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ABSTRACT OF THE THESIS 

ENHANCED FLEXIBLE MATERIALS FOR HEART VALVE PROSTHESIS 

APPLICATIONS 

by 

Makensley Lordeus 

Florida International University, 2015 

Miami, Florida 

Professor Sharan Ramaswamy, Major Professor 

While mechanical, homograft and bio-prosthetic valves have been used in patients for 

many decades and have made significant improvements in patient morbidity, there is still 

a distinct need to overcome their limitations. Recently, emerging elastomer heart valves 

have been shown to be able to better re-create the flow physics of native heart valves, 

resulting in preferable hemodynamic responses. Unfortunately, elastomers such as 

silicone are prone to structural failure, which drastically limits their applicability towards 

the development of valve prosthesis. In order to produce a mechanically more robust 

silicone substrate, we reinforced it with graphene nanoplatelets (GNPs).  Cytotoxicity and 

hemocompatibility tests revealed that the incorporation of GNPs did not adversely affect 

cell proliferation or augment adhesion of platelets on the surface of the composite 

materials. The ECM valves showed good hydrodynamic properties and favorable acute 

performance compared to a commercially available valve. We conclude that both the 

Graphene reinforce silicone and the ECM is useful and warrants further evaluation as 

aortic valve substitutes. 
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Chapter 1 Introduction 

Heart valves promote coordinated forward blood flow during the cardiac cycle. These 

valves have leaflets that open and close with each heartbeat. Valve disease such as 

critical stenosis or regurgitation, is a significant public health problem (Hoffman & 

Kaplan, 2002). Valve disease results in approximately 20,000 deaths annually. The direct 

cost for valve disease in the United States alone has been estimated at $1 billion per year 

(Hinton & Yutzey, 2011). Any one of the four heart valves can be affected; however, the 

aortic and mitral valves are the most common for disease. In addition congenital valvular 

disease such as aortic valve malformation is present in roughly 1 to 2% of the general 

population (William C. Roberts & Ko, 2005).  

Typically, when heart valves fail, they are replaced with a heart valve prosthesis. 

Commercially available heart valve prostheses are divided into two categories: 

mechanical and bio-prosthetic or tissue heart valves. Mechanical valves include caged 

ball, tilting disc, and hinged bileaflet valves. Tissue valves include aortic homograft, 

stent-mounted porcine heterograft and valves fabricated from bovine pericardium.  

Mechanical heart valves are extremely durable. The FDA requires heart valves to 

withstand 10 years of use (Food and Drug Administration, 2010), but there have been 

cases where the mechanical heart valve has lasted for decades (Emery et al., 2005). These 

valves are made with very strong materials, such as titanium, Teflon, and pyrolytic 

carbon. The major problem with mechanical heart valve is thrombus formation. These 

clots could result in very serious consequences, such as stenosis and myocardia 
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infractions as well as present a danger for stroke. To prevent thrombus, the patient must 

undergo anticoagulant therapy for the rest of their lives. The anticoagulant therapy may 

results in other complications, such as bleeding and spontaneous abortions (John & Liao, 

2013).  

Tissue heart valves are made from animal tissues, such as cow pericardium and pig 

valves. These valves are treated chemically (fixed with glutaraldehyde) to make the valve 

inert and reduce the risk of an immune response. The resulting valve is very similar to a 

human valve and exhibits much better hemodynamics than a mechanical valve. The 

improved fluid dynamics of the valve decreases the chances of thrombosis and its native 

tissue structure eliminates the need for anticoagulant therapy (Grunkemeier & 

Rahimtoola, 1990). Unfortunately, these tissue valves have limited durability.  

Elastomeric heart valves are made from elastomer materials that exhibit similar flexure 

properties as the native heart valves (Ramaswamy et al., 2013). These heart valve are 

designed to mimic the human native heart valve and recreate the flow dynamics. One 

example is a silicone heart valve, which exhibits amazing flow dynamics, but like tissue 

valves, are not very durable. 

Significance 

While mechanical, homograft and bio-prosthetic valves have been used in patients for 

many decades and have made significant improvements in patient morbidity, there is still 

a distinct need to overcome their limitations as evidenced by the ten-year mortality rate 

following valve replacement, which ranges from 30 to 55% (Edmunds et al., 1997). 

Research in the use of polymer materials for the fabrication of tri-leaflet valves has been 
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ongoing for over 50 years, but has faced substantial hurdles in the facilitation of adequate 

valve durability. However, new methods in manufacturing and reinforcement of polymer 

materials have resurrected the appeal of polymer materials for heart valve prosthesis 

application. One such material that has found renewed interest is silicone. Unfortunately, 

silicone is prone to structural failure which drastically limits its applicability for heart 

valve prosthetics (Roe, Kelly, Myers, & Moore, 1966). 

Tissue heart valves also suffer from durability issues, but for reasons associated to 

depletion of extracellular matrix components such as glycosaminoglycan (GAGs). Tissue 

valves are much more analogous to native heart valves. They are able to last 5 to 10 years 

implanted in the body before they fail. This is a huge issue for younger patients that 

would have to undergo surgery again when the valve fails. Bioprosthetic heart valves fail 

because of material deterioration and associated calcium phosphate deposits at the high 

stressed areas. Substantial research has gone into investigating disruption of the 

extracellular matrix (ECM), especially type I collagen fibrils. Loss of GAGs in heart 

valves has only recently been under the spotlight for its link with tissue degradation. 

Research has shown that GAGs leach out under accelerated fatigue irrespective of 

bioprosthetic heart valves being fixed with glutaraldehyde crosslinking (Vyavahare et al., 

1999). One cause of failure of the bioprosthetic valve is adverse changes in mechanical 

properties during degradation of the ECM. When the valves degrade, they become stiff 

and the hydrodynamic properties are significantly hindered, which may also lead to 

thrombosis and stenosis.  One of the functions of GAGs is the maintenance of tissue 
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hydration. Loss of GAGs leads to water loss in the valve tissue, which in turn, leads to 

stiffening of the leaflets. 

It is evident that with current technology, we do not from a materials property standpoint, 

match silicone elastomer and native, chemically fixed tissues   to the considerably more 

durable mechanical valves properties. On the hand as already described, mechanical 

valves still require life-long anticoagulant therapy, which precludes usage in sub-

population groups such as children, women who may wish to have children and 

individuals who do not tolerate blood-thinners. 

Notably, about 50-60% of patients with replacement valves either need a re-

operation or die within ten years of valve implantation (A. Wang & Bashore, 2009). To 

reduce these numbers, less invasive strategies for valve replacement such as percutaneous 

valve approaches, which are still relatively new, are currently being considered in 

patients at high-risk for open-heart surgery. The valves available currently for 

percutaneous approaches all are made using pericardium tissue valves. Stemming from its 

flexible characteristics, silicone valves would serve as a potential candidate for 

percutaneous valve replacement.  As noted, even when deployed in a minimally invasive 

manner, pericardium valves are intrinsically not very durable and thus this limitation will 

remain in percutaneous valve technologies. 

Here we proposed that silicone could be reinforced with graphene nanoplatelets (GNPs) 

to promote its strength and durability for subsequent valve prostheses development. 

Graphene is known for its high-strength (Lee, Wei, Kysar, & Hone, 2008). Human cells 

also exhibit a minimal cytotoxic response to graphene (Santos et al., 2012). The primary 
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objective therefore was to characterize the response of silicone substrates to static and 

cyclical loading conditions with and without graphene reinforcement and, in addition, to 

assess whether the graphene-silicone composites had altered cytotoxicity and platelet 

adhesion properties relative to the silicone substrate alone. 

We were also interested in investigating the prosthetic valves made of an ECM 

‘bioscaffold’ material. The ECM material is manufactured by commercial vendors (e.g. 

CorMatrix, Roswell, GA) and acts as an acellular bioscaffold that is able to allow the 

patients cells to populate and remold the tissue. The material is produced from porcine 

small intestinal submucosa (SIS), which is located between the mucosal and muscular 

layers of the small intestine. The SIS is removed and decelluarized, leaving the ECM 

intact. These valves have already been implanted into newborn patients with critical 

valvular defects (i.e., compassionate care cases) by doctors at Joe DiMaggio Children’s 

Hospital (Holywood, FL) that we are collaborating with; over a year later, the valves are 

still functioning flawlessly and the patients are doing well. Therefore, with the wealth of 

clinical data that the doctors have combined with the hydrodynamic data that could be 

obtained in vitro, it may be possible to further optimize functionality of the ECM valves. 

The objective of my thesis is to identify protocols and processes that would offer 

potential alternative solutions to existing limitations in current, commercially available 

valve technologies 

Thus in the area of emerging valve replacement technologies, we hereby propose 

examining enhanced elastomeric materials for the valve application and further 
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characterizing the functional properties of ECM valves currently being used clinically on 

a controlled and limited basis.  
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Chapter 2 Specific Aims 

Specific Aim 1: Develop and characterize a graphene reinforce silicone material for 

potential application in valve prosthesis development. 

Specific aim 2:  Analysis of ECM valve hydrodynamic properties and co-relation to 

clinical data in the aortic and mitral valvular positions. 
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Chapter 3 Literature Review 

Heart Valves 

There are four valves situated in the heart; the tricuspid and pulmonary valves on the 

right-sided heart chambers and the mitral and aortic valves on the left-sided heart 

chambers. Morphologically, these valves are divided into two atrioventricular (mitral and 

tricuspid) and two semilunar (pulmonary and aortic valves(Dominik & Zacek, 2010). The 

normal location could be seen in Figure 1. 

 

Figure 1: Topographic interrelations of the heart valve. (Dominik & Zacek, 2010) 

The aortic valve is situated in the left ventricular outflow tract and consists of three 

semilunar cusps and their adjacent sinuses of Valsalva. The aortic valve does not have an 
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anatomically defined annulus. The mitral valve is a bileaflet atrioventricular, located 

between the left atrium and the left ventricle. The triscupid valve is situated between the 

right atrium and the right ventricle and prevents back flow into the right atrium. The 

pulmonary valve is a tricuspid semilunar valve in the right ventricular outflow tract. The 

sinus and leaflets are similar to the aortic valve, but thinner (Dominik & Zacek, 2010). 

Valvular Diseases – Aortic valve stenosis 
After systemic hypertension and coronary heart disease, aortic stenosis is the third most 

fatal heart disease(William Clifford Roberts & Ko, 2009). The three major causes of 

aortic stenosis are atherosclerosis, congenitally malformed valves, and rheumatic heart 

disease. 

Aortic stenosis is a disease in which there is a progressive narrowing of the aortic valve 

opening causing obstruction to the left ventricular outflow. This leads to an increase in 

pressure in the left ventricular outflow. The most common location of artic stenosis is at 

the valve as seen in Figure 2. 

 

Figure 2:  Gross pathological specimens from patients with aortic stenosis. (A. Wang & 
Bashore, 2009) 

The most common congenital heart disease is bicuspid aortic valve, occurring in 

approximately 2% of the population. Bicuspid aortic valve stenosis is the most common 
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reason for aortic valve replacement in patients under the age of 70. The most common 

cause of aortic stenosis in older patients is senile degenerative aortic stenosis due to 

degenerative changes with calcific deposits at the base of the aortic valve cusps. 

When the stenosis reaches a critical level, the left ventricle is overwhelmed by the high 

afterload and systolic function begins to decrease. Further afterload excess, myocyte 

degeneration and fibrosis begin to occur, leading to irreversible left ventricular systolic 

dysfunction. Even with severe obstruction, many patients with aortic valve stenosis may 

remain asymptomatic for many years. Symptoms such as angina, dyspnea, and syncope 

start to appear after a long latent period. The ACC/AHA Valvular Heart Disease 

guidelines committee have defined the criteria for severity of aortic stenosis based on 

hemodynamics (Table 1) 

Table 1: Severity of stenosis based on hemodynamics 

Severity of aortic 
stenosis 

Aortic valve 
area (cm2 ) 

Mean gradient 
(mmHg) Peak velocity (m/s) 

Mild >1.5 <25 <3.0 
Moderate 1–1.5 25–40 3.0–4.0 
Severe <1.0 >40 >4.0 
Critical <0.6 >60 >5.0 
 

Valvular Diseases – Mitral Valve regurgitation and prolapse 
Out of the heart’s 4 valves, the mitral is the most complex and the one most commonly 

associated with diseases. The valve could be affected by 3 main types of conditions, 

stenosis, regurgitation, and prolapse. Unlike the aortic valve, stenosis is the least common 

of the 3 in the mitral valves, accounting for less than 1% of the cardiac diagnoses in the 

United States (Turi, 2004). In mitral regurgitation, the valve does not seal completely 
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during contraction of the left ventricle and blood leaks from the ventricle to the atrium. 

One typical cause of regurgitation is enlargement of the left ventricle, where the ring of 

the mitral valve is stretched, resulting in the leaflets not closing adequately. 

Valve prolapse is the most common type of mitral valve diseases. It accounts for about 

5% of the population, occurring most frequently in women. In prolapse, the leaflets of the 

mitral valve bulges backwards during valve closure, see Figure 3. Mitral valve prolapse is 

caused by valvular abnormalities of valvar tissue, geometric disparities between the left 

ventricle and mitral valve, or various connective tissue disorders. A vast majority of 

patients with mitral valve prolapse has normal life expectancy and have no long-term 

medical problems associated with the condition. There is a small subset of patients that 

develop serious complications, such as infective endocarditis, sudden cardiac death, and 

severe mitral regurgitation (Hayek, Gring, & Griffin, 2005) 
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Figure 3: The heart in systole. A) in normal individuals. B) in patients with both prolapse 
and mitral regurgitation. (Turi, 2004) 

 

Heart Valve Prostheses 

There are two main types of artificial heart valves available commercially. The first 

category is mechanical valves that are assembled from hard plastic materials, titanium or 

other metallic alloys. The other category is biological valves that originate from 
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biological tissue and which are chemically treated with gluteradehyde to render the tissue 

inert. 

Hemodynamically, the effective orifice area (EOA) is the most important parameter of 

both mechanical and bioprostheic valves. The effective orifice area is different from the 

geometric orifice area (GOA) , see Figure 4, which is the whole inner area of the valve 

including the space that contains the leaflets, struts, and other mechanisms of the valve. 

The EOA is the portion of the valve that blood really flows through. The effective orifice 

area is usually one quarter or one third smaller than the geometric orifice area. 

 

Figure 4: EOA in comparison with GOA. A) a rigid sharp-edged aortic stenosis; B) a 
funnel-shaped aortic stenosis (Garcia & Kadem, 2006) 
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Mechanical heart valves were the first developed and implanted in patients in the 1960s 

and are constantly developed and refined to improve hemodynamic and biocompatibility. 

There are three main types of mechanical valves: caged-ball, disc, and bileaflet valves. 

The Starr-Edwards valve is the most well-known caged-ball valve. The 6120 and 1260 

models were developed in the late 1960s as mitral and aortic valves, respectively. They 

are still being manufactured without any modifications and were implanted until 2007 

(Mann, Zipes, Libby, Bonow, & Braunwald, 2014). Patients that were fitted with a ball 

and cage valve showed hemodynamic improvements but they suffered from very frequent 

thromboembolic complications. To reduce the complications, caged valves were 

developed with cloth covers. After several weeks or month after implantation endothelial 

cells grew within the cover allowing the valve to be endothelialized, resulting in the 

blood not coming into contact with a foreign surface (except the ball). However, several 

years later, the cloth would tear, which would then initiate thrombus formation. This led 

to significant hemolysis and reoperations to replace the artificial valve. 

Disc valves were also introduced in the 1960s after the ball and cage valves. The first 

ones were non-tilting disc valves, which had a low profile design, making them easier to 

implant and have very little regurgitation. Unfortunately, the valves had very high flow 

gradients and significant turbulence, which lead to frequent thromboembolic 

complications and high hemolysis. These valves were replaced by modern tilting disc 

valves. The tilting mono disc valves were the most frequently implanted valves in the 

1970s and 1980s. The Medtronic-Hall valve is the most frequently implanted disc valve 

worldwide and has been used clinically without modifications since 1977. Since the mid-
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1980s, the mechanical bileaflet valves have become the most frequently implanted valves 

in the world, especially the St. Jude Medial valve. 

Biological valves were developed to reduce the risk of serious hemocompatibility 

complications that are associated with mechanical heart valves, such as thrombosis, 

embolism, and excess bleeding. The most frequently implanted tissue valves are 

xenografts. Xenografts are prepared from the tissues of other species. They are usually 

mounted on a cloth-covered stent, which could be made from stellite, titanium, or plastic. 

The stent could be slightly flexibly to absorb stress and prolong the xenograft’s 

durability, and is covered in Teflon or polypropylene. The valves either are porcine aortic 

valves or assembled from bovine pericardium. The valves are usually processed with a 

proprietary treatment and stored in glutaraldehyde. 

Stentless bioprostheses were introduced in 1988 and implanted in the aortic position. 

They don’t have a stent or a sewing cuff. Stentless bioprosthetic valves allow a larger 

valve to be implanted than would be possible with a stented valve, resulting in a larger 

EOA. Stentless bioprosthetic valves have shown superior hemodynamic features and 

more complete regression of left ventricular hypertrophy(Jin, 2002; Westaby et al., 

2000). Research data has proved no superiority of the stentless valves over stented valves 

in long-term studies, particularly randomized clinical trials(Ali et al., 2007; Bové et al., 

2006; Cohen et al., 2002; Desai & Lodge, 2009). 

Allografts are another option for tissue valves implantations. Allografts are harvested 

from human cadaver aortic valves. The explanted allograft valves are treated with 

antibiotic solution and frozen in stored in liquid nitrogen for up to 5 years. When the 
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valve is defrosted, viable fibroblast is present but the endothelium is not preserved. The 

lack of an endothelium reduces the allograft antigenicity and eliminates the need for 

immunosuppression after implantation. Allografts are more difficult to implant and have 

similar rates of degeneration as bioprosthetics, so they are used infrequently. Allografts 

are less susceptible to infection than bioprosthetics and mechanical valves and are used 

mostly for aortic valve replacement for infective endocarditis (O’Brien et al., 2001). 

Autograft biological tissue could also be used for valve replacements. The Ross 

procedure involves the replacement of the aortic valve with a patient’s own pulmonary 

valve. An allograft pulmonary valve is used to substitute the original pulmonary valve.  

The Ross procedure presents as currently the only approved procedure wherein a living 

valve substitute is used.  However, controversies related to removal of a healthy 

pulmonary valve have contributed to heightened research in tissue engineering of heart 

valves, currently an active research area.  

Materials Selection 

As mentioned, mechanical valves, made with metals and hard plastics, offer superior 

durability, while bioprosthetic valves, made of porcine and bovine tissue, offer favorable 

hemodynamics. Synthetic elastomeric materials allow the possibility of engineering a 

material to provide the best of both of these types of valves. Polyolefin (Kidane et al., 

2009) and nonreinforced silicone (Kiraly et al., 1982) have been tested as leaflet 

materials which function very well, but ultimately show inadequate durability.  

Polytetrafluoroethylene (PTFE), commonly known as Teflon, is a highly crystalline 

fluorinated homochain polymer (Fox & Zisman, 1950). It is known for its inertness and 
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low surface energy due to the strengths of the C-C and C-F bonds. This usually leads to 

good biocompatibility, which is why PTFE could be found in many biomedical devices.  

But valves made of PTFE have shown acute thrombosis and macroscopic calcification in 

the commissural areas(Nistal et al., 1990). A tricuspid valve made of PTFE fabric was 

made and implanted in 23 patients (Braunwald & Morrow, 1965). 13 of the patients 

required reoperation. The valves failed due to stiffening, tearing, and some calcification. 

Research into polyurethanes have resulted in a flexible and mechanically strong material, 

but animal studies found degradation of the polyurethane surface structure, which was 

accelerated by calcified material penetration the polymer (Kolff & Yu, 1989; Wheatley et 

al., 2000).  

Poly(styrene-b-isobutylene-b-styrene), known as SIBS, has also been investigated for 

heart valve applications. SIBS is a biostable thermoplastic elastomer that has mechanical 

properties in between silicone and polyurethane and is highly degradation resistant 

(Pinchuk et al., 2008). SIBS impregnated in a Polyethylene terephtalate (PETE) mesh 

showed no significant difference in thrombogenicity in a ventricular assist device 

compared to mechanical and bioprosthetic valves (Yin et al., 2005). However, in a 20-

week in vivo study conducted in Ovine, surgically implantable valves had calcification 

and thrombogenic responses (Q. Wang et al., 2010). 

Graphene Nanoparticles 

The modification of graphitic fillers usually enhances their interfacial interaction with 

elastomer chains, thereby leading to better properties. The nanodimension and aspect 

ratio of graphene make it’s elastomer nanocomposites superior to all other graphitic 
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derived composites, provided robust dispersion of the filler is achieved (Sadasivuni, 

Ponnamma, Thomas, & Grohens, 2014). 

Though the conventional direct blending method provides sufficient torque to disperse 

the fillers in rubber matrices, the high viscosity of the material often causes non-uniform 

dispersion of the graphite platelets. Solution mixing has been widely reported as an 

effective fabrication technique due to the ease of processing graphite derivatives and 

graphene in water or organic solvents(Lian et al., 2011). The colloidal suspensions of 

graphene-based materials are mixed with the desired elastomer by simple stirring or shear 

mixing, (Figure 5). Sonication is often employed to better disperse the graphitic fillers. 
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Figure 5: Frabrication of nanocomposite membrane. (Lian et al., 2011) 

Polymer composites containing graphene possess good thermal conductivity and 

mechanical stiffness(Fan et al., 2010). Graphene nanoplatelets have been shown to have 

out-performed carbon nanotubes as a reinforced additive at low filler content of 0.1% 

(Rafiee et al., 2009).  

In a study where graphene/chitosan composite films were fabricated, it was found that 

graphene significantly increased the modulus of chitosan at very low content, between 

0.1 to 0.3%, as seen in Figure 6. The composites showed good biocompatibility for L929 

cells, as confirmed by in vitro MTT assays(Fan et al., 2010). 
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Figure 6: Load vs displacement curves of graphene/chitosan composites with different 
amounts of graphene. (Fan et al., 2010) 

 

ECM in Heart Valves 

Porcine small intestinal submucosa (SIS) is an acellular matrix from the jejunum; it is 

commonly used as a xenograft material. SIS has shown to be biocompatible and infection 

resistant, possess predictable mechanical properties prior to implantation. It induces 

tissue-specific remodeling responses in the organ or tissue into which it is placed rather 

than nonspecific scar tissue (Badylak et al., 1995). 

Porcine SIS has been shown to replace mature pulmonary valve leaflets in pigs (Matheny, 

Hutchison, Dryden, Michael, & Shaar, 2000). Histopathological analysis of the explanted 

leaflets revealed progressive replacement with fibrous connective tissue and 
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microvasculature similar to mature host tissue. There was also a progression of 

endothelialization of all the substitute leaflet surfaces with time. 

Another study investigated the placement of a percutaneous low-profile prosthetic SIS 

valve in the pulmonary position in 12 female pigs (Ruiz et al., 2005). Within 1 month, the 

surface was covered by endothelium, and fibroblasts had invaded the interior, as seen in 

Figure 7. Over the following months, the valve remodeled without apparent graft 

rejection. 

 

Figure 7: A, SIS 1 day after implantation, hematoxylin and eosin staining. B, 3 months 
after implantation. C, 6 months after implantation. D, 12 Months after implantation. E, 



22 
 

Native valve. F-H, SIS Valve 12 months after implantation with antibody staining. F, 
subendothelial von Willebrand factor VIII. G, interstitial smooth muscle cells. H, 
connective tissue vimentin. (Ruiz et al., 2005). 
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Chapter 4 AIM 1: Graphene Reinforced Silicone 

Heart Valve disease is a prevalent clinical problem in the United States. Current options 

for heart valve replacement include mechanical valves, homograft, and bio-prosthetic 

valves. Patients with mechanical heart valves however have to take lifelong 

anticoagulants to prevent risk of thrombus. The down side to these valves is a high risk 

for fibrosis, calcification, degeneration, and immunogenic complications that may lead to 

failure in the valve. 

Elastomers such as silicone have previously been used to create prosthetic heart valves 

due to their similarity to native tissue, but are still prone to early structural failure 

including leaflet tearing. We have incorporated graphene nanoplatelets into the silicone 

matrix materials. The following study is presented as published in the Journal of Long 

Term Effects of Medical Implants (Lordeus et al., 2015). 

 

Introduction 
Heart valve disease is characterized by the inability of native heart valves to continue 

facilitating adequate forward blood flow from the myocardium. When one of the heart 

valves fail, it can be replaced with an artificial heart valve. Current options for heart 

valve replacement include: mechanical valves, homograft, and bio-prosthetic valves. 

Mechanical valves, such as the bi-leaflet and tilting disk designs are often recommended 

for their durability. Patients with mechanical heart valves however have a substantial risk 

of systemic thrombotic occlusion(Jamieson, 1993). This is largely due to non-physiologic 

surfaces and flow abnormalities created by the mechanical valves. Additionally, the 

patients require lifelong anticoagulant therapy to counteract the thrombus(John & Liao, 
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2013). Anticoagulant use is contraindicated in some heart valve patient sub-sections, such 

as in pregnant women or women who may decide to have children later in life, because of 

bleeding complications as well as risk of embryopathy and spontaneous abortions(Chan 

W, Anand S, & Ginsberg JS, 2000). On the other hand, homografts and bio-prosthetic 

tissue valves possess the advantage of not requiring chronic anticoagulant 

therapy(Grunkemeier & Rahimtoola, 1990). However these valves are very prone to 

fibrosis, calcification, degeneration, and immunogenic complications that can lead to 

early failure(Sacks & Schoen, 2002). While mechanical, homograft and bio-prosthetic 

valves have been used in patients for over 50 years and have made significant 

improvements in patient morbidity, there is still a distinct need to overcome their 

limitations as evidenced by the ten-year mortality rate following valve replacement, 

which ranges from 30 to 55%(Edmunds et al., 1997).  

Emerging, elastomer heart valves have been shown to be able to better re-create 

the flow physics of native heart valves compared to mechanical valves, resulting in 

preferable hemodynamic responses(Ramaswamy et al., 2013). They can be tailored to 

mimic the mechanical properties of native tissue to withstand the coupled, flexural, 

tensile and fluid-induced stresses, while remaining biocompatible and recapitulating 

native valve motion. Such valves are likely to be suitable for straightforward mass-

produced in different sizes, while remaining cost effective. Research in the use of 

polymer materials for the fabrication of tri-leaflet valves has been ongoing for over 50 

years, but has faced substantial hurdles in the facilitation of adequate valve durability. 

However, new methods in manufacturing and reinforcement of polymer materials have 

resurrected the appeal of polymer materials for heart valve prosthesis application. One 
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such material that has found renewed interest is silicone. Unfortunately, silicone is prone 

to structural failure which drastically limits its applicability for heart valve 

prosthetics(Roe et al., 1966). Here, we proposed that silicone can be reinforced with 

graphene nanoplatelets (GNPs) to promote its strength and durability for subsequent 

valve prostheses development. Graphene is known for its high-strength(Lee et al., 2008). 

Human cells also exhibit a minimal cytotoxic response to graphene(Santos et al., 2012). 

Our primary objective therefore was to characterize the response of silicone substrates to 

static and cyclical loading conditions with and without graphene reinforcement and, in 

addition, to assess whether the graphene-silicone composites had altered cytotoxicity and 

platelet adhesion properties relative to the silicone substrate alone. 

Methods  
Composite Material Fabrication 
Four samples were created, one sample served as the control, which was prepared 

without graphene, and the other three had final concentrations of 250mg, 75 mg, and 25 

mg of graphene per liter of uncured silicone. GNP (XG Sciences Inc., Lansing, MI) with 

~6-8 nm thickness, 120-150 m2/g surface area, and average particle diameters of 5 µm 

were used. The graphene was mixed in acetone (Fisher Scientific, Pittsburg, PA) and 

allowed to disperse in a sonication bath for 1 hour. The graphene-acetone solution was 

then added to the base of the 2 part silicone kit (NuSil, Carpinteria, CA) and placed in a 

vacuum for 15 minutes. The activator was added to the base; then the mixture was spread 

evenly on a smooth non-stick surface and placed back in the vacuum for an additional 30 

minutes, for removal of air bubbles. The samples were finally allowed to cure for at least 

24 hours before use. 
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Mechanical Testing 
Static loading: 

Mechanical test samples (n = 3 /group) were cut into strips approximately 15 x 6 x 0.25 

(mm) from the fabricated bulk materials. Uni-axial tensile testing was carried out 

(Electroforce 3200 test instrument, Bose Corporation, Eden Prairie, MN) using a 1000 g 

load cell and a maximum crosshead movement of 11 at a displacement rate of 0.1 mm/s, 

with an initial length of 10mm. In addition, the testing was conducted while the samples 

were immersed in a water bath filled with 8 g/L of saline solution held at 37oC, to mimic 

in vivo environmental conditions (Figure 8).  

 

 

Figure 8: Set up for tensile testing showing the specimen grips and the test conditions, 
including an envi-ronmental bath filled with 8 g/L saline solution (Bose Electroforce 
system, Eden Prairie, MN). The temperature of the saline bath was maintained at 37oC 
during testing. 

Cyclic loading: 

Fatigue properties of the samples (n = 3 /group) were subsequently determined 

(Electroforce 3200, Bose Corporation). Original sample dimensions were ∼ 15 x 6 x 0.25 
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(mm). As in the case of static testing, samples were again immersed in the saline bath 

held at 37oC. 

At a frequency of 0.05 Hz, the samples were cyclically stretched to 10 mm until failure 

which was evidenced by sample breakage.  

Cell Cytotoxicity 

Cell Culture 

Rat Adrenal Medulla Endothelial Cells (RAMECs) (Cellbiologics, Chicago, IL) were 

seeded onto T-75 flasks (Fisher Scientific). The cells were cultured in the RAMEC-

supporting endothelial cell media (Sigma-Aldrich, St. Louis, MO) until passage three (3). 

Once the cells were 90% confluent, they were trypsinzed from the flask using trypsin 

(Fisher Scientific). The trypsinzed solution was then centrifuged for 5 minutes at 1700 g. 

Furthermore, after centrifugation, the supernatant was removed and the pellet of cells 

obtained was suspended in fresh media. Cells were counted using a haemocytometer and 

desired quantity of cells were subsequently used for Cell Viability and cell proliferation 

assays. 

Cell Viability 

To study the viability of RAMECs seeded on the silicone and silicone-graphene samples, 

live mitochondrial and nuclear imaging of cells was performed (Live Mitochondrial and 

Nuclear Labeling Kit, Invitrogen, Carlsbad, Ca) after 24 hours of cell culture. The 

samples seeded with the RAMECs were incubated in 200nM MitoTracker Red 

(mitochondrial staining) and 5µM Hoechst dye (nuclear staining) in endothelial cell 

media for 15 minutes at 37°C. When the labeling procedure was completed, excess 
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labeling solution was removed by washing with PBS twice. The sample surfaces were 

subsequently observed under a fluorescence microscope (Olympus IX 81). 

Cell Proliferation Assay 

Cell proliferation on the silicone-graphene samples were determined using the 

sulforhodamine B (SRB) Viability/Cytotoxity Assay Kit (Vitro Vivo Biotechnology, 

Rockville, MD) which is based on the colorimeteric measurement of viable cellular 

protein. RAMECs were seeded on the silicone and silicone-graphene surfaces (5mm X 

5mm) with a cell density of 105 cells/mL. An SRB assay was performed on day 1, day 3 

and day 7 (3 samples/group/time-point). In brief, cells were bound to the bottom of the 

silicone and silicone-graphene substrates using trichloroacetic acid (Vitro Vivo 

Biotechnology) which served as the fixative. Next the cells were stained using 

sulforhodamine B dye (Vitro Vivo Biotechnology). The unbounded dye was then 

removed using 1% acetic acid (Fisher Scientific). The dye bounded to the cellular protein 

was extracted using 10mM Trizma (Vitro Vivo Biotechnology) base and the absorbance 

was measured at a wavelength of 565nm using a micro-plate reader (Biotek Instruments 

Inc., Winooski, Vermont). 

Platelet Adhesion Characteristics 
Silicone and silicone-graphene composite samples were cut into 1 cm x 1 cm squares. 

Freshly collected whole porcine blood (1L, Mary’s Ranch Inc, Miami, FL) was 

subsequently mixed with 667 mL of mepacrine dye (Quinacrine Dihydrochloride, Fisher 

Scientific) and 300 mL of sodium citrate (Fisher Scientific) anti-coagulant. The samples 

were then positioned into a custom blood flow loop available in our laboratory. The flow 

loop was initially cleansed with deionized water for approximately 5 minutes, then 
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washed with 1x phosphate buffered solution (PBS, Fisher Scientific) for approximately 5 

minutes. The loop subsequently perfused the blood mixture for 35 minutes at a flow rate 

of 679 mL/min. The samples were removed and rinsed with PBS, examined under the 

microscope, and subsequently analyzed (ImageJ Software, National Institutes of 

Health/NIH, Bethesda, MD) to quantify the number of platelets adhered to each of the 

material surfaces.  

Statistical Analysis 
A one-way ANOVA (SPSS, IBM, Armonk, NY) was executed for all statistics conducted 

in this study. When the analysis yielded a significant difference, a Dunnet post-hoc test 

was performed to assess the significance of the graphene treated-groups relative to the 

control (silicone-only samples). In all evaluations, a statistically significant difference 

between groups was reported when p < 0.05. 

Results 
Gross Morphology 

Microscopic visualization of the graphene-silicone samples revealed a randomized 

distribution of dark graphene particles (Figure 9). Some of the particles appeared to have 

aggregated in certain regions of the specimens. An increased presence of graphene 

particles was clearly observed at the highest graphene concentration (250 mg/L) utilized, 

compared to the other groups (0, 25 and 75 mg/L). 
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Figure 9: Silicone-graphene material: (a) control containing only silicone. (b) 250 mg 
GNP, (c) 75 mg GNP, and (d) 25 mg GNP of graphene per liter of uncured silicone. 

Mechanical Testing 

Static tensile testing revealed a similar stress-strain behavior (Figure 10A) for all groups 

tested. The control sample had a Young’s modulus of 0.70 MPa; the samples containing 

250mg, 75 mg, and 25mg of graphene per liter of uncured silicone had a Young’s 

modulus of 0.85 MPa, 0.67 MPa, and 0.79 MPa, respectively. On the other hand, when a 

cyclic flexural load was applied (0.05 Hz), the group with the highest concentration of 

graphene (250 mg/L) was able to maintain its structural integrity for a significantly 

longer duration (p < 0.05; Figure 10B). While the failure stresses of the silicone-only and 

GNP-reinforced (250 mg/mL) were comparable in magnitude (~ 0.9 – 1 MPa range; 

Figure 10C), the silicone specimens on average lasted 533 cycles compared to 1171 
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cycles for the GNP-reinforced silicone composites (Figure 10B). The edges of the 

samples that failed were inspected utilizing bright field microscopy (Figure 10C). The 

graphene-containing specimens clearly possessed regions of GNP aggregates dispersed 

throughout the material, whereas in the silicone-only specimens, a few air bubbles were 

observed (Fig. 3C); air bubbles were not apparent in the GNP-reinforced silicone 

samples. 
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Figure 10: A) Mean stress-strain curve of silicone-graphene material (n = 3 specimens/group). B) Mean numbers of cyclic stretch 
withstood by the samples before specimen failure (n = 3 specimens/group). Note that the samples were cyclically stretched from 
rest to a maximum of 600% strain at a frequency of 0.05 Hz until the specimen broke. C) Stress versus number of cycles plot for 
silicone-only and silicone-GNP (250 mg/mL). The sudden drop in stress demonstrates the point at which the specimen broke. The 
plot also shows a corresponding view of the cross-section of the edge where breakage occurred. A few small air bubbles were 
unavoidably present in the silicone-only samples. Introduction of GNP in the silicone matrix permitted an opportunity to serve as 
a filler material, thereby eliminating the few void spaces within the substrate. 
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Cytotoxicity 

Viability verification demonstrated robust mitochondrial staining in the silicone-only as 

well as in all the GNP-silicone groups (Figure 11A), indicating that the RAMECs were 

alive and metabolically active after 24 hours of direct physical cell contact with the 

material surfaces.  

Positive cell proliferation occurred in all groups tested (Figure 11B). Compared to cell 

numbers at day 1, a percentage increase in the relative survivability of RAMECs at day 7 

was found as follows: silicone-only: 406%, 250 mg/L GNP-silicone: 762%, 75 mg/L 

GNP-silicone: 692% and 25 mg/L GNP-silicone: 210%.  

 

Figure 11: For the silicone-only (control) and silicone-GNP materials (25, 75 and 250 
mg/mL), A) Fluorescence images showing cell viability after 24 hours or culture; red 
color indicates mitochondrial staining and blue color is a counterstain of the nucleus. 
GNP incorporation appeared to have no adverse effect on cell viability relative to the 
controls since all groups demonstrated robust metabolic activity as shown by the large 
degree of positive mitochondrial staining. B) Relative survivability of RAMECs after 1, 3, 
and 7 days (n=3). All groups demonstrated positive proliferation over 1 week with the 
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largest increased observed in the group containing 250 mg/ml of GNPs within the 
silicone matrix. 

Platelet Adhesion 

Porcine whole blood flow exposure across the samples revealed no significant differences 

found (p > 0.05) in the number of adhered platelets to the surface of the materials, 

between any of the groups tested, i.e., GNP-Silicone: 250 mg/L, 75 mg/L, 25 mg/L and 

Silicone –only; (Figure 12). 

 

Figure 12: Mean number of platelets on sample surfaces after 35 minutes of exposure to 
whole blood flow (n = 2 samples/group). Porcine blood was used and perfused across the 
specimen surfaces at a flow rate of 679 mL/min. The groups tested comprised of silicone-
only, and GNP-silicone composites with the following densities of GNP: 250 mg, 75 mg, 
and 25 mg of graphene per liter of uncured silicone 

 

DISCUSSION 
Prosthetic valve technologies to replace diseased heart valves represents a mature 

technology with excellent prognosis for individuals otherwise in good health e.g. most 

mechanical valves are functional for 20 to 30 years(Blot, 2005; Gott, Alejo, & Cameron, 

2003). However, prosthetic valves are not without distinct limitations, many of which are 

materials-dependent. For example, the artificial materials that are used to assemble 
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mechanical valves are still predisposed to clots and thus require lifelong anti-coagulant 

therapy; meanwhile bio-prosthetic valves consisting of xenograft, fixed-tissues deform 

similar to native valve leaflets but tend to fail prematurely due to calcification, structural 

breakdown and leaflet tearing. Additionally, many older patents (≥ 70 years) cannot be 

treated for a valve replacement via a traditional route because of mortality risks 

associated with open- heart surgery. We note that ∼ 50-60% of patients with replacement 

valves either need a re-operation or die within ten years of valve implantation(A. Wang 

& Bashore, 2009). For this reason, there is a move towards less invasive strategies for 

valve replacement such as percutaneous valve approaches, which at the moment is only 

considered in patients at high-risk for open heart surgery and which currently only 

utilizes pericardium tissue valves. Further advancement of percutaneous valve 

technologies is also likely to require the development of new valve prosthetics. Clearly, 

the development of new prosthetic valves is necessary despite the efficacy of current 

state-of-the-art heart valve implants. 

Previously, we reported on the functionality of a novel silicone valve 

prosthesis(Ramaswamy et al., 2013). This polymer valve was manufactured using a 

proprietary manufacturing technique from a single silicone piece, thereby eliminating 

potential weak zones along seam lines that would be created when assembling multiple 

pieces. Hydrodynamically, the silicone valve exhibited less energy losses and 

regurgitation volumes compared to bi-leaflet mechanical valves(Ramaswamy et al., 

2013). However, silicone is an inherently weak material and additional materials 

processing is necessary to enhance the valve’s durability. To achieve this task, we 

incorporated GNPs into the silicone matrix.  
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GNPs presented themselves as dark aggregates within the silicone substrate (Fig. 2). 

These dark regions were noticeably more common in specimens reinforced with 250 

mg/L of GNPs in comparison to the smaller concentrations (25 and 75 mg/L). There was 

a propensity for GNPs to clump into various-sized clusters that were in the order of up to 

~ 50 µm. Interestingly the cytotoxic properties (Fig. 4) and hemocompatibility (Fig. 5) of 

silicone remained unaltered (p > 0.05) after inclusion of GNPs even at the relatively 

higher concentration of 250 mg/L. On the contrary, the relative survivability of the cells 

was augmented by 762% which demonstrated significantly higher cell proliferation (p < 

0.05) compared to the silicone-only controls, whose 1-week percent proliferation was 

406%. These findings indicated that that the surface properties of the GNP-silicone 

composites did not compromise cell properties, specifically viability and growth. 

Mechanically, the GNP-silicone composites exhibited a similar constitutive response in 

the tensile loading direction compared to the silicone-only controls. The samples were 

stretched up to a strain of 1 and corresponding stresses at this strain value were found to 

be within a narrow stress range of 410 to 484 KPA (Fig. 3A). The high distensibility of 

silicone appeared to dominate during deformation with minimal interaction with the 

embedded GNPs. We subsequently proceeded to cyclic stretch experiments at a low 

frequency (0.05 Hz) and continued the testing until sample failure. Ironically, GNP 

incorporation to the silicone matrix at 250 mg/mL permitted a substantial improvement in 

the material’s response to cyclic stretch (Fig 3B). When the faces of the broken specimen 

edges were examined, there was evidence of a few air bubbles or voids within the control 

samples whereas these were absent in the GNP-silicone material (Fig. 3C). Similar to the 

initial morphological examination (Fig. 2), at 250 mg/mL GNP concentration, the 



37 
 

silicone substrate was infiltrated with GNP aggregates of various sizes which were found 

to be smoothly integrated within the matrix. We interpret that beyond a critical density of 

GNP such as at a concentration of 250 mg/mL, the cyclic stretching of the specimens 

promoted recruitment of GNPs and interaction with the bulk silicone material. In so 

doing, the GNP-silicone (250 mg/mL) specimen failure did not occur until an additional 

638 cycles later (Fig. 3B) and was thus found to be significantly more durable than 

silicone-alone (p < 0.05). This improvement in material response to cyclic loads as a 

result of GNP incorporation is likely to be beneficial for elastomer-based valve prosthesis 

development, particularly for utility in emerging percutaneous valve systems. However, 

further confirmation at this stage is still necessary via hydrodynamic functionality 

assessment of such a prosthesis. 

In conclusion, we reinforced silicone with GNPs. The introduction of graphene to 

silicone utilizing 250 mg/mL of GNP significantly improved (p < 0.05) the fatigue 

properties of the elastomer. Silicone can be easily formed into tri-leaflet valve 

configurations with leaflet dynamics depicting the movement of native heart valves; 

however the elastomer inherently possesses poor tear strength and lacks durability which 

has limited its utility for heart valve prosthesis application. Our initial findings here 

suggest that GNPs can augment the durability of the silicone matrix while still allowing 

for sufficient distensibility, potentially resembling native valve leaflets. This work 

provides the foundation for preparing tri-leaflet silicone-graphene heart valves for 

hydrodynamic functionality testing, which will be the next step in this research.  
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Chapter 5 AIM 2: Ecm Valves 

Background 
We have collaborated with cardiac surgeons at Joe DiMaggio Children’s Hospital to 

evaluate a long-term solution for children with heart valve defects. Mechanical valves 

and bioprosthetics substitutes are problematic for children. There is a lack of appropriate 

sizes for implants in small children and neonates. As the child grows, the mechanical 

valve becomes mismatched and will require re-replacement. The child will also require 

strict anticoagulation therapy to mitigate the lifetime risk of thromboembolic and 

bleeding complications 

Although the bioprosthetics do not require anticoagulation therapy, the tissue is not living 

and will not grow with the child. The durability of the bioprosthetic in pediatric patients 

is limited due to the high risk of accelerated structural valve degeneration and early 

calcification. 

The Ross procedure remains achoice for aortic valve replacement in infants and children. 

However, the operation is a technically demanding procedure and requires the surgeons 

to operate on and replace both the pulmonary valve and the aortic valve. 

The extracellular matrix (ECM) material that we are investigating in this study has the 

potential to recruit cells from the surrounding area to become living tissue.  The ECM 

derives from the  porcine small intestinal submucosa. If the valve leaflets could be 

replaced with such a tissue, the whole valve may be able to grow with the patient (via in 

vivo tissue remodeling processes) and not require anticoagulation therapy, while the 

maintaining good durability and hydrodynamic performance.  
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The surgeons have already implanted these leaflets into pediatric patents in 

compassionate care situations and have shown promising results.  In essence the valves 

have thus far functioned flawlessly (at the time of this thesis, for ∼ 1 year after valve 

implantation).  In this study, with are characterizing the acute in vitro performance of 

these valves in the aortic position. 

Method 
Valves 
Fresh porcine hearts were harvested from a USDA approved slaughterhouse (Mary’s 

Ranch Inc, Miami, FL) and the aortic root were isolated using a scalpel. The aortic valve 

and the aorta conduit were separated and stored in PBS solution mixed with a protease 

inhibitor cocktail (Sigma-Aldrich). 

The aortic root and conduit were provided to cardiac surgeons at Joe DiMaggio 

Children’s Hospital to construct the valves. To create the aortic valve, the native leaflets 

in the aortic root were removed. The ECM (CorMatrix, Roswell, GA) was cut using the 

pattern from patent 5,716,399 (Figure 13). The ECM material was submerged in saline to 

hydrate it. The ECM material was then sutured in the aortic root around the annulus and 

the wall root where the original leaflets met.   
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Figure 13: Pattern used for aortic leaflets. (Love, 1998) 

 

Valve Testing  
 

Valve testing was performed using a pulse duplicator (Vivitro Labs, Vancover, Canada), 

that simulates the left side of the heart (left ventricle and left atrium). The valves were 

positioned into the base of the valve holders and sutured to the holder around the annulus 

and sino-tubular junction (STJ) of the valve. The valve holder was then inserted into the 

pulse duplicator and the system was checked for leaks.  Upon verification that the system 
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was leak-free, hydrodynamic Evaluation was conducted using the following parameters, 

(see Table 2). 

Table 2: Parameters for hydrodynamic testing 

Parameter Setting 

Heart Rate 70 bpm 

Flow Waveform S35 (35% systolic) 

Stroke Rate 80 ml/stroke 

Testing Fluid 0.9% Saline 

Calculations 
 

Data was calculated using the following equations (1-3) where Q is flow (ml/s); ΔP is the 

mean pressure difference(mmHg); ρ is the density of the test fluid (g/cm3);v is the 

velocity of the fluid; Aaorta is the cross sectional area of the aorta; and SV is the stroke 

volume. Figure 14 shows a representative flow and pressure waveform used to identify 

the different pressure and flow points. 
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Figure 14 - schematic representation of the positive pressure period of an aortic forward flow interval from ISO-5840 

 

Results and Discussions 

Hydrodynamic testing results showed that the ECM valve preformed very close to the 

commercially available Medtronic freestyle bio-prosthetic valve. The pressure profiles as 

seen in Figure 15 are very similar. The aortic pressure profiles during systole (when the 

valve is fully open and blood is flowing through the aortic valve) are near identical. There 

were slight differences between ECM and bioprosthetic valve aortic pressure 

profilesduring diastole, although the overall shape of the pressure curves remained very 

similar.  
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Figure 15- Aortic and Ventricular pressure profiles for the ECM and Medtronic 
bioprosthetic 

 

The flow profile as seen Figure 16, also shows that the valves performed similarly from a 

flow standpoint. The bioprosthetic valve did show significantly higher leakage during 

diastole (P < 0.05), but the RMS flow (which is calculated during forward flow) was not 

found to be significantly different from the ECM valves (P > 0.05). This type of leakage 

could have occurred as a result of fit mismatches  between the bioprosthetic valve and the 

testing fixture leading to small amounts of paravalvular leakage. 
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Figure 16- Flow rate of ECM and Medtronic Bioprosthetic valve 

 

The summary of the hydrodynamic testing is shown in Table 3. The mean pressure drop, 

RMS Flow, and EOA were all close and not statistically significant (P > 0.05) when a 

nonparametric Mood Median test was performed. The Mood Median test was selected 

due to the small sample sizes. A traditional t-test was not used since the sample sizes are 

too small to determine whether the data is normally disturbed. The regurgitation fraction 

is higher (p < 0.05) for the bioprosthetic valve, mostly likely due to paravalular leakage. 

The systolic energy loss was significantly (p< 0.05) higher for the ECM valve, and may 

indicate an area of concern in the long-term for the ECM valve.  However, more testing 

and verification with clinical results are needed to confirm this finding.  
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Table 3 - Summary of hydrodynamic results. * denote statistically significant (P < 0.05) 

Aortic Valves ΔP 
[mmHg] Qrms[ml/s] EOA 

[cm2] 

Regurgitation 
Fraction 

[%]*  

Systolic 
Energy Loss 

[mJ]* 

PSIS ECM 
(n=3) 24.0 ± 2.4 239.9 ± 

44.4 
0.96 ± 
0.21 

13.8 ± 9.8 36.4 ± 19.1 

Bioprosthetic 
(n=2) 18.1 ± 1.9 244.4 ± 3.6 1.12 ± 

0.08 
51.3 ± 0.8 2.9 ± 0.7 

 

All these results indicate that the valve created with the ECM material performed very 

similarly to the commercially available Medtronic Freestyle valve. We would expect 

good performance if these valves are implanted to patients. The hydrodynamic 

performance of the ECM material combined with its ability to cellularize after 

implantation suggests that these valves would benefit infants and young patients with 

critical valve disease, due to the ability to support somatic growth. Of note, the EOA  that 

was calculated for the commercially available bioprosthetic that we tested is within the 

manufacturer’s product specifications (Del Rizzo & Abdoh, 1998). Hence this verified 

the accuracy of our measurements. 

 

Chapter 6 Limitations and Future Studies 

The two aims of my research have investigated different flexible materials for aortic 

valve applications. The first aim has looked at a novel graphene reinforced silicone 

material that is more durability than silicone on its own and the second aim deals with a 

novel use for the ECM material. Both these materials provide some advantages over 
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materials currently being used in commercially available products and solve some of their 

inherent problems. A lot of work still needs to be done to completely understand these 

materials when used for aortic valve applications. 

Graphene Reinforced Silicone 
Aim 1 of this study has shown that graphene is able to reinforce the silicone matrix and 

improve its durability. This opens the potential for use as a new material for heart valves. 

The cyclic fatigue was conducted at a rate of 0.05 Hz due to limitation of the testing 

hardware. In physiological conditions, the material would experience of around 1.2 Hz 

due to the opening and closing of the heart valve. Even though frequency was much 

lower than what would be experience by an implanted heart valve, the strains used in the 

study were many time greater than the strain the heart valve would ever experience.  

Further studies are needed to evaluate the graphene reinforced silicone for use as a 

material for heart valve application. Like native silicone, the material could still be easily 

manufactured into different shapes. A heart valve could be created using injection 

molding to predict the hydrodynamic properties and effectiveness of such a valve after 

implantation. Thin sheets of the silicone graphene material could also be produced and 

combined with self-explaining nitinol stent to study it’s potential for transcatheter 

applications. 

The preliminary studies have shown good biocompatibility and low cytotoxicity. 

However, further studies are needed to completely characterize the safety of graphene-

reinforced material. An animal study would be able to show how the surrounding tissue 

will interact with the material. 
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ECM Valves 
The ECM valves have shown good hydrodynamic properties and acute performance after 

the valve is implanted. The hydrodynamic testing was performed using parameters for an 

adult. The valves that have been implanted so far have been in children. Also, this study 

only looked at acute performance of the valve. 

The valves still need to be further characterized. Long-term studies need to be conducted 

to observe how the valve changes over time. Durability of the valve also needs to be 

assessed. Accelerated wear testing would be able to show how the ECM leaflets would 

survive hundreds of millions of cycles under pulsatile conditions, i.e. if the valves will 

remain functional from a structural standpoint, over several years.  

Further studies are needed to investigate how the ECM material is being cellularized after 

it is implanted into the valve, the rate of its degradation and if it does in fact 

accommodate somatic growth. Longitudinal histological assessment from in vivo studies 

will need to be conducted to see what type of cells proliferate in the ECM scaffold space, 

the extent of scaffold degradation and the type of matrix components being expressed 

extracellularly.  

Since the ECM material is already decellularized, it has the potential to act as a tissue 

engineering scaffold. Cells from the target patient would be taken and used to seed the 

ECM material to form living tissue and then made into a heart valve. The valve would 

have living tissue, so it would be much closer to a native valve. Since the tissue is made 

with the patients one cells, the body would not reject it. The patient would not need to 

take any immunosuppressant to prevent rejection of the tissue. However whether in vitro 
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cell-seeding (e.g. with stem cells) would provide a significant advancement over the 

acellular ECM material for valve replacement purposes is not known at this time. 
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