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ABSTRACT OF THE THESIS 

COBALT FERRITE NANOPARTICLES FABRICATED VIA CO-PRECIPITATION IN AIR: 

OVERVIEW OF SIZE CONTROL AND MAGNETIC PROPERTIES 

by 

Dennis Toledo 

Florida International University, 2015 

Miami, Florida 

Professor Sakhrat Khizroev, Major Professor 

Cobalt Ferrite has important, size-dependent magnetic properties. Consequently, 

an overview of particle size is important. Co-precipitation in air was the fabrication 

method used because it is comparatively simple and safe. The effects of three different 

reaction times including 1, 2, 3 hour(s) on particle size were compared. Also, the 

effectiveness of three different capping agents (Oleic Acid, Polyvinylpyrollidone (PVP), 

and Trisodium Citrate) in reducing aggregation and correspondingly particle size were 

examined. Using Welch’s analysis of variance (ANOVA) and the relevant post hoc tests, 

there was no significant difference (p=0.05) between reaction times of 1 hour and 2 

hours, but there was a significant difference between reaction times of 2 hours and 3 

hours. Potentially, because of increased coarsening for the 3 hour reaction time. PVP 

and Oleic Acid were shown to be effective in reducing aggregation; however, Citrate was 

not effective. Possibly, the synthesis procedure was inadequate. 
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Statement of Problem 

 The problem addressed by this work is the fabrication of Cobalt Ferrite 

(CoFe2O4) nanoparticles via co-precipitation in air. This fabrication method was chosen 

because it is comparatively simple and safe. More specifically, it does not require the 

construction of an apparatus to establish a unique atmosphere (such as a nitrogen 

atmosphere or an argon atmosphere) for the reaction because the reaction takes place 

in air, and the reactants are of low volatility and are less toxic than other potential 

reactants (such as n-octane or n-butanol which are sometimes used to fabricate these 

particles via microemulsions) [35, 42]. This thesis examines how reaction time and 

choice of capping agent affect the size of these nanoparticles. Additionally, this work 

discusses other factors which may affect the size of Cobalt Ferrite nanoparticles, 

including reaction temperature, stir rate, pH, and ionic strength. Lastly, the magnetic 

properties will be examined through magnetic force microscopy (MFM) imaging. 

Introduction 

Nanotechnology typically involves materials at a length scale of less than 100 nm 

[1, 2]. Similarly, nanoparticles are particles at a length scale of less than 100 nm. 

Magnetic anisotropy alludes to the fact that what is called the anisotropy energy of a 

magnetic material depends on the direction of the spontaneous magnetization vector 

[28]. In other words, the magnetization of an anisotropic magnetic material depends on 

direction, and certain directions magnetize more easily.  

Cobalt Ferrite (CoFe2O4) is characterized by excellent chemical stability, good 

mechanical hardness, and useful magnetic properties, including high magnetic 

anisotropy, moderate saturation magnetization, high magnetostriction, and high 

coercivity [3-6, 29, 32]. The high magnetic anisotropy of Cobalt Ferrite contributes to its 

high coercivity, and, owing to this, historically; cobalt oxide modified maghemite 
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nanoparticles were utilized in magnetic recording devices such as audio or video tapes 

[49]. Cobalt Ferrite nanoparticles are still harnessed for magnetic recording, but, today, 

the applications of these particles also include use as drug delivery systems, magnetic 

hyperthermia, and as MRI contrast agents [50, 59, 74, 78]. These will be described later. 

Chemical Composition and Magnetism 

 Transition metal iron oxides have the general formula MFe2O4 where M is a 

divalent transition metal or a mixture of transition metal ions [3, 25]. In the case of Cobalt 

Ferrite, the transition metal is Cobalt and as such its chemical formula is CoFe2O4. More 

specifically, Cobalt Ferrite is a ceramic with an inverse spinel structure [25]. The spinel 

structure derives its name from MgAl2O4, which is itself called Spinel, and as such 

molecules of the spinel structure possess the general formula AB2O4 [25]. Molecules of 

this type are made up of a crystal lattice, which is itself divided into face centered cubic 

(fcc) unit cells [25]. A particular unit cell possesses a certain number of lattice points 

[33]. Regarding lattice points, there are interior lattice points (Ni) which belong entirely to 

one unit cell, face lattice points which belong to two unit cells (Nf), and corner lattice 

points (Nc) which belong to eight unit cells [33]. This gives rise to the following formula 

for the number of lattice points in a particular unit cell (N) [33]. 

𝑁𝑁 = 𝑁𝑁𝑖𝑖 +
𝑁𝑁𝑓𝑓
2

+
𝑁𝑁𝑐𝑐
8

 

Given that an fcc unit cell does not have any interior lattice points (Ni), but does 

have six face lattice points (Nf), and eight corner lattice points (Nc)  the total number of 

lattice points (N) per fcc unit cell is four [25, 33]. Each fcc unit cell is composed of fifty-six 

ions, and therefore there are fourteen ions associated with each lattice point [25].  

 Fcc unit cells are stabilized by tetrahedral interstitial sites and octahedral 

interstitial sites, and, for the spinel structure, each fcc unit cell has twice as many 
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available tetrahedral sites (sixty-four sites) as available octahedral sites (thirty-two sites) 

[25, 31, 33-34]. In spite of this difference in available sites, owing to the fact that each fcc 

unit cell is made up of only fifty-six ions, specifically thirty-two oxygen anions, eight “A” 

cations, and sixteen “B” cations, in which “A” and “B” refer to the general spinel structure 

(AB2O4), clearly not all available interstitial sites are occupied in each fcc unit cell [25, 

31, 34]. In fact twice as many octahedral sites as tetrahedral sites are actually occupied 

in each fcc unit cell [31, 34-35]. More precisely, in a normal spinel eight of the tetrahedral 

sites are occupied by “A” cations and sixteen of the octahedral sites are occupied by “B” 

cations whereas in an inverse spinel structure only eight of the octahedral sites are 

occupied by “B” cations, eight other octahedral sites are occupied by “A” cations, and 

eight tetrahedral sites are occupied by the other half of the available “B” cations [25, 31, 

34-35].  

Figure 1 below was created with the help of information in [33]. It shows a view of 

the fcc unit cell from the outside. 

 

 
Figure 1: A Macro view of the fcc CoFe2O4 unit cell. The red dots are lattice points. 3 of 

the total 6 face lattice points, and 7 of the total 8 corner lattice points are visible. 
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Figure 2: A view of the inside of the fcc CoFe2O4 unit cell. The blue dots are O2- ions. 

 
Figure 2 above depicts a view of the fcc unit cell from the inside. The occupied 

tetrahedral and the occupied octahedral sites shown in Figure 2 repeat in a similar way, 

as the way shown, to fill out the unit cell. Recall that there are eight occupied tetrahedral 

sites and sixteen occupied octahedral sites [25, 31, 34-35]. 

In practice, the spinel structure is more complex because molecules do not 

always correspond fully to a normal or an inverse structure. Hence, an inversion 

parameter, i, defined by 0 < i < 1 is introduced [31]. For CoFe2O4, i ranges from 0.68 to 

0.8 meaning that between 68% and 80% of Co2+ ions occupy octahedral sites rather 

than 100% of Co2+ ions occupying octahedral sites, which is the case for a fully inverse 

spinel structure, described above [31, 50]. Likewise, the inversion parameter can be 

used to write a more detailed general formula for the spinel structure given by:            

[M1-iFe i]A[M iFe(2-i)]BO4 [31]. Most importantly, for our purposes, ascertaining the specific 

degree of inversion of our fabricated nanoparticles is not particularly important because 

according to Carta et al [31], “the particle size does not influence significantly the degree 

of inversion.”    
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Magnetism is based on moving charges. Magnetic moments, which always have 

a corresponding magnetic field, arise from moving charges [75-76]. This usually means 

moving electrons. The source of diamagnetism is the orbital magnetic moment which is 

defined by the motion of the electrons around the nucleus [75-76]. Orbital magnetic 

moments always align themselves antiparallel to an applied magnetic field [75-76]. In all 

materials, electrons orbit the nucleus, and as such diamagnetism is a characteristic of all 

materials, however, it is a very weak form of magnetism [75-76]. It is usually only 

observable in atoms with an even numbers of electrons [76]. The source of all other 

forms of magnetism is the spin magnetic moment which comes from the fact that every 

electron has an inherent spin, every electron in addition to orbiting the nucleus spins 

around an individual axis [75-76]. Paramagnetism is based on the spin magnetic 

moment of electrons, and is based upon these moments aligning parallel to an applied 

magnetic field [75-76]. However, due to Pauli’s exclusion principle, electrons of opposite 

spins are paired together, their individual spin magnetic moments cancel each other out, 

and consequently paramagnetism is only a factor in materials with unpaired electrons, 

meaning those with an odd number of electrons [75-76]. 

Certain materials, including Cobalt Ferrite, are made up of magnetic domains 

which are constructs that are made up of similarly aligned magnetic moments [35, 75-

76]. At the boundaries of these domains, the magnetic moments are the least similarly 

aligned [35, 75-76]. In the absence of an applied magnetic field, these domains tend to 

be randomly aligned and the net magnetization of the material tends to be very low or it 

tends to be zero [35, 75-76].  
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Figure 3: An illustration of forms of magnetism. Based on information from [35]. 

 
Magnetic domains are characteristic of three different forms of magnetism: 

ferromagnetism, antiferromagnetism, and ferrimagnetism [35, 75-76]. Ferromagnetism is 

characterized by the vast majority of magnetic domains aligning parallel to an applied 

magnetic field and aligning parallel to one another, and as a consequence a 

ferromagnetic material retains a magnetic field after the applied magnetic field is 

removed [75-76]. This magnetic field is known as residual magnetization, remnant 

magnetization, or remanence [75-76]. When all domains are fully aligned with the 

applied field and with one another then the material reaches saturation magnetization 

which is the maximum value of the magnetic field [75-76]. Antiferromagnetism occurs in 

materials in which there are an equal number of magnetic moments (and corresponding 

magnetic domains) parallel to an applied magnetic field as there are those which are 

antiparallel to that applied magnetic field and therefore there is no net magnetization 

[35]. Ferrimagnetism is characterized by some magnetic domains being aligned 

antiparallel to an applied magnetic field, but with most of the magnetic domains being 

aligned parallel to an applied magnetic field [35]. As a result, ferrimagnetic materials, like 

ferromagnetic materials, obtain a net magnetization which persists even after the applied 

magnetic field is removed.  

Inverse spinels are ferrimagnetic because, for the inverse spinel structure, the 

magnetic moments of the cations in the octahedral sites align themselves to be parallel 

to an applied magnetic field, and the magnetic moments of the cations in the tetrahedral 
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sites align themselves to be antiparallel to an applied magnetic field [12]. On account of 

this, the specific value of the magnetic moment of inverse spinel compounds depends on 

the cations involved, which in this case are Cobalt (Co2+) and Iron (III) (Fe3+) [12]. On a 

more macro level, as we previously described, there are twice as many occupied 

octahedral sites as there are occupied tetrahedral sites, and therefore, in an applied 

magnetic field, the unit cell acquires a net magnetization which is parallel to the applied 

magnetic field [35].  

On account of the remanence present in ferromagnetic and ferrimagnetic 

materials, these materials possess hysteresis, which comes from a Greek word for 

“lagging” [76].  

 

Figure 4: Illustration of Hysteresis. Based on information from [35] and [76]. 
 

Hysteresis, which is illustrated in Figure 4, refers to the fact that the 

magnetization of a material depends not only on the presently applied field, but also on 

past applied fields [75-76]. For instance, the magnetization of a material (Mnet,sample in 

Figure 4) is initially zero, then in the presence of an applied field (Happlied) its 

magnetization rises until it reaches saturation magnetization (MS) [75-76]. When this 
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applied field is removed, the magnetization reduces, but not to zero (which was the initial 

state) rather to the level of remnant magnetization (Mr) [75-76]. In order to reduce the 

magnetization to zero, a magnetic field must be applied opposite (or antiparallel) to the 

remnant magnetization [75-76]. This applied magnetic field is known as a coercive 

magnetic field, and its value is known as coercivity (HC) [75-76].  

Superparamagnetism is characterized by zero hysteresis [35]. Specifically, 

superparamagnetic materials align parallel to an applied magnetic field, and when that 

field is removed they become non-magnetic, there is no remanence, and the magnetic 

moments revert to random orientations [35]. Superparamagnetism only occurs at small 

sizes because, at small sizes, room temperature thermal energy is sufficient to interfere 

with magnetic moments and prevent them from maintaining their alignment in the 

absence of an applied magnetic field [35]. Domain walls separate magnetic domains, 

and as particle size decreases these domain walls are reduced and particles become 

single domain [35]. Correspondingly, coercivity increases because moving domain walls 

is a way of reversing magnetization and for single domain situations this is obviously not 

an option for reversing magnetization [35]. Nevertheless, as particle size is reduced 

further below the single domain threshold, one eventually reaches the point at which the 

material becomes superparamagnetic and consequently the coercivity becomes zero 

[35].  

Hard magnetic materials have both high saturation magnetization and high 

coercivity and thus they have wide hysteresis loops [35]. Soft magnetic materials have 

high saturation magnetization and low coercivity and therefore they have narrow 

hysteresis loops [35-36]. Cobalt Ferrite is a hard magnetic material [7, 11]. However, 

several other spinel ferrites are soft magnetic materials [36]. Evidently, the magnetic 

properties of Cobalt Ferrite nanoparticles differ from the bulk properties. Specifically, as 
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detailed above, coercivity reaches a maximum once the nanoparticles become single 

domain, however, the saturation magnetization is also reduced in the nanoparticle 

regime [7, 9, 11, 35]. According to Qu et. al. [7], for Cobalt Ferrite the single domain size 

is 34 nm, and the superparamagnetic size is 9 nm. According to [10], the 

superparamagnetic size is 5 nm. According to Shokrollahi [38], the superparamagnetic 

size is 14 nm. According to Nam et al [81], the superparamagnetic size is typically 10-20 

nm for magnetic oxide nanoparticles. According to Biswal et al [41], particles of size 

between 11 nm and 15 nm are superparamagnetic. 

Synthesis Procedure 

Unsurprisingly, the method of synthesis is critical to the synthesis process. In this 

case, co-precipitation in air was employed. This method was chosen on account of its 

good yield, relative simplicity, and safety [5-8, 13-14]. Co-precipitation principally 

involves the processes of nucleation and growth although it is important to understand 

Ostwald Ripening and aggregation as well [2, 15-18, 37]. Nucleation refers to the 

process in which materials collect in formations known as nuclei [16, 18]. These nuclei 

serve as the basis for crystal formation [2, 18]. Next, a need to minimize free energy 

leads the system into the growth process [16]. More specifically, the formation of nuclei 

results in the creation of interfaces between the solid nuclei and the liquid of the solution 

[16, 19]. These nuclei possess high total interfacial area which increases the total free 

energy of the system, and therefore in order to mitigate this free energy increase the 

nuclei grow in volume, in this way the total interfacial area is reduced, and particle 

growth results [16, 19].  

Ostwald Ripening, also known as coarsening, refers to the process in which very 

small particles (formed by nucleation and growth) re-dissolve and deposit themselves 

onto larger particles yielding an increase in the size of large particles at the expense of 
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small particles in solution [17-18, 37]. This occurs because small particles are more 

soluble and they collectively have a greater surface area than large particles and 

therefore a greater surface energy. Clearly, Ostwald Ripening is another process by 

which the system reduces its overall free energy by reducing its total surface area [17-

18]. In order for co-precipitation to occur a solution needs to be brought to super-

saturation, and, in this research project, this was done by setting reaction temperature to 

lead to super-saturation [2, 16, 18].  

Based on the work of [7-8, 20] and others it is evident that increasing reaction 

temperature yields an increase in average particle size. Also, a higher solution pH tends 

to result in larger particles [8].  

Two drawbacks of co-precipitation are that controlling the size distribution of the 

fabricated particles can be difficult, and that the size distribution tends to be rather wide 

meaning that the particles tend to be rather polydisperse [38-39].   

Next, let us describe aggregation. Aggregation refers to the clustering or 

clumping together of multiple particles. Clearly, this tends to increase average particle 

size [13, 15, 17-18, 22-24]. Particles in solution are affected by Brownian motion [13, 15, 

17-18, 22-24]. Consequently, particle collisions result and van der waals forces between 

particles serve as an attractive force between the particles [13, 15, 17-18, 22-24]. 

Likewise, magnetic attraction between particles promotes aggregation [22]. These 

attractive forces must be balanced by a repulsive force or else aggregation will result 

[13, 15, 17-18, 22-24]. An example of a repulsive force is the electrostatic force between 

particles in solution. This involves particle surface charge and corresponding zeta 

potential, and is influenced by the pH of the solution and the ionic strength of the solution 

[13, 15, 17-18, 22-24]. Another example, are steric forces which create a physical barrier 

rather than an electric barrier to aggregation [13, 15, 17-18, 22-24]. An increase in ionic 
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strength reduces the thickness of the electric double layer around each particle, thereby 

reducing the electrostatic repulsive force as well as the zeta potential, and consequently 

leading to greater aggregation [13, 15, 17-18, 22-24]. An increase in stir rate will lead to 

smaller particles [27].  Nanoparticle surfaces can be modified by capping agents in order 

to decrease surface energy or increase steric hindrance [13, 15, 17-18, 22-24]. Both of 

these measures reduce the tendency of the particles to aggregate [13, 15, 17-18, 22-24]. 

Oleic acid is a hydrophobic surfactant [21]. As a surfactant, it possesses a critical 

micelle concentration (CMC), this means that above this specific concentration micelles 

will form in solution [47-48]. Micelles are aggregates of surfactant particles and the 

micelle properties depend on the surfactant concentration as well as the surrounding 

medium [45]. Additionally, micelles contribute to the overall ionic strength of the solution 

[46]. On account of this as well as the fact that the formation of micelles may reduce the 

tendency of the nanoparticles to be coated by the surfactant molecules, when one is 

interested in coating nanoparticles with a surfactant, it may be advisable to use a 

surfactant concentration less than CMC. Nevertheless, this is not clear, and it seems 

that it is possible to use a surfactant concentration which is greater than the CMC for 

coating as long as a washing step(s) specifically designed to remove excess surfactant 

is included [37]. 

Regarding factors which influence the average particle size of Cobalt Ferrite 

nanoparticles, Co2+ concentration has been shown by Ayyappan et al [40] and Biswal et 

al [41] to be an important factor. They found that Co2+ concentration and average Cobalt 

Ferrite particle size are inversely related. In addition, Ayyappan et al [40] found that 

coercivity and saturation magnetization are similarly related to the Co2+ concentration. 

This matches with the findings of Pereira et al [42] who found that saturation 

magnetization tends to decrease with decreasing particle size. Furthermore, there is 
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something called digestion time which refers to the time one waits after the reaction 

temperature is reached before adding Oleic acid to the solution [37]. Ayyapan et al [37] 

found that average particle size increased from 14 nm to 19 nm as the digestion time 

was increased from 1 min to 120 min whereas the saturation magnetization decreased 

(which again corresponds to the findings of Pereira et al [42] that decreasing particle 

size leads to decreasing saturation magnetization).  

Cobalt Ferrite nanoparticles are toxic because they induce oxidative stress which 

refers to an imbalance between reactive oxygen species or reactive nitrogen species 

and antioxidant defenses [43]. This imbalance eventually leads to DNA damage, cellular 

apoptosis, and mutagenesis [43]. Different cell lines display different viability responses 

to Cobalt Ferrite nanoparticles on account of differing interactions between the 

nanoparticles and the cells, specifically based on different endocytic pathways [43]. 

Another source of toxicity is that Co2+ ions can leach from CoFe2O4, and these ions are 

toxic [29]. Due to these sources of toxicity, in order to utilize Cobalt Ferrite nanoparticles 

for medical applications one must coat the particles with a nontoxic, biocompatible 

coating. Potential biocompatible coatings include certain polymers such as polyethylene 

glycol (PEG) [30]. Another biocompatible polymer which can be used to coat Cobalt 

Ferrite is polyvinylpyrrolidone (PVP) [44]. In addition, PVP is water soluble and it has 

applications in drug delivery [44]. 

Hypotheses 

An increase in reaction time will lead to an increase in coarsening and therefore 

an increase in polydispersity (meaning the size range will increase), and in average 

particle size. Sodium citrate will be more effective in preventing the aggregation of small 

particles [24]. PVP and Oleic acid will be more effective capping agents for larger 

particles [24].  
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Results   

 DLS Data 

 The following results were obtained using Dynamic Light Scattering (DLS) on a 

Wyatt DynaPro plate reader, and subsequently processed via one-way analysis of 

variance (ANOVA) as well as through post hoc tests using IBM SPSS. A 5% significance 

level was used. In a like manner, Welch’s test was used in cases in which Levene’s test 

indicated that the variances could not be assumed to be equal [82-83]. This happened 

very frequently, presumably owing to the unequal sample sizes employed because 

certain batches were analyzed more closely, through DLS, than others. More concretely, 

the sample size for Control1 was thirty measurements, for PVP, Citrate, 1hr, and Oleic 

the sample size was twenty measurements each, and for all other batches the sample 

size was ten measurements each. On account of this, Tamhane’s test and Games-

Howell test were used as the post hoc tests [82-83]. 

 

The above equation, from [98], is used to calculate the ionic strength of a 

solution. Clearly, changing the concentration of ionic reactants in solution will alter the 

ionic strength. The difference between PVP particles and PVP 723 particles is the 

quantity of reactants used and consequently the ionic strength is less for the PVP 723 

particles. The only difference between CL particles and PVP particles are that the PVP 

particles contain PVP.  

In what follows, “hydrodynamic radius” refers to the population mean of the 

hydrodynamic radius, and a “significant difference” refers a significant difference 

between population means of hydrodynamic radii [83].  
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In Table 1, “R” refers to radius, “D” to Diameter and “StDev” to Standard 

Deviation. The plate reader gave measurements of “R.” The rest of the table was made 

using Microsoft Excel. PVP May and PVP old refer to two different sets of 

measurements of the same batch, and PVP combines these two sets. 

Table 1: Particle Data based on DLS measurements 
Mean R  (nm) Median R (nm) StDev R  (nm) Mean D (nm) Median D (nm) StDev D (nm)

PVP 723 29.64 32.4 4 59.2 64.8 9
PVP May 36.2 36.45 2 72.4 72.9 4
PVP old 29.91 29.5 1 59.82 59 2
PVP 33.05 36.45 2 66.11 72.9 4
CL 39.48 40 3 78.96 80 5
Control1 43.23 34.15 2 86.46 68.3 4
Hrxn 58.13 57.15 4 116.3 114.3 8
CS 110.6 109.8 11 221.3 219.7 22
Citrate 157.1 188.3 22 314.2 376.6 44
1hr 57.94 75.65 8 115.9 151.3 16
Oleic 36.69 36.35 3 73.38 72.7 6
PVP 721 140.5 141.8 17 281 283.6 34
Oleic 721 12.83 13.05 1 25.66 26.1 2

 

 For the various PVP particles and the CL particles, Levene’s test indicated that 

the variances between these batches of particles are not equal. Thus, a simple one-way 

ANOVA test was not reliable. Instead, we utilized Welch’s test. This yielded a 

significance value of .000, and this showed that significant differences are present. 

Looking at post hoc tests, the significance values for the Tamhane test and for the 

Games-Howell test for PVP 723 versus PVP are 0.579 and 0.351 respectively, for PVP 

723 versus CL they are both .000, and for PVP versus CL they are both .000. This 

means that we cannot say that there is a significant difference between PVP 723 and 

PVP. Additionally, this demonstrates that there is a significant difference between PVP 

723 and CL, and that there is a significant difference between PVP and CL. These 

differences are that the hydrodynamic radius of CL is 9.84 nm greater than the 

hydrodynamic radius of PVP 723. Likewise, that the hydrodynamic radius of CL is 6.425 

nm greater than the hydrodynamic radius of PVP. 
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The difference between PVP 721 and Oleic 721 is the use of PVP or Oleic acid 

as the respective capping agent. Similarly, the difference between Citrate and Oleic is 

the use of Citrate or Oleic acid as the respective capping agent. The Levene’s test 

indicated that the variances between these batches are not equal. Therefore, as before, 

we employed Welch’s test which yielded a significance value of .000, and this indicates 

that significant differences are present. Looking at post hoc tests, the significance values 

for the Tamhane test and for the Games-Howell test for PVP 721 versus Oleic 721 are 

both .000, for Citrate versus Oleic they are both .000, for Citrate versus CS they are both 

.000, for Oleic versus CS they are both .000 as well, and for Oleic versus Control1 they 

are .196 and .133 respectively. This indicates that there are significant differences 

between PVP 721 and Oleic 721, between Citrate and Oleic, between Citrate and CS, 

and between Oleic and CS. However, there is not enough evidence to indicate a 

significant difference between Oleic and Control1.  

The difference between 1hr, Control1, and Hrxn are only the reaction times. The 

reaction times for these three batches are one hour, two hours, and three hours 

respectively. The Levene’s test indicated that the variances between these 3 batches of 

particles are not equal. As a result, again Welch’s test was used. Its significance value 

was found to be .000. This suggests that significant differences are present. Looking at 

post hoc tests, the significance values for the Tamhane test and for the Games-Howell 

test for 1hr versus Control1 are .111 and .079 respectively, for 1hr versus Hrxn they are 

both 1.000, and for Hrxn versus Control1 they are both .000. This stipulates that we do 

not have the evidence to say that there is a significant difference between Control1 and 

1hr or between Hrxn and 1hr; however, there is a significant difference between Hrxn 

and Control1. 
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 AFM Data 

A Veeco Multimode Atomic Force Microscope, equipped with a Silicon AFM 

probe labeled “Multi75M-G,” and NanoScope software was employed for Atomic Force 

Microscopy (AFM) imaging and Magnetic Force Microscopy (MFM) imaging. MFM 

imaging detects magnetic force gradients to generate images, and it also provides an 

approximation of these gradients [90]. For instance, MFM imaging can measure 

approximate values of the phase difference between the drive voltage (supplied by the 

instrument) and the cantilever response (based on the sample), and this difference 

corresponds to a shift in the resonant frequency of the cantilever [90]. This shift is itself 

proportional to the strength of magnetic force gradients in the sample [90]. Thus, a 

higher phase difference means a higher force gradient [90].  

 
Figure 5: A MFM image of PVP 

 
Another way in which the diameter of CL, PVP, No OA, and OA were measured 

was by imaging their topography using AFM and by subsequently looking at the different 

particle heights, given by these images. This was done because all these particles are 
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spherical or approximately spherical and therefore a height measurement on the AFM 

will give a good measurement of their diameters [88-89].  

Figure 6: An AFM image of PVP 
 

 
Figure 7: Different AFM Image of PVP  
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Figure 8: Different MFM Image of PVP  

 
Two average phase measurements for the PVP particles are shown above to be 

approximately 21.0°±6.4° and 27.8°±8.8°. This gives a range of 14.6° to 36.6°. One can 

see this above in Figure 5 and Figure 8, and clearly there is much variation.  

The average diameter of the PVP particles, based on Figures 6 and 7, was 

measured to be 33.8±11.0 nm and 33.8±10.2 nm this gives a range of 22.8 nm – 44.8 

nm. This demonstrates the high degree of polydispersity in these particles. Some degree 

of aggregation is still evident in the previous Figures. 
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Figure 9: AFM image of CL. Notice the high amount of aggregation. 

 

 
Figure 10: An MFM image of CL  

 
For the CL particles the average phase difference ranges from 15.8° to 27.8°. 

This can be seen in Figure 10; it is also evident that the phase difference varies widely 

owing to the large amount of aggregation. The average diameter for the CL particles, 

shown in Figure 9, ranges from 51.2 nm – 108.6 nm. The aggregation is clear here in 

that a greater degree of aggregation tends to yield a larger average diameter. 
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Figure 11: AFM image for No OA 

 

 
Figure 12: MFM image for No OA 

 
A phase difference measurement for the No OA particles, based on Figure 12, 

found the average phase difference to range from about 4.0°- 8.4°. The average 

diameter, displayed in Figure 11, was found to range from 39.1 nm – 86.1 nm. Much like 

for the CL particles, this demonstrates the fact that aggregation, which in this case is 

also uninhibited by any coating, tends to increase the average diameter of nanoparticles. 
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Figure 13: OA  On the Left, AFM Image; On the Right, MFM Image. Dipoles 

(seen as dark to light or vice versa) are clearly visible in the MFM image. 
 

 
Figure 14: Closer View of AFM image for OA 
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Figure 15: Closer View of MFM image for OA 

 

 
Figure 16: Another AFM image for OA 
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Figure 17: Another MFM image for OA 

 
As we see above, for the OA particles, the average phase difference ranges from 

8.4° to 14.6°, and the average diameter ranges from 29.9 nm to 62.9 nm. Nevertheless, 

based on Figures 16 and 17, a diameter of approximately 50 nm is common for these 

particles as is a phase difference of about 10°.    
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 SEM Data 

Table 2: Approximate Nanoparticle Diameter Based on SEM 
 ~Diameter (nm)

1hr 40-100
Control1 <100
Hrxn 50-100
CL 35-100
PVP 50-100
PVP 723 <100
CS 150-500
Citrate 125-250
Oleic <100
PVP 721 33-100
Oleic 721 30-100  

 
What follows are a series of SEM images of different samples at various 

magnifications. Each image is labeled with the sample name. 

 
Figure 18:  A View of PVP 721 

 

 
Figure 19: A Different View of PVP 721 
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Figure 20: PVP 721 at closer magnification 

 

 
Figure 21: A View of Oleic 721 
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Figure 22: Oleic 721 at closer magnification 

 

 
Figure 23: An image of PVP 723 
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Figure 24: SEM image of PVP  

 

 
Figure 25: An image of PVP at closer magnification 
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Figure 26:  SEM image of CL 

 

 
Figure 27: SEM image of CL at closer magnification 
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Figure 28: SEM image of 1hr sample 

 

 
Figure 29: SEM image of Control1 
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Figure 30: SEM image of the sample labeled Oleic 

 

 
Figure 31: SEM image of Hrxn 
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Figure 32: SEM image of sample labeled Citrate 

 

 
Figure 33: SEM image of Procedure Based on [7] 
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Discussion 

All the SEM images show considerable aggregation, however, there is a 

noticeable, albeit slight, reduction in aggregation for PVP as compared to CL. PVP 723 

is more aggregated than PVP. This could be because of an error in sample preparation. 

1hr, Control1, Oleic, and Hrxn all look similar. Hrxn has the clearest image. The author is 

not certain why this is; again perhaps the sample preparation was better for Hrxn as 

compared to the other three. The SEM image for Citrate (Figure 32) shows its large 

particle size.  

The SEM measurements of particle size for Oleic 721 and PVP 721 are similar; 

however, the PVP 721 SEM images appear more clustered than the Oleic 721 SEM 

images. 

Figure 33 is an SEM image of a batch of particles fabricated according to a 

procedure similar to [7] at 100°C with a 100 mL solution, containing 0.6 g of Iron (III) 

nitrate nonahydrate and 0.22 g of Cobalt (II) nitrate hexahydrate, being drop-by-drop 

added to a 50 mL solution, containing 1.6 g of Sodium Hydroxide. The stir rate ranged 

from 300-600 RPM, and the reaction time was 2 hours. Figure 33 shows aggregation but 

also enough separation to be able to measure some particles in the range of 18 nm – 30 

nm. Qu et al [7], measured an average particle diameter of 47 nm for 100°C. Our 

average diameter is less probably because we employed less metal reactants, less total 

volume of solution, and because [7]’s procedure did not specify the stir rate which one 

should utilize. Also, we washed the particles in a different way than did Qu et al [7].   

 The fact that there is not enough evidence to indicate a significant difference 

between Control1 and 1hr is interesting, and perhaps explains why some procedures, 

such as [40], [41], and others, rely on a reaction time which is shorter than two hours. 

Regarding the finding that there is a significant difference between Hrxn and Control1, 
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the author is not certain why this is, but perhaps it is on account of a longer period of 

coarsening which results in larger particles and more polydisperse particles. Thanh et al 

[92] had similar findings, more specifically, in that case nanoparticle size and 

polydispersity increased with increasing reaction time on account of Ostwald ripening.  

 Moving on, the result that there is insufficient data to demonstrate a significant 

difference between Oleic and Control1 is probably on account of the volume of Oleic 

Acid used to fabricate Oleic. The volume used was only about 22 μL. Furthermore, it 

was added in before the addition of Potassium Hydroxide and before the reaction 

temperature was reached, and perhaps this reduced its effectiveness.  

Moreover, our results demonstrating a significant difference between both PVP 

723 and CL along with PVP and CL demonstrate that PVP introduces steric hindrance 

which leads to a lower aggregation tendency and a lower measured hydrodynamic 

radius for the coated particles. This is what we expected. Likewise, we obtained a similar 

result utilizing AFM imaging of CL. Furthermore, the fact that we failed to find a 

significant difference between PVP 723 and PVP indicates that the ionic strength 

difference between these two batches was not a significant factor. MFM imaging 

indicated a similar distribution of magnetic force gradients for PVP coated particles and 

for CL. This shows that the PVP coating did not greatly alter the magnetic force 

gradients. The coating made the gradients more visible by reducing aggregation. A 

similar result can be seen for the magnetic force gradients of OA versus No OA, and 

regarding the AFM findings concerning OA and No OA, the addition of Oleic acid clearly 

was effective in reducing aggregation.  

Next, the DLS measurements of PVP 721, CS, and Citrate are very large. An 

explanation for the hydrodynamic radius of PVP 721 is unclear. It is most likely an error 

in the DLS measurement. The large size of CS can be accounted for by the fact that the 
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procedure utilized proved to be a failure because it yielded a final colloid with a pH of 

only 5.7, which is far below the recommended pH range of 8.5 or greater [8]. This pH 

was measured using an Oakton pH 11 series meter, and the fact that it is very acidic 

could have led to this very large size. In addition, according to Sodaee et al [93], a pH of 

at least 8 is needed to yield Cobalt Ferrite. Therefore, CS is not even a sample of Cobalt 

Ferrite, but is in fact mostly goethite [93]. The case of Citrate is a similar situation in the 

sense that the procedure was a failure, however, in this particular case the pH was not 

the issue. The issue is simply that it appears that Trisodium Citrate cannot be used as a 

capping agent for Cobalt Ferrite nanoparticles prepared via co-precipitation in air, and 

therefore our hypothesis in this regard is false. Maybe, it would be possible to use Citric 

Acid as a capping agent instead, and one could follow a procedure similar to that used 

by Goodarzi et al [84] or A.B. Shinde [85].  

 

 The above comes from [93] and [94]. On the left are the chemical equations and 

the general reaction mechanism for No OA, and on the right is an outline of a general 

reaction mechanism for a process to fabricate Cobalt Ferrite with an Iron (II) compound 
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rather than an Iron (III) compound, such as Iron (III) Nitrate Nonahydrate (which is what 

was used in all the procedures of this thesis). If we look at [96], which utilizes Iron (II) 

Dodecyl Sulfate and a microemulsion method to produce Cobalt Ferrite nanoparticles we 

can see that the diameter of their fabricated particles is between 2 nm and 5 nm. It is 

probable that the significantly lower degree of polydispersity of these results is due to the 

method of microemulsions, however, the small size is not only confined to the method of 

microemulsions. Gyergyek et al [95], synthesized Cobalt Ferrite nanoparticles with a 

diameter of about 8 nm using Iron (II) Sulfate Heptahydrate and co-precipitation. In the 

above equations, it is evident that the process on the right involves more 

reactions/steps. If we examine the structure of Cobalt Ferrite, we know that, for Cobalt 

Ferrite, the final oxidation state of iron is 3+ and not 2+. For this reason, if an Iron (II) 

compound is used to fabricate Cobalt Ferrite, the compound must undergo oxidation 

before it can enter nucleation [96-97]. This accounts for the additional reactions/steps, 

and this lowers the nucleation rate for this process [96-97]. As a consequence, this 

process is a nucleation dominated process that can be described, at least in part, by a 

LaMer mechanism [26]. The result of this is that the process on the right produces less 

polydisperse particles than the particles which are produced by the process on the left 

[26]. Nevertheless, in the end, a nanoparticle size distribution depends largely on the 

specifics of the synthesis procedure employed. 

Applications 

Passive targeting relies upon the fact that tumors and other inflamed tissues 

have poor vasculatures as well as the reality that they lack the capacity for lymphatic 

drainage [64, 78]. This allows long-circulating nanoparticles to eventually penetrate and 

to accumulate in these tissues [64, 78]. This is known as enhanced permeability and 

retention (EPR) effect [64, 78].  
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Active targeting involves functionalizing the surface of nanoparticles with a 

targeting ligand or multiple targeting ligands which are selected based on their binding 

affinity for the cell surface receptors of the cells one is interested in targeting [64, 66-67, 

78]. Nanoparticles can also sometimes be functionalized with a specific ligand(s) which 

leads to specific binding and nanoparticle internalization through receptor-mediated 

endocytosis [64]. Nanoparticles can be used for drug delivery by functionalizing a 

specific drug to the surface of the nanoparticles in addition to other coatings, which could 

include those to prevent aggregation, increase biocompatibility, increase hydrophilicity, 

or targeting ligands [64-65, 67, 78]. Using a combination of coatings, nanoparticles can 

be targeted to specific cells, and drugs can be delivered in a more targeted way than by 

simply applying free drug to an area [64-65, 67, 78]. An advantage that this has is 

reduced toxicity to surrounding cells [78]. 

Hyperthermia is a cancer treatment which involves applying temperatures 

between 41°C and 45°C to kill cancer cells [29-30, 59-61]. Typically treatments are 

applied for at least thirty minutes [30]. Hyperthermia treatments can be carried out using 

magnetic nanoparticles generally and CoFe2O4 nanoparticles in particular, in what is 

called magnetic hyperthermia [29-30, 59-61]. When a high frequency alternating 

magnetic field is applied to ferro- or ferrimagnetic nanoparticles a hysteresis loop is 

generated for the particles [60]. For each cycle of this loop a quantity of electromagnetic 

energy proportional to the area of the hysteresis loop is converted to heat in what are 

called hysteretic losses [60-61]. These hysteretic losses arise from the breaking and 

forming of domain walls (the walls between magnetic domains) as a result of the 

magnetization being repeatedly alternated [62]. When these changes happen slower 

than the applied magnetic field is alternated then heat is generated [13, 62]. Clearly, 

these hysteretic losses are a potential way to generate the heat required for 
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hyperthermia treatment, however, in practice it has proven difficult to obtain a sufficient 

heating effect [58, 60]. Fortunately, there are two other options for magnetic 

hyperthermia because when an alternating magnetic field alternates direction at a 

frequency such that the period of the alternating field is less than the magnetic relaxation 

time of magnetic particles heat is generated [13, 60, 62]. There are two relaxation times, 

one is due to Brownian motion, and the other is the Neel relaxation [13, 60, 62]. The 

relaxation time for Brownian motion applies to particles with stable magnetizations such 

as ferro- and ferrimagnetic particles and it concerns the energy loss as a result of 

Brownian motion and thus depends on particle motion, the Neel relaxation time concerns 

single domain particles and the relaxation time required for magnetic spins in single 

domain particles [29, 60, 62-63]. Recall that superparamagnetic nanoparticles are single 

domain, and therefore the only magnetization mechanism which they are affected by is 

Neel relaxation [60-61]. The current clinical state of this technology is best summed up 

by the following from Datta et al [59]:  

“…the future may also see the emergence of nanotechnology based hyperthermia 

treatment [115]. These are currently under investigation and development and could 

take some time before they are introduced in routine clinics. With the enhance 

permeability and retention effect with nanoparticle; these could preferentially accumulate 

in tumors, enabling selective heating, tumor targeting with thermo-labile liposomal 

chemotherapeutic agents, theranostics along with local radiotherapy.”  

Another application for Cobalt Ferrite nanoparticles is as a vehicle for 

photodynamic therapy of tumors [32]. This is “a technique whereby tumor tissue is 

destroyed by the uptake of dye and subsequent irradiation with visible light” [32]. In the 

study by Park et al [32], Cobalt Ferrite nanoparticles where conjugated with folic acid 

and hematoporphyrin [32]. Folic acid was used as a target ligand for folate receptors, 
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which are overexpressed in human cancer cells, and hematoporphyrin played the role of 

the “dye” described previously [32].  

In the presence of a magnetic field (B), a torque (τ) is generated on magnetic 

moments (μ) given by the following equation [72]: 

𝜏𝜏 = 𝜇𝜇 × 𝐵𝐵 

And by the definition of the cross product: 

     ‖𝜏𝜏‖ = ‖𝜇𝜇‖‖𝐵𝐵‖ sin𝜃𝜃 

Another important formula is given below: 

𝜔𝜔𝐿𝐿 =  −𝛾𝛾𝐵𝐵 

This formula defines a quantity known as the larmor frequency (ωL) which we will 

describe later on [72].  

As you can see this torque depends on the sine of the polar angle (θ) between 

the magnetic field vector and the magnetic moment vector. As a consequence, when this 

polar angle is 0° or 180° (π radians) then the magnetic moment will not experience any 

torque. In all other circumstances, the magnetic moment, in an applied magnetic field, 

will experience a torque. However, as can be seen, the larmor frequency does not 

depend on this polar angle. 

In an applied magnetic field along the z-axis, the net magnetization of the nuclei 

of a sample will align with the field, however, this alignment is not perfect [69-70]. A 

majority of the magnetic moments of the protons will be aligned parallel to the applied 

magnetic field, and the rest of the moments will be aligned antiparallel to the applied 

magnetic field [69-70]. Correspondingly, the majority of the quantum spins will be aligned 

parallel to the applied magnetic field, and the rest will be aligned antiparallel to that field 

[70]. This is the case because the lower energy state is the state parallel to the field and 

therefore a majority of the spins and their corresponding magnetic moments favor this 
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orientation [69-71]. Keep in mind that the quantum spin state does not take a defined 

value until it is observed [71]. As a result, it is useful for us to look at quantum spin as 

the superposition of the spin up and spin down states, and doing so gives us the result 

that the spin is actually rotating (or precessing) around the z-axis at a frequency known 

as the larmor frequency [71]. A classical way of looking at this is that the magnetic 

moments are not perfectly aligned with the z-axis, meaning that there is an angle 

between the z-axis and the magnetic moments, and this results in the magnetic 

moments feeling a torque which causes them to precess about the z-axis at a resonant 

frequency which is the larmor frequency [70, 77].  

If an oscillating magnetic field (B1) with an x and y component, oscillating at the 

larmor frequency, is applied perpendicular to the net magnetic field (B0) then the 

magnetic moments can be rotated 90° into the x-y plane, this causes an increase in the 

energy of the sample [62, 69-70].  Or, the sample’s magnetic moments, through the 

application of a different oscillating magnetic field (B1) without an x and y component at 

the larmor frequency applied antiparallel to B0, can be flipped entirely which results in a 

larger energy increase [62, 69-70]. The T2 relaxation time, or transverse relaxation time, 

is the time it takes for the magnetic moments in the x-y plane to decay away, and the T1 

relaxation time is the longitudinal relaxation time and it refers to the time that it will take 

for the magnetic moments to return to their original longitudinal orientation (their original 

z-direction) [69-70]. This changing of magnetic moments can be detected by the voltage 

which it induces in pickup coils and based on this an image can be created [62, 69, 77]. 

Different tissues have different T1 and different T2 times [64, 69]. MRI machines typically 

have gradient coils which change the applied magnetic field in certain regions in order to 

increase spatial resolution because recall that the larmor frequency depends on the 

applied field [73]. 
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For MRI, T2 contrast agents lead to a darkening of the MRI image, and Cobalt 

Ferrite nanoparticles have potential applications as such contrast agents [74].  T2 

contrast agents are called negative imaging agents for this reason; they darken the MRI 

image by shortening the T2 relaxation time and thereby increasing the contrast of the 

MRI image [68-69, 77, 79]. The effectiveness of magnetic nanoparticles used as contrast 

agents depends on (MsV)2 and d-6 where Ms is the saturation magnetization, V is the 

nanoparticle volume and d is the distance from the protons to the nanoparticle surface 

[69]. 

Processes and Tools 

 Measurement Tools 

Dynamic light scattering (DLS) is a tool which is used to measure particle size, 

specifically one can utilize it to obtain the hydrodynamic radius of particles [51-53]. DLS 

treats all particles as spherical, and so the measured hydrodynamic radius will only be 

an approximation if the particles being measured are not spherical [51-52]. The process 

works by shining a laser through a solution of particles [51-53]. The particles in solution 

are in constant motion, and as the laser shines over them it scatters and forms a speckle 

pattern [51-52]. Based on the speckle pattern the instrument determines variations in the 

intensity of the scattered light [51-52]. The variation of intensity with time can be used to 

measure the diffusion coefficient of the particles [52]. Based on this, the hydrodynamic 

radii of the particles can be determined using the Stokes-Einstein equation [52]. DLS 

measurements tend to be larger than measurements obtained by TEM or SEM because 

DLS measurements include a measurement of the adsorbing layer, which is made up of 

a hydration or solvent layer and, for coated particles, can also include a coating layer 
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[51-52, 54]. Specifically, according to Sinko et al [55], “the size derived from DLS is two 

to three times larger” than the size measured from SEM. 

Scanning Electron Microscopy (SEM) functions by emitting an incident beam of 

electrons onto a sample [56-57]. This leads to backscattered electrons and secondary 

electrons [56-57]. The backscattered electrons have higher energies than the low energy 

of secondary electrons, and the secondary electrons are more sensitive to surface 

topology than the backscattered electrons [56-57]. The backscattered electrons are 

useful for imaging samples with higher atomic weights and higher densities as a result of 

the increased tendency for scattering events in these samples [56-57]. An area that 

consists of a heavy atom appears bright in a backscattered electron image [80]. 

The electron gun in the SEM is a thermionic gun which emits thermoelectrons 

from a tungsten filament by heating this filament to 2800 K [80]. These electrons are 

directed by applying a positive voltage, with respect to the cathode, to a metal plate (the 

anode) [80]. It relies on a “magnetic lens” that is composed of two coil wound electric 

wires [80]. The inside of the specimen chamber and the SEM system must be kept at a 

high vacuum of 10-3 to 10-4 Pa [80]. There is also a secondary electron detector 

composed of a pair of electrodes known as a collector, as well as a scintillator, a photo-

multiplier tube (PMT), and an amplifier [80]. A large voltage is applied between the 

electrodes of the collector (~50V-300V), and a larger voltage (10kV) is applied to the 

scintillator [80]. This is done in order to attract secondary electrons towards the 

scintillator where they are absorbed and reemitted as light which is sent towards the 

PMT, multiplied, and converted back to electrons which form a current which is amplified 

by the amplifier and detected as the signal of secondary electrons [80]. Brightness 

variation depends on the number of secondary electrons detected [80]. SEM has a 

massive advantage in the depth of field versus light microscopy [57]. The accelerating 
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voltage, which one can adjust while imaging, is related to the penetration depth; a higher 

accelerating voltage leads to a higher penetration depth and correspondingly results in a 

degraded view of the surface [57, 80]. In fact, a high accelerating voltage can damage a 

sample’s surface [57]. Therefore, a low accelerating voltage is favorable for imaging the 

specimen surface [80]. In conductive samples, the electrons which do not become 

scattered pass through the sample and the specimen stage, however, in nonconductive 

samples these electrons stop within the sample and provide a negative charge to a 

particular part of the sample [80]. This is known as charging, and this eventually causes 

the electron beam to be repelled and the image to be distorted [80].  

An atomic force microscope (AFM) consists of an optical cantilever arm, a laser, 

and a photodiode detector [86-87]. The device relies on electrostatic forces between the 

atoms of the cantilever tip and the specimen [86-87]. This interaction leads to a 

deflection of the tip, and this deflection can be measured by reflecting a laser beam off of 

the optical cantilever arm and then measuring this reflection using the built-in photodiode 

detector [86-87]. Magnetic force microscopy (MFM) is a secondary imaging mode, for 

imaging magnetic materials, under Scanning Probe Microscopy (SPM), and it relies on 

“the magnetic field’s dependence on tip-sample separation that induces changes in the 

cantilever’s amplitude, resonance frequency, or phase” [87].  
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 Materials 

Sigma Aldrich Iron (III) nitrate nonahydrate 

Sigma Aldrich Cobalt (II) nitrate hexahydrate 

Sigma Aldrich Potassium Hydroxide, Sigma Aldrich Sodium Hydroxide 

Sigma Aldrich Polyvinylpyrrolidone (PVP), Sigma Aldrich Oleic Acid, Sigma Aldrich 

Trisodium Citrate Dihydrate 

 Methods 

Initially, eight batches of Cobalt Ferrite nanoparticles were fabricated. What 

follows is a description of the methods used. 

For the batch labeled Control1, this procedure was done in a fume hood: 

1.) Fill a beaker with 100 mL of deionized water. 

2.) Place a stir bar into the beaker. 

3.) Place the beaker onto the hot plate, which also has a stirring setting. 

4.) Set the stirrer to 250 RPM. 

5.) Add 0.8 grams of Cobalt (II) Nitrate Hexahydrate to the beaker. 

6.) When the Cobalt (II) Nitrate Hexahydrate is dissolved, add 2.2 grams of Iron 

Nitrate Nonahydrate to the beaker. 

7.) When the Iron (III) Nitrate Nonahydrate is dissolved, set the temperature on 

the hot plate to 75°C. This solution is known as the precursor solution. 

8.) Fill a small beaker or a small Erlenmeyer flask with 10 mL of deionized water. 

9.) Add approximately 2 grams of Potassium Hydroxide to the 10 mL solvent. 

10.) Carefully swirl the beaker or the flask in order to dissolve the Potassium 

Hydroxide. 
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11.) When the Potassium Hydroxide is dissolved and the precursor solution 

has reached the reaction temperature (75°C), use an eyedropper to rather 

quickly add the Potassium Hydroxide solution to the precursor solution, under 

stirring. This should take about 5 minutes or less. 

12.) Allow the solution to react for 2 hours, under stirring. 

For the batch labeled 1hr the procedure used was the same as above except for 

two changes. These were that the stir rate was changed from 250 RPM to 400 RPM, 

and, most importantly, the reaction time was changed from 2 hours to 1 hour. 

 For the batch labeled Hrxn the procedure used was again the same as for 

Control1, but for one change, the reaction time was changed from 2 hours to 3 hours.  

 For the batch labeled CL the changes made to the Control1 procedure included 

that the stir rate was changed from 250 RPM to 100 RPM, and that the reaction 

temperature was changed from 75°C to 90°C. 

 For the batch labeled PVP the procedure was the same as that for CL with the 

following exceptions. First, an additional step was added: before the hot plate was set to 

the reaction temperature (in this case 90°C), 0.8 grams of polyvinylpyrollidone (PVP) 

was added to the precursor solution. The other change was that the reaction time was 

less than 2 hours (it was between 1.5 hours and 2 hours). 

 For the batch labeled CS the changes made to the Control1 procedure included 

that the stir rate was changed from 250 RPM to 400 RPM, the quantity of Potassium 

Hydroxide employed was reduced from 2 grams to 1 gram, and the reaction temperature 

was reduced from 75°C to 40°C. 

 For the batch labeled Citrate the changes made to the Control1 procedure 

included that the stir rate was changed from 250 RPM to between 300 RPM and 400 

RPM, the quantity of Potassium Hydroxide was reduced from 2 grams to 1.5 grams, and 
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the reaction temperature was reduced from 75°C to 60°C. A further change was the 

addition of another step: like for the PVP batch, before the reaction temperature was set 

on the hot plate, 0.44 grams of Trisodium Citrate were added to the precursor solution. 

 For the batch labeled Oleic the procedure utilized was the same as that for 

Citrate, but with the difference that rather than, 0.44 grams of Trisodium Citrate being 

added to the precursor solution, before the reaction, 22 μL of Oleic acid was added to 

the precursor solution. 

 For the batch labeled Oleic 721 the procedure was the same as that for Oleic 

with the following exceptions: the stir rate was set to 500 RPM, the quantity of Potassium 

Hydroxide utilized was 2 grams as opposed to 1.5 grams, the amount of Oleic acid used 

was increased to approximately between 0.08 mL and 0.1 mL, and the Oleic acid was 

only added to the precursor solution once the solution reached the reaction temperature 

(60°C) and not before. The Potassium Hydroxide was added rapidly in this process. 

 For the batch labeled PVP 721 the procedure was the same as that for Oleic 721 

except that PVP was used rather than Oleic acid and the PVP was added to the 

precursor solution before the reaction temperature was set (the same way it was done 

for PVP). The Potassium Hydroxide was also added rapidly, but not as rapidly as for 

Oleic 721, in this case. 

 For the batch labeled PVP 723 the procedure was the same as that for PVP with 

the exception that 0.4 grams of Cobalt (II) Nitrate Hexahydrate, 1.1 grams of Iron (III) 

Nitrate Nonahydrate, and 0.56 grams of PVP were used. 

For the batch labeled OA, this procedure was done in a fume hood: 

1.) Fill a beaker with 100 mL of deionized water. 

2.) Place a stir bar into the beaker. 

3.) Place the beaker onto the hot plate, which also has a stirring setting. 



46 
 

4.) Set the stirrer to 500 RPM. 

5.) Add 0.8 grams of Cobalt (II) Nitrate Hexahydrate to the beaker. 

6.) When the Cobalt (II) Nitrate Hexahydrate is dissolved, add 2.2 grams of Iron 

(III) Nitrate Nonahydrate to the beaker. 

7.) When the Iron (III) Nitrate Nonahydrate is dissolved, set the temperature on 

the hot plate to 60°C. This solution is known as the precursor solution. 

8.) Fill a small beaker or a small Erlenmeyer flask with 20 mL of deionized water. 

9.) Add approximately 2.89 grams of Sodium Hydroxide to the 20 mL solvent. 

10.) Carefully swirl the beaker or the flask in order to dissolve the Potassium 

Hydroxide. 

11.) When the Sodium Hydroxide is dissolved and the precursor solution has 

reached the reaction temperature (60°C), use an eyedropper to add the 

Sodium Hydroxide solution to the precursor solution, under stirring. Do this 

quickly. 

12.) After 5 minutes, add 0.08g (~94 μL) of Oleic acid. 

13.) Allow the solution to react for 2 hours, under stirring. 

The procedure for No OA has only one difference from that of OA and it is that for No 

OA, no Oleic acid was added. 

 Once one follows these procedures, one will usually be left with a beaker which 

contains a dark colored solution (dark brown or black). The other possibility is that one is 

left with a beaker with a black powder inside. In either case, at this point, one must wash 

the particles this is done, for the former case, by dividing the solution into centrifuge 

tube(s) and centrifuging them at between 2000 and 3000 RPM for at least 5 to 10 

minutes but most importantly until the solution turns clear or only slightly brown and a 

dark mass of particles is clearly visible on the bottom of the tube(s). Then this solution 
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should be discarded, and the tube(s) should be filled with deionized water. For OA, the 

tube was filled with ethyl alcohol for the first wash, in other words the first wash was 

conducted with ethyl alcohol for OA. For the powder case, one proceeds directly to the 

adding of the deionized water. Then the tube(s) should be vortexed and sonicated until 

the solution darkens once more and the dark mass of particles at the bottom of the 

tube(s) dissipates or greatly diminishes. Then the tube(s) should be centrifuged once 

more, again until the solution turns clear or only moderately brown and the particles 

gather on the bottom of the tube(s). It should then be discarded in order to complete the 

wash. One can also conduct washes without using the centrifuge; in this case one uses 

a very powerful magnet to separate out the particles. This magnet is placed underneath 

a beaker filled with a solution containing magnetic nanoparticles, and after sometime the 

particles will collect at the bottom and the remainder of the solution will be free of 

particles and can be discarded. For the next wash, deionized water is added, the beaker 

is shaken and/or sonicated so that the particles disperse into the solution and then one 

proceeds with the previously described procedure. 

When the washes are complete one can re-suspend all or only some of the 

particles in a solution of one’s choosing, or one can dry all or only some of the particles 

by re-suspending those one wishes to dry in deionized water, putting this solution in a 

beaker, and then, inside of a fume hood, using a hot plate to evaporate the deionized 

water away. At the end of the drying process, one is left with a black powder which one 

must scrape from the beaker and collect together, as a precaution this should be done in 

a fume hood as well.  
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