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ABSTRACT OF THE DISSERTATION

DATA VERIFICATIONS FOR ONLINE SOCIAL NETWORKS

by

Mahmudur Rahman

Florida International University, 2015

Miami, Florida

Professor Bogdan Carbunar, Major Professor

Social networks are popular platforms that simplify user interaction and en-

courage collaboration. They collect large amounts of media from their users, often

reported from mobile devices. The value and impact of social media makes it how-

ever an attractive attack target. In this thesis, we focus on the following social media

vulnerabilities. First, review centered social networks such as Yelp and Google Play

have been shown to be the targets of significant search rank and malware prolif-

eration attacks. Detecting fraudulent behaviors is thus paramount to prevent not

only public opinion bias, but also to curb the distribution of malware. Second, the

increasing use of mobile visual data in news networks, authentication and banking

applications, raises questions of its integrity and credibility. Third, through proof-

of-concept implementations, we show that data reported from wearable personal

trackers is vulnerable to a wide range of security and privacy attacks, while off-the-

shelves security solutions do not port gracefully to the constraints introduced by

trackers.

In this thesis we propose novel solutions to address these problems. First, we

introduce Marco, a system that leverages the wealth of spatial, temporal and network

information gleaned from Yelp, to detect venues whose ratings are impacted by

fraudulent reviews. Second, we propose FairPlay, a system that correlates review

activities, linguistic and behavioral signals gleaned from longitudinal app data, to

vi



identify not only search rank fraud but also malware in Google Play, the most

popular Android app market. Third, we describe Movee, a motion sensor based

video liveness verification system, that analyzes the consistency between the motion

inferred from the simultaneously and independently captured camera and inertial

sensor streams. Finally, we devise SensCrypt, an efficient and secure data storage

and communication protocol for affordable and lightweight personal trackers. We

provide the correctness and efficacy of our solutions through a detailed theoretic

and experimental analysis.
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CHAPTER 1

INTRODUCTION

1.1 Background

Social networks are popular infrastructures for communication, interaction, and

information sharing on the Internet with friends and the world. Popular social

networks such as Facebook, Yelp, Foursquare, Youtube provide communication,

storage and social applications for hundreds of millions of users. Users join, establish

social links to friends, and leverage their social links to share reviews, content (video,

image, etc.), organize events, and search for specific users or shared resources. These

social networks provide platforms for organizing events, user to user communication,

and are among the Internets most popular destinations.

Online reviews are central to numerous aspects of people’s daily online and

physical activities. Which Thai restaurant has good food? Which mover is re-

liable? Which mechanic is trustworthy? People rely on online reviews to make

decisions on purchases, services and opinions, among others. People assume these

reviews are written by real patrons of venues and services, who are sharing their

honest opinions about what they have experienced. But, is that really the case?

Unfortunately, no. Reviews are sometimes fake, written by fraudsters who col-

lude to write glowing reviews for what might otherwise be mediocre services or

venues [Seg11, JL08, JLL10, LNJ+10]. In this paper, we at first focus on Yelp [Yela],

a popular social networking and location based service that exploits crowdsourcing

to collect a wealth of peer reviews concerning venues and services. Crowdsourc-

ing has however exposed Yelp to significant malicious behaviors: Up to 25% of its

reviews may be fraudulent [Yelb]. This behavior is not limited to occasional, inex-

perienced fraudsters, but may be well-organized. Search engine optimization (SEO)
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companies tap into review writer markets (see e.g., [Spo13, Pos13, Pay13]) to or-

ganize review campaigns, “face lift” operations for paying business owners [Att]. A

review campaign consists of posting multiple reviews for a target venue, with the

goal of altering its (1-5 star) rating. For business owners, profit seems to be the main

incentive to drive them to engage in deceptive activities. Studies have shown that

in Yelp, an extra half-star rating causes restaurants to sell out 19% more frequently

[AM12], and a one-star increase leads to a 5 to 9% increase in revenue [Luc]. In this

work, we seek to detect deceptive venues whose ratings are impacted by fraudulent

reviews. Furthermore, we study the impact of Yelp “elite” events on the ratings of

hosting venues. Elite events are organized by Yelp for the benefit of “Elite”, influen-

tial users, who write popular reviews. Yelp attempts to prevent review “unfairness”

by encouraging attendees to review the event instead of the venue. However, the

ample warning offered to hosts, coupled with the inability of users to accurately

follow directions, may be used by adversaries to transform Yelp events into review

campaign tools.

Crowdsourcing imposed fraudulent behavior is also common in online social app

markets. The commercial success of Android app markets such as Google Play [Goo]

has made them a lucrative medium for committing fraud and malice. Some fraudu-

lent developers deceptively boost the search ranks and popularity of their apps (e.g.,

through fake reviews and bogus installation counts) [Sie14], while malicious develop-

ers use app markets as a launch pad for their malware [Min14, Mlo14, Rob15, Gre14].

The motivation for such behaviors is impact, as increased popularity leads to fi-

nancial benefits and simplifies malware proliferation. Existing mobile malware

detection solutions have limitations. For instance, while Google Play uses the

Bouncer system [OM12] to remove malware, out of the 7, 756 Google Play apps

we analyzed using VirusTotal [Vir15], 12% (948) were flagged by at least one
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anti-virus tool and 2% (150) were identified as malware by at least 10 tools (see

Figure 3.10(a)). Previous work has focused on dynamic analysis of app executa-

bles [BZNT11, SKE+12, GZZ+12] as well as static analysis of code and permis-

sions [SLG+12, PGS+12, YSM14]. However, recent Android malware analysis re-

vealed that malware evolves quickly to bypass anti-virus tools [ZJ12]. In this dis-

sertation, we seek to identify both malware and search rank fraud targets in Google

Play. This combination is not arbitrary: we posit that malicious developers resort

to search rank fraud to boost the impact of their malware. Unlike existing solutions,

we build this work on our observation that fraudulent and malicious behaviors leave

behind telltale signs on app markets.We uncover these nefarious acts by picking out

such trails.

While we address the challenges posed by well-organized malicious behavior ac-

tivities seen in the review centric social networks and app markets, we also research

privacy vulnerabilities of users in geosicial networks. Online social networks have

become a significant source of personal information. Their users voluntarily reveal

a wealth of personal data, including age, gender, contact information, preferences

and status updates. A recent addition to this space, geosocial networks (GSNs)

such as Yelp [Yela] and Foursquare [fou] further collect fine grained location infor-

mation, through check-ins performed by users at visited venues. Overtly, personal

information allows GSN providers to offer a variety of applications, including per-

sonalized recommendations and targeted advertising, and venue owners to promote

their businesses through spatio-temporal incentives, e.g., rewarding frequent cus-

tomers through accumulated badges. Providing personal information exposes how-

ever users to significant risks, as social networks have been shown to leak [KW10] and

even sell [SF] user data to third parties. There exists therefore a conflict. Without

privacy people may be reluctant to use geosocial networks; without user informa-
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tion the provider and venues cannot support applications and have no incentive to

participate. In this dissertation, we take first steps toward addressing this conflict.

Our approach is based on the concept of location centric profiles (LCPs). LCPs are

statistics built from the profiles of (i) users that have visited a certain location or

(ii) a set of co-located users.

Providing privacy preserving functionality in geosocial networks enable us to

envision a system where users are seamlessly made aware of their safety in a person-

alized manner, through quotidian experiences such as navigation, mobile authen-

tication, choosing a restaurant or finding a place to live. We propose to achieve

this vision by introducing a framework for defining public safety. Intuitively, public

safety aims to answer the question “Will location L present any danger for user A

when she visits L at a future time T”? An important challenge to achieving this

vision is the need to properly understand and define safety. While safety is natu-

rally location dependent, it is also inherently volatile. It not only exhibits temporal

patterns (e.g., function of the season, day of week or time of day) but also depends

on the current context (e.g., people present, their profile and behavior). Further-

more, as suggested by the above question, public safety has a personal dimension:

users of different backgrounds are likely to be impacted differently by the same loca-

tion/time context. Previous attempts to make people safety-aware include the use

of social media to distribute information about unreported crimes [FAdO+10], or

web based applications for visualizing unsafe areas [Cri, Gua]. The main drawbacks

of these solutions stem from the difficulty of modeling safety and of integrating it in

quotidian user experiences. Instead, in this dissertation we investigate the combina-

tion of space and time indexed crime datasets, with mobile technologies and online

social networks to provide personalized and context aware safety recommendations

for mobile and social network users. To achieve this, we first define location centric,
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static crime and safety metrics, based on recorded crime events. Given observed

crime periodicities, we show that time series forecasting tools are able to predict

future crime and safety index values of locations, based on past crime events.

Recent times have seen the importance of new kinds of social networks: content

based social networks and social sensor networks. The ubiquitous and connected

nature of camera-equipped mobile devices has greatly increased the value and im-

portance of visual information they capture and also the personal private and health

centric data they store inside the wearable devices. Mobile apps utilize mobile and

wearable device cameras for purposes varying from authentication to location ver-

ification, tracking, witnessing, and remote assistance. Today, broadcasting videos

from camera phones uploaded by unknown users is admissible on news networks,

and banking customers expect to be able to deposit checks using mobile devices.

We address the fundamental question of whether the visual stream uploaded by a

user has been captured live on a mobile device, and has not been tampered with

by a malicious user attempting to game the system. We refer to this problem as

video “liveness” verification. We exploit the observation that for plagiarized videos,

the motion encoded in the video stream is likely inconsistent with the motion from

the inertial sensor streams (e.g., accelerometer) of the device. This problem is a

cornerstone in a variety of practical applications that use the mobile device cam-

era as a trusted witness. Examples applications include citizen journalism, where

people record witnessed events (e.g., public protests, natural or man-made disas-

ters) and share their records with the community at large. Other applications in-

clude video based proofs of physical possession of products and prototypes (e.g.,

for sites like Kickstarter [Kic], Amazon [Ama] and eBay [eBa]), and of deposited

checks [BoA14, Fow10].
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Recently, popular health centric social sensor networks have also emerged. Prod-

ucts like Fitbit [Fit], Garmin Forerunner[For] and Jawbone Up [Jaw] require users to

carry wireless trackers that continuously record a wide range of fitness and health

parameters (e.g., steps count, heart rate, sleep conditions), tagged with tempo-

ral and spatial coordinates. Trackers report recorded data to a providing server,

through a specialized wireless base, that connects to the user’s personal computer

(see Figures 5.1(a) and 5.1(b)). The services that support these trackers enable

users to analyze their fitness trends with maps and charts, and share them with

friends in their social networks. All happening too quickly both for vendors and

users alike, this data-centric lifestyle, popularly referred to as the Quantified Self

or “lifelogging” is now producing massive amounts of intimate personal data. For

instance, BodyMedia [Bod] has created one of the world’s largest libraries of raw

and real-world human sensor data, with 500 trillion data points [BMD]. This data

is becoming the source of privacy and security concerns: information about loca-

tions and times of user fitness activities can be used to infer surprising information,

including the times when the user is not at home [Ple], and company organizational

profiles [TKS13].

1.2 Contribution

In this dissertation, we investigated the security challenges to verify different forms

of media data in online social networks. Concretely, we focused on designing and

developing novel solutions including (1) detection of venues in Yelp that are targets

of deceptive behaviors; (2) identification of both malware and search rank fraud

apps in Google Play; (3) a motion sensor based video liveness verification system to

authenticate the videos uploaded into the video sharing sites; (4) a lightweight pro-
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tocol for providing secure data storage and communication in fitness centric social

sensor networks; (5) a framework for preserving privacy and functionality in geoso-

cial networks; and (6) a privacy preserving algorithm for computing safety snapshots

of co-located mobile devices as well as geosocial network users. In particular, we

make the following contributions in this dissertation.

1.2.1 A Novel Solution for Fraudulent Behavior Detection

We propose Marco (MAlicious Review Campaign Observer), a novel system that

leverages the wealth of spatial, temporal and social information provided by Yelp,

to detect venues that are targets of deceptive behaviors. Marco exploits funda-

mental fraudster limitations to identify venues with (i) abnormal review spikes, (ii)

series of dissenting reviews and (iii) impactful but suspicious reviews. Marco detects

both venues that receive large numbers of fraudulent reviews, and venues that have

insufficient genuine reviews to neutralize the effects of even small scale campaigns.

We also develop FairPlay, a system that exploits traces left by fraud in e.g., the

app review, install and permission change patterns, the relations between reviewers,

and the reviewer feedback in order to identify apps involved in search rank fraud

attempts, as well as malware.

Our major contributions include:

• We introduce a lower bound on the number of reviews required to launch a

review campaign that impacts a target venue’s rating, and prove that this

bound renders such campaigns detectable. Our theoretical results force fraud-

sters to compromise between the impact and undetectability of their review

campaigns. [Section 3.4]
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• We present Marco, a system that leverages novel social, spatial and temporal

features gleaned from Yelp to flag suspicious reviews and venues. Marco makes

it much harder for fraudsters to hide their trails by making the tasks of posting

fraudulent reviews much more costly and complex. [Section 3.4]. We demon-

strate that Marco is effective and fast; its classification accuracy is up to 94%

for reviews, and 95.8% for venues. It flags 242 of the 7,435 venues analyzed

as deceptive; manual inspection revealed that they were indeed suspicious.

[Section 3.5].

• We present FairPlay, a system that exploits traces left by fraud in e.g., the app

review, install and permission change patterns, the relations between review-

ers, and the reviewer feedback in order to identify apps involved in search rank

fraud attempts, as well as malware. Our results also show that FairPlay not

only achieves a 97+% accuracy in classifying fraudulent and legitimate apps,

but its accuracy in classifying malware and legitimate apps exceeds 98%.

• We contribute a novel dataset of reviews and venues, which consists of both

ground truth (i.e., objectively correct) and gold standard instances (i.e., se-

lected based on best available strategies); and a large collection of 7,435 venues,

270,121 reviews and 195,417 reviewer profiles [Section 3.3]. We also con-

tribute a novel dataset of identified and monitored 87,223 freshly posted apps

in Google Play (along with their 2,850,705 reviews, received from 2,380,708

reviewers) between October 2014 and May 2015, and gold standard datasets of

fraudulent and genuine reviews, as well as fraudulent, malware and legitimate

apps.

• We introduce ProfilR , a framework that allows the construction of LCPs based

on the profiles of present users, while ensuring the privacy and correctness of

participants. We also propose a completely decentralized ProfilR extension,
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built around the notion of snapshot LCPs. The distributed ProfilR enables

user devices to aggregate the profiles of co-located users, without assistance

from a venue device. We also demonstrate that iSafe is efficient: even on a

smartphone, the computation and communication overheads are a few hundred

milliseconds.

• We introduce iSafe, a distributed algorithm that addresses privacy concerns

raised by the use of trajectory traces and associated crime and safety index

values. iSafe takes advantage of the wireless capabilities of mobile devices

to compute real-time snapshots of the safety profiles of close-by users in a

privacy preserving manner. iSafe uses secret splitting and secure multi-party

computation tools to aggregate the trajectories of co-located users without

learning the private information of participants. We have extensively evaluated

Android and browser plugin implementations of iSafe, using crime and census

data from the Miami-Dade county (FL) as well as data we have collected from

the accounts of users and businesses in Yelp [Yela].

1.2.2 A Comprehensive Solution for Video Liveness Verifi-

cation

We introduce Movee, a motion sensor based video liveness verification system.

Movee leverages the ubiquitous mobile device accelerometers and the intrinsic move-

ments of the user’s hand and body during the shooting of the video. Movee exploits

the intuition that video frames and accelerometer data captured simultaneously

will bear certain relations. Specifically, the movement of the scene recorded in the

video stream should be related to the movement of the device registered by the

accelerometer. We conjecture that such relations are difficult to fabricate and em-
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ulate. However Movee has important weaknesses: i) it is not user transparent to

the extent that it imposes an explicit verification step on users, ii) it severely limits

the movements in the verification step to one of four pan movements, and iii) it is

vulnerable to “stitch” attacks in which the attacker creates a fraudulent video by

first live recording a genuine video and then pointing the camera to a pre-recorded

target video.

To address these limitations, we introduce Vamos, a Video Accreditation through

Motion Signatures system. Vamos provides liveness verifications for videos of ar-

bitrary length. It is resistant to a wide range of attacks including those by fully

automated systems and those employing trained human experts. Vamos is com-

pletely transparent to the users; it requires no special user interaction, nor change

in user behavior. Instead of enforcing an initial verification step, Vamos uses the

entire video and acceleration stream for verification purposes: It divides the video

and acceleration data into fixed length chunks. It then classifies each chunk and

uses the results, along with a suite of novel features that we introduce, to classify

the entire sample. This process enables Vamos to efficiently detect several potent

attacks, including stitch attacks. Vamos does not impose a dominant motion di-

rection, thus, does not constrain the user movements. Instead, Vamos verifies the

liveness of the video by extracting features from all the directions of movement,

from both the video and acceleration streams. Vamos improves on the free-form

video motion verification accuracy of Movee by more than 15% in the domain of 6

second Cluster Attack videos, and by more than 30% in the domain of whole length

Cluster and Stitch Attack videos (see Section 5.2 for a discussion of the adversary

model).

Removed video length and movement constraints provide additional flexibility

for attackers to create fraudulent videos. In order to study the security of the new
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unconstrained setting, we i) propose a novel, motion based video classification sys-

tem, ii) introduce several attacks targeted at sensor based video liveness verification,

and iii) show experimental evidence on a wide range of data collected through user

studies and from public sources.

The contributions of this work are the following.

• Introduce the “liveness” analysis problem to videos captured from mobile de-

vices.

• Develop a video liveness verification solution, Movee to detect fraudulent video

and inertial sensor chunks that encode arbitrary motions. Also introduce

Vamos, a system that detects fraudulent video and accelerometer streams of

arbitrary length, and is resilient to powerful attacks [§ 4.3.5].

• Introduce a novel classification of mobile videos [§ 4.2.3].

• Introduce a sensor based attack model and develop novel attacks targeted

against video verification mechanisms.

• Collect datasets of free-form and citizen journalism videos [§ 4.5]. Show that

the performance of Vamos is dependent on the video motion classification

[§ 4.6.7]. Predict the classification of Vamos on sensor-less citizen journalism

videos.

• Provide a full-fledged implementations of Movee and Vamos, each consisting

of a mobile client and a server component. Our cross-validation tests show

that Movee achieves an accuracy that ranges between 68% and 93% on our

attack datasets created on a Samsung Admire smartphone. On a Google Glass

device, Movee’s accuracy ranges between 76-91% for the attacks tested.
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1.2.3 A Secure Solution for Data Storage and Communica-

tion in Health-centric Devices

The third contribution is a protocol, SensCrypt for secure data storage and com-

munication, for use by makers of affordable and lightweight personal trackers. Sen-

sCrypt thwarts not only the attacks we introduced, but also defends against powerful

JTAG Read attacks. We have built Sens.io, an Arduino Uno based tracker platform,

of similar capabilities but at a fraction of the cost of current solutions. On Sens.io,

SensCrypt imposes a negligible write overhead and significantly reduces the end-

to-end sync overhead of Fitbit and Garmin. Concretely, the contributions can be

described as follows:

• Reverse engineer the semantics of the Fitbit Ultra and Garmin Forerunner

communication protocol. [Section 5.2.3].

• Build FitBite and GarMax, tools that exploit vulnerabilities in the design

of Fitbit and Garmin to implement several attacks in a timely manner [Sec-

tion 5.3].

• Devise SensCrypt, a secure solution that imposes no storage overhead on track-

ers and requires only computationally cheap operations. [Section 5.4] Show

that SensCrypt protects even against invasive attackers, capable of reading

the memory of captured trackers [Section 5.5].

• Implement Sens.io, a tracker platform, of similar capabilities with existing

popular solutions but at a fraction of the cost [Section 5.6.1]. Show that

SensCrypt running on Sens.io is very efficient [Section 5.6]
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While SensCrypt’s defenses may not be immediately adopted by existing prod-

ucts 1, this paper provides a foundation upon which to create, implement and test

new defensive mechanisms for future tracker designs.

1.2.4 Toward Preserving Privacy and Functionality in Geoso-

cial Networks

We propose to take first steps toward addressing the conflict between profit and

privacy in geosocial networks. We introduce ProfilR , a framework that allows the

construction of LCPs based on the profiles of present users, while ensuring the

privacy and correctness of participants. We also investigate the combination of

space and time indexed crime datasets, with mobile technologies and online social

networks to provide personalized and context aware safety recommendations for

mobile and social network users. Concretely, the contributions can be described as

follows:

• Introduce the problem of computing location centric profiles (LCPs) while

simultaneously ensuring the privacy and correctness of participants.

• Propose ProfilR , a framework for computing LCPs. Devise both a venue

centric and a decentralized solution. Prove that ProfilR satisfies the proposed

privacy and correctness properties.

• Define location centric, static crime and safety metrics, based on recorded

crime events. Show that timeseries forecasting tools are able to predict future

crime and safety index values of locations, based on past crime events.

1We have contacted Fitbit and Garmin with our results. While interested in the security
of their users, they have declined collaboration.
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• Introduce iSafe, a distributed algorithm that addresses privacy concerns raised

by the use of trajectory traces and associated crime and safety index values.

iSafe takes advantage of the wireless capabilities of mobile devices to com-

pute real-time snapshots of the safety profiles of close-by users in a privacy

preserving manner.

• Evaluate ProfilR through an Android implementation. Show that ProfilR is

efficient even when deployed on previous generation smartphones. Extensively

evaluate Android and browser plugin implementations of iSafe, using crime and

census data from the Miami-Dade county (FL) as well as data collected from

the accounts of users and businesses in Yelp [Yela].

1.3 Organization of the dissertation

To facilitate the reading and understanding, we hereby give an outline of the mate-

rials presented in this dissertation. In the next chapter, we would firstly state the

problems we would address in this work. In Chapter 3, we will study the problem of

detecting malicious behaviors performed through review campaigns in review cen-

tered social networks and app markets, and also the impact of Yelp elite events on

the ratings of hosting venues. Then in Chapter 4, we will address the fundamental

question of whether the visual stream uploaded by a user has been captured live on

a mobile device, and has not been tampered with by an adversary. We also intro-

duce the concept of video motion categories to annotate the camera and user motion

characteristics of arbitrary videos and demonstrate the effectiveness of our solution

across different motion categories. Afterwards, in Chapter 5, we will demonstrate

vulnerabilities in the storage and transmission of personal fitness data in popular

wearable trackers and then devise a secure and efficient solution for storing and
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communicating tracker sensor data. After that in Chapter 6, We will at first define

the problem of privacy conflict between users and social network providers and then

introduce ProfilR along with a distributed, real-time variant of ProfilR and the no-

tion of snapshot LCPs and prove its privacy and correctness. We will then extend

ProfilR by introducing the concepts of personalized and context aware safety as well

as the iSafe solution after investigating relationships between social networks and

crime levels. Finally, we will summarize the contributions of our work and conclude

this dissertation in Chapter 7.
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CHAPTER 2

RELATED WORK

In this chapter, we would highlight the research efforts that are related to the

techniques presented in this dissertation. In particular, Section 2.1 presents the

existing works on fraudulent review detection and malware app identification that

are used in this problem; Section 2.2 reviews the existing approaches on motion

estimation and video authentication; Section 2.3 describes the existing works of

exploiting security vulnerabilities and securing solutions in health-centric sensor

networks; and Section 2.4 describes the existing approaches for preserving users’

privacy and functionality in online social networks.

2.1 Related Work in Fraudulent Behavior Detection

In this section, three related areas that are related to our proposed solution will be

discussed: 1) The existing work of detecting fraudulent reviews, which is directly

related to the problem we intend to solve; 2) The existing work of sybil detection in

social networks, which are very useful approaches in detecting deceptive behaviors;

and 3) The existing approaches of malware detection in app markets.

2.1.1 Research in Detecting Fraudulent Reviews.

Jindal and Liu [JL08] introduce the problem of detecting opinion spam for Amazon

reviews. They proposed solutions for detecting spam, duplicate or plagiarized re-

views and outlier reviews. Jindal et al. [JLL10] identify unusual, suspicious review

patterns. In order to detect “review spam”, Lim et al. [LNJ+10] propose tech-

niques that determine a user’s deviation from the behavior of other users reviewing

similar products. Mukherjee et al. [MLG12] focus on fake reviewer groups; simi-
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lar organized fraudulent activities were also found on online auction sites, such as

eBay [PCWF07]. Mukherjee et al. [MKL+13] leverage the different behavioral dis-

tributions of review spammers to learn the population distributions of spammer and

non-spammer clusters. Li et al. [LHY+11] exploit the reviews of reviews concept of

Epinions to collect a review spam corpus, then propose a two view, semi-supervised

method to classify reviews.

Ott et al. [OCCH11] integrate work from psychology and computational linguis-

tics to develop and compare several text-based techniques for detecting deceptive

TripAdvisor reviews. To address the lack of ground truth, they crowdsourced the

job of writing fraudulent reviews for existing venues.

Unlike previous research, we focus on the problem of detecting impactful review

campaigns. Our approach takes advantage of the unique combination of social,

spatial and temporal dimensions of Yelp. Furthermore, we do not break Yelp’s

terms of service to collect ground truth data. Instead, we take advantage of unique

Yelp features (i.e., spelp sites, consumer alerts) to collect a combination of ground

truth and gold standard review and venue datasets.

Feng et al [FXGC12] seek to address the lack of ground truth data for detecting

deceptive Yelp venues: They introduce three venue features and use them to collect

gold standard sets of deceptive and legitimate venues. They show that an SVM

classifier is able to classify these venues with an accuracy of up to 75%. In Section 3.5

we confirm their results on our datasets. We show that with an accuracy of 95.8%,

Marco significantly outperforms the best strategy of Feng et al [FXGC12].

Li et al. [LHYZ11] and Ntoulas et al. [NNMF06a] rely on the review content

to detect review spam. Li et al. [LHYZ11] exploit machine learning methods in

their product review mining system. Ntoulas et al. [NNMF06a] propose several

heuristic methods for detecting content based spam and combine the most effective
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ones to improve results. Our work differs through its emphasis on relationship

among reviewers, friends and ratings in the context of Yelp’s spatial and temporal

dimensions.

Gao et al. [GHW+10] target asynchronous wall messages to detect and charac-

terize spam campaigns. They model each wall post as a pair of text description and

URL and apply semantic similarity metrics to identify large subgraphs representing

potential social spam campaigns and later incorporate threshold based techniques

for spam detection. Instead, we focus on temporal and geosocial review context, the

where reviewer activity and behavioral pattern are of significant importance.

Wang et al. [WXLY11] introduce the concept of heterogeneous review graphs

and iterative methods exploring relationship among reviewers, reviews and stores to

detect spammers. While we also consider social relations among reviewers we differ

on our focus on temporal and spatial dimensions.

2.1.2 Research in Sybil Detection.

Sybil accounts can be used to launch review campaigns, by enabling a single adver-

sary to write multiple reviews for the same venue, each from a different account. Yelp

identifies venues that receive multiple reviews from the same IP address (but differ-

ent user accounts). Tools such as proxies [Hid] and anonymizers (e.g., Tor [DMS04])

can however be used to avoid detection.

SybilInfer [DM09], detects Sybil nodes in social networks by using Bayesian

inference and knowledge of the social network graph. Sybil tolerant solutions like

DSybil exploit the heavy-tail distribution of the typical behavior of honest users

and rely on user weights to identify whether the system needs more opinions or

not. Similarly, SumUp [TMLS09] uses “adaptive vote flow aggregation” to limit the
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number of fake feedback provided by an adversary to the number of attack edges in

the trust network - that is, the number of bi-directional trust edges the attacker is

able to establish to other users. Molavi et al. [KKSM13] propose to associate weights

with ratings and introduce the concept of “relative ratings” to defend against bought

ratings and ratings from Sybil accounts. When given access to the perspective of the

social network provider, Wang et al. [WKW+13] proposed an approach that detects

Sybil accounts based on their click stream behaviors (traces of click-through events

in a browsing session).

Our work aims to complement Sybil detection techniques. Reviews written from

accounts detected to be Sybils may be classified as fraudulent. The number (or

percentage) of reviews of a venue written from Sybil accounts can be used as a

feature to detect “deceptive” venues. Conversely, user accounts with high numbers

of posted fraudulent reviews may be used as candidates for further Sybil detection

screenings.

2.1.3 Research in Detecting Deceptive and Malware apps

Zhou and Jiang [ZJ12] collect 1,200 Android malware samples and characterize

their installation method, activation mechanism and the nature of their malicious

payload. They reveal a fast evolution of malware to bypass the detection mechanisms

of anti-virus tools. Burguera et al. [BZNT11] use crowdsourcing to collect system

call traces from real users then use a partitional clustering algorithm to cluster

the collected data and differentiate between benign and malicious apps. Shabtai et

al. [SKE+12] extract features from monitored apps (e.g., CPU consumption, packets

sent, running processes, keyboard/touch-screen presses) and user machine learning

to identify malicious apps. Grace et al. [GZZ+12] use static analysis to efficiently
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identify high and medium risk apps, that does not rely on malware samples and

signatures.

Previous work has also studied the ability of app permissions to pinpoint mal-

ware [SLG+12, SK12, SSL+13]. Sarma et al. [SLG+12] use the permissions requested

by an app and by apps in the same category to inform users of the risks vs. bene-

fits tradeoffs of the app. Peng et al. [PGS+12] propose a score to measure the risk

of apps, based on probabilistic generative models such as Naive Bayes. Sahs and

Khan [SK12] used features extracted from app permissions and control flow graphs

to train an SVM classifier on 2000 benign and less than 100 malicious apps. Yer-

ima et al. [YSM14] also use features extracted from app permissions, API calls and

commands extracted from the app executables. Sanz et al. [SSL+13] rely strictly

on permissions as sources of features for several machine learning tools. They use a

dataset of around 300 legitimate and 300 malware pps.

Google has deployed Bouncer, a framework that monitors published apps to de-

tect and remove malware. Oberheide and Miller [OM12] have analyzed and revealed

details of Bouncer (e.g., based in QEMU, using both static and dynamic analysis).

Bouncer is not sufficient - our results show that 948 apps out of 7,756 apps that

we downloaded from Google Play are detected as suspicious by at least 1 anti-virus

tool.

2.2 Related Work in Visual Verifications through Liveness

Analysis

There are mainly three areas related to this research topic: 1) Video authentication

based on video sequence and sensors present in the mobile device; 2) Biometric
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liveness verification approaches; 3) Motion and pose estimation. In the following,

we will discuss these related works in detail.

2.2.1 Research in Video & Acceleration

.

The combination of video and accelerometer data has been studied by Hong et.

al. [HRWZ08] in order to improve the compute-intense motion estimation in video

encoding. They have shown that the use of accelerometer data improves the speed

of the encoding process by a factor of 2-3. Moiz et. al. [MLSL] introduced and de-

veloped a wearable, multi-modality, motion capture platform, and used its inertial

and ultrasonic sensors to estimate position. The focus of our work is different, on

verifying liveness of a video through the consistency of its video and accelerome-

ter data. Indyk et al. [IIS99] studied the problem of finding pirated video on the

Internet. They propose to extract a small number of pertinent features (temporal

fingerprints) based on the shot boundaries of a video sequence, and match them

against a database of videos. We note our work is on an orthogonal problem, of

verifying the liveness of a video claimed to have been taken by a mobile device

user. As such, these two problems can complement each other. Liu et al. [LLLS14]

proposed a solution for summarizing (i.e., extracting important frames from) mo-

bile videos captured simultaneously with acceleration and orientation streams. The

acceleration values are used to exclude outliers. Abdollahian et al. [ATPD10] de-

fine a “camera view” concept, and use camera motion parameters to temporally

segment, summarize and annotate user generated videos. It will be interesting to

evaluate a more efficient, video summary based Vamos: detect fraud by identifying

discrepancies between video and acceleration summaries.
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Several video watermarking algorithms has been proposed for video content au-

thentication [ZZL+12, CJHP10]. The goal of Vamos is however not to authenticate

the recorded video, but to verify the video liveness claim. We note that watermark-

ing only works if all the videos in the world employ it. Furthermore, the defenses

provided by invisible watermarks are defeated by projection attacks.

2.2.2 Research in Biometric Liveness.

Kollreider et al. [KFB09] study the problem of verifying the actual presence of a

live face in contrast to a photograph (playback attack) for face recognition based

biometrics. They introduce a lightweight optical flow approach that estimates face

motion estimation on the structure tensor and a few input frames. Park et. al.

[PWM07] introduce a liveness detection method for distinguishing a two-dimensional

object from a three-dimensional object. The approach proposed uses video sequence

images and does not require additional hardware or user interaction. Their work

has direct application to face recognition biometrics: it can identify the use of a flat

picture. Further work is needed to understand the vulnerability of this approach to

photo movement and photo bending/3D printing attacks.

Multi-modal approaches relying on different sensor sets [FD00, CW06, Chely]

have been proposed, to exploit the static and dynamic relationship between voice and

face information from speaking faces for biometric authentication. Chetty [Chely]

proposed liveness checking techniques for multimodal biometric authentication sys-

tems. Their techniques fuse acoustic and visual speech features and measure the

degree of synchronization between the lips and the voice extracted from speaking

face video sequences.
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Accelerometers have been used to provide biometric information, in the form

of gait or gesture recognition. Mantyjarvi et al. [MLV+ch] proposed solutions that

achieve low EER (equal error rates) for identifying users of mobile devices from gait

signal acquired with three-dimensional accelerometers, when the device was worn

on the belt, at the back. Pylvänäinen [Pyl05] used 3D accelerometers and hidden

Markov models to identify gestures performed using a mobile device.

2.2.3 Research in Pose Estimation.

Full-body human pose recognition from images is a fundamental problem in com-

puter vision, that has been extensively studied, see e.g., [MCT09, ROUMdR08,

BYS07, AT06, MM06, SVD03]. Rogez et al. [RRR+08] propose an efficient method

to jointly localize humans and recognize their pose in images, using an exemplar

based approach and fast search techniques. Murphy-Chutorian and Trivedi [MCT09]

survey work done in estimating head pose from images. Rodgers et al. [RAPK06]

propose a probabilistic framework to detect articulated objects and their pose in

3D range scan data, without knowledge of the object orientation, in the presence of

occlusion and clutter. Huang and Trivedi [HT04] introduce a framework to detect

and track pose estimation of faces in video streams. Wang et al. [WLTX06] propose

real-time multi-view face detection and pose estimation in video streams. Rehbinger

and Ghosh [RG03] perform rigid body pose estimation using inertial sensors and a

monocular camera.

The detection and tracking of human and object pose in the captured videos

can benefit Movee as long as we can identify consistencies between the changes

in pose and the simultaneously captured acceleration information. One difficulty

may arise from the presence of multiple humans and objects in captured videos.
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Movee achieves its goal through a simpler yet effective approach instead of trying

to accurately perform pose estimation: it extracts and verifies the consistency of

motion features from both the video frames and the acceleration stream.

2.3 Related Work in Secure Management of Health-centric

Devices

In the context of implantable medical devices (IMDs) Halperin et al. [HHBR+08]

introduce novel software radio attacks and propose zero power notification, authenti-

cation and key exchange solutions. Rasmussen et al. [RCHBC09] propose proximity

based access control solutions for IMDs. The different mission of fitness trackers

creates different design constraints. First, unlike IMD security, where the focus is

on authentication and key exchange, SensCrypt’s focus is on the secure storage and

communication of tracker data. This is further emphasized by our need to also con-

sider attackers that can perform Capture and JTAG-R attacks, for both trackers

and bases (readers in the IMD context). While such attacks may not be possible

for IMDs, and IMD readers may be expensive enough to afford tamper proof mem-

ory, these assumptions do not hold for most existing fitness centric social sensor

network solutions. Furthermore, while additional user interaction may be naturally

accepted for IMDs, fitness security solutions should minimize or even eliminate user

involvement.

Tsubouchi et al. [TKS13] have shown that Fitbit data can be used to infer

surprising information, in the form of working relations between tracker carrying co-

workers. This information could be used to surreptitiously learn the organizational

profile of a company. This work assumes access to the fitness data of other users, a

task that part of our paper undertakes.
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Naveed et al. [NZD+14] introduced an “external device mis-bonding attack” for

Bluetooth enabled Android health/medical devices, then collected sensitive user

data from and fed arbitrary information into the user’s account. They developed

Dabinder, an OS level defense that generates and enforces secure bonding policies

between a device and its official app. Our work differs in the types and implemen-

tation of attacks, and in the solution placement: SensCrypt is implemented at the

tracker and webserver, whereas Dabinder is focused on the base.

Lim et al. [LOCL10] analyzed the security of a remote cardiac monitoring system

where the data originating from the sensors is sent through a Body Area Network

(BAN) gateway and a wireless router to a final monitoring server. Muraleedharan

et al. [MO08] proposed DoS attacks including Sybil [NSSA04] and wormhole [KD03]

attacks, for a health monitoring system using wireless sensor networks. They in-

troduced an energy-efficient cognitive routing algorithm to address such attacks.

Our work differs through its system architecture, communication model and tracker

capabilities.

Barnickel et al. [BKM10] targeted security and privacy issues for HealthNet,

a health monitoring and recording system. They proposed a security and privacy

aware architecture, relying on data avoidance, data minimization, decentralized stor-

age, and the use of cryptography. Marti et al. [MD07] described the requirements

and implementation of the security mechanisms for MobiHealth, a wireless mobile

health care system. MobiHealth relies on Bluetooth and ZigBee link layer secu-

rity for communication to the sensors and uses HTTPS mutual authentication and

encryption for connections to the backend.
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2.4 Related Work in ensuring GSN Privacy and Safe Cities

2.4.1 Research in GSN Privacy

Location cloaking. Location and temporal cloaking techniques, or introducing er-

rors in reported locations in order to provide 1-out-of-k anonymity have been initially

proposed in [GG03], followed by a significant body of work [HGH+08, OTGH10,

PMX09]. We note that ProfilR provides an orthogonal notion of k-anonymity: in-

stead of reporting intervals containing k other users, we allow the construction of

location centric profiles only when k users have reported their location. Computed

LCPs hide the profiles of participating users: user profiles are anonymous, only ag-

gregates are available for inspection, and interactions with venues and the provider

are indistinguishable.

l-diversity. Machanavajjhala et al. [MGKV06] have shown that k-anonymity for

published user data, where each record is indistinguishable from at least k−1 other

records (for sensitive attributes), is not sufficient to provide anonymity. To address

this, they defined an l-diverse data block of tuples from various users, as one that

contains at least l “well-represented” values for any sensitive attribute. We note that

we do not collect individual (anonymized) user data. Instead, we build statistics

over user data, that can be published only if k users contribute.

GSN privacy. Puttaswamy and Zhao [PZ10] require users to store their informa-

tion encrypted on the GSN provider. This includes ‘friendship” and “transaction”

proofs, cryptographically encrypted tokens encoding friend relations and messages.

The proofs can only be decrypted by those who know the decryption keys. Trans-

action proofs are stored in “buckets” associated with approximate locations (e.g.,

blocks), enabling users to retrieve information pertinent to their current location.
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ProfilR takes the next step, by enabling the aggregation of user data in a privacy

preserving manner.

Mascetti et al. [MFB+11] propose solutions that hide user location information

from the provider and enable users to control the information leaked to participating

friends (e.g., co-location events), with a view to improve service precision, compu-

tation and communication costs. Freni et al. [FRVM+10] argue that the inherent

nature of geosocial networks makes it hard for users to gauge their privacy leaks.

The proposed solution relies on a trusted third party to process posted locations

according to user preferences, before publishing them on the GSN provider. Wernke

et al. [WDR12] use secret sharing and multiple, non-colluding service providers to

devise secure solutions for the management of private user locations when none of

the providers can be fully trusted. The position of a user is split into shares and each

server stores one. A compromised server can only reveal erroneous user positions.

In contrast, ProfilR provides the novel functionality of allowing the provider,

venues and even users to privately compute LCPs over visitors or co-located users.

ProfilR does not require multiple, mutually untrusted servers, or trusted third par-

ties.

Thompson et. al. [THH+09] proposed a solution in which database storage

providers compute aggregate queries without gaining knowledge of intermediate re-

sults; users can verify the results of their queries, relying only on their trust of the

data owner. In addition to assuming a different environment, ProfilR does not as-

sume venue owners to be trustworthy. Toubiana et. al [TNB+10] proposed Adnostic,

a privacy preserving ad targeting architecture. Users have a profile that allows the

private matching of relevant ads. While ProfilR can be used to privately provide

location centric targeted ads, its main goal is different - to compute location (venue)

centric profiles that preserve the privacy of contributing users.
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Online social network privacy. Recent work on preserving the privacy of users

from the online social network provider includes Cutillo et al. [CMS09], who pro-

posed Safebook, a distributed online social networks where insiders are protected

from external observers through the inherent flow of information in the system.

Tootoonchian et al. [TSGW09] proposed Lockr, a system for improving the privacy

of social networks by using the concept of a social attestation, which is a credential

proving a social relationship. Baden et al. [RB09] introduced Persona, a distributed

social network with distributed account data storage. While ProfilR builds on this

work by requiring users to store their GSN information, its focus rests on protecting

the privacy of users while simultaneously allowing venues to collect valuable statis-

tics over visitors. This dual goal of ProfilR differentiates this paper from previous

work.

2.4.2 Research for Smart and Safe Cities.

Smart cities have been the focus of recent efforts at IBM [IBM] and several academic

research groups at MIT [Lab] and UCLA [UCL]. Caragliu et. al. [CDBN09] present

a study on the factors that determine the performance of a “smart city”. They

focus specifically on European cities by analyzing urban environments, levels of

education and different accessibility modalities that are positively correlated with

urban wealth. Since one important aspect of smart cities is safety, Patton [Pat10]

propose the use of audio sensors and cameras that allow authorities to quickly

respond in an emergency event without receiving a 911 call. We note that we

consider a preventive angle, of making users aware of their surroundings.

Furtado et. al. [FAdO+10] propose the use of social media in a collaborative

effort to inform people about crime events that are not reported to police. Their
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wiki website spots areas on the map where participant users have reported crime

events. Police departments also release tools to make citizens aware of their safety,

e.g., the Miami-Dade police department, deployed an web application [Dep] that

identifies crime areas based on current crime reports. Instead, iSafe seamlessly inte-

grates context and time sensitive safety metrics into the everyday user experience.

Dynamic safety practices leveraging social networks and GPS mobile phones have

been introduced in [YBL+08] to create a system for personalized safety awareness.

The definition of safety indexes that leverage crime, social and mobile activities, as

well as the use of safety predictions, differentiate iSafe.

Participatory sensing is receiving increasing attention. Estrin [Est10] discuss

advantages of participatory sensing in health and transportation and provide in-

sights on the architecture of participatory sensing applications. Thiagarajan et.

al. [TBGE10] propose cooperative transit tracking using mobile phones. Privacy

becomes a serious concern when the user personal information may be compromised.

Christin et. al. [CRKH11] present a survey on the efforts made to preserve privacy

in participatory sensing systems. In contrast, iSafe does not collect user informa-

tion, but instead allows devices to aggregate information collected from co-located

users without learning personal information.

The problem of crime prediction has been explored in several contexts. Hotspot

mapping [CTU08] is a popular analytical technique used by law enforcement agen-

cies to identify future patterns in concentrated crime areas. Different methods and

techniques have been analyzed to review the utility of hotspot mapping in [ECC+05],

[CR05], [Jef99], [CRS02]. Hot spot analysis however, often lacks a systematic ap-

proach, as it depends on human intuition and visual inspection.

A variety of univariate and multivariate methods have been used to predict crime.

Univariate methods range from simple random walk [BSV98] to more sophisticated
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models like exponential smoothing. While exponential smoothing offers greater

accuracy to forecast ”small to medium-level” changes in crime [GO01], we have

shown that ARIMA and ANN models outperformed it on our data. We also note

that the end goal of our work is not intrinsically crime forecasting. Instead, we

incorporate crime forecasting techniques into our safety metrics, in an attempt to

provide to participating users a dynamic framework for safety awareness.
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CHAPTER 3

IDENTIFYING DECEPTIVE BEHAVIORS IN ONLINE SOCIAL

NETWORKS

In this chapter, we would mainly focus on the problem of detecting deceptive

and malicious behaviors seen in review-centric social networks and also in social

app markets. Part of the content in this section has been published during my

Ph.D study, including the problem formulation and the proposed solutions and its

evaluation results.

The outline of this chapter is as follows: The motivation and challenges of this

topic will be presented in Section 3.1. The system model will be introduced then

in Section 3.2. In Section 3.3, the collected dataset will be described. Then in

Section 3.4, the deceptive behavior detection mechanisms will be introduced and

evaluated. In Section 3.5, experimental results will be presented to evaluate the

performance of our proposed methods. Some limitations of our work will be dis-

cussed in Section 3.6. Finally, a short chapter summary about this problem and our

proposed solutions will be provided in Section 3.7.

3.1 Motivation and Challenges

Review based geosocial networks are online social networks centered on the location

of venues and users as well as on reviews left by users for visited venues. Similarly,

in app markets like Google Play, reviews play an influential role to motivate install

count and generate revenues for developers. The popularity and impact of reviews

makes them an ideal tool for influencing public opinion. The incentive is profit:

Anderson and Magruber [AM12] show that in Yelp, an extra half-star rating causes

restaurants to sell out 19 percentage points (from 30% to 49%) more frequently.

The boundless demand for positive reviews has made the review system an arms
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Figure 3.1: System overview of Marco. Marco relies on social, temporal and spatial
signals gleaned from Yelp, to extract novel features. The features are used by the
venue classifier module to label venues (deceptive vs. legitimate) based on the
collected data. Section 3.4 describes Marco in detail.

race of sorts. As more five-star reviews are handed out, even more five-star reviews

are needed. Few want to risk being left behind. Determining the number of fake

reviews on the social networks is extremely difficult. In the past few years, there was

a growing interest in mining reviews and reviewer’s sentiment from both academia

and industry. However, the existing work has been mainly focused on extracting

and summarizing reviews using natural language processing and data mining tech-

niques [DLP03, HL04, NNMF06b]. Little is known about the characteristics of

reviews and behaviors of reviewers.

We present Marco, a novel system that exploits the unique combination of social,

spatial and temporal signals gleaned from Yelp, to detect venues whose ratings are

impacted by fraudulent reviews. Marco increases the cost and complexity of attacks,

by imposing a trade-off on fraudsters, between their ability to impact venue ratings

and their ability to remain undetected.
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Marco (see Figure 3.1) exploits fundamental fraudster limitations to identify

venues with (i) abnormal review spikes, (ii) series of dissenting reviews and (iii)

impactful but suspicious reviews. Marco detects both venues that receive large

numbers of fraudulent reviews, and venues that have insufficient genuine reviews to

neutralize the effects of even small scale campaigns.

We also propose FairPlay, a system that leverages the above observations to

efficiently detect Google Play fraud and malware.

3.2 System Model

3.2.1 Yelp’s Review System.

For this work, we focus on Yelp [Yela], a review centric geosocial network that

hosts information concerning users and venues. Subscribed users (“yelpers”) have

accounts and can write reviews, befriend other subscribers, report locations and

search for venues of interest. We use the term “venue” to represent a business or

event with an associated location (e.g., restaurants, shops, offices, concerts).

Reviews have a star rating, an integer ranging from 1 to 5, with 5 being the

highest mark. In Yelp, an average rating value is computed for each venue (rounded

to the nearest half star), over the ratings of all the posted reviews. For a review R,

let R.ρ denote its rating and R.τ to denote the time when the review was posted.

We say a review is “positive” if its rating is at least 4 stars and “negative” if its

rating is 2 stars or fewer. In our analysis we do not consider 3 star reviews. Their

impact on the rating of the venue is likely to be small: Yelp denotes a 3 star rating

as “A-OK”.

33



3.2.2 Influential & Elite Yelpers.

Users can rate the reviews of others, by clicking on associated buttons (e.g., “useful”,

“funny” or “cool” buttons). They can upload photos taken at venues reviewed

and perform “check-ins”, to formally record their real-time presence at the venue.

Yelp rewards “influential” reviewers (often peer-recommended) with a special, yearly

“Elite” badge.

3.2.3 Fraudulent Reviews & Deceptive Venues.

A review is fraudulent if it describes a fictitious experience. Otherwise, the review

is genuine. We say a venue is deceptive if it has received a sufficient number of

fraudulent reviews to impact its average rating by at least half a star. Otherwise,

the venue is legitimate.

Yelp relies on proprietary algorithms to filter reviews it considers fraudulent.

See [MVL+13] for an attempt to reverse engineer Yelp’s filter. Furthermore, Yelp

has launched a “Consumer Alert” process, posting “alert badges” on the pages

of venues for which (i) people were caught red-handed buying fraudulent reviews,

offering rewards or discounts for reviews or (ii) that have a large number of reviews

submitted from the same IP address. The consumer alert badge is displayed for 90

days.

3.2.4 Yelp Events

Yelp organizes special Elite events, at select venues, where only Elite badge holders

are invited. For each event, Yelp creates a separate Yelp page, containing the name

of the event and the name, address and information for the hosting venue. Attendees
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are encouraged to review the event account, which then lists the reviews, just like a

regular venue.

3.2.5 Android App Market of Google Play

We focus on the Android app market ecosystem of Google Play. The participants,

consisting of users and developers, have Google accounts. Developers create and

upload apps, that consist of executables (i.e., “apks”), a set of required permissions,

and a description. The app market publishes this information, along with the app’s

received reviews, aggregate rating, install count, size, version number, time of last

update, and a list of “similar” apps.

Only after a user installs an app on a registered mobile device, is the user al-

lowed to either rate or review the app. A review consists of a star rating (1-5 stars)

and a text component. The text is optional and consists of a title and a descrip-

tion. Google Play limits the number of reviews displayed for an app to 4000, but

publishes the total number of reviews received and their aggregate rating. Google

also publishes the app’s install range, consisting of predefined buckets (e.g., 50-100,

100-500). Reviewers may have Google+ accounts, in which case they have followers.

3.2.6 Adversarial Model for Google Play Market

We consider both rational fraudulent and malware developers. To goal of fraud-

ulent developers is to maximize their revenue for minimal investment. To achieve

this goal, they often rely on crowdsourcing sites (e.g., Freelancer [Fre], Fiverr [Fiv],

BestAppPromotion [Bes15]), to hire teams of willing and often experienced workers

to commit fraud collectively. On the other hand, we also consider malicious devel-
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Figure 3.2: YCrawl system architecture. YCrawl relies on a pool of servers and
proxies to issue requests. The scheduler relies on a request queue to ensure there
are no loops in the crawling process.

opers, who upload malware and even attempt to fraudulently promote it in order

to maximize its impact.

3.3 Collected Dataset.

3.3.1 Collected Yelp Data

In this section we describe the Yelp datasets we collected using the YCrawl crawler

that we developed. Our data consists of: (i) 90 deceptive and 100 legitimate venues;

(ii) 426 fraudulent and 410 genuine reviews; and (iii) a large collection of 7,435

venues and their 270,121 reviews from 195,417 reviewers, from San Francisco, New

York City and Miami.

YCrawl.

We have developed YCrawl, a crawling engine for automatically collecting data from

Yelp user and venue pages. YCrawl consists of 1820 lines of Python code. It fetches

the raw HTML pages of target Yelp user and venue accounts. Figure 3.2 illustrates

the system design of YCrawl.
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Yelp keeps track of requests made from a single IP and suppresses any IP making

an exorbitant number of requests within a short time window 1. To overcome this

limitation, YCrawl uses a pool of servers and IP proxies: For every request, YCrawl

randomly picks a server and proxy. If the request is not successful, a new request is

made using a different proxy. A centralized scheduler maintains a request queue to

ensure there are no loops in the crawling process.

At the time when we performed this data collection, Yelp’s filtered reviews could

only be accessed by solving a CAPTCHA. In order to collect filtered reviews we used

DeathByCaptcha [DBC] to programmatically collect CAPTCHA protected reviews

filtered by Yelp.

We used YCrawl to collect a seed dataset of random venue and user accounts,

using a breadth-first crawling strategy and stratified sampling [TD00]. First, we

selected a list of 10 major cities (e.g., NY, San Francisco, LA, Chicago, Seattle,

Miami) in the U.S. and we collected an initial random list of 100 venues from each

of these cities as a seed dataset. We note that the strata venues are mutually

exclusive, i.e. venues do not belong to two or more different cities. We then randomly

selected 10,031 Yelp users who reviewed these venues, and collected their entire Yelp

data (the html pages), including all their reviews, for a total of 646,017 reviews.

This process enabled us to avoid bias toward high degree nodes (users with many

friends, venues with many reviews), which is a common problem when crawling

social networks [GKBM10]. We have then randomly selected a list of 16,199 venues,

reviewed by the previously collected 10,031 Yelp users. We have collected the html

pages of the selected the venues, including all their reviews.

1Such IP addresses are suppressed from Yelp’s servers and this remains in place for a
few weeks (or sometimes forever).
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The Data.

We use the term “ground truth” set to denote data objectively known to be correct.

We use the term “gold standard” to denote data selected according to the best

available strategies. We collect such data following several stringent requirements,

often validated by multiple third-parties.

Ground truth deceptive venues. We relied on Yelp’s “Consumer Alert” feature

to identify deceptive venues. We have used Yelp and Google to identify a snapshot

of all the 90 venues that received consumer alerts during July and August, 2013.

Gold standard legitimate venues. We have used the collected list of 16,199

venues previously described to first selected a preliminary list of venues with well

known consistent quality, e.g., the “Ritz-Carlton” hotel. We have then manually

verified each review of each venue, including their filtered reviews. We have selected

only venues with at most one tenth of their reviews filtered by Yelp and whose

filtered reviews include a balanced amount of positive and negative ratings. While

Yelp tends to filter reviews received from users with few friends and reviews, Feng

et al. [FXGC12] showed that this strategy is not accurate. In total, we selected 100

legitimate venues.

In addition to collecting the html pages of all the reviews of the selected deceptive

and legitimate venues, we have also collected the html pages of all the users who

wrote reviews for them, and the html pages of all the reviews written by these

reviewers. This data enables us to extract the features that we introduce in the

following sections.

For the 90 deceptive venues we have collected their 10,063 reviews written by

7,258 reviewers. We have collected all the reviews (311,994 in total) written by

the 7,258 reviewers of the 90 deceptive venues. In addition, we have collected the

9,765 reviews, written by 7,161 reviewers, of the 100 legitimate venues. We have
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then collected all the reviews written by these 7,161 reviewers, for a total of 530,408

reviews. Thus, for these 190 venues, we have collected more than 840,000 reviews.

Note how the 90 deceptive venues have received more reviews than the 100 legitimate

venues. However, the total number of reviews written by reviewers of legitimate

venues significantly exceeds those written by the reviewers of deceptive venues.

Gold standard fraudulent reviews. We have used spelp (Spam + Yelp) sites

(e.g., [SPE, FLE]), forums where members, often “Elite” yelpers with ground truth

knowledge, reveal and initiate the discussion on fraudulent Yelp reviews. While

in theory such sites are ideal targets for fraudulent behavior, the high investment

imposed on fraudsters, coupled with the low visibility of such sites, make them

unappealing options. Nevertheless, we have identified spelp reviews that (i) were

discussed by and agreed upon by multiple other Yelp users, (ii) were written from

accounts with no user photo or with web plagiarized photos (identified through

Google’s image search), and that (iii) were short (less than 50 words). From this

preliminary set, we have manually selected 410 generic reviews, that provide no

venue specific information [Revb].

Specifically, each “spelp” review we collected was posted by a Yelp users, and

discussed and agreed upon by multiple other Yelp users.

Gold standard genuine reviews. Given the seed user and venue datasets previ-

ously described, we have extracted a list of 410 genuine reviews satisfying a stringent

test that consists of multiple checkpoints. In a first check we used Google (text and

image search) to eliminate reviews with plagiarized text and reviewer account pho-

tos. In a second check we discarded short (less than 50 words), generic reviews,

lacking references to the venue. Third, we gave preference to reviews written by

users who

• Reached the “Elite” member status at least once.
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• Participated in forums e.g. Yelp Talk.

• Garnered positive feedback on their reviews.

• Provided well thought out personal information on their profile.

We have collected the 54,213 reviews written by the writers of the 410 genuine

reviews. We have also collected the 1,998 reviews written by the writers of the 426

fraudulent reviews.

Large Yelp Data Set. We have used YCrawl to collect the data of 7,435 car repair

shops, beauty & spa centers and moving companies from San Francisco, New York

City and Miami. The collection process took 3 weeks. Of the 7,345 venues, 1928

had no reviews posted. We have collected all their 270,121 reviews and the data of

their 195,417 reviewers (one user can review more than 1 of these venues). Table 3.8

shows the number of venues collected for each venue type and city. Yelp limits the

results for a search to the first 1000 matching venues. Entries with values less than

1000 correspond to cities with fewer than 1000 venues of the corresponding type.

Yelp Event Collection. We have collected Yelp events from 60 major cities cov-

ering 44 states of USA. The remaining states had no significant Yelp events or

activities (WY, VT, SD, NE, WV, ND). After identifying an Elite event, we iden-

tified the hosting venue through either its name or address. We used YCrawl to

collect a majority of the available Yelp events and hosting venues, for a total of 149

pairs.

For each Yelp event and corresponding venue, we have collected their name,

number of reviews, star rating and all their reviews. For each review, we have

collected the date when it was written, the rating given and the available information

about the reviewer, including the Elite status, number of friends and number of

reviews written. In total, we have collected 24,054 event/hosting venue reviews.
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While we are unable to make public these datasets, due to possible legal action

from Yelp, we recommend researchers to contact us with questions concerning this

data.

3.3.2 Collected Google Play Data

GPCrawler: Google Play Data Collector

We have developed GPCrawler, a tool to automatically collect data published by

Google Play for apps, users and reviews. At the time of writing this paper, Google

prevents scripts from scrolling down a user page, thus, to collect the ids of more than

20 apps reviewed by a user. To bypass this restriction, we developed a Python script

and a Firefox add-on. Given a user id, the script opens the user page in Firefox.

When the script loads the page, the add-on becomes active. The add-on interacts

with Google Play pages using content scripts (Browser specific components that let

us access the browsers native API) and port objects for message communication.

The add-on displays a “scroll down” button that enables the script to scroll down to

the bottom of the page. The script then uses a DOMParser to extract the content

displayed in various formats by Google Play. It then sends this content over IPC

to the add-on. The add-on stores it, using Mozilla XPCOM components, in a sand-

boxed environment of local storage in a temporary file. The script then extracts the

list of apps rated or reviewed by the user.

We have run these tools on 4 servers (PowerEdge R620, Intel Xeon E-26XX v2

Processors, 64GB RAM, 2TB HDD) to collect the following data.
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Monitored Fresh Apps

We used Google Play’s “New Releases” link to identify newly released apps, with

a short history on Google Play. Google does not publish the first upload date of a

app; we approximate it based on the time of the app’s first review. We have started

with a seed set of 25K+ new releases (July 2014) and by October 2014 we had a set

of 87,223 new releases, whose first upload time was under 40 days prior to our first

collection time. Most of the apps had under 100 reviews.

We have monitored these 87,223 apps between October 24, 2014 and May 5,

2015: we took a “snapshot” of each app, twice a week. An app snapshot consists

of app metadata, and includes the install bucket, the permissions requested, the

reviews, developer data and similar apps. For each of the 2,850,705 reviews we have

collected from these apps, we recorded the reviewer’s name and id (2,380,708 unique

ids), date of review, review title, text, and rating.

Gold Standard Data

We now describe the process we employed to collect gold standard datasets of fraud-

ulent and genuine reviews, as well as fraudulent and legitimate apps.

Fraudulent reviews. We have used contacts established among Freelancer [Fre]’s

search rank fraud community, to obtain the identities of 15 Google Play accounts

that were used to write fraudulent reviews. We call these “seed fraud accounts”.

We have retrieved all the apps reviewed from the seed fraud accounts, for a total of

201 unique apps. We call these the “seed fraud apps”.
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We have then collected all the 53,625 reviews received by the 201 seed fraud

apps 2. We have used these reviews to identify 188 accounts, such that each account

was used to review at least 10 of the 206 seed fraud apps (for a total of 6,488

reviews). We call these, guilt by association (GbA) accounts.

To reduce feature duplication, we have used the 1,969 fraudulent reviews written

by the 15 seed accounts and the 6,488 fraudulent reviews written by the 188 GbA

accounts for the 201 seed fraud apps, to extract a balanced set of fraudulent reviews.

Specifically, from this total set of 8,457 (=1,969+6,488) reviews, we have collected

2 reviews from each of the 203 (=188+15) suspicious user accounts. Thus, the gold

standard dataset of fraudulent reviews contains 406 reviews.

Genuine reviews. We have manually collected a gold standard set of 315 genuine

reviews, as follows. First, we have selected the reviews written for apps installed on

the Android smartphones of the authors. We then used Google’s text and reverse

image search tools to identify and filter those that plagiarized other reviews or were

written from accounts with generic photos. We have then manually selected reviews

that mirror the authors’ experience, have at least 150 characters, and are informative

(e.g., provide information about bugs, crash scenario, version update impact, recent

changes, game characters and level difficulty).

Malware apps. We have used GPad (see Section 3.3.2) to collect the apks of a

randomly selected subset of 8,220 apps from the 87K “fresh” apps. Figure 3.10(a)

shows the distribution of flags raised by VirusTotal, for the 8,220 apks. We note

that these apps have not been filtered by Google’s Bouncer [OM12]. From the 523

apps that were flagged by at least 3 tools, we selected those that had at least 10

reviews to form our “malware app” dataset, for a total of x apps.

2The 15 seed fraud accounts were responsible for 1,969 of these 53,625 reviews.
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Fraudulent apps. We use the 201 “seed fraud apps”, see above, as the gold

standard fraudulent app dataset.

Legitimate apps. We have selected a subset of 925 candidate apps, that have

been developed by Google designated “top developers”. We have then used GPAD

to download their apks and filter out those detected to be suspicious even by one

anti-virus tools. We have manually investigated 601 of the remaining apps, and

selected a set of 200 apps that have more than 10 reviews and where developed by

reputable media outlets (e.g., NBC, PBS) or have an associated business model (e.g.,

fitness trackers), or whose reviews report experiences similar to the ones experienced

by the paper authors.

3.4 Proposed Methods

We present Marco, a system for automatic detection of fraudulent reviews, decep-

tive venues and impactful review campaigns. We begin with a description of the

adversary and his capabilities.

3.4.1 Deceptive Venue Detection.

Overview of Marco.

Marco, whose functionality is illustrated in Figure 3.1, consists of 3 primary mod-

ules. The Review Spike Detection (RSD) module relies on temporal, inter-review

relations to identify venues receiving suspiciously high numbers of positive (or neg-

ative) reviews. The Aggregate Review Disparity (ARD) module uses relations be-

tween review ratings and the aggregate rating of their venue, at the time of their

posting, to identify venues that exhibit a “bipolar” review behavior. The Fraudu-
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Notation Definition

A Adversary
V Target venue
HV , ∆T V ’s timeline and active interval
ρV (T ) Rating of V at time T

δr Desired rating increase by A
δt Review campaign duration
q Number of fraudulent reviews by A

R, R.ρ, R.τ Review, its rating and its posting time
n Number of genuine reviews of V
σ Sum of ratings of all genuine reviews
p Number of genuine positive reviews

Table 3.1: Table of Notations

lent Review Impact (FRI) module first classifies reviews as fraudulent or genuine

based on their social, spatial and temporal features. It then identifies venues whose

aggregate rating is significantly impacted by reviews classified as fraudulent. Each

module produces several features that feed into a venue classifier, trained on the

datasets of Section 3.3.1. Table 3.1 shows the notations used by Marco.

The approach used in Marco leverages manually labeled data, including fraud-

ulent and genuine reviews, as well as deceptive and legitimate venues, to classify

reviews and venues. Marco does not require knowledge of all the data and can clas-

sify new data in an online manner. A drawback of this approach stems from the

difficulty of acquiring ground truth and gold standard data. While it is also difficult

to identify relevant features that are hard to bypass by adversaries, we note that

Marco introduces a trade-off for attackers, between impact and detectability.

An alternative approach is to use unsupervised outlier detection solutions [HA04,

ZSK12, YTWM00, ZSGL07, FM06]. While such solutions do not require labeled

data, they require knowledge of the entire dataset. This approach is thus suitable

for the providers (i.e., Yelp). We note however that an adversary with sufficient
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knowledge of the data can attempt to bypass this approach, by determining and

introducing fraudulent data that would not be classified as outlier.

Review Spike Detection (RSD) Module.

A review campaign needs to adjust (e.g., increase) the rating of its target venue, by

posting (fraudulent) reviews that compensate the negative ratings of other reviews.

The RSD module detects this behavior by identifying venues that receive higher

numbers of positive (or negative) reviews than normal.

In the following, our first goal is to prove that review campaigns that impact the

ratings of their target venues are detectable. For this, let q denote the total number

of fraudulent reviews that A posts for the target venue V . We focus on the typical

scenario where an attacker attempts to increase the rating of V (ballot stuffing).

Attempts to reduce the rating of V (bad mouthing) are similar and omitted here

for brevity.

A can follow any strategy, including (i) greedy, by posting all q reviews in a short

time interval and (ii) uniform, by spreading reviews over a longer time interval.

While a greedy strategy is likely to quickly impact the venue, a uniform strategy

seems more likely to pass unnoticed. However, we show in the following that, if the

review campaign is successful, it becomes detectable.

Let Ts and Te denote the start and end times of the campaign, the times when

the first and last fraudulent reviews initiated by A are posted. δt = Te − Ts is the

campaign duration interval. Let n denote the number of genuine reviews V has at

the completion of the campaign (time Te). We assume V receives fraudulent reviews

only from A. We prove the following lower bound on the number of reviews that A

needs to write in order to impact the rating of V .
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Claim 1 The minimum number of reviews A needs to post in order to (fraudulently)

increase the rating of V by half a star is q = n/7.

Proof. Let R1, R2, .., Rn denote the n genuine reviews of V . Let σ =
∑n

i=1Ri.ρ.

According to Yelp semantics, Ri.ρ ∈ [1, 5], thus σ ∈ [n, 5n]. The “genuine” rating

of V is ρgV = σ
n
. In order to minimize q, A has to write only 5 star reviews. Let

δr be the increase in the rating of V generated by A’s review campaign. Note that

δr ∈ [0.5, 4). Furthermore, σ
n
+ δr ≤ 5, as the final rating of V cannot exceed 5.

Hence,

σ + 5q

n+ q
=

σ

n
+ δr,

Thus, q = n2δr
5n−σ−nδr

. Given that σ ≥ n, we have q ≥ nδr
4−δr

. When δr = 1/2, this

results in q ≥ n/7. For δr = 1, q ≥ n/3, when δr = 2, q ≥ n, etc.

We say a review campaign is successful if it increases the rating of the target

venue by at least half a star (δr ≥ 1/2). We introduce now the notion of venue

timeline:

Definition 3.4.1 The timeline of a venue V is the set of tuples HV = {(Ui, Ri)|i =

1..n}, the list of reviews Ri received by V from users Ui, chronologically sorted by

the review post time, Ri.τ . Let ∆T = Tc − T1 denote the active interval of the

venue, where Tc denotes the current time and T1 = R1.τ .

Figure 3.3 illustrates this concept, by showing the evolution of the positive review

(4 and 5 star) timelines of 3 venues selected from the ground truth deceptive venue

dataset (see Section 3.3.1). Let p denote the number of positive reviews received by

V during its active interval, ∆T . We now show that:

Claim 2 Assuming a uniform arrival process for genuine positive reviews, the maxi-

mum number of genuine positive reviews in a δt interval is approximately p δt
∆T

(1+ 1√
c
),

where c = p δt

∆T log∆T
δt

.
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Figure 3.3: Timelines of positive reviews of 3 deceptive venues (see Section 3.3.1).
Each venue has several significant spikes in its number of daily positive reviews.

Proof. The distribution of reviews into δt intervals follows a balls and bins process,

where p is the number of balls and ∆T/δt is the number of bins. It is known

(e.g., [BBFN10, RS98]) that given b balls and B bins, the maximum number of balls

in any bin is approximately b
B
(1 + 1√

c
), where c = b

B logB
. Thus, the result follows.

We introduce now the following result.

Theorem 1 If n > 49, a successful review campaign will exceed, during the attack

interval, the maximum number of reviews of a uniform review distribution.

Proof. Let p denote the number of positive, genuine reviews received by the target

venue at the end of the review campaign. p < n, where n is the total number of

genuine reviews at the end of the campaign. According to Claim 1, a successful

review campaign needs to contain at least n/7 positive (5 star) reviews. Then,
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since the expected number of positive genuine reviews to be received in a δt interval

will be pδt
∆T

, following the review campaign, the expected number of (genuine plus

fraudulent) positive reviews in the attack interval will be n
7
+ pδt

∆T
.

The maximum number of positive genuine reviews posted during an interval δt,

assuming a uniform distribution, is, according to Claim 2, approximately p δt
∆T

+√
pδt log ∆T

δt

∆T
. Thus, the number of positive reviews generated by a review campaign

exceeds the maximum positive reviews of a uniform distribution if

n

7
+

pδt

∆T
>

pδt

∆T
+

√
pδt log ∆T

δt

∆T
.

Since n > p, this converts to n
49

>
log ∆T

δt
∆T
δt

Since ∆T > δt, we have that
log ∆T

δt
∆T
δt

< 1.

Thus, the above inequality trivially holds for n > 49.

Theorem 1 introduces a tradeoff for attackers. Specifically, an attacker can

choose to either (i) post enough reviews to impact the rating of a venue (launch

a successful campaign) but then become detectable (exceed the maximum number

of reviews of a uniform distribution), or (ii) remain undetected, but then do not

impact the rating of the venue.

Detect abnormal review activity. We exploit the above results and use statis-

tical tools to retrieve ranges of abnormal review activities. In particular, our goal

is to identify spikes, or outliers in a venue’s timeline. For instance, each venue in

Figure 3.3 has several significant review spikes. The RSD module of Marco uses the

measures of dispersion of Box-and-Whisker plots [TD00] to detect outliers. Specif-

ically, given a venue V , it first computes the quartiles and the inter-quartile range

IQR of the positive reviews from V ’s timeline HV . It then computes the upper outer

fence (UOF ) value using the Box-and-Whiskers plot [TD00]. For each sub-interval

d of set length (in our experiments |d| = 1 day) in V ’s active period, let Pd denote

the set of positive reviews from HV posted during d. If |Pd| > UOF , the RSD
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Figure 3.4: Evolution in time of the average rating of the venue “Azure Nail &
Waxing Studio” of Chicago, IL, compared against the ratings assigned by its re-
views. The values in parentheses denote the number of reviews that were assigned
a corresponding rating (shown on the y axis) during one day. The lack of consensus
between the many low and high rated reviews raises a red flag.

module marks Pd, i.e., a spike has been detected. For instance, the “South Bay

BMW” venue (see Figure 3.3) has a UOF of 9 for positive reviews: any day with

more than 9 positive reviews is considered to be a spike.

We note that a different empirical approach, proposed by Fei et al. [FML+13]

is to use Kernel Density Estimation (KDE) to estimate the probability distribution

function of the reviews of a venue.

The RSD module outputs two features (see Table 3.3): SC(V ), the number of

spikes detected for a venue V , and SAmp(V ), the amplitude of the highest spike of

V , normalized to the average number of reviews posted for V during an interval d.

Aggregate Rating Disparity (ARD).

A venue that is the target of a review campaign is likely to receive reviews that

do not agree with its genuine reviews. Furthermore, following a successful review
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campaign, the venue is likely to receive reviews from genuine users that do not agree

with the venue’s newly engineered rating.

Let ρV (T ) denote the average rating of a venue V at time T ∈ [T1, Tc]. We define

the rating disparity of a review R written at time R.τ for V to be the divergence of

R’s rating from the average rating of V at the time of its posting, |R.ρ− ρV (R.τ)|.

Let R1, .., RN , N = n + q, be all the reviews received by V (both genuine and

fraudulent) during its active interval ∆T . We define the aggregate rating disparity

score of V to be the average rating disparity of all the reviews of V :

ARD(V ) =

∑N
i=1 |Ri.ρ− ρV (Ri.τ)|

N

By influencing the average rating of a venue, a review campaign will increase

the rating disparity of both fraudulent and of genuine reviews. This is illustrated in

Figure 3.4, that plots the evolution in time of the average rating against the ratings

of individual reviews received by the “Azure Nail & Waxing Studio” (Chicago, IL).

The positive reviews (1 day has a spike of 19, 5-star reviews, shown in red in the

upper right corner) disagree with the low rated reviews, generating a high ARD

value. The ARD module contributes one feature, the ARD score, see Table 3.3.

We note that Jindal and Liu [JL08], Lim et al. [LNJ+10], Mukherjee et al. [MLG12]

and Mukherjee et al [MKL+13] proposed a feature similar to ARD. However, the

ARD feature we introduce differs, in that the disparity is between the rating of a re-

view and the rating of the venue at the time when the review was written. Previous

work considers a formula where the disparity is computed at the present time.

Fraudulent Review Impact (FRI) Module.

Venues that receive few genuine reviews are particularly vulnerable to review cam-

paigns (see also Theorem 1). Furthermore, long term review campaigns that post
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Notation Definition

f(U) The number of friends of U
r(U) The number of reviews written by U
ExpU (V ) The expertise of U around V
cU (V ) The number of check-ins of U at V
pU (V ) The number of photos of U at V
feedback(R) The feedback count of R
AgeU (R) Age of U ’s account when R was posted

Table 3.2: Features used to classify review R written by user U for venue V .

high numbers of fraudulent reviews can re-define the “normal” review posting be-

havior, flatten spikes and escape detection by the RSD module. They are also likely

to drown the impact of genuine reviews on the aggregate rating of the venue. Thus,

the ARD of the campaign’s target venue will be small, controlled by the fraudulent

reviews.

We propose to detect such behaviors through fraudulent reviews that signifi-

cantly impact the aggregate rating of venues. For this, in a first step, the FRI

module uses machine learning tools to classify the reviews posted for V as either

fraudulent or genuine. It uses features extracted from each review, its writer and the

relation between the review writer and the target venue (see Table 3.2). Specifically,

let R denote a review posted for a venue V , and let U denote the user who wrote it.

In addition to the friend and review count of U , we introduce the concept of expertise

of U around V . ExpU(V ) is the number of reviews U wrote for venues in the vicinity

(50 mile radius) of V . Furthermore, FRI uses the number of activities of U recorded

at V , the feedback of R, counting the users who reacted positively to the review, and

the age of U ’s account when R was posted, AgeU(R). Section 3.5.1 shows that the

Random Forest tool achieves 94% accuracy when classifying fraudulent and genuine

reviews.
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Figure 3.6: (a) Distribution of reviewers’ review count: fraudulent vs. genuine
review sets. (b) Distribution of reviewers’ expertise levels: fraudulent vs. genuine
sets. Note their symmetry: unlike genuine reviewers, fraudulent reviewers tend
to have written only few reviews and have low expertise for the venues that they
reviewed.

53



Notation Definition

SC(V ) The number of review spikes for V
SAmp(V ) The amplitude of the highest spike
ARD(V ) Aggregate rating disparity
FRI(V ) The fraudulent review impact of V
CF (V ) Count of reviews classified fraudulent
ρV The rating of V
N The number of reviews of V
cir(V ) The number of reviews with check-ins
pr(V ) The number of reviews with photos
Age(V ) The age of V

Table 3.3: Features used to classify a venue V as either deceptive or legitimate.

In a second step, the FRI module introduces the notion of fraudulent review

impact, to model the impact of fraudulent reviews on the final rating of the venue.

Let ρgV = σ
n
denote the genuine rating of V , computed as an average over its n

genuine reviews. Then, FRI(V ) = ρV (Tc)− ρgV , where ρV (Tc) is the average rating

of V at current time Tc. Note that FRI(V ) can be negative, for a bad-mouthing

campaign. The FRI module contributes two features, FRI(V ), and the percentage

of reviews classified as fraudulent for V , CF (V ) (see Table 3.3).

Venue Classification.

In addition to the features provided by the RSD, ARD and FRI modules, we also use

the rating of V , ρV , its number of reviews N , its number of reviews with associated

user check-ins, cir(V ), and with uploaded photos, pr(V ), and the current age of V ,

Age(V ), measured in months since V ’s first review. Table 3.3 lists all the features we

selected. Section 3.5.2 shows that the features enable the Random Forest classifier

to achieves 95.8% accuracy when classifying the venue sets of Section 3.3.1.
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3.4.2 App Fraud Detection

FairPlay Overview.

FairPlay organizes the analysis of longitudinal app data into the following 4 modules,

illustrated in Figure 3.7. The Review Feedback (RF) module exploits feedback

left by genuine reviewers, while the Inter Review Relation (IRR) module leverages

relations between reviews, ratings and install counts. The Jekyll-Hyde (JH) module

monitors app permissions, with a focus on dangerous ones, to identify apps that

convert from benign to malware. Each module produces several features that are

used to train an app classifier. FairPlay further uses general features such as the

app’s average rating, total number of reviews, ratings and installs, for a total of 28

features. In the following, we detail each module and the features it extracts.

The Co-Review Graph (CoReG) Module.

Let the co-review graph of an app be a graph where nodes correspond to users who

reviewed the app, and undirected edges have a weight that indicates the number of

apps reviewed in common by the edge’s endpoint users. We seek to identify cliques

in the co-review graph.

To address the problem’s NP-hardness, we exploit two observations. First, fraud-

sters hired to review an app are likely to post those reviews within relatively short

time intervals (e.g., days). Second, perfect cliques are not necessary. Instead, we

relax this requirement to identify “pseudo cliques”, or groups of highly but not nec-

essarily completely connected nodes. Specifically, we use the weighted density defi-

nition of Uno [Uno07]: given a co-review graph, its weighted density ρ =
∑

e∈E w(e)

(n2)
,

where E denotes the graph’s edges and n its number of nodes (reviews). We are
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interested then in subgraphs of the co-review graph whose weighted density exceeds

a threshold value θ.

CoReG features. CoReG extracts the following features (i) the number of cliques

whose density equals or exceeds θ, (ii) the maximum, median and standard deviation

of the densities of identified pseudo cliques, (iii) the maximum, median and standard

deviation of the node count of identified pseudo cliques, normalized by n (the app’s

review count), and (iv) the total number of nodes of the co-review graph that belong

to at least one pseudo clique, normalized by n.

Reviewer Feedback (RF) Module.

Reviews written by genuine users of malware and fraudulent apps may describe

negative experiences. The RF module exploits this observation through a two step

approach: (i) detect and filter out fraudulent reviews, then (ii) identify malware and

fraud indicative feedback from the remaining reviews.

Step RF.1: Fraudulent review filter. We posit that users that have higher

expertise on apps they review, have written fewer reviews for apps developed by the

same developer, have reviewed more paid apps, are more likely to be genuine. We

exploit this conjecture to use supervised learning algorithms trained on the following

features, defined for a review R written by user U for an app A:

• Reviewer based features. The expertise of U for app A, defined as the number

of reviews U wrote for apps that are “similar” to A, as listed by Google Play (see

§ 3.2). The bias of U towards A: the number of reviews written by U for other

apps developed by A’s developer. In addition, we extract the total money paid by

U on apps it has reviewed, the number of apps that U has liked, and the number of

Google+ followers of U .
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Figure 3.7: FairPlay system architecture. The CoReG module identifies suspicious,
time related co-review behaviors. The RF module uses linguistic tools to detect
suspicious behaviors reported by genuine reviews. The IRR module uses behavioral
information to detect suspicious apps. The JH module identifies permission ramps
to pinpoint possible Jekyll-Hyde app transitions.

• Text based features. We used the NLTK library [BKL09] and the Naive Bayes

classifier, trained on two datasets: (i) 1, 041 sentences extracted from randomly

selected 350 positive and 410 negative Google Play reviews, and (ii) 10, 663 sentences

extracted from 700 positive and 700 negative IMDB movie reviews [PLV02]. 10-fold

cross validation of the Naive Bayes classifier over these datasets reveals a FNR of

16.1% and FPR of 19.65%. We used the trained Naive Bayes classifier to determine

the statements ofR that encode positive and negative sentiments. We then extracted

the following features: (i) the percentage of statements in R that encode positive and

negative sentiments respectively, and (ii) the rating of R and its percentile among

the reviews written by U .

Step RF.2: Reviewer feedback extraction. We conjecture that (i) since no

app is perfect, a “balanced” review that contains both app positive and negative

sentiments is more likely to be genuine, and (ii) there should exist a relation between
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the review’s dominating sentiment and its rating. Thus, after filtering out fraudulent

reviews, we extract feedback from the remaining reviews. For this, we have used

NLTK to extract 5, 106 verbs, 7, 260 nouns and 13, 128 adjectives from the 97, 071

reviews we collected from the 613 gold standard apps (see § 3.3.2). We used these

words to manually identify lists of words indicative of malware, fraudulent and

benign behaviors. Our malware indicator word list contains 31 words (e.g., risk,

hack, corrupt, spam, malware, fake, fraud, blacklist, ads). The fraud indicator word

list contains 112 words (e.g., cheat, hideous, complain, wasted, crash) and the benign

indicator word list contains 105 words.

RF features. We extract 3 features, denoting the percentage of genuine reviews

that contain malware, fraud, and benign indicator words respectively. We also

extract the impact of detected fraudulent reviews on the overall rating of the app:

the absolute difference between the app’s average rating and its average rating when

ignoring all the fraudulent reviews.

Inter-Review Relation (IRR) Module.

This module leverages temporal relations between reviews, as well as relations be-

tween the review, rating and install counts of apps, to identify suspicious behaviors.

Temporal relations. We detect outliers in the number of daily reviews received

by an app. We identify days with spikes of positive reviews as those whose number

of positive reviews exceeds the upper outer fence of the box-and-whisker plot built

over the app’s numbers of daily positive reviews.

Reviews, ratings and install counts. We used the Pearson’s χ2 test to inves-

tigate relationships between the install and rating counts of the 87K new apps, at

the end of the collection interval. We grouped the rating count in buckets of the

same size as Google Play’s install count buckets. Figure 3.9 shows the mosaic plot
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Figure 3.8: Timelines of positive reviews for 3 apps from the fraudulent app dataset.
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of the relationships between rating and install counts. p=0.0008924, thus we con-

clude dependence between the rating and install counts. We leverage this result to

conjecture that adversaries that post fraudulent ratings and reviews, or create fake

app install events, may break a natural balance between their counts.

IRR features. We extract temporal features: the number of days with detected

spikes and the maximum amplitude of a spike. We also extract (i) the ratio of

installs to ratings as two features, I1/Rt1 and I2/Rt2 and (ii) the ratio of installs to

reviews, as I1/Rv1 and I2/Rv2. (I1, I2] denotes the install count interval of an app,

(Rt1, Rt2] its rating interval and (Rv1, Rv2] its (genuine) review interval.

Jekyll-Hyde App Detection (JH) Module.

Android’s API level 22 labels 47 permissions as “dangerous”. Figure 3.10(b) com-

pares the distributions of the number of dangerous permissions requested by the

gold standard malware, fraudulent and benign apps. The most popular dangerous

permissions among these apps are “modify or delete the contents of the USB stor-

age”, “read phone status and identity”, “find accounts on the device”, and “access

precise location”. While most benign apps request at most 5 such permissions, some

malware and fraudulent apps request more than 10.

Upon manual inspection of several apps, we identified a new type of malicious

intent possibly perpetrated by deceptive app developers: apps that seek to attract

users with minimal permissions, but later request dangerous permissions. The user

may be unwilling to uninstall the app “just” to reject a few new permissions. We

call these Jekyll-Hyde apps. Figure 3.10(c) shows the dangerous permissions added

during different version updates of one gold standard malware app.

JH features. We extract the following features, (i) the total number of permissions

requested by the app, (ii) its number of dangerous permissions, (iii) the app’s number
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Figure 3.10: (a) Apks detected as suspicious (y axis) by multiple anti-virus tools (x
axis), through VirusTotal [Vir15], from a set of 7, 756 downloaded apks. (b) Dis-
tribution of the number of “dangerous” permissions requested by malware, fraud-
ulent and benign apps. (c) Dangerous permission ramp during version updates for
a sample app “com.battery.plusfree”. Originally the app requested no dangerous
permissions.

61



of dangerous permission ramps, and (iv) its total number of dangerous permissions

added over all the ramps.

3.5 Empirical Evaluation

In this section we show that Marco is scalable as well as efficient in detecting fraud-

ulent reviews and deceptive venues. We have implemented Marco using (i) Python,

to extract data from parsed pages and compute the proposed features, (ii) the sta-

tistical tool R, to classify reviews and venues. We used MySQL to store collected

data and features.

We have implemented FairPlay using Python to extract data from parsed pages

and compute the features, and the R tool to classify reviews and apps. We have set

the threshold density value θ to 3, to detect even the smaller pseudo cliques.

We have used the Weka data mining suite [Wek] to perform the experiments,

with default settings. We experimented with multiple supervised learning algo-

rithms. Due to space constraints, we report results for the best performers: Multi-

Layer Perceptron (MLP) [Gal90], Decision Trees (DT) (C4.5) and Random Forest

(RF) [Bre01], using 10-fold cross-validation [Koh95a]. We use the term “positive”

to denote a fraudulent review, fraudulent or malware app; FPR means false positive

rate. Similarly, “negative” denotes a genuine review or benign app; FNR means

false negative rate.

3.5.1 Review Classification in Yelp.

We investigated the ability of the FRI module to classify reviews, when using 5

machine learning tools: Bagging, k-Nearest Neighbor (kNN), Random Forest (RF),

Support Vector Machines (SVM) and C4.5 Decision Trees (DT). We used 10-fold
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Classifier TPR(%) FPR(%) FNR(%) Acc(%)

Random Forest 94.71 7.0 5.29 93.83
Bagging 93.45 6.28 6.55 93.59
Decision tree 91.44 5.07 8.56 93.22
SVM 89.92 9.66 6.04 92.11

Table 3.4: Review classification: comparison of machine learning algorithms. RF
performs best, at 93.83% accuracy.

Compared Classifiers χ2 value p-value

Bagging-DT 11.6452 0.0006437
RF-DT 13.5 0.0002386
Bagging-RF 0.0476 0.8273
RF-SVM 4.8983 0.0268
Bagging-SVM 5.2258 0.0222
DT-SVM 5.1142 0.0237

Table 3.5: Significance test: pairwise comparison of machine learning algorithms
using McNemar’s test. With the exception of the (Bagging, RF) pair, for all other
pairs McNemar’s test produces a χ2 value with 1 degree of freedom, highly significant
with a confidence level of more than 95.0%.

cross-validation over the fraudulent and 410 genuine reviews of Section 3.3.1. Fig-

ure 3.5 shows the receiver operating characteristic (ROC) curve for the top 3 per-

formers: RF, Bagging and DT.

The overall accuracy ( TPR+TNR
TPR+TNR+FPR+FNR

) of RF, Bagging and DT is 93.8%,

93.6% and 93.2% respectively. TPR is the true positive rate, TNR is the true neg-

ative rate, FPR the false positive rate and FNR the false negative rate. The (FPR,

FNR) pairs for RF, Bagging and DT are (7.0%,5.3%),(6.3%,6.6%) and (5.1%,8.6%)

respectively (shown in table 3.4). In the remaining experiments, the FRI module of

Marco uses the RF classifier.

The top 2 most impactful features for RF are r(U) and ExpU(V ). Figure 3.6(a)

compares the distribution of the r(U) feature for the 426 fraudulent and the 410

genuine reviews. We emphasize their symmetry: few fraudulent review writers
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posted a significant number of reviews, while few genuine review writers posted only

a few reviews. Figure 3.6(b) compares the distribution of the ExpU(V ) measure.

The distributions are also almost symmetric: most writers of genuine reviews have

written at least 4 reviews for other venues in the vicinity of the venue of their selected

review.

Furthermore, we tested the null hypothesis that the classifiers used in review

classification are equivalent i.e. the difference in performance metrics of different

classifiers is not significant. As the classifiers are trained and tested on the same

dataset, we used McNemar’s test which tabulates the outcomes of every two clas-

sifiers used for review classification. The results are shown in Table 3.5. With the

exception of the test that compares Bagging and RF, all other tests produce a χ2

value with 1 degree of freedom, highly significant with a confidence level of more

than 95.0% (the p-value is <0.05). Thus, we reject the null hypothesis, which means

that the differences in performance metrics of DT, RF, Bagging and SVM models

are statistically significant.

3.5.2 Venue Classification in Yelp.

We have used 10-fold cross-validation to evaluate the ability of Marco to classify

the 90 deceptive and 100 legitimate venues of Section 3.3.1. Figure 3.11 shows

the ROC curve for Marco when using the RF, Bagging and C4.5 DT classifiers on

the features listed in Table 3.3. The overall accuracy for RF, Bagging and DT

is 95.8%, 93.7% and 95.8% respectively, with the corresponding (FPR,FNR) pairs

being (5.55%,3%),(8.88%,4%) and (5.55%,3%) respectively.

64



False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Decision tree
Random forest
Bagging
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0 1 2 3 4 5 6
7−

10
11

−1
5

>1
5

0

10

20

30

40

50

60

70

80

90

Number of review spikes

N
um

be
r 

of
 v

en
ue

s

fake
genuine

Figure 3.12: Distribution of SC(V), for the 90 deceptive and 100 legitimate venues.
60 deceptive venues have at least one review spike. 1 legitimate venue has 1 spike.
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Strategy FPR FNR Accuracy

Marco/RF 5/90 = 0.055 3/100 = 0.3 95.8%
avg∆ 33/90 = 0.36 31/100 = 0.31 66.3%
distΦ 28/90 = 0.31 25/100 = 0.25 72.1%
peak ↑ 41/90 = 0.45 37/100 = 0.37 58.9%

Table 3.6: Marco vs. the three deceptive venue detection strategies of Feng et
al. [FXGC12]. Marco shows over 23% accuracy improvement over distΦ.

Classifier TPR(%) FPR(%) FNR(%) Acc(%)

Random Forest 96.07 20.0 3,92 94.64
Bagging 94.12 20.0 5.88 92.15
Decision tree 94.12 0.0 5.88 94.64

Table 3.7: Marco performance on new, unpopular venues: comparison of machine
learning algorithms. RF and DT perform the best.

Figure 3.12 shows the distribution of SC(V ) for the 190 venues. Only 1 legitimate

venue has a review spike, while several deceptive venues have more than 10 spikes.

Furthermore, 26 deceptive venues have an FRI score larger than 1; only 1 legitimate

venue has an FRI larger than 1.

Comparison with state-of-the-art. We compared Marco with the three decep-

tive venue detection strategies of Feng et al. [FXGC12], avg∆, distΦ and peak ↑.

Table 3.6 shows the FPR, FNR and overall accuracy of Marco, avg∆, distΦ and

peak ↑. Marco achieves a significant accuracy improvement (95.8%) over distΦ, the

best strategy of Feng et al. [FXGC12] (72.1%).

Marco performance for new venues. We have also evaluated the performance

of Marco to classify relatively new venues with few genuine reviews. Specifically,

from our set of 90 deceptive and 100 genuine reviews, we selected 51 deceptive and

5 genuine venues that had less than 10 genuine reviews when we collected them.

The overall accuracy of RF, Bagging and DT on these 56 venues is 94.64%, 92.15%
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Figure 3.13: (a) Marco’s per-module overhead: FRI is the most expensive, but
under 2.3s even for venues with 500 reviews. (b) Zoom-in of FRI module overhead.
Computing the ExpU(V ) feature takes the most time.

and 94.64% respectively. The (FPR, FNR) pairs for RF, Bagging and DT are

(20.0%,3.92%),(20.0%,5.88%) and (0.0%,5.88%) respectively.

3.5.3 Marco in the Wild.

Marco takes only a few seconds to classify a venue, on a i5@2.4GHz, 4GB of RAM

Dell laptop. Figure 3.13(a) shows the per-module overhead of Marco (averages

over 10 experiment runs), as a function of the review count of the venue classified.

While the FRI module is the most time consuming, even for venues with 500 re-

views the FRI overhead is below 2.3s. The RSD and ARD modules impose only

a few ms (6ms for 500 reviews), while DB access and data retrieval take around

90ms. Figure 3.13(b) zooms-in into the FRI overhead. For 500 reviews, the most

time consuming components are computing the user expertise, ExpU(V ) (≈ 1.1s),

computing all the other features (≈ 0.4s) and classifying the reviews (≈ 0.8s).
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City Car Shop Mover Spa

Miami, FL 1000 (6) 348 (8) 1000 (21)
San Fran., CA 612 (59) 475 (45) 1000 (42)
NYC, NY 1000 (8) 1000 (27) 1000 (28)

Table 3.8: Collected venues organized by city and venue type. Values between
parentheses show the number of venues detected by Marco to be deceptive. San
Francisco has the highest percentage of deceptive venues.

In order to understand the ability of Marco to perform well when trained on

small sets, we have trained it on 50 deceptive and 50 legitimate venues and we have

tested it on the remaining 40 deceptive and 50 legitimate venues. On average over

10 random experiments, Marco achieved an FPR of 6.25% and an FNR of 3%.

We have used Marco to classify the 7,435 venues we collected from Miami, San

Francisco and New York City. We have divided the set of 7,435 venues into subsets

of 200 venues. We trained Marco on the 190 ground truth/gold standard venues and

tested it separately on all subsets of 200 venues. Table 3.8 shows the total number

of venues collected and the number of venues detected to be deceptive, between

parentheses. San Francisco has the highest concentration of deceptive venues: Marco

flags almost 10% of its car repair and moving companies as suspicious, and upon

our manual inspection, they indeed seemed to engage in suspicious review behaviors.

While the FRI of San Francisco’s collected genuine venues is at most 1, 60% of its

deceptive venues have an FRI between 1 and 4.

3.5.4 Detecting Yelp Campaigns

We conjecture that Yelp events can be used as review campaigns. Our hypothesis is

based on several observations. First, the process of choosing the venues hosting Yelp

events is not public. Second, a venue hosting an event is given ample warning to
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Figure 3.14: (a) The timeline of “Pink Taco 2” (Los Angeles) and of the Yelp event
for this venue. Note the correlation between the two. (b) Yelp events: Positive
review spike count as a function of ∆T .

organize the event. Third, only Elite yelpers attend this event. While the attendees

are encouraged to review the event’s Yelp account, we have identified Yelp events

that impacted the ratings of the corresponding host venues. We call such events,

Yelp campaigns. Figure 3.14(a) shows an example of venue and event timelines,

correlated in time, for the venue “Pink Taco 2” (Los Angeles). Note how the venue’s

latest two spikes coincide with the spikes of the event.

To detect the correlation between Yelp events and increased review activity con-

cerning the venues hosting the events, we use Marco’s RSD module as follows.

Specifically, given a Yelp event and a time interval ∆T (system parameter), we de-

termine of the hosting venue experiences a positive review spike within an interval

∆T of the event’s date.

For the events and hosting venues collected (see Section 3.3.1), Figure 3.14(b)

plots the number of positive review spikes detected within ∆T days, when ∆T ranges
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Figure 3.15: (a) Distribution of the short term impact (2 weeks) of Yelp events on
venue ratings. (b) Yelp events: Distribution of the improvement due to Elite events.

from 1 to 5 weeks. For instance, when ∆T is 14 days, Marco detected 36 spikes on

the 149 venues. Some venues have more than one spike within the 14 days. The total

number of venues with at least one spike is 24, accounting for around 17% of the

venues. While for ∆T = 35 Marco detected 47 spikes, we prefer a shorter interval:

the correlation between the event and spikes may fade over longer intervals. In the

following we use ∆T=14.

Furthermore, we focused on determining the influence of Yelp events on the

overall rating of a venue. First, we computed the 2-week impact of the Yelp event

on the venue. We define the 2-week impact as the difference between the rating of

the venue two weeks after the event and the rating of the venue before the event. We

compute the rating of a venue at any given time T as the average over the ratings

of all the reviews received by the venue before time T . Figure 3.15(a) shows the

distribution of the 2-week impact of the Yelp event on the venue. While 55 (of the

149) venues show no impact, 60 venues show at least a 0.5 star improvement, with 3

at or above 2 star improvements. 32 venues are negatively impacted. Thus, almost

twice as many venues benefit from Yelp events, when compared to those showing a

rating decay.
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Figure 3.16: Mosaic plots: The standardized residuals indicate the importance of
the rectangle in the χ2 test. (a) The dependency between the short term rating
change of venues due to events and their number of reviews. (b) The dependency
between the long term rating change of venues due to events and their number of
reviews.

This result raises the question of whether there exists a relation between the

number of reviews of a venue and the short term impact an event has on the venue.

The impact of an event is a categorical variable, as it is quantified with fractions of a

star (integer). The number of reviews however is a discrete variable. Therefore, we

cannot use methods for linear or non-linear association, e.g. correlation coefficient.

Instead, we tested the hypothesis of independence between the rating impact and

the number of reviews, using a χ2 test [TD00]. The test produced a χ2 = 58.6837

with 36 degrees of freedom, which is highly significant (the p-value is 0.009854).

Thus, we reject the independence hypothesis.

Figure 3.16(a) shows the mosaic plot depicting this relation. Each rectangle

corresponds to a set of venues, that have a certain review count range (the x axis)

and having been impacted by a certain measure within two weeks of an event (the

y axis). The shape and size of each rectangle depict the contribution of the cor-

responding variables, so a large rectangle means a large count in the contingency
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table. Blue rectangles indicate that they are more than two standard deviations

above the expected counts. Then, the figure shows that more than half of the (149)

venues have more than 40 reviews. Moreover, we notice that the venues having

more than 40 reviews set the trend of Figure 3.15(a): while roughly one third of the

venues show no impact, twice as many venues show a positive impact vs. a negative

one.

Second, we study the long term impact of Yelp events. For this, we compare the

current ratings of the 149 venues with their ratings before the events. Figure 3.15(b)

shows the distribution (over the 149 venues) of the difference between the current

rating of the venues and their rating before the events. 78% of venues show no

improvement. Furthermore, we see a balance between the number of venues showing

an improvement versus a negative impact (16 positive vs. 14 negative). However,

we emphasize that the negative impact is only half a star, while the positive impact

reaches up to 3.5 stars.

We conducted a χ2 test to verify the dependence of the long term impact of events

on venues on the number of ratings of the venues. The test was highly significant

with χ2 = 29.2038, 12 degrees of freedom and a p-value of 0.003674. Figure 3.16(b)

shows the mosaic plot: a vast majority of the venues having more than 40 reviews

have no impact on the long term. This shows that review spikes have a smaller

impact on constantly popular venues.

3.5.5 Review Classification in Google Play.

To evaluate the accuracy of FairPlay’s fraudulent review detection component (RF

module), we used the gold standard datasets of fraudulent and genuine reviews of

§ 3.3.2. We used GPCrawler to collect the data of the writers of these reviews,

72



Strategy FPR% FNR% Accuracy%

DT (Decision Tree) 2.46 6.03 95.98
MLP (Multi-layer Perceptron) 1.47 6.67 96.26
RF (Random Forest) 2.46 5.40 96.26

Table 3.9: Review classification results (10-fold cross-validation), of gold standard
fraudulent (positive) and genuine (negative) reviews. MLP achieves the lowest false
positive rate (FPR) of 1.47%.

Strategy FPR% FNR% Accuracy%

FairPlay/DT 3.01 3.01 96.98
FairPlay/MLP 1.51 3.01 97.74
FairPlay/RF 1.01 3.52 97.74

Table 3.10: FairPlay classification results (10-fold cross validation) of gold stan-
dard fraudulent (positive) and benign apps. RF has lowest FPR, thus desir-
able [CNW+11].

including the 203 reviewers of the 406 fraudulent reviews (21, 972 reviews for 2, 284

apps) and the 315 reviewers of the genuine reviews (9, 468 reviews for 7, 116 apps).

Table 3.9 shows the results of the 10-fold cross validation of algorithms classifying

reviews as genuine or fraudulent. To minimize wrongful accusations, we seek to

minimize the FPR [CNW+11]. MLP simultaneously achieves the highest accuracy

of 96.26% and the lowest FPR of 1.47% (at 6.67% FNR). Thus, in the following

experiments, we use MLP to filter out fraudulent reviews in the RF.1 step.

3.5.6 App Classification in Google Play

To evaluate FairPlay, we have collected all the 97, 071 reviews of the 613 gold stan-

dard malware, fraudulent and benign apps, written by 75, 949 users, as well as the

890, 139 apps rated or played by these users.

Fraud Detection Accuracy. Table 3.10 shows 10-fold cross validation results

of FairPlay on the gold standard fraudulent and benign apps (see § 3.3.2). All
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Strategy FPR% FNR% Accuracy%

FairPlay/DT 4.02 4.25 95.86
FairPlay/MLP 4.52 4.72 95.37
FairPlay/RF 1.51 6.13 96.11

Sarma et al. [SLG+12]/SVM 65.32 24.47 55.23

Table 3.11: FairPlay classification results (10-fold cross validation) of gold stan-
dard malware (positive) and benign apps, significantly outperforming Sarma et
al. [SLG+12]. FairPlay’s RF achieves 96.11% accuracy at 1.51% FPR.

classifiers achieve accuracies of around 97%. Random Forest is the best, having the

highest accuracy of 97.74% and the lowest FPR of 1.01%.

Malware Detection Accuracy. We have used Sarma et al. [SLG+12]’s solution

as a baseline to evaluate the ability of FairPlay to accurately detect malware. We

computed Sarma et al. [SLG+12]’s RCP and RPCP indicators (see § 2.1.3) using the

longitudinal app dataset. We used the SVM based variant of Sarma et al. [SLG+12],

which performs best. Table 3.10 shows 10-cross validation results over the mal-

ware and benign gold standard sets. FairPlay significantly outperforms Sarma et

al. [SLG+12]’s solution, with an accuracy that consistently exceeds 95%. Random

Forest has the smallest FPR of 1.51% and the highest accuracy of 96.11%. This is

surprising: most FairPlay features are meant to identify search rank fraud, yet they

also accurately identify malware.

Is Malware Involved in Fraud? We conjectured that the above result is due in

part to malware apps being involved in search rank fraud. To verify this, we have

trained FairPlay on the gold standard benign and fraudulent app datasets, then we

have tested it on the gold standard malware dataset. MLP is the most conservative

algorithm, discovering 60.85% of malware as fraud participants. Random Forest

discovers 72.15%, and Decision Tree flags 75.94% of the malware as fraudulent.

This result confirms our conjecture and shows that search rank fraud detection can

be an important addition to mobile malware detection efforts.
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3.5.7 FairPlay on the Field.

We have also evaluated FairPlay on non “gold standard” apps. For this, we have

collected a set of apps, as follows. First, we selected 8 app categories: Arcade,

Entertainment, Photography, Simulation, Racing, Sports, Lifestyle, Casual. We

have selected the 6, 300 apps from the longitudinal dataset of the 87K apps, that

belong to one of these 8 categories, and that have more than 10 reviews. From these

6, 300 apps, we randomly selected 200 apps per category, for a total of 1, 600 apps.

We have then collected the data of all their 50, 643 reviewers (not unique) including

the ids of all the 166, 407 apps they reviewed.

We trained FairPlay with Random Forest (best performing on previous exper-

iments) on all the gold standard benign and fraudulent apps. We have then run

FairPlay on the 1, 600 apps, and identified 372 apps (23%) as fraudulent. The Rac-

ing and Arcade categories have the highest fraud densities: 34% and 36% of their

apps were flagged as fraudulent.

Intuition. During the 10-fold cross validation of FairPlay for the gold standard

fraudulent and benign sets, the top most impactful features for the Decision Tree

classifier were (i) the percentage of nodes that belong to the largest pseudo clique,

(ii) the percentage of nodes that belong to at least one pseudo clique, (iii) the

percentage of reviews that contain fraud indicator words, and (iv) the number of

pseudo clique with θ ≥ 3.

While not plotted here due to space constraints, we note that around 75% of the

372 fraudulent apps have at least 20 fraud indicator words in their reviews.
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3.5.8 Coercive Campaign Apps in Google Play.

Upon close inspection of apps flagged as fraudulent by FairPlay, we identified apps

perpetrating a new attack type. The apps, which we call coercive campaign apps,

harass the user to either (i) write a positive review for the app, or (ii) install and

write a positive review for other apps (often of the same developer). In return, the

app rewards the user by, e.g., removing ads, providing more features, unlocking the

next game level, boosting the user’s game level or awarding game points.

We found evidence of coercive campaign apps from users complaining through

reviews, e.g., “I only rated it because i didn’t want it to pop up while i am playing”,

or “Could not even play one level before i had to rate it [...] they actually are telling

me to rate the app 5 stars”.

We leveraged this evidence to identify more coercive campaign apps from the

longitudinal app set. Specifically, we have first manually selected a list of poten-

tial keywords indicating coercive apps (e.g., “rate”, “download”, “ads”). We then

searched all the 2, 850, 705 reviews of the 87K apps and found around 82K reviews

that contain at least one of these keywords. Due to time constraints, we then ran-

domly selected 3, 000 reviews from this set, that are not flagged as fraudulent by

FairPlay’s RF module. Upon manual inspection, we identified 118 reviews that re-

port coercive apps, and 48 apps that have received at least 2 such reviews. We leave

a more thorough investigation of this phenomenon for future work.

3.6 Limitations

Our collected dataset in Yelp from Miami, San Francisco and New York City only

consists of 7435 venues, their 270,121 reviews and 195,417 reviewer profiles. This

dataset was not chosen randomly so that it can represent the entire dataset. Our
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classification results using FairPlay to detect fraudulent reviews, malwares and fraud

apps are based on our gold-standard dataset which consist of only hundreds of

reviews and apps. It is one of the limitations of our work. We identified tens of

coercive apps from a very small datset of reviews (3000 reviews randomly selected

from 82K reviews of the search result) due to time constraints. More thorough

investigation of this phenomenon is needed to truly identify the deceptive behavior

of these apps.

3.7 Summary

At first, we present Marco, a system for detecting deceptive Yelp venues and re-

views, leveraging a suite of social, temporal and spatial signals gleaned from Yelp

reviews and venues. We also contribute a large dataset of over 7K venues, 270K

reviews from 195K users, containing also a few hundred ground-truth and gold-

standard reviews (fraudulent/genuine) and venues (deceptive/legitimate). Marco

is effective in classifying both reviews and venues, with accuracies exceeding 94%,

significantly outperforming state-of-the-art strategies. Using Marco, we show that

two weeks after an event, twice as many venues that host Yelp events experience a

significant rating boost, when compared to the venues that experience a negative

impact. Marco is also fast; it classifies a venue with 500 reviews in under 2.3s.

We also present FairPlay, a system for detecting fraudulent and malware apps in

Google’s app market. On data we collected from more than 87K Google Play apps

that we monitored over more than 6 months, as well as from more than 600 gold

standard datasets of fraudulent, malware and legitimate apps, FairPlay achieves an

accuracy exceeding 98% in identifying malware and fraudulent apps. In addition,
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we identified tens of apps in our monitored set, that coerce users into participating

in search rank fraud.
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CHAPTER 4

VISUAL VERIFICATION THROUGH LIVENESS ANALYSIS

In this chapter, we will focus on the problem of whether the visual stream up-

loaded by a user has been captured live on a mobile device, and has not been tam-

pered with by an adversary. This problem is a cornerstone in a variety of practical

applications that use the mobile device camera as a trusted witness. Examples appli-

cations include citizen journalism, where people record witnessed events (e.g., public

protests, natural or man-made disasters) and share their records with the commu-

nity at large. Other applications include video based proofs of physical possession

of products and prototypes (e.g., for sites like Kickstarter [Kic], Amazon [Ama] and

eBay [eBa]), and of deposited checks [BoA14, Fow10].

Part of the content in this section has been published during my Ph.D study,

including the problem formulation, attack models and the proposed system solu-

tions. The outline of this chapter is as follows: The motivation and challenges of

this topic will be presented in Section 4.1. In Section 4.2, the system and adversary

models have been described. After that, the detailed solution of this problem will be

introduced in Section 4.3 and the implementation of the system has been described

in Section 4.4. Data collection steps and the datasets have been explained in Sec-

tion 4.5. Then the detailed evaluation of the solution through various experiments

has been presented in 4.6. Finally, the limitations of the solution and the conclusion

will be given in Section 4.7 and Section 4.8, respectively.

4.1 Motivation and Challenges

In response to the ubiquitous and connected nature of mobile and wearable de-

vices, industries such as utilities, insurance, banking, retail, and broadcast news
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have started to trust visual information gleaned from or created using mobile de-

vices. Mobile apps utilize mobile and wearable device cameras for purposes varying

from authentication to location verification, tracking, witnessing, and remote assis-

tance. The citizen journalism revolution, enabled by advances in mobile and social

technologies, transforms information consumers into collectors and disseminators of

news. Major news outlets have started to fill out professional journalistic gaps with

videos shot on mobile devices. The increasing popularity of citizen journalism is

starting however to raise important questions concerning the credibility of impact-

ful videos (see e.g., [Cit, Wit, She12, Gua14]). Videos from other sources can be

copied, projected and recaptured, cut and stitched before being uploaded as genuine

on social media sites.

We address the fundamental question of whether the visual stream uploaded

by a user has been captured live on a mobile device, and has not been tampered

with by a malicious user attempting to game the system. We refer to this problem

as video “liveness” verification. This problem has several dimensions, that include

assessing the location and time of capture, or the content of the video. For instance,

CitizenEvidenceLab [Cit] provides tutorials to train the public to asses citizen videos

from YouTube (see Figure 4.1 for a snapshot).

InformaCam [Inf] leverages the unique noise of the device camera to sign con-

tent it produces, along with the output of other sensors (e.g., GPS). This enables

InformaCam to authenticate that content has been produced with a certain camera.

InformaCam assumes that all sensor data is valid and has not been fabricated. It

is also vulnerable to plagiarism attacks where the attacker points the camera to a

projected video.

In this paper we focus on the liveness dimension of video verifications: verify

that the video was captured on a mobile device, and has not been fabricated using
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Figure 4.1: Snapshot of Citizen Evidence Lab [Cit] training session exercise. It
consists of steps to verify the source of the video (i.e., account of uploader, upload
time) and its content (e.g., clothes, accents, flags, landmarks).

material from other sources. Movee is vulnerable to the potent attacks that we

study in this paper. For example, an attacker starts Movee and points to a portion

of a target video playing on a projection screen, performs a pan motion as specified

by Movee, then points the camera to the whole frame of the fraudulent video. Since

Movee only uses the initial 6s chunk, the resulting sample passes Movee’s verifica-

tions. Furthermore, in Section 4.6.7 we quantitatively show the ineffectiveness of

Movee for free-form movements even in 6s chunks: on the attacks we introduce,

Movee’s false positive rate is as low as 38% and its false negative rate is 28%.

We introduce Vamos to address these limitations and provide the first video

liveness verification system that works on unconstrained, free-form videos, does not

impose a “verification” step on users, and is resilient to a suite of powerful, sensor

based attacks.
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Figure 4.2: Movee uses four modules to verify a video stream: the i) Video Mo-
tion Analysis (VMA), and the ii) Inertial Sensor Motion Analysis (IMA), produce
movement estimations during capture, iii) Similarity Computation extracts features,
which iv) Classification uses to make the final decision.

4.2 The Model: System and Adversary

We now describe the system and adversary models that we assume in this work. We

also propose a general classification of videos captured on mobile devices.

4.2.1 System Model

We consider a system that consists of a service provider, e.g. video sharing services

such as Vine [Vin], YouTube [Youa] or check deposit services [BoA14, Fow10]). The

provider offers an interface for subscribers to upload or stream videos they shot on

their mobile devices.

We assume subscribers own mobile devices equipped with a camera and inertial

sensors (i.e., accelerometers). Devices have Internet connectivity, which, for the

purpose of this work may be intermittent. Subscribers need to install an application

on their mobile devices, which we henceforth denote as the “client”.
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A subscriber needs to use this client to capture videos. In addition to video,

the client simultaneously captures the inertial sensor (accelerometer) stream from

the device. The client uploads both the video and the accelerometer streams to the

provider. The provider verifies the authenticity of the video by checking the consis-

tency of the two streams. The verification is performed using limited information:

the two streams are from independent sources, but have been captured at the same

time on the same device.

We assume a system where the problems of establishing trust in the mobile

device, operating system and associated drivers, and the mobile client are already

addressed. This includes for instance a system where a a chain of trust has been

established [NKZS10, BDH+11, ULGW12]. The chain of trust ensures that the

operating system, including the camera and sensor device drivers, and the installed

apps, are trusted and have not been tampered with by an attacker, see e.g., [App,

Arx]. A discussion of limitations is included in Section 4.7.

In the remainder of the paper we use the terms accelerometer and inertial sensor

interchangeably.

4.2.2 Adversary Model

We assume that the service provider is honest. Users however can be malicious. An

adversarial user can tamper with or copy video streams and inertial sensor data. The

goal is to fraudulently claim ownership of videos they upload to the provider. Let

V be such a video. The adversary can use a trusted device to launch the following

attacks, that produce fraudulent videos or fraudulent video and acceleration data:

Copy-Paste attack. Copy V and output it.
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Projection attack. Point the camera of the device over a projection of the target

video. Output the result.

Random movement attack. Move the device in a random direction, and capture

the resulting acceleration data. Output the video V and the captured acceleration

stream.

Direction sync attack. Use the video to infer the dominant motion direction of

V . Use the device to capture an acceleration sample that encodes the same motion

direction. Output V and the acceleration sample.

Replay attack. Study the target video V . Then, holding a mobile device that

captures acceleration data, emulate the movements observed in V . Let A′ be the

acceleration data captured by the device during this process. Output (V,A′).

Sandwich attack. The attacker studies the video V and emulates the observed

movement. For instance, A stacks two devices. The attacker plays the target video

V on the top device. He then moves the device stack to emulate the movement seen

on the top device. The device on the bottom records the resulting acceleration data,

Acc. A outputs Acc.

In the following, we describe the cluster attack, an automatic technique to pro-

duce fraudulent data: pair the target video with the acceleration stream copied from

a “similar” but genuine sample.

Cluster attack. A captures a dataset of genuine (video, acceleration) samples

and stores them in ΓA. A uses a clustering algorithm (e.g., K-means [Bis95]) to

cluster the videos based on their movement. A classifies the target V according to

its movement and assigns it to one of the previously generated clusters: the cluster

containing videos whose movement is closest to V . A randomly picks one of the

genuine (video, acceleration) samples in the cluster. Let (V ′, Acc′) be the chosen

sample. A outputs Acc′.
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Category
ID

Distance
to
sub-
ject

User
Mo-
tion

Camera
Mo-
tion

1 Close Standing Stationary
2 Far Standing Stationary
3 Close Walking Stationary
4 Far Walking Stationary

5 Close Standing Scanning
6 Far Standing Scanning
7 Close Walking Scanning
8 Far Walking Scanning

9 Close Standing Following
10 Far Standing Following
11 Close Walking Following
12 Far Walking Following

Table 4.1: Video motion categories, based on (i) camera distance to the subject, (ii)
the user motion and (iii) camera motion.

Next we introduce the stitch attack, that concatenates a plagiarized (video,

acceleration) chunk with several genuine chunks. In Section 4.5.4 we construct

stitched samples from multiple fraudulent and genuine chunks.

Stitch attack. A takes as input parameters the target video V and two integers,

g > 0 and 0 ≤ k ≤ g. A first creates a set of genuine video and acceleration chunks,

ΓA = {(V1, Acc1), .., (V1, Accg)}, e.g., by capturing them on the mobile device. A

uses either the cluster or the sandwich attack to fabricate Acc, an acceleration

stream for V . A then “stitches” the fake chunk (V,Acc) with the genuine chunks

ΓA, according to the index k. Let || denote the concatenation operation, applicable

both to video and acceleration streams. Then, A outputs (Va, Acca), where Va =

V1||..Vk−1||V ||Vk+1..||Vg and Acca = Acc1 || .. Acck−1 || Acc || Acck+1 .. || Accg.
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4.2.3 A Classification of Mobile Videos

We posit that the success rate of the attacks previously introduced depends on the

type of motions encoded in the video. For instance, it seems intuitive that videos

where the hand-held device is stationary are easier to plagiarize. To verify our

conjecture, we propose a general classification of videos captured on mobile devices,

based on the following dimensions:

• User motion: We consider two types of recorder motions, “standing” and

“walking”, but no motions such as jumping or driving.

• Camera motion: We consider three types of camera motions: “stationary”,

“scanning” and “following”. “Scanning” means the camera moves in a direc-

tion (e.g., left to right) at a pace independent of the subject of the video.

“Following” means the camera moves to maintain the subject within the con-

fines of the video. We have not considered videos shot with head mounted

cameras.

• Distance to subject: We consider video subjects that are either “close” or

“far” to the camera. If the camera focuses on the subject of the video and only

a limited area of the background is observed in the video, we say the subject

is “close”. Otherwise, the subject is “far”.

Table 4.1 shows the resulting 12 mobile video categories. Figure 4.19 shows the

category distribution of YouTube and free-form video sets we collected (§ 4.5.3 and

§ 4.6.6).

4.3 Movee: Solution Overview

We introduce Movee, a system to verify the live capture of videos uploaded from

mobile devices. Movee performs an analysis based on the consistency between the
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Figure 4.3: The Video Motion Analysis module processes each consecutive video
frame and finds the motion vector by computing the amount of displacement that
common image components have shifted between two frames.

motion inferred from the simultaneously and independently captured camera and

inertial sensor streams. If the data from the inertial sensor corroborates the data

from the camera, Movee concludes that the video was genuine: it has been taken by

the user pointing the camera to a real scene.

The Movee client is intended to be installed in mobile devices as part of special

purpose video capture apps. When the user wants to capture a video or a photo,

the client performs two actions simultaneously: First, it turns the camera on and

starts to capture video frames; second, it starts to collect a stream of accelerometer

readings.

The data from the camera sensor is stored in periodically captured image frames.

The data from the inertial sensor in most mobile devices comes in the form of

periodically captured acceleration magnitudes on 3 main axes as measured by the

accelerometer. Movee infers the direction and the magnitude of motion from these

two different types of sensor data.

Figure 4.2 shows a diagram of Movee. The Video Motion Analysis (VMA) mod-

ule uses an efficient image processing method to infer a motion vector over the

timeline of the video from frame-by-frame progress. The Inertial sensor Motion

Analysis (IMA) module, converts the raw inertial sensor readings into a motion vec-

tor over the same timeline. Subsequently, the Similarity Computation (SC) module
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extracts features which represent agreements and differences between the two mo-

tion data, from the VMA and IMA modules. The final decision of whether the

captured video is genuine is made in the Classification module. The Classification

module uses trained classifiers on the data produced by the SC module to find out

whether the inertial sensor data corroborates the video sensor data.

In the rest of this section, we detail each of these modules.

4.3.1 Video Motion Analysis (VMA)

The Video Motion Analysis (VMA) module takes as input the captured video stream

and outputs an estimate for the direction and magnitude of the camera movement.

The output of VMA is then used by the Similarity Computation module of Movee

(see Figure 4.2).

VMA first retrieves the frame per second (fps) rate of the stream and each

available frame. In a pre-processing step, it applies a Hamming window [Smi11]

filter to eliminate noise from each frame.

For each pair of consecutive frames, VMA needs to find the movement of the

camera. It is possible to perform this operation manually: First, print the photos

on transparency films. Second, shift one sheet placed on top of the other and

keep comparing the two prints until they line up with minimal difference. The

amount that the edges of one sheet overhang the other represents the offset between

the photos (see Figure 4.3). The common optical mice [opt] use this principle to

determine pointer movement from a stream of images taken with a low resolution

optical sensor mounted to their bottom side. The movement inferred from this

analysis will be limited to two axes, i) horizontal along the X axis, and ii) vertical

along the Y axis.
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Algorithm 1 Pseudocode of the Video
Motion Analysis (VMA) module. The
videoShift operation computes and re-
turns the total displacement on one
axis, as computed from video frames.

1.Object implementation VMA;
2. Operation double videoShift(Video V)
3. int N := V.getFrameCount();
4. double totalShift := 0;
5. h := createHammingWindow();
6. for i := 1 to N− 1 do
7. Frame f1 := V.getFrame(i);
8. Frame f2 := V.getFrame(i+ 1);
9. totalShift+ = phaseCorrelate(f1, f2, h);od
10. return totalShift;
11. end

Phase Correlation. VMA uses the shift and compare principle as well, by applying

it on all consecutive frames of the video (see Algorithm 1). The result is a frame-by-

frame displacement vector. However, it would have been prohibitively expensive to

compute the differences between two frames for all possible pixel shifts, especially

considering how large each frame is.

Instead, we use Phase Correlation [DCM87] to find the shift that minimizes the

difference, by carrying the computation into the frequency domain. Phase correla-

tion is an image processing technique that computes the spatial shift between two

similar images (or sub-images). It is based on the Fourier shift property: a shift in

the spatial domain of two images results in a linear phase difference in the frequency

domain of the Fourier Transform (FT) [FF09]. It performs an element-wise multi-

plication of the transform images. It then computes the inverse Fourier transform

(IFT) of the result, and finds the shift that corresponds to the maximum amplitude.

This yields the resultant displacement. The maximum amplitude can be defined in
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Direction Video Shift Sensor Shift

Up Y++ X++
Down Y- - X- -
Left X++ Y++
Right X- - Y- -

Table 4.2: Camera motion inference based on cumulative shifts along X and Y axes
inferred from the video and inertial sensor streams. The device is considered to be
in landscape orientation. X++ (and X- -) denote positive (and negative) X axis
shifts that dominate shifts along other axes.

the two-dimensional surface with delta functions (colloquially referred to as peaks)

at the positions corresponding to spatial shifts between the two images.

Then, for each pair of consecutive frames, VMA applies the phase correlation

method to obtain linear shifts between images in both X and Y directions (see

Algorithm 1). It then computes the cumulative shift along the X and Y axes by

adding up the linear shifts for all consecutive frames retrieved from that video. Let

V Sx,i and V Sy,i denote the cumulative video shifts of the i-th frame on the X and

Y axes. We use V Sx,i and V Sy,i as feature descriptors (see Section 4.3.4).

Extract motion direction from video. Based on the computed cumulative

shift along the X and Y axes, VMA infers the camera direction of movement. For

instance, if the camera is in landscape orientation, and the cumulative shift over

the X axis is negative, V Sx,i < 0, and dominates the one over the Y axis, (i.e.,

|V Sx,i| ≫ |V Sy,i|), the video motion direction is to the right. Table 4.2 (first and

second columns) summarizes the direction inference process. We use the notation

X- - and X++ to denote negative and positive cumulative shifts along the X axis

that dominate shifts along other axes.
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Figure 4.4: (a) Raw Accelerometer Data. (b) Filtered Accelerometer Data. The Y
axis is the dominant axis for the direction and orientation of the device.

Algorithm 2 Pseudocode of the In-
ertial sensor Motion Analysis (IMA)
module. The sensorShift operation
computes and returns the total dis-
placement on one axis, as computed
from instantaneous accelerometer read-
ings.

1.Object implementation IMA;
2. double Th; #Threshold

3. Direction dr; #movement direction

4. Operation double sensorShift(sensorData S)
5. double totalShift := 0;
6. int N := S.getSensorLogCount();
7. for i := 1 to N do
8. if (i = 1) then
9. totalShift+ = dIntegral(S[i], 0);
10. else
11. totalShift+ = dIntegral(S[i], S[i− 1]);
13. return totalShift;
14. end

91



4.3.2 Inertial Sensor Motion Analysis (IMA)

The Inertial Sensor Motion Analysis (IMA) module (see Figure 4.2) relies on the

accelerometer sensor widely available in mobile devices. The IMA processes the data

from the accelerometer in order to produce a motion direction and magnitude which

is then compared in the Similarity Computation module with the output from the

VMA module.

The inertial sensor coordinate system is defined relative to the screen of the

phone in portrait orientation. The X axis is horizontal and points to the right,

the Y axis is vertical and points up and the Z axis points towards the outside of

the front face of the screen (coordinates behind the screen have negative Z values).

Let {(Ax,i, Ay,i, Az,i)|i = 1..m]} denote the accelerometer trace, recorded every T

seconds. (Ax,i, Ay,i, Az,i) is the i-th sample, containing accelerometer readings on

the three axes. Instead of faster accelerometer sampling modes (e.g., “fastest” or

“game” modes) we chose the slower but less noisy 16Hz mode.

Filtering step. In a pre-processing step, at each sampling time T , IMA removes

duplicate (noise) acceleration values that occur (i) at time T , phenomenon that

frequently occurs at the beginning of the capture interval, and (ii) within interval

[T − 10ms, T +10ms]. Furthermore, IMA uses a combination of low-pass and high-

pass filters to remove the effects of gravity from the recorded acceleration stream.

In a first, low-pass filter, let Ga,i be the filtered gravity value on the a axis (a ∈

{X,Y, Z}) in the i-th sample and let Ga,i+1 be the gravity value to be filtered in

the current, (i + 1)-th sample. Aa,i+1 is the acceleration reading on the a axis for

the i+ 1-th sample. Then, Ga,i+1 = αGa,i + (1− α)Aa,i+1, ∀a ∈ {x, y, z}. We have

experimented with values of α ranging between 0.6 and 0.95. We have found the

value α = 0.8 to perform best.
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Subsequently, IMA passes the result through a high-pass filter, FAa,i+1 = Aa,i+1−

Ga,i+1, where FAa,i+1 denotes the filtered acceleration value on the a axis, ∀a ∈

{x, y, z}, for the (i+ 1)-th sample.

Figure 4.4(b) shows the effects of filtering for the sample raw acceleration of

Figure 4.4(a)), where the phone was held in landscape orientation. Figure 4.4(a)

shows that the gravity primarily influences the X axis, with acceleration values

being changed around 9.19 (g value for the phone when in fixed position). However

the gravity value also affects the acceleration readings on other axes. The filtering

method eliminates the gravity affect.

Extract motion direction from acceleration data. Figure 4.4(b) shows that

the Y axis movement is dominant (the highest translation/shift variations), thus

the direction of movement is to the right in landscape orientation of the phone. Ta-

ble 4.2 (first and third columns) summarizes the direction inference process also for

acceleration data. For instance, given the cumulative shifts, AS, on all acceleration

axes, if the device is in landscape orientation, ASy,i < 0 and |ASy,i| > thr × ASx,i

(for a given threshold thr), the accelerometer motion direction is to the right. We

denote this situation through the notation Y- -. We chose the thr value experi-

mentally to be larger than 1.5, after analyzing sample data for different directions

.

Extract motion distance from acceleration data. The dIntegral function

used in Algorithm 2 uses the acceleration data to infer the displacement, as follows.

Given acceleration data on each axis, Aa,1, ..Aa,m, where a ∈ {X, Y, Z}, captured

every T seconds, IMA computes the position (relative to the starting point) using a

double integral. We adopt the trapezoidal rule [Hil87] to approximate the definite

integral
∫ d

c
f(x)dx, representing the area below the curve. The integration step

is first applied to obtain velocity (vela,i = vela,i−1 +
Aa,i+Aa,i−1

2
∗ T ). In a second
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application, the integration retrieves the position (posa,i = posa,i−1+
vela,i+vela,i−1

2
∗T ).

vela,i and posa,i, i = 1..m, denote the velocity and position at the i-th sample on

the axis a. The resulting position shifts are combined to obtain the cumulative

shift, ASx,i, ASy,i, ASz,i, along each axis. ASx,i, ASy,i, ASz,i are then used as feature

descriptors (see Section 4.3.4).

4.3.3 Similarity Computation (SC)

The Similarity Computation (SC) module compares the two motion sequences com-

puted by the VMA and the IMA modules. It returns a set of features that summarize

the nature of the similarity between the two sequences. The features are then used

by the Classification module (see Section 4.3.4) to decide whether the two motion

sequences corroborate each other, thereby concluding whether the video is genuine

or not. The video motion and inertial sensor streams encode the same user hand

movement, which are processed by the VMA and IMA modules respectively (see

Figure 4.2) to each yield a motion stream.

To compute their similarity, we use a well-known sequence similarity measure-

ment method from speech and pattern recognition, called Dynamic Time Warping

(DTW) [ANCT09, SC07]. Similar to the well-known string edit distance, DTW is

a dynamic programming solution to find the minimum cost set of operations that

converts one sequence to the other.

In this subsection, we describe how we adapted the DTW algorithm to the

practical issues in comparing the two motion sequences from the VMA and IMA

modules. The two sequences differ in their number of samples, and have different

magnitudes due to the nature of their source sensors. The VMA sequence length

is proportional to the number of video frames, whereas the IMA sequence length is

proportional to the product of the sample rate of the inertial sensor and the length

94



Figure 4.5: Illustration of DTW alignment for two time-dependent sequences. The
red dots show the optimal warping path. A diagonal (match) move is a match
between the two sequences. An expansion duplicates one point of one sequence and
a contraction eliminates one of the points.

of the recording interval. Thus, we first perform a stretching step to make sure that

the sequences output by VMA and IMA are of same length.

Furthermore, the motion sequence that the VMA infers from the video stream

does not take into account the distance of objects into the camera. This may result

in the same motion being registered as faster when the objects are close to the

camera, and slower when the objects are far. To address this problem, in a second

step we perform a calibration process: compute a coefficient to match the average

speed of the motion the video stream to that of the inertial sensor stream.

In the rest of this subsection, we first briefly detail the DTW algorithm, then

present the stretching and calibration processes. We provide justification to the use

of these methods with observed improvements in the resulting accuracy that the

system gains after processing the features in the Classification module.
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Figure 4.6: Example alignment of video and inertial motion streams extracted from
the same experiment: (a) when using only DTW. (b) when stretching the shorter
vector and applying DTW. (c) after stretching and calibration and applying DTW.
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Dynamic Time Warping (DTW)

Let F be a feature space. Let X = (x1, x2, .., xn) and Y = (y1, y2, .., ym), n,m ∈ N,

be time-dependent vectors, xi, yj ∈ F , i = 1..n, j = 1..m. DTW computes the

(n,m)-warping path of X and Y , that is a sequence P (X,Y ) = (p1, .., pL), where

pl = (i, j) ∈ [1 : n] × [1 : m], ∀l ∈ [1 : L]. The warping path satisfies boundary,

monotonicity and step size conditions. At each step, DTW has the option to perform

one of the following three moves, illustrated in Figure 4.5: a diagonal (or match)

move, an expansion move, or a contraction move. The cost of a warping path

P (X, Y ) is defined as the sum over the costs of all the moves in the path. The goal

of DTW is to find a warping path of minimal cost among all possible warping paths.

Movee uses a variation of the DTW algorithm: the Variable Penalty Dynamic

Time Warping (VPdtw) [CS12]. This is because the process of expanding and con-

tracting the time axis of a sensor stream can produce a very high quality alignment to

a video stream. However, excessive numbers of expansions and/or contractions can

often result in matches at random parts of the streams and appear artificial rather

than catching the genuine common movement patterns. VPdtw uses a penalty to

constrain the use of expansions and/or contractions. This penalty is incurred when-

ever a non-diagonal (i.e., expansion or contraction) move is taken (see Figure 4.5).

Let L denote the length of the longer sequence between the video and inertial

sensor sequences for each sample. We extract several characteristics of the computed

DTW alignment as feature descriptors, to be used by the Classification module

(see Section 4.3.4). First, the normalized penalty cost, defined as the penalty cost

divided by L. Second, the ratio of overlap points, which is the number of overlap

points between the two streams, divided by L. Third, the ratio of diagonal moves,

which is the number of diagonal moves divided by L. Fourth, the ratio of expansion

moves, which is the number of expansion moves divided by L. Finally, the ratio of
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contractions moves, which is the number of contraction moves divided by L. The

normalization to L ensures that the values are independent of the sample length.

Stretching

The sensor and video streams are sampled at different rates, thus the two vectors

are of different length. The stretching step extends the shorter sequence (length s)

to the length of the longer sequence (l). We use linear interpolation to compute

l − s new points for the shorter sequence. In Sections 4.6.3 and 4.6.4 we show that

depending on the attack type, the use of stretching improves the accuracy of Movee

in differentiating fraudulent from genuine videos by a rate of 5-12%. This result

is illustrated in Figure 4.6(b), where the use of stretching significantly improves

the ability of the DTW procedure to align the video and inertial sensor movement

streams when compared to Figure 4.6(a).

Calibration

An artifact of the method used in the Video Motion Analysis module is that the

same motion pattern can be registered as faster when the objects in the view are

close to the camera, and slower when the objects are far. In order to compensate

for this artifact, we calibrate the speed of the video motion vector with a coefficient

to match that of the speed of the inertial sensor motion vector.

The goal is to compute a calibration factor CF, that is used to multiply all the

points in the video stream. We have explored several calibration methods, including

mean based and linear curve fitting. We provide details however only on the two

methods that performed the best in our experiments, truncated mean and polynomial

curve fitting.

Truncated mean. The truncated mean computes the mean after discarding the

high and low ends of the probability distribution (see Figure 4.7(b)). We apply this
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Figure 4.7: Effect of calibration in the similarity computation. (a) No calibration.
(b) Truncated mean calibration. (c) Polynomial curve fitting calibration.
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concept as follows: For each pair of points in the sensor and video vectors, compute

their ratio and add it to a ratio vector. Compute the truncated mean of the ratio

vector, discarding 12.5% from both the low and the high ends of the distribution.

Polynomial curve fitting. Polynomial curve fitting [Coo93] constructs the poly-

nomial that has the best fit to a series of data points (see Figure 4.7(c)). To compute

the coefficients that best fit the curve to the given data, we use the least squares

method [Coo93] to minimize the error between the data and the fitted polyno-

mial [Coo93]. Let SPs denote the average value over the points on the fitted curve

for the sensor stream and let SPv denote the average value of the points on the

curve of the video stream. Compute the calibration factor as CF = SPs

SPv
.

Figures 4.7(b) and 4.7(c) show sample calibration outputs for these two methods,

when compared to the uncalibrated version shown in Figure 4.7(a).

Example Alignment

To illustrate the need for the DTW, stretch and calibration steps previously de-

scribed, we provide here experimental results of their use on a genuine sample of

video and inertial sensor streams, captured using Movee (see Section 4.4 for im-

plementation details). Figure 4.6(a) shows the alignment between the video and

inertial sensor streams when only DTW is used. Figure 4.6(b) shows the resulting

alignment when DTW and stretching are applied. Finally, Figure 4.6(c) shows the

alignment achieved when DTW is applied along with stretching and calibration.

The experiment shows that stretching is vital to achieve a good alignment, while

calibration further improves the quality of the alignment.

4.3.4 Classification

The Similarity Computation module produces 14 features that represent the nature

of the similarity between the motion information inferred from the video stream

100



Figure 4.8: Illustration of the Vamos architecture and operation. Vamos consists
of three steps, (i) “chunking”, to divide the (video, acceleration) sample, (ii) chunk
level classification, and (iii) sample level classification.

and the one observed from the inertial sensor data. The features are: (1) the

movement direction of the target from the center of the screen (see Section 4.4),

(2-5) the cumulative shift of the video and accelerometer on the x and y axes (4

descriptors), (6) the video motion direction, (7) the sensor motion direction, (8) the

DTW distance after stretching and calibration steps, (9) the calibration factor, CF ,

(10) the normalized penalty cost, (11) the ratio of overlap points, (12) the ratio of

diagonal moves, (13) the ratio of expansion moves and (14) the ratio of contractions

moves.

The Classification module runs trained classifiers over these features to determine

whether there is sufficient evidence that the video stream is genuine. Section 4.6.1

describes the classifiers used in our experiments.

4.3.5 Vamos: Video Accreditation Through Motion Signa-
tures

In this section we introduce Vamos (Video Accreditation Through Motion Signa-

tures) an un-constrained video liveness analysis system. The verifications of Vamos
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leverage the entire video and acceleration sample. This is in contrast with Movee,

that relies only on the initial section of the sample. Vamos consists of the three step

process illustrated in Figure 4.8. First, it divides the input sample into equal length

chunks. Second, it classifies each chunk as either genuine or fraudulent. Third, it

combines the results of the second step with a suite of novel features to produce a

final decision for the original sample. In the following, we detail each of these steps.

Chunk Extraction

The “chunking” process divides a video and acceleration sample S = (V,Acc) into

fixed length chunks. We consider a 1s granularity of division. While 6s is the chunk

length we use in the experiments, we consider here a parameter l to denote the length

in seconds of the chunks. We call a transition point (TP) to be the time when the

sample transitions from one video motion category to another (e.g., from category 4

to category 8). Let a transition chunk, denote a l second chunk that contains parts

that belong to multiple video categories. Let V [s, t] and Acc[s, t] denote a segment

of V and Acc that starts at second s and ends at second t. The chunking process

produces a set C of chunks, initially empty. Let L denote the length of the (V,Acc)

sample. We propose three chunking techniques, illustrated in Figure 4.9:

Sequential chunking. Divide (V,Acc) into sequential chunks, starting with the

beginning. Let n = |C| = ⌊L/l⌋. Then, C ={(V [0, l − 1], Acc[0, l − 1]), (V [l, 2l −

1], Acc[l, 2l − 1])..(V [l(c− 1), lc], Acc[l(c− 1), lc])}.

Segment based chunking. Identify the transition points of the sample (V,Acc).

Let a sample segment denote the part of a sample between either (i) the beginning

of the sample and the first transition point, (ii) two transition points, or (iii) the

last transition point and the end of the sample. Discard all segments of (V,Acc)
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Figure 4.9: Chunk extraction illustration. For segment based chunking, the first
segment produces a single usable chunk. For random chunking, chunk 3 overlaps
both chunks 1 and 2.

whose length is less than l. Divide remaining segments according to the sequential

chunking described above.

Randomized chunking. Produces k chunks, 0 < k ≤ L, where k is an input

argument, as follows. Generate k different index values within the sample, 0 ≤

i1, .., ik ≤ L such that for any s and t, 1 ≤ s, t ≤ k, is + l ̸= it. For each ij,

j = 1..k, if ij ≤ L− l, then C = C ∪ (V [ij, ij + l− 1], Acc[ij, ij + l− 1]). Otherwise,

C = C ∪ (V [ij − l, ij], Acc[ij − l, ij]).

Sequential chunking may produce transition chunks, that contain one or more

transition points. Segment based chunking will not produce transition chunks. How-

ever, segment based chunking requires a mechanism to identify transition points.

Randomized chunking can produce transition chunks and also overlapping chunks.

Sequential and segment based chunking produce strictly non-overlapping chunks.

CL-Vamos: Chunk Level Verification

In the second step, Vamos classifies each chunk produced by the first step, as either

genuine or fraudulent. While Movee [RTC13] works on fixed length chunks, it is

limited to video and inertial sensor streams that encode one of 4 movements (up,

down, to the left, or to the right). Specifically, 3 of the 14 features of Movee are (i)

the placement of the bullseye relative to the center of the screen, (ii) the dominant

video motion direction and (iii) the dominant sensor motion direction.
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We introduce here CL-Vamos, the first liveness verification solution that works

on free form chunks, that encode unrestricted movements. Similar to Movee, CL-

Vamos analyzes the consistency of the inferred motion from the simultaneously and

independently captured video and acceleration streams. First, it uses an efficient

image processing method to infer a motion vector over the timeline of the video from

frame-by-frame progress. Second, it converts the raw inertial sensor readings into a

motion vector over the same timeline. Subsequently, CL-Vamos uses the Dynamic

Time Warping algorithm (DTW) [Ml07] to find the set of operations that minimizes

the cost of converting one vector to the other.

CL-Vamos is not restricted to the dominant direction of movement and removes

the features extracted from it. Instead, we have investigated a wide range of features

on both the x and y axes. Due to lack of space we report and evaluate here (see

Section 4.6) the feature combination that achieved the best performance.

Specifically, CL-Vamos computes the DTW between the motion vectors ex-

tracted from the projections of the video and acceleration streams on both the

x and y axes. For each axis, DTW returns the number of diagonal, expansion and

contraction moves that convert one vector to the other, and the cost of the resulting

transformation. CL-Vamos uses this information to generate the following features,

for both the x and y axes:

• The DTW distance (transformation cost) between the video frame shift and

acceleration streams.

• The ratio of overlap points: the number of overlapping points in the two

motion vectors divided by the length of the vectors.

• The ratio of diagonal, expansion and contraction moves to the number of

points in the vectors.
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CL-Vamos uses these features, along with other Movee features (e.g., the cumulative

shift of the video and accelerometer on the x and y axes), with supervised learning

to train classifiers. For each chunk Ci in C, let ci ∈ {genuine, fake} denote the

classification produced by CL-Vamos, and let ai ∈ {genuine, fake} denote the ac-

tual status of the chunk. We consider a “positive” to denote a fake chunk, and a

“negative” to denote a genuine chunk.

We observe that the false positive rate of CL-Vamos, FPR = Pr(ci = fake|ai =

genuine). That is, the false positive rate denotes the probability that a chunk

is classified as fake (positive), given that the chunk is in fact genuine. Similarly,

the false negative rate is FNR = Pr(ci = genuine|ai = fake), the true positive

rate is TPR = Pr(ci = fake|ai = fake) and the true positive rate is TNR =

Pr(ci = genuine|ai = genuine).

Vamos: Whole Video Classification

Let us assume that for a sample S = (V,Acc), f chunks in C have been classified as

fraudulent and g chunks have been classified as genuine. Let n = f + g = |C|. We

say S is genuine iff ∀i = 1..n, ai = “gen”. S is fake if ∃i, i = 1..n, s.t., ai = “fake”.

We can write the probability that the sample S = (V,Acc) is fake, Pr(S = fake),

given the above classification result, as

Pr[S = fake|
g∧

i=1

(ci = gen),
n∧

i=g+1

(ci = fake)] =

= 1− Πg
i=1Pr(ai = gen|ci = gen)×

Πn
i=g+1Pr(ai = gen|ci = fake).

Let α = Pr(ai = gen|ci = gen), for any of the chunks Ci in C. Similarly, let

β = Pr(ai = gen|ci = fake). Then, we have that Pr(S = fake) = 1 − αg × βf .
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Now, based on Bayes’ theorem, we have that

α = TNR×Pr(ai=genuine)
TNR×Pr(ai=genuine)+FNR×Pr(ai=fake)

.

Similarly, we have that β = FPR×Pr(ai=genuine)
FPR×Pr(ai=genuine)+TPR×Pr(ai=fake)

. We can compute

thus α and β as a function of Pr(ai = genuine) and Pr(ai = fake). We obtain

these probability values statistically, based on the performance of CL-Vamos on

a large number of chunks. Specifically, Pr(ai = fake) = Nr. of fake chunks
Total nr. of chunks

and

Pr(ai = genuine) = Nr. of genuine chunks
Total nr. of chunks

, see Section 4.6.9.

We introduce several mechanisms to classify samples as genuine or fraudulent.

First, we propose a majority voting approach, where a sample S = (V,Acc) is clas-

sified as fraudulent if more than a threshold of the chunks of S have been classified

by CL-Vamos as fraudulent: f
f+g

> thr. The threshold thr is a parameter that will

be determined experimentally. Second, we consider a probabilistic approach that

labels a sample as fake if Pr(S = fake) = 1 − αg × βf is larger than a threshold

value. We experiment with threshold values in Section 4.6.9. Third, we propose a

classifier based approach, that uses the following novel features:

• Results of CL-Vamos: The number of fraudulent chunks, f and the number

of genuine chunks g. The classification results ci, ∀i = 1..n. The probability

that the sample S is fake, Pr(S = fake).

• Aggregate features: For each of the 18 features of CL-Vamos, compute the

minimum, maximum, average and standard deviation of the feature’s values

over ci, ∀i = 1..n, as new features.

Vamos uses these features with supervised learning to train classifiers for samples

of arbitrary length and encoding arbitrary motions.
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Figure 4.10: Movee in action on smartphone: Target icon (bullseye) at the bottom
of the screen shows the direction in which the user needs to move the camera.

4.4 Movee Implementation

We have implemented a Movee client using Android and a server component using

C++, R and PHP. We used the OpenCV (Open Source Computer Vision) library

[Ope] for the video motion analysis. The client allows users to capture movies and

simultaneously provide proofs of liveness. Figure 4.10 shows a snapshot of Movee

in action, on a smartphone. When starting the client, the user is presented with

an initial screen that instruct her to hold the device firmly before pressing the start

button. This is done to prevent initial accelerometer reading errors. Once the user

presses the start button, a target appears (bullseye). The user is instructed to move

the camera in the direction of the target. Once the user starts to move the camera

toward the target, the target begins to move toward the center of the screen. The

target moves at a speed that ensures that the process takes at least 6s.

We call this 6s long process, the verification interval. During the verification

interval, the Movee client captures the video stream and logs the accelerometer

data. After the verification interval, the user can continue capturing the intended
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Figure 4.11: Movee on Google Glass: Top snapshot shows view with Google Glass.
Bottom snapshot shows view from Movee on Glass perspective. Target icon (bulls-
eye) at the right of the screen shows the direction in which the user needs to move
the head mounted glass.

scenes. We were inspired by Vine 1 to choose the verification interval to be 6s. This

choice presents the additional advantage that it keeps the size of the video file small

(around 150 KB in the Samsung Admire Phone), and reduces the communication

overhead.

We have also implemented MoveeG, a Movee app variant for the Google Glass.

We have used the Glass Development Kit (GDK) to build MoveeG as a glassware

that runs directly on Glass (around 700 lines of code). MoveeG starts and stops by

voice command or through a tap based menu. Since the built-in camera activity

has limited functionality, we have built our own logic with the Android Camera

API [cam], to capture videos. Once the video capture is completed, MoveeG sends

1Vine [Vin] is an application that allows users to create and post (on Twitter, Facebook)
video clips.
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the captured video and accelerometer streams to a server over the Glass WiFi con-

nectivity, using HTTP POST requests.

4.5 Data Collection

We have used the implemented Movee and MoveeG applications to collect video and

acceleration samples from real life users. We have worked with the Institutional Re-

view Board (protocol number IRB-13-0582) at FIU to ensure an ethical interaction

with the users during the collection process.

We used the 3D accelerometers, available in most recent smartphones, tablets

and Google Glass, to acquire motion acceleration data. We have collected smart-

phone data using a Samsung Admire with a fps (frames per second) rate of 14, that

samples accelerometer readings at 16.67Hz [Sen] mode. We have collected Google

Glass data using a Glass device that samples accelerometer readings at 50Hz [Sen].

We have collected data from a total of 13 users, in multiple rounds. We have

selected participants from FIU’s student body and campus visitors. 9 of the users

are males and 4 are females. Their age ranges between 23 and 32 yo., and their oc-

cupations include biologist, fashion designer, housewife, software, civil and electrical

engineers.

Ethical considerations. We have used the Vamos application to collect video and

acceleration samples from real life users. We have worked with the Institutional Re-

view Board (protocol number IRB-13-0582) at FIU to ensure an ethical interaction

with the users and collection of the (video, acceleration) samples.

4.5.1 Smartphone Data Collection

Random and direction sync attack datasets. We have first collected “genuine”

video and accelerometer data from a subset of 10 participants (7 male, 3 female).

Each participant was asked to use Movee, following the instructions shown on the
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screen (see Section 4.4). We have collected 10 well defined (6s long) samples from

each user; the total of 100 samples are stored in a “genuine” dataset.

We have used the genuine dataset to generate random and direction sync attack

datasets as follows. Each of these datasets contains an equal number of genuine and

fraudulent video and acceleration samples. The “random attack” dataset consists

of 50 video and corresponding acceleration samples from the genuine dataset, and

50 fraudulent samples created according to the Random attack. Specifically, each

fraudulent “random” video and acceleration sample is created from one genuine

sample, by coupling its video with the acceleration data of another, randomly chosen

sample.

Similarly, the “direction sync attack” dataset contains the other 50 genuine sam-

ples from the genuine set, and 50 fraudulent samples created according to the Direc-

tion Sync attack. That is, each fraudulent sample couples the video of one genuine

sample with the acceleration data of another genuine sample, with the same direc-

tion of movement.

Cluster attack dataset. We have generated the “cluster attack” dataset from data

we collected from a subset of 12 participants (8 male, 4 female). The participants

were given the freedom to move (themselves and the smartphone) in any direction

for at least 15s but no more than 30s, while using Movee. We have collected a total

of 141 samples of 15-30s long video and acceleration streams.

Similar to the random and direction sync attack datasets, we have built the

cluster attack dataset to consist of an equal number of genuine and fraudulent

video and corresponding acceleration samples. For this, we introduced the following

variation of the Cluster attack introduced in Section 4.3. First, we divided each of

the 141 samples into 6s long chunks. Second, we ran K-means clustering [Bis95]

at the chunk level, to cluster the chunks according to the motion determined by
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the VMA module (see the cluster attack in Section 4.3). This resulted in 423

genuine chunks of video and corresponding acceleration stream. We applied the

v-fold cross-validation [Sta10] algorithm to automatically determine the number

of motion clusters in the data. The v-fold cross-validation step produced K=6 for

our cluster dataset. Then, for each of the 423 genuine chunks, we randomly chose

another chunk from the same motion cluster. Third, we coupled the video from the

first chunk with the acceleration stream of the randomly selected chunk. We added

each such fraudulent sample to the “cluster attack” dataset. Thus, this dataset

contains 423 genuine and 423 fraudulent (video, acceleration) chunks.

Replay attack dataset. We have also collected a “replay attack” dataset built ac-

cording to the attack described in Section 4.3. Similar to the cluster attack dataset,

the replay attack dataset also consists of 423 genuine and 423 fraudulent chunks.

4.5.2 Google Glass Data Collection

We performed a similar data collection process for a Google Glass device. First,

we collected data from a subset of 5 users (3 male, 2 female): 20 well defined 6s

long samples from each user. The total of 100 samples form a “genuine” dataset.

Similar to Section 4.5.1, the “random attack” dataset for Glass, contains 50 genuine

samples and 50 fraudulent samples created according to the Random attack. The

“direction sync attack” dataset for Glass, contains the other 50 genuine samples and

50 fraudulent samples created according to the Direction Sync attack.

For the cluster and replay attack datasets we have collected 84 genuine samples

(30s long each), resulting in a total of 420 chunks of 6s each. Then, each fraudulent

cluster and replay chunk is created as specified in Section 4.3. Thus, each of the

Glass cluster and replay attack datasets contains 420 genuine and 420 fraudulent

chunks.
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Category Chunk count Category Chunk count

1 26 8 28
2 50 9 26
3&7 82 10 35
4 18 11 28
5 44 12 22
6 42

Table 4.3: Number of chunks of the free-form dataset, per category. Details in
Section 4.6.6.

We have collected datasets of citizen journalism videos from YouTube and of free-

form (video, accelerometer) samples from real users. We have also created datasets of

fraudulent samples following the attacks introduced in Section 4.3. In the following

we detail each dataset.

4.5.3 YouTube Video Collection

We have collected 150 random citizen journalism videos from YouTube, in the fol-

lowing manner. First, we have identified relevant topics using Wikipedia’s “Current

Events” site [Wik], BBC [BBC] and CNN [CNN]. They include political events (e.g.,

Ukraine, Venezuela, Middle East), natural disasters (e.g., earthquakes, tsunamis,

meteorite landing), extreme sports and wild life encounters. We have used key-

words from such events to identify videos in YouTube that have been captured by

a regular person, using a mobile camera. We have discarded videos shot by a pro-

fessional cameraman or using a head mounted camera. We collected the 150 videos

from 139 users accounts. We have made public this list of videos [youb]. The total

length of the 150 videos is 13,107 seconds. We analyze this dataset in Section 4.6.6.

Free-form data set. We have collected data from 16 users2. Each user was asked

to use Vamos, following the instructions shown on the screen: move the device

211 are males and 5 females, aged 23-32, occupation including biology, fashion design,
unemployed, and software, civil and electrical engineering
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in any direction to capture videos. Each user contributed 10 free-form videos (and

associated accelerometer data), producing a free-form dataset of 160 videos. We have

manually annotated the free-form dataset video samples according to the categories

described in Table 4.1.

We have divided each sample of the free-form dataset into 6s chunks, using

segment based chunking (see Section 4.3.5), producing a total of 401 genuine chunks.

Table 4.3 shows the distribution of the chunks into categories. We have made the

free-form dataset publicly available [ffd].

4.5.4 Attack Datasets

Sandwich attack dataset. Two skilled users have performed the sandwich attack

on the 160 free-form video dataset. We have used the following procedure, for each

whole video (not at chunk level). The attacker watches the target video an unlimited

number of times. The attacker stacks two phones. The attacker plays the target

video on the top device. The bottom device records the acceleration readings during

the session. The attacker can shoot any number of takes, until satisfied with the

result.

We combine the original video with the resulting attack acceleration sample

to produce a “sandwich sample”. We used the segment based chunking method

to divide each sandwich sample into 6s (video,acceleration). Thus, each sandwich

chunk corresponds to one of the free-form chunks. The sandwich chunk dataset

contains thus also 401 chunks.

Cluster attack dataset. We ran K-means clustering [Bis95] on the free-form chunk

dataset, to cluster the chunks according to their motion (see Cluster attack). We

applied the v-fold cross-validation algorithm [Arl07] to determine the optimal num-

ber of clusters in our dataset. The outcome was K = 6. The cluster attack dataset
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Figure 4.12: Stitch attack example. For a genuine sample of 3 chunks, the attacker
produces 3 fake samples, with 1 to 3 fake (red) chunks. The genuine chunks are
copied from the genuine sample.

consists of two subsets, of genuine and fraudulent (video, acceleration) chunks. We

used the free-form chunk dataset as the genuine data. To create the fraudulent

subset, for each genuine chunk, we randomly chose another chunk from the same

(motion) cluster. We then coupled the video from the first chunk with the iner-

tial sensor data of the randomly selected chunk. Thus, the genuine and fraudulent

subsets of the cluster attack dataset each contain 401 chunks.

Stitch attack datasets. We have built two stitch attack datasets, one based on

the fake cluster chunks and one on the fake sandwich chunks of the previous two

attack datasets. The construction process is the following. First, we discarded 4

out of the 160 free-form samples, as they do not have a 6s chunk belonging to a

single category. We then discarded 43 samples that have only one chunk. For each

of the 113 remaining samples (that has at least 2 chunks), we construct 3 fraudulent

samples. For instance, for a 2 chunk genuine sample, we create a fraudulent sample

having the first chunk fake, the second genuine, one where the first chunk is genuine,

but the second is fake, and one where both chunks are fake. For samples with more

than 3 chunks, the position of the fake chunks in any of the 3 created fake samples

is randomly selected. The fake chunks are from either the sandwich or the cluster

chunk datasets.
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Figure 4.12 illustrates the generation of fraudulent samples given a genuine free-

form sample of 3 chunks. The reason for dropping samples with less than 2 chunks

is that we need to create the same number of fake samples given any genuine sample

(3 fakes per genuine sample). Samples with 1 chunk cannot produce 3 fake stitch

samples, thus had to be discarded. The resulting stitch datasets based on the cluster

and sandwich attacks have thus each 339 fake samples ((160− 4− 43)× 3).

4.6 Evaluation

In this section we present experimental results for Movee and MoveeG. We first

describe the experimental setup. Second, we evaluate the overhead of the liveness

analysis on the server. Furthermore, we evaluate the performance of Movee and

MoveeG on the attack datasets introduced in Sections 4.5.1 and 4.5.2. Finally, we

evaluate the impact of MoveeG on the battery lifetime of a Google Glass device.

4.6.1 Experiment Setup

The Classification module (see Section 4.3.4) runs trained classifiers to determine

whether there is sufficient evidence that a video stream is genuine. We have used

several classifiers, including Multilayer Perceptron (MLP) [Gal90], Decision Tree

(C4.5), Random Forest (RF) [Bre01], Bagging and Random Tree [AG97].

We have applied 10-fold cross-validation tests [Koh95b] to assess how the results

of the statistical analysis will generalize to an independent data set. Specifically,

the ground truth data set is randomly partitioned into k equal sized subsets. k-1

subsets are used for training the model and the last subset is used for testing the

model. This process is repeated k times (the folds), with each of the k subsets used

exactly once for validation. The k results from the folds are averaged to produce a

single estimation. The advantage of this method is that all observations are used

for both training and validation, and each observation is used for validation exactly
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once. We have used the Weka version 3.7.9 data mining suite [Wek] to perform the

experiments, with default settings: For the backpropagation algorithm of the MLP

classifier, we set the learning rate to 0.3 and the momentum rate to 0.2.

Metrics. We briefly define the metrics we use to evaluate the accuracy of Movee.

The TPR (True Positive Rate) metric denotes the fraction of videos correctly iden-

tified as genuine, the FPR (False Positive Rate) denotes the fraction of videos incor-

rectly identified as genuine and the FNR (False Negative Rate) denotes the fraction

of videos incorrectly identified as fraudulent. The Receiver Operating Characteristic

(ROC) curve [ROC] is a visual characterization of the trade-off between the False

Positive Rate (FPR) and the False Negative Rate (FNR). The Equal Error Rate

(EER) [TB04] is the rate at which both accept and reject errors are equal. A lower

EER denotes a more accurate solution. The area under the ROC curve (AUC) is

equal to the probability that a classifier will rank a randomly chosen genuine sample

higher than a randomly chosen fraudulent one. An area of 1 represents a perfect

test; an area of 0.5 represents a worthless test.

During the experiments, we have tested Movee on a Samsung Admire smartphone

running Android OS Gingerbread 2.3 with an 800MHz CPU.We have tested MoveeG

on a a Google Glass running Android OS KitKat 4.4.2 with OMAP 4430 dual-core

ARM Cortex-A9 CPU and 682 MB of RAM. We have used a Dell laptop equipped

with a 2.4GHz Intel Core i5 processor and 4GB of RAM for the server.

4.6.2 Server Overhead

Figure 4.13 shows the overhead (divided into modules) of the Movee liveness analysis

on the server, running on the Dell laptop, for 6s videos. The values shown are an

average over 10 experiment runs. It shows that the VMA is the most time consuming

module, slightly exceeding 1s. The IMA and Classification components (running the
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Figure 4.13: Movee (per-module) server side overhead: video processing is the most
expensive. The total cost is however under 1.3s.

C4.5 classifier) impose the smallest overheads, of 110ms taken together. MLP takes

an average of 940 ms and Random Forest an average of 140 ms. The overhead of

the SC module is around 150ms, with the smallest cost imposed by the stretching

step and the highest cost by the penalty based DTW.

4.6.3 Movee Attack Detection

Movee prevents the Copy-Paste attack of Section 4.3: no sensor stream exists. Movee

also detects the Projection attack: the motion registered in the projected video is

likely inconsistent with the acceleration data of the device capturing the video. We

now evaluate the ability of Movee to detect random, direction sync, cluster and

replay attacks, on a smartphone. The next subsection studies the performance of

MoveeG on the same attacks, but executed on a Google Glass.

We focus first on the random and direction sync attacks on the smartphone,

using the corresponding attack datasets described in Section 4.5.1. Details of the

3 best performing classifiers, including TPR, FPR and FNR values are shown in
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Figure 4.14: Summary of Movee accuracy on smartphone random, direction sync,
cluster and replay attack datasets. The accuracy (y axis) labels exceed 100% to fit
the legend.

Attack Classifier Acc(%) TPR(%) FPR(%) FNR(%)

Random
MLP 92 93.33 9.09 6.67
RF 91 88.89 7.84 11.11
C4.5 90 91.11 10.9 8.89

Bagging 81 82.0 20.0 18.0

Dir sync
MLP 78 85.71 31.8 14.29
RF 78 82.14 27.27 17.86
C4.5 84 82.14 13.63 17.86

Bagging 76 82.14 31.81 17.86

Table 4.4: Detailed accuracy results of Movee on the smartphone random and direc-
tion sync attacks. For the random attack, Movee with MLP achieves an accuracy of
92%. For the more effective direction sync attack, Movee using Decision Tree (C4.5)
achieves an 84% accuracy.
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Attack Classifier Acc(%) TPR(%) FPR(%) FNR(%)

Cluster
MLP 70.26 74.46 34.08 25.54
RF 73.46 78.14 31.39 21.86

Bagging 72.25 77.27 32.95 22.72
C4.5 70.04 74.24 34.30 25.76

Replay
MLP 65.81 70.93 39.9 29.07
RF 67.44 72.03 37.68 27.97

Bagging 67.91 71.81 38.42 28.19
C4.5 63.84 69.61 42.61 30.39

Table 4.5: Detailed accuracy results of Movee on the smartphone cluster and replay
attack datasets. For both the cluster and replay attacks, Bagging achieves the best
accuracy of 73% and 68% respectively.

Table 4.4. For the random attack dataset, the three classifiers perform similarly,

with MLP being the top performer (92% accuracy). For the direction sync attack

dataset, Decision Tree (C4.5) outperforms MLP and RF with 84% accuracy.

Figure 4.15(a) shows the ROC curve and the computed EER and AUC values

for the MLP classifier on the random dataset. The EER value of MLP is as small

as 0.08 (maximum is 0.5) and the area under the curve exceeds 0.95, denoting an

accurate classifier.

We have also evaluated the impact of each step of the SC module on the accuracy

of Movee, for the random and direction sync attack datasets. For each dataset, we

measured the accuracy of the three classifiers when (i) no alignment phase was ap-

plied, (ii) when stretching and DTWwere applied, (iii) for stretching, calibration and

DTW, and (iv) for stretching, calibration and penalty based DTW. Figure 4.15(b)

shows the results for the random attack dataset and Figure 4.15(c) shows the results

for the direction sync attack datasets. The stretching step contributes the most to

the accuracy of Movee for the random attack while the penalization step contributes

the most for the direction sync attack (around 12%).
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Figure 4.15: Smartphone data evaluation. (a) ROC curve on random dataset for
Movee (using MLP). (b) Impact of SC steps on Movee’s accuracy for the random
attack. (c) Impact of SC steps on Movee’s accuracy for the direction sync attack.
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Attack Classifier Acc(%) TPR(%) FPR(%) FNR(%)

Random
MLP 90 87.5 7.7 12.5
RF 90 89.6 9.6 10.41
RT 91 88.89 6.52 11.11

Dir sync
MLP 72 74.5 31.1 25.4
RF 74 61.4 16.1 38.6
RT 79 68.2 12.5 31.8

Table 4.6: Detailed accuracy parameters of Movee Glassware (using different clas-
sifiers) for all three attack datasets. “Acc” denotes the accuracy of the classifier.

Table 4.5 shows the results of our experiments on the cluster and replay attack

datasets. The replay attack is more effective. The Bagging algorithm achieves the

best performance on both attacks, of 73% for the cluster and 68% for the replay

attack. Figure 4.14 summarizes the performance of the best 4 classifiers on the 4

attacks considered, on smartphone captured data. The more complex cluster and

replay attacks are more efficient.

4.6.4 MoveeG Attack Detection

We first investigate the accuracy of MoveeG running on Google Glass to classify

genuine and fraudulent video samples, on the random and direction sync attack.

Table 4.6 shows the detailed results of the 3 best performing classifiers (RF, RT

and MLP). RT performs best on the random and direction sync attack datasets.

Figure 4.16(a) shows the ROC curve and the computed EER value for the RF

classifier and the random attack dataset for MoveeG. The EER value of RF is 0.07

and the area under the curve (AUC) exceeds 0.97.

Figure 4.16(b) shows the impact of the steps in the SC module for the random

attack dataset and Figure 4.16(c) shows their impact for the direction sync attack

dataset. The stretching step contributes the most to the accuracy of MoveeG for the
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Figure 4.16: (a) ROC curve (using MLP) on random attack dataset for MoveeG.
(b) The impact of SC steps on the MoveeG accuracy for the random attack. (c)
The impact of SC steps on the MoveeG accuracy for the direction sync attack.
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Attack Classifier Acc(%) TPR(%) FPR(%) FNR(%)

Cluster
RF 78.36 79.3 22.5 20.7
MLP 72.45 75.1 30.0 24.9
RT 76.34 72.0 19.6 28.0

Replay
RF 77.86 81.8 26.0 18.2
MLP 62.76 67.7 42.2 32.3
RT 74.74 78.1 28.6 21.9

Table 4.7: Detailed accuracy results of MoveeG on the Glass cluster and replay
attack datasets. Random Forest achieves best accuracy for both cluster and replay
attacks. Movee is more accurate on Glass than on smartphone.

random attack (5%). For the direction sync attack, the penalization step contributes

the most (around 8%).

We now evaluate Movee on the cluster and replay attacks performed on the data

captured on the Google Glass device (see Section 4.5.2). Table 4.7 shows the results

of the experiments. Similar to the smartphone investigation, the replay attack is

slightly more effective than the cluster attack. Both attacks are more effective than

the random and direction sync attacks. The Random Forest classifier achieves best

accuracy both for the cluster (78%) and for the replay attack (77%). We observe

a surprising result: Movee has higher accuracy on the cluster and replay attacks

performed on Glass videos when compared to the smartphone videos. We conjecture

that for the replay attack, the reason for this stems from the fact that head mounted

cameras capture more complex motions, that are harder to emulate.

Figure 4.17 summarizes the accuracy of Movee on all 4 attacks performed on

Google Glass data. Different from the smartphone data investigation, where the

cluster and replay attacks are more efficient, we note that on Google Glass data,

MoveeG with Random Forest achieves higher accuracy on the replay attack than on

the direction sync attack.
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Figure 4.17: Summary of Movee accuracy on data collected from Google Glass,
when different classifiers are used.

4.6.5 MoveeG Battery Impact

MoveeG impacts the battery lifetime of the Google Glass device. To properly eval-

uate and profile the components responsible, we first turned off the wireless inter-

faces and stopped all applications running on the Google Glass. We then performed

the following experiments, each starting with a full battery charge. First, we ran

MoveeG until the device ran out of battery. Second, we separately ran only the

video capture, and third, we ran only the acceleration stream capture components

of MoveeG. We have logged the battery level of the Google Glass device during these

experiments.

Figure 4.18 shows our results: when recording only acceleration data, the battery

lasts 209 minutes, when recording only video the battery lasts 102 minutes, and

when recording both (MoveeG), it lasts 86 minutes. As a baseline, we also ran

the experiment with no application running on the Glass: on average, the battery

lasted 3034 minutes. We note that the device turns itself to sleep when not in use.
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Figure 4.18: Impact of video and acceleration recording on Google Glass battery
lifetime. The video recording activity halves the battery lifetime when compared to
the acceleration recording activity.

This experiment shows that keeping the device continuously active even when only

capturing acceleration data, significantly reduces the battery lifetime to 6%. The

video capture activity further reduces the battery lifetime by 50% when compared

to the acceleration capture activity.

We first report our experience in classifying the collected video datasets. We then

evaluate the ability of CL-Vamos to classify 6s chunks from the free-form dataset,

as either genuine or fraudulent. Finally, we evaluate the performance of Vamos on

the whole length samples from the free-form dataset.

4.6.6 Video Dataset Classification

Two users (paper authors) have manually annotated the YouTube and free-form

datasets based on the criteria described in Section 4.2.3. Since a single video can

include sections belonging to different motion categories, the result of the annotation

process consists of tuples of the form (start time, end time, category id), where the

first two fields denote the start and end time of a video section (measured in seconds)

and the last field denotes the id of the video category (integer ranging from 1 to
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Figure 4.19: (a) Motion category distribution for YouTube dataset. (b) Distribution
for free-form dataset. Table 4.1 defines the 12 categories.

12). At the end of the process, we have computed a tally of the number of seconds

of video belonging to each of the 12 video motion categories.

We have noticed discrepancies between the annotations of the two users: a walk-

ing user recording a nearby scene without moving the camera, produces a video that

can be (visually) categorized as either 3 or 7. We have labeled these video with a

category denoted 3&7.

Figure 4.19(a) shows the resulting category distribution of the YouTube dataset.

The motion categories 2 and 1 have the largest representation, whereas category

12 has the smallest representation. Figure 4.19(b) shows the category distribution

of the free-form dataset, and Table 4.3 shows the category distribution of the free-

form chunks. The difference in distributions of the YouTube and free-form datasets

is likely due to the fact that the free-form video collection scenarios have different

dynamics from citizen journalism scenarios.

4.6.7 CL-Vamos on Motion Categories

Experiment setup. CL-Vamos and Vamos use trained classifiers to determine if

a video is genuine. We have experimented with several classifiers, including Mul-
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Figure 4.20: Accuracy of CL-Vamos and Movee. CL-Vamos improves by more than
15% on Movee, for both cluster and sandwich attacks.

tiLayer Perceptron (MLP) [Gal90], Decision Trees (DT) (C4.5), Random Forest

(RF) [Bre01] and Bagging [Bre96].

We have used the Weka data mining suite [Wek] to perform the experiments,

with default settings. For the backpropagation algorithm of the MLP classifier, we

set the learning rate to 0.3 and the momentum rate to 0.2.

CL-Vamos vs. Movee. In a first experiment we compare the efficacy of CL-

Vamos and Movee [RTC13] using the following variation of cross validation. For

each category c, we split the data into 10 equal sized folds. Then, in each of 10

iterations, we train the classifier on 9 folds from all the categories, and test on the

data of the remaining fold from c. Repeat this operation 10 times, ensuring each

fold appears once in the test dataset.

Figure 4.20 summarizes our results. On the cluster attack, CL-Vamos achieves

88% accuracy when using MLP (Random Forest 83%, Bagging 81%, Decision Trees

78% and SVM 80%). Movee achieves highest accuracy when using the Random

Forest (73%). On the sandwich attack, CL-Vamos achieves 85% accuracy when
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Category TPR(%) FPR(%) FNR(%) Acc(%)

1 75.0 16.67 25.0 80.0
2 82.13 16.67 17.87 83.33
3&7 87.97 27.0 12.03 77.08
4 75.0 25.0 25.0 75.0
5 80.0 2.86 20.0 83.33
6 68.33 13.9 31.67 79.17
8 75.0 0.0 25.0 80.0
9 77.66 16.67 22.34 80.0
10 91.67 38.86 8.33 75.0
11 83.25 6.25 16.75 85.0
12 75.0 25.0 25.0 81.25

Table 4.8: CL-Vamos accuracy on cluster attack is as high as 85% (on category 11.)

using Random Forest (MLP 71%, Bagging 78%, Decision Trees 74% and SVM 80%).

Movee achieves the highest, 67% accuracy, when using either Random Forest or

Bagging classifiers. This substantial improvement of CL-Vamos corresponds to an

FNR of 6-14% and FPR of 15-17% on these attacks. In contrast, Movee’s FNR is

between 21-28% and FPR is between 31-38%.

CL-Vamos: per-category efficacy. Table 4.8 shows the TPR, FPR, FNR and

accuracy results for CL-Vamos on the cluster chunk dataset, on each of the 11

motion categories. The accuracy ranges between 75% and 85%. Table 4.9 shows the

per-category TPR, FPR, FNR and accuracy results of CL-Vamos on the sandwich

chunk dataset. The accuracy ranges from 68% to 88%. We conjecture that its good

accuracy for several video categories is due to the difficulty for a human attacker

to correctly emulate the movement of the camera, including to estimate distances,

observed in a video.

Category relevance. We now verify the intuition that the variation in FNR,

FPR and accuracy of CL-Vamos is due to its dependence on the video motion

categories. We have performed both Pearson’s χ2 and Fisher’s exact test on the
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Category TPR(%) FPR(%) FNR(%) Acc(%)

1 75.0 10.0 25.0 84.0
2 66.67 16.67 33.33 73.33
3&7 81.34 22.58 18.66 78.75
4 83.34 12.5 16.66 80.0
5 66.0 31.32 34.0 68.75
6 69.34 28.0 30.66 70.0
8 86.0 6.66 14.0 88.0
9 74.34 20.0 25.66 84.0
10 66.67 8.0 33.33 77.14
11 83.34 27.34 16.66 72.0
12 76.68 0.0 23.32 85.0

Table 4.9: CL-Vamos accuracy on sandwich attack ranges from 68% to 88%.

results CL-Vamos for the sandwich attack dataset. The null hypothesis is that the

true positive, false positive, true negative and false negative values are independent

of the proposed video categories. The χ2’s p-value is 0.0001166 and Fisher’s p-value

is 0.00015. Thus, we reject the null hypothesis and conclude that the performance

of CL-Vamos depends on the video motion category.

Experiment conclusion. While we expected that certain motion categories are

easier to plagiarize, our results are surprising: CL-Vamos does not perform worst on

categories 1 and 2, captured by a standing user with a stationary camera. Based on

observations from our experiments, we believe that CL-Vamos exploits the ability of

accelerometers to capture the small, involuntary hand shakes that occur during video

capture sessions. Instead, CL-Vamos has high FPR values for the sandwich attack

on categories 5, 6 and 11. This shows that in our experiments, humans are better

at plagiarizing videos shot while scanning or following subjects. In Section 4.6.9 we

show that Vamos’ overall accuracy exceeds 93% even for the sandwich attack.
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4.6.8 CL-Vamos on Citizen Journalism

Current YouTube videos do not have acceleration data. CL-Vamos however only

works for video chunks for which we have acceleration data. We propose to use the

classification of the collected YouTube videos (see Section 4.6.6) and the performance

of CL-Vamos on the free-form video and acceleration samples (see Section 4.6.7) to

predict its performance on fixed length chunks of citizen journalism videos from

YouTube.

Let Acc(i, FreeForm,AT ) denote the accuracy of CL-Vamos on videos from the

i-th category (i=1..11) of the free-form dataset, for a given attack type AT. We

define the predicted accuracy of CL-Vamos for YouTube and the attack type AT,

Accp(Y ouTube, AT ), as the weighted sum of its per-category accuracy on the free-

form dataset:

Accp(Y ouTube, AT ) =
∑11

i=1wi × Acc(i, FreeForm,AT ). We define the weight wi

to be the percentage of chunks of category i in the YouTube dataset, as shown in

Figure 4.19(a). In the YouTube dataset categories 1 and 2 have the highest weight.

The predicted accuracy of CL-Vamos for the cluster attack on the YouTube dataset

is then 80.9%, and for the sandwich attack is 77.19%.

4.6.9 Vamos Evaluation

We now evaluate the performance of Vamos on entire video and acceleration samples.

We note that a sample can consist of multiple chunks that belong to different motion

categories. We have performed experiments using the stitch attack datasets (based

on chunk-level cluster and sandwich attacks) described in Section 4.5.4. The stitch

attack datasets consist of both genuine and fraudulent free-form samples.

Vamos makes the sample level classification decision based on the classification

of the chunks of the sample. In order to avoid a case where the same chunk appears
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Figure 4.21: Setup of Vamos experiment. Each genuine fold produces a stitch attack
fold. In each experiment, 9 genuine folds and the corresponding stitch attack folds
are used for training. The rest are used for testing.

in both training and testing sets, we propose the following experimental design,

illustrated in Figure 4.21.

First, divide the dataset of 113 samples of at least 2 chunks each, into k folds,

gen.fold(i), i = 1..k, and the corresponding 339 attack sample dataset (either cluster

or sandwich attack based) into k folds, attack.fold(i), i = 1..k. The split takes place

such that the samples from the gen.fold(i) were used to generate the attack samples

from

attack.fold(i). Then, for each i = 1..k, pick all the samples from gen.fold(j) and

attack.fold(j), j = 1..k, j ̸= i, and use their chunks to train CL-Vamos. Run the

trained CL-Vamos on all the chunks from gen.fold(i) and attack.fold(i). Given the

classified chunks of the samples from gen.fold(i) and from attack.fold(i), run the

sample level classification step to classify the samples. For instance, to compute

Pr(S = fake) for a sample S, compute Pr(ai = genuine) and Pr(ai = fake) based

on the number of fake and genuine chunks in the training folds (see Section 4.3.5).

In our experiments, we set k to 10.

Experiment results. Table 4.10 reports the performance of Vamos on the cluster

based stitch attack dataset. We have experimented with multiple threshold values.

For majority voting, a threshold of 0.1 performed best: both FPR and FNR values
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Algo TPR(%) FPR(%) FNR(%) Acc(%)

Maj. Vote 91.69 7.95 8.31 91.78
Prob. 91.69 7.95 8.31 91.78
Bagging 97.35 5.08 2.65 95.53

Table 4.10: Vamos efficacy on cluster based stitch attack. The classifier approach
performs best.

Algo TPR(%) FPR(%) FNR(%) Acc(%)

Maj. Vote 74.19 35.83 25.81 71.69
Prob. 69.95 32.50 30.05 69.34
Bagging 83.7 3.63 16.3 93.199

Table 4.11: Vamos performance on sandwich/stitch attack. The classifier approach
performs best.

are under 9%. For the probabilistic approach, a threshold of 0.7 achieves similar

performance. However, we note that the classifier approach, when using the Bagging

algorithm, significantly outperforms the other solutions, with an FPR of around 5%

and an FNR of 2.65%.

Table 4.11 shows the performance of the majority voting, probabilistic and clas-

sifier based approaches of Vamos, on the sandwich based stitch attack dataset. For

majority voting and probabilistic approaches, the sandwich based stitch attack is

significantly more efficient: The majority voting has no threshold where both FPR

and FNR are below 35%. The probabilistic approach achieves its optimum for a

threshold of 0.8, when its FPR and FNR values are barely under 35%. In contrast,

the classifier approach, again when using Bagging, exhibits a significantly improved

performance, with an FPR of under 4% and an FNR of 16.3%. Figure 4.22 summa-

rizes the accuracy of the three approaches of Vamos for the cluster and sandwich

based stitching attacks.

We emphasize the importance of this result: while the Movee [RTC13] algorithm

exhibits an accuracy of 60-70% on fixed length chunks, Vamos achieves an accuracy
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Figure 4.22: Vamos accuracy on stitch attacks. Even for the sandwich stitch attack,
the classifier approach (using Bagging) exceeds 93% accuracy.

that exceeds 93% even on arbitrary length videos, under a combination of potent

attacks.

4.7 Limitations

Vamos is designed to work with video streams captured by directly pointing the

camera to the scene. Vamos’s liveness verifications will likely not work for videos

captured in indirect ways (e.g., through reflection or refraction), or videos encoding

fast motion. Vamos will have difficulty extracting accurate motion information from

video frames containing occlusions, illumination changes and blur.

We have also not experimented with very short videos (less than 6s) or with

videos shot in unusual circumstances: involving very high accelerometer activity,

e.g., running, or when the user is in a moving vehicle. Due to the lack of gyroscope

sensors in the Samsung Admire device, we have not integrated gyroscope readings

to verify camera rotation movements.
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Furthermore, we have not experimented with doctored video and accelerometer

streams. For instance, given an input video, the attacker can use the work of Davison

et al. [DRMS07] to recover the 3D trajectory of the camera. Then, given root access

(e.g., using [Unl, Roo], create a corresponding accelerometer sample and feed it

to Vamos, e.g., using a solution similar to [XPr]. We defer the task of providing

trust for the integrity of the mobile app, as well as the trust for the integrity of

the device’s connection to its camera and accelerometer sensors to the providers of

Vamos. Establishing the integrity of a mobile platform and mobile apps is currently

an active area of research and is also being addressed by products readily available

in the market [SFE10, Arx, Six11].

As mentioned in Section 4.3, we assume a trusted device, operating system and

device drivers (e.g., accelerometer), achieved e.g., using chain of trust solutions.

This assumes an attacker with reasonable limitations. That is, circumventing the

defenses would require the attackers to incur overwhelming time and effort costs.

A successful attacker to a trusted app inside a trusted system satisfying our as-

sumptions would have to successfully inject unsigned code into an operating system

which uses chain of trust (e.g. iOS [App]) and modify an app which is protected by

cryptographic mobile app verification (e.g. Arxan [Arx]) at the same time. Alter-

natively, a successful attacker who can produce both the fraudulent video and the

corresponding acceleration streams would have to use a computer generated (CGI)

video stream. Vamos would not be effective in either scenario.

We have not experimented with “green screen” attacks, where the attacker cap-

tures a video with a portion of the scene being a green screen. Following the video

capture, the attacker overlays additional video footage or static images on the green

section. We note that Vamos raises the bar here: an attacker needs to invest in ad-
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ditional equipment to thwart the defenses of Vamos. The quality of the equipment

determines the (in)ability of a human observer to detect the attack.

We have not evaluated Vamos against a sandwich attack variant, where a robotic

arm [Ban, Rob] holding the mobile device is used to reproduce the motion observed

in a target video. While low cost, easy to program robotic arms do exist, they are

only capable of jerky, robot-like movements. Such movements are likely different

from the fluid movements encoded in human captured video streams; they can thus

be detected by Vamos. Therefore, in order for such a robot based attack to bypass

Vamos, the adversary needs to invest in a system able to fluidly replicate the wide

variety of whole body movements. However, robotic arms that are capable of fluid,

human-like movements are significantly more expensive. Thus, Vamos raises the bar

for attackers, that need to invest in expensive components.

Furthermore, we have introduced and evaluated Vamos against manual, auto-

matic and mixed attacks. We leave the exhaustive exploration of the attack space

for future work.

4.8 Summary

In this chapter we have introduced the concept of “liveness” analysis, of verifying

that a video has been shot live on a mobile device. We have proposed Movee, a

system that relies on the accelerometer sensors ubiquitously deployed on most recent

mobile devices to verify the liveness of a simultaneously captured video stream. We

have implemented Movee, and, through extensive experiments, we have shown that

(i) it is efficient in differentiating fraudulent and genuine videos and (ii) imposes

reasonable overheads on the server.

We also proposed Vamos, the first length and motion un-constrained video live-

ness verification system. Vamos uses the entire video and acceleration streams to
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identify video fraud. We introduced a motion based classification of videos. We eval-

uated Vamos on data collected from a user study and on citizen journalism videos

from YouTube. Vamos has an accuracy exceeding 93% on novel, complex attacks.
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CHAPTER 5

SECURE MANAGEMENT OF DATA STORAGE AND

COMMUNICATION IN SOCIAL SENSOR NETWORKS

In this chapter, we will address the problem of securing data storage and com-

munication in wearable fitness trackers being used in social sensor networks. During

my Ph.D study, part of the following content has been published.

In the following, the motivation and challenges to this problem will be introduced

in Section 5.1. In Section 5.2, the system components, general assumptions about

the adversaries and reverse-engineering of Fitbit and Garmin’s protocols will be

described briefly. In Section 5.3, the discovered security and privacy vulnerabilities

during reverse-engineering of Fitbit and Garmin’s protocol will be described and

then in Section 5.4, the proposed solution framework and the detailed solution will

be presented. In Section 5.5, several discussions about the security aspects of our

solution and its practical feasibility will be presented. After that, the efficiency

and efficacy of the solution will be demonstrated and a prototype system based on

our solution will be described in Section 5.6. One limitation of our work will be

mentioned in Section 5.7. Finally, the summary of this chapter will be given in

Section 5.8.

5.1 Motivation and Challenges

The increasing popular interest in personal telemetry, also called the Quantified Self

or “lifelogging”, has induced a popularity surge for wearable personal fitness track-

ers. Fitness trackers automatically collect sensor data about the user throughout

the day, and integrate it into social network accounts. This data-centric lifestyle,

“lifelogging” is now producing massive amounts of intimate personal data. For in-

stance, BodyMedia [Bod] has created one of the world’s largest libraries of raw and
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real-world human sensor data, with 500 trillion data points [BMD]. This data is

becoming the source of privacy and security concerns: information about locations

and times of user fitness activities can be used to infer surprising information, in-

cluding the times when the user is not at home [Ple], and company organizational

profiles [TKS13].

We demonstrate vulnerabilities in the storage and transmission of personal fit-

ness data in popular trackers from Fitbit [Fit] and Garmin [For]. Vulnerabilities

have been identified for similar systems, including pacemakers (e.g., Halperin et

al. [HHBR+08]) and glucose monitoring and insulin delivery systems (e.g., Li et.

al. [LRJ11]). The differences in the system architecture and communication model

of social sensor networks enable us to identify and exploit different vulnerabilities.

The attacks are fast, thus practical even during brief encounters. We believe

that, the vulnerabilities that we identified in the security of Fitbit and Garmin are

due to the many constraints faced by solution providers, including time to release,

cost of hardware, battery life, features, mobility, usability, and utility to end user.

Unfortunately, such a constrained design process often puts security in the back

seat.Solution providers have to strike a balance between many constraints, leading

to a design process that often puts security in the back seat.

These systems need a solution for secure fitness data storage and transmission

which protects not only against inspect and inject attacks, but also against attackers

that physically capture and read the memory of trackers. The solution’s hardware

and computation requirements should be minimal, just enough to perform low-cost

operations on the tracker and the solution should avoid imposing storage overhead

on trackers.

To help address these constraints, in this paper we introduce SensCrypt, a proto-

col for secure fitness data storage and transmission on lightweight personal trackers.
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We leverage the unique system model of social sensor networks to encode data stored

on trackers using two pseudo-random values, one generated on the tracker and one

on the providing server. SensCrypt thwarts not only the attacks we introduced, but

also defends against powerful JTAG Read attacks. SensCrypt’s hardware and com-

putation requirements are minimal, just enough to perform low-cost symmetric key

encryption and cryptographic hashes. SensCrypt does not impose storage overhead

on trackers and ensures an even wear of the tracker storage, extending the life of

flash memories with limited program/erase cycles.

SensCrypt is applicable to a range of sensor based platforms, that includes a

large number of popular fitness [Fit, For, Jaw, Mota, Bas] and home monitoring

solutions [Nes, WeM, Motb], as well as scenarios where the sensors need to be

immobile and operable without network connectivity (e.g., infrastructure, traffic,

building and campus monitoring solutions). In the latter case, the bases through

which the sensors sync with the webserver are mobile, e.g., smartphones of workers,

who may become proximal to the sensors with the intention of data collection or as

a byproduct of routine operations.

We have developed Sens.io, a $52 tracker platform built on Arduino Uno, of

similar capabilities with current solutions. On Sens.io, SensCrypt (i) imposes a 6ms

overhead on tracker writes, (ii) reduces the end-to-end overhead of data uploads to

50% of that of Fitbit, and (iii) enables a server to support large volumes of tracker

communications. While SensCrypt’s defenses may not be immediately adopted by

existing products 1, this paper provides a foundation upon which to create, imple-

ment and test new defensive mechanisms for future tracker designs.

1We have contacted Fitbit and Garmin with our results. While interested in the security
of their users, they have declined collaboration.
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(a)

(b)

Figure 5.1: System components: (a) Fitbit: trackers (one cradled on the base), the
base (arrow indicated), and a user laptop. The arrow pointing to the tracker shows
the switch button, allowing the user to display various fitness data. (b) Garmin:
trackers (the watch), the base (arrow indicated), and a user laptop.

5.2 System Model, Attacker and Background

5.2.1 System Model

We consider a general system consisting of tracker devices, base stations and an

online social network. We exemplify the model components using Fitbit Ultra [Fit]

and Garmin Forerunner [For], two popular health centric social sensor networks (see

Figures 5.1(a) and 5.1(b)). For simplicity, we will use “Fitbit” to refer the Fitbit

Ultra and “Garmin” to denote the Garmin Forerunner 610 solution.
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The tracker. The tracker is a wearable device that records, stores and reports a

variety of user fitness related metrics. We focus on the following trackers:

• The Fitbit tracker measures the daily steps taken, distance traveled, floors

climbed, calories burned, the duration and intensity of the user exercise, and

sleep patterns. It consists of four IC chips, (i) a MMA7341L 3-axis MEMS

accelerometer, (ii) a MEMS altimeter to count the number of floors climbed

and (iii) a MSP 430F2618 low power TI MCU consisting of 92 KB of flash and

96 KB of RAM. The user can switch between displaying different real-time

fitness information on the tracker, using a dedicated hardware switch button

(see the arrow pointing to the switch in Figure 5.1(a)).

• The Garmin tracker records data at user set periodic intervals (1-9 seconds).

The data includes a timestamp, exercise type, average speed, distance traveled,

altitude, start and end position, heart rate and calories burned during the past

interval. The tracker has a heart rate monitor (optional) and a 12 channel

GPS receiver with a built-in SiRFstarIII antenna. that enables the user to tag

activities with spatial coordinates.

Both Fitbit and Garmin trackers have chips supporting the ANT protocol, with a

15ft transmission range for Fitbit and 33ft for Garmin. Each tracker has a unique

id, called the tracker public id (TPI). Trackers also store profile information of their

users, including age, gender and physiological information such as height, weight

and gait information.

The base and agent module. The base connects with the user’s main computing

center (e.g., PC, laptop) and with trackers within transmission range (15ft for Fitbit

and 33ft for Forerunner) over the ANT protocol. The user needs to install an “agent

module”, a software provided by the service provider (Fitbit, Garmin) to run on the

base. The agent and base act as a bridge between the tracker and the online social
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network. They upload information stored on the tracker to its user account on the

webserver, see Figures 5.1(a) and 5.1(b) for system snapshots.

Tracker to base pairing. Fitbit trackers communicate to any base in their vicin-

ity. However, tracker solutions like Garmin Forerunners allow trackers to communi-

cate only through bases to which they have been previously “paired” or “bonded”.

Garmin’s pairing procedure works in the following manner. The agent running on

the base searches for available ANT enable devices. Each tracker periodically sends

broadcast beacons over the ANT interface. If the agent discovers a tracker, it ex-

tracts its unique id (TPI). The agent uses one of two methods of authentication:

initial pairing or passkey. The agent verifies if it already stores an authfile for this

TPI. If no such file exists (i.e., this is the first time the tracker is pairing with the

base), the agent uses the pairing method and sends a bind request to the tracker.

When prompted, the user needs to authenticate the operation, through the push of

a button on the tracker. The agent then retrieves a factory embedded “passkey”

from the tracker. It then stores the pair ⟨TPI, passkey⟩ in a newly created authfile.

During subsequent authentications, the agent uses the passkey method: it recovers

the passkey corresponding to the TPI from the authfile and uses it to authenticate

the tracker.

The system model considered can be extended to cover the case of fitness tracking

solutions that turn the user’s mobile device into a base, e.g., [Jaw, Nik, Bas]. In

such systems, the agent module is a mobile app running on the mobile device. The

tracker communicates with the smartphone over existing network interfaces, e.g.,

Bluetooth or NFC. We note that Naveed et al. [NZD+14] identified an intriguing

vulnerability of Android smartphones bonded to health trackers. The vulnerability

stems from the fact that the bonding occurs at smartphone device level not at the
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app level. This effectively leaves the health data vulnerable to rogue apps with

Bluetooth permissions.

The webserver. The online social network webserver (e.g., fitbit.com, connect.garmin

.com), allows users to create accounts from which they befriend and maintain con-

tact with other users. Upon purchase of a tracker and base, the user binds the

tracker to her social network account. Each social network account has a unique

id, called the user public id (UPI). When the base detects and sets up a connection

with a nearby tracker, it automatically collects and reports tracker stored informa-

tion (step count, distance, calories, sleep patterns) with temporal and spatial tags,

to the corresponding user’s social network account. In the following, we use the

term webserver to denote the computing resources of the online social network.

Tracker-to-base communication: the ANT protocol. Trackers communicate

to bases over ANT, a 2.4 GHz bidirectional wireless Personal Area Network (PAN)

ultra-low power consumption communication technology, optimized for transferring

low-data rate, low-latency data.

Data conversion. The Fitbit tracker relies on the user’s walk and run stride length

values to convert the step count into the distance covered. It then extrapolates the

user’s Basal Metabolic Rate (BMR) [HE04] values and uses them to convert the

user’s daily activities into burned calories values. The Garmin tracker uses the GPS

receiver to compute the outdoor distance covered by the user. It then relies on the

Firstbeat[Fir05] algorithm to convert user data (gender, height, weight, fitness class)

and the captured heart rate information to estimate the user’s Metabolic Equivalent

(MET), which in turn is used to retrieve the calories burnt.
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5.2.2 Attacker Model

We assume that the webserver is honest, and is trusted by all participants. We

assume adversaries that are able to launch the following types of attacks:

Inspect attacks. The adversary listens on the communications of trackers, bases

and the webserver.

Inject attacks. The adversary exploits solution vulnerabilities to modify and inject

messages into the system, as well as to jam existing communications.

Capture attacks. The adversary is able to acquire trackers or bases of victims.

The adversary can subject the captured hardware to a variety of other attacks (e.g.,

Inspect and Inject) but cannot access the memory of the hardware. We assume that

in addition to captured devices, the adversary can control any number of trackers

and bases (e.g., by purchasing them).

JTAG attacks. JTAG and boundary scan based attacks (e.g., [Bre06]), extend the

Capture attack with the ability to access the memory of captured devices. We focus

here on “JTAG-Read” (JTAG-R) attacks, where the attacker reads the content of

the entire tracker memory.

5.2.3 Reverse Engineering Fitbit and Garmin

Our goal in reverse-engineering the Fitbit Ultra and Garmin Forerunner protocols

was dual, (i) to understand the source(s) of vulnerabilities and (ii) to develop security

solutions that are interoperable with these protocols. Sec. 103(f) of the DMCA (17

U.S.C. 1201 (f)) [Reva] states that a person who is in legal possession of a program,

is permitted to reverse-engineer and circumvent its protection if this is necessary in

order to achieve “interoperability”.

To log communications between trackers and webservers, we wrote USB based

filter drivers and ran them on a base. We have used Wireshark to capture all
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wireless traffic between the agent software and the webserver. To reverse engineer

Fitbit, we exploited (i) the lack of encryption in all its communications and (ii)

libfitbit [lib], a library built on ANT-FS [ANT] for accessing and transferring data

from Fitbit trackers. Unlike Fitbit, Garmin uses HTTPS with TLS v1.1 to send

user login credentials. However, similar to Fitbit, all other communications are sent

over plaintext HTTP.

Fitbit and Garmin bases both use service logs, files that store information con-

cerning communications involving the base. Garmin’s logs consist of an “authfile”

for each tracker that was paired with the base, and .FIT files. The authfile con-

tains authentication information for each tracker. Forerunner maintains 20 types of

.FIT files, each storing a different type of tracker data, including information about

user activities, schedules, locations and blood pressure readings. On the Windows

installation of the Fitbit software, daily logs are stored in cleartext in files whose

names record the hour, minute and second corresponding to the time of the first

log occurrence. Each request and response involving the tracker, base and social

network is logged and sometimes even documented in the archive folder of that log

directory.

In the following, we first focus on Fitbit’s tracker memory organization and

communication protocol.

Fitbit: Tracker memory organization. A tracker has both read banks, contain-

ing data to be read by the base and write banks, containing data that can be written

by the base. The read banks store the daily user fitness records. The write banks

store user information specified in the “Device Settings” and “Profile Settings” fields

of the user’s Fitbit account. The tracker commits sensor values (step, floor count) to

the read bank once per minute. The tracker can store 7 days worth of 1-per-minute

sensor readings [Fit13].
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The webserver communicates with the tracker through XML blocks, that contain

base64 encoded commands, or opcodes. tracker. Opcodes are 7 bytes long. We

briefly list below the most important opcodes and their corresponding responses.

The opcode types are also shown in Figure 5.2.

• Retrieve device information (TRQ-REQ): opcode [0x24,000000]. Upon

receiving this opcode from the webserver (via the base), the tracker sends a

reply that contains its serial number (5 bytes), the hardware revision number,

and whether the tracker is plugged in on the base.

• Read/write tracker memory (READ-TRQ/WRITE). To read a mem-

ory bank, the webserver needs to issue the READ-TRQ opcode, [0x22, index,00000],

where index denotes the memory bank requested. The response embeds the

content of the specified memory bank. To write data to a memory bank, the

webserver issues the WRITE opcode [0x23, index, datalen,0000]. The payload

data is sent along with the opcode. The value index denotes the destination

memory bank and datalen is the length of the payload. A successful operation

returns the response [0x41,000000].

• Erase memory: (ERASE) opcode [0x25, index, t, 0]. The webserver spec-

ifies the index denoting the memory bank to be erased. The value t (4 bytes,

MSB) denotes the operation deadline - the date until which the data should

be erased. A successful operation returns the response [0x41,000000].

Fitbit: The communication protocol. The communication between the web-

server and the tracker through the base, is embedded in XML blocks, that contain

base64 encoded opcodes: commands for the tracker. All opcodes are 7 bytes long

and vary according to the instruction type (e.g., TRQ-REQ, READ-TRQ, WRITE,

ERASE, CLEAR). The system data flow during the data upload operation is shown

in Figure 5.2.
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Figure 5.2: Fitbit Upload protocol. Enables the tracker to upload its collected sensor
data to the user’s social networking account on the webserver. SensCrypt’s Upload
protocol extends this protocol, see Section 5.4.

1. Upon receiving a beacon from the tracker, the base establishes a connection

with the tracker.

2. Phase 1: The base contacts the webserver at the URL HOME/device/tracker/

uploadData and sends basic client and platform information.

3. Phase 2: The webserver sends the tracker id and the opcode for retrieving

tracker information (TRQ-REQ).

4. The base contacts the specified tracker, retrieves its information TRQ-INFO

(serial number, firmware version, etc.) and sends it to the webserver at HOME/

device/tracker/dumpData/lookupTracker.

5. Phase 3: Given the tracker’s serial number, the webserver retrieves the asso-

ciated tracker public id (TPI) and user public id (UPI) values. The webserver
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sends to the base the TPI/UPI values along with the opcodes for retrieving

fitness data from the tracker (READ-TRQ).

6. The base forwards the TPI and UPI values and the opcodes to the tracker,

retrieves the fitness data from the tracker (TRQ-DATA) and sends it to the

webserver at HOME/device/tracker/dumpData/dumpData.

7. Phase 4: The webserver sends to the base, opcodes to WRITE updates pro-

vided by the user in her Fitbit social network account (device and profile

settings, e.g., body and personal information, time zone, etc). The base for-

wards the WRITE opcode and the updates to the tracker, which overwrites

the previous values on its write memory banks.

8. The webserver sends opcodes to ERASE the fitness data from the tracker. The

base forwards the ERASE request to the tracker, who then erases the contents

of the corresponding read memory banks.

9. The base forwards the response codes from the tracker to the webserver at the

address

HOME/device/tracker/dumpData/clearDataConfigTracker.

10. The webserver replies to the base with the opcode to CLOSE the tracker.

11. The base requests the tracker to SLEEP for 15 minutes, before sending its

next beacon.

5.2.4 Crypto Tools

We use a symmetric key encryption system. We write EK(M) to denote the en-

cryption of a message M with key K. We also use cryptographic hashes that are

pre-image, second pre-image and collision resistant. We use H(M) to denote the

hash of message M . We also use hash based message authentication codes [BCK96]:
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Figure 5.3: Fitbit service logs: Proof of login credentials sent in cleartext in a HTTP
POST request sent from the base to the webserver.

we write Hmac(K,M) to denote the authentication code of message M with key

K.

5.3 Security and Privacy Attacks

During the reverse engineering process, we discovered several fundamental vulner-

abilities, which we describe here. We then detail the attacks we have deployed to

exploit these vulnerabilities, and their results.

5.3.1 Vulnerabilities

Fitbit: cleartext login information. During the initial user login via the Fitbit

client software, user passwords are passed to the webserver in cleartext and then

stored in log files on the base. Figure 5.3 shows a snippet of captured data, with

the cleartext authentication credentials emphasized. Garmin uses encryption only

during the login step.

Fitbit and Garmin: cleartext HTTP data processing. For both Fitbit and

Garmin, the tracker’s data upload operation uses no encryption or authentication.

All the tracker-to-webserver communications take place in cleartext.

Garmin: faulty authentication during Pairing. The authentication in the

Pairing procedure of Garmin assumes that the base follows the protocol and has not
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been compromised by an attacker. The authentication process is not mutual: the

tracker does not authenticate the base.

5.3.2 The FitBite and GarMax Tools

We have built FitBite and GarMax, tools that exploit the above vulnerabilities to

attack Fitbit Ultra and Garmin Forerunner. FitBite and GarMax consist of separate

modules for (i) discovering and binding to a nearby tracker, (ii) retrieving data from

a nearby tracker, (iii) injecting data into a nearby tracker and (iv) injecting data

into the social networking account of a tracker owner. We have built FitBite and

GarMax over ANT-FS, in order to connect to and issue (ANT-FS) commands to

nearby trackers. The attacker needs to run FitBite or GarMax on a base he controls.

The time required to search and bind to a nearby tracker varies significantly, but

is normally in the range of 3-20 seconds. On average, the time to query a tracker is

12-15s. More detailed timing information is presented for the attacks presented in

the following. We conclude that these attacks can be performed even during brief

encounters with victim tracker owners.

5.3.3 Attacks and Results

Tracker Private Data Capture (TPDC). FitBite discovers tracker devices within

transmission range and captures their fitness information: Fitbit performs no au-

thentication during tracker data uploads. We exploit Garmin’s assumption of an

Type of data FitBite GarMax

Device info 3 3

User profile, schedules, goals 3 3

Fitness data 3 3

(GPS) Location history 7 3

Table 5.1: Types of data harvested by FitBite and GarMax from Fitbit and Garmin.
Garmin provides GPS tagged fitness information, which GarMax is able to collect.
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Figure 5.4: TPDC outcome on Garmin: the attacker retrieves the user’s exercise
circuit on a map (shown in red on the right side), based on individual fitness data
records (shown on the left in XML format). The data record on the left includes
both GPS coordinates, heart rate, speed and cadence.

honest base to use GarMax, running on a corrupt base, to capture data from nearby

trackers. We show how GarMax binds a “rogue” base agent to Garmin trackers of

strangers within a radius of 33ft. GarMax exploits the authentication vulnerability

of Garmin’s Pairing procedure (see Section 5.3.1).

During the tracker authentication and passkey retrieval step of the Pairing pro-

cedure (see Section 5.2.3), GarMax running on an attacker controlled base, retrieves

the TPI of the nearby victim tracker. It then creates a directory with the TPI name

and creates an auth file with a random, 8 byte long passkey. GarMax verifies the

tracker’s serial number and other ANT parameters, then reads the passkey from the

auth file. Instead of running the passkey authentication method, GarMax directly

downloads fitness information (to be stored in .FIT files) from the tracker. This is

possible since the tracker assumes the base has not been corrupted, and thus does

not authenticate it.

TPDC can be launched in public spaces, particularly those frequented by fitness

users (e.g., parks, sports venues, etc) and takes less than 13s on average. It is

particularly damaging as trackers store sensor readings (i) with high frequency (1-9

seconds for Garmin, 1 minute for Fitbit), and (ii) for long intervals: up to 7 days

of fitness data history for Fitbit and up to 1000 laps and 100 favorite locations for
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Figure 5.5: Outcome of Tracker Injection (TI) attack on Fitbit tracker: The daily
step count is unreasonably high (167,116 steps).

Garmin. The data captured contains sensitive user profile information and fitness

information. For Garmin this information is tagged with GPS locations. Table 5.1

summarizes the information captured by FitBite and GarMax.

Figure 5.4 shows the reconstructed exercise circuit of a victim, with data we

recovered from a TPDC attack on Garmin. The GPS location history can be used

to infer the user’s home, locations of interest, exercise and travel patterns.

Tracker Injection (TI) Attack. FitBite and GarMax use the reverse engineered

knowledge of the communication packet format, opcode instructions and memory

banks, to modify and inject fitness data on neighboring trackers. On average, this

attack takes less than 18s, for both FitBite and GarMax. Figure 5.5 shows a sample

outcome of the TI attack on a victim Fitbit tracker, displaying an unreasonable

value for the (daily) number of steps taken by its user.

User Account Injection (UAI) Attack. We used FitBite and GarMax to re-

port fabricated fitness information into our social networking accounts. We have

successfully injected unreasonable daily step counts, e.g., 12.58 million in Fitbit, see

Figure 5.6. Fitbit did not report any inconsistency, especially as the corresponding

distance we reported was 0.02 miles! The UAI attack takes only 6s on average.
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Figure 5.6: Snapshot of Fitbit user account data injection attack. In addition
to earning undeserved badges (e.g., the “Top Daily Step”), it enables insiders to
accumulate points and receive financial rewards through sites like Earndit [Ear].

Similarly, GarMax fabricates an activity file embedding the attacker provided

fitness data in FIT/TCX [TCX] format. The simplest approach is to copy an existing

activity file of the same or another user (made publicly available in the Garmin

Connect website) and modify device and user specific information. We have used

GarMax to successfully inject “running” activities of 1000 miles each, the largest

permissible value, while keeping the other parameters intact.

Free Badges and Financial Rewards. By successful injection of large values

in their social networking accounts, FitBite and GarMax enable insiders to achieve

special milestones and acquire merit badges, without doing the required work. Fig-

ure 5.6 shows how in Fitbit, the injected value of 12.58 million steps, being greater

than 40,000, enables the account owner to acquire a “Top Daily Step” badge. Fur-

thermore, by injecting fraudulent fitness information into Earndit [Ear], an associ-

ated site, we were able to accumulate undeserved rewards, including 200 Earndit

points, redeemable for a $20 gift card.

Battery Drain Attack. FitBite allows the attacker to continuously query trackers

in her vicinity, thus drain their batteries at a faster rate. To understand the efficiency

153



Figure 5.7: Battery drain for three operation modes. The attack mode drains the
battery around 21 times faster than the 1 day upload mode and 5.63 times faster
than the 15 mins upload mode.

of this attack, we have experimented with 3 operation modes. First, the daily upload

mode, where the tracker syncs with the USB base and the Fitbit account once per

day. Second, the 15 mins upload mode, where the tracker is kept within 15 ft. from

the base, thus allowing it to be queried once every 15 minutes. Finally, the attack

mode, where FitBite’s TM module continuously (an average of 4 times a minute)

queries the victim tracker. To avoid detection, the BM module uploads tracker

data into the webserver only once every 15 minutes. Figure 5.7 shows our battery

experiment results for the three modes: FitBite drains the tracker battery around

21 times faster than the 1 day upload mode and 5.63 times faster than the 15 mins

upload mode.

In the daily upload mode, the battery lasted for 29 days. In the 15 mins upload

mode, the battery lasted for 186.38 hours (7 days and 18 hours). In the attack

mode, the battery lasted for a total of 32.71 hours. While this attack is not fast

enough to impact trackers targeted by casual attackers, it shows that FitBite drains

the tracker battery around 21 times faster than the 1 day upload mode and 5.63

times faster than the 15 mins upload mode.
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Denial of Service. FitBite’s injection attack can be used to prevent Fitbit users

from correctly updating their real-time statistics. The storage capacity of the

Garmin tracker is limited to 1000 laps. Thus, an attacker able to injects a number of

fake laps exceeding the 1000 limit, can prevent the tracker from recording the user’s

valid data. A Fitbit tracker can display up to 6 digit values. When the injected

value exceeds 6 digits, the least significant digits can not be displayed on the tracker.

This prevents the user from keeping track of her daily performance evolution. In

addition, for both Fitbit and Garmin, the attacker can render part of the recorded

data useless, by injecting incorrect user profile information. For instance, by mod-

ifying user profile information (e.g., height, weight, see Section 5.2.1), the attacker

corrupts information built based on it, e.g., “calories burnt”.

5.4 A Protocol for Lightweight Security

5.4.1 Solution Requirements

We aim to develop a solution for low power fitness trackers that satisfies the following

requirements:

1. Security. Defend against the attacks described in Section 5.2.2.

2. Minimal tracker overhead. Minimize the computation and storage over-

heads imposed on the resource constrained trackers.

3. Flexible upload. Allow trackers to securely upload sensor information through

multiple bases.

4. User friendly. Minimize user interaction.

5. Level tracker memory wear. Extend memory lifetime by leveling the wear

of its blocks.
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5.4.2 Public Key Cryptography: A No Go

We propose first FitCrypt, a solution to explore the feasibility of public key cryp-

tosystems to efficiently secure the storage and communications of trackers. In

FitCrypt, each tracker stores a public key. The corresponding private key is only

known by the webserver. Each sensor data record is encrypted with the public key

before being stored on the tracker. RSA with a 2048 bit key imposes a 4-hold stor-

age overhead on Fitbit (each record of 64B is converted into a 256B record) and a

3.2-hold overhead on Garmin. We also consider ECIES (Elliptic Curve Integrated

Encryption Scheme), an elliptic curve crypto (ECC) solution that uses a 224 bit

key size, the security equivalent of RSA with 2048 bit modulus. ECIES imposes a

storage overhead of 224+ 3r bits, where r = 112 is the size of a security parameter.

Thus, the storage overhead is 165% for Fitbit and 150% for Garmin).

When run on an Arduino Uno board, FitCrypt-RSA takes 2.3s and FitCrypt-

ECC takes 2.5s to encode a single sensor record (see Table 5.5, Section 5.6). Garmin

records sensor data with a frequency as high as one write per second. FitCrypt

imposes a 250% overhead on the sensor recording task (of 2.5s every 1s interval), thus

does not satisfy the second requirement of Section 5.4.1. To address this issue, in

the following we introduce SensCrypt, a lightweight and secure solution for wearable

trackers.

5.4.3 SensCrypt

We introduce SensCrypt, a lightweight protocol for providing secure data storage

and communication in fitness centric social sensor networks.

Protocol overview. Let U denote a user, T denote her tracker, B a base and W

the webserver. T ’s memory is divided into records, each storing one snapshot of

sensor data. The memory is organized using a circular buffer structure, to ensure
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Notation Definition

U , T , B, W user, tracker, base and webserver
idU , idT , idB unique identifiers of U , T and B
dirty pointer to first written record
clean pointer to first available record
start, end pointers to memory bounds
KW symmetric key maintained by W for T
KT symmetric key shared by W and T
ctr counter shared by W and T
Map data base of W for users and trackers
mem memory of a tracker

Table 5.2: Symbol definitions.

an even wear. T shares a symmetric key KT with W . W also maintains a unique

secret key KW for each tracker T .

To prevent Inject attacks, all communications between T and W are authenti-

cated with KT . To prevent Inspect, Capture and JTAG-R attacks, we encode each

tracker record using two pseudo-random numbers (PRNs). One PRN is generated

by W using KW and written on T during data sync protocols. The other PRN is

generated by T using KT at the time when the record is written on its memory.

Both PRNs can later be reconstructed by W . This approach significantly increases

the complexity of an attack: the attacker needs to capture the encoded data and

both PRNs to recover the cleartext data.

5.4.4 The SensCrypt Protocol

Let idU , idB, and idT denote the public unique identities of U , B, and T . U has

an account with W . W manages a database Map that has an entry for each user

and tracker pair: Map[idU , idT ] = [idU , idT , KT , KW , ctr]. Each tracker is factory

initialized with a symmetric key KT and a counter ctr initialized to 1. KT and ctr

are also stored in Map[idU , idT ]. KW is a per-tracker symmetric key, kept secret by

W . Table 5.2 summarizes these symbols for easy access.
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Figure 5.8: Example SensCrypt tracker memory (mem). Light green denotes
“clean”, unwritten areas. Red denotes areas that encode tracker sensor data. (a)
After (i-1) records have been written. The ctr is 1. (b) After Upload occurs at the
state in (a). The ctr becomes 2, to enable the creation of fresh PRNs, overwritten
on the former red area. (c) After n-i+2 more records have been written from state
(b), leading to the clean pointer cycling over from the start of the memory. (d)
After Upload occurs at the state in (c).

SensCrypt consists of 2 procedures, RecordData and Upload. RecordData is

invoked by T to record new sensor data; Upload allows it to sync its data with W .

We now describe the organization of the tracker memory.

Tracker Memory Organization. Let mem denote the memory of T . mem is

divided in “records” of fixed length (e.g., 64 bytes for Fitbit, 80 bytes for Garmin).

Each record stores one report from the tracker’s sensors (see Section 5.2.1). We or-

ganize time into fixed length “epochs” (e.g., 2s long for Fitbit, 1-9s long for Garmin).

RecordData records sensor data once per epoch. mem is organized using a circular

buffer. The dirty pointer is to the location of the first written record, and the clean

pointer is to the location of the first record available for writing. When reaching the

end ofmem, both records “circle” over to the start pointer. Figure 5.8 illustrates the

SensCrypt tracker storage organization, after the execution of various RecordData

and Upload procedures. Algorithm 3 shows the pseudo-code of the procedures.
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During Upload, each previously written tracker record is reset by W to store

a pseudo-random value (line 18 and lines 21-29 of Algorithm 3). That is, the i-th

record of the tracker’s memory is set to hold EKW
(ctr, i), where KW is the secret

key W stores for T . The index i ensures that each record contains a different value.

ctr counts the number of times mem has been completely overwritten; it ensures

that a memory record is overwritten with a different encrypted value.

The RecordData Procedure. Commit newly recorded sensor data D to mem,

in the next available record, pointed to by clean. T generates a new pseudo-random

value, EKT
(ctr, clean), and xors it into place with mem[clean] = EKW

(ctr, clean)

and D (see line 10 of algorithm 3):

mem[clean] = D ⊕ EKT
(ctr, clean)⊕ EKW

(ctr, clean).

The clean pointer is then incremented (line 11). When reaching the end of mem,

clean circles back to start(lines 12,13). We call “red” the written records and “green”

the records available for write. dirty and clean enable us to reduce the communica-

tion overhead of Upload (see next): instead of sending the entire mem, T sends to

W only the red records.

The Upload Procedure. We present the SensCrypt Upload as an extension

of the corresponding Fitbit protocol illustrated in Figure 5.2. In the following,

each message M sent between T and W is accompanied by an authentication value

Hmac(KT ,M), where Hmac is a hash based message authentication code [BCK96].

The receiver of the message uses KT to verify the authenticity of the sender and of

the message. For simplicity of exposition, in the following we omit the Hmac value.

Upload extends steps 6b and 7 of the Fitbit Upload. Specifically, when T receives

the READ-TRQ command (step 6a), it compares the dirty and clean pointers. If
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dirty < clean (see Figure 5.8(a)), T sends to W , through B,

T → B → W : TRQ− DATA, idT, mem[dirty..clean],

where mem[dirty..clean] denotes T ’s red memory area. For each record i between

dirty and clean, W uses keys KT and KW and the current value of ctr to recover

the sensor data: D[i] = mem[i]⊕EKT
(ctr, i)⊕EKW

(ctr, i) (see lines 21-23 and line

16). Then, in step 7 of Upload (see Figure 5.2), W sends to T :

W → B → T : WRITE, idT, EKT(ctr+ 1, EKW(ctr+ 1, i)),

∀i=dirty..clean. T usesKT to decrypt each EKT
(ctr+1, EKW

(ctr+1, i)) value. If the

first field of the result equals ctr+1, T overwrites mem[dirty+i] with EKW
(ctr+1, i)

(see line 18), then sets dirty=clean(line 30). Thus, mem[dirty.. clean] becomes

green. The case where clean < dirty, occurring when clean circles over, past the

memory end, is handled similarly, see lines 24-29 of Algorithm 3 and Figure 5.8(c)

and (d). We eliminate the ERASE communication (steps 8 and 9 in Figure 5.2)

from the Fitbit protocol.

5.5 Analysis

5.5.1 SensCrypt Advantages

SensCrypt ensures an even wear of tracker memory: the most overwritten memory

record has at most 2 overwrites more than the least overwritten record. To see why

this is the case, consider that once written, a record is not overwritten until a next

Upload takes place. The circular buffer organization of the memory ensures that

all the memory records of the tracker are overwritten, not just the ones at the start

of the memory. Using the example illustrated in Figure 5.8(d), notice that the first

record, has been overwritten twice since the subsequent green blocks: once with

encData[1], see Figure 5.8(c), and once with the new EKW
(3, 1) received from W .
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Capabilities SensCrypt FitCrypt

Inspect TPDC, TI, UAI TPDC, TI, UAI
Inject TPDC, TI, UAI TPDC, TI, UAI
Capture TPDC, TI, UAI TPDC, TI, UAI
JTAG-R TPDC, TI, UAI TPDC, TI, UAI
JTAG-RW TPDC TPDC
JTAG-R + Inspect TI, UAI TPDC, TI, UAI
JTAG-R + Inject TI TPDC, TI
Double JTAG-R TI, UAI TPDC, TI, UAI

Table 5.3: Comparison of defenses provided by SensCrypt and FitCrypt against the
types of attacks described in Section 5.3.3 when the adversary has a combination
of the capabilities described in Section 5.2.2. Each element in the table describes
which attacks are thwarted by the corresponding solution.

By preventing excessive overwriting of records at the beginning of the memory,

SensCrypt extends the life of trackers. This is particularly important for flash

memories, that have a limited number of P/E (program/erase) cycles.

SensCrypt is user friendly, as the user is not involved in Upload and RecordData

procedures. The SensCrypt base is thin, required to only setup standard secure SSL

connections to W , and forward traffic between T and W . SensCrypt imposes no

storage overhead on trackers: sensor data is xor-ed in-place in mem.

5.5.2 Security Discussion

Consider the life cycle of record i, Ri, on T . After the execution of the first Upload,

Ri is initialized with EKW
(ctr, i). When Ri is overwritten with sensor data, it

contains encData[i] = D[i] ⊕ EKT
(ctr, i) ⊕ EKW

(ctr, i). Subsequently, Ri is not

touched until an Upload takes place. During Upload, the (encoded) content of

mem[i] is sent to W , who subsequently overwrites Ri with a new value: EKW
(ctr+

1, i).
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The base does not contribute to the messages it forwards between T and W .

Hence, the base does not need to be authenticated. The use of the ctr + 1 value in

communications through the base ensures message freshness.

Without EKT
(ctr, i), an Inspect adversary capturing communications between T

and W cannot recover mem[i]. The use of HMACs with the key KT to authenticate

communications between T andW prevents Inject attacks: an attacker that modifies

existing messages or injects new messages cannot create valid HMAC values.

An attacker that launches a Capture attack against a victim tracker or base,

cannot recover information from them and thus has no advantage over general In-

spect and Inject attacks. An adversary that captures a tracker T and launches a

JTAG-R attack can either read EKW
(ctr, i) or D[i] ⊕ EKW

(ctr, i) ⊕ EKT
(ctr, i), but

not both. The use of the EKT
(ctr, i) value prevents an attacker from recovering D[i].

A JTAG-R attack against a captured, trusted base of tracker T offers no advantage

over Inspect and Inject attacks: in SensCrypt, the base only forwards traffic between

T and W . Similar to JTAG-R, a JTAG-RW attack against a captured tracker can-

not decode previously encoded sensor data; it can however encode fraudulent data

on the tracker (TI attack) and thus also inject data into W (UAI attack).

An adversary able to perform Inspect, Capture and JTAG-R attacks can gain

access to EKW
(ctr, i) when sent by W , then use JTAG-R to read T ’s KT , compute

EKT
(ctr, i) and learn D[i] (TPDC attack). We note the complexity of this attack.

If able to further implement Inject attacks, the adversary can also succeed in a UAI

attack.

Furthermore, SensCrypt is vulnerable to an adversary able to capture T twice,

at times t1 and t2. At time t1 the adversary uses JTAG-R to read EKW
(ctr, i). At

time t2, assuming T has already written record i, the adversary uses JTAG-R to

read mem[i] and KT and recover D[i]. This double JTAG-R attack is significantly
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more complex than a single JTAG-R attack. In addition, this attack is further

complicated by time constraints: At t1, record i has not yet been written, and at t2

it has been written but an Upload has not yet been executed. An Upload procedure

before t2 would overwrite record i with EKW
(ctr + 1, i), effectively thwarting this

attack.

FitCrypt is resilient to TPDC attacks launched by adversaries capable of per-

forming JTAG-R and Inspect, Inject and double JTAG-R attacks: T ’s records en-

crypted with the public key can only be decrypted by W . Table 5.3 summarizes the

comparison of SensCrypt and FitLock defenses. While providing more defenses (i.e.,

against TPDC for several attacker capabilities), FitLock is not a viable solution on

most of the available trackers (see Section 5.6).

5.5.3 Applications

SensCrypt can be applied to a range of sensor based platforms, where resource

constrained sensors are unable to directly sync their data with a central webserver

and need to use an Internet connected base. This includes a large number of popular

fitness and home monitoring solutions. Table 5.4 summarizes several such platforms,

including the communication and storage capabilities of their sensors.

SensCrypt can also be used in applications where the sensors need to be immo-

bile, while being able to operate without network connectivity. Examples include

health, infrastructure, traffic, building and campus monitoring solutions. The bases

through which the sensors sync with the webserver are mobile, e.g., smartphones

of workers, who may become proximal to the sensors with the intention of data

collection or as a byproduct of routine operations.

SensCrypt can also secure the data and communications of platforms for social

psychological studies. One such example is SociableSense [RMMR11], a smartphone
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Platform Type of
data

Comm Coverage Memory

Fitbit [Fit] user profile,
fitness, sleep
data

ANT+, BT 5-50m 96 KB RAM,
112 KB flash

Garmin
FR610 [For]

fitness data,
heart rate,
location

ANT+ 10-20m 1 MB

Nike+ [Nik] profile, fitness
data

BT 50m Flash 256KB,
RAM 32 KB

Jawbone
Up [Jaw]

fitness, sleep
data

BT 50m 128KB Flash,
8KB RAM

Motorola Mo-
toActv [Mota]

fitness data,
user profile

ANT+, BT,
Wi-Fi

35m 16 GB

Basis B1 [Bas] fitness, sleep
data, heart
rate

BT 50m 7 days of data

Mother [Motb] motion,
fitness, prox-
imity

915-MHz 30m 32 KB RAM

Nest [Nes] utility data Wi-Fi 35m 512Mb
DRAM, 2
Gb flash

Belkin
WeMo [WeM]

home elec-
tronics

Wi-Fi 35m RAM 32 MB,
Flash 16 MB

Table 5.4: SensCrypt applicability: fitness trackers, home monitoring solutions.
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Figure 5.9: Testbed for SensCrypt. Sens.io is the Arduino Uno device equipped
with Bluetooth shield and SD card is the tracker. Nexus 4 is the base.

solution that captures sensitive user behaviors (including co-location), processes the

information on a remote server, and provides measures of user sociability.

5.6 Evaluation

We used Sens.io for the tracker, Android Nexus 4 with 1.512 GHz CPU for the base,

and a 2.4GHz Intel Core i5 Dell laptop with 4GB of RAM for the webserver. We

used Bluetooth for tracker to base communications and Wi-Fi for the connectivity

between the base and the webserver. Figure 5.9 illustrates our testbed.

5.6.1 Sens.io: The Platform

We have built Sens.io, a prototype tracker, from off-the-shelves components. It con-

sists of an Arduino Uno Rev3 [ardb] and external Bluetooth (Seeeduino V3.0) and

SanDisk card shields. The Arduino platform is a good model of resource constrained

trackers: its ATmega328 micro-controller has a 16MHz clock, 32 KB Flash memory,

2 KB SRAM and 1KB EEPROM. The Bluetooth card has a default baud rate of
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Figure 5.10: SensCrypt architecture. The tracker relies on locally stored key KT to
authenticate webserver messages and encode sensor data. The webserver manages
the Map structure, to authenticate and decrypt tracker reports.

38,400 and communication range up to 10m. Since the Arduino has 2 KB SRAM,

it can only rely on 1822 bytes to buffer data for transmissions. The SD card (FAT

16) can be accessed at the granularity of 512 byte blocks.

The cost of Sens.io is $52 ($25 Arduino card, $20 Bluetooth shield, $2.5 SD Card

shield, $4 SD card, see Figure 5.9), a fraction of Fitbit’s ($99) and Garmin’s ($299)

trackers.

SensCrypt. We have implemented a general, end-to-end SensCrypt architecture,

as illustrated in Figure 5.10. We have implemented the tracker both in Arduino’s

programming language (a Wiring implementation [Arda]), and, for generality, in

Android. The base component (written exclusively in Android) is a simple com-

munication relay. We implemented the webserver using Apache Tomcat 7.0.52 and

Apache Axis2 Web services engine. We used the MongoDB 2.4.9 database to store

the Map structure. We implemented a Bluetooth [SIG01] serial communication

protocol between the tracker and the base.
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Platform SensCrypt FitCr-RSA FitCr-ECC

Fitbit 6.02 2300 2520
Garmin 6.06 2300 2520

Table 5.5: RecordData: computation overhead in ms. FitCrypt-RSA 2048 bit is
not viable on Arduino (2.3s). FitCrypt-ECC 224 bit (equivalent of RSA 2048 bit)
is even less efficient. SensCrypt is 2-3 orders of magnitude more efficient.

The testbed. We used Sens.io for the tracker, an Android Nexus 4 with 1.512 GHz

CPU for the base, and a 2.4GHz Intel Core i5 Dell laptop with 4GB of RAM for

the webserver. We used Bluetooth for tracker to base communications and Wi-Fi

for the connectivity between the base and the webserver. Figure 5.9 illustrates our

testbed.

In the following, we report evaluation results, as averages taken over at least 10

independent protocol runs.

5.6.2 Tracker: RecordData Overhead

We have investigated the overhead of the RecordData procedure on Sens.io. Ta-

ble 5.5 compares the performance of SensCrypt and FitCrypt, with times shown

in milliseconds. We have explored two versions of FitCrypt, using RSA and ECC.

FitCrypt-RSA with a 1024 bit modulus takes more than 500ms, but is currently ob-

solete. FitCrypt-RSA with a 2048 bit modulus hangs on Sens.io due to its low (2KB)

RAM. The value shown in Table 5.5 is from [GPW+04], where a similar platform

was used. FitCrypt-ECC uses ECIES, an elliptic curve cryptography solution, with

a 224 bit key size, the security equivalent of RSA with 2048 bit modulus. FitCrypt-

RSA 2048 and FitCrypt-ECC are not viable alternatives, imposing an overhead of

230% for 1 per sec. RecordData frequency. SensCrypt imposes however an overhead

of less than 1% (6ms for each 1s interval between RecordData runs).
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5.6.3 Webserver: Storage Overhead

The webserver maintains a data structure, Map, with a record for each user and

tracker pair. The entry consists of user, tracker and bases ids (8 byte long each), a

salt (16B), password hash (28B), 2 symmetric keys (32B each) and a counter (1B).

Assuming a single base in the Bases list, a Map entry stores 133 bytes. For a 1

million user base, the webserver needs to store a Map structure of 127MB. The

average time to retrieve a record from a 1 million user Map is 158ms.

5.6.4 Upload: End-to-end Overhead

We consider a “Fitbit” scenario where the Upload procedure runs once every 15

minutes when in the vicinity of a base. Assuming a RecordData frequency of once

every 2s (usual in Garmin), and a record size of 64B, SensCrypt uploads and over-

writes 71 blocks of 512B each. The tracker side of the SensCrypt Upload procedure

takes 502ms, dominated by the cost to read and write 71 blocks of data from/to the

SD card. A single core of the Dell laptop can support 5 Uploads per second. The

server cost is dominated by the 158ms cost of retrieving a record from a 1 million

entry Map. The Upload/s rate of the webserver can be improved by caching the

least recently accessed or most popular records of Map. Even though transferring

over Bluetooth, the communication cost of SensCrypt’s Upload is 153ms. This is

due to the low RAM available on Arduino for buffering packets (2KB).

SensCrypt’s total Upload time of 845ms is 400ms less than FitCrypt’s, assuming

Fitbit’s memory size. We note however that Fitbit records data only once per

minute, a rate at which SensCrypt would perform significantly faster. SensCrypt

is 13 times faster (by more than 11s) than FitCrypt when considering Garmin’s

memory (2000 blocks of 512B). This gain is due to SensCrypt’s optimization of only

uploading the red, written blocks, instead of the entire memory.
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Solutions T W Comm

SensCrypt 502.13 190.4 153
FitCrypt (Fitbit) 904.56 177.36 162
FitCrypt (Garmin) 9366 322 1686

Table 5.6: Upload: comparison of tracker, webserver and communication delays
(shown in ms) of SensCrypt and FitCrypt. FitCrypt (RSA or ECC) is shown both
for the Fitbit (96KB) and Garmin (1MB) memory size. The delay of SensCrypt is
independent of mem size, and significantly shorter.

Furthermore, even on the communication restricted Sens.io, SensCrypt reduces

the upload operation of the real Fitbit equipment (1481ms on average) by 43%.

5.6.5 Battery Impact

To evaluate the impact of SensCrypt on the battery lifetime, we powered the Sens.io

device using a 9V alkaline battery [dur]. In a first experiment, we evaluated the

ability of SensCrypt to mitigate the effects of the battery drain attack. For this, we

used the Bluetooth enabled Sens.io device to establish a connection with an Android

app running on a Nexus 4 base. We investigated and compared two scenarios. In the

first scenario, the Bluetooth enabled Sens.io runs the Fitbit protocol to process and

respond to requests received every 15s. In the second scenario, the Sens.io device

runs SensCrypt to process the same requests. Each scenario is performed using a

fresh 9V battery.

When running Fitbit, the Sens.io device runs out of battery after 484 minutes.

When running SensCrypt, the Sens.io device lasts for a total of 821 minutes. Thus,

SensCrypt extends the battery lifetime of Sens.io under the battery depletion attack

by 69%.

In a second experiment, we compared the impact of the periodic SensCrypt,

FitCrypt-RSA-256 and Fitbit sensor data recording operations on the Sens.io bat-

tery lifetime. In the experiment, we considered a 2s interval between consecutive
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Figure 5.11: Battery lifetime for 9V cell powered Sens.io device in four scenarios:
Baseline, Fitbit, SensCrypt and FitCrypt-RSA-256. The last three scenarios record
sensor data every 2s. The Baseline scenario measures the battery lifetime of Arduino
device with no functionality. SensCrypt reduces 13% of the battery lifetime over
Fitbit’s operation. Even a vulnerable FitCrypt-RSA-256 reduces the battery lifetime
to half of SensCrypt.

sensor recording operations. We have tested several RSA key sizes (2048 to 256

bit long). An (insecure) RSA key size of 256 bits was the largest value that did

not hang on an Arduino board after only a few encryptions. We have also run a

baseline experiment, measuring the battery lifetime of an Arduino board that is not

recording any sensor data.

Figure 5.11 shows our results. In the Baseline scenario, the battery lasted 56 hrs

and 23 mins. When running Fitbit’s sensor data record operation, the battery lasted

50 hrs and 18 mins. When running SensCrypt’s RecordData operation, the battery

lasted 43 hrs and 38 mins. Thus, Fitbit’s sensor recording operation shortens the

battery by 10% over the baseline. SensCrypt’s RecordData reduces the battery

lifetime by 13% of the Fitbit battery lifetime. Finally, when running FitCrypt-

RSA-256, the battery lasted only 22 hrs and 10 mins. Even with a vulnerable key

size, FitCrypt reduces the battery lifetime by 49% of the SensCrypt lifetime. This
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confirms the unsuitability of public key cryptosystems to secure resource constrained

fitness trackers.

5.7 Limitations

While SensCrypts defenses may not be immediately adopted by existing products,

this paper provides a foundation upon which to create, implement and test new

defensive mechanisms for future tracker designs.

5.8 Summary

In this chapter, We presented SensCrypt, a secure and efficient solution for storing

and communicating tracker sensor data. Firstly we described the reverse-engineering

process of the Fitbit Ultra and Garmin Forerunner communication protocol. We

then identified and exploited several vulnerabilities in the design of Fitbit and

Garmin, to launch inspection and injection attacks. We show that SensCrypt pro-

tects even against invasive attackers, capable of reading the memory of captured

trackers. To demonstrate the usefulness of the proposed solution, several sets of

experiments are conducted to demonstrate its effectiveness and efficiency. Finally,

we built a prototype tracker, Sens.io based on our proposed solution which is secure

and cost-effective.
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Algorithm 3 Tracker memory man-
agement pseudocode. Instructions
preceded by W : are executed at the
webserver, those preceded by T : are
executed at the tracker. W → T :
I denotes an instruction I issued at
W and executed at T . The entire
RecordData is executed at T . Fig-
ure 5.8 illustrates the pseudocode.

1.Object implementation Memory;
2. T : mem : record[]; #tracker memory

3. T : dirty : int; #pointer to used area

4. T : clean : int; #pointer to unused area

5. T : start, end : int; #memory bounds

6. W : KW : byte[]; #key for T

7. W, T : KT : byte[]; #key shared by T, W
8. W, T : ctr : int; #counter shared by T, W

9. Operation int T : RecordData(D : sensor data)
10. mem[clean] ⊕ = D⊕ EKT(ctr, clean);
11. clean = clean+ 1;
12. if (clean == end) then;
13. clean = start; fi
14. end
15.Operation void ProcessRecord(ind : int, c : int)
16. W : D = mem[ind]⊕ EKW(c, ind)⊕ EKT(c, ind);
17. W : process(D);
18. W → T : mem[ind] = EKW(c+ 1, ind);
19. end
20.Operation void Upload()

21. if (dirty < clean) do
22. for (i = dirty; i < clean; i++) do
23. ProcessRecord(i, ctr); od
24. else if (clean < dirty) do
25. for (i = dirty; i ≤ end; i++) do
26. ProcessRecord(i, ctr); od
27. for (i = start; i < clean; i++) do
28. ProcessRecord(i, ctr+ 1); od
29. W, T : ctr = ctr+ 1; fi
30. T : dirty = clean;
31. end
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CHAPTER 6

TOWARD PRESERVING PRIVACY AND FUNCTIONALITY IN

GEOSOCIAL NETWORKS

In this chapter, we would mainly focus on preserving privacy and functionality

in geosocial networks and exploit our approaches for computing safety snapshots of

co-located mobile devices as well as geosocial network users. Part of the content

in this section has been published during my Ph.D study, including the problem

formulation and the proposed solutions and its evaluation results.

The outline of this chapter is as follows: The motivation and challenges of this

topic will be presented in Section 6.1. The system and adversary model will be de-

scribed and the problem will be defined in Section 6.2. In Section 6.3, the collected

dataset will be described. Then in Section 6.4, the deceptive behavior detection

mechanisms will be introduced and evaluated. In Section 6.5, experimental results

will be presented to evaluate the performance of our proposed methods. Some limita-

tions of this work will be discussed in Section 6.6. Finally, a short chapter summary

about this problem and the proposed solutions will be provided in Section 6.7.

6.1 Motivation and Challenges

Online social networks have become a significant source of personal information.

Geosocial networks (GSNs) such as Yelp [Yela] and Foursquare [fou] further collect

fine grained location information, through check-ins performed by users at visited

venues. Providing personal information exposes however users to significant risks,

as social networks have been shown to leak [KW10] and even sell [SF] user data

to third parties. There exists therefore a conflict. Without privacy people may

be reluctant to use geosocial networks; without user information the provider and

venues cannot support applications and have no incentive to participate. In this
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paper, we take first steps toward addressing this conflict. Our approach is based

on the concept of location centric profiles (LCPs). LCPs are statistics built from

the profiles of (i) users that have visited a certain location or (ii) a set of co-located

users. We then envision a system where users are seamlessly made aware of their

safety in a personalized manner, through quotidian experiences such as navigation,

mobile authentication, choosing a restaurant or finding a place to live. We propose to

achieve this vision by introducing a framework for defining public safety. Intuitively,

public safety aims to answer the question “Will location L present any danger for

user A when she visits L at a future time T”?

An important challenge to achieving this vision is the need to properly under-

stand and define safety. While safety is naturally location dependent, it is also

inherently volatile. It not only exhibits temporal patterns (e.g., function of the

season, day of week or time of day) but also depends on the current context (e.g.,

people present, their profile and behavior). Furthermore, as suggested by the above

question, public safety has a personal dimension: users of different backgrounds are

likely to be impacted differently by the same location/time context.

Previous attempts to make people safety-aware include the use of social media to

distribute information about unreported crimes [FAdO+10], or web based applica-

tions for visualizing unsafe areas [Cri, Gua]. The main drawbacks of these solutions

stem from the difficulty of modeling safety and of integrating it in quotidian user

experiences.

Instead, in this paper we investigate the combination of space and time indexed

crime datasets, with mobile technologies and online social networks to provide per-

sonalized and context aware safety recommendations for mobile and social network

users. To achieve this, we first define location centric, static crime and safety met-

rics, based on recorded crime events. Given observed crime periodicities, we show
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that timeseries forecasting tools are able to predict future crime and safety index

values of locations, based on past crime events.

We then introduce ProfilR , a framework for constructing location centric profiles

(LCPs), aggregates built over the profiles of users that have visited discrete locations

(i.e., venues). ProfilR endows users with strong privacy guarantees and providers

with correctness assurances. We then introduce iSafe, a distributed algorithm that

addresses privacy concerns raised by the use of trajectory traces and associated

crime and safety index values. iSafe takes advantage of the wireless capabilities of

mobile devices to compute real-time snapshots of the safety profiles of close-by users

in a privacy preserving manner.

6.2 Model and Background

We consider a core functionality that is supported by the most influential geosocial

network (GSN) providers, Yelp [Yela] and Foursquare [fou]. This functionality is

simple and general enough to be applicable to most other GSNs (e.g., Facebook

Places, Google Latitude). In this model, a provider S hosts the system, along with

information about registered venues, and serving a number of users. To use the

provider’s services, a client application, the “client”, needs to be downloaded and

installed. Users register and receive initial service credentials, including a unique

user id.

The provider supports a set of businesses or venues, with an associated geo-

graphic location (e.g., restaurants, yoga classes, towing companies, etc). Users are

encouraged to report their location, through check-ins at venues where they are

present. During a check-in operation, performed upon an explicit user action, the

user’s device retrieves its GPS coordinates, reports them to the server, who then
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returns a list of nearby venues. The device displays the venues and the user needs

to choose one as her current check-in location.

Participating venue owners need to install inexpensive equipment (e.g., a $25

Raspberry PI [Ras], a BeagleBoard [Col09] or any Android smartphone). This

equipment can be installed and used for other purposes as well, including detect-

ing fake user check-ins [CP12] preventing fake badges and incorrect rewards, and

validating social network (e.g., Yelp [Yela]) reviews. Venue deployed equipment

provides a necessary ingredient: ground truth information from remote locations.

6.2.1 Location Centric Profiles (LCP)

Each user has a profile PU = {pU1 , pU2 , .., pUd
}, consisting of values on d dimensions

(e.g., age, gender, home city, etc). Each dimension has a range, or a set of possible

values. Given a set of users U at location L, the location centric profile at L, denoted

by LCP (L) is the set {LCP1, LCP2, .., LCPd}, where LCPi denotes the aggregate

statistics over the i-th dimension of profiles of users from U .

In the following, we focus on a single profile dimension, D. We assume D takes

values over a range R that can be discretized into a finite set of sub-intervals (e.g.,

set of continuous disjoint intervals or discrete values). Then, given an integer b,

chosen to be dimension specific, we divide R into b intervals/sets, R1, .., Rb. For

instance, gender maps naturally to discrete values (b = 2), while age can be divided

into disjoint sub-intervals, with a higher b value.

We define the aggregate statistics S for dimension D of LCP (L) to consist of

b counters c1, .., cb; ci records the number of users from U whose profile value on

dimension D falls within range Ri, i = 1..b.
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Figure 6.1: Solution architecture (k=2). The red arrows denote anonymous commu-
nication channels, whereas black arrows indicate authenticated (and secure) com-
munication channels.

6.2.2 Private LCP Requirements

Let k be a security parameter, denoting the level of privacy we need to provide

for users at any location. We then define a private LCP solution to be a set of

functions, PP (k) = {Setup, Spotter, CheckIn, PubStats}, see Figure 6.1. Setup

is run by each venue where user statistics are collected, to generate parameters

for user check-ins. To perform a check-in, a user first runs Spotter, to prove her

physical presence at the venue. Spotter returns error if the verification fails, success

otherwise. If Spotter is successful, CheckIn is run between the user and the venue,

and allows the collection of profile information from the user. Specifically, if the

user’s profile value v on dimension D falls within the range Ri, the counter ci is

incremented by 1. Finally, PubStats publishes collected LCPs. In the following, we

use the notation Prot(P1(args1), .., Pn(argsn)) to denote protocol Prot run between

participants P1, .., Pn, each with its own arguments.
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Let CV be the set of counters defined at a venue V . We use C̄V to denote the

set of sets derived from CV as follows. Each set in C̄V differs from CV in exactly

one counter, whose value increments the value of the corresponding counter in CV .

For instance, if CV = {2, 5, 9}, then C̄V = {{3, 5, 9}, {2, 6, 9}, {2, 5, 10}}. A private

LCP solution needs to satisfy the following properties:

k-Privacy: Let A denote an adversary that controls any number of venues and let

C denote a challenger controlling k users. C runs Spotter followed by CheckIn at

a venue V controlled by A on behalf of i < k users. Let Ci denote the resulting

counter set. For each j = 1..b, A outputs c′j, its guess of the value of the j-th counter

of Ci. The advantage of A, Adv(A) = |Pr[Ci[j] = c′j]− 1/(i + 1)|, defined for each

j = 1..b, is negligible.

Location Correctness: Let A denote an adversary that controls the GSN provider

and any number of users. Let C be a challenger that controls a venue V . A running

as a user U not present at V , has negligible probability to successfully complete

Spotter at V .

LCP Correctness: Let A denote an adversary that controls the GSN provider

and any number of users. Let C be a challenger that controls a venue V . Let CV

denote the set of counters at V before A runs CheckIn at V and let C ′
V be the set

of counters afterward. If C ′
V /∈ C̄V , the CheckIn completes successfully with only

negligible probability.

Check-In Indistinguishability (CI-IND): Let a challenger C control two users

U0 and U1 and let an adversary A control any number of venues. A generates

randomly q bits, b1, .., bq, and sends them to C. For each bit bi, i = 1..q, C runs

Spotter followed by CheckIn on behalf of user Ubi . At the end of this step, C

generates a random bit b and runs Spotter followed by CheckIn on behalf of Ub at
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a venue not used before. A outputs a bit b′, its guess of b. The advantage of A,

Adv(A) = |Pr[b′ = b]− 1/2| is negligible.

6.2.3 Geosocial Network Attacker Model

We assume venue owners are malicious and will attempt to learn private information

from their patrons. Clients installed by users can be malicious, attempting to bias

LCPs constructed at target venues.We consider a semi-honest, or honest-but-curious

service provider. That is, the service provider is assumed to follow the protocol

correctly, but attempts to learn personal user information as possible.

6.2.4 Safe City System Model

We consider a framework consisting of three participants, (i) a service provider, (ii)

mobile device users and (iii) geosocial networks. The service provider, denoted by S,

centralizes crime and census information and provides it upon request. We assume

that the mobile devices are equipped with wireless interfaces, enabling the formation

of transient, ad hoc connections with neighboring devices. Devices are also equipped

with GPS interfaces, allowing them to retrieve their geographic location. Devices

have Internet connectivity, which, for the purpose of this work may be intermittent.

Users take advantage of Internet connectivity not only to communicate with the

geosocial networks but also to retrieve safety information (both described in the

following). Each user needs to install an application on her mobile device, which

we henceforth denote as the client. Geosocial networks (GSNs) such as Yelp and

Foursquare extend classic social networks with the notions of (i) venues, or businesses

and (ii) check-ins.
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6.3 Dataset.

6.3.1 Geosocial network data.

We have collected Yelp information from all the venues in the Miami-Dade county,

Florida, for a total of 7699 venues. For each venue, we have collected the name, type

and address, along with the list of reviews received. For each review, we collected

the home city and state of the reviewer. The supplemental material includes plots

showing that (i) the number of reviews received by Miami-Dade venues exhibits a

long tail distribution and (ii) Yelp reviews are mostly positive as most aggregate

ratings are at or above 4 stars.

6.3.2 Crime and Census data.

We use a historical database of more than 2.3 million crime incidents reported in the

Miami Dade county area since 2007 [Ter]. Each record is labeled with a crime type

(e.g., homicide, larceny, robbery, etc), the time and the geographic location where it

has occurred. We mapped crimes into 7 categories: Murder, Forcible Rape, Aggra-

vated Assault, Robbery, Larceny/Theft, Burglary/Arson, Motor Vehicle Theft. We

removed minor crime reports that did not fall into these categories. Let c denote

the number of crime types. In our case, c = 7. Let CT = {CT1, .., CTc} denote

the set of crime types. We also use Census data sets [Cen10], reporting popula-

tion counts and demographic information. The data is divided into polygon shaped

geographical extents called census block groups. Each block contains information

about the population within (e.g., population count, various statistics). According

to the data, Miami Dade county has a population of 2, 496, 435. The supplemental

material includes more details of the data classification process and a plot showing

the Miami-Dade population density, at block granularity.
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Figure 6.2: 1 week (July 13-19, 2011) evolution of the number of crimes reported
within one Miami-Dade block.

6.4 Proposed Methods

6.4.1 ProfilR : A framework for constructing location cen-
tric profiles

As mentioned before, SpotrV denote the device installed at venue V . For each

user profile dimension D, SpotrV stores a set of encrypted counters – one for each

sub-range of R.

Overview. Initially, and following each cycle of k check-ins executed at venue V ,

SpotrV initiates Setup, to request the provider S to generate a new Benaloh key

pair. Thus, at each venue time is partitioned into cycles : a cycle completes once k

users have checked-in at the venue. The communication during Setup takes place

over an authenticated and secure channel (see Figure 6.1).

When a user U checks-in at venue V , it first engages in the Spotter protocol

with SpotrV , allowing the venue to verify U ’s physical presence. A successful

run of Spotter provides U with a share of the secret key employed in the Benaloh

cryptosystem of the current cycle. For each venue and user profile dimension, S

stores a set Sh of shares of the secret key that have been revealed so far.
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Subsequently, U runs CheckIn with SpotrV , to send its share of the secret

key and to receive the encrypted counter sets. As shown in Figure 6.1, the com-

munication takes place over an anonymous channel to preserve U ’s privacy. During

CheckIn, for each dimension D, U increments the counter corresponding to her

range, re-encrypts all counters and sends the resulting set to SpotrV . U and

SpotrV engage in a zero knowledge protocol that allows SpotrV to verify U ’s cor-

rect behavior: exactly one counter has been incremented. SpotrV stores the latest,

proved to be correct encrypted counter set, and inserts the secret key share into the

set Sh.

Once k users successfully complete the CheckIn procedure, marking the end of a

cycle, SpotrV runs PubStats to reconstruct the private key, decrypt all encrypted

counters and publish the tally. The communication during PubStats takes place

over an authenticated channel (see Figure 6.1).

The Solution

Let Ci denote the set of encrypted counters at V , following the i-th user run of

CheckIn. Ci = {Ci[1], .., Ci[b]}, where Ci[j] denotes the encrypted counter cor-

responding to Rj, the j-th sub-range of R. We write Ci[j] = E(uj, u
′
j, cj, j) =

[E(uj, cj), E(u′
j, j)], where uj and u′

j are random obfuscating factors and E(u,M)

denotes the Benaloh encryption of a message M using random factor u. That is,

an encrypted counter is stored for each sub-range of domain R of dimension D.

The encrypted counter consists of two records, encoding the number of users whose

values on dimension D fall within a particular sub-range of R.

Let RE(vj, v
′
j, E(uj, u

′
j, cj, j) denote the re-encryption of the j-th record with

two random values vj and v′j: RE(vj, v
′
j, E(uj, u

′
j, cj, j)) =

[RE(vj, E(uj, cj)), RE(v′j, E(u′
j, j))] = [E(ujvj, cj), E(u′

jv
′
j, j)]. Let Ci[j] + + =
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E(uj, u
′
j, cj + 1, j) denote the encryption of the incremented j-th counter. Note

that incrementing the counter can be done without decrypting Ci[j] or knowing the

current counter’s value: Ci[j] + + = [E(uj, cj)y, E(u′
j, j)] = [ycj+1ur

j , E(u′
j, j)] =

[E(uj, cj + 1), E(u′
j, j)].

In the following we use the above definitions to introduce ProfilR . ProfilR

instantiates PP (k), where k is the privacy parameter. The notation

P (A(paramsA), B(paramsB)) denotes the fact that protocol P involves participants

A and B, each with its own parameters.

Setup(V(),S(k)): The provider S runs the key generation function KG(l) of the

Benaloh cryptosystem (see Section 5.2.4). Let p and q be the private key and n and

y the public key. S sends the public key to SpotrV . SpotrV generates a signature

key pair and registers the public key with S. For each user profile dimension D of

range R with b sub-ranges, SpotrV performs the following steps:

• Initialize counters c1, .., cb to 0.

• Generate C0 = {E(x1, x
′
1, c1, 1), .., E(xb, x

′
b, cb, b)}, where xi, x

′
i, i = 1..b are

randomly chosen values. Store C0 indexed on dimension D.

• Initialize the share set Skey = ∅.

• Generate system wide parameters k and m > k and initialize the (k,m) TSS.

Spotter(U(L,T ),V(),S(k)): Let L and T denote U ’s location and current time.

To ensure anonymity, U generates fresh random MAC and IP addresses. These

addresses are used for a single execution of the Spotter and CheckIn protocols.

SpotrV uses one of the location verification procedures proposed in [CP12] to verify

U ’s presence at L and T (see Section 5.2.4).

Let U be the i-th user checking-in at V . If the verification succeeds and i ≤ k,

S uses the (k,m) TSS to compute a share of p (Benaloh secret key, factor of the
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modulus n). Let pi be the share of p. S sends the (signed) share pi to U . If i > k,

S calls Setup to generate new parameters for V .

CheckIn(U(pi, n, V), V(n, y, Ci−1, Skey)): Executes only if the previous run of

Spotter is successful. U uses the same random MAC and IP addresses as in the

previous Spotter run. Let U be the i-th user checking-in at V . Then, Ci−1 is the

current set of encrypted counters. SpotrV sends Ci−1 to U . Let v, U ’s value on

dimension D, be within R’s j-th sub-range, i.e., v ∈ Rj. U runs the following steps:

• Generate b pairs of random values {(v1, v′1), .., (vb, v′b)}. Compute the new

encrypted counter set Ci, where the order of the counters in Ci is identical to

Ci−1: Ci =

{RE(vl, v
′
l, Ci−1[l])|l = 1..b, l ̸= j} ∪ RE(vj, v

′
j, Ci−1[j] + +)}.

• Send Ci and the signed (by S) share pi of p to V .

If SpotrV successfully verifies the signature of S on the share pi, U and SpotrV engage

in a zero knowledge protocol ZK-CTR (see Section 6.4.1). ZK-CTR allows U to

prove that Ci is a correct re-encryption of Ci−1: only one counter of Ci−1 has been

incremented. If the proof verifies, SpotrV replaces Ci−1 with Ci and adds the share

pi to the set Skey. Otherwise, SpotrV drops Ci and rolls back to Ci−1.

PubStats(V(Ck,Sh,V),S(p,q)): SpotrV performs the following actions:

• If |Sh| < k, abort.

• If |Sh| = k, use the k shares to reconstruct p, the private Benaloh key.

• Use p and q = n/p to decrypt each record in Ck, the final set of counters at

V . Publish results.
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ZK-CTR: Proof of Correctness

We now present the zero knowledge proof of the set Ci being a correct re-encryption

of the set Ci−1, i.e., a single counter has been incremented. Let ZK-CTR(i) denote

the protocol run for sets Ci−1 and Ci. U and SpotrV run the following steps s

times:

• U generates random values (t1, t
′
1), .., (tb, t

′
b) and random permutation π, then

sends to SpotrV the proof set Pi−1 = π{RE(tl, t
′
l, Ci−1[l]), l = 1..b}.

• U generates random values (w1, w
′
1), .., (wb, w

′
b). It sends to SpotrV the proof

set Pi = π{RE(wl, w
′
l, Ci[l]), l = 1..b}

• SpotrV generates a random bit a and sends it to U .

• If a = 0, U reveals random values (t1, t
′
1), .., (tb, t

′
b) and (w1, w

′
1), .., (wb, w

′
b).

SpotrV

verifies that for each l = 1..b, RE(tl, t
′
l, Ci−1[l]) occurs in Pi−1 exactly once,

and that for each l = 1..b, RE(wl, w
′
l, Ci[l]) occurs in Pi exactly once.

• If a = 1, U reveals ol = vlwlt
−1
l and o′l = v′lw

′
lt
′−1
l , for all l = 1..b along with j,

the position in Pi−1 and Pi of the incremented counter. SpotrV verifies that

for all l = 1..b, l ̸= j, RE(ol, o
′
l, Pi−1[l]) = Pi[l] and RE(oj, o

′
j, Pi−1[j]y) = Pi[j].

• If any verification fails, SpotrV aborts the protocol.

Preventing Venue-User Collusion

For simplicity of presentation, we have avoided the Sybil attack problem: par-

ticipants that cheat through multiple accounts they control or by exploiting the

anonymizer. For instance, a rogue venue owner, controlling k-1 Sybil user accounts

or simulating k-1 check-ins, can use ProfilR to reveal the profile of a real user. Con-

versely, a rogue user (including the venue) could bias the statistics built by the
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venue (and even deny service) by checking-in multiple times in a short interval.

Sybil detection techniques (see Section 2.1.2) can be used to control the number

of fake, Sybil accounts. However, the use of the anonymizer prevents the provider

and the use of the unique IP and MAC addresses prevents the venue from differ-

entiating between interactions with the same or different accounts. In this section

we propose a solution, that when used in conjunction with Sybil detection tools,

mitigates this problem. The solution introduces a trade-off between privacy and

security. Specifically, we divide time into epochs (e.g., one day long). A user can

check-in at any venue at most once per epoch. When active, once per epoch e,

each user U contacts the provider S over an authenticated channel. U and S run a

blind signature [Cha82] protocol: U obtains the signature of S on a random value,

RU,e. S does not sign more than one value for U for any epoch. In runs of Spotter

and CheckIn during epoch e, U uses RU,e as its pseudonym (i.e., MAC and IP

address). Venues can verify the validity of the pseudonym using S’s signature. A

venue accepts a single CheckIn per epoch from any pseudonym, thus limiting the

user’s impact on the LCP. The privacy breach mentioned above is due to the fact

that now S can correlate CheckIns executed using the same RU,e. However, S does

not know the real user identity behind RU,e – due to the use of blind signatures.

Snapshot LCP

We extend ProfilR to allow not only venues but also users to collect snapshot LCPs

of other, co-located users. To achieve this, we take advantage of the ability of

most modern mobile devices (e.g., smartphones, tablets) to setup ad hoc networks.

Devices establish local connections with neighboring devices and privately compute

the instantaneous aggregate LCP of their profiles.
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Snapshot ProfilR

We assume a user U co-located with k other users U1, .., Uk. U needs to generate

the LCP of their profiles, without infrastructure, GSN provider or venue support.

An additional difficulty then, is that participating users need assurances that their

profiles will not be revealed to U . However, one advantage of this setup is that loca-

tion verification is not needed: U intrinsically determines co-location with U1, .., Uk.

Snapshot ProfilR consists of three protocols, {Setup, LCPGen, PubStats}:

Setup(U(r), U1, .., Uk()): U runs the following steps:

• Run the key generation function KG(l) of the Benaloh cryptosystem (see

Section 5.2.4). Send the public key n and y to each user U1, .., Uk.

• Engage in a multi-party secure function evaluation protocol [JJ00] with U1, .., Uk

to generate shares of a public value R < n. At the end of the protocol, each

user Ui has a share Ri, such that R1..Rk = R mod n and Ri is only known to

Ui.

• Assign each of the k users a unique label between 1 and k. Let U1, .., Uk denote

this order.

• Generate C0 = {E(x1, x
′
1, 0, 1), .., E(xb, x

′
b, 0, b)}, where xi, x

′
i, i = 1..b are

randomly chosen. Store C0 indexed on dimension D.

Each of the k users engages in a 1-on-1 LCPGen with U to privately and correctly

contribute her profile to U ’s LCP.

LCPGen(U(Ci−1), Ui()): Let Ci−1 be the encrypted counters after U1, .., Ui−1 have

completed the protocol with U . U sends Ci−1 to Ui. Ui runs the following:

• Generate random values (v1, v
′
1), .., (vb, v

′
b). Let j be the index of the range

where Ui fits on dimension D.

187



• Compute the new encrypted counter set Ci as: Ci = {RE(vl, v
′
l, Ci−1[l])Ri mod n|l =

1..b, l ̸= j} ∪ RE(vj, v
′
j, Ci−1[j] + +)Ri mod n} and send it to U .

• Engage in a ZK-CTR protocol to prove that Ci ∈ C̄i−1. The only modification

to the ZK-CTR protocol is that all re-encrypted values are also multiplied with

Ri mod n, Ui’s share of the public value R. If the proof verifies, U replaces

Ci−1 with Ci.

After completing LCPGen with U1, .., Uk, U ’s encrypted counter set is Ck = {Ej =

E(uj, u
′
j, cj, j)R1..Rk|j = 1..d}, where uj and u′

j are the product of the obfuscation

factors used by U1, .., Uk in their re-encryptions. The following protocol enables U

to retrieve the snapshot LCP.

PubStats(U(Ck)) : Compute EjK, ∀j = 1..d, where K = R−1 mod n (R =

R1..Rk), decrypt the outcome using the private key (p, q) and publish the resulting

counter value. U verifies that the j-th decrypted record is of format (cj, j) and that

the sum of all counters equals k. If any verification fails, U drops the statistics -

a cheater exists. Otherwise, the resulting counters denote the aggregate stats of

U1, .., Uk.

Even though U has the private key allowing it to decrypt any Benaloh ciphertext,

the use of the secret Ri values prevents it from learning the profile of Ui, i = 1..k.

This protocol is a secure function evaluation - the participants learn their aggre-

gated profiles, without learning the profiles of any participant in the process. We

note however that existing SFE solutions cannot be used here: We need to ensure

the input user profiles are correct, that is, each user increments a single counter.
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6.4.2 Safety for Geosocial Networks

Location based Safety

We exploit the crime dataset to define an initial, location-centric safety metric. We

divide space into census blocks. We divide time into fixed-length epochs, e.g., 1

hour long, 24 epochs per day. To understand the need for a time dependent safety

metric, we have studied the evolution in time of crimes reported within blocks of

the Miami-Dade county. Figure 6.2 shows the evolution over seven consecutive days

(Wed.-Tue., July 13-19, 2011) of the number of crimes reported within one such

block, with a 3 hour time granularity. Most of the events are larcenies. The plot

shows that the number of crimes reported varies abruptly throughout a day. Case

in point, on the depicted Saturday, 7 crimes are reported between hours 15-18, 3

crimes between 18-21 and 0 between 21-24. Thus, a time-invariant aggregate of past

crime events is unlikely to accurately define the present. The supplemental material

includes a similar plot, drawn for the same block, over an interval of 18 consecutive

weeks.

Block crime and safety indexes. For a census block B and an epoch e denoted

by the time interval ∆T , let C(B,∆T ) represent a c-dimensional vector, where the

i-th entry denotes the number of crimes of type CT [i] recorded in block B during

interval ∆T . Let W denote a c-dimensional vector of weights; each crime type of

CT (defined in Section 6.4.2) has a weight proportional to its seriousness (defined

shortly). Let BC(∆T ) denote the population count recorded for block B. We then

define the crime index of block B during interval ∆T as

CI(B,∆T ) = min{C(B,∆T )W

BC(∆T )
, 1} (6.1)

where C(B,∆T )W denotes the vectorial product between the number of crimes

per type and the weights of the crime types. That is, B’s crime index is the per-
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Crime Type Weight
Assault 0.176
Robbery 0.180
Rape 0.307

Homicide 0.336

Table 6.1: Crime weight assignment using the FCPC.

capita weighted average of crimes recorded during interval ∆T . The safety index

SI of block B during interval ∆T is then defined as

SI(B,∆T ) = 1− CI(B,∆T ) (6.2)

Both the CI and SI metrics take values in the [0, 1] interval. In the evaluation

section we show that crime index values of blocks in the Miami-Dade county are

always smaller than 1. Higher SI(B,∆T ) values denote safer blocks.

Crime weight assignment. We need to assign meaningful weights to the crime

types CT . An inappropriate assignment may make a large number of “lighter” of-

fenses overshadow more serious but less frequent crime events, (e.g., consider larce-

nies vs. homicides). We propose to assign each crime type a weight proportional to

its seriousness, defined according to the criminal punishment code, i.e., the Florida

Criminal Punishment Code (FCPC) [oC]. The FCPC is divided into levels ranging

1-10, and each level Lk contains different types of felonies. The higher the level,

the more serious is the felony. Each felony has a degree, (i.e., capital, life, first, sec-

ond and third degree, sorted in decreasing order of seriousness), with an associated

punishment (years of imprisonment) [Hor].

Let Lk denote the set of felonies within level k and let Pk denote the set of

corresponding punishments. Let lk = |Lk| denote the number of felonies within
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level k. Then, we define the weight of crime type CT [i], wi, as

wi =
10∑
k=1

ρk
Pk[i]∑lk
j=1 Pk[j]

,

where ρk = k/
∑10

i=1 i is the weight assigned to level k (normalized to the sum of the

number of levels). Thus, the weight of crime type CT [i] is the weighted sum of the

per-level punishment value (Pk[i]) associated with the occurrence of CT [i] within

the felonies of level k, normalized to the total punishment of level k. Table 6.1 shows

the resulting weights.

Example. We study the impact of level L8 on the weight of the “Robbery” crime.

Out of the felonies represented on level 8, two are related to “Robbery”: “Rob-

bery with a weapon” and “Home-invasion robbery”. Both are first degree felonies,

therefore punishable with up to 30 years of imprisonment. The other represented

felonies are “Homicide”, with 6 different counts, for a total of 135 years penalty and

“Rape”, with 1 count of up to 15 years penalty. Thus, the contribution of level 8 to

the weight of “Robbery” is 8
55

× 60
60+135+15

= 0.0415.

Illustration. We use the Miami-Dade crime set to illustrate the geographic dis-

tribution of block-level safety index information, where the epoch, denoted by the

interval ∆T , is the year 2010. We use the census dataset to extract the population

count BC(∆T ). Figure 6.3 shows the color-coded safety index for each block group

in the Miami-Dade county (FL) where crimes have been reported during 2010. The

safety index considers only crimes against persons. Grey blocks have a very low

reported crime level. Green blocks denote safer locations while darker yellow and

red blocks denote areas with more reported crimes.

Predicting Safety

The crime index computation of Equation 6.1 can only be performed for past epochs,

when all crime events have been reported. Safety information however is most useful
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Figure 6.3: Safety index illustration for the Miami-Dade county: SI(B,∆T ) values
are mapped into color-coded “safety levels”: the higher the level, the safer the block.

when provided for the present or near future. One way to predict the crime index

of a block B for the next epoch (denoted by the interval ∆T ), PCI(B,∆T ), is

the average crime index of the block during the same epoch in the day for the

past d days, where d is a system parameter (e.g., d=7 for 1 week of recorded per-

block history). This solution however is unable to detect and factor in all crime

periodicities, including seasonal, weekly and daily fluctuations. As such, it may

include unnecessary errors – e.g., higher number of crimes in a past August may

introduce inaccuracies in the crime index considered in the current month of April.

We propose to address this issue through the use of the time series forecasting

techniques discussed in Section 5.2.4. Specifically, we use time series forecasting

tools to compute long and short term predictions of the number of crimes to be

committed within an area (e.g., census block, zipcode, city, etc), based on the area’s

recorded history. Section 6.5.2 evaluates the ability of the time series forecasting

tools to accurately predict near-future crime counts.
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Predicting crime and safety indexes. At the beginning of each epoch (denoted

by the time interval ∆T ), compute predictions for the number of crimes of each crime

type to be reported at each census block B during the epoch. Let PC(B,∆T )[i]

denote the predicted number of crimes of type CT [i]. Using a formula similar

to Equation 6.1 compute the predicted crime index for B during interval ∆T as

PCI(B,∆T ) = min{PC(B,∆T )W/BC(∆T ), 1}. The predicted safety index is

then PSI(B,∆T ) = 1− PCI(B,∆T ).

Personalized, Context-Aware Safety

The ultimate goal of defining crime and safety indexes is to provide users with safety

advisory information. People are however not equally exposed and vulnerable to all

crime types. Age, gender and an array of personal features, preferences and choices

play a central role on the perception of an individual’s safety. Since such informa-

tion may not be readily accessible, we use instead the localization capabilities of

a user’s mobile device to periodically record and locally store her trajectory trace.

This enables us to define the crime index level with which a user is comfortable: the

average crime index of the locations in her trajectory. We then introduce personal-

ized safety recommendations both when enough crime information exists to enable

the prediction of the near-future crime index of a location and when insufficient such

information exists.

We propose to exploit the context of a location, through the people located

there. We use the trajectory trace of the user to define the chance of a crime to

occur around the user and generalize this approach to compute the chance of a crime

to occur around groups of users. This enables us to introduce the concept of context

aware safety : a user is safe if the chance of a crime to occur around her equals or

exceeds the chance of a crime to occur around her co-located users.

193



Personalized User Safety.

We extend the crime and safety index definitions from locations to users. We

assume the device can capture the location of the user with block level precision.

Let TJU = {[Bi, Ti, CI(Bi,∆Ti)]|i = 1..h} denote the trajectory trace of user U ,

consisting of recorded [block, epoch, crime index] tuples. ∆Ti denotes the epoch

containing time Ti, when U was present at block Bi, Ti ∈ ∆Ti. For privacy reasons,

we require each user to store her trajectory trace on her device.

We define the vicinity crime metric for a user U , VU to be the percentage of

the user’s trajectory places where crimes have been reported around the time of her

visit:

VU =

∑h
i=1 sgn(CI(Bi,∆Ti))

h
(6.3)

sgn(x) denotes the sign function, that is 0 when x is 0 , and 1 when x is larger than

0. For instance, if a user has 100 locations in her trajectory and crimes have been

reported at 60 of those locations during the epoch of the user’s presence, the user’s

vicinity crime metric is 60%. We then define the crime index of a user U to be the

average crime index of locations in her trajectory:

CIU =

∑h
i=1CI(Bi,∆Ti)

h
(6.4)

Safety Decision With Accurate Crime Data.

We assume first that user U is located at time Tc in a block B, where accu-

rate past crime data exists. This allows the proper prediction of the crime index,

thus the computation of the predicted crime index PCI(B,∆T ), as specified in Sec-

tion 6.4.2. ∆T denotes the current epoch, Tc ∈ ∆T . We then introduce the notion

of personalized safety recommendation:
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Definition 6.4.1 (Personalized safety). A user U is safe at a block B within time
interval ∆T , if CIU ≥ PCI(B,∆T ).

Intuition. A user is safe if the user’s crime index equals or exceeds the block’s

crime index predicted for the duration of the user’s presence. If the crime index

of the user’s current block, predicted for the epoch of the user’s presence, does not

exceed the user’s level of comfort, it means the user has spent at least half of her

time in locations with more crime than the current location. Thus, the user is likely

to be comfortable with the crime level of her current location.

Safety Decision Without Accurate Crime Data.

Certain locations may have insufficient crime data to ensure an accurate predic-

tion of the location’s crime index. For instance, as shown in Figure 6.2, the number

of recorded events can quickly spike or drop to 0 in short time intervals. Accurately

predicting event counts within a short time interval is difficult, as the difference

between 0 and 1 crimes is significant. This is the case also during unexpected events

(natural and man made disasters) when the future does not reflect the past. To

address this issue, we propose to use existing context information, collected from

co-located users.

Our approach is the following. We define the safety index of a user U to be the

chance of no event being reported in her vicinity: SIU = 1 − VU . Let U1, .., Uk be

the users co-located with user U . We define a super user SUP1..k, as a fictitious

user whose trajectory trace encompasses the trajectories of users U1, .., Uk. That

is, TJU1..k
= TJU1 ∪ .. ∪ TJUk

. We note that both users and super users can be

located in multiple blocks during the same epoch. We then use Equation 6.3 to

compute the vicinity crime metric of SUP1..k, VSUP1..k
. We define the safety index,

SISUP1..k
= 1 − VSUP1..k

. These definitions enable us to introduce the notion of

personalized safety recommendation:
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Definition 6.4.2 (Context-aware safety). A user U is safe in a context consisting
of neighboring users U1, .., Uk, if SIU ≤ SISUP1..k

, i.e., VU ≥ VSUP1..k
.

Thus, a user is safe if surrounded by users whose aggregate safety index is higher

or equal to the user’s safety index.

Intuition. The safety index of a user encodes the probability that no event occurs

around the user. The safety index of a group of users (e.g., SUP1..k) is defined as

the chance that no event occurs around the group. Definition 6.4.2 states that a

user is safe if it is surrounded by a group of users whose aggregated chance of no

event occurring is higher or equal to the user’s chance of no event occurring. A low

safety index value does not imply the user is unsafe, but merely the fact that the

user spends time in places where events do occur. If the location sampling process is

done periodically, the formula naturally ensures that blocks where the user spends

more time have more impact on the user’s safety index. Being around a group of

users whose aggregated safety index is low suggests that the place is likely to have

a low safety level.

Factoring in duration of stay. The duration of a user’s presence within a block

needs to be considered when determining the user’s safety. For instance, walking

through an unsafe block should be avoided. However, when driving on a highway,

an unsafe block raises lower safety concerns. One way to address this issue is by

using smaller epochs. Another approach is, given a user’s trajectory trace, predict

the time the user will spend within the current block. The block should raise safety

concerns only if the predicted interval exceeds a certain threshold.

iSafe.

User trajectories contain sensitive information, including blocks of interest and

behavior patterns. We introduce iSafe, a distributed algorithm that allows the aggre-

gation of trajectory traces of co-located users while preserving the privacy of involved
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participants. iSafe achieves this by taking advantage of the wireless communication

capabilities of user mobile devices to form short lived, ad hoc communities.

Overview. iSafe contacts the neighboring devices, reachable over local wireless

interfaces, that run iSafe. If their number exceeds a (system wide) parameter value,

iSafe initiates a multiparty computation. The procedure enables iSafe to privately

and distributively compute the total number of blocks visited by the owners of those

devices as well as the total number of blocks visited that had crimes committed

during their presence. This enables iSafe to compute their aggregated vicinity crime

index, and rely on Definition 6.4.2 to decide the user’s safety.

Details. Algorithm 4 contains the pseudocode of iSafe. Its main procedure is

safetyDecision(∆T ), executed periodically by a client C, at C’s current block, B.

In the first step, C contacts the service provider S, storing the crime and Census

datasets. C retrieves the predicted crime index of the block B where the user

is located. This operation is performed privately, by using a private information

retrieval technique [Gas04]. This prevents S from learning the current location of

C.

If the crime index of the block can be accurately predicted, the operation returns

the decision according to Definition 6.4.1. Otherwise, it invokes the cas operation.

cas first discovers all the ad hoc neighbors of the user. If the number of neighbors is

below a system-wide threshold value, NThr, it returns -1: not enough information

exists to provide an accurate recommendation, and not enough privacy is provided.

Otherwise, it invokes the multiPartySum operation twice, with different input ar-

guments. When invoked with argument 0, multiPartySum calculates BWCSUP ,

the sum of the blocks with crimes visited by all the user’s neighbors. When invoked

with argument 1, multiPartySum calculates TBlkSUP , the sum of the total blocks

visited by all the user’s neighbors.
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Algorithm 4 iSafe pseudocode.

1.Object implementation iSafe;
2. neighbor[] N; #set of neighbors

3. double CI, SI; #crime, safety indexes

4. double V; #vicinity crime prob

5. BigInteger R; #random value

6. BigInteger[] shares; #set of shares

7. BigInteger[] NShares; #shares of neighbors

8. int BWC; #blocks with crime

9. int TBlk; #total blocks visited

10.Operation int safetyDecision(Epoch ∆T)

11. B := getCurrentBlock();
12 PCIB := S.getPCI(B, ∆T);
13. if (PCIB! = −1) then return (CI ≥ PCIB);
14. else return cas(); fi end

15.Operation int cas()
16. N := discoverNeighbors();
17. if (N.size < NThr) then return− 1;
18. BWCSUP := multiPartySum(0)− BWC;
19. TBlkSUP := multiPartySum(1)− TBlk;
20. return(V ≥ BWCSUP/TBlkSUP); end

21.Operation BigInteger multiPartySum(int type)

22. R := getRandom();
23. shares := split(R, N.size);
24. for i := 1 to N.size do
25. send(N[i], shares[i]);
26. NShares[i] := recv(N[i]); od
27. int order := electLeaderOrder();
28. BigDecimal S := 0; int count := 0;
29. while (count < N.size) do
30. count := count+ 1;
31. if (count = order) then
32. if (type = 0) then S := S+ BWC+ R;
33. else S := S+ TBlk+ R; fi
34. for i := 1 to |N| do S := S− NShares[i];od
35. mcast(S);
36. else S := recv(); fi od
37 return S; end
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ThemultiPartySum operation is a secure multi-party sum evaluation. It achieves

privacy through the use of (i) frequently changing, random MAC addresses for user

devices and (ii) secret splitting. Each client generates a random value and splits it

into shares – one for each neighbor. That is, if the random value is R, the shares

sh1, .., shk are generated randomly such that
∑k

i=1 shi = R. The client sends each

share to one neighbor and receives a share from each neighbor. The clients engage

in a leader election and order selection distributed algorithm, where each client is

assigned a unique identifier, between 1 and k.

When a client’s turn comes, according to the order established, it adds either the

user’s BWC value (number of census blocks with events visited by the user) or the

user’s TBlk value (total number of blocks visited), according to the input variable

type, and adds its random value R to the overall sum (S). It then subtracts all the

shares of secrets of its neighbors and sends a multicast of the result, reaching all

its neighbors. If it is not the user’s turn to transmit, the client waits to receive the

multicast values of its neighbors.

The ratio of the computed BWCSUP and TBlkSUP values is the vicinity crime

metric of the super user representing the neighbors of C. cas returns the safety

decision of Definition 6.4.2.

Analysis.

We first define the notion of location privacy in terms of the inability of an

adversary A to guess the location of a user with probability non-negligibly higher

than 1/n, where n is the number of blocks supported by the system.

Definition 6.4.3 (Location Privacy). Let A control the provider S and any number
of clients, such that the number of clients controlled by A at any location is at most
NThr−h, where NThr and h > 1 are integer parameters. The challenger C controls
one client, Client. A contacts C at any time T . C invokes safetyDecision(∆T )
on behalf of Client, where B denotes the current block of Client and T ∈ ∆T . A
outputs B′, its guess of the block B where Client is located. We say a solution
provides location privacy if the advantage of A in this game, AdvA = |Pr[B′ =
B]− 1/n| is negligible.
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We introduce several results whose proofs are included in the supplemental ma-

terial, along with techniques for preventing an adversary from tampering with safety

information.

Theorem 2 An adversary A controlling k − h out of k participants in the iSafe
algorithm, can only find the sum of the input values of the remaining h honest
participants.

Theorem 3 iSafe provides location privacy.

An adversary can attempt to use iSafe to identify and target areas considered

to be safe. However, safety is personalized: areas denoted “safe” for the adversary

may not necessarily be safe for other users, who may in effect avoid them. iSafe is

also adaptive: newly reported incidents as well as the lack of incidents are used to

continuously adjust block safety values.

iSafe Implementation

We implemented iSafe as a (i) web server, (ii) a browser plugin running in the user’s

browser and (iii) a mobile app.

Browser Plugin.

We implemented a plugin for the Chrome browser using HTML, CSS and Javascript.

The plugin interacts with Yelp pages and the web server, using content scripts

(Chrome specific components that let us access the browser’s native API) and cross-

origin XMLHttpRequests. The plugin becomes active when the user navigates to a

Yelp page. For user and venue pages, it parses their HTML files and retrieves their

reviews. We employ a stateful approach, where the server’s SQLite DB stores all

reviews of pages previously accessed by users. This enables significant time savings,

as the plugin needs to send to the web server only reviews written after the date of

the last user’s access to the page.

Given the venue’s set of reviews, the server determines the corresponding review-

ers. The crime index of blocks of venues reviewed by each user generate the crime
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(a) (b)

Figure 6.4: Snapshots of iSafe on Android.

index of the user. Crime indexes of reviewers are used to compute the crime index

of the venue. The server sends back this information, which the plugin displays

in the browser using color codes, ranging from green (safe) to red (unsafe). The

supplemental material shows a snapshot of the browser plugin.

Mobile iSafe.

We have implemented the location centric static safety labeling component of

mobile iSafe using Android. We used the Android Maps API to facilitate the location

based service employed by our approach. iSafe periodically retrieves the user’s

current GPS location, derives the current census block and also the corresponding

crime index. It stores the user’s trajectory as one record [block, time, crime index]

in a local SQLite database. The initial threshold value for creating a new record is

60 seconds.

iSafe uses Bluetooth to compute the vicinity crime metrics of the user’s neigh-

bors. We implemented a client-server Bluetooth communication protocol where

each device acts as a server and other connected devices act as clients per P2P
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Figure 6.5: iSafe browser plugin overhead: Collecting reviews from venues, as a
function of the number of reviews.

communication. When compared to Wi-Fi, Bluetooth has drawbacks concerning

the transmission range, complexity of the pairing process and the number of com-

municating peers. However, it also has an important advantage: energy efficiency.

Bluetooth consumes less energy than Wi-Fi interfaces, particularly when idle, thus

motivating users to leave it always on. iSafe has a separate background service that

displays in the status bar of the Android device, the safety color label of the user’s

current location. Figures 6.4(a) and 6.4(b) show snapshots of the functionality of

the mobile iSafe application.

6.5 Empirical Evaluation

6.5.1 Evaluation of ProfilR .

For testing purposes we have used Samsung Admire smartphones running Android

OS Gingerbread 2.3 with a 800MHz CPU and a Dell laptop equipped with a 2.4GHz

Intel Core i5 processor and 4GB of RAM for the server. For local connectivity the
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Figure 6.6: Setup dependence on Benaloh modulus size. Note the significant increase
to 13.5s for a 2048 bit modulus. This cost is however amortized over multiple check-
in executions.

devices used their 802.11b/g Wi-Fi interfaces. All reported values are averages taken

over at least 10 independent protocol runs.

We have first measured the overhead of the Setup operation. If d is the number

of profile dimensions, N is the Benaloh modulus size and b the sub-range count of

domain D, the computation overhead of Setup is TSetup = Tkeysig + dbTE + TTSS.

Tkeysig is the time to generate the signature key, TE is the average time of Benaloh

encryption and TTSS is the time to initialize the TSS (i.e., random polynomial

generation). The storage overhead of Setup is StoreSetup = dbN .

We set the b to be 10, Shamir’s TSS group size to 1024 bits and RSA’s modulus

size to 1024 bits. Figure 6.6 shows the Setup overhead on the smartphone and laptop

platforms, when the Benaloh modulus size ranges from 64 to 2048 bits. Note that

even a resource constrained smartphone takes only 2.2s for 1024 bit sizes (0.9s on

a laptop). A marked increase can be noticed for the smartphone when the Benaloh

bit size is 2048 bit long - 13.5s. We note however that this cost is amortized over

multiple check-in runs.
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The computation overhead of CheckIn is TCI = bTRE + TZK , where TRE is

the Benaloh re-encryption cost and TZK is the overhead of the ZK-CTR protocol.

The formula does not consider the cost of modular multiplication, random number

generation and random permutation operations, that are neglibile compared to the

other costs. Given s, the number of rounds of ZK-CTR, TZK = 2sbTRE + sbTRE +

s
2
bTRE = 7

2
sbTRE. The communication overhead is Tcom CI = bN + Tcom ZK . The

communication cost of ZK-CTR, Tcom ZK is s(2bN + 1
2
4bN + 1

2
2bN) = 5sbN .

We now focus on the most resource consuming component, the ZK-CTR proto-

col. While the above formulas assume similar capabilities for the client and venue

components, we now measure the client side running on the smartphone and the

venue component executing on the laptop. Figure 6.7 shows the dependence of the

three costs for a single round of ZK-CTR on the Benaloh modulus size. Given the

more efficient venue component and the superior computation capabilities of the

laptop, the venue component has a much smaller overhead. We have set b = 10.

The communication overhead is the smallest, exhibiting a linear increase with bit

size. For a Benaloh key size of 1024 bits, the average end-to-end overhead of a single

ZK-CTR round is 135ms. The venue component is 29ms and the client component

is 106ms. Furthermore, Figure 6.8 shows the overheads of these components as a

function of the number of ZK-CTR rounds, when the Benaloh key size is 1024 bit

and b = 10. For 30 rounds, when a cheating client’s probability of success is 2−30 (1

in a billion), the total overhead is 3.6s.

We further examine the communication overhead in terms of bits transferred

during ZK-CTR between a client and a venue. The communication overhead in a

single ZK-CTR round is 4bN + 3bN = 7bN . The second component of the sum is

due to the average outcome of the challenge bit. Figure 6.9 shows the dependency

of the communication overhead (in KB) on b, when N = 1024. Even when b = 20,
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Figure 6.9: Storage and communication overhead (in KB) as a function of b, the
number of sub-intervals considered in the statistics computation. Even for b=20,
the storage overhead is only 5KB and the communication is 17KB.

the communication overhead is around 17KB. Figure 6.9 shows also the storage

overhead (at a venue). The storage overhead is only a fraction of the (single round)

communication overhead, 2BN . For a single dimension, with 20 sub-ranges, the

overhead is 5KB.

6.5.2 Evaluation Results for iSafe
Browser Plugin Performance

Figure 6.5 shows the overhead of the iSafe plugin when collecting the reviews of a

venue browsed by the user, as a function of the number of reviews the venue has.

It includes the cost to request each review page, parse and process the data for

transfer. It exhibits a sub-linear dependence on the number of reviews of the venue

(under 1s for 10 reviews but under 30s for 4000 reviews), showing that Yelp’s delay

for successive requests decreases. While even for 500 reviews the overhead is less

than 5s, we note that this cost is incurred only once per venue. Subsequent accesses

to the same venue, by any other user, no longer incur this overhead.
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Figure 5.a Figure 5.b Figure 5.c
Model RMSE MAPE RMSE MAPE RMSE MAPE
ARIMA 158.80 6.42 38.77 7.08 1.27 43
LES 151.03 6.79 53.57 11.89 1.41 42.08
ANN 116.48 5.32 40.44 8.23 1.3 35.72

Table 6.2: Error measurement data for ARIMA, LES and ANN. Figures reference
to the main document.

Forecasting Accuracy

We investigate here the accuracy of the time series forecasting techniques discussed

in Section 5.2.4 in predicting the number of crimes to occur at a location during

the near future. We used the R statistical software package [R D11] to generate the

ARIMA model and MATLAB toolboxes [MAT10] for the LES and ANN models. In

the following, we analyze separately three crime types: aggravated assault, robbery

and larceny/theft that make up for more than 75% of the total amount of crimes.

For ANN, we set the maximum lag to 12 (to cover the last 12 months/weeks in the

lag structure), and the learning rate to 0.1. While a learning rate of 0.4 worked well,

we set it to 0.1 to ensure convergence. The higher the learning rate, the faster the

network is trained.

We used crime data recorded between 2007 and 2010 to predict per-month cat-

egorized event counts for the year 2011, for the Miami-Dade county. Figure 6.10(a)

compares the predictions for the number of assaults made by ARIMA, LES and

ANN against the recorded values. For ARIMA, we set p=1, q=1, d=1. Details for

choosing the ARIMA parameters are provided in supplemental material. All three

models correctly predict the downward trend from May until December, with ANN

achieving a slightly better accuracy than LES and ARIMA. Figure 6.10(b) compares

the predictions for the number of robberies. For ARIMA, we set p=3, q=0, d=1.

All models accurately predict the initial increase followed by a slight decrease in the
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Figure 6.10: Crime Forecasting experiments in Miami-Dade: (a) Prediction of as-
saults. (b) Prediction of robberies. (c) Prediction of assaults in a given block.
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number of robberies. ARIMA and ANN outperform the LES model as confirmed by

the RSME and MAPE values (see Table 6.2). ARIMA slightly outperforms ANN.

We further focus on finer grained spatial and temporal predictions: per-block,

weekly events. For ANN, we partition the input data into 95 training vectors and 10

test vectors. Figure 6.10(c) compares the recorded data against the ARIMA, LES

and ANN predictions of assault events in the last ten weeks of 2011, for one block

in the Miami-Dade county. The ARIMA parameters are p=1, q=1, d=0.

Yelp Safety Profiles

We have collected public information from the accounts of 2025 Yelp users, all res-

idents of the Miami-Dade county. The information collected for each user includes

the number of reviews, the venues reviewed, existing check-ins at any venues, and

the date when each review and check-in was recorded. We build the crime index, CI,

value for each Census block from the Miami-Dade county in 2010. Figure 6.11(a)

shows the cumulative distribution function of the CI values (Figure 6.3 shows their

spatial distribution). It shows that for the Miami-Dade county, most blocks experi-

ence relatively low levels of crime per-capita: 50% of blocks have a CI value smaller

than 0.0015 and only 5% of blocks have CI values exceeding 0.01.

Given the CI values of the blocks containing the venues visited (reviewed or

subject of a check-in) by a yelper (Yelp user), we compute the user’s crime index

value, as defined by Equation 6.4, then the user’s safety index: SIU . Out of the

2025 collected yelpers, 1194 had written reviews in 2010. Figure 6.12 shows the

distribution of the safety index values of these 1194 yelpers. It shows that most

Miami-Dade county yelpers are safe: all have a safety index value larger than 0.96

(1 is the maximum value), with 90% of them exceeding 0.99.
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Figure 6.11: (a) Distribution of block crime index values in the Miami-Dade county.
(b) Evolution in time of the SI value of a Miami-Dade block and the average SI
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Figure 6.12: Distribution of safety index values of Yelp users.

We further compare the evolution in time of the safety index SIB of a block B

with the average safety index values over the Yelp users that visited B (and left

feedback). To this end, based on the crime database, for each month we calculate

the SI value of each block in the Miami-Dade county. We then compute the monthly

average of safety index values of yelpers that reviewed venues within B (during the

month). Figure 6.11(b) shows the monthly evolution of the SIB value of a Miami-

Dade block and the average safety index value of the Yelp users that visited the
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block during 2010. For this block, the two metrics have similar values. This shows

that an average of the safety indexes of the block’s visitors can be used to replace a

crime-based safety index for the block.

Android iSafe Evaluation

We have created a testbed consisting of 4 Android smartphones: Samsung Admire

(OS: Gingerbread 2.3.4), HTC Aria (OS: Eclair 2.1), Sony E10i (OS: Eclair 2.1) and

Samsung GALAXY S II (OS: Gingerbread 2.3.4). For single device testing, we used

the Samsung Admire smartphone with a 800MHz CPU. Thus, we set the NThr

value to 3 and the number of secret shares to 4. In the following, all reported values

are averages over at least 10 independent protocol runs.

We have first measured the overhead of the secret share generation and recon-

struction operation. Figure 6.13(a) shows the overhead on the smartphone, when

the modulus size ranges from 64 to 1024 bits. Note that even a resource constrained

smartphone takes only 4.5 ms and 16 ms for secret splitting and reconstruction even

for 1024 bit long moduli.

Furthermore, we focus on the time and space communication overhead for a

single device as well as for the 4 connected devices in our testbed. Figure 6.13(b)

shows the dependence of the communication time on the modulus bit size. Even

for a modulus size of 1024 bits, the average end-to-end communication overhead of

a single device is 342ms and 1.3s of our whole system. Figure 6.13(c) shows the

dependency of the communication overhead (in KB) on the modulus size ranging

from 64 to 1024 bits, for a single device and for the whole system of 4 connected

devices. Even for 1024 bit moduli, the total communication overhead is around

3KB.
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Figure 6.13: Android iSafe overhead. (a) Secret share generation and secret re-
construction time overhead. (b) iSafe communication overhead. (c) iSafe total
communication size.
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6.6 Limitations

Our holistic approach toward evaluating the safety of a user was evaluated based on

crime and census data from the Miami-Dade (FL) county. We proposed to assign

each crime type a weight proportional to its seriousness, defined according to the

criminal punishment code, i.e., the Florida Criminal Punishment Code (FCPC) [oC]

which may be different state-wise. To make our approach more generalized, we need

to overcome this limitation.

6.7 Summary

At first, we proposed ProfilR , a framework and mechanisms for privately and cor-

rectly building location-centric profiles. We have proved the ability of our solutions

to satisfy the privacy and correctness requirements and shown that ProfilR is ef-

ficient, even when executed on resource constrained mobile devices. We then in-

troduced one major application for ProfilR : smart and safe cities by proposing

several techniques for evaluating the safety of users based on their spatial and tem-

poral dimensions and crime data. We have shown that data collected by geosocial

networks bears relations with crimes.Our Android and browser plugin implementa-

tions show that our approach is efficient both in terms of the computation and the

communication overheads.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Online social networks are central to numerous aspects of people’s daily online

and physical activities. People rely on online reviews to make decisions on purchases,

services and opinions, among others. Unfortunately, online social networks have also

become an attractive target for malicious behaviors, mainly due to the popularity

and influence of different forms of media data in people’s lives. We have demon-

strated that our proposed solutions can be used to significanly enhance the data

authentication capability of some important products in online social networks. In

this dissertation, the problem of authenticating different forms of data (e.g. media,

reviews, sensor data) present in online social networks has been discussed. Specif-

ically, four related but orthogonal concrete problems have been studied: 1) the

fraudulent behavior detection problem in review centric social networks and social

app markets; 2) the video liveness verification problem to verify the authenticity of

a video captured in mobile devices; 3) Secure data storage and communication prob-

lem to protect low power wearable fitness trackers from security vulnerabilities; and

4) the conflict between profit and privacy in geosocial networks. We have demon-

strated that the proposed solutions can be used to address these security challenges

in online social networks.

In chapter 2, we propose, develop and evaluate a system, Marco that exploits

the unique combination of social, spatial and temporal signals gleaned from Yelp,

to detect venues whose ratings are impacted by fraudulent reviews. Our approach

increases the cost and complexity of attacks, by imposing a tradeoff on fraudsters,

between their ability to impact venue ratings and their ability to remain undetected.

We demonstrate that Marco is effective and fast; its classification accuracy is up

to 94% for reviews, and 95.8% for venues while outperforming the state-of-the-
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art approaches by a large margin (around 20%). It flags 244 of the 7,435 venues

analyzed as deceptive; manual inspection revealed that they were indeed suspicious.

Furthermore, we use Marco to evaluate the impact of Yelp events, organized for

elite reviewers, on the hosting venues and we show that twice as many hosting

venues experience a significant rating boost rather than a negative impact. We have

also investigated the fraudulent behaviors in Google’s Android app market. We

propose and develop a system, FairPlay that combines relational, behavioral and

linguistic indicators as well as longitudinal app data to identify both malware and

apps involved in search rank fraud. FairPlay’s accuracy in classifying gold standard

datasets of malware, fraudulent and legitimate apps we collected from Google Play,

exceeds 95%. Our results show that 75% of the identified malware apps have also

engaged in search rank fraud. In addition, we discovered tens of apps involved in

a novel fraud technique, that coerce their users to participate in search rank fraud.

In future work we intend to explore other domains of online social networks like

bidding sites, freelance job sites etc. to identify any sorts of deceptive behaviors

that try to manipulate the system. In google Play, we discovered a few (tens of

apps) coercive apps using a keyword search and manually investigating the search

results. In future, we plan to investigate more in this direction with the help of

machine learning tools. We have devised solutions to detect fraudulent reviews,

deceptive apps and malwares. Our future work will target to identify deceptive

developers who may use fraud on many of their developed apps, and may even reuse

fraudsters for the jobs on their various apps.

In chapter 3, we deal with the fundamental question of whether the visual stream

uploaded by a user has been captured live on a mobile device, and has not been tam-

pered with by a malicious user attempting to game the system. We propose, develop

and evaluate a system, Movee that relies on the accelerometer sensors ubiquitously

215



deployed on most recent mobile devices to verify the liveness of a simultaneously

captured video stream. We develop strong attacks both by utilizing fully automated

attackers and by employing trained human experts for creating fraudulent videos to

thwart mobile video verification systems. We have implemented Movee on both An-

droid and Google Glass devices, and through extensive experiments, we have shown

that (i) it is efficient in differentiating fraudulent and genuine videos (Movee’s ac-

curacy ranges between 68-93% on a smartphone, and between 76-91% on a Google

Glass device.) and (ii) imposes reasonable overheads on the server. We also intro-

duce the concept of video motion categories to annotate the camera and user motion

characteristics of arbitrary videos. We share motion annotations of YouTube citizen

journalism videos and of free-form video samples that we collected through a user

study. We observe that the performance of our approach differs across video motion

categories which is a very important finding. In future work we intend to integrate

more sensors (e.g., gyroscope), as well as the use of MonoSLAM [DRMS07] as an

alternative VMA implementation to improve accuracy. We also intend to integrate

more user motion types, for example, jumping, driving etc. and more video motion

types in our video classification. We have introduced and evaluated Vamos against

manual, automatic and mixed attacks. We leave the exhaustive exploration of the

attack space for future work.

In chapter 4, we deal with another challenge of securing low power wearable sen-

sor devices during communication and data storage in social sensor networks. We

devise SensCrypt, a lightweight protocol for secure data storage and communication,

for use by makers of affordable and lightweight personal trackers. To prove the exis-

tence of security vulnerabilities present in popular wearable devices from Fitbit and

Garmin, we build attack tools that exploit vulnerabilities and demonstrated sev-

eral inspection and injection attacks. SensCrypt protects not only against inspect

216



and inject attacks, but also against attackers that physically capture and read the

memory of trackers. SensCrypt’s hardware and computation requirements are min-

imal, just enough to perform low-cost symmetric key encryption and cryptographic

hashes. SensCrypt does not impose storage overhead on trackers and ensures an

even wear of the tracker storage, extending the life of flash memories with limited

program/erase cycles. We have also implemented Sens.io, a tracker platform, of

similar capabilities with existing popular solutions but at a fraction of the cost and

we show that SensCrypt running on Sens.io is very efficient. SensCrypt is applicable

to a range of sensor based platforms, that includes a large number of popular fitness

and home monitoring solutions. While SensCrypt’s defenses may not be immedi-

ately adopted by existing products, our work provides a foundation upon which to

create, implement and test new defensive mechanisms for future tracker designs.

In chapter 5, we take first steps toward addressing the conflict of profit and pri-

vacy in geosocial networks. We propose a framework, ProfilR that allows the con-

struction of LCPs based on the profiles of present users, while ensuring the privacy

and correctness of participants. We devise both a venue centric and a decentralized

solution and rove that ProfilR satisfies the proposed privacy and correctness proper-

ties. We have shown that ProfilR is efficient: the end-to-end overhead is small when

executed even on resource constrained mobile devices even under strong privacy and

correctness assurances. We have also proposed a holistic approach toward evaluat-

ing the safety of a user, that combines the predicted safety of the user’s location

with the aggregated safety of the people co-located with the user. Our Android and

browser plugin implementations show that our approach is efficient both in terms of

the computation and the communication overheads. In future work we will develop

solutions for detecting and eliminating fraudulent information from data sources,

including reviews and check-ins. Furthermore, we will integrate safety information
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in other user experiences, including navigation directions and mobile authentication

solutions.
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