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ABSTRACT OF THE DISSERTATION 

NOVEL TERNARY MAGNESIUM-TIN ALLOYS BY MICROALLOYING 

by 

Sadegh Behdad 

Florida International University, 2015 

Miami, Florida 

Professor Arvind Agarwal, Co-Major Professor 

Benjamin Boesl, Co-Major Professor 

The objective of this research was to explore the possibility of developing novel 

Magnesium-Tin alloys with improved mechanical properties by micro-alloying. 

Magnesium is the lightest of all structural metals. It can be machined faster and with 

almost half the power required for aluminum. There is a limitless supply of magnesium in 

sea water and it can also be recycled at 5% of initial energy requirements. These 

properties make magnesium an ideal green alternative to replace metals and polymers 

in automotive, aerospace, biomedical and defense sectors. The potential weight 

reduction in the US automotive market alone, leads to 100 billion gallons of gas saved 

and 6.5 billion gallons of CO2 emissions reduced per year. 

In defense and aerospace markets, China is the leading foreign supplier of rare earth 

metals necessary for fabrication of current high-performance Mg alloys, making core 

defense technologies vulnerable to the interruption of Chinese imports. In the past, 

China has used its control over mining, application and import of rare earth metals as a 

strategic leverage. These new Magnesium-Tin ternary alloys offer an alternative that can 

be made from domestic resources improving national security and minimizing foreign 

dependence on rare earth metals import. 
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Our results establish that microalloying can tackle issues arising from sluggish 

precipitate formation kinetics and precipitate size distribution in binary Magnesium-Tin 

alloys. These new alloys also offer an order of magnitude reduction in heat treatment 

time (from approximately 1000 hours to less than 100 hours), which makes the benefits 

of their application two-fold by decreasing manufacturing energy costs and production 

time. This can also open the route for development of new age-hardenable wrought 

Magnesium alloys. 
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1. Motivation 

The objective of this research is to develop a new Magnesium-Tin alloy for automotive 

applications. Magnesium is the lightest of all structural metals. With a density of 1738 

kg/m3, it has almost one quarter the weight of steel and two-thirds the weight of 

aluminum. It is the eighth most abundant element in the earth’s crust. There is a virtually 

limitless supply of magnesium in sea water. Magnesium has very good strength to 

weight ratio. Its melting point is 923 K and its specific heat is 1020 J/kg.K. Therefore, it is 

easily cast by conventional methods to desired shape with uniform properties. It can be 

machined faster and with less power than aluminum  1, as well as recycled at 5% of initial 

energy requirements for its extraction  2. These properties have led to an increased 

attention to development of Mg alloys for applications where potential weight savings 

can be beneficial such as automotive  3,4, aerospace  5-7, and biomedical sectors  8-11. 

 

 

Figure 1.1. Global magnesium market segments in 1999  12 
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 2 

The total global production of primary magnesium has almost doubled in 2001-2010 

period, reaching 809,000 metric tons in 2010 according to International Magnesium 

Association. Market share of various industries in magnesium consumption is shown in 

Figure 1.1. Die-casting has the second biggest share among market segments  12. The 

main industrial application of magnesium die cast alloys is the automotive industry, 

where their light weight contributes to fuel saving and lower emissions.  

 

Utilization of such alloys in engine parts would lead to better fuel economy and in turn, 

reduce carbon dioxide emissions and environmental damages from vehicles. As an 

example, currently an average car has 3.5 kilograms of magnesium whereas about 18 

kilograms of magnesium is used in different drivetrain components in Volkswagen Group 

vehicles. It is predicted that usage of magnesium parts in gearbox housing, mountings, 

oil pump, oil pump housing, and crankcase can increase the magnesium usage by 

another 14-20 kg in the next 5-10 years  12. Assuming that all these parts are now made 

of aluminum, this replacement will lead to a 20-25% weight decrease (~3.5-5 kg). For 

every 100 kg weight reduction, the fuel consumption will reduce 0.3 L for a small car and 

0.4 L for a light truck per 100 km  13. According to world energy council, the average 

annual travel distance of a vehicle in US is 17,500 km. Every 100 kg decrease in weight 

reduces CO2 emissions by 9 gr/km. Therefore, such weight reduction will result in 2788 

L (736 US gal) less CO2 emissions and 183.75 L (48.54 US gal) less gas for each car 

per year. There are more than 135 million passenger cars in US; that is almost 100 

billion gallons of gas and 6.5 billion gallons of CO2 emissions per year just for passenger 

cars in US alone.  
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Currently, the benchmark magnesium casting alloys in the automotive industry are 

AZ91, AM50, and AM60 12,14. Aluminum is the major alloying element in all three alloys. 

Aluminum is usually added to magnesium in order to improve castability by extending 

the freezing range, increasing fluidity and ductility and room temperature tensile 

properties  15,16. These alloys are restricted to applications in which the service 

temperature does not exceed 120°C. This limitation is directly due to a change in 

material properties as a function of elevated temperature. This degradation in property is 

particularly evident in the elevated temperature creep behavior of current alloys as 

shown in Figure 1.2. Further substantial increase of magnesium alloys usage requires 

development of new alloys that have adequate strength and creep resistance in 150-200 

°C temperature range. 

 

  
Figure 1.2. Tensile Stress-Strain curves of a) AZ91 (Left) and b) AM60 (Right)  12 

 

The main present alternative for elevated temperature applications is AE42, which can 

be used at service temperatures up to 170 °C  17. Above this temperature, decomposition 

of the interdendritic lamellar phase Al11RE3 leads to an abrupt degradation of creep 

resistance  16,17. Rare earths have also been added to Mg-Zn alloys to improve their 

mechanical properties at elevated temperatures  18-21.  These efforts have led to 
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development of MEZ alloy which has better creep resistance than AE42 in 150-175 °C 

temperature range 22. At temperatures up to 300 °C, Yttrium containing Mg alloys exhibit 

very good creep resistance and a corrosion performance on par with high purity 

aluminum alloys  12,23. Despite their superior properties, application of commercially 

available Mg-Y-RE alloys, i.e. WE43 and WE54, has been limited to aerospace, F1 

racing cars, and motor sports where added benefits can compensate for the economic 

disadvantage  22,24. Relatively high cost of rare earths is the main drawback that limits 

applications of all the above-mentioned alloy families. Mg-Sn alloys can potentially fill the 

gap in the market for an affordable Mg alloy that exhibits comparable performance. 

 

Maximum solid solubility of Tin in Magnesium is almost 3.45 at.% ( 14.85 wt.% ) with the 

eutectic temperature 561 °C, and decreases to 0.1 at% at 200 °C, which makes it ideal 

for precipitate formation. It forms Mg2Sn precipitate with a melting point of 770 °C, even 

higher than the melting point of the intermetallics formed in binary Mg-Gd, Mg-Y, and 

Mg-RE counterparts as shown in Table 1.1  25. Therefore, there is potential for the 

development of Mg-Sn alloys for elevated temperature applications. 

 

Mg2Sn precipitate is face-centered cubic, point group 𝑚𝑚3�𝑚𝑚, and a=0.676 nm 26,27. 

However, the precipitation process by artificial aging below 300 °C does not develop any 

metastable phases and the precipitates in Mg-Sn binary alloy are very coarse compared 

to other precipitate forming Mg alloys 28. In order to develop an alloy with proper 

strength, precipitation size distribution in Mg-Sn must be modified. It has been proposed 

that microalloying (i.e. adding less than 1 at. % of an alloying element) might be useful in 

controlling the precipitation size and accelerating aging kinetics 29-34. The goal of this 
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dissertation is to explore the possibility of developing novel Mg-Sn alloys by micro-

alloying additions of Titanium (Ti) or Hafnium (Hf). 

 

Table 1.1. Melting point of precipitation phases in binary Mg alloy systems  25 

System Phase Melting Point (°C) 
Mg-Ag Mg3Ag 492 
Mg-Al Mg17Al12 402 
Mg-Ca Mg2Ca 714 
Mg-Ce Mg12Ce 611 
Mg-Er Mg24Er5 620 
Mg-Gd Mg6Gd 640 
Mg-In Mg3In 484 
Mg-Nd Mg41Nd5 560 
Mg-Pb Mg2Pb 538 
Mg-Pr Mg12Pr 585 
Mg-Sn Mg2Sn 770 
Mg-Th Mg23Th6 772 
Mg-Tm Mg24Tm6 645 
Mg-Y Mg24Y5 620 
Mg-Yb Mg2Yb 718 
Mg-Zn MgZn 347 

 

In the automotive industry, the materials cost has a major share in the final price, and a 

successful commercial alloy should have acceptable elevated temperature properties 

coupled with affordable cost. This is an area where Mg-Sn alloys can potentially target to 

have a major impact on the market. Table 1.2 compares the cost of raw materials per 

unit weight of our proposed alloys to some of the commercially available alloys. It can be 

seen that raw materials needed for production of these alloys cost almost half of the 

cheapest commercial alloy in the market. 

 

Table 1.2. Cost of raw materials per unit weight of alloy 

Alloy  Mg-Sn-Ti Mg-Sn-Hf AE42 WE43 ZRE1 
Price ($) 15.36 21.45 32.36 91.94 50.42 
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Literature review 

Deformation Behavior of Magnesium 

Magnesium has hexagonal close-packed crystal structure. According to von Mises 

criterion, a polycrystalline material requires at least 5 independent shear systems to 

accommodate homogeneous deformation under strain to maintain its initial volume. A list 

of possible slip systems in hexagonal close-packed metals is shown in Table 1.3.  

 

Table 1.3. Independent slip systems in hcp metals 35  

Slip system Burgers vector 
Slip 

direction 
Slip plane 

No. of slip systems 

Total Independent 

1 a < 112�0 > 
Basal 

 (0001) 
3 2 

2 a < 112�0 > 
Prismatic type I 

{101�0} 
3 2 

3 a < 112�0 > 
Pyramidal type I 

{101�1} 
6 4 

4 a+c < 112�3 > 
Pyramidal type II 

{112�2} 
6 5 

5 c < 0001 > 
Prismatic type I 

{101�0} 
3 2 

6 c < 0001 > 
Prismatic type II 

{112�0} 
3 2 

 

However, extensive studies on deformation behavior of Magnesium show that basal slip 

is the only deformation mode that is active over a wide range of temperature  35-38. When 

the loading is exerted parallel to basal plane, non-basal slip will be more favorable. 

Under such conditions, prismatic <a> glide will be the preferred deformation mode at 
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room temperature  39,40. A total of 4 independent slip systems are provided by these two 

systems, which can be active simultaneously.  

Since the shape change in crystal structure due to pyramidal <a> slip can be produced 

by a combination of the above mentioned deformation mode, it is not counted as an 

independent deformation mode. Other pyramidal slip systems are only activated at 

temperatures above 200 °C 41. Therefore, Magnesium does not have a sufficient number 

of shear systems to satisfy von Mises criterion at room temperature. This limited 

capability of Magnesium and its alloys for plastic deformation at room temperature has 

major implications for Magnesium alloy development as discussed below.   

 

Effect of Deformation Behavior on Mg Alloy Development 

Commercially available wrought alloys of Magnesium only comprise of Mg-Al-Zn (AZ), 

Mg-Mn (M), and Mg-Zn-Zr (ZK) alloys. As seen in Figure 1.1, wrought alloys have 

slightly above 1% share in the annual Magnesium consumption. Lack of steady 

development of Mg wrought alloys is a result of limited workability of Magnesium at room 

temperature. When traditional deformation processes like extrusion and rolling are used 

at high temperatures necessary for deformation of Magnesium alloys, dynamic 

recrystallization leads to significant grain growth  42. Hall-Petch coefficient of Mg is ~700 

kPa.m-1/2, making it more susceptible to lose its mechanical properties with grain growth.  

 

In contrary, Magnesium has excellent casting properties because it is easily pourable 

and shows good mould-filling properties 12. Automotive industry has been the major 

leading force of Mg casting alloy development with a specific interest in die cast alloys  

4,14.  
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Magnesium Alloying 

Selection of Alloying Element in Magnesium Alloys 

Selection of alloying elements mainly depends on the alloying method. When using non-

conventional methods such as sintering, mechanical alloying, co-spray, etc. the selection 

pool is large. However, most alloying companies still rely on conventional molten metal 

processing, where extensive liquid solubility is required. If the difference in 

electronegativity of the alloying element and Magnesium is large, it leads to formation of 

stable compounds that usually decrease liquid solubility. In some cases such as Si, Mn, 

and Zr, even though the liquid solubility is fairly sufficient, the temperature required for 

substantial dissolution is too high  12,43.  

Another major factor in alloy design is solid solubility of alloying elements as it plays an 

important role in processing and mechanical properties of the alloy 43. Solid solubility is 

affected by atomic size of the elements. As a general rule, the difference between the 

atomic size of alloying element and Mg must be less than 15% in order to achieve good 

solid solubility. Figure 1.3 shows the range of atomic sizes for different elements in 

comparison with Magnesium. 

 

Figure 1.3. Atomic size of different metals  12 
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These two factors limit the usage of many elements as major alloying element for 

Magnesium. It can be seen from Figure 1.3 that solely based on metallic radius values, 

there are almost 25 elements that can be alloyed with Magnesium. But after considering 

the liquid solubility and temperature required for processing of the resultant alloy (Figure 

1.4), the number of alloying elements that are actually used in industrial practice reduces 

to only about ten elements: Al, Zn, Mn, Li, Ag, Gd, Y, RE, Ca, and Zr. 

 

 

Figure 1.4. Max. solid and liq. solubility and eutectic temperatures of binary Mg systems  12 
 

Therefore, there is a need for methods that allow incorporation of other elements in Mg 

alloys in order to tailor their properties and extend their applications. One of these 

methods is microalloying, i.e. addition of small amounts (~<0.1-0.2 at.%) of selected 

elements. It has been known for some time that certain additions in similar systems will 

yield to a disproportionate gain in properties and considerable cost savings  44,45. In the 

following section, theoretical aspects of how microalloying can be beneficial in 

Magnesium alloy development are discussed.  
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Theories on Microalloying in Magnesium Alloys 

Thermokinetic Criterion 

Mendis et al. proposed qualitative thermo-kinetic criteria to select microalloying elements 

in order to refine precipitation distribution in a hypothetical Mg-X system and tested their 

criteria in microalloying Mg-Sn as a model magnesium alloy  30. They suggest that if a 

third alloying element (Y) is added to the Mg-X (here, X: Sn) binary system, which meets 

the following criteria, it is very likely that Y can facilitate the nucleation stage of 

precipitate formation: 

1) Y has a thermodynamic tendency to form heterogeneities such as clusters or 

co-clusters upon cooling after the solution treatment. This is represented by a 

miscibility gap in Mg-Y binary phase diagram. 

2) Y and X do not have any “repulsive tendency”. Y atoms won’t act as effective 

nucleation centers if they repel X atoms. 

3) Y can form finer precipitates/clusters in a faster time scale than X. Otherwise, 

addition of Y would not increase nucleation rate. Although, very little is known 

about clustering kinetics in magnesium alloys, diffusivity of the microalloying 

element is expected to affect it and therefore, it was used to prioritize the choices 

for microalloying. 

Following the same method, by using binary Mg-X and Sn-X phase diagrams the choice 

of the following elements has been proposed in the previous research: Hf, Mo, Na, Nb, 

Rb, Ti, V. To fulfill the second criteria, the chosen element should not be among the set 

of elements that segregate from major alloying element. In case of Sn, element Y can’t 

be selected from Al, Be, Cr, Ga, Ge, Rb, Zn. Based on the diffusivities of the remaining 

elements, the prioritized choices will be Na, Hf, Ti, Nb, Mo, and V. 
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Based on the proposed criteria, Na was chosen as microalloying element and an Mg-

1.3Sn-0.15Na (at.%) alloy was synthesized by induction melting. It was observed that 

such addition increased peak hardness increment and decreased the time to reach peak 

hardness from ~1000 hours to a very practical 58 hours. The change in the number of 

precipitates and their average dimensions is shown in Table 1.4. As can be seen, the 

number of the precipitates increases by two orders of magnitude and there is a size 

reduction in length, width and thickness of the lath shaped precipitates upon Na addition. 

 

Table 1.4. Quantitative measurements of precipitates in Mg-Sn alloys at maximum 
hardness at 200 °C  30 

Alloy composition 

(at. %) 

Nv x 1018 

(m-3) 
𝑙𝑙 

(nm) 

𝑤𝑤 

(nm) 

𝑡𝑡 

(nm) 
𝑙𝑙
𝑤𝑤

 
𝑙𝑙
𝑡𝑡
 

Mg-1.3 Sn 0.6 1500 ±400 500 ±80 54 ±11 3 28 

Mg-1.3 Sn-0.15 Na 56.4 230 ± 50 90 ±22 25 ±8.5 2.55 9.2 

 

Following research reported similar improvements in Mg-Sn-Na-Zn  31 and Mg-Sn-Al-Zn-

Na systems  46. 3-D atomic probe mapping of alloys revealed strong enrichment of Al at 

precipitate/matrix interface and enrichment of Na and Zn in the precipitates. Co-

clustering of Na and Sn atoms was also observed in 3DAP maps (Fig.1.5). 

 

Figure 1.5. 3-D atomic probe mapping of peak-aged Mg–10Sn–3Al–1Zn–0.1Na at 160 °C 46 
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Shear Strain Energy Accommodation Criterion 

Modeling results show that high aspect ratio plate-shaped precipitates, such as those 

observed in Yttrium-RE Magnesium alloys, are the most effective barriers to dislocation 

glide on basal plane in Magnesium  47. Since these precipitates are stronger than Mg 

matrix, their formation is associated with a transformation strain with the invariant plane 

parallel to the shear plane (11�00). This leads to formation of areas of contraction and 

expansion in the matrix around them as shown in Figure 1.6  6,48,49. Similar mechanism is 

suggested for formation of γ′ plates Mg-Y-Zn and Mg-Gd-Zn alloys  28. 

 

A possible route to minimize this shear strain energy is an extrinsic supply of larger 

solute atoms to expansion regions and corresponding concentrations of vacancies to 

contraction regions. Gadolinium (180 pm), Yttrium (181 pm), and Neodymium (185 pm), 

have larger atomic radii than Magnesium (160 pm) and negative binding energies with 

vacancies  50. Therefore, their local segregation around precipitates in the extended 

areas coupled with migration of associated vacancies to the compressed areas can 

release or totally relieve the shear strain of a precipitate during nucleation (or growth).  If 

such mechanism is at work, then it is reasonable that any new precipitates evolving from 

such solute rich clusters form at the end facets of the β1 precipitates rather than on their 

wide side. Experimental HRTEM and HAADF-STEM evidence in Yttrium-RE Magnesium 

alloys (WE54) confirm that β′ precipitates form at end facets of the β1 precipitates in 

deed (Fig. 1.6). Similar observations are well documented in Al-Cu-Sn alloys, where Sn 

atoms are always found at the end facets of θ′ plates and formation of θ′ precipitates 

associated with a large shear strain energy  28. Atomic radii of Al, Cu, and Sn are 125, 

135, and 145 pm respectively. Therefore, the best choice of microalloying element for 

increasing nucleation of plate-shaped precipitates would be elements with large atomic 
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radius and high binding energy with vacancies. However, further experimental work is 

required to prove formation of proposed segregates around precipitate edges. First-

principle calculations to find solute-vacancy binding energy for different solutes in 

Magnesium would also help in better selection of micro-alloying elements according to 

this theory. 
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Figure 1.6. Shear accommodation around precipitates in WE54 Mg alloy 
Top: Shear strain around β1 precipitate in WE54 Mg alloy  48 

Bottom: HRTEM and HAADF images of formation of β′ particles on end-facets of β1 plates 
precipitates in WE54 Mg alloy  6,49 
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Paired Atoms Criterion 

It is reported that in Mg-1Gd (at.%) alloy, addition of just 0.4 at.% Zn leads to a 

significant increase in the as quenched hardness  51. Solid solution strengthening by 

such a small amount of Zn addition can’t account for the observed change in hardness  

52. 3DAP data didn’t show any solute clusters of Zn or Gd either. Nonetheless, statistical 

analysis of 3DAP data showed that Zn and Gd co-segregate in the as quenched 

samples. Substitution of magnesium atom (160 pm) by a larger atom, such as Gd or Y 

atom, results in a positive misfit  (~ 12%); and its exchange with Tin (145 pm) or Zinc 

(135 pm) leads to a negative misfit of about 9% and 16% respectively. Such 

substitutions will generate areas of compression and extension strain in the lattice. It is 

plausible that formation of large atom-small atom segregates will reduce the elastic 

strain on the lattice. On the other hand, no evidence of clusters of Gd or Zn atoms was 

found in the 3DAP analysis. Therefore, it was deduced that Gd-Zn dimers have formed 

in the magnesium solid solution. A schematic showing this mechanism is presented in 

Figure 1.7. 

 

Figure 1.7. Dimers formed by Gd and Zn next to a dislocation in microalloyed Mg-Gd-Zn  53  
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Similar dimer formation may justify improvements in creep response of Mg-Y and Mg-Gd 

alloys by Zn microalloying as well  51,54. Presence of these dimers around dislocations 

will lessen lattice strain around both solute atoms and dislocation; this provides a better 

pinning of sliding dislocations and consequently has a more significant effect on 

hardness than solid solution hardening alone. If microalloying element’s atomic size is 

selected such that it can form dimers with main alloying element, it can have a major 

impact on mechanical properties such as hardness and creep resistance. 
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2. Hypothesis 

The goal if this research is to investigate the validity of the following hypothesis: 

 

Hypothesis: Microalloying of Mg-Sn alloys with Hf or Ti will result in increased 

hardening response upon aging and accelerated aging kinetics due to precipitate 

size refinement. 

 

Among the elements that can be selected based on Mendis’ thermo-kinetic criteria 

discussed in the previous chapter, microalloying of Mg-Sn model system with Ti and Hf 

were chosen for this research. Titanium and Hafnium both have hexagonal close-packed 

structure like Magnesium. Being on the same group of periodic table, Ti and Hf have 

similar valence electrons and are expected to exhibit similar chemical behavior. 

Recently, it has been reported that Ti addition to magnesium alloys can lead to grain 

refinement  1. Zirconium is also in this column of periodic table and minute additions of Zr 

as an effective grain refiner are common in magnesium alloying  2 Therefore,  possible 

additional advantages due to grain refinement after micro-alloying are also examined.  

Mg-Sn binary phase diagram and corresponding binary phase diagrams are shown in 

Figures 2.1 to 2.3 below. It can be seen that binary phase diagrams satisfy 

Thermokinetic criteria. Mg-Ti and Hf-Mg show negligible solid solubility.  
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Figure 2.1. Mg-Sn binary phase diagram 
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Figure 2.2. Corresponding binary phase diagrams for proposed Mg-Sn-Hf alloy compositions  
Top: Hf-Mg  3, Bottom: Hf-Sn  4 
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Figure 2.3. Corresponding binary phase diagrams for proposed Mg-Sn-Ti alloy compositions  
Top: Mg-Ti [5] , Bottom: Sn-Ti  5 
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Research outline 

The plan to test validity of hypothesis consists of four stages:  

1. Alloy synthesis, 2. Artificial Aging, 3. Microstructural characterization, and 4. Nano-

mechanical testing. 

A flowchart of research stages and experiments is shown in Figure 2.4. These steps are 

also briefly described below. 

 

Alloy synthesis 

Previous studies of mechanical properties and creep resistance of Mg-Sn alloys 

containing 1-10 wt.% Sn (~0.2-2.3 at.%) reported that 5 wt.% Sn alloy (T5) showed the 

best tensile strength, while 10 wt.% added Sn (T10) had the highest hardness and better 

creep resistance than AE42 at 150 °C  6. Therefore, these two compositions were 

chosen and the effect of micro-alloying with Ti and Hf additions to them was studied. The 

composition of all alloys and their designations are presented in Table 3.1 in the 

Experimental chapter. 

 

Artificial Aging 

Age hardening response of the samples was studied by artificial ageing in Silicone oil 

bath at 200 °C. Vickers hardness measurements was conducted according to ASTM 

standard E92-82 to evaluate the effects of changes in the microstructure in the early 

stages of hardening and compare time to peak hardness and hardness increment upon 

microalloying.  

After this step, only T5 and corresponding micro-alloyed samples were selected for 

micro-structural analysis. 
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Microstructural Characterization 

Grain size distribution of samples was measured by optical microscopy. Energy 

dispersive spectroscopy (EDS) was performed to verify sample composition. After XRD 

and SEM were used to characterize present phases and microstructure of the samples, 

a selected number of samples (T5 and Hf modified samples) were chosen for further 

TEM analysis. 

TEM micrographs were used to measure size, number density, aspect ratio, and 

morphology of precipitates. Selected samples (T5 and one of Hf modified samples) were 

picked for additional characterization using HRTEM and HAADF-STEM along with 

EDXS. 

 

Nano-mechanical Testing 

Room temperature mechanical testing was performed on five samples (T5 and 

corresponding Ti/Hf modified samples) under careful consideration to monitor laboratory 

conditions and thermal drift to avoid complications in analysis of nano-indentation data. 

Nano-indentation tests with different holding times in the loading/holding/unloading cycle 

were used to compare the nano-scale indentation creep response of the samples.  
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Figure 2.4. O
utline of the experim

ents conducted in this study 
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3. Experimental 

Materials 

High purity metals in form of chips and powders were used for alloy synthesis in this 

study. The list and specifications of these metals are shown in Table 3.1.  

Table 3.1. Specifications of materials used for alloy synthesis 

Metal 
Specification as  

provided by vendor 
Mesh 

Particle size 

(μm) 
Vendor 

Mg Chips, 99.98% -4+30 595-4760 Sigma-Aldrich 

Sn Powder, 99.85% -100 < 149 Alfa Aesar 

Ti Powder, spherical, 99.9%  -150 < 100 Alfa Aesar 

Hf Powder, 99.6%  -325 < 44 Alfa Aesar 

  

Alloy Synthesis 

A total of ten alloys were synthesized to investigate the hypothesis. Alloy designations 

and nominal compositions of the samples in both at.% and wt.% is listed in Table 3.2. 

Hereafter, all samples are described in wt.%. All alloys were measured by Denver 

Instruments micro-balance, mixed and cast under high purity Argon atmosphere in an 

mBRAUN glovebox. Oxygen levels were monitored to be less than 10 ppm to prevent 

oxidation during all the stages.  

Alloys were fabricated by melting in a resistance-heating furnace at 750 °C. Molten 

mixture was stirred with a graphite rod after 30 minutes to ensure proper mixing, and 

was cast after another 15 minutes in a graphite mold previously sprayed by hexagonal 

Boron Nitride high temperature release agent. Mould was kept inside the glovebox to 

cool down to room temperature and then ingots were transferred to open air. A picture of 

the casting set-up is shown in Figure 3.1. 
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Encapsulation and Homogenization 

Alloys were cut into small pieces and put in quartz tubes. Tubes were vacuumed and 

backfilled multiple times with Hydrogen and dry high purity Argon to remove any 

remaining Oxygen and moisture from the tubes. Quartz tubes were then partially 

pressurized with Ar and sealed for homogenization treatment.  For homogenization, 

alloys were heated to 345 °C at a heating rate of 80 °C/hour and kept at that 

temperature for 2 hours, then heated to 500 °C at 80 °C/hour rate and kept for 6 hours at 

500 °C. Samples were then quenched in cold water. The custom-made vacuum pump 

used for encapsulation is shown in Figure 3.2. 

 

Table 3.2. Nominal composition of alloys 

Alloy Designation 
 

Atomic Percent 
 

 
Weight Percent 

 
  Sn Hf or Ti Mg Sn Hf or Ti Mg 

T5 1.1 0 98.9 5.15 0 94.85 

T5-0.8Hf 1.1 0.11 98.79 5.12 0.77 94.11 

T5-1.5Hf 1.1 0.22 98.68 5.08 1.53 93.39 

T5-0.2Ti 1.1 0.11 98.79 5.15 0.21 94.64 

T5-0.4Ti 1.1 0.22 98.68 5.14 0.41 94.45 

       
       T10 2.2 0 97.8 9.9 0 90.1 

T10-0.7Hf 2.2 0.11 97.69 9.84 0.74 89.42 

T10-1.5Hf 2.2 0.22 97.58 9.77 1.47 88.76 

T10-0.2Ti 2.2 0.11 97.69 9.89 0.20 89.91 

T10-0.4Ti 2.2 0.22 97.58 9.88 0.40 89.72 
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Figure 3.1. Furnace used for casting alloys under controlled atmosphere 
 

 

Figure 3.2. Custom-made vacuum set-up for encapsulation 
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Artificial Ageing 

After homogenization, age hardening behavior of the samples was studied by artificial 

ageing in Silicone oil bath at 200 °C. Vickers hardness of the samples was measured at 

certain time intervals by a Wilson Tukon 200 hardness tester under 1000 grams of load 

applied for 15 seconds. At least six measurements were done and the average is 

reported at each point.  

 

Metallographic Sample Preparation 

For microstructural studies, samples were mechanically ground with 600 and 1200 SiC papers 

using ethanol/glycerol mixture as grinding media. Samples were then polished by alumina 

particles down to 0.03 microns. After polishing, they were etched in Nital solution (5 vol.% Nitric 

acid in Ethanol) in order to reveal grain boundaries. 
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Instrumental Characterization 

Scanning Electron Microscopy (SEM) 

A JEOL JSM-6330F Field Emission Scanning Electron Microscopy (FEG-SEM) 

equipped with Energy Dispersive Spectroscopy (EDS) was used to study the 

microstructure of the samples. Accelerating voltage was 20 kV. Secondary electron 

images were used to study the microstructure of the samples in as cast and peak aged 

conditions.  

 

X-ray Diffraction Analysis (XRD) 

X-ray diffraction analysis was carried out by a Siemens 500D X-ray Diffractometer (XRD) 

at 40 kV and 40 mA using Cu-Kα ( λ = 1.542 Å ) radiation. The step size was set to 0.02° 

and the scan rate to 0.5° per minute. Data were acquired for 2θ range of 10° to 90°. By 

comparison of JCPDS cards and observed peaks, the phases present in each sample 

were determined. The following cards from the database were used as a reference for 

the analysis:  

Mg:  JCPDS PDF No. 035-0821 

Sn: JCPDS PDF No. 004-0673 

Hf:  JCPDS PDF No. 038-1478 

Ti: JCPDS PDF No. 044-1294 

Mg2Sn: JCPDS PDF No. 007-0274 
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Transmission Electron Microscopy (TEM) 

A JEOL JIB-4500 Multi-beam Focused Ion Beam equipped with a Gallium ion gun was used to 

mill out thin foils of the samples for TEM analysis. TEM was done by a Phillips CM-200 operating 

at 200 kV. Three different areas of the samples were used to calculate the number density of the 

precipitates in unit volume.  

For high resolution TEM (HRTEM), HAADF TEM characterization was carried out using a 

FEI/TecnaiTM F30 300 kV TEM equipped with a Fischione™ high angle annular dark field 

(HAADF) detector and an energy dispersive x-ray (EDX) detector. In situ lift out (INLO) technique 

was employed to obtain site-specific TEM thin foils by using a FEITM TEM200 Focused Ion Beam 

(FIB) with Gallium ion source. 

 

Nano-mechanical Testing 

Nano-indentation measurement was performed using a Hysitron TI-900 (Hysitron Inc., 

Minneapolis, MN, USA)  Triboindenter with a Berkovich diamond tip (tip radius: 100 nm). 

Tip area calibration was performed on a standard fused quartz sample of known 

hardness (H=9.25 GPa) and modulus (E=69.6 GPa). Normal load was applied to the 

sample surface to a peak load of 10 mN in 5 seconds. After keeping the sample under 

the load for a certain holding time, the unloading was performed in 5 seconds. Varying 

holding times of 60, 120, 180, 240, 300 and 360 seconds were used nano-indentation 

creep tests.  
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4. Results and Discussion 

Ageing Response 

Age hardening behavior of the alloys at 200 °C are illustrated in Figure 4.1 to 4.4. A 

summary of ageing response of the samples is also presented in Tables 4.1 and 4.2 for 

easier comparison. In looking at these data, three important features can be noted: 

 

First, initial hardness of all microalloyed compositions is either equal to or lower than the 

hardness of binary Mg-Sn alloys. This shows that the observed increase in peak 

hardness is not due to the addition of a harder alloying element to the compositions (i.e. 

Ti or Hf). Otherwise, one would expect to see some increase in the initial hardness of the 

microalloyed compositions as well. 

 

Table 4.1. Ageing response of T5 and microalloyed compositions 

Alloy 
composition 

Time to reach 
peak hardness 

(h) 

Initial 
hardness 

(VHN) 

Max. 
Hardness 

(VHN) 

Max. 
Increment 

in 
hardness 

(VHN) 

Percent 
increase 

in 
hardness 

T5 900 37.4 ± 3.7 44.5 ± 0.6 7.1 19.0 

T5-0.2Ti 77 35.3 ± 3.8 47.9 ± 3.6 12.6 35.7 
T5-0.8Hf 77 37.1 ± 3.8 47.7 ± 1.0 10.6 28.6 
T5-0.4Ti 77 33.5 ± 1.4 45.2 ± 2.5 11.7 34.9 

T5-1.5Hf 77 32.7 ± 1.9 44.9 ± 1.5 12.2 37.3 
 

Secondly, the percent increase in hardness and increment in hardness were both 

improved by Hf or Ti additions. Addition of 0.1 at.% Hf improves the percent increase in 

hardness from a mere 19% to 28.6% in T5-0.8Hf. This increase is even more in T5-
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0.2Ti, T5-0.4Ti, and T5-1.5Hf samples reaching to 35.7%, 34.9% and 37.3% 

respectively. This shows an almost a two-fold increase over the binary T5 alloy.  

The percent increase in hardness in modified T10 alloys are also improved. Hf additions 

lead to an increase in hardening response from 35.4% to 41.8% and 44.9% in T10-0.7Hf 

and T10-1.5Hf respectively. Modifying with Ti also increases the hardening response 

from 35.4% to 39.6% and 46.5% in T10-0.2Ti and T10-0.4Ti respectively. The observed 

improvement in precipitate formation kinetics is in good agreement with previous studies  

1,2, where micro-alloying with Na decreased time to reach peak hardness in the same 

manner. Microalloying results in formation of more nucleation centers and therefore 

refines the precipitate size, which in turn improves hardening response upon ageing. 

 

Table 4.2. Ageing response of T10 and microalloyed compositions 

Alloy 
composition 

Time to reach 
peak hardness 

(h) 

Initial 
hardness 

(VHN) 

Max. 
Hardness 

(VHN) 

Max. 
Increment 

in 
hardness 

(VHN) 

Percent 
increase 

in 
hardness 

T10 220 39.8 ± 4.2 53.9 ± 2.2 14.1 35.4 
T10-0.2Ti 49 40.2 ± 3.0 56.3 ± 3.0 15.9 39.6 
T10-0.7Hf 49 40.2 ± 2.5 57 ± 2.4 16.8 41.8 
T10-0.4Ti 49 40.4 ± 4.1 59.2 ± 3.5 18.8 46.5 
T10-1.5Hf 96 40.1 ± 2.3 58.1 ± 1.5 18.0 44.9 

 

Thirdly and most importantly, time to reach peak hardness is significantly reduced by 

microalloying. The sluggish precipitate formation process in T5 was expedited by an 

order of magnitude, reducing from about 900 hours to 77 hours in all of the four modified 

compositions. 

There is a substantial decrease in time to reach peak hardness in T10 alloys, too. Peak 

hardness occurs after 220 hours of aging in T10 binary alloy, which is reduced to 49 in 
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three of the four modified compositions. This shows more than a four fold decrease in 

time to reach peak hardness. Time to reach peak in T10-1.5Hf shows a two fold 

improvement. The main reason behind observed improvement is formation of additional 

nucleation centers, which is confirmed by TEM results presented in future sections. 

 

Finally, it is also interesting that binary alloys, especially T5, are more prone to over-

ageing. Hardness of microalloyed compositions declines with a slower rate as compared 

to T5 and T10. It has been suggested that the presence of microalloying element at the 

interface of precipitates and matrix reduces interfacial energy and hinders precipitate 

coarsening due to over-ageing 3. Based on the results of the age hardening experiment, 

T5 modified samples were chosen for further analysis. 
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Figure 4.1. Age hardening response of T5 and Hf modified alloys 

 

 
Figure 4.2. Age hardening response of T5 and Ti modified alloys 
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Figure 4.3. Age hardening response of T10 and Hf modified alloys 
 

 

Figure 4.4. Age hardening response of T10 and Ti modified alloys 
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Microstructural Analysis 

Grain Size Analysis 

For microstructural studies, samples were polished and etched to reveal grain 

boundaries. Figures 4.5 and 4.6 show the optical micrographs of microstructure of T5 at 

77 hours, and microalloyed compositions at peak hardness. According to Heyn Lineal 

Intercept method (ASTM E112-96), several lines in different orientations were drawn on 

three pictures of each sample and the average grain size was measured. The results are 

shown in Table 4.3 below. 

Table 4.3. Grain Size Analysis 

Alloy composition Average Grain Size (μm) Standard Deviation (μm) 
T5 231.4 91.0 
T5-0.2Ti 170.0 56.3 
T5-0.8Hf 211.1 74.7 
T5-0.4Ti 354.2 161.3 
T5-1.5Hf 367.0 139.4 

 

T5-0.2Ti shows a 27% refinement in grain size. In contrary, a significant grain 

coarsening effect (53% increase) is observed in T5-0.4Ti. Comparison of as cast 

microstructure of Ti modified alloys shown in Figure 4.7 demonstrates that same trend 

exists in the as cast state. Addition of 0.2 Ti to T5 alloy, refines the microstructure and 

increases the number of secondary dendrite arms. Upon further addition of Ti, not only 

the number of the secondary dendrite arms decreases but also the grain size increases 

as well. 

In case of Hf, low alloy content sample shows only 10% decrease in average grain size, 

which is negligible when compared to the standard deviation; but similar to Ti, grain size 

in T5-1.5Hf sample is increased by 59% by further addition of Hf. Microstructure of as 

cast Hf modified samples is shown in Figure 4.8. In T5-1.5Hf sample, long columnar 
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grains are observed which are not seen in T5 or T5-0.8Hf samples. Therefore, it can be 

concluded that differences in grain structure of the samples exist right after the casting 

and did not initiate during the ageing. 

Previous studies have reported grain refinement in Mg alloys by Ti addition, 

nevertheless no specific mechanism was reported for these effects 4,5. Unlike Aluminum, 

a universally reliable grain refiner system is not available for Magnesium alloys. In most 

cases, grain refinement depends on the chemistry of the alloy system  6,7. 

As no evidence of presence of new intermetallics at the grain boundaries was found in 

other microstructural analysis, the differences in grain structure must have been 

originated in primary nucleation stage. Addition of potent nucleating particles can lead to 

grain refinement. But it is well established only a small percentage (1-2%) of these 

inoculates contribute to the nucleation of the grains. Greer proposed Free Growth 

Theory in an effort to justify why only such small proportions of these inoculants affect 

grain nucleation  8,9. According to this theory, grain initiation is determined by the barriers 

to growth of nuclei rather than the nucleation event itself. This barrier is controlled by the 

linear dimension of the inoculants. Bigger particles have the highest potency for 

nucleation. Grain formation starts on these particles and continues gradually to smaller 

inoculants if any. The difference observed between Ti and Hf containing samples in 

terms of grain refinement may be due to the fact that the particle size of the Ti powder 

was bigger than Hf powder used for making alloys.  

Grain coarsening effects seen by further addition of microalloying element may be 

justified in the light of Interdependence Theory of grain refinement  10. Interdependence 

Theory attempts to look at nucleation and growth as concurring events that affect grain 

size distribution whereas  traditional theories formulate the two as independent stages. 
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This theory has been applied to a number of experimental data on Aluminum and 

Magnesium alloys and can successfully predict as-cast grain size. 
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Figure 4.5. Optical micrographs of grains in T5 and Ti modified peak aged alloys 
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Figure 4.6. Optical micrographs of grains in T5 and Hf modified peak aged alloys 

 



 45 

 

 

Figure 4.7. Optical microscopy images of T5 and Ti modified as cast alloys 
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Figure 4.8. Optical microscopy images of T5 and Hf modified as cast alloys 
 

According to this theory, the final grain size is controlled by three critical distances:  

1. The distance that a formerly nucleated grain must grow to create enough 

constitutional supercooling ahead of solid-liquid interface so that the nucleation of the 

next grain can be started. This means that there is a nucleation free zone around each 

nucleate inside which no new nucleation can happen until critical undercooling is 

generated. 2. The distance between solid-liquid interface and the point at which this 

critical constitutional supercooling has been produced; and 3. The extra distance to the 
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closest most potent nucleant. If the undercooling for nucleation (ΔTn) is less than 6 °C, 

then the model shows: 

 

ΔTn = 4σ / (ΔSν d) Equation 4.1. 

 

Where d is nucleant particle diameter, ΔSν  is the entropy of fusion, and σ is the solid-

liquid interfacial energy. Figure 4.9 shows the relationship between ΔTn  and particle 

diameter (d) and average particle spacing Sd  when ΔTn  < 0.8 °C. These particles are 

most likely to act as operative nucleants. As can be seen, when the particle spacing 

becomes less than 20 μm, there is a drastic increase in ΔTn  . 

 
 

Figure 4.9. Relationship between constitutional undercooling and nucleant particle characteristics 
as predicted by interdependence theory  10 

This means there is a higher possibility for new nucleation events to start at farther 

distances from previously nucleated grains. Considering the fact that both Hf and Ti 

have very limited solubility in Mg and both have a tendency to segregate, when more Hf 

or Ti is added to the melt, there is a higher chance that inter-particle spacing falls in the 

range that requires a much higher nucleation undercooling. Therefore, these particles 
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won’t be able to act as potent nucleants. This may be the reason for grain coarsening 

observed in T5-0.8Hf and T5.0.4Ti alloys. 
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Scanning Electron Microscopy (SEM/EDS) 

Elemental maps for microalloyed samples are shown in Figures 4.10 to 4.13. As can be 

seen microalloying element is randomly distributed in all of the samples. Semi-

quantitative compositional analysis was also performed by doing EDS at multiple 

locations of each sample to verify the compositions. Summary of these results are 

presented in Table 4.4 below. 

 

Table 4.4. Composition analysis by EDS 

Nominal Alloy Composition (at.%) Mg (at.%) Sn (at.%) Hf/Ti (at.%) 

Mg-1.1Sn (T5) 98.65 ± 0.23 1.35 ± 0.23 NA 

Mg-1.1Sn-0.11Ti (T5-0.2Ti) 98.66 ± 0.13 1.25 ± 0.07 0.09 ± 0.10 

Mg-1.1Sn-0.11Hf (T5-0.8Hf) 98.43 ± 0.13 1.48 ± 0.17 0.09 ± 0.07 

Mg-1.1Sn-0.22Ti (T5-0.4Ti) 98.51 ± 0.24 1.38 ± 0.22 0.11 ± 0.06 

Mg-1.1Sn-0.22Hf (T5-1.5Hf) 98.52 ± 0.22 1.36 ± 0.22 0.12 ± 0.06 

 

Based on these results, actual compositions are slightly richer in Sn than nominal 

compositions. There was some Mg loss during casting due to high vapor pressure of Mg. 

Concentrations measured for Ti/Hf are of little practical importance because point to 

point variation was too high. This is evident from comparison of standard deviations with 

averages of measurements especially in T5-0.2Ti and T5-0.8Hf. Because of the very low 

concentration of microalloying elements, it was not possible to make a more accurate 

measurement of their concentrations by EDS. 
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Figure 4.10. Elemental maps of peak aged T5-0.2Ti alloy 
 

 

Figure 4.11. Elemental maps of peak aged T5-0.4Ti alloy 
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Figure 4.12. Elemental maps of peak aged T5-0.8Hf alloy 
 

 

Figure 4.13. Elemental maps of peak aged T5-1.5Hf alloy 
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For observation of different phases, microstructures of the samples were examined by 

SEM at higher magnification and are shown in Figures 4.14 and 4.15. Microstructure 

consists of primary α-Mg matrix and Mg2Sn particles (white particles) with lamellar 

eutectic at the grain boundaries. Some divorced eutectic structures were also observed 

at some areas of the samples. 

In order to find traces of microalloying elements, EDS analysis was performed on at 

least 10 locations of the grain boundary and the white particles. Only Mg and Sn were 

detected in high magnification pictures. This is consistent with the results of X-ray 

diffraction analysis which are discussed in the next section. 
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Figure 4.14. SEM images of T5 and Ti modified as cast alloys 
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Figure 4.15. SEM images of Hf modified as cast alloys 
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X-ray Diffraction (XRD) Analysis  

X-ray Diffraction patterns for microalloyed samples in the peak-aged and as cast 

conditions are shown in Figures 4.16 to 4.19 for comparison. As can be seen, all peaks 

can be indexed to α-Mg or Mg2Sn. No new peaks were observed after addition of 

microalloying elements. Therefore, it can be concluded that no new binary or ternary 

intermetallics were formed after of microalloying. 

Also, it is clear that peaks related to Mg2Sn are more pronounced in the peak aged 

conditions, which is in agreement with previous studies 11. 
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Figure 4.16. XR
D

 patterns of T5 and Ti m
odified alloys at peak-aged conditions 
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Figure 4.17. XR
D

 patterns of T5 and H
f m

odified alloys at peak-aged conditions 
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Figure 4.18. XR
D

 patterns of as cast T5 and Ti m
odified alloys 

 

 

 



 59 

Figure 4.19. XR
D

 patterns of as cast T5 and H
f m

odified alloys 
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Transmission Electron Microscopy (TEM) 

Hafnium modified alloys were chosen for further analysis with TEM. Bright-field TEM 

pictures of samples are shown in Figures 4.20 and 4.21. Previous studies have reported 

lath shaped, plate like and polygon Mg2Sn precipitates in Mg-Sn alloys  1,3,12-15. In T5-

0.8Hf and T5-1.5Hf, lath shaped precipitates can clearly be seen. The length of these 

lath-like precipitates reaches to several hundred nanometers. In T5 binary alloy, only 

polygon shaped precipitates of very small size (less than 20 nm) were formed in the 

same timescales. The aspect ratio of the precipitates is increased to 3.63 and 3.95 in 

T5-0.8Hf and T5-1.5Hf respectively as compared to an aspect ratio of 1.42 in T5 alloy. 

 

Foil thickness was measured in FIB using SEM image just before welding foils to TEM 

grid. Thickness was measured in 5 different locations of the foil and average value was 

used for foil volume calculation. The length and width of the TEM image were multiplied 

by this thickness to calculate the volume of the foil. The dimensions and number of the 

precipitates were manually measured using ImageJ image analysis software in three 

TEM images taken from different areas of the foils for each sample. Then the number of 

observed precipitates was divided by calculated volume to report number volume density 

of precipitates. A summary of these results is presented in Table 4.6 below. 

 

Table 4.6. Precipitate dimensions in peak-aged Hf modified alloys and T5 

Alloy Nv x 1018 (m-3) Length (nm) Width (nm) L/W 

T5-0.8Hf 41.20 138 ± 34 38 ± 18 3.63 

T5-1.5Hf 50.40 170 ± 56 43 ± 21 3.95 

T5 at 77 hours NA 17 ± 7 12 ± 4 1.42 
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Number volume density of precipitates was also increased to 41.2 x 1018 in T5-0.8Hf and 

50.4 x 1018 in T5-1.5Hf per m-3. Previous studies on Mg-1.3Sn at.% (T6) reported a 

number volume density of 0.60x1018 per m-3 at its peak hardness which is two orders of 

magnitude lesser than the values found for Hf modified alloys in this study  1,3, which is 

two orders of magnitude improvement over the values reported for Mg-Sn binary alloy at 

its peak hardness  1,3. Due to the small size of the precipitates in T5 alloy, we were 

unable to calculate number volume density of precipitates in T5 sample in low 

magnification pictures. Values calculated from high magnification images are not 

reported, because it won’t be a true measure of precipitate state at bulk.  
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Figure 4.20. Bright-field TEM pictures of peak-aged Hf modified alloys and T5 at 77 hours of 
artificial aging at 200 °C 
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Figure 4.21. TEM micrographs of precipitates in peak-aged Hf modified alloys and T5 at 77 hours 
of artificial aging at 200 °C 
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Clusters of Hf as dark spots at the surface of the precipitates in Hf modified alloys were 

seen in bright field TEM images. These clusters are marked by white arrows in Figure 

4.22.  

 

 

 

Figure 4.22. Nano-clusters of Hf at the surface of Mg2Sn precipitates in Hf modified alloys 
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Selected Area Electron Diffraction (SAED) was used to verify that precipitates are in fact 

Mg2Sn. Polycrystalline diffraction rings belong to Mg matrix and dots can be indexed to 

Mg2Sn precipitate. 

 

 

Figure 4.23. Indexed SAED pattern of Mg2Sn precipitates in T5-0.8Hf 
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High-Angle Annular Dark Field (HAADF) Imaging 

One of the Hafnium modified samples (T5-0.8Hf) and reference binary sample (T5) were 

chosen for further analysis with HAADF. Dark-field TEM pictures of samples are shown 

in Figures 4.24 and 4.25.  

 

 

 

Figure 4.24. Low magnification HAADF images of T5 and T5-0.8Hf 
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It can be seen that there is a significant increase in number density of precipitation due 

to microalloying. Also, precipitates are more uniformly distributed in T5-0.8Hf sample. 

Energy Dispersive X-ray (EDX) spectroscopy was performed at different locations of 

each sample. Results are shown in Figures 4.25 and 4.26. 

 

L-α (7.89 and 7.84 KeV) and L-β (9.02 and 9.34 KeV) lines of Hf were seen in the EDX 

analysis of T5-0.8Hf sample, that indicates Hf was found at the surface and areas close 

to precipitates. Tin L-α (3.44 KeV) and L-β (3.43 KeV) lines and Magnesium k-α (1.25 

KeV) and k-β (1.30 KeV) lines can be observed in both samples. Ga peaks (k-α: 9.25 

and 9.22 KeV, L-α: 1.10 KeV) belong to Ga contamination from FIB milling. Observed Cu 

peaks (k-α: 8.05 and 8.03 KeV, k-β: 8.905 KeV) are from TEM grid and could not be 

avoided. 

 

Elemental mapping were performed to show the location of Hf nano-clusters. As seen in 

Figure 4.27, these maps suggest the presence of these clusters at the surface and in the 

vicinity of precipitates. The positive enthalpy of mixing between Mg and Hf (ΔH=+10 

kJ.mole-1 )  16, as evidenced by virtually zero solubility in Hf-Mg phase diagram, acts as a 

driving force for Hf to segregate out even at such small concentrations. These Hf 

clusters have a negative enthalpy of mixing with Sn atoms (ΔH=-35 kJ.mole-1 )  16, and 

can form co-segregates as shown in Figure 4.22. Co-segregated clusters act as 

additional nucleation centers for Mg2Sn formation, hence leading to improvement of 

aging kinetics and precipitate size refinement. The substantial improvement in 

precipitate state in T5-0.8Hf over T5 can clearly be seen by comparison HAADF images 

in Figure 4.24. 
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Figure 4.25. EDX analysis of T5 sample 
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Figure 4.26. EDX analysis of T5-0.8Hf sample 
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Figure 4.27. Elemental mapping at precipitate-matrix interface 
HAADF– Low magnification STEM image of T5-0.8Hf alloy peak aged at 200 °C, and EDX 
mapping of green box showing (b) Mg (red)+Sn+Hf superimposed map, (c) Sn distribution 

(green), and (d) Hf distribution (yellow). 
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Nano-mechanical Testing 

For nano-mechanical studies constant load method was applied to analyze and compare 

nano-indentation creep behavior of the samples. In indentation creep experiments, the 

representative stress is calculated by dividing the applied load P to the projected contact 

area Ap , 

 

𝜎𝜎 = 𝑃𝑃
𝐴𝐴𝑃𝑃�  Equation 4.2. 

 

Projected contact area for an ideal Berkovich indenter is a function of contact depth h: 

 

𝐴𝐴𝑃𝑃  = 3√3 ℎ2 tan2(65.3) = 24.5 ℎ2 Equation 4.3. 

 

For more accurate measurement of the contact area, usually probe area calibration is 

performed before the test by making several indents on a standard sample of known 

hardness and modulus such as fused quartz. Then a polynomial function is fitted to 

these data and projected contact area can be calculated as follows: 

 

𝐴𝐴𝑃𝑃  = 24.5 ℎ2  + 𝐶𝐶1ℎ
1
2� + 𝐶𝐶2ℎ

1
4� + 𝐶𝐶3ℎ

1
8� + ⋯ Equation 4.4. 

 

According to Mayo and Nix  17, the strain rate 𝜀𝜀̇ for a pyramidal indenter is given as: 

 

𝜀𝜀̇  =
1
ℎ

 
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

  Equation 4.5. 
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Secondary creep rate (steady-state) under the power-law regime is related to the stress 

as  18: 

 

𝜀𝜀̇  = 𝐶𝐶 𝜎𝜎𝑛𝑛exp (
−𝑄𝑄
𝑅𝑅𝑅𝑅

 )  Equation 4.6. 

 

where Q is the activation energy for creep, R is the gas constant, T is the absolute 

temperature of the test, n is the stress exponent, and C is a constant. By plotting strain 

rate versus stress in a logarithmic plot, the slope of the fitted line would yield the value of 

stress exponent n. Previous studies show that this value of stress exponent can be 

compared to that of uniaxial tension creep to determine the mechanism of creep  19-21. 

Table 4.7 presents different mechanism responsible, their constitutive equations, and 

corresponding stress exponents for power-law creep in Magnesium; where b is the 

magnitude of the Burgers vector, G is shear modulus, and d is grain size. A and m are 

materials constants. D is either the grain boundary diffusion coefficient (Dgb), or lattice 

diffusion coefficient (D1),  or dislocation pipe diffusion coefficient (Dp). 
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Table 4.7. Different mechanisms of power-law creep in Magnesium  

Mechanism Constitutive Equation Stress Exponent (n) 

Nabarro-Herring 

diffusional flow 
𝜀𝜀̇  = 𝐴𝐴1  �

𝐺𝐺𝑏𝑏3

𝑘𝑘𝑅𝑅
�  

𝐷𝐷1
𝑑𝑑2

 �
𝜎𝜎
𝐺𝐺
�  1 

Coble diffusional flow 𝜀𝜀̇  = 𝐴𝐴2  �
𝐺𝐺𝑏𝑏3

𝑘𝑘𝑅𝑅
�

𝑏𝑏 𝐷𝐷𝑔𝑔𝑔𝑔
𝑑𝑑3

 �
𝜎𝜎
𝐺𝐺
�  1 

Harper-Dorn Slip 𝜀𝜀̇  = 𝐴𝐴3  �
𝐺𝐺𝑏𝑏2

𝑘𝑘𝑅𝑅
�  

𝐷𝐷1
𝑏𝑏2

 �
𝜎𝜎
𝐺𝐺
�  1 

Lattice diffusion 

controlled grain 

boundary sliding 
𝜀𝜀̇  = 𝐴𝐴4  

𝐷𝐷1
𝑑𝑑2

 �
𝜎𝜎
𝐺𝐺
�
2
 2 

Grain boundary 

diffusion controlled g.b. 

sliding 
𝜀𝜀̇  = 𝐴𝐴5

𝑏𝑏 𝐷𝐷𝑔𝑔𝑔𝑔
𝑑𝑑3

 �
𝜎𝜎
𝐺𝐺
�
2
 2 

Pipe diffusion 

controlled grain 

boundary sliding 
𝜀𝜀̇  = 𝐴𝐴6  

𝐷𝐷𝑝𝑝
𝑑𝑑2

 �
𝜎𝜎
𝐺𝐺
�
4
 4 

Lattice diffusion 

controlled slip 
𝜀𝜀̇  = 𝐴𝐴7  

𝐷𝐷1
𝑏𝑏2

 �
𝜎𝜎
𝐺𝐺
�
5
 5 

Pipe diffusion 

controlled slip 
𝜀𝜀̇  = 𝐴𝐴8   

𝐷𝐷𝑝𝑝
𝑏𝑏2

 �
𝜎𝜎
𝐺𝐺
�
7
 7 
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In order to choose the optimum dwell time to calculate stress exponents, at first the 

highest and lowest limits for holding time were determined by considering thermal drift 

and steady-state creep assumption. In nano-indentation creep, running experiments with 

long holding times requires proper control of thermal drift. Therefore, loading cycles with 

different dwell times (≤2500 seconds, which is the instrument’s buffer limit) were 

examined to find out the higher cap of the dwell time. For holding times longer than 400 

seconds, drift related irregularities were observed in the load-displacement graphs.  

On the other hand, all the above-mentioned indentation creep equations assume steady-

state creep. This assumption sets the lower limit for the holding time. Different holding 

times of 1, 2, 3, 4, 5, 6 minutes were tested. Strain rate was plotted against time to 

determine the minimum time required to observe a steady-state strain rate. As can be 

seen in Figure 4.28, steady-state strain rate was not obtained for holding times less than 

5 minutes. Hence a holding time of 6 minutes was chosen for extraction of stress 

exponents. 

 

It should be noted that since the nano-indenters are often fine tuned for high-resolution 

displacement measurements, the data acquisition rate of these instruments is relatively 

high. In order to remove the noise from the data, an exponential function was fitted to 

displacement data as shown in Equation 4.7, where a, b, and C are fitting parameters. 

Figure 4.29 shows a typical displacement versus time during the holding section of the 

loading cycle along with the fitting constants. As can be seen Equation 4.7 was found to 

fit the creep curves very well. 

 

ℎ(𝑡𝑡) = 𝑎𝑎 𝑡𝑡𝑔𝑔  + 𝐶𝐶 Equation 4.7. 
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Figure 4.28. Strain rate versus time for different dwell times 
 

 

 
Figure 4.29. Displacement-Time data from nano-indentation and fitting constants 
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For extraction of stress exponent, first normalized stress was calculated by using the 

following equation for estimation of shear stress G at room temperature for pure 

Magnesium 22: 

 

𝐺𝐺(𝑀𝑀𝑃𝑃𝑎𝑎) = 19,200 − 8.6 𝑅𝑅 (𝑘𝑘)  Equation 4.7. 

 

which gives a shear stress of 16,637 MPa for shear stress at 298 k. As can be seen in 

Figure 4.30, normalized stress (σ/G) is around 0.036 in the beginning and then falls to 

0.029 at the end of the holding segment. If the normalized stress is in higher than 10-3 , 

the data are in the range for power-law breakdown. The stress range in nano-indentation 

data is about 30 times more than this critical stress. Although R-square values for a 

power-law fit were all higher than 0.99, stress exponents are higher than those common 

in the power-law regime. Calculated stress exponents based on a power-law fit are 

shown in Table 4.8. Since the stress is also in the range of power-law breakdown, strain 

rate versus stress data was fitted to an exponential function to check the likelihood of 

power-law break-down. 

 

Table 4.8. Calculated stress exponents based on power-law assumption 

Alloy designation Power-law stress Exponent (n) R-square 
T5 29.81 0.994 
T5-0.2Ti 26.20 0.991 
T5-0.8Hf 26.45 0.993 
T5-0.4Ti 25.74 0.997 
T5-1.5Hf 26 0.995 
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Figure 4.29. Normalized Stress-Time data from nano-indentation 
 

 

The stress exponent values for power-law break-down are presented Table 4.9. As can 

be seen the stress exponents decrease in microalloyed compositions, which shows 

stress dependence of Mg-Sn binary alloy is higher than microalloyed compositions. The 

average grain size in all the samples is much higher than the size of the indent. So grain 

boundary controlled creep mechanisms are not responsible in this case.  

 

Power-law breakdown is associated with dislocation glide in hcp metals 23. Dislocation 

glide is an easy mechanism in hcp metals unless it is interrupted by obstacles such as 

precipitates, grain boundaries, solute atoms or other dislocations 23. Dislocations glide 

between these obstacles and then climb when reaching them. The higher the applied 

stress, the faster this climb and the lesser the height to which the dislocations have to 
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climb before externally applied stress can push them through the internal stress field 

around the obstacles. 

 

In microalloyed compositions, number density of the precipitates is much higher as 

evidenced by TEM micrographs in the previous section. Precipitates are also more 

uniformly distributed in these alloys. This means that the average length of these 

obstruction-free jogs (dislocation glide) is shorter for modified compositions and climb 

events become more frequent. When two different creep mechanism work in series, the 

rate of slower mechanism controls overall creep rate. Therefore, as the precipitates 

density increases, the stress exponent will be reduced because internal stresses 

opposing dislocation glide increase and dislocation climb dominates. 

 

Table 4.9. Calculated stress exponents for power-law breakdown  

Alloy designation 
Power-law breakdown  
stress Exponent  (n’) R-square 

T5 5.85 E-08 0.997 
T5-0.2Ti 3.89 E-08 0.997 
T5-0.8Hf 4.49 E-08 0.998 
T5-0.4Ti 3.63 E-08 0.998 
T5-1.5Hf 4.06 E-08 0.998 
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5. Conclusion 

The objective of this research was to explore the possibility of developing new ternary 

Magnesium-Tin alloys by microalloying. The criteria for judgment were the effect of 

microalloying additions on aging kinetics, refinement of precipitate size, and mechanical 

properties. Our results establish that microalloying with Hafnium and Titanium can tackle 

some of the issues arising from sluggish precipitate formation kinetics and precipitate 

size distribution in binary Mg-Sn alloys. Hence, Mg-Sn-Ti and Mg-Sn-Hf alloys can be a 

potential alternative to replace Rare Earth containing Magnesium alloys. 

 

Since most Rare Earth elements are exported from overseas to US, the price range for 

AE42 and other existing commercial Mg-RE alloys is very high. There is a need for an 

alloy that can be made from available natural resources in US, so that the final price and 

availability of the product is controlled by and not imposed on the US market. Mg-Sn 

ternary alloys can address this demand in the market. These new alloys also offer an 

order of magnitude reduction in heat treatment time (from approximately 1000 hours to 

less than 100 hours), which makes the benefits of their application two-fold by 

decreasing manufacturing energy costs and production time. This can also open the 

route for development of an age-hardenable wrought Mg alloy. 

 

Mg-Sn-Ti and Mg-Sn-Hf alloys can bring significant change to the current state of the art. 

Under president's initiative, new EPA and the National Highway Traffic Safety 

Administration (NHTSA) regulations force automotive companies to reduce their 

emissions by 2017. Altogether, cars and light trucks use about 45% of oil consumed in 

US. The potential weight reduction in the US automotive market alone leads to 100 

billion gallons of gas and 6.5 billion gallons of CO2 emissions per year.  
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In defense and aerospace market, China is the leading foreign supplier of rare earths 

necessary for fabrication of current Mg alloy counterparts, making core defense 

technologies vulnerable to interruption of Chinese imports. In the past, China has used 

its control over mining, application and import of rare earths as a strategic leverage 1. 

These new alloys offer an alternative that can be made from domestic resources 

improving national security and minimizing foreign dependence.  

 

However, some of the aspects of alloy development and application require further 

investigation and investment before commercial production. A list of suggestions for 

future research on these alloys is summarized in the next section. 
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6. Recommendations for Future Work 

Suggestions for future work can be categorized as follows: 

Alloy Development Method 

In present study, alloys were synthesized under controlled atmosphere in the glovebox, 

but industrial production of Mg alloys is usually done by using a flux or flux-less melting 

in air with aid of CO2 or SF6 2. Microalloying needs precise control of minute additions of 

the ternary alloying element; recovery rates of alloying elements are affected by alloying 

method. Therefore, the effect of alloying method on composition has to be well studied 

before large scale production. 

 

Composition Optimization 

A more thorough study on the alloy formulation is required to determine the optimum 

amount of Hafnium and Titanium additions. Author recommends indirect addition of Hf or 

Ti in the form of Sn-Hf or Sn-Ti master alloys as it allows more precise addition of the 

alloying elements and insures better mixing. It would be ideal if the compositions are 

measured by characterization methods such as ICP-MS in order that exact amounts of 

microalloying element present in the bulk of the final product can be measured. 

 

Diffusion Experiments 

Precipitate growth kinetics in Mg-Sn system is affected by interdiffusion of Sn and Mg. 

Current theories are solely based on phenomenological analysis. Study of the effect of 

microalloying element on the diffusivity of Tin and Magnesium can shed light on the 

mechanisms through which microalloying elements improve ageing kinetics.  
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At-temperature Mechanical Testing 

At temperature tests at elevated temperatures to compare creep behavior of these alloys 

with that of Mg-RE alloys is required to validate the advantage of the proposed Mg-Sn 

ternary alloys. 

 

Computational Thermodynamics 

Development of ternary phase diagrams of Mg-Sn-Na, Mg-Sn-Ti, and Mg-Sn-Hf can 

provide a unique tool for composition optimization. Also, it is a huge step to better clarify 

the possible mechanisms for the observed differences between Na, Ti and Hf. 

Consequently, such clarification can be used for selection of microalloying elements for 

other binary alloys of Magnesium. 

 

Grain Refinement 

A more elaborate investigation of grain refinement in Mg-Sn system by Ti addition is 

beneficial in finding out if the particle size is in fact the determining factor for the 

observed grain refinement. Precise monitoring of heat transfer during casting would be 

essential in such experiments. 

 

Corrosion Performance 

Addition of certain metals such as Iron even at trace levels can have drastic effects on 

the corrosion performance of Mg alloys. It is necessary to study the effect of Hf and Ti 

additions on corrosion behavior of the alloy. Such research is critical to extending 

application of microalloyed compositions to new markets such as biomedical and 

orthopedics 
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