1.196 1.1356
4 0.8638 0.8635 0706 0.5814 0.5189 0.461 0.467 0.7061 0.7061 0709 0.689 0.489 0.5912
5 0.2755 0.2755 0307 0.3482 0.5189 0.3468 0.3092 0.2946 0.3066 0.531 0.561 0.348 0.3656
6 0.2755 0.2755 0.303 02314 0.2502 0.3424 0.3031 0.2946 0.3031 0.314 0.332 0.283 0.2523
7 0.2755 0.2755 0,283 0.1664 0.2502 0.1461 0.2837 0.2562 0.2864 0.263 0.312 0.157 0.1875
8 0.2755 0.2755 0.206 0.1294 0.1553 0.146 0.2059 0.2562 0.2059 0.174 0.206 0.125 0.1471
9 0.1 0.1 0.105 0.1046 0.1553 0.1047 0.1042 0.1024 0.1038 0.153 0.211 0.101 0.1202
10 0.1 0.1 0.105 0,0876 0.1126 0.1044 0.1042 0.1024 0.1038 0.11 0.149 0.105 0.1014
11 0.1 0.1 0.104 0.076 0.1126 0.1044 0.1034 0.1024 0.1034 0.099 0.162 0.105 0.0878
12 0.1 0.1 0.104 0.0676 0.0913 0.0631 0.1034 0.1024 0.1034 0.078 0.121 0.105 0.0775
13 0.1 0.1 0.103 0.0616 0.0913 0.0631 0.101 0.0976 0.1013 0.071 0.138 0.062 0.0695
14 0.1 0.1 0.102 0.0574 0.0811 0.0631 0.101 0.0976 0.1013 0.061 0.107 0.079 0.0634
15 0.1 0.1 0.098 0.0548 0.0811 0.0631 0.0913 0.0976 0.0913 0.057 0.128 0.057 0.0585
16 0.1 0.1 0.078 0.0532 0.078 0.0631 0.0913 0.0976 0.0913 0.054 0.073 0.07 0.0544

10 .~.. ______.1 WHT

21 8 9 1 1 2 1 4 15 16DCTA

OFT

-- (HHT)

01~ DSTA0

CMT
DLT

0.01

Transform CoeffkIents

Figure 3.4 Variance Distribution for Various Discrete Transforms for N = 16 and

p = 0.9

34

TABLE 3.3 Variance Distribution For a First-order Markov Process Defined by

p = 0.9 and N = 32. I is Ith Transform Coefficient.

I WHT ST DCT-II DST-1 DST-1I CMT DFT DLT
1 13.568 13.569 13.569 13.244 13.08 13.568 13.568 13.568
2 6.101 6.59 6.847 6.352 6.157 6.611 4.938 6.59
3 3.128 3.658 3.72 3.46 3.352 3.659 4.938 3.423
4 1.965 1.561 2.023 2.048 1.983 1.602 1.613 1.986
5 1.046 1.23 1.244 1.386 1.355 1.229 1.613 1.273
6 0.995 1.163 0.832 0.96 0.943 0.916 0.77 0.881
7 0.867 0.464 0.596 0.729 0.726 0.511 0.77 0.646
8 0.545 0.46 0.448 0.5551 0.553 0.359 0.452 0.496
9 0.308 0.349 0.35 0.446 0.456 0.35 0.452 0.394
10 0.305 0.345 0.282 0.356 0.367 0.299 0.3 0.321
11 0.303 0.343 0.233 0.3 0.318 0.298 0.3 0.268
12 0.303 0.342 0.197 0.249 0.266 0.286 0.217 0.229
13 0.293 0.146 0.169 0.216 0.238 0.273 0.217 0.198
14 0.28 0.146 0.147 0.184 0.204 0.165 0.167 0.173
15 0.247 0.146 0.13 0.163 0.187 0.158 0.167 0.154
16 0.165 0.146 0.116 0.142 0.165 0.155 0.135 0.138
17 0.105 0.105 0.105 0.128 0.154 0.129 0.135 0.125
18 0.105 0.105 0.096 0.114 0.138 0.116 0.113 0.114
19 0.104 0.104 0.088 0.104 0.131 0.116 0.113 0.105
20 0.104 0.104 0.081 0.094 0.119 0.11 0.098 0.097
21 0.104 0.104 0.076 0.087 0.115 0.11 0.098 0.09
22 0.104 0.104 0.071 0.08 0.106 0.108 0.087 0.085
23 0.104 0.104 0.068 0.075 0.104 0.107 0.087 0.079
24 0.104 0.104 0.064 0.07 0.097 0.105 0.079 0.075
25 0.104 0.063 0.062 0.066 0.096 0.105 0.079 0.071
26 0.103 0.063 0.059 0.062 0.09 0.104 0.074 0.068
27 0.103 0.063 0.057 0.06 0.09 0.1 0.074 0.065
28 0.102 0.063 0.056 0.057 0.086 0.082 0.07 0.062
29 0.1 0.063 0.055 0.056 0.087 0.08 0.07 0.06
30 0.097 0.063 0.054 0.054 0.084 0.073 0.068 0.057
31 0.088 0.063 0.053 0.053 0.085 0.062 0.068 0.055
32 0.068 0.063 0.053 0.053 0.068 0.057 0.068 0.053

35

Transforrm Coefficients

Figure 3.5 Variance Distribution for Various Discrete Transforms for N = 32 and

p = 0.9

36

by how closely they approximate the KLT in decorrelating a sequence. Whereas the

auto-covariance matrix in the KLT domain is diagonal, the auto-covariance matrices for

other discrete transforms have nonzero off-diagonal elements. The measure used to

determine decorrelation ability measures the Fractional Correlation (FC) left undone.

The FC is developed as follows. Let [At,]jj be the diagonal matrix representing the

diagonal elements of [Atr], the auto-covariance matrix in the transform domain defined as

shown in the following expression.

[A,,]= E O[XT

[Ar] = E([#j(n)V7 [/n)]T)

[Ar] = [#(n)JAj5(n)]T

Where [A] is the auto-covariance matrix in the time domain.

An auto-covariance matrix [A'] can be obtained by inverse transforming [Atr]jj such that

[A'] = [#()]7 [A,,, [(n)]

The FC left undone by the transform is then defined as

FC =[]_
FC A]-[I N 12

Where 12 denotes the Hilbert-Schmidt weak norm [8]. For the KLT, [A] = [A'], and

thus FC is zero.

Tables 3.4 - 3.5 and Figures 3.6 - 3.8 show FC versus p (the correlation coefficient

for Markov-I processes), for N = 8, 16, and 32, and for a variety of discrete transforms.

From the tables and figures it can be seen that, in general, the DCT-IJ (and hence all

the DCT's) is superior to all the other transforms based on the degree of correlation. For

37

TABLE 3.4 Residual Correlation Left Undone for a First-Order Markov Process

N=8.

rho WHT DFT ST DCT-il CMT DST-I DST-11 DLT
0.1 24.583 12.61 21.39 9.012 13.2 0.135 10.066 22.2
0.2 23.365 12.93 18.64 8.422 12.5 0.405 10.684 19.4
0.3 21.49 13.44 16.03 7.881 11.6 0.929 11.551 16.7
0.4 19.1 13.93 13.44 7.25 10.3 1.751 12.698 14
0.5 16.24 13.99 10.81 6.424 8.7 2.966 14.239 11.2
0.6 12.86 12.96 8.1 5.307 6.8 4.742 16.363 8.3
0.7 8.97 10.31 5.34 3.85 4.7 7.323 19.339 5.5
0.8 4.86 6.18 2.75 2.166 2.5 11.006 23.479 2.8
0.9 1.425 1.95 0.077 0.661 0.74 16.008 28.991 0.8

35

30

6 a- OFT

~20 ST
OCT1

0o- CMT

15 e--DST~

0T

0

0 0.1 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation Coefficient

Figure 3.6 Residual Correlation Versus the Correlation Coefficient p for N = 8.

38

TABLE 3.5 Residual Correlation Left Undone for a First-Order Markov Process

N=16.

rho WHT DFT ST DCT-I DST-II CMT DST- DLT
.1 28.8 6.31 25.1 5.392 5.68 17.2 0.136 26.19

0.2 27.7 6.49 22.54 5.321 5.05 16.4 0.251 23.77
0.3 26.04 6.82 20.08 5.315 6.35 15.1 0.55 21.27
0.4 23.97 7.34 17.67 5.347 6.93 13.6 1.038 1877
0.5 21.54 8.13 15.25 5.377 7.78 11.9 1.787 16.2
0.6 18.69 9.24 12.69 5.328 9.06 10.1 2.954 13.45
0.7 15.2 10.37 9.84 5.006 11.11 8 4.865 10.34
0.8 10.56 9.96 6.4 3.99 14.76 5.5 8.28 6.63
0.9 4.3 5.23 2.41 1.83 21.84 2.2 14.962 2.45

35

30

~DFT

20 ST

0 OCT1
0 ~DSTAll

15reato -e- CMTeDST-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation Coefficient

Figure 3,7 Residual Correlation Versus the Correlation Coefficient p for N = 16.

39

TABLE 3.6 Residual Correlation Left Undone for a First-Order Markov Process

N=32.

rho WHT DST-11 DCT-I DFT ST CMT DST-I DLT
0.1 30.9 2.96 2.88 3.16 27.06 24.4 0.058 28.6
0.2 29.9 3.11 2.94 3.25 24.67 23.4 0.131 26.1
0.3 28.4 3.31 3.03 3.42 22.34 22 0.294 23.7
0.4 26.5 3.59 3.17 3.7 20.09 20.2 0.558 21.7
0.5 24.4 4.03 3.38 4.12 17.88 18.1 0.968 19.1
0.6 22 4.71 3.67 4.79 15.67 15.7 1.618 16.7
0.7 19.2 5.86 4.03 5.92 13.2 13.1 2.723 14.1
0.8 15.6 8.09 4.3 7.89 10.21 10 4.876 10.8
0.9 9.3 13.79 3.44 8.72 5.567 5.6 10.403 5.8

35

30

25

- O STI

cu20 DT
DFT

M-ST
15 -CMT

+-DST I

10-DL

5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 8 0.9 1

Correlation Coefficlent

Figure 3.8 Residual Correlation Versus the Correlation Coefficient p for N = 32.

40

Chapter 4 Network Applications

4.1 Introduction

Network applications occupy the top layer of a network protocol stack. Although an

Internet system provides basic communication of information from computer-to-

computer, application programs are required to define the format in which the

information will be displayed and the mechanisms users have to select or access the

information. To take advantage of the reduction in Internet bandwidth usage that results

from the compression of information, the compression algorithms described must be

placed in a network application environment.

4.2 The Client-Server Paradigm

Network applications utilize a form of communication called the client-server

paradigm. A server passively waits for contact, while a client application initiates contact

actively. Once contact has been made, information can flow in both directions between

client and server. Refer to Figure 4.1 [9].

41

CLIENT SERVER

TRANSPORT TRANSPORT

INTERNET INTERNET

NET. IFACE. NET. IFACE.

INTERNE

FIGURE 4.1 CLIENT-SERVER INTERACTION

42

It is possible to have multiple server applications being run on a single computer at the

same time. This functionality is made possible by the fact that transport protocols assign

unique identifiers to each service. In TCP, 16-bit integer values called protocol port

numbers are used. Clients and servers specify the service identifiers, and the protocol

software uses the identifiers to route the incoming request to the appropriate server.

It is also possible to have multiple copies of the same service running on a single

computer at the same time. This is made possible by the use of service identifiers for

each client as well as for each service. The server machine uses the combination of client

and server identifiers to choose the correct copy of the concurrent server.

4.3 The Socket Interface

In order for an application program to obtain Internet functionality, a set of

procedures must be put in place to specify how an application program can interact with

the transport protocol software. The interface between an application program and the

communications protocols of an operating system is called an Application Program

Interface or API. It is in the API that the set of procedures defining application/transport

protocol interaction is specified. The de facto standard is the socket API [9].

In the socket API, communication between client and server must occur through a

socket. Sockets are integrated with I/O. This means that an application communicates

through a socket in a manner similar to how an application transfers data to or from a file,

that is, the open-read-write-close paradigm is used.

43

When an application creates (opens) a socket, the procedure used returns a descriptor

(an integer) to identify the socket. This descriptor is passed as an argument when the

application calls procedures to perform data transfers. Finally, when the application is

finished with its required data transfers, it calls a close procedure to close the socket

4.4 Socket Procedures 191

The socket procedure creates a socket and returns an integer descriptor. The

procedure format is shown below.

descriptor = socket(protofamily, type, protocol)

Argument protofamily specifies the protocol family to be used with the socket.

Argument type specifies the type of communication to be used with the socket. For

example, this argument could take the value SOCKSTREAM for connection-oriented

communication or SOCKDGRAM for connectionless-oriented communication.

Argument protocol specifies the particular transport protocol used with the socket.

The close procedure terminates the use of a socket. It takes the following form.

close(socket)

Argument socket is the descriptor of the socket to be closed. If the socket is using a

connection-oriented protocol, close terminates the connection before closing the socket.

A server application uses the bind procedure to supply the protocol port number at

which the server will wait for contact. The procedure has the following format.

bind(socket, localaddr, addrlen)

44

Argument socket is the descriptor of a socket created but is not yet bound. Argument

localaddr is a structure that specifies the local address to be assigned to the socket. This

structure contains data members that specify the IP address of the local computer, as well

as, the protocol port number. The argument addrlen is an integer that specifies the length

of the address.

The listen procedure is used by the server application to instruct the operating system

to put the socket into a passive mode in order that the socket may wait for contact from

client applications. The procedure takes the following form.

listen(socket, queuesize)

Argument socket is the descriptor that has been created and bound, and argument

queuesize specifies the length of a socket's request queue.

If a server uses connection-oriented transport it must call the accept procedure in

order to accept the next connection request. If a request is already in the queue, then

accept returns immediately. If no requests have arrived, the system blocks the server

until a client seeks to form a connection. The procedure takes the following format.

newsock = accept(socket, caddress, caddresslen)

Argument socket is the descriptor of the socket that the server has created and bound.

Argument caddress is the address of a structure of type sockaddr, and caddresslen is a

pointer to an integer. The accept procedure fills the sockaddr structure pointed to by

caddress with the address of the client that seeks to form a connection, and sets

caddresslen to the length of this address. The accept procedure also creates a new socket

for the connection and returns a descriptor for this socket to the caller. The server uses

this socket to communicate with the client and closes the socket when finished.

45

Meanwhile the server's original socket remains unchanged; after it finishes

communicating with the client, the server uses the original socket to accept the next

connection from a client.

It should be noted that for connectionless-oriented communication, a server would

need only to call the socket and bind procedures to be ready to accept messages.

However, for connection-oriented communication, the socket, bind, listen, and accept

procedures must be used.

The connect procedure is used by clients to establish a connection to a specific server.

The form is shown below.

connect = (socket,saddress,saddresslen)

Argument socket is the descriptor of the socket to be used by the client to make the

connection. Argument saddress is a sockaddr structure that specifies the server's address

and protocol number, and saddresslen is the length of the server's address in octets.

If a socket is connected, the send procedure can be used to send data. The send

procedure takes the following format.

send(socket, data, length, flags)

Argument socket is the descriptor of the socket to use. Argument data is the address

in memory of the data to send. Argument length is an integer that specifies the number of

octets of data, and argument flags contains bits that request special options.

Procedure sendto allows a client and a server to send data using an unconnected

socket. The procedure possesses the following format.

sendto(socket, data, length, flags, destaddress, addresslen)

46

The first four arguments correspond to the four arguments of the send procedure.

Argument destaddress specifies the address of a destination, and argument addrlen gives

the length of that address.

The sendmsg procedure performs the same operation as the sendto procedure, but

abbreviates the arguments by defining a structure. The procedure has the following

format.

sendmsg(socket, msgstruct, flags)

Argument msgstruct is a structure that contains information about the destination

address, the address length, the message to be sent, and the length of the message. The

other two arguments are the same as those described previously.

A client and server each need to receive data sent by the other. The recv procedure

can be used to receive data from a connected socket. The procedure has the following

format.

recv(socket, buffer, length, flags)

Argument socket is the descriptor of the socket from which the data is to be received.

Argument buffer is the address in memory in which the received data will be stored.

Argument length specifies the size of the buffer in octets, and argument flags allows the

caller to control details.

With unconnected sockets, you are able to receive data from an arbitrary set of

clients. In such cases, it is required that the system returns the address of the sender in

addition to the data sent. The recvfrom procedure can be used to receive both the sender's

address and the message. The procedure has the following format.

recvfrom(socket, buffer, length, flags, sndraddr, saddrlen)

47

The first four arguments correspond to the four arguments of the recv procedure.

Arguments sndraddr and saddrlen are used to determine the sender's IP address.

The recvmsg procedure performs the same operation as the recvfrom procedure, but

abbreviates the arguments by defining a structure. The procedure has the following

format.

recvmsg(socket, msgstruct, flags)

Argument msgstruct gives the address of a structure that contains information about

the sender's address, the address length, an address to store the incoming message, and

the length of the message. The other two arguments are the same as those described

previously.

48

Chapter 5 Compression Performance Analysis

5.1 Performance Analysis Overview

To determine the efficiency of the transform coding compression techniques, these

techniques, along with some lossless and alternative lossy compression techniques, were

applied to a data set consisting of six audio sample files.

These audio sample files varied in length from one to seven seconds and possessed

divergent statistical characteristics. The six sample files are shown in the Figures 5.1 -

5.6. Each audio file was sampled at a rate of 11 kHz. Eight bits were used to represent

each sample, which equates to a magnitude range of -128 to 127.

The audio file SAMPLE-1 .RAW contains the phrase, spoken by a male speaker, "If

you are following the book and find that a song is not recorded, merely tum to the next

page." The audio file SAMPLE-2.RAW contains the phrase, spoken by a male speaker,

"What's up doc!" The audio file SAMPLE-3.RAW contains a section of a rock song

with a male vocalist. The section contains the lyrics, "Born to be wild!" The audio file

SAMPLE-4.RAW contains the phrase, spoken by a young female speaker, "Good night

Katie." The audio file SAMPLE-5.RAW contains the phrase, spoken by a young male

speaker, "Now here's something we hope you'll really like!" The audio file SAMPLE-

6.RAW contains the phrase, spoken by a male speaker, "And now for something

completely different."

The following algorithms were used in the analysis process:

49

W
a

-loans
an

all11,110 :

' WIN F l
l 1 ? ?,IXMI N 9.4 U, museum

RIX

' ; 3i ? ; fir - '" r ¬ ' '

Neal

WO&I-2

e

E

14111"fil

A
All

I

F
t

I lam
stings

11 C annul I i MR14 a magnums

EE
I noun onus

........ lu ll _ Son wevennown ani In
:r onus

FIGURE 5.1 SAMPLE-1

r e4 . &jit ;Pv4 Wb, 4v t,, ='1F"j ;. ., ~ ' Y

g

914 llama
M IT 1411 i MM M , P., exit, MLI ipbil $ 3 f4't , In=

lR { S d Y + f4x[23itit tlY :

i
E tza t o 3

.. Ei. f . i t it 1¬Ixt s [4 .:.:11,..

i

s F;73 v i f1 =3 a F i i1 c[' irs y j

1E5 il!f

A'd. _' } n? "* ;
x ' 3Sic fEj td3i i .3 A

s
ii t y ; s 4 it i # t d,

c, U P s Ri n wl + trp $ { i!i f U e.

.

i r s# et 1 Ida 3 E ' E i

1{ F 3i }D ES t u 3

MUMMA i

.7 04 _ 1 L1 .15 F .ti o 9 i ' - 3_ ri 4 3""'C' 055 5055 0,'101 7 , .-. S? C.":a ' 3) U Jr t cl - Uu -

j 000 "" 1 09 fCOI

9 7 2

FIGURE

0

"pit

x ta

--------- ----

2

' S a y C v 1 rCt##} t ; Fa

Tluif

INNUM MA1 u _ , ,

'=11MA mum

Iwo

FIGURE 5.3 SAMPLE-3

. ^at na 4vn+ a s

ttpI '..A 4o oi o

R

F u 1 fez t _.

ii F !q 1_ f A s5viC EF t i 1 R o l l m a n
t !

i1'j z .C j , q~ any x
t } 1 F C:x t 3 r :?a t4c Ai {

j, I wmr

! rf { 1}if filf 'U

1 xtl E-) } e i}.. .' O W L

i
t &EP

9Y;9 gat yj ! 4 dl

a M
4i ,

CI,

MWAMM
met

FIGURE

t",

9

0

2

5. -

5

C .W w.

C121 IN was 1, aim ilWvmvm=m9 a
l t

Ras ,
IMP 'm 11, INK 10 N "M a W

192 I l I a
' W

Iasi4
s 211 WS I c

A'
masonsINK a no= If

Joni fl(Mll% #I loll I IN
immill] 1k ii "F '

LE - ym ff . _ m 11 if

? i . ? r4 , UiX _ ' '2' (2 406l h r-_ zj w 18 to

T"A

FIGURE 5,5 SAMPLE-5

F

Cj hl)

flows

%1E,, t11Ej #, p' '
s h -xa tl } E d:. i k t i i ,ct t Ic

3
p

.. , kF tl 13 1
3 1 y"i"p 10 , i4.'qi i all

1 11 ', { !! }g 1 k kk {# It 11111 .

:.1lrrazv a.
tg ink

{ yy 1 FF i ; ! T E All,
ipy

;7y.

L"N t IA
Y

no m
t -s 7 r ?2

1 44

-- ------- ---

U 5. SAMPLE-6

52
w

i. Huffman Coding - This is an entropy-based lossless coding algorithm. It applies

variable length codes to a set of data symbols based on the frequency of

occurrence of the data symbols. The more frequently a symbol occurs the shorter

the code. Refer to file huffm2.cpp in Appendix 1 and [11] for a detailed

explanation of the algorithm.

ii. Arithmetic Coding - This is an entropy-based lossless coding scheme. It seeks to

generate a unique tag or identifier for a sequence of data symbols. The code used

for the tag is of variable length, where the length of the code is dependent on the

frequency of occurrence of the sequence. The more frequent a sequence, the

shorter the code. Refer to file arith.cpp in Appendix 1 and [11] for a detailed

explanation of the algorithm.

iii. Silence Compression - This lossy compression technique accomplishes

compression by seeking to replace sections of the audio of relative silence, with a

code that indicates the length of these sections. Upon reconstruction, these

sections of relative silence will be replaced by sections of absolute silence.

Sections of relative silence are determined by a threshold. If any sample

magnitude falls below this threshold, it is deemed a "silent" sample. Refer to file

silencem.cpp in Appendix 1 and [11] for a detailed explanation of the algorithm.

iv. Compand Compression - the compand compression technique is a lossy

compression scheme that achieves compression by reducing the number of bits

used to represent a sample magnitude range. It utilizes a logarithmic transfer

function to map the range of magnitude values into the reduced number of bits in

an efficient manner. For the purpose of this performance analysis, four bits were

53

used to represent each eight-bit sample, giving a compression ratio of 2:1. Refer

to file compandM.cpp in Appendix 1 and [II] for a detailed explanation of the

algorithm.

v. DCT Compression - This compression technique utilized the Discrete Cosine

Transform (DCT) matrix as the means of performing compression. A 16x 16

transform matrix was applied to the audio files that were segmented into 16-

sample vectors. The resulting vectors of transform coefficients were quantized

and encoded using a variable-length encoding scheme. Refer to file oneddctcpp

in Appendix 1 and [11] for a detailed explanation of the DCT algorithm.

vi. DST Compression - This compression technique utilized the Discrete Sine

Transform (DST) matrix as the means of performing compression. A 16x16

transform matrix was applied to the audio files that were segmented into 16-

sample vectors. The resulting vectors of transform coefficients were quantized

and encoded using a variable-length encoding scheme. Refer to file oneddst.cpp

in Appendix 1 for a detailed explanation of the DST algorithm.

vii. Multilevel DCT Compression - These compression techniques utilize multiple

multiplications by a 16x 16 DCT matrix to produce transform coefficients. The

multiplications ranged from 2 to 5. The audio files were segmented into 16

sample vectors, and the resulting vectors of transform coefficients were quantized

and encoded using a variable-length encoding scheme. Refer to file multidtcpp

in Appendix 1 for a detailed explanation of the multilevel DCT algorithm.

viii, DCT/DST Compression - This compression technique utilizes a 16x 16 DCT

matrix and 16x 16 DST matrix to produce its transform coefficients. Each 16

54

sample input vector is multiplied by the DCT matrix then the DST matrix to

produce a 16 element vector of transform coefficients. The resulting vectors are

quantized and encoded using a variable-length encoding scheme. Refer to file

dct-dst.cpp in Appendix 1 for a detailed explanation of the DCT/DST algorithm.

The algorithms were analyzed using the following performance measures:

i. Compression Ratio

ii. Rate

iii. Mean-Squared Error

iv. Signal-to-Noise Ratio

5.2 Results

In the performance analysis, two sets of investigations were made. In the first set of

investigations, the one-level DCT compression algorithm was compared to the Huffman,

Arithmetic, Compand, Silence, and DST compression algorithms. In the second set of

investigations the one-level DCT compression algorithm was compared to the multilevel

DCT compression algorithms, and the DCT/DST compression algorithm.

The performance analysis results were taken and are displayed in Tables 5.1 - 5.14,

as well as, in Figures 5.7. - 5.15. The table values for Tables 5.1 - 5.6 and 5.8 - 5.13

were obtained by compressing and decompressing each audio file sample using the

compression algorithms described previously, and using a software application, eval.exe

to take the required performance measures. The program eval.cpp, as well as, the

55

auxiliary program perfmeas.cpp is listed in Appendix 2. Tables 5.1 - 5.6 correspond to

investigation set #1 and tables 5.8. - 5.13 correspond to investigation set #2. The values

of Table 5.7 were obtained by taking the mean of all the values obtained for tables 5.1 -

5.6 for the corresponding performance measure and compression method. The values of

Table 5.14 were obtained by taking the mean of all the values obtained for tables 5.8 -

5.13 for the corresponding performance measure and compression method.

Figures 5.7 - 5.11 display graphically all the results obtained in tables 5.1 - 5.6.

Figure 5.7 displays the compression ratio performance over the six audio file samples of

the Huffman, Arithmetic, Silence, Compand, DST, and DCT algorithms. Figure 5.8

displays the rate performance, and Figure 5.9 displays the mse performance over the

same audio file samples for the same algorithms. Since both Huffman and Arithmetic

algorithms are lossless, their SNR values are infinite. Therefore, their plots are not

shown in Figures 5.10 and 5.11 that display the SNR performance over the six audio file

samples for the remaining four algorithms. Figure 5.11 only includes the Compand,

DST, and DCT algorithms in order to get a more detailed comparison of these algorithms.

Figures 5.12 - 5.15 display graphically all the results obtained in tables 5.8 - 5.13.

Figure 5.12 displays the compression ratio performance over the six audio file samples of

the one-level DCT (DCT1), the two-level DCT (DCT2), the three-level DCT (DCT3), the

four-level DCT (DCT4), the five-level DCT (DCT5), and the DCT/DST algorithm.

Figure 5.13 displays the rate performance, Figure 5.14 displays the mse performance, and

56

TABLE 5.1 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-1.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
HUFFMAN ARITHMETIC SILENCE COMPAND DST DCT

COMPRESSION RATIO 1.33997 1.34491 1.34441 1.99957 3.41174 385756
RATE (bits/sample) 5.97026 5.94836 5.95059 4.00087 2.34484 2.07385
MEAN-SQUARED ERROR 0 0 1.34843 15.4832 7.58806 5.30778
SIGNAL-TO-NOISE RATIO infinity infinity 12648.7 1101.57 2247.72 3213.37

TABLE 5.2 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-2.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
HUFFMAN ARITHMETIC SILENCE COMPAND DST DCT

COMPRESSION RATIO 1.41282 1.42033 1.03066 1.99817 1.83991 1.85266
RATE (bits/sample) 5.66243 5.63251 7.76199 4.00366 4.34804 4.31813
MEAN-SQUARED ERROR 0 0 0.434223 16.5156 24.1842 24.2506
SIGNAL-TO-NOISE RATIO infinit infini 38681.8 1017.01 694.523 692.621

TABLE 5.3 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-3.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
HUFFMAN ARITHMETIC SILENCE COMPAND DST DCT

COMPRESSION RATIO 1.19929 1.20576 1.00026 1.9997 1.74692 1.77122
RATE (bits/sample) 6.67059 6.6348 7.99792 4.0006 4.5795 4.51667
MEAN-SQUARED ERROR 0 0 0.00889302 16.0757 19.9405 19.766
SIGNAL-TO-NOISE RATIO infinit infini 1982400 1096.65 884.104 891 .911

TABLE 5.4 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-4.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
HUFFMAN ARITHMETIC SILENCE COMPAND DST DCT

COMPRESSION RATIO 1.36151 1.36959 1.26364 1.99856 2.71182 3.12404
RATE (bits/sample) 5.87583 5.84118 6.33093 4.00289 2.95004 2.56079

MEAN-SQUARED ERROR 0 0 1.18712 15.4665 11.2064 9.38673
SIGNAL-TO-NOISE RATIO infinit infini 14468.8 1110.53 1532.64 1829.81

57

TABLE 5.5 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-5.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
HUFFMAN ARITHMETIC SILENCE COMPAND DST DCT

COMPRESSION RATIO 1.45764 1.46379 1.19882 1.9992 2.47772 2.52032
RATE (bits/sample) 5.48831 5.46525 6.67323 4.00161 322878 3.1742
MEAN-SQUARED ERROR 0 0 1.60636 16.9614 15.2916 14.8024
SIGNAL-TO-NOISE RATIO infinit infinit 10499.8 994.403 1102.99 1139.44

TABLE 5.6 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-6.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
HUFFMAN ARITHMETIC SILENCE COMPAND DST DCT

COMPRESSION RATIO 1.21187 1.21678 1.093 1.99862 2.52307 2.73937
RATE (bits/sample) 6.6014 6.57475 7.3193 4.00277 3.17074 2,92038
MEAN-SQUARED ERROR 0 0 0.575567 14.3754 12.3538 11.1662
SIGNAL-TO-NOISE RATIO infinit infinity 29236 1170,56 1362.11 1506.99

TABLE 5.7 PERFORMANCE MEASURE RESULTS TAKING THE MEAN OF THE

RESULTS OF ALL AUDIO FILES USING THE SPECIFIED COMPRESSION

ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
HUFFMAN ARITHMETIC SILENCE COMPAND DST DCT

COMPRESSION RATIO 1,573456667 1.580825 1.354935 2.33217 2.864816667 3,064248333
RATE (bits/samleI 6.959521667 6.927016667 8.117865 4.669001667 3.97512 3.789703333
MEAN-SQUARED ERROR 0 0 1.127825503 18.63986667 17.64269333 16.58035167
SIGNAL-TO-NOISE RATIO infinit infinit 349739.15 1247.521 1487.846167 1735.597

58

Compression Ratio Performance of Assorted Compression Algorithms

4

a 593-

AR THM i

OST

OCT

105

0 -
Sample I Sample 2 Sample 3 Sample 4 Sample S Sample 13

Audio Fie Samples

FIGURE 5.7 Compression Ratio Performance of Specified Compression

Methods

Rate Performance of Assorted Compression Algorithms

6 -- +HUFFM A

U -~ART-VITI

COlePAR

Sample I Sample 2 Sample 3 Sample 4 Sample S Sarrple S

Audio File Samples

FIGURE 5.8 Rate Performance of the Specified Compression Methods

59

FIMean.9 SquaredrormaPerforance Ssorted Compression lgorithm20

UFFMAN

A RIT HI

w ILENCE
15 PAN

1 4CT

Sample I Sample 2 Sample 3 Sample 4 Sample 5 Sample S

Audilo File Samples

FIGURE 5.9 MSE Performance for the Specified Compression Methods

Signal-to-Noise Ratio Performance for Assorted Compression Algorithms

2500000

20000

100000 -~~-- 4S-E

aCOMP
DST

f 11

0 -t

1 2 3 4 5 6
Audio File Samples

FIGURE 5.10 SNR Performance of the Specified Compression Methods

60

SignaFINoUs Rati Perform ance of Com pand, D T, DCLo m r ss o

500 ds(aniid lt

001

TABLE 5.8 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-1.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
DCT1 DCT2 DCT3 DCT4 DCT5 DCT/DST

COMPRESSION RATIO 3.85756 2.57594 3.56155 2.55649 3.3514 2.70407
RATE (bits/sample) 2.07385 3.10566 2.4621 3.12929 2.38707 2.9585
MEAN-SQUARED ERROR 5.30778 18.8946 6.14197 17.3596 9.71887 20.0778
SIGNAL-TO-NOISE RATIO 3213.37 902.685 2776.94 982.502 1754.92 849.487

TABLE 5.9 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-2.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
_DCT1 DCT2 DCT3 DCT4 DCT5 DCT/DST

COMPRESSION RATIO 1.85266 177635 1.81493 1.79597 1.8027 1.76826
RATE (bits/sample) 4.31813 4.50362 4.40788 4.45442 4.4378 4.52423
MEAN-SQUARED ERROR 24.2506 26.5782 25.319 27.0481 25.2894 26.2636
SIGNAL-TO-NOISE RATIO 692.621 631.965 665.684 620.986 664.173 639.535

TABLE 5.10 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-3.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
DCT1 DCT2 DCT3 DCT4 DCT5 DCT/DST

COMPRESSION RATIO 1.77122 1.43352 1.7191 1.43888 1.66639 1.443
RATE (bits/sample) 4.51667 5.58066 4.6536 5.55986 4.80081 5.54399
MEAN-SQUARED ERROR 19766 29,5741 21.1091 29.0772 22.1382 30.1246
SIGNAL-TO-NOISE RATIO 891.911 596.113 835.161 606.301 796.339 585.219

TABLE 5.11 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-4.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
DCT1 DCT2 DCT3 DCT4 DCT5 DCT/DST

COMPRESSION RATIO 3.12404 2.05428 2.90094 2.05611 2.75497 2.13075
RATE (bits/sample) 2.56079 3.89431 2.75772 3.89085 2,90384 3.75455
MEAN-SQUARED ERROR 9.38673 22.886 9.88074 21.4742 10,5998 23.7412
SIGNAL-TO-NOISE RATIO 1829.81 750.5 1738.33 799.84 1620.41 723.466

62

TABLE 5.12 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-5.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
DCT1 DCT2 DCT3 DCT4 DCT5 DCT/DST

COMPRESSION RATIO 2.52032 1.97614 2.43221 1.97557 2.35187 1.9863
RATE (bits/sample) 3.1742 4.0483 3.28919 4.04947 3.40155 4.02758
MEAN-SQUARED ERROR 14.8024 23.5312 15.2325 23.2627 15.8139 23.7062
SIGNAL-TO-NOISE RATIO 1139.44 716.771 1107.27 725.042 1066.56 711.478

TABLE 5.13 PERFORMANCE MEASURE RESULTS TAKEN FOR FILE SAMPLE-6.RAW

USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
DCT1 DCT2 DCT3 DCT4 DCT5 DCT/DST

COMPRESSION RATIO 2.73937 2.00795 2.59465 2.00517 2.46293 2.03101
RATE (bits/sample) 2.92038 3.98416 3.08327 3.98969 3.24816 3.93892
MEAN-SQUARED ERROR 11.1662 23.968 11.8047 22.9675 20.3434 24.798
SIGNAL-TO-NOISE RATIO 1506.99 702.072 1425,47 732.656 827.16 678.575

TABLE 5.14 PERFORMANCE MEASURE RESULTS TAKING THE MEAN OF THE RESULTS

OF ALL AUDIO FILES USING THE SPECIFIED COMPRESSION ALGORITHMS

PERFORMANCE MEASURES COMPRESSION METHODS
DCT1 DCT2 DCT3 DCT4 DCT5 DCT/DST

COMPRESSION RATIO 2.644195 1.970696667 2.503896667 1.971365 2.398376667 2.010565
RATE (bits/sample) 3.26067 4.186118333 3.442293333 4.17893 3.529871667 4.124628333
MEAN-SQUARED ERROR 14.113285 24.23868333 14.91466833 23.53155 17.31726167 2478523333
SIGNAL-TO-NOISE RATIO 1545.690333 716.6843333 1424.809167 744.5545 1121.593667 697.96

63

FIUE.Compression Ratio erfo rmance of' Neted Trnsor Copesin lorm
4 CTCTDCT /S

' 5

Sampl Sape 2 Sample3 Sampl 4 Simpe Sample 6
Ado Fil SampIe

FIGURE 5.12 Compression Ratio Performance of Nested Transform

Compression Methods

Rate Performance of Nested Transform Compression Algorithms

4T

CT/CSr
2

SapeI Sample 2 Sampl 3 Sampe 4 Sample 5 Sample S

Adie in. amples

FIGURE 5.13 Rate Performance of Nested Transform Compression Methods

64

Mean-Squared Eror Performance of Nested Compression Algorithms

30

25r
-- DCT1

S20 - DCT2

OCT3

DCT56 CC

Sapt Sampie2 Sampie3 Sampie4 SampleS SampleS

FIGURE5.14 MSE Performance of Nested Transform Compression Methods

Signal-to-Noise Ratio Performance of Nested Transform Compression
Algorithms

3500

3000

2000OC

00
~DCT!S

500

S mpe S mpi 2 5*mpe3 amp 4 S mpe Semp OS

Audio File Sempiee

FIGURE S.1S SNR Performance of Nested Transform Compression Methods

65

Figure 5.15 displays the SNR performance over the same audio file samples for the same

algorithms.

5.3 Performance Analysis Observations

For the first set of algorithms it can be seen from the tables and the Figure 5.8 that the

DCT algorithm in general provides larger compression ratio values for the audio file

samples used. This is followed in performance by the DST algorithm, the Compand

algorithm, Huffman and Arithmetic algorithms, and the Silence algorithm. From the

tables and Figure 5.9 we observe that the DCT algorithm produces the lowest rate values

for the audio file samples used. This is followed in performance by the DST algorithm,

the Compand algorithm, the Huffman and Arithmetic algorithms, and the Silence

algorithm. With regards to mse and SNR performance, the lossless coding schemes, such

as, the Huffman and Arithmetic coding schemes would by nature give the best

performance. This is seen in the relevant tables and Figures 5.10 and 5.11. Of the

remaining algorithms, the Silence algorithm gave the lowest mse values, this is followed

by the DCT algorithm, the DST algorithm and the Compand algorithm.

Correspondingly, the Silence algorithm gave the largest SNR values of the remaining

algorithms. This algorithm was followed in SNR performance by the DCT algorithm, the

DST algorithm, and the Compand algorithm.

For the second set of algorithms it can be seen from the tables and the Figure 5.12

that the one-level DCT algorithm provides larger compression ratio values for the audio

file samples used. This is followed in performance by the DCT3 algorithm, the DCT5

66

algorithm, the DCT/DST algorithm, the DCT2 algorithm, and the DCT4 algorithm. From

the tables and Figure 5.13 we observe that the DCT1 algorithm produces the lowest rate

values for the audio file samples used. This is followed in performance by the DCT3

algorithm, the DCT5 algorithm, the DCT/DST algorithm, the DCT2 algorithm, and the

DCT4 algorithm. Figure 5.14 reveals that, in terms of mse performance, the DCTI

algorithm gave the lowest mse values. The DCT1 algorithm is followed by the DCT3

algorithm, the DCT5 algorithm, the DCT4 algorithm, the DCT2 algorithm, and the

DCT/DST algorithm. Correspondingly, Figure 5.15 reveals that, in terms of SNR

performance, the DCT1 algorithm gave the highest SNR values. The DCTl algorithm is

followed by the DCT3 algorithm, the DCT5 algorithm, the DCT4 algorithm, the DCT2

algorithm, and the DCT/DST algorithm.

5.4 Assessment of Performance Analysis Results

In general, we desire a compression algorithm that provides a high compression ratio,

low rate, low mse, and high SNR. Of the compression measures used, the compression

ratio measure should be weighted with greater value, because poorer distortion

performance does not always translate into poorer intelligibility. Based on these criteria

the DCT algorithm is the most effective, followed by the DCT3 algorithm, the DCT5

algorithm, and then the DST algorithm.

67

Chapter 6 Application Implementation

6.1 Application Overview

In order to demonstrate the applicability of the transform coding algorithms for the

transmission of audio data across networks one of the algorithms was selected to

compress/expand audio data used in a voice-over-P application. Based on the

compression performance analysis results, the one-level DCT algorithm was chosen as

the compression algorithm to be used in the voice-over-IP application. The reasons for

this choice are as follows:

i. The DCT1 algorithm provides the greatest amount of compression when

compared to the other algorithms.

ii. It provides adequate distortion performance as determined by listening to the

outputs of the DCT1 compression/expansion process.

The voice-over-IP application allows a user to communicate by voice to another user

on a remote computer. The mode of communication is half-duplex. The structure of this

VOIP application is displayed in Figure 6.1. As can be seen from the figure, the

application possesses both hardware and software components. The hardware

components consist of a microphone for audio input, speakers for audio output, and a

sound card that acts as a transducer, converting the audio signals into 8 bit, mono,

unsigned PCM samples and vice versa.

68

SOFTWARE AIWR

COMPESION AUDO

SOCKET AP MI

SOAFTWARR

PC#42

FIGURE 6.1 APPLICATION STRUCTURALDIGA

69

Incoming samples are stored in a memory buffer. The compression function found in

oneddt.cpp in Appendix 1 compresses blocks of audio data read from the memory buffer

using a function found in the readWaveData.cpp file in Appendix 3. This compressed

audio file is then sent across the network via a send function found in the file

voipcomm.cp in Appendix 3.

At the remote end, the compressed audio file is received via the receive function

detailed in voipcomm.cpp. The compressed file is expanded using the expansion

function detailed in oneddct.cpp. The expanded file is output to a memory buffer and

then output to the speakers using the function found in writeWaveData.cpp located in

Appendix 3.

6.2 Application Software Description

The main software function for the VOIP application is described in the flowchart in

Figure 6.2. The actual program can be viewed in the file voipcomm.cpp located in

Appendix 3. The program provides the user with a console interface that allows him to

make one of three choices. This interface is displayed in Figure 6.3. The first choice is

to send a voice message, the second is to receive a voice message, and the third is to exit

the program.

If the user selects the option to send a voice message, he must first specify the host

name of the computer he desires to communicate with. Provided the user of the remote

computer has his application prepared to receive voice messages; a connection is made

between the two applications using the socket API functions. The local user is then

70

t

i J',
t t z

----------- - -

.

e

r,

.

g

FIGURE 6.2 VOICE-OVER-IP APPLICATION FLOWCHART

71

tt

a

Y

7

FIGURE . CONSOLE A U INTERFACE F I APPLICATION

e i s 1 1 1 - _:

s 1 t - t:i 1 s t E t t

t

t

1 t I t ' J 1 f 1 2

1 J l?

6

1 . i Y 1

Y F t

_ - t 1 1 J 1 , f,.

f. J 1 a i . , t. .1

t 1

i

a t 1

FIGURE 6.4 CONSOLE AUDIO RECORDING INTERFACE I

APPLICATION

72

given the opportunity to record up to ten seconds of audio input from the microphone

(refer to Figure 6.4). Once he has recorded his message, the message is compressed, and

the size of the compressed audio file is obtained and is sent to the remote end. Upon

receiving an acknowledgement message from the remote end, the compressed message is

sent and the application returns to the main menu of options.

If the user selects the option to receive a voice message, the application will enter a

waiting mode until it is contacted by a remote application. Once a connection request has

been received and accepted from a remote application, the local application receives the

file size information of the incoming file and sends an acknowledgement message. The

application then waits again to receive the incoming compressed audio message. Once

received, the compressed message is written from the memory buffer to a file. This file is

expanded and then output to the speakers. At this point the application returns to the

main menu of options.

The compression function is described in more detail in the flowchart displayed in

Figure 6.5. The compression function begins by opening the input and output files used

in the compression process. The quantization vector and the DCT matrix are then

initialized. The audio samples are then read in to fill a vector. Once a vector is filled, a

forward DCT transform is performed to produce a corresponding vector of coefficients.

These coefficients are then quantized and encoded before they are stored in the

compression output file. This process is continued until we reach the end of the input

file. At this point the transform is applied to any remaining samples, if there are any, and

these are quantized, encoded and stored in the output file, along with an end-of-file code.

The input and output files are then closed and the function returns.

73

FIGURE 6.5 DCT COMPRESSION F

74

_ ._, _..

F

p

Ed'

S t

i

FIGURE 6.6 DCT EXPANSION FLOWCHART

7

The expansion function is described in more detail in the flowchart displayed in

Figure 6.6. The expansion function begins by opening the input and output files used in

the expansion process. The quantization and the DCT transpose matrix are then

initialized. The coefficients are then obtained from the input file by decoding the input

file. The input file is decoded until a vector can be filled with coefficients. The resultant

vector of coefficients is then dequantized. This vector then undergoes an inverse DCT

transform, and the output vector consisting of reconstructed audio samples is then stored

in the output file. This process is continued until we reach the end-of-file code. At this

point the input and output files are then closed and the function returns.

76

Chapter 7 Conclusions and Recommendations

7.1 General Conclusions

By comparing the multilevel Discrete Cosine transforms to the one-level DCT, it was

observed that for this data set of audio samples, the one-level DCT is more effective. It

was also observed that the DCT3 and DCT5 algorithms produce a better compression

performance than the one-level DST for this data set. This may suggest that these

transforms may provide an alternative method of optimal compression for an audio signal

with different statistical characteristics from those used. This in turn would lead to a

possible compression application in which these transforms, along with, the one-level

DCT and DST, among others, can form a set of bases, that may be applied to short time

periods of the audio signal. The actual transform that is chosen is selected based on

which transform gives the best compression/distortion performance for that particular

section of the audio signal. Such an application would be potentially be more effective in

compression performance than a fixed DCT algorithm due to the non-stationary nature of

audio signals. One of the disadvantages of the multilevel DCT algorithms are that by

their very nature they will involve more coding time when compared to the one-level

transforms. This makes their implementation in real-time applications prohibitive.

With regards to the voice-over-IP application developed. The one-level DCT

algorithm has shown itself to be a suitable coding algorithm for VOIP applications. It

produces an average compression ratio of 2.6, which is equivalent to a bit rate of 24.6

kbps for the standard 64 kbps PCM input. This is a significant reduction in the

bandwidth utilized. The coding time for the algorithm was consistently less than 1

77

second for <= 10 seconds of recorded audio. The VOIP application can also be

developed in the following ways:

1. An application with full duplex capability can be developed.

2. The interface for the application can be upgraded to a more user-friendly

Graphic User Interface (GUI)

3. The application can be expanded to provide more communication services to

the user. These include e-mail, voicemail, live-chat, and VOIP via the

network.

7.2 Contributions of Thesis Work

1. Thesis research has provided 2 multilevel compression algorithms that give

compression performance comparable to the one-level DCT. This statement is

supported by the average Compression Ratio and average Signal-to-Noise Ratio

values obtained in the performance results section, and are summarized in Table

7.1.

As can be seen from the table, the two multilevel DCT algorithms provide

intermediate compression/distortion performance, that is, less than the one-level

DCT algorithm, but greater than the one-level DST algorithm.

2. This thesis has also contributed a rudimentary half-duplex voice-over-IP (VOIP)

software application, which can serve as the foundation for further VOIP

application research and development in the future. The application allows a

78

computer user to send/receive up to 10 seconds of audio information to/from a

remote computer user. Bandwidth reduction of the audio information is

accomplished by using one of the transform coding compression techniques.

3. The thesis research has also resulted in a compression performance analysis

software application (evalexe). This application allows you to measure

compression ratio, rate, entropy, mean-squared-error (mse), and Signal-to-Noise

Ratio (SNR), once the user has supplied the appropriate compression/expansion

file information.

79

Table 7.1 Average Compression Ratio/SNR Performance of Selecte

Transform Coding Algorithms

Algorithm Avg. Com ression Ratio Avg. SNR
One-level DCT 2.644 1545.690
Three-level DCT 2.504 1424.809
Five-level DCT 2.398 1121.594
One-level DST 2.452 1304.015

80

References

[1] K. Sayhood, Introduction to Data Compression, San Francisco: Morgan Kaufmann,
2000.

[2] J. Stojaspal, Wake-up Call. F-Europe - A Time Special Report, Time-Europe
(tt .//w time~com/tine/europe/specials/eeurope/field/telecoms.tl.)

[3] A. Gersho, Advances in Speech and Audio Compression, Proceedings of IEEE, vol.
82, no. 6, pp. 900-918, June 1994.

[4] N. S. Jayant, Digital Coding of Speech Waveforms: PCM, DPCM, and DM
Quantizers, Proceedings of IEEE, vol. 62, no. 5, pp. 611 - 632, May 1974.

[5] D. L. Cohn and J.L. Melsa, The Residual Encoder - An Improved ADPCM System
for Speech Digitization, IEEE Transactions on Communications, vol. 23, no. 9, pp. 935 -

941, September 1975.

[6] M. Hansen, Assessment and prediction of speech transmission quality with an

auditory processing model, Ph.D. Dissertation, University of Oldenburg, Oldenburg,
Germany, 1998. (htt ://)bis.uni-olden)urg.de/dissertation/hanass98/inhal).html)

[7] J. D. Gibson, Adaptive Prediction in Speech Differential Encoding Systems,
Proceedings of IEEE, vol. 68, no. 6, pp. 488 - 525, June 1980.

[8] K. R. Rao and P. Yip, Discrete Cosine Transform.: Algorithms, Advantages,
Applications, San Diego: Academic Press, 1990.

[9] D. E. Comer, Computer Networks and Internets, Upper Saddle River, New Jersey:
Prentice Hall, 1999.

[10] Y. Be'ery, Z. Shpiro, T. Simehony, L. Shatz, and J. Piasetzky, Advances in Speech
Coding: An Efficient Variable-Bit-Rate Low-Delay CELP (VBR-LD-CELP) Coder,
Boston: Kluwer Academic Publishers, 1991.

81

[11] M. Nelson and J. L. Gailly, The Data Compression Book, New York: M&T Books,
1996.

82

APPENDIX

SOURCE CODE

83

Appendix 1 - Compression Algorithm C++ ilies

// Program: DCT Compression/Expansion Functions
// Filename: oneddct.cpp
// Description: This module supplies audio compression/expansion
// functions that utilize a 1-D DCT as the means of
// compression.
// Author: Craig Chin
// Date : 01/29/01
// Notes: The code is a modification of the source code DCT.C obtained
// from "The Data Compression Book", by M. Nelson and J.L.

// Gailly. This file must be linked to the files errhand.cpp, bitio.cpp,
// and utility func.cpp for proper functionality.

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <time.h>
#include "bitio.h"
#include "errhand.h"
#include "utilityfunc.h"

// N defines the vector length, and the DCT matrix dimensions.

#defineN 16

// This macro is used to ensure the correct rounding of integer values.

#define ROUND(a) (((a)<0) ? (int)((a) - 0.5) : (int)((a) + 0.5))

// Auxiliary Function Prototypes.

void Initialize(int quality);
int InputCode(BIT_FILE *input);
void OutputCode(BIT_FILE *outputfile, int code);
void WriteTformData(BITFILE *outputfile, int outputvector[N]);
void WriteAudioData(FILE *output, unsigned char output vector[N]);
void FowardDCT(unsigned char input[N], int output[N]);
void InverseDCT(int input[N], unsigned char output[N]);
void WriteEOFCode(BITFILE *output_file);

// These functions perform 1-D DCT compression and expansion

void OneDDCTC(void);

84

void OneDDCTE(void);

// These funtions use a combination of the 1-D DCT transform and Adaptive
// Huffman coding to produce compression.

void Dct 1 dAhuffC(void);
void Dctl dAhuffE(void);

// These functions are used to link the DCT algorithm to the Adaptive Huffman
// algorithm in order to obtain DCT-Adaptive Huffman compression/expansion
// functions. Refer to file ahuffcpp.

void PipeAHuffC(char inFileName[], char outFileName[]);
void PipeAluffE(char inFileName[], char outFileName[]);

// These functions are used to compress and expand files for a client-server
// application.

void send dctC(char inFileName[], char outFileName[]);
void recv_dctE(char inFileName[], char outFileName[]);

// Global data used at various places in the program.

double C[N][N];
double Ct[N][N];
int InputRunLength;
int OutputRunLength;
int Quantum[N];

// The initialization routine has the job of setting up the cosine
// transform matrix, as well as its transpose matrix. These two matrices
// are used to caculate the DCT and its inverse. In addition, the
// quantization matrix is set up based on the quality parameter that is
// input. The two run-length variables are set to zero.

void Initialize(int quality)
{

int i;
int j;
double pi = atan(1.0)*4.0;

for(i = 0; i < N; i++)
Quantum[i] = 1 + ((1 + i) * quality);

OutputRunLength = 0;

85

InputRunLength = 0;

forOj=0;j <N;j++)
{

C[0][j] = 1.0/sqrt((double)N);
Ct[j][0] =C[];

}
for(i= 1;i <N;i++)

for(j =0;j <N;j++)
{

C[i][j] = sqrt(2.0/N)*
cos(pi*(2*j+1)*i/(2.0*N));

Ct[j][i] = Ci[]
}

}

// This routine reads in a transform code from a compressed file. In
// general the code consists of two components, a bit count, and an
// encoded value. There is also a code to signal the end of the compressed
// file. The bit count is encoded as a prefix code with the following
// binary values:
//
// Number of Bits Binary Code
// 0 00

// 1 010

// 2 011
// 3 10000
// 4 10001
// 5 10010
// 6 10011
// 7 10100
// 8 10101
// 9 10110
// 10 10111

//
// The code value used to signal the End-Of-File is 11111.
//
// A bit count of zero is followed by a four-bit number telling how many

// zeros are in the encoded run. A value of one through ten indicates a

// code value follows, which takes up that many bits. The encoding of
// values into this system has the following characteristics:
//
// Bit Count Amplitudes

// 1 -1, 1
// 2 -3 to -2,2 to 3

86

3 -7 to -4,4 to 7
4 -15 to -8, 8to 15
5 -31 to-16, 16 to 31
6 -63 to -32,32 to64

H 7 -127 to-64,64to 127
H 8 -255 to-128, 128 to255

9 -511 to-256,256to511
10 -1023 to-512,512 to 1023

int InputCode(BITFILE *inputfile)

{
int bitcount;
int result;

if(InputRunLength > 0)

{
InputRunLength--;

return(0);

}
bit_count = (int)InputBits(input_file, 2);
if (bit count == 0)
{

InputRunLength = (int)InputBits(inputfile, 4);
return(0);

}
if (bitcount == 1)

{
bitcount = (int) InputBits(input_file, 1) + 1;

result = (int) InputBits(input_file, bitcount);
if (result & (I << (bit count - 1)))
return (result);
return(result - (1 << bit-count) + 1);

}
if (bit count == 2)
{

bitcount = (int) InputBits(input_file, 3) + (bit _count << 3) - 13;
result = (int) InputBits(input_file, bit count);

if (result & (1 << (bit-count - 1)))
return (result);
return(result - (1 << bit-count) + 1);

}
else

{
bitcount = (int) InputBits(input_file, 3) + (bitcount << 3);

if (bit-count == 31)

87

return (-12375);

else

{
printf("There has been an error in input file terminationAn");

retur(O);

}
}

return(- 1);
}

1/ This routine outputs a code to the compressed transform file. For specs
// on the code format, see the comments that accompany InputCodeo.

void OutputCode(BITFILE *outputfile, int code)

{
int top of_range;
int abscode;
int bit_count;

if(code == 0)

{
OutputRunLength++;

return;

I

if (OutputRunLength != 0)

{
while (OutputRunLength > 0)

{
OutputBits(outputfile, OL, 2);

if (OutputRunLength <= 16)

{
OutputBits(output-file, (unsigned long)(OutputRunLength 1), 4);

OutputRunLength = 0;

}
else

{
OutputBits(outputfile, 15L, 4);
OutputRunLength -= 16;

}
}

if (code < 0)
abs code = -code;

88

else
abs_code = code;

topof range = 1;
bitcount = 1;
while (abs_code > top-of range)

{
bit_count++;

top of range = ((top-of range + 1) * 2) - 1;

}
if (bit count < 3)

OutputBits(outputfile, (unsigned long)(bit_count + 1), 3);
else

OutputBits(outputfile, (unsigned long)(bit_count + 13), 5);
if (code > 0)

OutputBits(outputfile, (unsigned long)code, bitcount);
else

OutputBits(outputfile, (unsigned long)(code + topof range), bit_count);

// This routine takes transform data, quantizes it, and outputs the code.

void WriteTformData(BITFILE *output_file, int output-vector[N])

{
int i;
double result;

for(i = 0; i < N; i++)

{
result = output vector[i]/Quantum[i];

OutputCode(output_file, ROUND(result));

}
}

// This routine writes an End-of-File prefix code to compressed file.

void WriteEOFCode(BITFILE *outputfile)
{

OutputBits(outputfile, 31L, 5);

}

// This routine writes out the audio data to raw format file.

void WriteAudioData(FILE *output, unsigned char outputvector[N])

{
int i;

89

for(i = 0; i < N; i++)
putc(output-vector[i], output);

}

// The Foward DCT routine implements the matrix function:
// DCT = C * input-vector.

void FowardDCT(unsigned char input[N], it output[N])

{
double temp;
int i;
int k;

//MatrixMultiply(output, C, input)
for (i = 0; i <N; i++)

{
temp = 0.0;

for (k =0; k <N; k++)
temp += C[i][k] * ((int)input[k] - 128);

output[i] = ROUND(temp);

}

// The inverse DCT routine implements the matrix function:
// output-vector = Ct * DCT

void InverseDCT(int DCT[N], unsigned char output[N])

{
double temp;
int i;
int k;

//MatrixMultiply(output, Ct, DCT)
for (i = 0; i < N; i++)

{
temp = 0.0;

for (k = 0; k < N; k++)
temp += Ct[i][k] * DCT[k];

temp += 128.0;
if (temp < 0)

output[i] = 0;
else if (temp > 255)

output[i] = 255;
else

output[i]= (unsigned char) ROUND(temp);

90

// This is a 1-D DCT compression function. The compression function requires
// a user input, the quality value, ranging from 0 - 25.

void OneDDCTC(void)

{
char inFileName[80];
char outFileName[80];
FILE *input;
BIT_FILE *output;
int i;
int c;
unsigned char inputvector[N];
int output vector [N];
int quality;
char *CompressionName = "DCT algorithm";
time t first, second;
double time_diff;

// Obtain and locate the input and output files for compression

cout << "Enter the input filename.An";
cin >> inFileName;
input = fopen(inFileName, "rb");
if (input == NULL)

fatal error("Error opening %s for input\n", inFileName);
cout << "Enter the output filenameAn";
cin >> outFileName;
output = OpenOutputBitFile(outFileName);
if (output == NULL)

fatal-error("Error opening %s for output\n", outFileName);

// Obtain quality factor

cout << "You are required to enter a quality factor that determinesln";
cout << "the degree of quantization. Quality values range from 0-25\n";
cout << "Please enter the value you desireAn";
cin >> quality;
if (quality < 0 11 quality > 25)

{
fatalerror("Illegal quality factor of %d\n", quality);
quality = 3;

91

printf("Using quality factor of %d\n", quality);
}
printf(" nCompressing %s to %s\n", inFileName, outFileName);
printf("Using %sAn", CompressionName);

first = time(NULL);

// Initialize quantization and DCT matrix values and
// write quality value to compression output

Initialize(quality);
OutputBits(output, (unsigned long) quality, 8);

do
{

// fill input vector with audio file input

for (i = 0; i < N; i++)

{
c = getc(input);

// if file size is not a multiple of N fill remaining elements with
// zeros.

if (c == EOF)
{

for (;i < N; i++)
input-vector[i] = 0;

break;

}
else

input vector[i] = (unsigned char) c;

}

// Perform DCT transform and write the data to compression output file

FowardDCT(inputvector, output-vector);
WriteTformData(output, output vector);
if (c ==EOF)
WriteEOFCode(output);

}while(c != EOF);

// Calculate time for completion of compression algorithm.

92

second = time(NULL);
time diff = difftime(second, first);
cout << "\nTime for algorithm completion " timediff << " seconds.An";

// Close Input and Output files. Display Compression Information

CloseOutputBitFile(output);
fclose(input);
print-ratios(inFileName, outFileName);

}

// This is a 1-D DCT expansion function. The expansion function reads in
// the compressed data from the DCT file, then writes out the decompressed
// audio file.

void OneDDCTE(void)

{
char inFileName[80];
char outFileName[80];
BITFILE *input;
FILE *output;
int i;
int input vector[N];

unsigned char output-vector[N];
int quality;
char *CompressionName = "DCT algorithm";
int EOFTest;
timet first, second;
double time_diff;

// Obtain and locate the input and output files for expansion

cout << "Enter the input filenameAn";
cn >> inFileName;
input = OpenlnputBitFile(inFileName);
if (input == NULL)

fatalerror("Error opening %s for input\n", inFileName);
cout << "Enter the output filename.\n";
cin >> outFileName;
output = fopen(outFileName, "wb");
if (output == NULL)

fatalerror("Error opening %s for output\n", outFileName);
printf("\nExpanding %s to %s\n", inFileName, outFileName);

printf("Using %sAn", CompressionName);

93

first = time(NULL);

// Read quality value from the compressed file and initialize
// quantization and DCT matrix values.

quality = (int)InputBits(input, 8);
printf("\rUsing quality factor of %d\n", quality);
Initialize(quality);

// Decode compressed input, perform inverse transform, and write
// audio data to expansion output file

do
{

for (i = O; i < N; i++)

{
OF Test = InputCode(input);

if (EOFTest == 12375)
break;

else
input-vector[i] = EOFTest * Quantum[i];

}
if (EOFTest != -12375)
{
InverseDCT(input-vector, output-vector);
WriteAudioData(output, output vector);

}
}while(EOFTest != -12375);

// Calculate time for completion of expansion algorithm.

second = time(NULL);
time diff = difftime(second, first);
cout << "\nTime for algorithm completion =<" time_diff << " seconds.\n";

// Close Input and Output files.

CloselnputBitFile(input);
fclose(output);
putc('\n', stdout);

}

// This is a DCT/Adaptive Huffman compression function. The compression
// function utilizes a 1-D DCT compression algorithm followed by an Adaptive
// Huffman algorithm to obtain a compressed output. The function definition

94

// of the adaptive Huffman algorithm is found in file ahuffcpp. The
// program requires a user input, the quality value, ranging from 0 - 25.

void Dct I dAhuffC(void)
{

char inFileName[80], outFileName[80];
FILE *input;
BIT_FILE *interfile;
int i, c, quality, output vector [N];
unsigned char input vector[N];
char *CompressionNae = "1-D DCT - Adaptive Huffman algorithm";
timet first, second;
double time_diff;

/ Obtain input and output filenames. Locate input and interim files.

cout << "Enter the input filename.\n";
cin >> inFileName;
input = fopen(inFileName, "rb");
if (input = NULL)

fatalerror("Error opening %s for input\n", inFileName);
cout << "Enter the output filename.\n";
cin >> outFileName;

interfile = OpenOutputBitFile("interfile");
if (interfile == NULL)

fatal error("Error opening %s for output\n", "interfile");

// Obtain quality factor

cout < "You are required to enter a quality factor that determines\n";
cout << "the degree of quantization. Quality values range from 0-25\n";
cout << "Please enter the value you desire.\n";
cin >> quality;
if (quality < 0 fl quality > 25)

{
fatal error("Illegal quality factor of %d\n", quality);
quality 3;
printf("Using quality factor of %d\n", quality);

}
printf("\nCompressing %s to %s\n", inFileName, outFileName);
printf("Using %s.\n", CompressionName);

first = time(NULL);

//Initialize quantization and DCT matrix values and

95

// write quality value to compression output

Initialize(quality);

OutputBits(interfile, (unsigned long) quality, 8);

do
{

// fill input vector with audio file input

for (i = O; i < N; i++)

{
c = getc(input);

/ if file size is not a multiple of N fill remaining elements with
// zeros.

if (c == EOF)
{

for (;i <N; i++)
inputvector[i] = 0;

break;

}
else

input vector[i] = (unsigned char) c;
}

// Perform DCT transform and write the data to interim file

FowardDCT(input-vector, output_vector);
WriteTformData(interfile, outputvector);
if (c ==EOF)
WriteEOFCode(interfile);

}while(c != EOF);

//Close Input and Interim files.

CloseOutputBitFile(interfile);
fclose(input);

//Call Adaptive Huffman Compression Algorithm

PipeAHuffCQ"interfile", outFileName);

// Calculate time for completion of compression algorithm.

96

second = time(NULL);
time diff= difftime(second, first);
cout << "\nTime for algorithm completion =<" timediff << " seconds.\n";

//Display Compression Information

printratios(inFileName, outFileName);

}

// This is a DCT/Adaptive Huffman expansion function. The function reads in
/the compressed data and decompresses it using an adaptive Huffman
// algorithm followed by a 1-D DCT algorithm. The decompressed output is
// written to an audio file. The function definition of the adaptive
// Huffman algorithm is found in file ahuff.cpp.

void Dct l dAhuffE(void)
{

char inFileName[80], outFileName[80];
BITFILE *interfile;
FILE *output;
it i, input _vector[N], quality, EOFTest;
unsigned char outputvector[N];
char *CompressionName = "1-D DCT - Adaptive Huffman algorithm";
time t first, second;
double time_diff;

// Obtain input and output filenames. Locate output file.

cout << "Enter the input filename.\n";
cin >> inFileName;
cout << "Enter the output filename.n";
cin >> outFileName;
output = fopen(outFileName, "wb");
if (output == NULL)

fatalerror("Error opening %s for output\n", outFileName);
printf("\nExpanding %s to %s\n", inFileName, outFileName);
printf("Using %s.\n", CompressionName);

first = time(NULL);

// expand input file using the adaptive Huffman algorithm

PipeAHuffE(inFileName, "interfile");

// open Adaptive Huffman output (interim file) for use in DCT algorithm

97

interfile = OpenlnputBitFile("interfile");
if (interfile == NULL)

fatal error("Error opening %s for input\n", "interfile");

I/ Read quality value from the compressed file and initialize
// quantization and DCT matrix values.

quality = (int)InputBits(interfile, 8);
printf("\rUsing quality factor of %d\n", quality);
Initialize(quality);

/ Decode compressed input, perform inverse transform, and write
// audio data to expansion output file

do

{
for (i = ; i < N; i++)

{
EOFTest = InputCode(interfile);
if (EOFTest == -12375)

break;
else
input vector[i] = EOFTest * Quantum[i];

}
if (EOFTest != -12375)
{
InverseDCT(input-vector, output-vector);
WriteAudioData(output, output-vector);

I
}while(EOFTest != -12375);

// Calculate time for completion of expansion algorithm.

second = time(L);
time diff= difftime(second, first);
cout << "\nTime for algorithm completion = timediff << " seconds.An";

// Close Input and Output files.

CloselnputBitFile(interfile);
fclose(output);
putc('\n', stdout);

98

// This is the compression routine used to compress the file to be sent
/to a remote computer. Compression is obtained by using a 1-D DCT
// algorithm with a fixed quality value of 1.

void senddctC(char inFileName[], char outFileNamne[])

{
FILE *input;
BITFILE *output;
int i;
int c;
unsigned char input-vector[N];
int output-vector [N];
const it quality = 1;
char *CompressionName = "DCT algorithm";

/1 Obtain and locate the input and output files for compression

input = fopen(inFileName, "rb");
if (input == NULL)

fatalerror("Error opening %s for input\n", inFileName);
output = OpenOutputBitFile(outFileName);
if (output == NULL)

fatal error("Error opening %s for output\n", outFileName);
printf("\nCompressing %s to %s\n", inFileName, outFileName);
printf("Using %sAn", CompressionName);

// Initialize quantization and DCT matrix values

Initialize(quality);

do

{
// fill input vector with audio file input

for (i = 0; i < N; i++)
{
c = getc(input);

// if file size is not a multiple of N fill remaining elements with
// zeros.

if (c == EOF)

{
for (;i < N; i++)

input-vector[i] = 0;

99

break;
}
else

input vector[i] = (unsigned char) c;

}

// Perform DCT transform and write the data to compression output file

FowardDCT(inputvector, output-vector);
WriteTformData(output, outputvector);

if (c ==EOF)
WriteEOFCode(output);

}while(c != EOF);

// Close Input and Output files.

CloseOutputBitFile(output);
fclose(input);

/ Display Compression Information

print-ratios(inFileName, outFileName);

}

// This is the expansion routine used to expand the compressed file
// sent from the remote computer. Expansion is obtained by using a 1-D DCT
// algorithm with a fixed quality value of 1.

void recvdctE(char inFileName[], char outFileName[])

{
BITFILE *input;
FILE *output;
int i;
int EOFTest;
int input-vector[N];
unsigned char output-vector[N];
const int quality = 1;
char *CompressionName = "DCT algorithm";

// Obtain and locate the input and output files for expansion

input = Open nputBitFile(inFileName);
if (input == NULL)

fatal error("Error opening %s for input\n", inFileName);

100

output = fopen(outFileName, "wb");
if (output == NULL)

fatal error("Error opening %s for output\n", outFileName);
printf("\nExpanding %s to %s\n", inFileName, outFileName);
printf("Using %s.\n", CompressionName);
printf("\rUsing quality factor of %d\n", quality);

// Initialize quantization and DCT matrix values.

Initialize(quality);

// Decode compressed input, perform inverse transform, and write
// audio data to expansion output file

do

{
for (i = 0; i < N; i++)

{
EOFTest = JnputCode(input);
if (EOFTest == -12375)

break;
else
input-vector[i] = EOFTest * Quantum[i];

}
if (EOFTest != -12375)

{
InverseDCT(inputvector, output-vector);
WriteAudioData(output, output-vector);

}
}while(EOFTest != -12375);

// Close Input and Output files.

CloselnputBitFile(input);
fclose(output);
putc('\n', stdout);

Program: DST Compression/Expansion Functions

Filename: oneddst.cpp
Description: This module supplies audio compression/expansion functions that

utilize a 1-D DST as the means of compression.

Author: Craig Chin
Date : 02/06/01

101

// Notes: The code is a modification of the source code DCT.C obtained
// from "The Data Compression Book", by M. Nelson and J.L.

// Gailly. This file must be linked to the files oneddct.cpp,
// errhand.cpp, bitio.cpp, and utilityfunc.cpp for proper
// functionality.

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "bitio.h"
#include "errhand.h"
#include "utility func.h"

// N defines the vector length, and the DST matrix dimensions

#define N 16

// This macro is used to ensure the correct rounding of integer values

#define ROUND(a) (((a)<0) ? (int)((a) - 0.5) : (int)((a) + 0.5))

// Auxiliary Function Prototypes. All unspecified function definitions
// may be found in the file ONEDDCT.CPP

void Slnitialize(int quality);
int InputCode(BITFILE *input);
void OutputCode(BITFILE *output file, int code);
void WriteTformData(BITFILE *output_file, int outputvector[N]);
void WriteAudioData(FILE *output, unsigned char output vector[N]);
void FowardDST(unsigned char input[N], int output[N]);
void InverseDST(int input[N], unsigned char output[N]);
void WriteEOFCode(BIT FILE *output_file);

// Global data used at various places in this program. (Some are defined
//in ONEDDCT.CPP

double S[N][N];
double St[N][N];
extern int InputRunLength;
extern int OutputRunLength;
extern int Quantum[N];

102

// The initialization routine has the job of setting up the sine
//transform matrix, as well as its transpose matrix. These two matrices
// are used to caculate the DST and its inverse. In addition, the
// quantization matrix is set up based on the quality parameter that is
/input. The two run-length variables are set to zero.

void SInitialize(int quality)

{
int i;
int j;
double pi = atan(1.0)*4.0;

for(i = 0; i <N; i++)
Quantum[i] = 1 + ((1 + i) * quality);

OutputRunLength = 0;
InputRunLength = 0;

for (i = 0; i < N; i++)
for(j =0;j <N;j++)
{

S[i][j] = sqrt(2.0/(double)(N +1))*
sin(pi*(i+1)*(j+1)/(double)(N+1));

StWj][i]= i][J];
}

}

// The Foward DST routine implements the matrix function:
//
// DST = S * input vector

void FowardDST(unsigned char input[N], int output[N])

{
double temp;
int i;
int k;

// MatrixMultiply(output, S, input)

for (i = 0; i < N; i++)

{
temp = 0.0;
for (k = 0; k < N; k++)
temp += S[i][k] * ((int)input[k] - 128);
output[i] = ROUND(temp);

103

/ The inverse DCT routine implements the matrix function:
//
// output-vector = St * DST

void InverseDST(int DST[N], unsigned char output[N])

{
double temp;
int i;
int k;

// MatrixMultiply(output, St, DST)

for (i = 0; i < N; i++)

{
temp = 0.0;

for (k = 0; k < N; k++)
temp += St[i][k] * DST[k];

temp += 128.0;
if (temp < 0)

output[i] = 0;
else if (temp > 255)

output[i] = 255;
else

output[i] = (unsigned char) ROUND(temp);

}

// This is a 1-D DST compression function. The compression function requires

// a user input, the quality value, ranging from 0 - 25.

void OneDDSTC(void)
{

char inFileName[80];
char outFileName[80];
FILE *input;
BIT_FILE *output;
int i, c, quality;
unsigned char inputvector[N];
int output-vector [N];
char *CompressionName = "DCT algorithm";
time_t first, second;

104

double time_diff

// Obtain and locate the input and output files for compression

cout << "Enter the input filename.n";
cin >> inFileName;
input = fopen(inFileName, "rb");
if (input == NULL)

fatal _error("Error opening %s for input\n", inFileName);
cout << "Enter the output filenameAn";
cin >> outFileName;
output = OpenOutputBitFile(outFileName);
if (output == NULL)

fatal error("Error opening %s for output\n", outFileName);

// Obtain quality factor

cout << "You are required to enter a quality factor that determines\n";
cout << "the degree of quantization. Quality values range from 0-25\n";
cout << "Please enter the value you desireAn";
cin >> quality;
if (quality < 0 II quality > 25)
{

fatal error("Illegal quality factor of %d\n", quality);
quality = 3;
printf("Using quality factor of %d\n", quality);

}
printf("\nCompressing %s to %s\n", inFileName, outFileName);
printf("Using %sAn", CompressionName);

first = time(NULL);

// Initialize quantization and DST matrix values and
// write quality value to compression output

S nitialize(quality);
OutputBits(output, (unsigned long) quality, 8);

do

{
// fill input vector with audio file input

for (i= 0; i < N; i++)

{
c = getc(input);

105

/ if file size is not a multiple of N fill remaining elements with
// zeros.

if (c == EOF)

{
for (;i < N; i++)

inputvector[i] = 0;
break;

}
else

input vector[i] = (unsigned char) c;

}
FowardDST(input vector, outputvector);
WriteTformData(output, output-vector);
if (c ==EOF)
WriteEOFCode(output);

}while(c != BOF);

second = time(NULL);
time diff = difftime(second, first);
cout << "\nTime for algorithm completion "<< time_diff << " seconds.\n";

// Close Input and Output files. Display Compression Information

CloseOutputBitFile(output);
fclose(input);
printratios(inFileName, outFileName);

}

// The expansion routine reads in the compressed data from the DST file,
/ then writes out the decompressed audio file.

void OneDDSTE(void)
{

char inFileName[8O];
char outFileName[80];
BIT_FILE *input;
FILE *output;
int i, quality, EOFTest, input-vector[N] ;
unsigned char output _vector[N];

char *CompressionName = "DCT algorithm";
time t first, second;
double time_diff;

106

// Obtain and locate the input and output files for expansion

cout << "Enter the input filenameAn";
ci >> inFileName;
input = OpenlnputBitFile(inFileName);
if (input == NULL)

fatal error("Error opening %s for input\n", inFileName);
cout << "Enter the output filenameAn";
cin >> outFileName;
output = fopen(outFileName, "wb");
if (output == NULL)

fatal error("Error opening %s for output\n", outFileName);
printf("\nExpanding %s to %s\n", inFileName, outFileName);
printf("Using %sAn", CompressionName);

first = time(NULL);

// Read quality value from the compressed file and initialize
// quantization and DCT matrix values.

quality = (int)InputBits(input, 8);
printf("\rUsing quality factor of %d\n", quality);
S nitialize(quality);

// Decode compressed input, perform inverse transform, and write
// audio data to expansion output file

do

{
for (i = 0; i < N; i++)

{
EOFTest = InputCode(input);
if (EOFTest == -12375)

break;
else
input vector[i] = EOFTest * Quantum[i];

}
if (EOFTest != -12375)
{
InverseDST(inputvector, output-vector);
WriteAudioData(output, output-vector);

}
}while(EOFTest != -12375);

107

// Calculate time for completion of expansion algorithm.

second = time(NULL);
time diff= difftime(second, first);
cout << "\nTime for algorithm completion =" << timediff << " seconds.\n";

// Close Input and Output files.

Close nputBitFile(input);
fclose(output);
putc('\n', stdout);

}

// Program: Multi-Level DCT Compression/Expansion Functions
// Filename: multiDCT.cpp
// Description: This module implements an audio compression program based on
// the 1-D DCT. It performs the DCT matrix multiplication a
// specified number of times for both the compression and expansion
// algorithms.
// Author: Craig Chin
// Date : 02/05/01
// Notes: The code is a modification of the source code DCT.C obtained
// from "The Data Compression Book", by M. Nelson and J.L.

// Gailly. This file must be linked to the files oneddct.cpp,
// errhand.cpp, bitio.cpp, and utilityfunc.cpp for proper
// functionality.

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "bitio.h"
#include "errhand.h"
#include "utilityfunc.h"

// N defines the vector length, and the DCT matrix dimensions

#define N 16

// This macro is used to ensure the correct rounding of integer values

#define ROUND(a) (((a)<0) ? (int)((a) - 0.5) : (int)((a) + 0.5))

// Auxiliary Function Prototypes. All unavailable function definitions may be

108

// found in oneddct.cpp

void Initialize(int quality);
int InputCode(BIT_FILE *input);
void OutputCode(BITFILE *output file, int code);
void WriteTformData(BITFILE *outputfile, int output vector[N]);
void WriteAudioData(FILE *output, unsigned char output vector[N]);
void MultiFowardDCT(unsigned char input[N], int output[N], int transform _no);
void MultilnverseDCT(int DCT[N], unsigned char output[N], int transformno);
void WriteEOFCode(BITFILE *output_file);

// These functions implement the multi-level DCT compression/expansion
// algorithms.

void MultiDCTC(void);
void MultiDCTE(void);

// Global data used that are defined in ONEDDCT.CPP

extern double C[N][N];
extern double Ct[N][N];
extern int putRunLength;
extern int OutputRunLength;
extem int Quantum[N];

// The Foward DCT routine implements the matrix function:
//
// DCT = C^(transform_no) * inputvector

void MultiFowardDCT(unsigned char input[N], int output[N], int transform_no)

{
double temp _vector[N][5];
int i, j, k;

//Initialize temp vector matrix

for (i = 0; i< N; i++)
for (j = 0;j < 5; j++)

tempvector[i]] = 0.0;

//MatrixMultiply(output, C^(transform_no), input)

for (i = 0; i < N; i++)
for (k = 0;k < N; k++)
temp vector[i][0] += C[i][k] * ((int)input[k] - 128);

109

if (transform _no > 1)
for (j = 0; j < (transformno - 1); j++)
for (i = 0; i <N; i++)

for (k = 0;k < N; k++)
temp _vector[i] [j+1] += C[i] [k] * tempvector[k] [j];

for (i = 0; i < N; i++)
output[i] = ROUND(temp vector[i][transform_no - 1]);

}

// The inverse DCT routine implements the matrix function:
//
/ outputvector = Ct^(transformno) * DCT

void MultiInverseDCT(int DCT[N], unsigned char output[N], int transform no)

{
double temp _vector[N][5];
int i, j, k;

//Initialize temp vector matrix

for (i = 0; i < N; i++)
for(j=0;j<5;j++)

tempvector[i][j] = 0.0;

//MatrixMultiply(output, Ct^(tranform no), DCT)

for (i = 0; i < N; i++)
for (k = 0; k < N; k++)
temp-vector[i][0] += Ct[i][k] * DCT[k];

if (transform-no > 1)
for (j = 0; j < (transform_no - 1); j++)
for (i =0; i <N; i++)
for (k = 0; k < N; k++)

tempvector[i] j+1] += Ct[i] [k] * temp _vector[k] U];

for (i = 0; i < N; i++)
{

temp _vector[i][transform no - 1] += 128.0;
if (temp-vector[i] [transform_no - 1] < 0)
output[i]= 0;
else if (temp _vector[i][transform no - 1] > 255)
output[i] = 255;

110

else
output[i] = (unsigned char) ROUND(temp vector[i][transform_no - 1]);

}
}

// This the multi-level DCT compression routine. The compression routine
// requires 2 user inputs, the quality value, ranging from 0 - 25, and the number of
// DCT multiplications to be performed, ranging from 1 to 5.

void MultiDCTC(void)
{

char inFileName[80];
char outFileName[80];
FILE *input;
BITFILE *output;
unsigned char input vector[N];
int output-vector [N];
int quality, transform-no, i, c;
char *CompressionName = "Multi-DCT algorithm";
timet first, second;
double time_diff;

// Obtain and locate the input and output files for compression

cout << "Enter the input filenameAn";
cin >> inFileName;
input = fopen(inFileName, "rb");
if (input = NULL)

fatalerror("Error opening %s for input\n", inFileName);
cout < "Enter the output filenameAn";
cin >> outFileName;
output = OpenOutputBitFile(outFileName);
if (output == NULL)

fatal-error("Error opening %s for output\n", outFileName);

// Obtain the quality factor and number of DCT transforms

cout << "You are required to enter the quality factor that determines\n";
cout << "the degree of quantization. Quality values range from 0-25\n";
cout << "Please enter the value you desire.An";
cin >> quality;
if (quality < 0 jj quality > 25)
{

fatal error("Illegal quality factor of %d\n", quality);
quality = 3;

111

printf("Using quality factor of %d\n", quality);

cout << "You are also required to enter the number of DCT transforms to\n
cout << "be performed. This number ranges from 1 - 5.\n";
cout << "Please enter the value you desireAn";
cin >> transform_no;
if (transform-no < 11| transform-no > 5)

{
fatal _error("Illegal transform number of %d\n", transform no);
transformno = 1;
printf("Using transform number of %d\n", transform_no);

}

printf("\nCompressing %s to %s\n", inFileName, outFileName);
printf("Using %sAn", CompressionName);

first = time(NULL);

// Initialize quantization and DCT matrix values

Initialize(quality);

// Output quality and transform no information to compression output

OutputBits(output, (unsigned long) quality, 8);
OutputBits(output, (unsigned long) transformno, 8);

do

{
// fill input vector with audio file input

for (i = 0; i < N; i++)

{
c = getc(input);

// if file size is not a multiple of N fill remaining elements
// with zeros

if (c == EOF)

{
for (;i < N; i++)

input-vector[i] = 0;
break;

}
else

112

input-vector[i] = (unsigned char) c;

I

// Perform multi-level transform and write the data to compression
// output file

MultiFowardDCT(inputvector, output-vector, transformno);

WriteTformData(output, output vector);
if (c ==EOF)
WriteEOFCode(output);

}while(c != EOF);

// Calculate time for completion of compression algorithm.

second = time(NULL);
time diff= difftime(second, first);
cout << "\nTime for algorithm completion " «time_diff << " seconds.n";

// Close Input and Output files. Display Compression Information

CloseOutputBitFile(output);
fclose(input);
printratios(inFileName, outFileName);

}

// The expansion routine reads in the compressed data from the DCT file,
// then writes out the decompressed audio file.

void MultiDCTE(void)
{

char inFileName[80];
char outFileName[80];
BIT_FILE *input;
FILE *output;
int input-vector[N];
unsigned char output vector[N];
int quality, transform -no, i, EOFTest;

char *CompressionName = "Multi-DCT algorithm";
time t first, second;
double time_diff;

/Obtain and locate the input and output files for expansion

cout << "Enter the input filename. ";
ci >> inFileName;

113

input OpennputBitFile(inFileName);
if (input == NULL)

fatal error("Error opening %s for input\n", inFileName);
cout << "Enter the output filename.n";
cin >> outFileName;
output = fopen(outFileName, "wb");
if (output == NULL)

fatal error("Error opening %s for output\n", outFileName);
printf("\nExpanding %s to %s\n", inFileName, outFileName);
printf("Using %sAn", CompressionName);

first = time(NULL);

// Read quality and tranform_no values from the compressed file
// and initialize quantization and DCT matrix values.

quality = (int)InputBits(input, 8);
transform _no = (int)InputBits(input, 8);
cout << "\nUsing a quality factor of " << quality << "\n";
cout << "And a transform number of " << transform no << "\n"
Initialize(quality);

// Decode compressed input, perform inverse multi-level transform,
// and write audio data to expansion output file

do

{
for (i = 0; i < N; i++)

{
EOFTest = InputCode(input);
if (EOF Test = -12375)

break;
else
input vector[i] = EOFTest * Quantumii];

}
if (EOFTest != -12375)
{
Multi nverseDCT(inputvector, output vector, transform-no);
WriteAudioData(output, output-vector);

I
}while(EOFTest != -12375);

// Calculate time for completion of expansion algorithm.

second = time(NULL);

114

time diff= difftime(second, first);
cout << "\nTime for algorithm completion =<" time-diff << " seconds.\n";

// Close lhput and Output files.

CloselnputBitFile(input);
fclose(output);
putc('\n', stdout);

}

// Program: DCT/DST Compression/Expansion Functions
// Filename: DCT_DST.cpp
// Description: This module implements an audio compression program based on
// the 1-D DCT and the 1-D DST. It performs a DCT matrix
// multiplication followed by a DST matrix multiplication for
// compression and vice versa for expansion.
// Author: Craig Chin
// Date : 02/06/01
// Notes: The code is a modification of the source code DC.C obtained
// from "The Data Compression Book", by M. Nelson and J.L.

// Gailly. This file must be linked to the files oneddct.cpp,
// oneddst.cpp, errhand.cpp, bitio.cpp, and utilityfunc.cpp for proper
// functionality.

#include <iostream.h>
#include <stdio.h>
#include <stdlibh>
#include <math.h>
#include <time.h>
#include "bitio.h"
#include "errhand.h"
#include "utilityfunc.h"

// N defines the vector length, and the DCT/DST matrix dimensions

#define N 16

// This macro is used to ensure the correct rounding of integer values

#define ROUND(a) (((a)<0) ? (int)((a) - 0.5) : (int)((a) + 0.5))

// Auxiliary Function Prototypes. All unavailable function definitions may be
// found in oneddct.cpp and oneddst.cpp

void Initialize(int quality);

115

void InitializeSine(void);
int InputCode(BIT FILE *input);
void OutputCode(BITFILE *output file, int code);
void WriteTformData(BITFILE *output_file, int outputvector[N]);
void WriteAudioData(FILE *output, unsigned char outputvector[N]);
void FowardDCT_DST(unsigned char input[N], int output[N]);
void InverseDCT_DST(int DCT[N], unsigned char output[N]);
void WriteEOFCode(BITFILE *outputfile);

// These functions implement the DCT/DST compression/expansion algorithms.

void DCTDSTC(void);
void DCTDSTE(void);

// Global data used that are defined in oneddct.cpp and oneddst.cpp

extern double C[N][N];
extern double Ct[N][N];
extem double S[N][N];
exter double St[N][N];
extern int InputRunLength;

exte int OutputRunLength;
extern int Quantum[N];

// The initialization routine has the job of setting up the sine
// transform matrix, as well as its transpose matrix. These two matrices
// are used to caculate the DST and its inverse.

void InitializeSine(void)

{
int i;
int j;
double pi = atan(1.0)*4.0;

for (i = 0; i < N; i++)
for(=0;j <N;j++)
{

Sli][j] = sqrt(.0/(double)(N+1))*
sin(pi*(i+l)*(j+1)/(double)(N+1));

StN][il=i
}

}

116

// The Foward DCT_DST routine implements the matrix function:
//
// outputvector = S * C * input vector

void FowardDCT_DST(unsigned char input[N], it output[N])
{

double temp-vector[N] [2];
int i, j;

// Initialize temp-vector matrix

for (i = 0; i <N; i++)
for(j =0;j <2;j++)

tempvector[i]j] = 0.0;

// MatrixMultiply(temp, C, input)

for(i=0; i<N; i++)
for (j = 0; j < N; j++)
tempvector[i][0] += C[i][j] * ((int)inputj] - 128);

// MatrixMultiply(output, 8, temp)

for (i = 0; i < N; i++)
for(j = 0; j < N; j++)
tempvector[i] [1] += S[i][j] * tempvector[j] [0];

for (i = 0; i < N; i++)
output[i] = ROUND(tempvector[i] [1]);

}

// The inverse DCT_DST routine implements the matrix function:
//
// output-vector = Ct * St * DCT

void InverseDCTDST(int DCT[N], unsigned char output[N])

{
double tempvector[N] [2];
int i, j;

// Initialize tempvector matrix

for (i = 0; i <N; i++)
for (j = 0; j < 2; j++)

117

tempvector[i] [j] = 0.0;

// MatrixMultiply(temp, St, DCT)

for (i = 0; i <N; i++)
for(= 0; j < N; j++)
temp _vector[i][0] += St[i][j] * DCT];

I MatrixMultiply(output, Ct, temp)

for (i = 0; i < N; i++)
for (j =O;j <N;j +)

tempvector[i][1] += Ct[i][j] * temp vector[j][0];

for (i = 0; i N; i++)

{
tempvector[i][1] += 128.0;
if (temp _vector[i][1] < 0)
output[i]= 0;
else if (temp _vector[i][1] > 255)
output[i] = 255;
else
output[i] = (unsigned char) ROUND(temp-vector[i] [1]);

}
}

// This the DCT_DST compression routine. The compression routine
// requires 1 user inputs, the quality value, ranging from 0 - 25.

void DCTDSTC(void)
{

char inFileName[80];
char outFileName[l80];
FILE *input;
BITFILE *output;
unsigned char inputvector[N];
int output-vector [N];
it quality, i, c;
char *CompressionName = "DCT_DST algorithm";
time t first, second;
double time_diff;

// Obtain and locate the input and output files for compression

cout << "Enter the input filenameAn";

118

cin >> inFileName;
input = fopen(inFileName, "rb");
if (input = NULL)

fatal error("Error opening %s for input\n", inFileName);
cout << "Enter the output filenameAn";
ci >> outFileName;
output = OpenoutputBitFile(outFileName);
if (output == NULL)

fatalerror("Error opening %s for output\n", outFileName);

// Obtain the quality factor

cout << "You are required to enter the quality factor that determines\n";
cout << "the degree of quantization. Quality values range from 0-25\n";
cout << "Please enter the value you desireAn";
cin >> quality;
if (quality < 0 II quality > 25)
{

fatal error("Illegal quality factor of %d\n", quality);
quality = 3;
printf("Using quality factor of %d\n", quality);

}

printf("\nCompressing %s to %s\n", inFileName, outFileName);
printf("Using %sAn", CompressionName);

first = time(NULL);

// Initialize quantization, DCT, and DST matrix values

Initialize(quality);
InitializeSine();

// Output quality information to compression output

OutputBits(output, (unsigned long) quality, 8);

do
{

// fill input vector with audio file input

for (i = 0; i < N; i++)

{
c = getc(input);

119

// if file size is not a multiple of N fill remaining elements
// with zeros

if (c == EOF)

{
for (;i <N; i++)

input-vector[i] = 0;
break;

}
else

input-vector[i] = (unsigned char) c;
}

// Perform DCT_DST transform and write the data to compression
// output file

FowardDCT_DST(inputvector, output vector);
WriteTformData(output, output vector);
if (c ==EOF)
WriteEOFCode(output);

}while(c != EOF);

// Calculate time for completion of compression algorithm.

second = time(NULL);
timediff = difftime(second, first);
cout << "\nTime for algorithm completion = " << time_diff <<" seconds.An";

// Close Input and Output files. Display Compression Information

CloseOutputBitFile(output);
fclose(input);
print-ratios(inFileName, outFileName);

}

// The expansion routine reads in the compressed data from the compressed file,
// then writes out the decompressed audio file.

void DCT_DSTE(void)

{
char inFileName[80];
char outFileName[80];
BITFILE *input;
FILE *output;
int input-vector[N];

120

unsigned char output vector[N];
nt quality, i, EOFTest;

char *CompressionName = "DCT_DST algorithm";
timet first, second;
double time_diff;

// Obtain and locate the input and output files for expansion

cout << "Enter the input filenameAn";
cin >> inFileName;
input = OpenInputBitFile(inFileName);
if (input = NULL)

fatalerror("Error opening %s for input\n", inFileName);
cout << "Enter the output filenameAn";
cin >> outFileName;
output = fopen(outFileName, "wb");
if (output == NULL)

fatalerror("Error opening %s for output\n", outFileName);
printf("\nExpanding %s to %s\n", inFileName, outFileName);
printf("Using %sAn", CompressionName);

first = time(NULL);

// Read quality value from the compressed file and initialize quantization

// and DCT matrix values.

quality = (int)InputBits(input, 8);
cout << "\nUsing a quality factor of " « quality << "\n";
Initialize(quality);
InitializeSine();

// Decode compressed input, perform inverse DCTDST transform,
// and write audio data to expansion output file

do

{
for (i = 0; i < N; i++)
{

EOFTest = InputCode(input);
if (EOFTest == -12375)

break;
else
input vector[i] = EOFTest * Quantum[i];

}
if (EOFTest != -12375)

121

{
InverseDCT_DST(input_vector, output-vector);
WriteAudioData(output, output-vector);

}
}while(EOFTest != -12375);

// Calculate time for completion of expansion algorithm.

second = time(NULL);
time diff= difftime(second, first);
cout << "\nTime for algorithm completion =<" timediff«" seconds.An";

// Close Input and Output files.

Close putBitFile(input);
fclose(output);
putc('\n', stdout);

}

// Program: Compand Compression Functions
// Filename: compandM.cpp
// Description: This file contains the function definitions that will allow you

// to compress/expand raw audio data files using the compand
// algorithm.
// Author: Craig Chin
// Date : 02/13/01
// Notes: The code is a modification of source code obtained from "The Data

// Compression Book", by M. Nelson and J.L. Gailly. This file must

// be linked with errhand.cpp, and bitio.cpp for proper functionality.
// The function declarations are found in compand.h

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include "bitio.h"
#include "errhand.h"
#include "compand.h"

// This utility routine is used to determine the size of the input file

long get-file- ength(FILE *file);

122

#ifndef SEEKEND
#define SEEKEND 2
#endif

#ifndef SEEKSET
#define SEEKSET 0
#endif

// The compression routine performs a table lookup on each input byte.
// The first part of the routine builds that table. After that a
// byte is read in and a compressed value is written out.
// The file length is written out at the very start of the compressed
// file, along with the number of bits used to encode the data.

void CompandC(FILE *input, BITFILE *output)

{
int compress[256];
int steps;
int bits;
int value;
int i;
int j;
nt c;

// The first section of code determines the number of bits to use for
// output codes, and then writes it out to the compressed file. The
// length of the input file is also written out.

cout << "Enter the number of bits to be used for output code.";
cout << " The default number is 4.\n";
cin >> bits;
printf("Compressing using %d bits per sample.. .\n", bits);
steps = (1 << (bits - 1));
OutputBits(output, (unsigned long) bits, 8);
OutputBits(output, (unsigned long) get-file-length(input), 32);

// The compression table is built here. Each input code maps to
// a single output code. There are "steps" codes to be used in

// the output space. This builds an exponential output function.

for (i = steps ; i > 0; i--)
{

value = (int)
(128.0 * (pow(2.0, (double) i / steps) - 1.0) + 0.5);

123

for (j = value ;j >0 ;j--)
{

compress[j + 127]= i + steps - 1;
compress[128 - j] = steps - i;

}
}

// The actual compression takes place here.

while ((c = getc(input)) != EOF)
OutputBits(output, (unsigned long) compress[c], bits);

}

// The expansion routine gets the number of bits per code from the
// compressed file, then builds an expansion table. Each of the
// "steps" codes expands to a unique eight bit code that lies on
/the exponential encoding curve.

void CompandE(BITFILE *input, FILE *output)

{
int steps;
int bits;
int value;
int lastvalue;
int i;
int c;
long count;
int expand[256];

// First this routine reads in the number of bits, then builds the

// expansion table. Once the table is built, expanding the file

/is simply a matter of performing a table lookup on each code.

bits = (int) InputBits(input, 8);
printf("Expanding using %d bits per sample.. \n", bits);
steps = (1 << (bits - 1)) ;
lastvalue = 0;
for (i = 1; i <= steps; i++)

{
value = (int)

(128.0 * (pow(2.0, (double) i / steps) - 1.0) + 0.5);
expand[steps + i - 1]= 128 + (value + last_value) / 2;

expand[steps - i] = 127 - (value + lastvalue) / 2;

124

lastvalue = value;
}

/ The actual file size is stored at the start of the compressed file.
// It is read in to determine how many codes need to be expanded. Once
// that is done, expansion takes place.

for (count = InputBits(input, 32) ; count > 0 ; count--)

{
c = (int) InputBits(input, bits);
putc(expand[c], output);

}

}

// This utility routine is used to determine the size of the input file.

long get-filelength(FILE * file)
{

long marker;
long eofftell;

marker = ftell(file);
fseek(file, OL, SEEKEND);
eofftell = ftell(file);
fseek(file, marker, SEEK SET);
retum(eofftell - marker);

}

// Program: Compand Compression Function Declarations
/ Filename: compand.h
// Description: This file contains the function declarattions that will allow you

// to compress/expand raw audio data files using the compand
// algorithm.
// Author: Craig Chin
// Date : 02/13/01
// Notes: The code is a modification of source code obtained from "The Data
// Compression Book", by M. Nelson and J.L. Gailly. The function
// definitions are found in compandM.cpp.

void CompandC(FILE *input, BITFILE *output);
void CompandE(BITFILE *input, FILE *output);

1/ Program: Silence Compression Functions

125

/ Filename: silenceM.cpp
// Description: This file contains the function definitions that will allow you
// to compress/expand raw audio data files using the silence
// algorithm.
// Author: Craig Chin
//Date : 02/13/01
// Notes: The code is a modification of source code obtained from "The Data
// Compression Book", by M. Nelson and J.L. Gailly. This file must
// be linked with errhand.cpp, and bitio.cpp for proper functionality.
// The function declarations are found in silence.h

#include <stdio.h>
#include <stdlibh>
#include <string.h>
#include <ctype.h>
#include "bitio.h"
#include "errhand.h"
#include "silence.h"

/ These macros define the parameters used to compress the silent
/ sequences. SILENCE LIMIT is the maximum size of a signal that can
/ be considered silent, in terms of offset from the center point.
/ STARTTHRESHOLD gives the number of consecutive silent codes that
/ have to be seen before a run is started. STOPTHRESHOLD tells how
/ many non-silent codes need to be seen before a run is considered to

// be over. SILENCE_CODE is the special code output to the compressed
// file to indicate that a run has been detected. SILENCE_CODE is always
/1 followed by a single byte indicating how many consecutive silence
/ bytes are to follow.

#define SILENCE_LIMIT 4
#define STARTTHRESHOLD 5
#define STOPTHRESHOLD 2
#define SILENCECODE Oxff
#define ISSILENCE(c) ((c) > (Ox7f - SILENCE_LIMIT) && \

(c) < (0x80 + SILENCELIMIT))

// BUFFER_SIZE is the size of the look ahead buffer. BUFFERMASK is

/the mask applied to a buffer index when performing index math.

#define BUFFERSIZE 8
#define BUFFERMASK 7

// Local function prototypes.

126

int silence _run(int buffer[], int index);
int endof silence(int buffer[], it index);

// The compression routine has to detect when a silence run has started,
// and when it is over. It does this by keeping up and coming bytes in
// a look ahead buffer. The buffer along with the current index is passed
// ahead to routines that check to see if a run has started, or if it has
// ended.

void SilenceC(FILE *input, BITFILE *output)

{
int look_ahead[BUFFER SIZE];
int index;
int i;
int run-length;

for (i = 0 ; i <BUFFER_SIZE ; i++)
look-ahead[i] = getc(input);

index = 0;
for (;;)

{
if (lookahead[index] == EOF)

break;

/ If a run has started the program will sit in a do loop until
/ the run is complete, loading new characters all the while.

if (silence run(lookahead, index))

{
runlength = 0;
do
{

look_ahead[index++] = getc(input);
index &= BUFFERMASK;
if (++runlength == 255)
{

putc(SILENCE_CODE, output->file);
putc(255, output->file);
runlength = 0;

}
} while (!endofsilence(lookahead, index));
if (run length > 0)

{

127

putc(SILENCECODE, output->file);
putc(run length, output->file);

}
}

// When a run of silence is over, some plain codes must be output.
// Any code that accidentally matches the silence code gets silently changed.

if (look ahead[index] == SILENCECODE)
look_ahead[index]--;

putc(lookahead[index], output->file);
look_ahead[index++] = getc(input);
index &= BUFFERMASK;

}

}

// The expansion routine has to check for the run code, and when it finds it

// pad out the output file with some silence bytes.

void SilenceE(BITFILE *input, FILE *output)

{
int c;
int run count;

while ((c = getc(input->file)) != EOF)

{
if (c == SILENCECODE)
{

run_count = getc(input->file);
while (runcount-- > 0)

putc(0x80, output);

}
else

putc(c, output);

}

// This support routine checks to see if the look ahead buffer contains

// the start of a run, which by definition is STARTTHRESHOLD consecutive

// silence characters.

int silence_run(int buffer[], int index)

{

128

int i;

for (i = 0 ; i < START_THRESHOLD ; i++)
if (!IS_SILENCE(buffer[(index + i) & BUFFERMASK]))

retur(0);
retum(1);

}

// This support routine is called during the middle of a run of
// silence. It checks to see if audio input has reached the end of the
// run. By definition this occurs when we see STOPTHRESHOLD consecutive
// non-silence characters.

int end_of silence(int buffer[], int index)
{

int i;

for (i =0 ; i < STOPTHRESHOLD ; i++)
if (ISSILENCE(buffer[(index + i) & BUFFERMASK]))

retur(0);
return(1);

}

// Program: Silence Compression Function Declarations
// Filename: silence.h
// Description: This file contains the function declarations that will allow you
// to compress/expand raw audio data files using the silence
// algorithm.
// Author: Craig Chin
// Date : 02/13/01
// Notes: The code is a modification of source code obtained from "The Data
// Compression Book", by M. Nelson and J.L. Gailly. The function
// definitions are found in silenceM.cpp

void SilenceC(FILE *input, BITFILE *output);
void SilenceE(BITFILE *input, FILE *output);

// Program: Huffman Compression/Expansion Functions
// Filename: huffrn2.cpp
// Description: This file provides compression/expansion functions that

utilize the Huffman entropy coding algorithm as the means
// of compression.
// Author: Craig Chin
//Date : 02/15/01

// Notes: The code is a modification of the source code HUFF.C obtained

129

// from "The Data Compression Book", by M. Nelson and J.
// Gailly. This file must be linked to the files errhand.cpp, bitio.cpp,
// and utility func.cpp for proper functionality.

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <time.h>
#include "bitio.h"
#include "errhand.h"
#include "utility func.h"

// The NODE class is a node in the Huffman decoding tree. It has a
// count, which is its weight in the tree, and the node numbers of its
// two children. The savedcount member of the structure is only
// there for debugging purposes, and can be safely taken out at any
// time. It just holds the intial count for each of the symbols, since
// the count member is continually being modified as the tree grows.

typedef class treenode

{
public:
unsigned int count;
unsigned int saved_count;
int child_0;
int childI;

} NODE;

// A Huffman tree is set up for decoding, not encoding. During the
// encoding process the tree is traversed and a table of codes is built
// for the symbols. The codes are stored in this CODE class.

typedef class Code

{
public:
unsigned int code;
int codebits;

} CODE;

// The special EOS symbol is 256, the first available symbol after all

// of the possible bytes. When decoding, reading this symbol indicates

// that all of the data has been read in.

130

#define ENDOFSTREAM 256

// Local function prototypes.

void count _bytes(FILE *input, unsigned long *long-counts);
void scalecounts(unsigned long *long _counts, NODE *nodes);
int buildtree(NODE *nodes);
void convert_treetocode(NODE *nodes,

CODE *codes,
unsigned int codeso_far,
int bits,
int node);

void outputcounts(BITFILE *output, NODE *nodes);
void input counts(BITFILE *input, NODE *nodes);
void print model(NODE *nodes, CODE *codes);
void compress data(FILE *input, BIT_FILE *output, CODE *codes);
void expand-data(BITFILE *input, FILE *output, NODE *nodes,

int rootnode);
void printchar(int c);

// The HuffC compression routine requests that the user specify the
// input and ouput filenames for the compression process, as well as,
// whether or not he desires to see the tree-model of the
// encoding/decoding processes. With this information the routine
// works in a fairly straightforward manner. First, it has to
// allocate storage for three different arrays of data. Next, it
// counts all the bytes in the input file. The counts are all stored
// in long int, so the next step is scale them down to single byte
// counts in the NODE array. After the counts are scaled, the
// Huffman decoding tree is built on top of the NODE array. Another
1/ routine walks through the tree to build a table of codes, one per
// symbol. Finally, when the codes are all ready, compressing the
II file is a simple matter. After the file is compressed,
// the storage is freed up, and the routine returns.

void HuffC(void)
{

char inFileName[80];
char outFileName[80];
FILE *input;
BITFILE *output;
unsigned long *counts;
NODE *nodes;
CODE *codes;
int rootnode;

131

char model[10];
char *CompressionName = "static order 0 model with Huffman coding";
timet first, second;
double time-diff;

// Obtain and locate the input and output files for compression

cout << "Enter the input filename.\n";
cin >> inFileName;
input = fopen(inFileName, "rb");
if (input == NULL)

fatalerror("Error opening %s for input\n", inFileName);
cout << "Enter the output filename.\n";
cin >> outFileName;
output = OpenOutputBitFile(outFileName);
if (output = NULL)

fatal error("Error opening %s for output\n", outFileName);

// Ascertain whether or no you desire to see the tree model.

cout < "If you desire to see the tree model enter 'model'.\n";
cin model;
printf("\nCompressing %s to %s\n", inFileName, outFileName);
printf("Using %s.\n", CompressionName);

first = time(NULL);
counts = (unsigned long *) calloc(256, sizeof(unsigned long));
if (counts = NULL)

fatal error("Error allocating counts array\n");
if ((nodes = (NODE *) calloc(5 14, sizeof(NODE))) NULL)

fatal error("Error allocating nodes array\n");
if ((codes = (CODE *) calloc(257, sizeof(CODE))) == NULL)

fatalterror("Error allocating codes array\n");
count bytes(input, counts);
scale_counts(counts, nodes);
output _counts(output, nodes);
rootnode = buildtree(nodes);
converttree-to-code(nodes, codes, 0, 0, root-node);
if (strcmp(model, "model") == 0)

print model(nodes, codes);
compress data(input, output, codes);
free((char *) counts);
free((char *) nodes);
free((char *) codes);

132

// Calculate time for completion of compression algorithm.

second = time(NULL);
time diff = difftime(second, first);
cout << "\nTime for algorithm completion =<" time_diff << " seconds.\n";

// Close Input and Output files. Display Compression Information

CloseOutputBitFile(output);
fclose(input);
print-ratios(inFileName, outFileName);

}

// PipeHufC() is a compression function similar to HuffC(), but specially
// adpated for use as a back-end lossless compression technique that is to
// be preceded by a lossy front-end compression algorithm.

void PipeHuffC(char inFileName[], char outFileName[])

{
FILE *input;
BITFILE *output;
unsigned long *counts;
NODE *nodes;
CODE *codes;
int rootnode;
char model[10];

// Open the input and output files for compression.

input = fopen(inFileName, "rb");
if (input = NULL)

fatal_error("Error opening %s for input\n", inFileName);
output = OpenOutputBitFile(outFileName);
if (output == NULL)

fatalerror("Error opening %s for output\n", outFileName);

// Ascertain whether or no you desire to see the tree model

cout << "If you desire to see the tree model enter 'model'a\n";
cin >> model;

counts = (unsigned long *) calloc(256, sizeof(unsigned long));
if (counts NULL)

fatalerror("Error allocating counts array\n");
if ((nodes = (NODE *) calloc(514, sizeof(NODE))) == NULL)

133

fatal error("Error allocating nodes array\n");
if ((codes = (CODE *) calloc(257, sizeof(CODE))) == NULL)

fatal error("Error allocating codes array\n");
count-bytes(input, counts);
scale_counts(counts, nodes);
output _counts(output, nodes);
root-node = buildtree(nodes);
converttree to code(nodes, codes, 0, 0, root node);
if (strcmp(model, "model") == 0)

print-model(nodes, codes);
compress data(input, output, codes);
free((char *) counts);
free((char *) nodes);
free((char *) codes);

// Close Input and Output files. Display Compression Information

CloseOutputBitFile(output);
fclose(input);
print ratios(inFileName, outFileName);

}

// HuffE() is the routine called to expand a file that has been
// compressed with order 0 Huffman coding, that is, HuffC(). All the
// routine has to do is read in the counts that have been stored in
// the compressed file, then build the Huffman tree. The data can
// then be expanded by reading in a bit at a time from the compressed
// file. Finally, the node array is freed and the routine returns.

void HuffE(void)
{

char inFileName[80];
char outFileName[80];
BIT_FILE *input;
FILE *output;
NODE *nodes;
int rootnode;
char model[10];
char *CompressionName = "static order 0 model with Huffman coding";
time t first, second;
double timediff;

// Obtain and locate the input and output files for expansion

134

cout << "Enter the input filename.\n";
cin inFileName;
input = Open nputBitFile(in ileName);
if (input = NULL)

fatalerror("Error opening %s for input\n", inFileName);
cout << "Enter the output filename.\n";
cin >> outFileName;
output = fopen(outFileName, "wb");
if (output == NULL)

fatal error("Error opening %s for output\n", outFileName);

// Ascertain whether or no you desire to see the tree model

cout << "If you desire to see the tree model enter 'model'.\n";
cin >> model;
printf("\nExpanding %s to %s\n", inFileName, outFileName);
printf("Using %sa\n", CompressionName);

first = time(NULL);
if ((nodes = (NODE *) calloc(514, sizeof(NODE))) == NULL)

fatal error("Error allocating nodes array\n");
input _counts(input, nodes);
rootnode = build_tree(nodes);
if (strcmp(model, "model")== 0)

print model(nodes, 0);
expand data(input, output, nodes, root_node);
free((char *) nodes);

// Calculate time for completion of expansion algorithm

second = time(NULL);
time diff= difftime(second, first);
cout << "\nTime for algorithm completion =" << timediff << " seconds.\n";

// Close Input and Output files.

CloselnputBitFile(input);
fclose(output);
putc('\n', stdout);

}

// PipeHuffE() is an expansion function similar to HuffE(), but specially
// adpated for use as a front-end lossless compression technique that is to
// precede a lossy back-end compression algorithm.

135

void PipeHuffE(char inFileName[], char outFileName[])
{

BITFILE *input;
FILE *output;
NODE *nodes;
int rootnode;
char model[10];

// Open the input and output files for expansion

input:= OpenInputBitFile(inFileName);
if (input == NULL)

fatalerror("Error opening %s for input\n", inFileName);
output = fopen(outFileName, "wb");
if (output == NULL)

fatalerror("Error opening %s for output\n", outFileName);

// Ascertain whether or no you desire to see the tree model

cout << "If you desire to see the tree model enter 'model'.\n";
cin >> model;

if ((nodes = (NODE *) calloc(514, sizeof(NODE))) == NULL)
fatalerror("Error allocating nodes array\n");

input _counts(input, nodes);
root-node = buildtree(nodes);
if (strcmp(model, "model") == 0)
print model(nodes, 0);
expanddata(input, output, nodes, rootnode);
free((char *) nodes);

// Close Input and Output files.

CloselnputBitFile(input);
fclose(output);
putc('\n', stdout);

}

/In order for the compressor to build the same model, the symbol counts
// have to be stored in the compressed file so the expander can read them
// in. In order to save space, all 256 symbols are not saved
// unconditionally. The format used to store counts looks like this:
//
// start, stop, counts, start, stop, counts, ... 0

136

// This means that runs of counts are stored, until all the non-zero
// counts have been stored. At this time the list is terminated by
/1 storing a start value of 0. Note that at least 1 run of counts has
// to be stored, so even if the first start value is 0, it is read in.
/ It also means that even in an empty file that has no counts, at least
// one count has to be passed.
//
// In order to efficiently use this format, the runs of non-zero counts
7/ have to be identified. It is not desirable to stop a run because of
// just one or two zeros in the count stream. So the program sits in a
// loop looking for strings of three or more zero values in a row.

void output-counts(BITFILE *output, NODE *nodes)
{

imt first;
int last;
int next;
int i;

first =0;
while (first < 255 && nodes[first].count == 0)

first++;

// At the start of each loop, it is assumed that first is the
I/ number for a run of non-zero values. The rest of the loop is
7/ concerned with finding the value for last, which is the end of the
// run, and the value of next, which is the start of the next run.
// At the end of the loop, next is assigned to first, so it starts
/ there on the next run.

for (; first < 256 ; first = next)
{

last = first + 1;
for (;;)
{

for (; last < 256 ; last++)
if (nodes[last].count == 0)

break;
last--;
for (next = last + 1; next < 256 ; next++)

if (nodes[next].count != 0)
break;

if (next > 255)
break;

137

if ((next - last) > 3)
break;

last = next;
}

// Here is where first, last, and all the counts in between are output

if (putc(first, output->file) != first)
fatalerror("Error writing byte counts\n");

if (putc(last, output->file) != last)
fatal _error("Error writing byte counts\n");

for (i = first ; i <= last ; i++)
{

if (putc(nodes[i].count, output->file) !
(int) nodes[i].count)

fatal_error("Error writing byte counts\n");
}

}
if (putc(0, output->file) != 0)

fatal_error("Error writing byte counts\n");
}

// When expanding, the same set of counts have to be read in. Initially first,
// is read in, then the function checks to see if its done, and if not, read in
// last and a string of counts.

void input counts(BIT_FILE *input, NODE *nodes)

{
int first;
int last;
int i;
int c;

for (i = 0 ; i < 256 ; i++)
nodes[i].count = 0;

if ((first = getc(input->file)) = EOF)
fatal error("Error reading byte counts\n");

if ((last = getc(input->file)) == EOF)
fatal error("Error reading byte counts\n");

for (;;)

{
for (i = first; i <= last; i++)

if ((c = getc(input->file)) == EOF)
fatal_error("Error reading byte counts\n");

else

138

nodes[i].count = (unsigned int) c;
if ((first = getc(input->file))== EOF)

fatalerror("Error reading byte counts\n");
if (first == 0)

break;
if ((last = getc(input->file)) == EOF)

fatal error("Error reading byte counts\n");
}
nodes[END_OF_STREAM].count = 1;

}

// This routine counts the frequency of occurence of every byte in
// the input file. It marks the place in the input stream where it
// started, counts up all the bytes, then returns to the place where
/ it started. In most C implementations, the length of a file
// cannot exceed an unsigned long, so this routine should always
// work.

#ifndef SEEKSET
#define SEEK_SET 0
#endif

void count-bytes(FILE *input, unsigned long *counts)
{

long input-marker;
int c;

input-marker = ftell(input);
while ((c = getc(input)) != EOF)
counts[c]++;
fseek(input, input-marker, SEEKSET);

}

// order to limit the size of the Huffman codes to 16 bits, the counts
// are scaled down so they fit in an unsigned char, and then they are all
// stored as initial weights in the NODE array. The only thing to be
// careful of is to make sure that a node with a non-zero count doesn't
// get scaled down to 0. Nodes with values of 0 don't get codes.

void scale-counts(unsigned long *counts, NODE *nodes)

{
unsigned long max-count;
int i;

139

maxcount = 0;
for(i= 0;i<256 ;i++)
if (counts[i] > max-count)

maxcount = counts[i];
if (maxcount == 0)

{
counts[0]= 1;
max-count = 1;

}
maxcount =m axcount / 255;
maxcount = maxcount + 1;
for (i = 0; i < 256; i++)
{

nodes[i].count = (unsigned int) (counts[i] / maxcount);
if (nodes[i].count == 0 && counts[i] != 0)

nodes[i].count = 1;
}
nodes[ENDOFSTREAM].count = 1;

// Building the Huffman tree is fairly simple. All of the active nodes
// are scanned in order to locate the two nodes with the minimum
// weights. These two weights are added together and assigned to a new
// node. The new node makes the two minimum nodes into its 0 child
// and 1 child. The two minimum nodes are then marked as inactive.
// This process repeats until their is only one node left, which is the
// root node. The tree is done, and the root node is passed back
// to the calling routine.
//
// Node 513 is used here to arbitratily provide a node with a guaranteed
// maximum value. It starts off being min _1 and min_2. After all active
// nodes have been scanned, the function can tell if there is only one
// active node left by checking to see if minl1 is still 513.

int build-tree(NODE *nodes)

{
int nextfree;
int i;

int min_1;
int min_2;

nodes[513].count = Oxffff;
for (next-free = ENDOFSTREAM + 1; ; nextfree++)

{
min_1 = 513;

140

min_2 = 513;
for (i = 0; i < nextfree; i++)

if (nodes[i].count != 0)

{
if (nodes[i].count < nodes[min_1].count)
{

min 2 = min 1;
min_1 = i;

}
else

if (nodes[i].count < nodes[min_2]. count)
min_2 = i;

}
if (min2== 513)

break;
nodes[nextfree].count = nodes[min_1].count

+ nodes[min_2].count;
nodes[min_1].saved_count = nodes[min 1]. count;
nodes[min_1].count = 0;
nodes[min_2].saved_count = nodes[min_2].count;
nodes[min_2].count = 0;
nodes[nextfree].child_0 = in-1;
nodes[next-free].child_1 = min_2;

}
nextfree--;
nodes[nextfree].savedcount = nodes[next free].count;
return(nextfree);

}

// Since the Huffman tree is built as a decoding tree, there is
// no simple way to get the encoding values for each symbol out of
// it. This routine recursively walks through the tree, adding the
// child bits to each code until it gets to a leaf. When it gets
// to a leaf, it stores the code value in the CODE element, and
// returns.

void converttree_tocode(NODE *nodes, CODE *codes, unsigned int codesofar,
int bits, int node)
{

if (node <= ENDOFSTREAM)
{

codes[node].code = code_so_far;
codes[node].code bits = bits;
return;

141

codesofar <<= 1;
bits++;
converttreetocode(nodes, codes, codesofar, bits,

nodes [node].child_0);
converttree_to_code(nodes, codes, code-so-far 11,

bits, nodes[node].child_1);
}

/If a tree model is to be displayed, this routine is called to print
// out some of the model information after the tree is built. Note that
// this is the only place that the savedcount NODE element is used for
// anything at all, and in this case it is just for diagnostic
// information. By the time this function is called the tree has already
// been built and every active element will have 0 in its count.

void print model(NODE *nodes, CODE *codes)
{

int i;

for (i = 0 ; i < 513 ; i++)

{
if (nodes[i].savedcount != 0)

{
printf("node=");
printchar(i);
printf(" count=%3d", nodes[i]. savedcount);
printf(" child 0=");
printchar(nodes[i].child_0);
printf(" child I =");
print _char(nodes[i].child_1);

if (codes && i <= ENDOFSTREAM)
{

printf(" Huffman code=");
FilePrintBin (stdout, codes[i].code, codes[i] code-bits);

)
printf("\n");

// The printmodel routine uses this function to print out node numbers.
// The catch is, if it is a printable character, it gets printed out
II as a character. This makes the debug output a little easier to read.

142

void printchar(int c)

{
if (c>=0x20 &&c<127)

printf("'%c'", c);
else

printf("%3d", c);
}

// Once the tree gets built, and the CODE table is built, compressing
// the data is a breeze. Each byte is read in, and its corresponding
/ Huffman code is sent out.

void compressdata(FILE *input, BITFILE *output, CODE *codes)

{
int c;

while ((c = getc(input)) != EOF)
OutputBits(output, (unsigned long) codes[c].code,

codes[c].codebits);
OutputBits(output, (unsigned long) codes[END OF_STREAM].code,

codes[ENDOF_STREAM].code_bits);
}

// Expanding compressed data is a little harder than the compression
// phase. As each new symbol is decoded, the tree is traversed,
// starting at the root node, reading a bit in, and taking either the
// child_0 or child_1 path. Eventually, the tree winds down to a
/ leaf node, and the corresponding symbol is output. If the symbol
// is the END_OF_STREAM symbol, it doesn't get written out, and
// instead the whole process terminates.

void expand data(BIT_FILE *input, FILE *output, NODE *nodes, int rootnode)

{
int node;

for (;;)

{
node = root-node;
do

{
if (InputBit(input))

node = nodes[node].child_1;
else

node = nodes[node].child_;
}while (node > ENDOFSTREAM);

143

if (node == ENDOFSTREAM)
break;

if ((putc(node, output)) != node)
fatal error("Error trying to write expanded byte to output");

}
}

// Program: Arithmetic Compression/Expansion Functions
// Filename: arith.cpp
// Description: This file provides compression/expansion functions that
// utilize the Arithmetic entropy coding algorithm as the means
// of compression.
// Author: Craig Chin
// Date : 02/15/01
// Notes: The code is a modification of the source code ARITH.C obtained
// from "The Data Compression Book", by M. Nelson and J.L.
// Gailly. This file must be linked to the files errhand.cpp, bitio.cpp,
// and utility func.cpp for proper functionality.

#include <iostream h>
#include <stdioh>
#include <stdlib.h>
#include <time.h>
#include "errhand.h"
#include "bitio.h"
#include "utility func.h"

// The SYMBOL structure is what is used to define a symbol in
// arithmetic coding terms. A symbol is defined as a range between
// 0 and 1. Since we are using integer math, instead of using 0 and 1
// as our end points, we have an integer scale. The lowcount and
// high-count define where the symbol falls in the range.

typedef struct

unsigned short int low count;
unsigned short int high_count;
unsigned short int scale;

} SYMBOL;

// Internal function prototypes.

void build_model(FILE *input, FILE *output);
void scalecounts(unsigned long counts[], unsigned char scaledcounts[]);

144

void build totals(unsigned char scaled-counts[]);
void arithcountbytes(FILE *input, unsigned long counts[]);
void output counts(FILE *output, unsigned char scaledcounts[]);
void input counts(FILE *stream);
void convertint_tosymbol(int symbol, SYMBOL *s);
void get symbol scale(SYMBOL *s);
int convert-symbol _toint(int count, SYMBOL *s);
void initializearithmeticencoder(void);
void encode symbol(BITFILE *stream, SYMBOL *s);
void flusharithmetic_encoder(BITFILE *stream);
short int get current count(SYMBOL *s);
void initializearithmeticdecoder(BITFILE *stream);
void removesymbol_from_stream(BITFILE *stream, SYMBOL *s);

#define END _OF STREAM 256
short int totals[258]; // The cumulative totals

// This ArithC() routine first gathers statistics, and initializes the
// arithmetic encoder. It then encodes all the characters in the file,
// followed by the EOF character. The output stream is then flushed,
// and then the function is exited. Note that an extra two bytes are
// output. When decoding an arithmetic stream, we have to read in extra
/ bits. The decoding process takes place in the msb of the low and
// high range ints, so when decoding the last bit there still has to be
// at least 15 junk bits loaded into the registers. The extra two bytes
// account for that.

void ArithC(void)
{

char inFileName[80];
char outFileName[80];
FILE *input;
BITFILE *output;
char *CompressionName = "Fixed order 0 model with arithmetic coding";
int c;
SYMBOL s;
timet first, second;
double timediff;

// Obtain and locate the input and output files for compression

cout << "Enter the input filename.\n";
cin >> inFileName;
input = fopen(inFileName, "rb");
if (input == NULL)

145

fatal error("Error opening %s for input\n", inFileName);
cout << "Enter the output filename.\n";
cin >> outFileName;
output =OpenOutputBitFile(outFileName);
if (output == NULL)

fatal-error("Error opening %s for output\n", outFileName);
printf("\nCompressing %s to %s\n", inFileName, outFileN e);
printf("Using %s.\n", CompressionName);

first = time(NULL);
build_model(input, output->file);
initialize_arithmeticencoder();
while ((c = getc(input)) != EOF)

{
convert_int_tosymbol(c, &s);
encodesymbol(output, &s);

}
convert int_tosymbol(END OF_STREAM, &s);
encode_symbol(output, &s);
flush_arithmetic_encoder(output);
OutputBits(output, OL, 16);

1/ Calculate time for completion of compression algorithm.

second = time LL);
time diff= difftime(second, first);
cout << "\nTime for algorithm completion =<" time_diff << " seconds.\n";

// Close Input and Output files. Display Compression Information

CloseOutputBitFile(output);
fclose(input);
print_ratios(inFileName, outFileName);

}

// The ArithE() routine reads in the model, initializes the decoder,
// then sits in a loop reading in characters. When an END_OFSTREAM
// is decoded, it signals the function that files can be closed and
// the function exits. Note decoding a single character is a three

// step process: first it is determined what the scale is for the

// current symbol by looking at the difference between the high and

/low values. Next it is seen where the current input values fall in

/that range. Finally, the totals array is searched to find out what

II symbol is a match. After that is done, the symbol is removed from
/the decoder.

146

void ArithE(void)
{

char inFileName[80];
char outFileName[80];
BITFILE *input;
FILE *output;
char *CompressionName = "Fixed order 0 model with arithmetic coding";
SYMBOL s;
int c;
int count;
timet first, second;
double time_diff;

/ Obtain and locate the input and output files for expansion

cout << "Enter the input filename.\n";
cin >> inFileName;
input = OpenlnputBitFile(inFileName);
if (input == NULL)

fatalerror("Error opening %s for input\n", inFileName);
cout << "Enter the output filenameAn";
cin >> outFileName;
output = fopen(outFileName, "wb");
if (output == NULL)

fatalerror("Error opening %s for output\n", outFileName);
printf("\nExpanding %s to %s\n", inFileName, outFileNName);
printf("Using %s.n", CompressionName);

first = time(NULL);
input _counts(input->file);
initialize_arithmetic-decoder(input);
for (;;)

{
get symbolscale(&s);
count = get current_count(&s);
c = convert symboltoint(count, &s);
if(c == END_OF_STREAM)
break;
removesymbol_from_stream(input, &s);
putc((char) c, output);

}

// Calculate time for completion of expansion algorithm.

147

second = time(NULL);
time diff = difftime(second, first);
cout << "\nTime for algorithm completion " timediff <<" secondsAn";

// Close Input and Output files.

Close nputBitFile(input);
fclose(output);
putc('\n', stdout);

}

// This is the routine that is called to scan the input file, scale
//the counts, build the totals array, then output the scaled counts
/ to the output file.

void build-model(FILE *input, FILE *output)

{
unsigned long counts[256];
unsigned char scaledcounts[256];
arithcountbytes(input, counts);
scale-counts(counts, scaledcounts);
output counts(output, scaledcounts);
buildtotals(scaledcounts);

}

// This routine runs through the file and counts the appearances of each
// character.

#i def SEEK_SET
#define SEEK_SET 0
#endif

void arith_count_bytes(FILE *input, unsigned long counts[])

{
long inputmarker;
int i;
int c;

for (i = 0; i < 256; i++)
counts[i] = 0;

input-marker = ftell(input);
while ((c = getc(input)) != EOF)

counts[c]++;
fseek(input, input-marker, SEEKSET);

}

148

// This routine is called to scale the counts down. There are two types
// of scaling that must be done. First, the counts need to be scaled
// down so that the individual counts fit into a single unsigned char.
// Then, the counts need to be rescaled so that the total of all counts
//is less than 16384.

void scalecounts(unsigned long counts[], unsigned char scaled_counts[])
{

int i;
unsigned long max-count;
unsigned int total;
unsigned long scale;

// The first section of code makes sure each count fits into a single byte.

maxcount = 0;
for (i = 0; i < 256; i++)

if (counts[i] > max_count)
maxcount = counts[i];

scale = maxcount / 256;
scale = scale + 1;
for (i = 0; i < 256; i++)

{
scaledcounts[i] = (unsigned char) (counts[i] / scale);
if (scaled_counts[i] == 0 && counts[i] != 0)

scaled-counts[i] = 1;
}

// This next section makes sure the total is less than 16384. The total is
// initialized to 1 instead of 0 because there will be an additional 1 added
// in for the ENDOFSTREAM symbol;

total = 1;
for (i = 0; i < 256; i++)

total += scaledcounts[i];
if (total > (32767 - 256))

scale = 4;
else

if (total> 16383)
scale = 2;

else
retur;

for (i = 0; i < 256; i++)
scaledcounts[i] /= scale;

149

}

// This routine is used by both the encoder and decoder to build the
// table of cumulative totals. The counts for the characters in the
// file are in the counts array, and we know that there will be a single
/instance of the EOF symbol.

void build totals(unsigned char scaled-counts[])
{

int i;

totals[0]= 0;
for (i = 0; i < END OFSTREAM; i++)

totals[i + 1] = totals[i] + scaled_counts[i];
totals[ENDOFSTREAM + 1] = totals[END _OFSTREAM] + 1;

}

//In order for the compressor to build the same model, the symbol counts
// have to be stored in the compressed file so the expander can read them
// in. In order to save space, all 256 symbols are not saved
// unconditionally. The format used to store counts looks like this:
i-
/ start, stop, counts, start, stop, counts, ... 0
//
// This means that runs of counts are stored, until all the non-zero
ii counts have been stored. At this time the list is terminated by
// storing a start value of 0. Note that at least 1 run of counts has
// to be stored, so even if the first start value is 0, it is read in.
// It also means that even in an empty file that has no counts, at least
// one count has to be passed.
/-
// In order to efficiently use this format, the runs of non-zero counts
// have to be identified. It is not desirable to stop a run because of
// just one or two zeros in the count stream. So the program sits in a
// loop looking for strings of three or more zero values in a row.

void outputcounts(FILE *output, unsigned char scaledcounts[])

{
imt first;
int last;
it next;
int i;

first = 0;
while (first < 255 && scaled_counts[first] == 0)

150

first++;

// At the start of each loop, it is assumed that first is the
// number for a run of non-zero values. The rest of the loop is
// concerned with finding the value for last, which is the end of the
// run, and the value of next, which is the start of the next run.
// At the end of the loop, next is assigned to first, so it starts
/ there on the next run.

for (; first <256; first = next)
{

last = first + 1;
for (;;)

{
for (; last < 256; last++)

if (scaledcounts[last] == 0)
break;

last--;
for (next = last + 1; next < 256; next++)
if (scaledcounts[next] != 0)

break;
if (next > 255)

break;
if ((next - last) > 3)

break;
last = next;

}

// Here is where first, last, and all the counts in between are output.

if (putc(first, output) != first)
fatal_error("Error writing byte counts\n");

if (putc(last, output) != last)
fatalerror("Error writing byte counts\n");

for (i = first; i <= last; i++)

{
if (putc(scaledcounts[i], output) != (int) scaled_counts[i])

fatal error("Error writing byte counts\n");
}

}
if (putc(0, output) != 0)

fatal-error("Error writing byte counts\n");

/ hen expanding, the same set of counts have to be read in. Initially first,

151

/is read in, then the function checks to see if its done, and if not, read in
/1 last and a string of counts.

void inputcounts(FJLE *input)
{

int first;
int last;
int i;
int c;
unsigned char scaled-counts[256];

for (i = 0; i < 256; i++)
scaled_counts[i] = 0;

if ((first = getc(input)) == EOF)
fatal error("Error reading byte counts\n");

if ((last = getc(input)) == EOF)
fatal error("Error reading byte counts\n");

for (;;)

{
for (i = first; i <= last; i++)
if ((c = getc(input))== EOF)

fatalerror("Error reading byte counts\n");
else

scaled _counts[i] = (unsigned char) c;
if ((first = getc(input))== EOF)

fatal_error("Error reading byte counts\n");
if (first == 0)

break;
if ((last = getc(input)) == EOF)

fatal_error("Error reading byte counts\n");

}
buildtotals(scaled-counts);

}

// Everything from here down defines the arithmetic coder section
// of the program.

// These four variables define the current state of the arithmetic

// coder/decoder. They are assumed to be 16 bits long. Note that
// by declaring them as short ints, they will actually be 16 bits
// on most 80X86 and 680X0 machines, as well as VAXen.

static unsigned short int code; // The present input code value
static unsigned short int low; // Start of the current code range
static unsigned short int high; // End of the current code range

152

long underfiow bits; // Number of underfiow bits pending

// This routine must be called to initialize the encoding process.
/ The high register is initialized to all ls, and it is assumed that
/ it has an infinite string of Is to be shifted into the lower bit
// positions when needed.

void initializearithmeticencoder()
{

low =0;
high = Oxffff;
underflow_bits = 0;

}

// At the end of the encoding process, there are still significant
// bits left in the high and low registers. Two bits are output,
/ plus as many underflow bits as are necessary.

void flusharithmeticencoder(BITFILE *stream)

{
OutputBit(stream, low & 0x4000);
underfiow_bits++;
while (underflowbits-- > 0)

OutputBit(stream, ~low & 0x4000);

}

// Finding the low count, high count, and scale for a symbol
// is really easy, because of the way the totals are stored.
// This is the one redeeming feature of the data structure used
// in this implementation.

void convertint_tosymbol(int c, SYMBOL *s)

{
s->scale = totals[END_OF_STREAM + 1];
s->low_count = totals[c];
s->highcount = totals[c + 1];

}

// Getting the scale for the current context is easy.

void get_symbol_scale(SYMBOL *s)

{
s->scale =totals[END_OF_STREAM + I];

153

// During decompression, the table has to be searched until
/the symbol that straddles the "count" parameteris found. When
I/ it is found, it is returned. The reason for also setting the
// high count and low count is so that symbol can be properly removed
// from the arithmetic coded input.

int convert symbol toint(int count, SYMBOL *s)
{

int c;

for (c = ENDOFSTREAM; count < totals[c]; c--)

;
s->high-count = totals[c + 1];
s->low_count = totals[c];
retum(c);

}

// This routine is called to encode a symbol. The symbol is passed
// in the SYMBOL structure as a low count, a high count, and a range,
// instead of the more conventional probability ranges. The encoding
// process takes two steps. First, the values of high and low are
// updated to take into account the range restriction created by the
// new symbol. Then, as many bits as possible are shifted out to
/the output stream. Finally, high and low are stable again and
//the routine returns.

void encode symbol(BITFILE *stream, SYMBOL *s)

{
long range;

// These three lines rescale high and low for the new symbol.

range = (long) (high-low) + 1;
high = low + (unsigned short int) ((range * s->highcount) / s->scale - 1);
low = low + (unsigned short int) ((range * s->lowcount) / s->scale);

// This loop turns out new bits until high and low are far enough
// apart to have stabilized.

for (;;)

{

//If this test passes, it means that the MSDigits match, and can
II be sent to the output stream.

154

if ((high & 0x8000) == (low & 0x8000))

{
OutputBit(stream, high & 0x8000);
while (underfiow_bits > 0)

{
OutputBit(stream, ~high & 0x8000);
underfiow_bits--;

}
}

/If this test passes, the numbers are in danger of underflow, because
//the MSDigits don't match, and the 2nd digits are just one apart.

else
if ((low & 0x4000) && !(high & 0x4000))

{
underfiow bits += 1;
low &= Ox3fff;
high J= 0x4000;

}
else

return;
low <<= 1;

high <<= 1;
high J= 1;

}
}

// When decoding, this routine is called to figure out which symbol

// is presently waiting to be decoded. This routine expects to get

// the current model scale in the s->scale parameter, and it returns

// a count that corresponds to the present floating point code:
/-
II code = count / s->scale

short int get-currentcount(SYMBOL *s)

{
long range;
short int count;

range = (long) (high - low) + 1;
count = (short int) ((((long) (code - low) + 1) * s->scale-1) / range);
retum(count);

}

155

// This routine is called to initialize the state of the arithmetic
// decoder. This involves initializing the high and low registers
// to their conventional starting values, plus reading the first
//16 bits from the input stream into the code value.

void initialize_arithmeticdecoder(BITFILE *stream)
{

int i;

code = 0;
for (i= 0; i < 16; i++)
{

code <<= 1;
code += InputBit(stream);

}
low =0;
high = Oxffff;

}

/Just figuring out what the present symbol is doesn't remove
//it from the input bit stream. After the character has been
// decoded, this routine has to be called to remove it from the
/input stream.

void remove-symbol_from stream(BITFILE *stream, SYMBOL *s)
{

long range;

// First, the range is expanded to account for the symbol removal.

range = (long)(high - low) + 1;
high = low + (unsigned short int) ((range * s->highcount) / s->scale - 1);
low = low + (unsigned short int) ((range * s->lowcount) / s->scale);

// Next, any possible bits are shipped out.

for (;;)
{

/If the MSDigits match, the bits will be shifted out.

if ((high & 0x8000) == (low & 0x8000))

{
}

156

// Else, if underflow is threatening, shift out the 2nd MSDigit.

else
if ((low & 0x4000) == 0x4000 && (high & 0x4000)== 0)
{

code ^= 0x4000;
low &=Ox3fff;
high 1= 0x4000;

}
else
// Otherwise, nothing can be shifted out, so I return.

return;
low <<= 1;
high <<= 1;
high 1= 1;
code <<= 1;
code += InputBit(stream);

}

157

Appendix 2 - Performance Evaluation Software

// Program: Compression Performance Evaluation Program
// Filename: eval.cpp
// Description: This program allows you to evaluate the performance of
// compression programs. It allows you to measure Compression
// Ratio, Rate, Entropy, Mean-Squared Error (MSE), and Signal-to-
// Noise Ratio (SNR).
// Author: Craig Chin
// Date : 02/13/01
// Notes: To obtain useful results, the input filename must be of the input to
// the compression program, and the output filename must be of the
// compression output or the expansion output. This progam must
// include the header file perfmeas.h, and it must be linked to
// perfmeas.cpp for proper functionality.

#include <iostream.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "eval.h"

// This main program provides the user with a menu interface that allows the user to
// choose the compression performance measure he wishes to utilize.

int main()

{
int PerformanceMeasureChoice;

do
{

cout << "This program will allow you to evaluate the performance of\n";
cout << "your compression algorithms. This will be done with the use

of\n";
cout << "certain performance measures. These measures will include:\n";
cout << "Compression ratio, Rate, Entropy, Mean-Squared

Error(MSE),\n";
cout < "and Signal-to-Noise Ratio (S).\n";
cout << "To choose the algorithm that will allow you to obtain one of\n";
cout << "these performance measures, enter the number that

corresponds\n";
cout << "to the menu items listed below.\n\n";
cout << "1) Compression Ratio\n";
cout << "2) Rate (bits/sample)\n";

158

cout << "3) Entropy (bits/s ple)\n";
cout << "4) Mean-Squared Error\n";
cout << "5) Signal-to-Noise Ratio\n";
cout << "6) Exit\n\n";
cin > PerformanceMeasureChoice;

switch(PerformanceMeasureChoice)
{

case 1: CompressionRatio();
break;

case 2: Rate();
break;

case 3: Entropy();
break;

case 4: MSE();
break;

case 5: SNR);
break;

case 6: break;
default: cout << "You have not made a valid entry. Try again.\n";

break;

}
}while(PerformanceMeasureChoice != 6);

return 0;

}

// Program: Compression Performance Evaluation Functions
/ Filename: perfmeas.cpp
// Description: This file contains the function definitions that will allow you

// to evaluate the performance of compression programs.
// Author: Craig Chin
// Date : 02/13/01

// Notes: The associated function declarations are found in perfmeas.h. In

// order to use the filesize() function this program must be linked

// to utility func.cpp.

#include <iostream.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "perfmeas.h"
#include "utility func.h"

// This function obtains the compression ratio between compression input and output files

159

void CompressionRatio(void)

{
double input size;
double output size;
double ratio;
char inFileName[80];
char outFileName[80];

/Obtain the input and output filenames

cout << "Enter the input filename.n";
cin >> inFileName;
cout << "Enter the output filenameAn";
cin >> outFileName;

// Obtain the size of input an output files and calculate compression ratio

input-size = (double) file-size(inFileName);
if (input-size == 0)

input-size = 1;
output-size = (double) filesize(outFileName);
if (output size == 0)

output _size = 1;
ratio = input-size / output-size;

cout << "Size of Input File = " << input-size << " bytes.n";
cout << "Size of Output File = " << output size << " bytesAn";
cout << "Compression Ratio = " << ratio << ": 1\n\n";

void Rate(void)

{
double inputsize;
double output_size;
double rate;
double BytesPerSample;
char inFileName[80];
char outFileName[80];

// Obtain the input and output filenames and the number of bytes per sample

cout << "Enter the input filename.n";
cin > inFileName;
cout << "Enter the output filename.n";

160

cin >> outFileName;
cout << "Enter the number of bytes per sample.\n";
cin BytesPerSample;

// Obtain the size of input an output files and calculate rate

input-size = (double) file size(inFileName);
if (input size == 0)

inputsize = 1;
output size = (double) filesize(outFileName);
if (outputsize == 0)

output size= 1;
rate = (output-size * 8) / (input-size/BytesPerSample);

cout << "Size of Input File = " << input-size << " bytes.n";
cout << "Size of Output File = " << outputsize << " bytes.n";
cout << "Rate =" << rate << " bits/sample.\n\n";

}

void Entropy(void)
{

char inFileName[80];
FILE *input;
long TotalSamples;
int symbol;
long SampleCountArray[256];
double probArray[256];
double entropy;
int i;

// Obtain input filename, input file size, and open input file

cout << "Enter the input filename.\n";
cin >> inFileName;
TotalSamples = file _size(inFileName);
input = fopen(inFileName, "rb");
if (input == NULL)
{

cout << "Cannot open " < inFileName << " for input.\n

exit(0);
}

//Initialize SampleCountArray

for(i = 0; i < 256; i++)

161

SampleCountArray[i] = 0;

// Fill SampleCountArray

while ((symbol = getc(input)) != EOF)
SampleCountArray[symbol]++;

// Determine input file entropy

entropy = 0.0;
for (i = 0; i < 256; i++)
{

probArray[i] = (double)SampleCountArray[i] / (double)TotalSamples;
if(probArray[i] > 0.0)
entropy -= probArray[i] * log(probArray[i]);

}

entropy = entropy / log((double)2.0);

cout << "Total Samples = " << TotalSamples << "\';
cout << "Entropy " << entropy <<" bits/sample.\n\n";
fclose(input);

}

void MSE(void)
{

char inFileName[80];
char outFileName[j8o];
long input-size;
FILE *input;
FILE *output;
unsigned long squareerror;
int input-value, outputvalue;
double MSE;

// Obtain the input and output filenames

cout << "Enter the input filenameAn";
cin >> inFileName;
cout << "Enter the output filename.n";
cin >> outFileName;

// Obtain input file size

input-size = file-size(inFileName);

162

// Obtain Square-Error for input and output files

input = fopen(i ileName, "rb");
output = fopen(outFileName, "rb");
squareerror = 0;
while ((input value = getc(input)) != EOF)
{

output-value = getc(output);
square-error += ((unsigned long)inputvalue - (unsigned

long)outputvalue)* ((unsigned long)input-value -
(unsigned long)output value);

}

// compute mean-square error

MSE = (double)square-error / (double)input-size;

cout << "Total Samples = " << input-size << "';
cout << "Mean-Squared Error = " <MSE << "\nn";

fclose(input);
fclose(output);

}

void SNR(void)

{
char in ileName[80];
char outFileName[80];
long input size;
FILE *input;
FILE *output;
unsigned long signal squared, square-error;
int input value, output-value;
double MSE, avg _sqsignal, SNR;

// Obtain the input and output filenames

cout << "Enter the input filenameAn";
cin >> inFileName;
cout << "Enter the output filenameAn";
cin >> outFileName;

// Obtain input file size

163

input-size = file_size(inFileName);

// Obtain Square-Error and SignalSquared from input and output files

input = fopen(inFileName, "rb");
output = fopen(outFileName, "rb");
signal squared = 0;
square-error = 0;
while ((input value = getc(input)) != EOF)

{
output-value = getc(output);
signalsquared += (unsigned long)inputvalue * (unsigned

long)input-value;
square-error += ((unsigned long)input-value - (unsigned

long)outputvalue)*((unsigned long)input value -
(unsigned long)outputvalue);

}

// compute average square input value, mean-square error and SNR

MSE = (double)square error / (double)inputsize;
avgsqsignal = (double)signal squared / (double)input-size;
cout << "Total Samples = " << input size < "\n";
if(MSE == 0.0)

cout << "Signal-to-Noise Ratio infinity\n\n";
else

{
SNR = avg_sqsignal / MSE;
cout << "Total Signal-Squared =" << signal squared <<"\n";
cout << "Average Squared Signal= " << avg_ sqsignal <<"\n";
cout << "Mean-Squared Error = " << MSE << "\";
cout << "Signal-to-Noise Ratio = " << SNR << "\n\n";

}

fclose(input);
fclose(output);

}

// Program: Compression Performance Evaluation Function declarations
// Filename: perfmeas.h
// Description: This file contains the function declarations that will allow you

to evaluate the performance of compression programs.
// Author: Craig Chin
// Date : 02/13/01
// Notes: The associated function definitions are found in perfmeas.cpp.

164

void CompressionRatio(void);
void Rate(void);
void Entropy(void);
void MSE(void);
void SNR(void);

// Program: Utility Function Definitions for Compression/Expansion Programs
// Filename: utility func.cpp
// Description: This program contains function definitions that are utilized in some
// of the compression programs.
// Author: Craig Chin
// Date : 02/01/01
// Notes: The code is a modification of source code obtained from "The Data
// Compression Book", by M. Nelson and J.L. Gailly. The function
// declarations are found in utility func.h

#include <stdio.h>
#include "utility func.h"

// This routine prints out the compression ratios after the input
// and output files have been closed.

void printratios(char *input, char* output)

{
long inputsize;
long output size;
double ratio;

input size = file-size(input);
if (input-size == 0)

input size = 1;
output size = file_size(output);
if (output-size = 0)

output-size = 1;
ratio = (double)input-size / (double)output_size;
printf("\nlnput bytes: %ld\n", inputsize);
printf("Output bytes: %ld\n", output size);
printf("Compression ratio: %f:1\n", ratio);

}

// This routine is used get the size of a file. It does all the work, and returns a long.

#ifndef SEEKEND

165

#define SEEKEND 2
#endif

long file-size(char *name)
{

long eof ftell;
FILE *file;

file = fopen(name, "r");
if (file == NULL)

retur(OL);
fseek(file, OL, SEEKEND);
eofftell = ftell(file);
fclose(file);
retum(eof ftell);

}

// Program: Utility Function Declarations
// Filename: utilityfunc.h
// Description: This program contains function declarations that are utilized in
// some of the compression programs.
// Author: Craig Chin
// Date : 02/01/01
// Notes: The function definitions are found in utility func.cpp

void print_ratios(char *input, char* output);
long file size(char *name);

166

Appendix 3 - VOIP Application Software

// Program: Voice-over-IP half-duplex application
// Filename: voipmenu.cpp
// Description: This program allows you to send and receive voice messages over
// the internet. A DCT compression/expansion algorithm is used to
// reduce the bandwidth utilized in the transmission of audio data
// across the internet.
/ Author: Craig Chin
// Date : 02/01/01
// Notes: The code is a modification of the source code client.c and server.c
// obtained from "Computer Networks and terets", by D. E.
// Comer.
// The following support files must be linked to this program in order
/ to provide proper functionality: utilityfunc.cpp, onedddct.cpp,

// errhandcpp, ahuff.cpp, bitio.cpp, and writeWaveData.cpp.

#ifndef unix
#define WIN32
#include <windows.h>
#include <winsock.h>
#else
#define closesocket close
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#endif

#include <stdio.h>
#include <string.h>
#include <io.h>
#include <stdlib.h>
#include <iostream.h>
#include "utility_func.h"

#define PROTOPORT 5193 // default protocol port number
#define QLEN 6 // size of request queue
extern int errno;

// function prototypes
void send_message(void);
void receive_message(void);
void writeWaveData(char *filename);

167

void read WaveData(void);

// These functions are used to compress and expand files for a client-server
// application. Refer to file onedddct.cpp for the function definitions.

void send dctC(char inFileName[], char outFileName[]);
void recvdctE(char inFileName[], char outFileName[]);

// The main() function is used allow the user to interact with the program via
// menu-type selections.

int main()

{
int choice; //Menu choice variable

do
{

cout << "This program facilitates communication across the intemet via voice
messagesAn";
cout << "Enter one of the following numbers to perform the task you desire\n\n";
cout << "1) To send a voice message\n";
cout << "2) To receive a voice message\n";

cout << "3) To exit the program\n";
cin >> choice;
switch(choice)

{
case 1: sendmessage();

break;
case 2: receive-message);

break;
case 3: break;
default: cout << "You have made an invalid entry. Try againAn";
break;

}
}while(choice != 3);

return(0);

}

// The sendmessage() function is used to compress and send a voice message to a
// remote computer.

void sendmessage(void)

{

168

struct hostent *ptrh = 0; // pointer to a host table entry
struct protoent *ptrp = 0; // pointer to a protocol table entry
struct sockaddr in sad; // structure to hold an IP address
int sd; // socket descriptor
const int port = PROTOPORT; // protocol port number
char host[30]; // buffer to hold host name
char recv-buf20]; // buffer for confirmation response
char inFileName[] = "recordData"; // Input filename buffer
char outFileName[] = "comp_out"; // Output filename buffer
FILE * output; // Compression output file pointer
char message_ buf[640000]; / Output message buffer
long sizeoffile[1]; // size of file to be sent
int n; // number of characters read
int i;

#ifdef WIN32
WSADATA wsaData;
WSAStartup(OxO 101, &wsaData);

#endif
memset((char *)&sad,0,sizeof(sad)); // clear sockaddr structure
sad.sin_family = AFINET; // set family to Internet

// Write protocol port number to address structure

sad.sinport = htons((u short)port);

// Request host name of computer from user and store it

cout << "Enter the host name of the computer you wish to contactAn";
cout << "If you desire to use the local computer type 'localhost'An";
cin >> host;

// Convert host name to equivalent IP address and copy to sad.

ptrh = gethostbyname(host);
if (((char *)ptrh) == NULL)
{

fprintf(stderr,"invalid host: %s\n", host);
exit(1);

memcpy(&sad.sinaddr, ptrh->h_addr, ptrh->h length);

// Map TCP transport protocol name to protocol number.

if (((int)(ptrp = getprotobyname("tcp"))) == 0)

169

{
rintf(stderr, "cannot map \"tcp\" to protocol number");

exit(1);
}

// Create a socket.

sd = socket(PF_ INET, SOCKSTREAM, ptrp->pjproto);
if (sd < 0)

{
fprintf(stderr, "socket creation failed\n");
exit(1);

}

/ Connect the socket to the specified server.

if (connect(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0)

{
fprintf(stderr,"connect failed\n");
exit(1);

}

// Record audio file with filename "recordData"

read WaveData();

// Compress input file to produce output file

send_dctC(inFileName, outFileName);

// Obtain size of Compression output

sizeoffile[0] = file-size(outFileName);

// Send message to host

send(sd, (char*)size_offile, sizeof(sizeoffile), 0);

closesocket(sd);

// Create a socket.

sd = socket(PFINET, SOCKSTREAM, ptrp->pproto);
if(sd<0)
{

fprintf(stderr, "socket creation failed\n");
exit(1);

170

}

// Connect the socket to the specified server.

if (connect(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0)
{

fprintf(stderr,"connect failed\n");
exit(1);

}

// Wait for confirmation response

n = recv(sd, recvbuf, sizeof(recv buf), 0);
while (n > 0)

{
n = recv(sd, recv_buf, sizeof(recv_buf), 0);

}

// Print confirmation response

cout << "File size acknowledge message has been
for (i = 0; i < sizeof(recvbuf); i++)

{
if (recv bufi] =='\')

break;
else

cout << recvbuf[i];
}

cout << "\n";

// Close the socket.

closesocket(sd);

// If confirmation response has been received sucessfully; send message.

if(recv buf{0] =='r')

{
// Create a socket.

sd = socket(PF_ INET, SOCKSTREAM, ptrp->p proto);
if (sd < 0)
{

fprintf(stderr, "socket creation failed\n");

171

exit(1);
}

// Connect the socket to the specified server.

if (connect(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0)

{
rintf(stderr,"connect failed\n");

exit(1);
}

// Open compression output file

output = fopen(outFileName, "rb");
if (output == NULL)
{

cout << "Error opening " << outFileName << " for readingAn";
exit(1);

}

// Read output file into messsage buffer

fread(message_buf, sizeof(char), size-of file[0], output);

// Send message to host

send(sd, message_buf, sizeof(message buf), 0);

closesocket(sd);

}
else

cout << "Error with receive message from server\n";

}

// The receive_message() function is used to receive and expand a voice message
/ from a remote computer.

void receivemessage(void)

{
struct hostent *ptrh = 0; // pointer to a host table entry
struct protoent *ptrp = 0; // pointer to a protocol table entry
struct sockaddrin sad; // structure to hold server's address
struct sockaddr in cad; // structure to hold client's address

172

int sd, sd2; // socket descriptors
const int port = PROTOPORT; // protocol port number
int alen; // length of address
int n; // number of characters read
long size-of file[1]; // size of file to be received
char send buf] = "received"; // file size confirmation message
char message buf[640000]; /Input message buffer
FILE * input; // Expansion input file pointer
char inFileName[] = "expin"; // Expansion input filename buffer
char outFileName[] = "expout"; // Expansion output filename buffer

#ifdef WIN32
WSADATA wsaData;
WSAStartup(0x0101, &wsaData);

#endif
memset((char *)&sad,0,sizeof(sad)); // clear sockaddr structure
sad.sin_family = AFINET; // set family to Internet
sad.sin_addr.saddr = INADDR_ANY; // set the local IP address

// Write protocol port number to address structure

sad.sinport = htons((ushort)port);

// Map TCP transport protocol name to protocol number

if (((int)(ptrp = getprotobyname("tcp"))) == 0)
{

fprintf(stderr, "cannot map \"tcp\" to protocol number");
exit(1);

}

// Create a socket

sd = socket(PFINET, SOCKSTREAM, ptrp->pproto);
if (sd < 0)
{

fprintf(stderr, "socket creation failed\n");
exit(1);

}

II Bind a local address to the socket

if (bind(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0)
{

fprintf(stderr,"bind failed\n");

173

exit(1);
}

// Specify size of request queue

if (listen(sd, QLEN) < 0)

{
fprintf(stderr,"listen failed\n");
exit(1);

}

// Accept connection request

alen = sizeof(cad);
if ((sd2=accept(sd, (struct sockaddr *)&cad, &alen)) < 0)

{
fprintf(stderr, "accept failed\n");
exit(1);

}

I/ Receive file size information

n = recv(sd2, (char*)size of file, sizeof(sizeoffile), 0);
while (n > 0)

{
n = recv(sd2, (char*)sizeoffile, sizeof(size-offile), 0);

}

cout << "Size of incoming file is " << sizeoffile[0] << ".\n";

closesocket(sd2);

// Accept connection request

alen = sizeof(cad);
if ((sd2=accept(sd, (struct sockaddr *)&cad, &alen)) < 0)

{
fprintf(stderr, "accept failed\n");
exit(1);

}

// Send file size confirmation

send(sd2, send_buf, sizeof(send bu), 0);

174

cout << "I have sent my reply.\n";

closesocket(sd2);

// Accept connection request

alen = sizeof(cad);
if ((sd2=accept(sd, (struct sockaddr *)&cad, &alen)) < 0)

{
fprintf(stderr, "accept failed\n");
exit(1);

}

// Open expansion input file
input = fopen(inFileName, "wb");
if (input == NULL)
{

cout << "Error opening " << inFileName <<" for writing.\n";
exit(1);

}

// Receive message

n = recv(sd2, message_buf, sizeof(message_buf), 0);
while (n > 0)

{
n = recv(sd2, messagebuf, sizeof(message_buf), 0);

I

// Write message to expansion input file

fwrite(messagebuf, sizeof(char), size-offile[0], input);
fclose(input);
closesocket(sd2);
closesocket(sd);

// Expand input file to produce output file
recv_dctE(inFileName, outFileName);

// Output audio file to speakers
writeWaveData(outFileName);

Program: Record audio waveform data from input device

175

/1 Filename: readWaveData.cpp
// Description: This file contains a function that allows you to read a block of

// 8-bit, PCM, 8 kHz audio data from a microphone.
// Author: Craig Chin
// Date : 02/03/01
// Notes: The code is a modification of the source code found on the MSDN

// website at the following URL
// http://msdn.microsoft.com/library/psdk/mUltimed/wave_8r 5.htm.

// The title of the webpage is "Example of Writing Waveform Data."

// The following resource files must be included with this file for

// proper functionality: winmm.lib, kerel32.lib.

#define WIN32
#include <windows.h>
#include <mmsystem.h>
#include <mmreg.h>
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "utility func.h"

//Function Prototypes

void readWaveData(void);

// This function performs the actual reading of audio data from the microphone

void readWaveData(void)

{
HANDLE hDataln = NULL; // handle of waveform data memory
LPVOID lpData=n NULL; // pointer to waveform data memory
HWAVEIN hWaveln; // handle to waveform-audio input device
HGLOBAL hWaveHdr; // handle to WAVEHDR object
LPWAVEHDR lpWaveHdr; // pointer to WAVEHDR structure
UINT wResult;
HANDLE hFormat = 0;
WAVEFORMATEX pcm WaveFormat; // WAVEFORMATEX structure
WAVEFORMATEX *pFormat &pcmWaveFormat; // pointer to

// WAVEFORMATEX structure
DWORD dwDataSize = 640000L; // # of bytes of memory to allocate
HWND hwndApp = NULL; // window handle
unsigned long bytesRecorded = OL; // # of bytes recorded
char record start = 0; // variable to signal recording start

176

char record stop = 0; // variable to signal recording stop
char file _name[]= "recordData"; // filename for recorded audio file

FILE * record file; // FILE pointer to recorded audio file

time_t start, stop; // time variables for record start and stop
// times

double time_diff; // recording time in seconds

// Set up WAVEFORMATEX structure for 8 kHz, 8-bit mono.

pcmWaveFormat.wFormatTag = WAVE_FORMATPCM;
pcmWaveFormat.nChannels = 1;
pcmWaveFormat.nSamplesPerSec = 8000L;
pcmWaveFo at. vgBytesPerSec = 8OGOL;
pcmWaveFormat.nBlockAlign = 1;
pcmWaveFormat.wBitsPerSample = 8;

// Create an audio file called "recdata.raw"
recordfile = fopen(file_name, "wb");

// Open a waveform device for output using window callback.

if (wavelnOpen((LPHWAVEIN)&hWave n, WAVEMAPPER,
(LPWAVEFORMATEX)pFormat,
(long)hwndApp, OL, CALLBACKWINDOW))

{
cout << "Failed to open waveform input device.\n";
LocalUnlock(hFormat);
LocalFree(hFormat);
fclose(record file);
retur;

}

// Allocate and lock memory for the recording of waveform data.

hDataln = GlobalAlloc(GMEM_MOVEABLE I GMEM_SHARE, dwDataSize);
if (!hDataln)
{

cout << "Out of memory.n";
fclose(record-file);
retum;

}
if ((lpDataln GlobalLock(hData n)) == NULL)
{

cout << "Failed to lock memory for data chunk.n";
GlobalFree(hDatln);

177

fclose(recordfile);
return;

}

/ Allocate and lock memory for the header.

hWaveHdr = GlobalAlloc(GMEM_MOVEABLE GMEM_SHARE, (DWORD)

sizeof(WAVEHDR));
if (hWaveHdr == NULL)
{

cout << "Not enough memory for header.\n";
GlobalUnlock(hDataIn);
GlobalFree(hDataln);
return;

}

lpWaveHdr = (LPWAVEHDR) GlobalLock(hWaveHdr);
if (lpWaveHdr == NULL)

{
cout < "Failed to lock memory for header.\n";
GlobalUnlock(hDataln);
GlobalFree(hDataln);
retur;

}

/ After allocation, set up and prepare header.

lpWaveHdr->lpData = (HPSTR) lpData n;
lpWaveHdr->dwBufferLength = dwDataSize;
IpWaveHdr->dwFlags = OL;
lpWaveHdr->dwLoops = OL;
wavelnPrepareleader(hWaveIn, lpWaveHdr, sizeof(WAVEHDR));

// The data buffer can now be sent to the waveform-audio input
// device for the recording of data. The wave nAddBuffer()
// function is used for this purpose.

wResult = wavelnAddBuffer(hWaveln, lpWaveHdr, sizeof(WAVEHDR));
if (wResult != 0)
{

cout << "Failed to write block to device.\n";
wavelnUnprepareHeader(hWaveln, lpWaveHdr, sizeof(WAVEHDR));
GlobalUnlock(hDataln);
GlobalFree(hDataln);
return;

178

}

cout << "To start recording an audio file press the 'r' key.\n";
cout << "To stop recording an audio file press the 'r' key again.n";
cout << "You will be limited to a maximum of 10 seconds of audio.An";

// Use 'r' key to start recording audio data

while(record_start !='r')

{
cin >> recordstart;
if(recordstart == 'r')
{

wResult = wave nStart(hWaveln);
start = time(NULL);
if (wResult != 0)

{
cout << "Failed to write block to device.An";
wavelnUnprepareHeader(hWaveln, lpWaveHdr,

sizeof(WAVEHDR));
GlobalUnlock(hDataln);
GlobalFree(hDataln);
retur;

}
}
else

cout << "Invalid input! Please try againAn";

}

cout << "Recording audio input.\n";

// Use 'r' key to stop recording audio data

while(record-stop !='r')

{
cin >> record _stop;
if(record_stop = 'r')

{
wResult = wave nReset(hWaveIn);
stop = time(NULL);
if (wResult != 0)

{
wavelnUnprepareHeader(hWaveln, lpWaveHdr,

sizeof(WAVEHDR));
GlobalUnlock(hData n);

179

GlobalFree(h atam);
cout << "Failed to write block to device.\n";
return;

}

}
else

cout << "Invalid input! Please try again.\n";

}

cout << "Recording of audio has stopped.\n";

// Calculate the # of bytes recorded

time-diff= difftime(stop, start);
bytesRecorded = 64000L * (long)time-diff;
cout << "Bytes Recorded =" << bytesRecorded << ".\n";

// Write the waveform data subchunk to file.

if(fwrite(lpDataln, sizeof(char), bytesRecorded, record file) != bytesRecorded)

{
cout << "Failed to write the data chunk.\n";
GlobalUnlock(hDataIn);
GlobalFree(hDataln);
fclose(record_file);
return;

// Cleanup procedures
wavelnUnprepareHeader(hWaveln, lpWaveHdr, sizeof(WAVEHDR));
GlobalUnlock(hData n);
GlobalFree(hDataln);
wavelnClose(hWaveln);
fclose(recordfile);
cout << "Audio file recorded successfully.\n";
retur;

}

// Program: Write audio waveform data to output device
// Filename: writeWaveData.cpp
// Description: This file contains a function that allows you to write a block of

8-bit, PCM, 8 kHz audio data to the speakers of your computer.
// Author: Craig Chin

180

// Date : 02/01/01
// Notes: The code is a modification of the source code found on the MSDN website
// at the following URL
// http://msdn.microsoft.com/library/psdk/multimed/wave_8rj5.htm.
// The title of the webpage is "Example of Writing Waveform Data." The
// following resource files must be included with this file for proper
// functionality: winmm.lib, and kemel32.lib.

#define WIN32
#include <windowsh>
#include <mmsystem.h>
#include <mmreg.h>
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include "utility func.h"

// Function Prototypes

void writeWaveData(char *file_name);

// This function performs the actual writing of audio data out to the speakers

void writeWaveData(char *file_name)
{

HANDLE hDataOut = NULL; // handle of waveform data memory
LPVOID lpDataOut = NULL; // pointer to waveform data memory
HWAVEOUT hWaveOut; // handle to waveform-audio output device
HGLOBAL hWaveHdr; / handle to WAVEHDR object
LPWAVEHDR lpWaveHdr; // pointer to WAVEHDR structure
HMMIO hmmio; // audio file handle
UINT wResult;
HANDLE hFormat=0;
WAVEFORMATEX pcm WaveFormat; // WAVEFORMATEX structure
WAVEFORMATEX *pFormat = &pcmWaveFormat; // pointer to

// WAVEFORMATEX structure
DWORD dwDataSize; // # of bytes of memory to allocate
HWND hwndApp = NULL; // window handle

// Obtain the size of the audio file

dwDataSize = file_size(filename);
cout << "Size of expanded output file "<< dwDataSize << ".\n";

// Set up WAVEFORMATEX for 8 kHz, 8-bit mono.

181

pcmWaveFormat.wFormatTag WAVE_FORMAT_PCM;
pcmWaveFormat.nChannels = 1;
pcmWaveFormat.nSamplesPerSec = 8000L;
pc WaveFormat.nAvgBytesPerSec = 8000L;
pcmWaveFormat.nBlockAlign = 1;
pc WaveFormat.wBitsPerSample = 8;

// Open audio file for buffered I/O

hmmio = mmioOpen((LPSTR) file-name, NULL, MMIO_READ);
cout << "Audio file handle = " << hmmio < "\n";

// Open a waveform device for output using window callback.

if (waveOutOpen((LPHWAVEOUT)&hWaveOut, WAVEMAPPER,
(LPWAVEFORMATEX)pFormat,
(long)hwndApp, OL, CALLBACKWINDOW))

{
cout << "Failed to open waveform output device.\n";
LocalUnlock(hFormat);
LocalFree(hFormat);
mmioClose(hmmio, 0);
return;

}

// Allocate and lock memory for the waveform data.

hDataOut = GlobalAlloc(GMEM_MOVEABLE GMEM_SHARE, dwDataSize);
if (!hDataOut)

{
cout << "Out of memory.n";
mmioClose(hmmio, 0);
return;

}
if ((lpDataOut = GlobalLock(hDataOut)) == NULL)
{

cout << "Failed to lock memory for data chunk.\n";
GlobalFree(hDataOut);
mmioClose(hmmio, 0);
return;

// Read the waveform data into memory.

182

if(mmioRead(hmmio, (HPSTR) lpDataOut, dwDataSize) !=
(LRESULT)dwDataSize)
{

cout << "Failed to read data chunk.\n";
GlobalUnlock(hDataOut);
GlobalFree(hDataOut);
mmioClose(hmmio, 0);
return;

}

/ Allocate and lock memory for the header.

hWaveHdr = GlobalAlloc(GMEM_MOVEABLE S GMEMSHARE,
(DWORD) sizeof(WAVEHDR));

if (hWaveHdr == NULL)
{

cout << "Not enough memory for header.\n";
GlobalUnlock(hDataOut);
GlobalFree(hDataOut);
return;

lpWaveHdr = (LPWAVEHDR) GlobalLock(hWaveHdr);
if (lpWaveHdr == NULL)
{

cout << "Failed to lock memory for header.\n";
GlobalUnlock(hDataOut);
GlobalFree(hDataOut);
return;

// After allocation, set up and prepare WAVEHDR structure.

lpWaveHdr->lpData = (HPSTR) lpDataOut;
lpWaveHdr->dwBufferLength = dwDataSize;
lpWaveHdr->dwFlags = OL;
lpWaveHdr->dwLoops = OL;
waveOutPrepareHeader(hWaveOut, lpWaveHdr, sizeof(WAVEHDR));

// Now the data block can be sent to the output device. The
// waveOutWrite() function returns immediately and waveform
/1 data is sent to the output device in the background.

wResult = waveOutWrite(hWaveOut, lpWaveHdr, sizeof(WAVEHDR));
if (wResult ! 0)

183

cout << "Failed to write block to devicean";
waveOutUnprepareHeader(hWaveOut, lpWaveHdr, sizeof(WAVEHDR))
GlobalUnlock(hDataOut);
GlobalFree(hDataOut);
return;

}
cout << "Audio file output successfully!\n";
return;

184

	Florida International University
	FIU Digital Commons
	3-14-2001

	Multilevel data compression techniques for transmission of audio over networks
	Craig Chin
	Recommended Citation

	tmp.1461166943.pdf.jGFD_

