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ABSTRACT OF THE DISSERTATION 

THE EFFECT OF DISTURBANCE AND FRESHWATER AVAILABILITY ON 

LOWER FLORIDA KEYS’ COASTAL FOREST DYNAMICS  

by 

Danielle E. Ogurcak 

Florida International University, 2015 

Miami, Florida 

Professor Michael S. Ross, Major Professor 

Coastal forest retreat in the Florida Keys during the 20th century has been attributed to a 

combination of sea level rise and hurricane storm surge impacts, but the interactions 

between these two disturbances leading to forest decline are not well understood. The 

goal of my research was to assess their effects over a period spanning more than two 

decades, and to examine the relationships between these press and pulse disturbances and 

freshwater availability in pine rockland, hardwood hammock, and supratidal scrub 

communities. Impacts and recovery from two storm surges, Hurricanes Georges (1998) 

and Wilma (2005), were assessed with satellite-derived vegetation indices and multiple 

change detection techniques. Impacts were greater at lower elevations, and in hardwood 

hammock, spectral signatures indicative of plant stress and productivity returned to pre-

disturbance levels within a few years. In pine rockland, impacts were predominately 

related to Hurricane Wilma, however, a similar return to pre-disturbance conditions was 

absent, suggesting that trajectories of disturbance recovery differed between the two 

communities. Long-term monitoring of forest composition, structure, and groundwater 

salinity showed that compositional shifts in the low shrub stratum were associated with 
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salinization of the freshwater resource attributable to sea level rise. Throughout the 

course of twelve months of climate and groundwater monitoring (2011-2012), 

groundwater salinity generally decreased in response to large precipitation events. 

Modeling of geophysical data indicated that groundwater salinity was an important 

predictor of community type. Isotopic analysis of δ18O in plant stem water and foliar δ13C 

was used to determine temporal and spatial patterns in water use and plant stress in two 

community dominants, slash pine, Pinus elliottii var. densa, and buttonwood, 

Conocarpus erectus. Both species relied heavily on groundwater, and plant stress was 

related to increasing groundwater salinity. The results of this work suggest that the 

interaction of press and pulse disturbances drive changes in community composition by 

causing mortality of salt-sensitive species and altering the freshwater resource.  
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CHAPTER 1. INTRODUCTION 

Coastal forests are dynamic, disturbance-adapted systems, which provide a host of 

ecosystem services, including providing species habitat and storm protection, and carbon 

sequestration (Maass et al., 2005; Martínez et al., 2007). In the lower Florida Keys, 

forests that require freshwater inhabit a unique position on low-elevation limestone 

islands as glycophyte-dominated forests located in close proximity to saline water.  

Coastal forests in the greater Caribbean basin are also subject to periodic disturbance 

from hurricanes and tropical storms, but which typically are not stand-replacing events 

(Brokaw and Walker, 1991; Yih et al., 1991; Bellingham et al., 1992). Collectively, these 

forests are high in species diversity (Snyder et al., 1990) and include the following 

communities:  pine rocklands, dominated by slash pine, Pinus elliottii var. densa; 

hardwood hammocks (dry tropical forests) of West Indian affinity; and supratidal scrub, 

dominated by buttonwood, Conocarpus erectus. Within the United States, south Florida 

is the only location where these coastal communities are found.   

 

The present rate of sea level rise of ~23 cm over the past 100 years at Key West (Zervas, 

2009) has led to increases in groundwater salinity, inundation frequency, and subsequent 

shifts in species composition in Florida’s coastal forests (Alexander, 1974; Ross et al., 

1994; Williams et al., 1999). However, anthropogenic climate change is predicted to 

cause a rise of sea level between 0.5 to 1.4 meters by 2100 (Rahmstorf, 2007), result in 

an increased frequency of category 4 and 5 hurricanes impacting the western Atlantic 

(Bender et al., 2010), and possibly increase summer drought conditions in the Caribbean 

region (Neelin et al., 2006). These conditions would favor a combination of disturbance, 
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drought, and salinity tolerant species, as groundwater salinity increases (Guha and 

Panday, 2012) and coastal forests are exposed more frequently to major storms, with 

shrinking recovery periods between such events (Lugo, 2000). Additionally, the 

interaction of press and pulse events will increase the likelihood of surface inundation by 

salt water during the storm surge as coastal height above mean sea level decreases 

(Tebaldi et al., 2012), impacting both species and the freshwater resource. Combined 

with high population pressure in coastal regions, the effects of climate change will have 

immediate consequences for coastal ecosystems in south Florida and worldwide. 

  

Given that the current rate of sea level rise is greater than at any time within the last 2000 

years (Kemp et al., 2011), species and communities will be exposed to a combination of 

climate and disturbance regimes possibly outside of their ability to keep pace. The 

capacities of coastal communities to migrate upslope rather than being overstepped by 

sea level rise are highly variable and dependent on local context. The tolerances of  

individual species to water and salinity stress, responses to altered disturbance regimes, 

and abilities to access freshwater resources will lead to the appearance of novel 

assemblages and no-analog communities (Williams and Jackson, 2007). As stress from 

drought and salinity increases in coastal forest communities, identifying the responses of 

species to environmental drivers will prove essential to understanding the structure of 

current and future community assemblages. The coastal forests of the lower Florida Keys 

provide a unique laboratory for understanding the effect that changes in climate will have 

on freshwater availability and freshwater-requiring habitats at the species and community 

levels.  
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1.1 Objectives 

This dissertation research investigates the relationship between extreme disturbance and 

the variability in available freshwater resources on coastal forest dynamics in the lower 

Florida Keys over a range of temporal and spatial scales.  Chapter 2 considers a 26-year 

period (1986-2011) of hurricane disturbance on two communities. Chapter 3 addresses 

the effect of over two decades (1990-2012) of sea level rise on these same two 

communities. Chapter 4 investigates the seasonal relationship over the course of one year 

(2011-2012) between climate, groundwater salinity, and plant community zonation across 

three communities. Chapter 5 considers changes in water source partitioning and plant 

water stress over the course of one year (2011-2012) for two species of woody plants 

located in these communities.    

 

The specific objectives addressed by this work include the following: 

I. to assess the impact and recovery from hurricanes in freshwater-requiring 

coastal forests; 

II. to determine how sea level rise impacts the groundwater resource and 

influences trajectories in community composition;  

III. to analyze seasonal changes in the freshwater resource and determine drivers 

of coastal forest community zonation; 

IV. to determine the effect of climate and groundwater salinity on water source 

partitioning and plant stress in two dominant species within these coastal 

forests. 
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1.2 Dissertation Organization  

Following the introduction, this dissertation is organized as four chapters in manuscript 

format for submission to peer-reviewed scientific journals. References, tables, and figures 

are placed at the end of each chapter. Chapter 6 summarizes the overall conclusions from 

chapters 2 through 5.  

 

Chapter 2 (to be submitted to Global Change Biology) compares and contrasts the effect 

of and recovery from storm surge of varying magnitude, represented by Hurricanes 

Georges (1998) and Wilma (2005), using a temporal sequence of Landsat TM images. 

Impact and recovery were assessed using image-derived vegetation indices which were 

compared to pre- and post-storm assessments of forest stand parameters. Small 

differences in elevation were determined to be an important factor in determining the 

magnitude of disturbance impact. Post-disturbance responses differed sharply among 

forest types; hardwood hammocks recovered within a couple years of Hurricane Wilma, 

while pine rockland had still not attained pre-disturbance values of the vegetation indices 

six years post-Hurricane Wilma. An optimal combination of change detection techniques 

and vegetation indices were identified for tracking hurricane impact and recovery.  

 

Chapter 3 (to be submitted to Applied Vegetation Science) considers the effects of more 

than two decades of sea level rise (1990 to 2012) on the composition and structure of 

hardwood hammock and pine rockland forests at locations inside and outside the 

freshwater lenses on two lower Keys islands. Groundwater salinity and plant community 

composition and structure in three height strata were sampled in permanent plots at the 
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start and end of the period. The results indicated that after accounting for differences in 

precipitation, sites located outside the boundary of the freshwater lens increased in 

groundwater salinity, driving changes in composition of the low shrub strata toward more 

halophytic assemblages. 

 

Chapter 4 (to be submitted to Ecosystems) considers how seasonal differences in climate 

affect the lateral and vertical extent of the freshwater lens, groundwater salinity, and 

community zonation. Employing a combination of groundwater monitoring and electrical 

resistivity tomography (ERT) surveys, I tracked groundwater salinity along coastal 

gradients throughout the course of a year (2011-2012) on two islands. Boundaries 

between adjacent forest types were located based on coincident vegetation sampling and 

subsequent analysis using a split-moving window technique. Using random forest 

classification, ERT-derived groundwater salinity and topographic location were assessed 

for their ability to predict the location of forest communities. Results depicted vertical 

shifts in the freshwater lens occurring between dry and wet seasons for both islands, but 

lateral shifts were observed only on the smaller island. Similarly, decreases in 

groundwater salinity after large rain events were observed primarily at locations on the 

smaller island. Coastal proximity and groundwater salinity were the most important 

variables for predicting coastal forest community location, and in general, communities 

had high probability of occurrence in discrete ranges of groundwater salinity.  

 

Chapter 5 (to be submitted to Ecohydrology) investigates shifts in plant water use and 

stress in two woody plants located along a coastal gradient in fresh-water requiring 
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coastal forests. Slash pine, Pinus elliottii var. densa, and buttonwood, Conocarpus 

erectus, were sampled three times over the course of nine months in 2011/2012. Both 

plant water source and plant water stress were determined through isotopic analysis, i.e., 

δ18O of stem water and foliar δ13C, respectively. Both species relied heavily on 

groundwater throughout the study. After a large rain event, slash pine used a larger 

percentage of precipitation as a water source than buttonwood. Temporal differences in 

groundwater use were observed for buttonwood across the three habitat types in which it 

occurred.  Plant stress as indicated by δ13C increased throughout the extended drought 

that occurred over the study period, and stress was associated with increasing 

groundwater salinity. 

 

Chapter 6 summarizes the major findings of the work and concludes by considering the 

possible implications these findings have for freshwater-requiring coastal forests in the 

Keys.  The VITA is the last part of the dissertation. Data used in this dissertation can be 

obtained at a variety of locations. Satellite imagery is available for download from the 

USGS Earth Resources Observation and Science Center (EROS) at glovis.usgs.gov. 

Climate data for Key West is available from the National Climatic Data Center at 

http://www.ncdc.noaa.gov, while climate data for Big Pine Key is available from 

MesoWest at http://raws.wrh.noaa.gov/cgi-bin/roman/meso_base.cgi?stn=TS607. Annual 

mean sea level data for Key West is available from the Permanent Service for Mean Sea 

Level at http://www.psmsl.org/data/obtaining/stations/188.php. Groundwater chemistry 

data will be made available via the Florida International University Southeast 

Environmental Research Center (SERC) and can be obtained by contacting serc@fiu.edu. 
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CHAPTER 2. A REMOTELY-SENSED HURRICANE DISTURBANCE HISTORY OF 

COASTAL FORESTS OF THE LOWER FLORIDA KEYS (FLORIDA, USA) 

 

2.1 Abstract 

Hurricanes and tropical storms bring both high winds and storm surge flooding into 

coastal ecosystems, leading to a range of consequences for plants and ecosystems in 

which they occur. To identify these effects on coastal forests in the lower Florida Keys, a 

temporal sequence of Landsat TM images was used to assess the impact of two 

hurricanes, Hurricane Georges (1998) and Hurricane Wilma (2005).  Specifically, I asked 

whether forest recovery, or a lack thereof, varied along an elevation gradient and between 

two coastal forest communities, hardwood hammock and pine rockland. Two vegetation 

indices derived from satellite imagery, the normalized differenced vegetation index 

(NDVI) and the normalized differenced moisture index (NDMI), identified disturbance 

impact and recovery. Empirical orthogonal function (EOF) analysis was employed to 

assess spatiotemporal patterns of disturbance impact and recovery (1986 to 2011) and 

assess differences between these two communities and topographic elevation. Finally, the 

relationship between vegetation indices and measured forest stand parameters within 

permanent plots was evaluated. While both vegetation indices showed a sharp departure 

from the pre-disturbance control, NDMI showed a greater capacity to detect impacts from 

hurricane disturbance. The magnitude of the decrease and the time to recovery of NDMI 

values varied by community and between the two events, with much greater decreases 

observed post-Hurricane Wilma. The results of EOF analysis showed disturbance impact 

and recovery varied as a function of both elevation and community type and indicated 
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two separate trajectories for post-disturbance recovery. While hardwood hammock 

NDMI values returned to pre-disturbance levels within a couple years, six years after 

Hurricane Wilma, pine rockland NDMI values were still depressed. A strong positive 

correlation between NDMI and basal area per hectare in both community types indicated 

that satellite-derived data can be applied to coastal forests of various successional stages. 

The results confirm that proper selection of index is essential to forest disturbance 

monitoring, and the incorporation of EOF analysis revealed diverging spatial trends in 

recovery in the two communities that were not visible from a snapshot of pre – post 

disturbance images.  

 

2.2 Introduction 

Hurricanes and tropical storms are a frequent component of the western Atlantic climate, 

altering the structural and ecosystem functions of coastal forests through disturbance 

from both and wind and storm surge flooding. Specifically, tropical and subtropical 

coastal forests subject to frequent tropical cyclones are lower in stature, higher in density, 

and perhaps higher in species diversity than coastal forests in less frequently disturbed 

areas (Gouvenain and Silander, 2003; Van Bloem et al., 2007; Vandermeer, 2000).  

Having co-existed with a specific frequency of hurricane disturbance over the past 

several thousand years, projected global climate change and sea level rise of the 21st 

century will likely change both the effect of and recovery from tropical storms they 

experience. The projected increase in the frequency of category 4 and 5 hurricanes 

impacting the western Atlantic (Bender et al., 2010) would favor disturbance tolerant 

species by exposing coastal forests more frequently to storms, while shrinking the 
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recovery period between events (Lugo, 2000). Projected increases in sea level of 0.5 to 

1.4 m (Rahmstorf, 2007) would simultaneously increase the likelihood of storm surge 

inundation and bring water tables closer to the ground surface. As climate and 

disturbance envelopes shift and species are eliminated that cannot tolerate the new 

environmental conditions, recovery and successional dynamics of coastal forests as the 

currently exist will surely change.  

 

Hurricane winds cause immediate damage to vegetation, ranging from minor leaf 

defoliation and loss of branches to uprooted or snapped tree trunks (Brokaw and Walker, 

1991). While damage may be severe, tree mortality from even the strongest of hurricanes 

is usually not excessive (Bellingham, 1991; Walker, 1991), and recovery to primary 

forest can be rapid (Yih et al., 1991). The magnitude and pattern of damage depends on a 

combination of factors, including: hurricane wind speed and storm duration, site 

topographical setting, stand structure, and species biophysical properties (Boose et al., 

1994; Foster and Boose, 1992). While the response of individual species is determined by 

wood density and architecture (Putz et al., 1983), the physiographic setting influences 

both the magnitude of disturbance experienced at a location (Bellingham et al., 1994; 

Reilly, 1991) and subsequent recovery.  

 

In contrast to hurricane damage resulting purely from wind disturbance, visible damage 

to vegetation from storm surge typically develops as leaves are shed over periods of 

weeks to several months (Conner and Inabinette, 2003; Gardner et al., 1991), with initial 

effects those of osmotic stress and subsequent effects attributable to salt toxicity (Munns, 
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2002). Salinity effects on non-halophytic vegetation include decreases in productivity, 

changes to plant anatomy (Kozlowski, 1997), and mortality is frequently observed 

(Conner et al., 1997; Conner and Inabinette, 2003). Recovery from a storm surge event 

may be impeded by low nutrient availability as plants first drop leaves without 

reabsorption of nutrients, and salinization of soil disrupts microbial processes, leading to 

decreases in microbial immobilization and subsequent nitrogen loss from the system 

(Blood et al., 1991). Individual species’ response to osmotic and salt stress is an 

overriding factor in storm surge (Chapman et al., 2008), and a crucial determinant of the 

structure and composition of the post-disturbance coastal forest.   

 

To predict how structure and extent of coastal forests will change in a future of 

anthropogenic climate change, it is imperative that we quantify how these communities 

have responded to frequency and magnitude of disturbances in the past. Quantification of 

the effect of disturbance on forest recovery is greatly facilitated by the recent widespread 

availability of remotely sensed data at both a temporal and spatial scale adequate to 

capture more than just a before and after picture of the effect of disturbance on ecological 

phenomena (Kennedy et al., 2014). Vegetation indices derived from satellite data, 

specifically the normalized differenced vegetation index (NDVI),  have been widely used 

to assess plant stress from disturbance and quantify forest biomass in many locales 

(Pettorelli et al., 2005).  The NDVI utilizes a combination of reflectance in the red and 

near-infrared (NIR) portion of the electromagnetic spectrum. Changes in red reflectance 

are helpful in identifying leaf senescence and photosynthetic activity in plants, while high 

NIR reflectance is observed in forests with thick canopies resulting from the canopy 
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effect (Jensen, 2005). While NDVI has been successfully used to document changes in 

coastal wetlands in Alabama after Hurricane Katrina (Rodgers et al., 2009) and in 

Louisiana after Hurricane Rita (Steyer et al., 2013), recent work has shown vegetation 

indices derived from a combination of the NIR and mid-infrared (MIR) portion of the 

electromagnetic spectrum to be superior for detecting forest disturbance (Wang et al., 

2010; Wilson and Sader, 2002).  Under non-stress conditions, plants reflect much of the 

NIR energy as a result of scattering by the spongy mesophyll (Tucker, 1979). Thus, 

changes in NIR are helpful in identification of amount of biomass present, decreases in 

which may be indicative of storm damage.  The usefulness of the MIR bands is found in 

the relationship between leaf reflectance and leaf moisture content; as leaf moisture 

content decreases, reflectance increases in the MIR bands (Pu et al., 2003). This 

relationship between reflectance and leaf moisture in the MIR bands imparts information 

on plant water stress and moisture status. 

 

Given the established physiological relationships between vegetation structure and leaf 

and canopy reflectance, aboveground biomass and forest structure have been estimated in 

a variety of forest types (both temperate and tropical) using Landsat TM data with 

varying degrees of success, dependent on both landscape context and forest complexity 

parameters (Lu, 2005; Sader et al., 1989; Steininger, 2000). While NDVI has been widely 

used, work conducted in mature and successional rain forests (Lu et al., 2004) and in 

Atlantic coastal forests of Brazil (Freitas et al., 2005), determined that indices that 

included MIR bands provided the best correlations to stand parameters. Using a time-

series dataset of Landsat TM and MSS images, disturbance history metrics have been 
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derived to estimate forest structure in the temperate Northwest (Pflugmacher et al., 2012). 

Extending the relationship between forest disturbance and recovery as assessed from 

vegetation indices and measured forest stand parameters, both spatially across coastal 

forest types and temporally across a hurricane-disturbed landscape, will be very useful 

for both coastal forest monitoring and prediction of future forest structure across large 

spatial swaths.   

 

Using an approach that combines a 26-year temporal sequence of Landsat TM data 

(1986-2011) and ground-based measurements of forest stand parameters (1990 and 

2011), this study quantifies the ecological effects of two hurricanes that struck the islands 

of the lower Florida Keys, Hurricane Georges (1998) and Hurricane Wilma (2005). 

Specifically, it considers whether forest recovery, or a lack thereof, varied along an 

elevation gradient and between two coastal forest communities, hardwood hammock and 

pine rockland. Hurricane Georges, a category 2 storm at time of landfall at Key West, FL 

on September 25, 1998, produced a storm surge of 1.5 to 1.8 m from the Atlantic, while 

Hurricane Wilma, a category 3 storm at the time of landfall near Naples, FL on October 

24th, 2005, produced two separate storm surges (Kasper, 2007). The first surge of 1.5 m 

came from the Atlantic, while the second surge of 1.8 to 2.4 m piled up water from the 

shallow Florida Bay and inundated the islands of the lower Keys to all but the highest 

elevations. Owing to the differences in the paths and sizes of the two storms, the wind 

speeds experienced observed in the lower Keys were similar between storms and the 

variation across the islands was small, with 40 to 45 m/s winds for 10+ hours from 

Georges and 30 to 40 m/s winds recorded for Wilma (Powell et al., 1998; Zehr and 
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Knaff, 2007). While there was clear evidence of wind damage to vegetation from both 

storms, my work argues that the differences in severity of impact to vegetation from the 

two storms resulted primarily from variation in the extent of the storm surge flooding, 

rather than any differences in wind effects between the two storms.  

 

The present study addresses three scientific questions. First, is there an alternative 

vegetation index which performs better than NDVI in assessing hurricane disturbance 

and subsequent recovery processes in pine rockland and hardwood communities in the 

lower Florida Keys?  Secondly, what is the difference between these two communities in 

response to storm surge disturbance and how does the topographic elevation influence the 

response? Finally, are previously established relationships between satellite-derived 

vegetation indices and forest stand parameters also observed in broadleaf subtropical and 

conifer forests of the lower Florida Keys? To address the above questions, I compare the 

ability of two vegetation indices, NDVI and the normalized difference moisture index 

(NDMI), in identifying disturbance impact and recovery.  To assess change in vegetation 

indices, I employ both a standard bi-temporal technique, univariate image differencing 

(UID), and a technique that uses a temporal sequence of images, specifically, Empirical 

Orthogonal Function analysis (EOF).  EOF provides a powerful tool to describe and 

identify the spatiotemporal pattern of a dataset, and has been widely used in 

meteorological and oceanographic research to describe variability and reduce high 

dimensionality data into its deterministic and stochastic components (Preisendorfer, 

1988; Storch and Zwiers, 1999).  Finally I compare the vegetation indices to measured 
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stand parameters in permanent plots in both hardwood hammock and pine rockland 

forests for pre- and post-disturbance sample periods. 

 

2.3 Study Area 

In the lower Florida Keys, where elevations exceeding two meters are uncommon and 

where an increase in sea level of 23 cm has been documented over the past century (Key 

West Tide Gauge, NOAA), changes to coastal forests are already evident, and appear to 

be attributable to a combination of disturbance impacts and increases in sea level (Ross et 

al., 2009). The 20th century increase in sea level is significant compared to the rate of 4 

cm per 100 years observed for the previous 3000 years (Wanless et al., 1994). Hardwood 

hammock and pine rockland forests provide habitat for many south Florida endemic, 

threatened and endangered species (Snyder et al., 1990). In the U.S., these forests are 

only found in the Florida Keys and a few locations on mainland south Florida. While 

degradation and loss in extent has resulted from urbanization and altered fire regimes, 

hurricanes of the past couple decades have also affected the structure and composition of 

these forests (Ross et al., 2009; Saha et al., 2011). 

 

The study area spans 30 kilometers across the lower Florida Keys and includes eight 

islands with areas of coastal forest that are owned/managed by the USFWS National Key 

Deer Refuge, including: Big Pine Key (BPK), Little Pine Key (LPK), No Name Key 

(NNK), Little Torch Key (LTK), Middle Torch Key (MTK), Big Torch Key (BTK), 

Cudjoe Key, (CUD) and Sugarloaf Key (SLK) (Figure 2.1). Freshwater-requiring coastal 

forest types considered in the study are hardwood hammock, consisting of woody plant 
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species of West Indian origin, and pine rockland, dominated by the tree Pinus elliottii 

var. densa Engelm., with an understory of shrubs and palms (Snyder et al. 1990). 

Elevations for each habitat across the eight islands range from 0.2 m to 1.5 m for pine 

rockland and from 0.2 to 2 m for hardwood hammock. While both communities can 

occur within 50 meters of the coast, hardwood hammock is typically found coastward of 

pine rockland, with the mean distance to coast generally several hundred meters greater 

for pine rockland than hardwood hammock. Coastal distance and elevation are not 

necessarily well-correlated on the uneven surface of the lower Florida Keys. While 

hardwood hammock trees are rooted in soil depths ranging from just a few centimeters to 

0.35 m of organic soil, pine rocklands typically have just 0.01 to 0.1 m of soil present 

(Ross et al., 1992), and trees often root directly into crevices in the exposed bedrock 

(Snyder et al., 1990).  

 

The bedrock consists of two distinct layers, both of Late Pleistocene age (Perkins, 1977). 

The upper layer, the Miami Limestone (Hoffmeister et al., 1967), is several meters thick 

(Coniglio and Harrison, 1983) and overlies the Key Largo Limestone (Hoffmeister and 

Multer, 1968). While both formations are highly permeable, differences in the origin of 

the facies and subsequent diagensis have resulted in greater secondary porosity in the 

underlying Key Largo Limestone (Coniglio and Harrison, 1983). The lower secondary 

porosity of the Miami Limestone results in a fresh water lens that is truncated just below 

the contact between the facies (Vacher et al., 1992). The presence of the pine rockland 

community in the lower Florida Keys has been attributed to the existence of fresh water 
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lens on these islands, as pines are rather intolerant of salt water and rely at least partially 

on freshwater from the lens (Ross et al., 1994).  

 

The climate of the Keys is characterized by extended wet (June through October) and dry 

seasons (November through May), with typically more than two-thirds of annual 

precipitation falling during the wet season (average annual precipitation of 1027 mm for 

1984-2013 at Key West International Airport, http://www.ncdc.noaa.gov). Temperatures 

range from an average monthly low of 20 degrees Celsius in January to an average 

monthly high of 29 degrees Celsius in August (30-year average, KWIA). While the 

majority of plant species within both the pine rockland and hardwood hammock are 

evergreen, a few species are drought deciduous and drop their leaves toward the end of 

the dry season. Additionally, evergreen species can become water stressed during the dry 

season after a long period without substantial precipitation (Ogurcak, unpublished data).  

 

2.4 Methods 

2.4.1 Image Processing 

Landsat 4-5 TM images (path 15, row 43) with a spatial resolution of 30 x 30 m were 

downloaded from glovis.usgs.gov for the years spanning 1983 to 2011. The earliest 

relatively cloud-free image of each calendar year (January through March) was selected. 

A Landsat 7 ETM+ image was selected for 2003 as no cloud-free Landsat 4-5 TM 

imagery was available for the period. Downloaded images had been previously 

geometrically corrected and registered to the NAD83 datum by USGS (data product L1) 

and were checked against road features to verify georeferencing. Images were 
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radiometrically calibrated and then atmospherically corrected using the FLAASH module 

in ENVI 5.0.  The atmospheric model used for correction was selected according to the 

temperature at the time of image acquisition at the Key West International Airport; 

tropical was used for temperatures above 24 degrees Celsius and mid-latitude summer 

was selected as the model for temperatures below this threshold. The aerosol model 

selected was maritime, and 2 Band Aerosol retrieval using the Kauth-Thomas method 

was selected. 

 

I selected pseudo-invariant features (PIFs) (Philpot and Ansty 2013) across the Landsat 

scene which covered the geographic area of the Florida Keys from Boca Chica Key to 

Upper Key Largo. PIFs are landscape features that experience little change in percent 

reflectance on a seasonal or annual basis and provide a good check on the reliability of 

the atmospheric correction for each image. Features used in this analysis include: an 

airstrip at the Marathon airport (N 24.724, W -81.057), open ocean located 20 kilometers 

south of Marathon (N 24.536, W -81.011), and a red mangrove island just south of No 

Name Key (N 24.667 W -81.326). An 8100 m2 area (9 pixels in a 3 x 3 arrangement) was 

selected to represent each PIF.  Band values were extracted from the corresponding pixels 

in each image using the Extract Multi Values to Points tool within the Spatial Analyst 

toolbox in ArcGIS 10.0. An average value was calculated for each band for each image 

date at each PIF and deviations from the average value were compared to assess the 

quality of atmospheric correction. Images having PIFs with reflectance values in Landsat 

TM bands 1 through 5 deviating by more than + /- 3.5% reflectance from the average 

value of the corrected images in several PIFs were discarded and not used in the study.  
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Additionally, images found to have too many clouds obscuring the study area were 

removed from the dataset, resulting in a total of 19 images used in the analysis (Table 

2.1). 

 

2.4.2 Data Selection and Extraction 

Band values for over 11,000 Landsat TM pixels, corresponding to all areas of hardwood 

hammock (6123 pixels) and pine rockland (4935 pixels) (minimum size of 3 contiguous 

pixels), were extracted for the analysis (Figure 2.1). The boundaries of coastal forest 

areas included in this study were obtained from a land cover map created from a 

combination of elevation and canopy height derived from LiDAR collected in 2007 and 

high resolution aerial imagery from 2006 (Zhang et al., 2010). To avoid mixed pixels and 

reflection from adjacent land cover types, pixels located within 10 meters of a land cover 

polygon boundary were eliminated from the analysis. The selection of 10 m distance was 

based on a moving window analysis of coastal forest community change on two of these 

islands that identified a 5 m window as most effective at distinguishing adjacent 

community types (Ogurcak, unpublished data). A centroid was created for each pixel and 

band reflectance values were extracted from each of the 19 images.  Average elevation of 

each pixel was obtained from a 5 x 5 m resolution DTM derived from Lidar data (Zhang 

et al., 2010). Landsat pixels with average elevations below 20 cm were eliminated from 

the analysis; these pixels typically corresponded to open rock flats or small sinkholes 

containing wetland vegetation within the surrounding pine rockland or hammock forest. 

A small percentage of pixels obscured by cloud cover in three images (1991, 2000, and 
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2011) were set to no data for those years for the calculation of means, while affected 

pixels and/or image date (1991) were eliminated entirely for the EOF analysis.  

 

The NDVI and NDMI were calculated from band values for each image date. Both 

indices use a combination of Landsat TM band 4 (wavelength 0.76 to 0.90 µm) in the 

NIR and one other band. NDVI uses Landsat TM band 3 (0.63 to 0.69 µm), red band, in 

the visible spectrum, while NDMI uses Landsat TM band 5 (1.55 to 1.75µm) in the MIR. 

Equations for each index are derived as follows: 

( ) ( )3434 Re/Re TMTMTMTM dNIRdNIRNDVI −−= , (Rouse et al., 1973),  

( ) ( )5454 / TMTMTMTM MIRNIRMIRNIRNDMI −−= ,(Hardisky et al. 1983; Wilson and 

Sader, 2002). While each of the above indices can take a value from -1 to 1, areas 

covered with vegetation generally have values greater than 0, and non-disturbed forested 

areas typically have values that range from 0.2 to 0.9 for NDVI and 0.2 to 0.6 for NDMI. 

Vegetation index values from Florida Keys coastal forests typically are lowest at the end 

of the dry season, when drought-deciduous species have lost their leaves and plants are 

under the most water stress, and reach the highest values during the wet season (Ogurcak, 

unpublished data). 

 

2.4.3 Field Methodology  

Seven 60 m by 10 m permanent plots, three located in pine rockland and four in 

hardwood hammock, that had been sampled for tree basal area and percent shrub cover in 

1990 were resampled using the same methodology in 2012 (Figure 2.1, Table 2.2). 

Permanent plots consisted of a belt transect of six 10 x 10 m subplots, with the exception 
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of one plot that contained only five subplots. In each subplot, diameter at breast height 

(dbh) was recorded for all trees greater than 2 m in height and having a dbh greater than 3 

cm. An average basal area per hectare was calculated for each permanent plot. Percent 

shrub cover was estimated in two understory strata in a 5 x 5 m quadrat located at the 

center of each subplot. The high shrub strata included woody plants with dbh less than 3 

cm and height greater than 1 m, while the low shrub strata consisted of herbaceous plants 

and woody shrubs less than 1 m in height. Percent shrub cover was estimated in the 

following categories, with the midpoint of each category used for subsequent analyses: 0 

= 0%, 1 = <1%, 2 = 1-4%, 3 = 4-16%, 4 = 16-32%, 5 = 32-66%, and 6 = 66-100%.  

 

2.4.4 Data Analysis 

Prior to performing analyses, I assessed the effect that the date of image acquisition may 

have had on vegetation index values and subsequent patterns observed in the data. While 

the annual images selected for analysis spanned a short time period in the middle of the 

dry season (70 days) and should capture reflectance from vegetation at approximately the 

same phenological state, I wanted to quantify the extent of any relationship between 

index values and day of year. Additionally I determined if a relationship existed between 

the amount of recent precipitation and index values as has been observed between NDVI 

and rainfall in the Sahel (Nicholson et al., 1990; Davenport and Nicholson, 1993) and the 

American Midwest (Wang et al., 2003). Since the amount of recently received 

precipitation could affect leaf water status and subsequent reflectance values, I 

considered 30 and 90 day accumulations prior to each image acquisition date. I then 

compared the average NDVI and NDMI in both hardwood hammock and pine rockland 
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habitats on each island to the day of year of image acquisition and to precipitation totals. 

A subset of the image dates was used in this analysis to avoid the effect of disturbance on 

the indices and focus on the amount, if any, of underlying variation in the indices related 

to the above stated factors. For hardwood hammock, I selected the seven images acquired 

prior to Hurricane Georges (1986-1998) and the five images acquired prior to Hurricane 

Wilma (2001-2005) for a total of twelve images. In pine rockland, both wildfire and 

prescribed burns affected several locations over that same time period, therefore years 

immediately post-fire were removed and analyses were conducted separately on areas of 

pine rockland in separate management units having different fire histories. Fire history 

data, including date and area of burn, was obtained from the Key Deer National Wildlife 

Refuge for all areas of pine rockland. Daily precipitation data was obtained from Key 

West International Airport (http://www.ncdc.noaa.gov) and was used to calculate the 

total amount of precipitation received in 30 and 90 day intervals prior to image 

acquisition. Each image date was converted to the Julian day, and relationships were 

assessed using linear regression.  

 

To address the first objective, evaluating the performance of selected vegetation indices, 

a frequency distribution of change in spectral index by pixel was generated using UID for 

images obtained before and after Hurricane Wilma (2005 and 2006) compared to an 

interval of no change (1996 to 1997) prior to both storms. The latter interval was selected 

for this purpose because it pre-dates both hurricanes and fire had not occurred within 

hammock or pine rockland since 1994 (Bergh and Wisby, 1996) and did not recur until 

August 1998 (Sah et al., 2006). Additionally, the mean and standard deviation of each 
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index for 1996 was calculated to compare pre-disturbance index values between 

community types. Pine rockland was separated into areas of pine occurring on BPK and 

pine in the other four islands combined (CUD, LPK, NNK, and SLK). These areas were 

separated to account for the historically more frequent fire return interval on BPK 

compared to that of the smaller islands (Carlson et al., 1993).  Shorter fire-return intervals 

influence stand structure by decreasing the amount of shrubby biomass, leading to more 

open savannah–type pine forests, and have the effect of decreasing vegetation reflectance 

and index values.  

 

The mean NDMI +/- 95% confidence interval for the temporal sequence of image dates 

was plotted for all pixels in each community type in three elevation intervals: low 

elevation (0.20 to 0.60 m), mid elevation (0.60 to 1.0 m), and high elevation (> 1 m). 

Additionally, the mean reflectance +/- 95% confidence interval for bands 3, 4, and 5 for 

hardwood hammock and pine rockland pixels occurring at an elevation below 1 m was 

plotted for the temporal sequence. Using UID, the average decrease in NMDI pre-post 

Hurricane Georges (1998 – 1999) and pre-post Hurricane Wilma (2005 – 2006) was 

plotted in 0.10 m elevation intervals in each community type. All pixels greater than 1.0 

m were combined into a single category. Additionally, to identify any island effects, the 

average change in NDMI was similarly plotted for all pixels on each island in both 

communities and was related to the longitude of each island along the west to east 

orientation of the study site. 
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To identify spatiotemporal patterns of the dataset, I employed EOF analysis in the 

manner of Small (2012). The output of the analysis consists of uncorrelated spatial and 

temporal patterns that correspond to the eigenvectors of the covariance matrix. A time 

series of pixels at specific spatial locations ),,( tyxP can be represented as a linear 

combination of temporal patterns )(tck  and their spatial components ),( yxek  using the 

following formula:   

 

 

where m is the number of temporal points, P is the number of spatial points, k is the 

number of dimensions, and ),,( tyxP  is the average of ),,( tyxP over time. The spatial 

empirical orthogonal functions (sEOFs) represent the weight contributed by each 

temporal empirical orthogonal function (tEOF) at a given location. The EOF analysis was 

run in Matlab v.8.1 on a matrix of NDMI values in an arrangement of pixels (rows) by 18 

image dates (columns). The analysis was conducted on 10983 pixels, 6095 occurring in 

hardwood hammock and 4888 in pine rockland. The 1991 image was not used in the 

computation of covariance because of the presence of scattered cloud-cover across the 

image. Weights for each dimension of temporal EOF 1 and 2 were plotted on a bar graph. 

The distribution of spatial EOFs 1 and 2 were plotted for each pixel in hardwood 

hammock and pine rockland in the study area by using a spatial join in ArcGIS 10.1 to 

combine the results of the EOF analysis with the centroid associated with each pixel 

location. The relationships between elevation and spatial EOFs were assessed with linear 

regression. T-tests were used to compare the mean scores for spatial EOF 2 for each 

community type on each island.  

),()(),,(),,(
1

yxetctyxPtyxP kk

m

k
∑

=

+≈



26 
 

To determine the relationship between measured stand parameters and vegetation indices, 

the average basal area per ha and percent cover for each permanent plot in both sampling 

periods (n =14) were compared to NDVI and NDMI values for Landsat TM pixels 

coincident with the permanent plots. Nine Landsat TM pixels, which included the plot 

itself as well as surrounding habitat of the same coastal forest type, were selected for 

comparison between vegetation indices generated from the 1990 and 2011 images. Fewer 

than nine pixels were selected for two plots in which the surrounding habitat was not 

sufficiently large (Table 2.2). Pearson correlation coefficients were used to assess the 

relationships and p-values < 0.05 were reported as significant. 

 

2.5 Results 

2.5.1 Seasonality and Vegetation Indices 

Despite a difference of 30 cm of precipitation received between dry-season image dates, 

no correlation was found between NDVI or NDMI values in pre-disturbance images and 

precipitation totals for the 30 or 90 days prior to the image, indicating that previous 

precipitation did not influence the spectral signature observed in hardwood hammock or 

pine rockland. Julian Day was significantly negatively correlated with average vegetation 

index value for non-disturbance years for both indices on a majority of islands / 

management units (Figure 2.2a and 2.2b, NDMI shown).  The negative relationship 

between vegetation index and Julian date over the window of image acquisition indicates 

that there are some detectable changes in moisture stress or phenology (senescent leaves 

in some species) occurring over the time period that likely integrate the effects of 

increasing number of daylight hours and amount of solar radiation observed at this time 
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of year. However, the mean change in indices (+/- SE) over the time period from earliest 

image acquisition date (January 3, 1997) to latest image acquisition date (March 11, 

1998) was minimal; hardwood hammock decreased by 0.03 +/- 0.003 for NDMI and 0.02 

+/- 0.004 for NDVI, while pine rockland decreased by 0.07 +/-  0.01 for NDMI and 0.04 

+/- 0.01 for NDVI. A total of 19 days separates the 2005 and 2006 image dates 

bracketing Hurricane Wilma, making the pre-post hurricane decrease in NDMI 

attributable to increasing Julian date -0.02 in pine rockland and -0.01 in hardwood 

hammock. Thus, I considered the effects of seasonality on the selection of image dates 

negligible and attribute observed changes in index values greater than 0.1 to disturbance 

events.  

 

2.5.2 Comparison of Vegetation Indices 

While changes post-pre disturbance for both vegetation indices showed a sharp departure 

from the pre-disturbance control interval (1997-1996), NDMI showed a greater capacity 

to detect impacts from hurricane disturbance than NDVI, as indicated by the larger mean 

decrease observable in its frequency distribution for 2006-2005 (Figure 2.3a and b). With 

a mean near 0 and a small standard deviation (0.03 +/- 0.04 for NDVI and 0.04+/- 0.04 

for NDMI), the pre-disturbance control interval for both vegetation indices is as expected 

for UID between years of no intervening disturbance. The mean decrease in NDMI was 

greater than that of NDVI in the post-pre disturbance comparison when community types 

were considered separately and when pine was divided into areas located both on and off 

Big Pine Key (Table 2.3). The standard deviation around the mean change was similar 

(0.08 to 0.12) for both indices in each community type for the post-pre hurricane interval 
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and was larger than that of the control interval, as would be expected, as a function of 

differential effect of storm surge on pixels across the entire elevation gradient. 

Additionally, the observed decrease in vegetation index following Hurricane Wilma 

varied by community type; hardwood hammock pixels displayed a greater mean decrease 

in both indices compared to pine rockland (Table 2.3). The average 1996 pre-disturbance 

values for both indices were lower in pine rockland, but only for areas located on Big 

Pine Key. This relationship is expected given the greater historical frequency of fire in 

pine rockland on Big Pine Key compared to that of the smaller islands that have moved 

further along in the successional stage and have greater component of woody hardwood 

species (Carlson et al., 1993). Since NDVI and NDMI share band 4 (NIR) in the 

calculation of the vegetation index, the observed differences in magnitude of change in 

NDMI versus NDVI must be attributable to greater post-hurricane increases in band 5 

reflectance compared to increases in band 3 reflectance. While an average increase of 1% 

was observed post-Wilma for band 3 reflectance, a decrease of 4% and increase of 10% 

were observed for band 4 and 5 reflectance, respectively.   

 

2.5.3 Differences in Hurricane Impact and Recovery  

Disturbance impact from Hurricane Georges (1998) and Wilma (2005) was recorded as a 

visible decrease in NDMI in subsequent year(s) in both communities. However, the 

magnitude of the decrease and the time to recovery of pre-disturbance values varied by 

community and between the two events (Figure 2.4a-c). Damage to pine rockland from 

Hurricane Georges at all elevations was less than the change attributable to seasonal 

variation in NDMI (Figure 2.5), except for slight decreases on the easternmost islands of 
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No Name and Little Pine Keys (Figure 2.6). While a decrease in NDMI was visible in 

hardwood hammock at all elevation ranges from Hurricane Georges, it was most 

noticeable at elevations below 0.7 m (Figure 2.7) and was most pronounced on the 

easternmost islands (Figure 2.6). Index values in hardwood hammock recovered to those 

of the pre-disturbance image by February 2000. Decreases in NDMI from Hurricane 

Wilma were much larger than those of from Georges, and were largest at elevations 

below 1 m (Figure 2.4a and 2.4b). The percent decrease in NDMI varied by elevation 

interval and between community types. Hardwood hammock had approximately the same 

percent decrease across all elevation intervals below 1 m, while pine rockland decreased 

most at lower elevations. In both communities, the average change in NDMI by island 

was predicted by the percentage of pixels occurring at elevations below 1 meter (Figure 

2.8). For both habitats, NDMI values at elevations above 1 m recovered to pre-

disturbance levels by February 2007 for (Figure 2.4c). However, at elevations below 1 m, 

recovery differed between the two community types. In hardwood hammock, NDMI 

values returned to the previous level by the February 2009 image, while in pine rockland, 

NDMI values did not even reach pre-disturbance condition by February 2011 (Figure 

2.4a and b). Individually plotting reflectance values for bands 3, 4, and 5 for pine 

rockland and hardwood hammock pixels below 1 m elevation (Figure 2.9) demonstrated 

the difference in both magnitude and duration of change in reflectance by band across the 

time series. Band 3 reflectance increased by an average of 2 to 3 percent post-Hurricane 

Wilma for both communities, but returned to pre-disturbance reflectance by the next 

image date. For bands 4 and 5, the mean change in reflectance and time to recovery 

varied by community. An immediate decrease of 6% occurred in band 4 in hardwood 
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hammock post-Wilma, but a smaller and delayed response was observed in pine 

rockland. The band 5 increase in reflectance, while slightly smaller in pine rockland, 

returned to pre-disturbance values only in hardwood hammock community by the 2011 

image. 

The results of the EOF analysis mirror the visual trend in NDMI over the 26-year period, 

but provide an additional spatial component to the variability. The first two temporal 

EOFs (tEOFs) explain 78% of the variability in the temporal dataset (tEOF 1 explains 

67%, tEOF 2 explains 11%). Temporal EOF 1 primarily weights the negative effect of 

Hurricane Wilma on NDMI values in the first two post-disturbance images, with 2006 

having the greatest magnitude, to that of pre-disturbance years, with 1997 having the 

greatest positive value (Figure 2.10a). Temporal EOF 2 reflects the ratio of immediate 

post-hurricane NDMI values for Georges and Wilma (1999 and 2006 images) to those of 

the later stages of post-Wilma recovery (2007 to 2011) (Figure 2.10b). Disturbance 

impact from Hurricane Wilma can be seen to vary with spatial EOF 1 (sEOF1) as a 

function of elevation while spatial EOF 2 (sEOF2) highlights the contrasting response 

between community types. Using No Name Key as an example, sEOF1 scores are 

distributed with high elevation pixels having values near 0 and low elevation pixels 

reaching a maximum of 0.016 (Figure 2.11). A statistically significant negative 

relationship exists between elevation and sEOF1 scores until approximately 1.0 m in 

elevation which may represent the upper limit of storm surge waters on No Name Key 

(Figure 2.12). Spatial EOF 2 (Figure 2.13) illustrates two diverging trends in impact and 

recovery between hardwood hammock and pine rockland.  Areas of pine rockland are 

characterized by negative values, while areas of hardwood hammock take on positive 
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values (Figure 2.14). This pattern was found on all islands having both hardwood 

hammock and pine rockland (t-tests: p < 0.001). There exists a clear difference in the 

trajectories that these two communities are taking. 

 

2.5.4 Relationship between Vegetation Indices and Stand Parameters 

Decreases in basal area per hectare of permanent plots differed between community types 

with hardwood hammock experiencing decreases ranging from 3 to 48%, while pine 

rockland basal area per hectare decreased 47 to 77% of its 1990 value.  A positive linear 

relationship was found between both NDMI and NDVI and two structural variables, basal 

area per hectare and percent cover of the high shrub layer (Table 2.4). In both 

communities, the strongest relationship was observed between NDMI and basal area per 

hectare (Figure 2.15). No significant relationship was observed between either index and 

low shrub cover.  For the same value of NDMI, hardwood hammock had larger tree basal 

area than pine rockland, which is expected given the more open nature of the pine 

rockland overstory that allows more of the spectral signal to be attributed to shrub cover. 

The correlation between NDMI and high shrub cover in pine rockland and hardwood 

hammock was 0.73 and 0.65 (p < 0.10), respectively.  

 

2.6 Discussion 

2.6.1 Vegetation Index Comparison 

While both vegetation indices were found to be show evidence of hurricane disturbance, 

NDMI was a better indicator of disturbance and recovery. The combination of Landsat 

TM bands 4 and 5 (NDMI) better represented both the magnitude of disturbance effect 



32 
 

and recovery compared to that of bands 3 and 4 (NDVI) (Figure 2.3b). Decreases in 

NDMI were greater than those of NDVI for both community types (Table 2.3). Previous 

comparisons of these two indices in an estimation of leaf and canopy moisture content 

yielded similar results of the superiority of NDMI (Hardisky et al. 1983).  In contrast to 

the findings that an increase in leaf reflectance in the visible spectrum is the most 

consistent signature of plant stress as the plant absorbs less energy in the chlorophyll 

absorption bands (Carter, 1993; Carter et al., 1996), the best indicator of disturbance 

effect and recovery seems to be tied to plant moisture stress. Changes to canopy biomass 

and leaf moisture content post-disturbance are likely both important factors in 

determining effects of and recovery from hurricane disturbance. The biophysical 

parameters captured by the range of EM spectrum corresponding to Landsat band 5 can 

be interpreted as the persisting effect of storm surge, indicating that decreases in canopy 

moisture and increases in plant water stress can persist at a minimum six years post-

hurricane disturbance in pine rockland in the Florida keys (Figure 2.9), making this the 

most recognizable post-storm surge symptom of plant community stress within pine 

rockland. While small declines in photosynthetic capacity associated with increased 

reflectance in band 3 are more transitory, the decrease in band 4 and increase in band 5 

are prolonged. Differences in recovery time of reflectance in these bands between 

hardwood hammock and pine rockland might be attributable to a variation in fresh water 

availability post-hurricane, as well as differing regeneration strategies of species that 

dominate these communities. 
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2.6.2 Storm Impacts and Island Elevation 

While a couple studies exist contrasting the effects of wind disturbance from hurricanes 

to these two forest types (Boucher et al., 1990; Craighead and Gilbert, 1962), a search of 

the literature found 0 studies having contrasted the impact and effects of hurricane storm 

surge in these communities. In a region frequently impacted by hurricanes, this is likely 

explained by the higher elevation of most coastal forests across the Greater Caribbean 

region that would rarely be inundated by storm surge. The Florida Keys provide a unique 

opportunity to study storm surge effects on coastal forests given their extremely low 

elevations that make them susceptible to storm surge impact. A combination of restricted 

aerial extent, the similar range in wind speeds of both storms, and the flat topography of 

the Florida Keys, rules out wind as the primary stressor for differential damage patterns 

to hardwood hammock and pine rockland from the two hurricanes.  

 

While wind can be considered constant across the habitats within each island, differences 

in sustained winds from Hurricane Georges varied across the study area between islands 

with the strongest winds on No Name and Little Pine Keys (Powell et al., 1998). The 

only visible decreases in vegetation indices in pine rockland occurred on these two 

islands (Figure 2.6). The storm surge from Hurricane Georges came from the Atlantic 

and high water mark elevations were recorded after the storm at 1.8 meters NAVD88 on 

east side of Cudjoe and 1.4 meters NAVD88 on eastern Big Pine (Sea Systems 

Corporation, 1998).  While these heights are easily large enough to have flooded 

hardwood hammock near the coast, they were not large enough to have flooded interior 

pine rockland locations. Combined with the lack of decrease in NDMI in lower elevation 
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pine rockland on other islands to the west, small decreases in NDMI observed post-

Georges in pine rockland are most likely attributable to wind damage. In hardwood 

hammock, a combination of storm surge and wind led to coastal forest damage. While 

similarly larger decreases in NDMI were observed in the eastern islands, the larger 

magnitude of change in NDMI in low versus high elevation hammock indicates storm 

surge as the over-riding factor.   

 

In contrast, the largest magnitude decrease in spectral index over the 26-year period in 

both community types is observed in the 2006 image – post Hurricane Wilma (Figures 

2.4a-c). The high weighting of tEOF1 (Figure 2.10a) in the post-Wilma image implicates 

storm surge flooding from Hurricane Wilma as the primary cause of disturbance to these 

forests. The relationship with sEOF1 and elevation (Figure 2.12) provides quantitative 

evidence for what was readily apparent to those giving first-hand accounts of the storm; 

damage from Hurricane Wilma was attributable to flooding rather than effects of wind. 

Wind speeds generated from the HRD hurricane wind analysis (Powell et al.1998) and 

those recorded before instrument failure (Kasper et al. 2007) were fairly consistent across 

the study area. The second surge from Hurricane Wilma came from Florida bay (Kasper, 

2007) and generated high water elevation marks over 2 m NAVD88 at the northern ends 

of Upper Sugarloaf and Cudjoe Keys, with a southern interior location on Big Pine Key 

recorded at over 1 m (URS Group, Inc., 2006). The result was that all but the highest 

locations received storm surge waters and most islands were completely inundated. No 

Name Key, with the highest elevations in the study area and 30% of the area in both 

communities greater than 1 meter elevation, was one of the few islands where flood 
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waters did not entirely cover the coastal forests and correspondingly, a much smaller 

change in index is observed at the island level (Figure 2.8).  

 

In pine rockland, the greater decrease in NDMI observed at lower elevations (Figure 

2.4a) could be explained by increased damage from the effect that increasing amounts of 

salt water flooding has on the dominant species, Pinus elliotti var. densa. In an 

experimental study of slash pine seedling flooding with salt water, increased injury 

resulted and chloride content increased with greater depths of salt water above the soil 

surface (Land, Jr., 1974). An assessment of pine mortality post-Wilma on Big Pine and 

Upper Sugarloaf Keys found that the percentage survival increased with elevation (Ross 

et al., 2009). Differential mortality attributable to topographic location was observed in 

the aftermath of storm surge generated by Hurricane Hugo in South Carolina (Gardner et 

al., 1991), as inundated trees on a ridge survived while trees located in swales where 

saline water collected died.  The role of microtopography on mortality and recovery from 

disturbance is clearly important especially in an area of such low elevation and 

topography as the Florida Keys. This in turn will interact with species-specific responses 

to disturbance.  

 

2.6.3 Differences in Impact and Recovery between Community Types 

On all islands, except on Big Pine where frequent prescribed fires have kept the pine 

forest open, pre- hurricane vegetation index values were similar for the two communities 

(Table 2.3), with NDMI ranging from 0.4 to 0.5 (Figure 2.2a and 2.2b). Yet post-Wilma, 

both the magnitude of decrease in NDMI and the number of years for the index to regain 
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the pre-disturbance value varied greatly between these two communities (Figures 2.4a-c), 

with larger magnitude decreases observable in pine rockland and lack of recovery to pre-

disturbance index values at elevations below 1 m. However, the difference in post-

disturbance recovery between pine rockland and hardwood hammock only becomes clear 

after EOF analysis of the temporal dataset. Spatially this is illustrated for No Name Key 

in Figure 2.13. There exists a clear difference in the trajectories that these two 

communities are taking as tEOF2 contrasts the immediate effect of both hurricanes to that 

of the recovery over six years after hurricane Wilma (Figure 2.10b). Differences in 

physiological tolerances to salt stress and the method of regeneration for dominant 

species in each community play an important explanatory role in the trends in impact and 

recovery observed in this study.  

 

The ability of many hardwood species to resprout post-disturbance undoubtedly affects 

the rate of forest recovery in hardwood hammock. Stem sprouting in hardwoods 

especially in areas with greater damage (Van Bloem et al., 2005) has been found to 

increase survivorship (Bellingham et al., 1994) and likely provides a large portion of the 

explanation for the observed quick recovery in vegetation indices in hardwood hammock 

community post Wilma. Winds from Hurricane Joan in 1988 damaged coastal forests in 

Nicaragua; while leaving more pine trees standing in the pineland compared to hardwood 

trees in the rainforest, the ability of hardwoods to resprout ultimately resulted in 

comparatively less overall mortality in the rain forest (Boucher et al., 1990). In an 

experimental salt water flooding of bald cypress and loblolly pine seedlings, a few days 

of flooding caused mortality in both species, but bald cypress seedlings that survived 
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resprouted after dying back (Conner and Askew, 1992). As pines do not stump sprout, 

they must regenerate through seed dispersal and subsequent germination. Post-storm 

surge soil conditions likely play an important role in seed germination and seedling 

establishment. The relatively shorter amount of time required for hardwood hammocks to 

regain pre-hurricane leaf area index (LAI) values as observed in several studies (< 1 year) 

(Lugo, 2008), compared to the amount of time needed for slash pine seedlings to 

establish and grow into mature trees (~ 15 years) (M. Ross pers. comm., 2015) provides 

an indication of the constraints on recovery time for each of these forests.  

 

2.6.4 The Effect of Post Hurricane Climate Conditions 

Climatic conditions post-disturbance have an important effect on forest recovery in both 

wind and storm surge scenarios, but research on this interaction is limited. On the west 

coast of Florida, tree mortality resulted from the interaction of storm disturbance and 

drought in coastal forest that was in decline as a result of increasing sea level (Williams 

et al., 2003). The timing of Hurricane Wilma at the onset of the dry season very likely 

contributed to increased mortality in these forests. The subsequent dry season was 

atypical in that the amount of rain received was 60% below average (12 cm at Marathon 

November 2005 through April 2006). Additionally, very little precipitation accompanied 

the hurricane; only 5 cm was recorded at Key West. The combination of these factors 

would have permitted a greater amount of salt to remain in the soil for an extended 

period, at levels toxic to plants. Previous studies have directly documented the effect of 

storm surge on soil chemistry. Four months after receiving storm surge from Hurricane 

Hugo (1989), soils in South Carolina’s coastal forests displayed total ionic content values 
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58 to 142 times pre-disturbance level, however, the amount of sodium in the A horizon 

declined as precipitation increased in the aftermath (Blood et al., 1991).  In addition to 

salinization of soil, the effect of salt intrusion on the groundwater is important for certain 

species, like pine, that access groundwater to meet a portion of their freshwater 

requirements (Ross et al., 1994), compared to species within the hardwood hammock 

which primarily utilize soil water (Ish-shalom et al., 1992). While the length of time that 

the freshwater lens remains brackish post storm surge has not been directly studied, 

increases in lens conductivity were documented after Hurricane Wilma. Compared to pre-

disturbance values, two to three-fold increases in groundwater specific conductivity were 

observed in wells located in interior pine rockland locations on Big Pine and No Name 

Keys, three years after Hurricane Wilma (Florida Department of Environmental 

Protection Integrated Watershed Resource Monitoring Program).  Differences in water 

source partitioning between hardwood hammock and pine rockland species and 

subsequent plant stress could account for the observed difference in the post-storm 

sEOF2 trajectories, especially if those trajectories are being driven by differences in band 

5 reflectance values. The increased salt load and decreased availability of freshwater 

resource during the recovery period is a combination that appears to make storm surge a 

stand replacing event for pine rockland. Projected increases in temperature of the region 

(Neelin et al., 2006) that exacerbate dry-season drought conditions would further impact 

the recovery of these forests. 
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2.6.5 Relationship between Vegetation Indices and Stand Parameters  

The high correlation found between vegetation indices and basal area per hectare in two 

community types over a 20-year period (Figure 2.15, Table 2.4) provides strong evidence 

of the application of vegetation indices derived from remotely-sensed data to monitor 

post-disturbance impact and recovery to coastal forests in the Florida Keys. The 

additional strong relationship observed between vegetation indices and high shrub layer 

is clearly attributable to the openness of the canopy in both community types. These 

findings are in contrast to the work of Gillespie et al. (2006) in south Florida hammocks, 

which instead found relationships between NDVI and stem density and NDMI and 

maximum tree height, but only showed a relationship between basal area per hectare and 

an index combining Landsat TM bands 5 and 7. This difference could be attributed to the 

broader focus in this current study of multiple forest types as well as multiple image dates 

used. The difference in findings highlights the importance of careful consideration of 

both spatial and temporal scales required for correlating measured stand parameters with 

the most appropriate vegetation index. Continued ground sampling in multiple coastal 

forests regions will be required to establish correlations with vegetation indices since 

climate and topography vary regionally.  

 

2.7 Conclusions 

Compared to the three years required for vegetation indices in hardwood hammock to 

recover to pre-disturbance values observed in this study and the two to three years 

observed for mangroves in south Florida (Wang, 2012), pine rockland will require a 

much longer recovery period to attain pre-disturbance NDMI values. The failure of pine 
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rockland to recover to pre-disturbance values of NDMI six years post-hurricane points to 

both the longer time scales of post-disturbance monitoring necessary to capture recovery 

and most importantly to the question of how post-disturbance recovery in coastal forests 

will be impacted in a future climate of predicted increases in frequency of severe 

hurricanes combined with sea level rise. The prediction of future disturbance recovery 

rates in coastal forest communities will require not only a consideration of the type of 

forest, but must also include the effects of previous legacy of disturbance and particular 

ecosystem process in question (Beard et al., 2005). And while recovery of vegetation 

indices does not necessarily equate with full recovery of forest structure to that of pre-

disturbance state, it does provide important measures of regained photosynthetic capacity, 

biomass, and plant stress depending on the selected index.  

 

This study confirms that proper selection of vegetation indices is essential to disturbance 

monitoring (Wang and Xu, 2009), but additionally finds that the use of multiple change 

detection techniques elucidates spatial patterns in recovery. The ability to assess 

disturbance impacts using a time series dataset revealed diverging trends in recovery in 

two coastal forests and should serve as a tool to predict changes to coastal forests in the 

future. The strong relationship between vegetation indices and basal area within the 

permanent plots located in hardwood hammock and pine rockland demonstrate the 

flexibility of remotely-sensed data to quantify changes on the ground in a variety of 

coastal forest types. The absence of relationship between indices and climatic variables 

and the small change in indices within the dry season support the utility and widespread 

use of these indices in hurricane disturbance monitoring in the coastal forests of the 
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greater Caribbean region. Employing a combination of remotely-sensed data and sampled 

stand parameters will be integral to projecting how forests will change into the future in a 

climate of increasing strong tropical cyclones and increases in sea level. 
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2.9 Tables 

 
Table 2.1 Dates of Landsat TM 4-5 images used in analyses. *Image not used for EOF 

analysis, **Landsat 7 etm+ image substituted since no cloud-free Landsat TM 4-5 images 

available.   

Image Date 
5-Jan-1986 
8-Jan-1987 
16-Jan-1990 
 4-Feb-1991* 
18-Feb-1996 
3-Jan-1997 

11-Mar-1998 
25-Jan-1999 
13-Feb-2000 
14-Jan-2001 
18-Feb-2002 

   13-Feb-2003** 
23-Jan-2004 
10-Feb-2005 
1-Mar-2006 
31-Jan-2007 
5-Feb-2009 
8-Feb-2010 
27-Feb-2011 
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Table 2.2 Environmental variables and locations of each permanent plot. Island codes 

refer to Big Pine Key (BPK) and Upper Sugarloaf Key (SLK) while habitat codes refer to 

pine rockland (PR) and hardwood hammock (HH) coastal forest communities. Average 

elevation includes the entire area covered by the Landsat TM pixel. *Indicates plot 

having fewer than 6 subplots. **Indicates plot where fewer than 9 Landsat pixels were 

available in contiguous area. 

Plot Island Habitat # of 
Subplots 

Plot 
Area 
(m2) 

Distance 
to coast 

(m) 

Average 
Elevation (m) 

# of TM 
pixels 

B2 BPK PR 6 600 189 0.46 +/- 0.01 9 
S3 SLK PR 6 600 758 0.43 +/- 0.01 9 
S5 SLK PR 6 600 535 0.71 +/- 0.01 9 

   B3** BPK HH 6 600 46 0.46 +/- 0.02 6 
   S2** SLK HH 6 600 282 0.52 +/- 0.01 8 
 S4* SLK HH 5 500 633 0.32 +/- 0.004 9 
S7 SLK HH 6 600 308 0.59 +/- 0.01 9 

 

Table 2.3 Mean (+/- SD) vegetation indices (VIs) for 1996 and change in VI post-pre 

Hurricane Wilma (2005-2006) in hardwood hammock (n = 6123), pine rockland on Big 

Pine Key (n = 3841) and pine rockland on all other islands combined (n = 1094).  

Coastal  
Forest 

1996 Pre-disturbance VI 2006-2005 Change in VI 
NDVI NDMI NDVI NDMI 

Pine (BPK) 0.72 +/- 0.08 0.25 +/- 0.11 -0.12 +/- 0.11 -0.17 +/- 0.12 
Pine (not BPK) 0.83 +/- 0.05 0.44 +/- 0.06 -0.16 +/- 0.08 -0.25 +/- 0.10 
Hammock 0.84 +/- 0.07 0.41 +/- 0.08 -0.23 +/- 0.10 -0.37 +/- 0.12 

 

Table 2.4 Pearson correlation coefficients for vegetation indices and forest stand 

parameters, * p < .05, ** p < .001, n = 14. 

Vegetation 
Indices Basal Area per ha % Cover High Shrub % Cover Low Shrub 

NDVI 0.79 ** 0.59 * 0.04 
NDMI 0.83 ** 0.64 * 0.15 
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2.10 Figures 

 

 
 
Figure 2.1 Study area in the lower Florida Keys. The locations of permanent plots are 
indicated by red dots. Hardwood hammock pixels included in the study are colored 
purple. Pine rockland pixels included in the study are colored green. 
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Figure 2.2 Relationship between Julian date of the Landsat image and the NDMI in non-
disturbance years (pre-Hurricane Wilma). (a) Mean NDMI for pine rockland pixels in 
each image averaged by island (or separate burn units for BPK). (b) Mean NDMI for 
hardwood hammock pixels in each image averaged by island.  
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Figure 2.3 Frequency distribution of change in (a) NDVI and (b) NDMI post-pre 
Hurricane Wilma (red) and year of no disturbance (1997-1996) (blue), n = 11058 pixels.  
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Figure 2.4 Means +/- 95% CI for NDMI between 1986 and 2011 in (a) low (20 to 60 cm), (b) medium (60cm to 100cm), and (c) 
high (>100cm) elevation pixels in hardwood hammock and pine rockland habitat. Arrows indicate timing of Hurricane Georges 
(1998) and Hurricane Wilma (2005). 
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Figure 2.5 Average decrease in NDMI pre-post Hurricane Georges and Wilma in 10 cm 
elevation intervals in pine rockland (n = 4935 pixels). Means +/- 95% CI.   
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Figure 2.6 Average decrease in NDMI pre-post Hurricane Georges by island. Islands are 
arranged (left to right) by decreasing longitude. Means +/- 95% CI.   
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Figure 2.7 Average decrease in NDMI pre-post Hurricane Georges and Wilma in 10 cm 
elevation intervals in hardwood hammock (n= 6123 pixels) Means +/- 95%  CI.   
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Figure 2.8 Relationship between the percentage of pixels with elevations less than 1 
meter and average decrease pre-post Hurricane Wilma in NDMI in hardwood hammock 
(HH) and pine rockland (PR) on each island. Pine rockland on BPK falls much farther 
below the regression line compared coastal forests on other islands as a result of the large 
area subjected to prescribed burns on BPK in 2004. 
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Figure 2.9 Mean percent reflectance in bands 3, 4, and 5 by image date for hardwood 
hammock (solid line) and pine rockland (dashed line) pixels below 1 m in elevation.  
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Figure 2.10 Temporal (a) EOF 1 (tEOF 1) and temporal (b) EOF 2 (tEOF2) scores for 
NDMI for each image date.  
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Figure 2.11 Distribution of spatial EOF 1 (sEOF 1) scores for NDMI on No Name Key. 
Areas of pine rockland are outlined in green, while areas of hardwood hammock are 
outlined in purple. 
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Figure 2.12 Relationship between pixel elevation (m) and sEOF 1 scores for NDMI on 
No Name Key in hardwood hammock (HH) (n=1071) and pine rockland (PR) (n=317). 
For hardwood hammock, correlation is only between sEOF1 scores and pixels at 
elevations <= 1 m.  
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Figure 2.13 Distribution of spatial EOF 2 (sEOF 2) scores for NDMI on No Name Key. 
Areas of pine rockland are outlined in green, while areas of hardwood hammock are 
outlined in purple. 
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Figure 2.14 Scatterplot of spatial EOF scores for sEOF 1 and sEOF 2 for NDMI on No 
Name Key. T-test of sEOF 2 scores for hardwood hammock (n= 1071) and pine rockland 
(n=317) was significant at p < 0.001. 
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Figure 2.15 Relationship between NDMI and average permanent plot tree basal area per 
hectare in pine rockland (PR) (n=6) and hardwood hammock (HH) (n=8) in 1990 and 
2011. 
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CHAPTER 3. INTERACTION OF PULSE AND PRESS DISTURBANCES: 

EVIDENCE OF THE EFFECTS OF SEA LEVEL RISE ON THE COASTAL FORESTS 

OF THE LOWER FLORIDA KEYS (FLORIDA, USA) 

 

3.1 Abstract 

The rate of sea level rise has increased during the last century, leading to changes in 

coastal ecosystems related to inundation and salinization. In the Florida Keys, the upslope 

retreat of coastal forests has been observed for well over half a century. This present 

study investigates the effects that the press disturbance of sea level rise has had on the 

groundwater resource on islands in the lower Keys and subsequently has had on the 

composition and structure of these forests over 22-year period. Within the same time 

period, these forests were also impacted by pulse disturbances, Hurricanes Georges 

(1998) and Wilma (2005), causing inundation by storm surge waters. Groundwater 

salinity and vegetation composition and structure were sampled in the early 1990s and 

again in 2012/2013 in permanent plots located both inside and outside the boundaries of 

the islands’ previously mapped freshwater lenses. I asked whether changes in 

groundwater salinity varied between these two groups and whether forest structure and 

composition in three height strata were correlated with changes in salinity. Results of 

linear mixed effects modeling revealed that groundwater salinity underlying plots outside 

the freshwater lens increased over the two decades.  Salinity of groundwater at plots 

inside the freshwater lens did not change over time, but was affected by prior 

precipitation. While basal area per hectare decreased in all plots, likely as a result of 

hurricane impact, the greatest decreases occurred outside the lens where groundwater 
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salinity was highest. Percent cover increased in the low shrub stratum in plots outside the 

freshwater lens, and these communities also experienced the greatest shift in composition 

along a gradient of increasing salinity, specifically gaining species typical of supratidal 

scrub forest. While the effects of the pulse disturbance were evident throughout the tree 

stratum across all sites, changes observed in composition and structure of the low shrub 

stratum were restricted to sites located outside the freshwater lens. These findings 

strongly support a conclusion of an interaction between hurricane storm surge and sea 

level rise in these forests at sites of increasing groundwater salinity over the past two 

decades. 

 

3.2 Introduction 

Plant communities near the confluence of land and sea hold particular scientific and 

conservation interest owing to projected increases in sea level (Rahmstorf 2007) that will 

dramatically change their structure and composition in the near future. Over the last few 

decades, forest retreat and composition changes have been documented in a variety of 

coastal forest types, from mangrove forests (Ellison, 1993) to hydric hammocks 

(Williams et al., 1999; Saha et al., 2011). In low elevation terrestrial coastal forests, 

increasing sea level operates as a press or ramp disturbance (Glasby and Underwood, 

1996; Lake, 2000), leading to higher water tables (Rotzoll and Fletcher, 2012) and 

increasing groundwater salinity as the salt water intrudes into freshwater aquifers (Guha 

and Panday, 2012).  The result is the replacement of glycophytes by a halophytic plant 

community. Additionally, in the western Atlantic, coastal forests are frequently impacted 

by hurricanes, pulse disturbances that are typically accompanied by strong winds and 



68 
 

storm surge flooding. Disturbance from hurricanes influence both forest structure (Van 

Bloem et al. 2006) and composition (Vandermeer, 2000), and has been found to amplify 

trends in forest succession related to variable resistance of species to storm-induced 

mortality (Ross et al., 2001).  In combination, pulse and press disturbances may lead to 

different ecological outcomes than either disturbance individually (Glasby and 

Underwood, 1996), and can change successional trajectories (Ross et al., 2009).  For 

instance, while increasing sea level decreases the availability of freshwater to plants in 

coastal communities, it also increases the likelihood of surface inundation by salt water 

during the pulse event as coastal height above mean sea level decreases (Tebaldi et al., 

2012).  A coastal forest community would be expected to recover rather quickly from a 

hurricane storm surge of a particular magnitude occurring at a relatively low stand of sea 

level, but at projected future sea levels, the same magnitude disturbance could serve as a 

tipping point for community change to an alternative state as the increasing sea level 

alters the ‘stability domain’ (Scheffer et al., 2001). 

 

Changes in forest composition and structure from a pulse disturbance such as a hurricane 

will often result from direct mortality of salt sensitive canopy trees, as was observed after 

Hurricanes Hugo (Gardner et al., 1991; Conner and Inabinette, 2003) and Wilma (Ross et 

al., 2009). In contrast, gradual increases in sea level could first lead to changes in the 

understory strata as establishment of seedlings of canopy tree species is inhibited by 

increasing soil salinity (Williams et al., 1999). As a consequence, changes in one stratum 

might be expected to precede that of another depending on the interaction of these 

disturbances. In response to these disturbances, the relative abundance and diversity of 
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species may increase or decrease, depending on the frequency and severity of the 

disturbance and the time frame over which compositional changes are evaluated 

(Williams et al., 1999; Ford and Brooks, 2002; Tanner and Bellingham, 2006; Gornish 

and Miller, 2010). In the long-term, increases in sea level should lead to a site-level 

decrease in species diversity as a few species of mangroves and associated species -- 

three true mangrove species in South Florida (Tomlinson, 1986) -- dominate a landscape 

once occupied by a hardwood forest. When both disturbances are present simultaneously, 

identifying independent effects of the press disturbance can be a challenge if drastic 

changes to forest structure have concurrently resulted from a pulse event. However, in 

cases where vulnerability to the press effect varies predictably across the landscape, but 

susceptibility to the pulse effect is uniform, the two types of effect may be distinguished 

through strategic sampling. 

 

The combined effects of rising sea level and hurricane impact on coastal vegetation 

communities are especially pressing in south Florida, where large areas of land exist at 

elevations only a few meters above sea level. The coastal forests located here, especially 

pine rockland and dry tropical broadleaf forest (hardwood hammock), host a unique 

assemblage of species, many endemic to south Florida (Snyder et al., 1990). On the low-

lying islands of the Florida Keys, where maximum elevation is typically less than 2 m, 

declines in the extent of fresh-water requiring coastal forests have been well-documented; 

pine stumps were found at the edge of coastal mangrove wetlands on northern Key Largo 

in the 1950s (Alexander, 1974).  In the Keys, the extent of pine forests, as well as 

adjacent patches of hammock, has been decreasing since the end of the last ice age 
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(18,000 year ago), as sea level rose to modern-day levels and dissected the island chain 

and isolated it from the once contiguous landmass of south Florida (Lidz and Shinn, 

1991). The most recent study of coastal forest decline in the Florida Keys attributed 

landscape-scale changes in community boundaries to changes in elevation above local 

mean sea level (LMSL) (Ross et al., 1994). The results of the study implicated the 20th 

century sea level rise of 23 cm, measured at Key West, FL (Zervas 2009) as the 

proximate cause for the upslope retreat of pine rockland community, which was replaced 

by salt tolerant vegetation types. While it was not determined whether this was a gradual 

process or one punctuated by die-off events, the retreat did not result from a single 

catastrophic event (Ross et al., 1994). 

 

Both among and within hardwood hammock and pine rockland forests, heterogeneity in 

stand structure and species composition exists as a function of vegetation physiognomy, 

disturbance history, and stand location defined by a site’s height above LMSL and coastal 

proximity. Coastal proximity and elevation not only can predict the extent of impact from 

hurricane-induced storm surge at a site, but additionally determine the salinity of 

groundwater at each location.  In the lower Florida Keys, available fresh water occurs in 

lenses that are recharged by precipitation. These freshwater lenses float on the underlying 

salt water and their lateral extent is determined by the island topography combined with 

the amount of seasonal precipitation. Surveys employing electrical resistivity tomography 

(ERT) and electromagnetic (EM) techniques in the lower Keys have identified central 

lenses of fresh groundwater surrounded by increasingly brackish groundwater toward the 

coastline (Vacher et al., 1992; Meadows et al., 2004).   Coastal forests in the lower 
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Florida Keys occur at locations both inside and outside the central lens of freshwater. I 

hypothesize that if the press disturbance of sea level rise is currently affecting these 

forests, sites located outside of the freshwater lens might experience changes in structure 

and composition of greater magnitude than those located within the freshwater lens.  

 

Building on the 1994 study that retrospectively investigated community boundary 

movement of coastal forests of the lower Florida Keys (Ross et al., 1994) and 2008 work 

that linked small differences in site elevation to pine mortality from a pulse event (Ross 

et al., 2009), this study investigates temporal changes in coastal forest structure and 

composition in pine rockland and hardwood hammock communities on two islands of the 

lower Florida Keys and quantifies the role that increases in groundwater salinity from 

rising sea level had on vegetation succession over two decades from 1990 to 2012. 

Within this time period, two hurricanes, Hurricane Georges in 1998 and Hurricane Wilma 

in 2005, impacted the lower Keys, bringing a combination of damaging winds and storm 

surge to the study location. I hypothesized that although impact from the pulse 

disturbance should be highly evident across the sites, additional changes in plant 

composition and structure should be observable at locations in which groundwater 

salinity had increased in response to the press disturbance of sea level rise. 

 

My research first considers whether sea level rise over a 22-year period has increased 

ground water salinity within seven coastal forest patches in pine rockland and hardwood 

hammock forest at locations inside and outside the freshwater lenses of these islands.  

Using linear mixed effects modeling, I quantified changes in groundwater salinity across 
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sampling locations. After accounting for variation in precipitation, I attributed any 

changes in groundwater salinity between the first and second sampling periods to 

increasing sea level. I then compared changes in forest structure and composition 

between coastal forests located inside and outside the freshwater lenses. Finally, using 

non metric multidimensional scaling (NMDS) and vector fitting, I investigated whether 

changes in plant community composition can be explained by changes in groundwater 

salinity.  

 

3.3 Study Area 

Big Pine and Upper Sugarloaf Keys (N 24.67, W 81.36, and N 24.66, W 81.53, 

respectively) are islands in the lower (southwestern) Florida Keys (Figure 3.1) separated 

by a distance of 17 km. Plots on Big Pine Key are separated from each other by less than 

0.5 km and those on Upper Sugarloaf Key are located within 1 km of each other. Study 

sites are located within 0.8 km of the coast of Florida Bay and at elevations less than 1 m 

above local mean sea level (LMSL) (Table 3.1). Both Hurricane Georges, a category 2 

storm at the time of landfall in Key West on September 25th, 1998, and Hurricane Wilma, 

a category 3 storm at time of landfall near the Cape of Florida on October 24th, 2005, 

flooded the islands with salt water and brought winds ranging in speed of 30 to 40 m/s. A 

combination of field evidence (Sah et al., 2010) and remotely-sensed data (see Chapter 2 

p. 29) confirm that all island locations below 1 m received storm surge flooding from 

Hurricane Wilma. While the wind speeds in the two storms were similar, the extent of 

storm surge flooding was much greater in Hurricane Wilma (Kasper, 2007).  
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These islands are situated on limestone bedrock composed of high permeability Key 

Largo Limestone (Hoffmeister and Multer, 1968), overlain by several meters of less 

permeable Miami Limestone (Hoffmeister et al., 1967), both of Late Pleistocene age 

(Perkins, 1977). Freshwater lenses exist on these islands as a result of differing secondary 

permeability of the two facies (Coniglio and Harrison, 1983) with the depth truncated 

near the contact between the facies (Vacher et al., 1992). Recharged by seasonal 

precipitation, these lenses provide a source of fresh groundwater to the constituent plants 

of the coastal forests.  The Florida Keys encompass a strong climatic gradient, becoming 

increasingly drier and warmer as one moves away from mainland south Florida, and are 

typified by a dry season that stretches from November through May and a wet season 

from June through October, during which approximately two-thirds of the year’s 

precipitation falls (102.2 cm yearly average for years 1984-2013 at Key West 

International Airport, http://www.ncdc.noaa.gov).  

 

Both pine rockland and hardwood hammock forest communities are composed of species 

that share a requirement for access to the limited freshwater resources, but have some 

level of tolerance to periodic drought occasioned by the seasonal nature of precipitation 

in south Florida, and salt stress related to proximity to coastal salt water. Pine rocklands 

of the lower Florida Keys are characterized by the presence of a single dominant canopy 

species, Pinus elliottii var. densa Engelm., with a shrub layer consisting of West Indian 

hardwood species and palms, and a diverse herbaceous layer of approximately 150 

species (Snyder et al., 1990). These forests can be found at elevations as low as 0.4 

meters amsl. Soils are shallow at 0 to 10 cm in depth (Ross et al., 2003) with little 
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organic matter and much exposed limestone (Snyder et al., 1990). Canopy heights of pine 

range from 7 to 13 m (Ross et al., 1992). In the absence of fire, pine rocklands are 

invaded by many of the species found in hardwood hammocks, lose their herbaceous 

flora, and move along a successional trajectory toward hammock (Snyder et al., 1990). P. 

elliottii is generally less salt tolerant than many hardwood species. By contrast, hardwood 

hammocks are generally found coastward of the pine rockland community and are 

characterized by species that display a range of salt tolerance. Hardwood hammocks of 

the lower Florida Keys have a diverse assemblage of woody species of West Indian 

origin with several palm species, but virtually no herbaceous plants (Ross et al., 1992). 

The majority of hardwood hammock canopies in the lower Keys range in height from 4 

to 7 m (Ross et al., 1992). Hammocks are found at a range of elevations from 0.3 m amsl 

to the highest elevations of the lower Keys still in forest (~ 2 m), with lower elevation 

hammocks including a component of more salt tolerant species. Soils are organic and are 

typically less than 0.2 m in depth (Ross et al., 2003). 

 

3.4 Materials and Methods 

3.4.1 Vegetation Sampling 

Seven permanent plots were sampled in pine rockland (three plots) and hardwood 

hammock habitat (four plots) of varying elevations and coastal proximity on Big Pine 

(two plots) and Sugarloaf Keys (five plots) in 1990 and again in 2012 (Table 3.1, Figure 

3.2). Each plot was 600 m2, consisting of six square 100 m2 subplots, except for one 

hardwood hammock plot of 500 m2 where area of habitat was limited. Plots were marked 

at the corner of each subplot with a metal rebar and GPS coordinates were obtained with 
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a Garmin GPSmap76Cx having horizontal accuracy of 5 m. Basal area was calculated 

from diameter at breast height (DBH) for all tree species greater than 3 cm DBH and 

taller than 2 m. Percent cover of herbaceous vegetation and low shrubs (0-1 m height), 

and saplings and high shrubs (>1 m height and < 3 cm DBH) was estimated for each 

species present in a 5 x 5 m quadrat located at the center point of each subplot. Cover was 

estimated using the following cover classes: 1 = <1%, 2 = 1-4%, 3 = 4-16%, 4 = 16-32%, 

5 = 32-66%, and 6 = 66-100%. The midpoint of each cover class was used as the percent 

cover for each species in subsequent analyses.  

 

3.4.2 Groundwater Sampling 

Salinity data were collected periodically at wells associated with each plot to capture the 

yearly range in salinity for both the 1990 and 2012 sampling periods (Table 1). Wells 

were located within 5 m of the outside boundary of each permanent plot (Figure 2). Wells 

were drilled into the bedrock to a depth of approximately 1 meter. An open-ended PVC 

pipe having an inside diameter of 3.2 inches was placed to the bottom of the drilled hole. 

Cement was used to seal around the outside of the pipe above the bedrock surface. At site 

B2, the 1 meter-deep well of 1990 could not be relocated in 2012, and instead a nearby 5 

cm diameter well installed by the U.S. Geologic Survey in 1989 was used. This well was 

3 m deep and screened along its entirety. 

 

Beginning in January 1991, all 1 m deep wells were sampled at bi-monthly intervals. The 

sampling interval became monthly in December 1991 and continued through 1992; this 

sampling is hereafter referred to as 1990s sampling.  Prior to obtaining the sample, wells 
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were evacuated using a syringe and tube to remove standing water and the well was 

allowed to refill with surrounding groundwater. The 3 m deep well was sampled 

approximately every two weeks beginning August 1989 to June 1990, was not evacuated 

prior to sampling, and is hereafter referred to as part of the 1990s sampling. Salinity of 

each groundwater sample was measured using a handheld refractometer with a resolution 

of 0.1 ppt and accuracy of +/- 0.1 ppt.  Twenty years later, wells were sampled every two 

months beginning May 2012 and ending May 2013; this sampling is hereafter referred to 

as 2010s sampling. Wells were pumped for several minutes with a peristaltic pump to 

clear approximately three well volumes before a sample was obtained. Salinity was 

measured with a YSI model 30 handheld probe with a resolution of 0.1 ppt and accuracy 

of +/- 0.1 ppt.   

 

3.4.3 GIS Data Processing 

Plot boundaries were digitized in ArcMap 10.2 from the plot corners. Average plot 

elevation in NAVD88 (m) was determined for each permanent plot from the lower Keys 

Lidar-derived Digital Terrain Model (DTM) (Zhang et al. 2007) with a 5 m horizontal 

resolution using the zonal function in Spatial Analyst tools of ArcGIS 10.2. For each well 

location and centroid calculated for each permanent plot, the distance to the nearest 

coastline was calculated with the Near tool in ArcMap 10.2. NAVD88 elevations were 

converted to height above local mean sea level (LMSL) in meters using NOAAs Vertical 

Datum Transformation program, VDatum v. 3.4 (http://vdatum.noaa.gov/). Three of the 

permanent plot centroids and wells were located at distances from the coast beyond that 

considered in the program and values for height above LMSL could not be extracted 

http://vdatum.noaa.gov/
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directly. For these locations, the difference between NAVD88 elevation and height above 

LMSL for the nearest plot and shoreline was used to estimate height above LMSL. The 

average difference between NAVD88 elevation and height above LMSL of wells and plot 

centroids was 0.20 m.  

 

Permanent plots were designated as either occurring within the central core of the 

freshwater lens (inside lens) or outside the boundary of the central core of the freshwater 

lens (outside lens) on both islands (Figure 3.2). Boundaries were obtained for Big Pine 

Key from the wet season map developed by Wightman (1990) and for Upper Sugarloaf 

Key from the map developed by Caballero (1993) using electromagnetic profiling. These 

maps were georeferenced in ArcMap 10.2 into the datum and projection to correspond 

with that of the permanent plot boundaries and well locations. A comparison of the 

average and range of coastal proximity and height above LMSL of permanent plots 

located inside and outside the freshwater lens is presented in Table 3.2.  

 

3.4.4 Sea Level and Meteorological Data 

Annual mean sea level data was obtained from the Permanent Service for Mean Sea 

Level (http://www.psmsl.org/data/obtaining/stations/188.php) for the Key West Tide 

Gauge (N 24.56, W 81.81) and mean sea level trends for both the last 100 years (1914 to 

2013) and 30 years (1984 to 2013) corresponding to the time period of the study were 

calculated. The rate of increase of sea level over 100 years was multiplied by the time 

span of the study to adjust the height above LMSL for well and plot locations for 1990.  
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Daily climate data was downloaded from the National Climate Data Center 

(http://www.ncdc.noaa.gov/) for Key West International Airport from 1984 to 2013. 

Deviations from the 30-year average (1984 - 2013) annual rainfall were plotted to 

qualitatively examine whether sample years received less or more precipitation than the 

average. The total amount of rain that fell in the 30 days prior to each groundwater 

sampling event was calculated and included in subsequent modeling to determine if any 

relationship existed between groundwater salinity and recent precipitation. 

 

3.4.5 Data Analysis 

Linear mixed effects modeling with repeated measures (Zuur et al., 2009) was used to 

determine the relationship between geographic location (LENS: inside and outside), 

sampling period (PERIOD: 1990s and 2010s), total amount of precipitation received 30 

days prior to sampling (PRECIP), and groundwater salinity (SAL). Six fixed effects were 

considered in the full model, which included two categorical variables (LENS and 

PERIOD), one continuous variable (PRECIP), and all two-way interactions between 

those variables. The interaction between LENS and PERIOD was included to determine 

if SAL at sites inside and outside the lens had different responses to the effect of 

PERIOD.  The interaction between PERIOD and PRECIP was included to assess whether 

SAL was differently affected by PRECIP in each PERIOD. Finally, the interaction 

between LENS and PRECIP tested whether SAL was similarly affected by PRECIP at 

both LENS locations. Random effects for the intercepts of sampling well (WELL) (n = 7) 

and sampling day (DAY) (n = 65) addressed non-independence related to repeated 

measures and accounted for any inherent differences at the sampling locations and times. 
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Additionally I included a random slope for the effect of PERIOD for WELL that allowed 

salinity to vary independently at each well during each period.  An investigation of 

residuals showed that groundwater salinity was heteroscedastic, therefore salinity data 

was log transformed after adding an integer of 1 to each salinity value (LOG10SAL). 

Models were run in R v.3.1.2 (R core team, 2014) using the lmer function in the lme4 

package and p-values were obtained for each effect using the Satterthwaite 

approximations to degrees of freedom (merModLmerTest) (Bates, D., Maechler, M., 

Bolker, B., and Walker S., 2014). Restricted maximum likelihood (REML) was used to 

correct the estimator for the variance. Competing models were evaluated using the 

krmodcomp function in the pbkrtest package with the Kenward-Roger approximation for 

F-test with p-value for the comparison between the full-model with effect in question 

compared to a model minus that effect (Halekoh and Højsgaard, 2014). Means +/- SE for 

each factor level of the pairwise interaction between PERIOD and LENS were obtained 

using the lsmeans package (Lenth, R. and Herva, M., 2015). P-values were obtained for 

pairwise contrasts using Bonferonni 2-sided tests. For each well, I calculated and plotted 

the mean groundwater salinity +/- SE for each time period and determined whether 

groundwater salinity increased, decreased, or remained constant between 1990s and 

2010s sampling. Finally, I compared the average PRECIP between the 1990s and 2010s 

sampling using a student’s t-test.  

 

Paired t-tests in R v.3.1.2 (R core team, 2014) were used to assess changes in abundance 

and species richness between sites inside and outside the lens between the two sampling 

periods. Levene’s test was used to check for homeogeneity of variances prior to 
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conducting all t-tests. Percent change in basal area per hectare in the tree strata and 

change in total percent cover in the high shrub and low shrub strata were calculated as 

averages for each plot and compared between lens locations using paired t-tests. Species 

richness was calculated as the total number of species occurring within all subplots in 

each plot at each time period and was similarly compared between lens locations. Both 

diversity indices (abundance and species richness) were calculated using DECODA 

(version 3.01, Anutech Pty. Ltd, Canberra, AU).  

 

Composition data were analyzed for tree, high shrub, and low shrub strata using Non-

Metric Multidimensional Scaling (NMDS) in DECODA. Ten random starts were 

selected, and a solution scaling option based on half-changes was used. No 

transformations were applied to abundance data (basal area for trees, percent cover for 

shrubs), but data were standardized to the species maximum across all plots. Fourteen 

samples (seven permanent plots and two sampling periods) were chosen for the 

ordination and all species with at least one occurrence in a plot were used in each 

stratum. Bray-Curtis distance was chosen to calculate the dissimilarity matrix (Bray and 

Curtis, 1957). Vector fitting in DECODA was used to best fit environmental variables to 

the composition data (Kantvilas and Minchin, 1989). Average groundwater salinity for 

each plot in each time period, distance to nearest coastline from each well location, and 

height above local mean sea level of each plot at each time period were selected as fitted 

variables. The 2-D result of the ordination was rotated to align with the groundwater 

salinity vector on the primary axis. The 2-D ordination results were saved and the 

minimum stress reported. Correlation coefficients quantified the relationship between the 

composition data for each stratum and the three vectors. In the rotated ordination space, 
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the NMDS axis 1 score is equivalent to the response of the vegetation composition to the 

groundwater salinity within the plots in the two time periods. This score was used to 

assess change in composition attributable to salinity along that vector between the 1990s 

and 2010s sampling events for inside lens versus outside lens locations using paired t-

tests in R v.3.1.2 (R core team, 2014). 

 

3.5 Results 

3.5.1 Changes in Climate and Sea Level 

The calculated rate of sea level rise for the past 30 years (1984 to 2013) was 2.66 mm yr-1 

based on the tide gauge at Key West, while the rate based on 100 years of data (1914 to 

2013) was 2.30 mm yr-1. Increase in sea level over the 22 year period (1990 to 2012) was 

5 cm as derived from the 100-year record (Figure 3.3). While sea level was variable over 

the 22-year time period, having a range of 12 cm from the lowest to highest stand, during 

the majority of both sampling periods, mean sea level was several cm above the 

regression line based on 100 years of data. The average annual precipitation (+/- SE) over 

a 30 year time period (1984 – 2013) was 102.2 +/- 2.67 cm. Departures from the average 

were observed during both periods of groundwater sampling. In the 2010s sampling, 

2012 and 2013 received an above average amount of precipitation, approximately 17 cm 

more than the annual average (Figure 3.4). In contrast, three of the four years during the 

1990s sampling were drought years, and 1989 was especially dry, receiving only 79.2 

cm.  
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3.5.2 Changes in Groundwater Salinity 

Including interactions between LENS and PERIOD and LENS and PRECIP added 

significantly to the model that included only three main effects. The inclusion of the 

interaction of PERIOD and PRECIP did not add significantly to the model and was not 

included in the final model. The preferred model included five fixed effects and the two 

random effects (WELL and DAY), and best explained the relationship between the 

independent variables and groundwater salinity:  

 

Estimates of each fixed effect (Table 3.3) indicate that locations inside the freshwater 

lens have groundwater salinities 2.83 ppt less on average than those located outside the 

lens. The estimate of difference between PERIOD in the model is 1.67 ppt, with salinity 

increasing from the 1990s to 2010s. The effect of PRECIP was to decrease the 

groundwater salinity. The significant interaction between total precipitation received 30 

days prior to sampling and lens location indicates that the salinity of inside lens sites are 

decreased by recent precipitation while outside lens sites are not similarly affected by 

precipitation. The significant interaction between LENS and PERIOD indicates that the 

change in groundwater salinity over time differed between the two groups. A comparison 

of means (Table 3.4) between inside and outside lens sites confirms that the groundwater 

salinity differed significantly between LENS in each PERIOD (p < 0.001), and the 

difference was much higher in the 2010s as mean salinity increased only at the outside 

lens sites over the 22-year time period (p = 0.02).   At outside lens wells, the mean 

salinity increased between the two periods and the variability of salinities observed 
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increased at the two most saline sites (Figure 3.5). The slightly lower mean salinities 

observed in the inside lens sites in 2010s compared with the 1990s are attributable to the 

greater amount of precipitation received 30 days prior to the 2010s than the 1990s 

sampling (1990s mean: 8.49 cm, 2010s mean: 12.42 cm, p  = 0.001).  

 

3.5.3 Changes in Stand Structure, Species Composition, and Richness 

In both hardwood hammock and pine rockland communities, basal area significantly 

decreased between 1990 and 2012 (paired t-test; p < 0.01), with five of the seven plots 

decreasing by amounts greater than 40% of their 1990 values (Figure 3.6). However, 

when lens location (inside vs. outside lens) was considered separately, decreases were not 

statistically significant at p < 0.05. By coastal forest type, losses in basal area in pine 

rockland were greater than in hammock, and were attributable almost entirely to the loss 

of the dominant species, Pinus elliottii var. densa, in two out of the three plots. In pine 

rockland, the largest decreases in basal area occurred at the lowest elevation site (61% 

decrease at S3) and at minimum distance to coast (77% decrease at B2). In hardwood 

hammock, the largest decreases in basal area (40 to 48%) occurred at elevations below 

0.6 m or at distance to coast less than 200 m. The only sites without significant decreases 

in basal area were restricted to hardwood hammocks inside the freshwater lens boundary 

located greater than 200 m from coast and at elevations above 0.5 m (3 to 6% decrease).  

 

Changes in percent cover of the lower strata did not appear to closely track changes in 

basal area. Percent change in the high shrub stratum did not differ statistically from zero 

for either lens location. However, Conocarpus erectus L., buttonwood, a mangrove 
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associate, increased in abundance throughout the majority of plots in both shrub layers. In 

the high shrub stratum, the increase in percent cover of C. erectus at each plot was highly 

correlated (r = 0.92, p = 0.003) with the log10 of the change in groundwater salinity at 

each site. Increases in percent cover in the low shrub stratum were observed in plots 

located outside the lens boundary but were not statistically significant between the two 

sampling events. In contrast, the low shrub cover of plots located within the lens 

boundary decreased by almost 40% (p < 0.05). Changes in species richness were not 

statistically significant in any strata inside- or outside-lens. However, in the outside lens 

locations, species characteristic of coastal buttonwood scrub forest colonized the low 

shrub stratum of the lowest elevation pine rockland and hammock plots.  

 

3.5.4 Relationship between Community Composition and Environmental Variables 

Ordination and vector fitting across all sites and survey periods demonstrated strong fits 

between vegetation composition and the environmental variables --- average groundwater 

salinity, height above local mean sea level, and distance to coast (Table 3.5). The 

composition of the low shrub stratum was significantly correlated with all three 

environmental variables, but had the best relationship with groundwater salinity.  While 

composition of the other two strata was also correlated with the groundwater salinity 

vector, correlations with distance to coast and height above local mean sea level were not 

significant for the tree stratum and high shrub stratum, respectively.  

 

There was little consistency among sites in how tree composition changed between the 

1990s and 2010s (Figure 3.7a). Accordingly, the mean position of 1990s tree 
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assemblages did not differ significantly from that of the 2010s tree communities along 

the salinity vector, whether all plots were included in the analysis or inside lens and 

outside lens sites were considered separately. In contrast, for both shrub strata, the 

general movement of sites in ordination space was in the direction of increasing salinity 

(Figures 3.7b and 3.7c). For the high shrub stratum, the mean site score along Axis-1 for 

the 2010s scores was significantly greater than that for 1990s score for outside lens (p < 

0.05) but not for inside lens plots. For the low shrub stratum, plant composition on 

outside lens sites was characteristic of higher salinity in forests of the 2010s compared to 

forests of the 1990s (p < 0.05), but no similar difference was observed on sites inside the 

freshwater lens.  

 

3.6 Discussion 

In the lower Keys, the effect of sea level rise - a press disturbance impacting forests that 

rely on a coastal groundwater aquifer - is visible through the relationship between 

increasing groundwater salinity and associated changes in forest composition and 

structure, above and beyond the effects of hurricane storm surge flooding. Evidence for 

salt water intrusion attributable to 5 cm of sea level rise over the 2-decade study period 

was found using linear mixed effects modeling, which identified an increase in 

groundwater salinity at outside lens sites, but not at locations inside the boundaries of the 

freshwater lens. The influence of these changes on vegetation were demonstrated through 

ordination with vector fitting, which provided evidence for a shift in species composition 

along a gradient of groundwater salinity, particularly in lower forest strata.  
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3.6.1 The Effect of Climate on Groundwater Resources and Coastal Forests 

Increasing sea level clearly has the impact of decreasing lens geometry by allowing the 

gradient of fresh-salt water mixing to move inland. In this study, the rise in sea level of 

the last few decades has resulted in non-uniform increases in groundwater salinity in the 

mixing zone. The lower Keys islands originated as oolitic banks that lithified and 

underwent karstification (Hoffmeister et al., 1967), resulting in an undulating topography 

and islands that do not conform to an idealized conceptual model for Ghyben-Herzberg 

lens as areas of high elevation do not necessarily coincide with fresh water. Additionally, 

the large amount of tidal pumping in the high permeability bedrock of these islands leads 

to a wide zone of fresh-salt water mixing which becomes increasingly brackish as one 

moves away from the center of the freshwater lens (Meadows et al., 2004). While heights 

above LMSL on Big Pine and Upper Sugarloaf Keys are generally greater inside the 

freshwater lens than outside of it (Table 3.2), localized highs are observed at close coastal 

proximity and extensive overlap of the two variables across lens locations results in 

neither elevation nor coastal proximity individually predicting change in groundwater 

salinity nor forest structure and composition. Beyond a particular threshold of sea level 

rise, areal decreases in island extent will result in the replacement of an interior 

freshwater lens by an aquifer having a zone of fresh-salt mixing which extends to the 

center of the lens as has been observed in Pacific atolls (Oberdorfer et al., 1990). Of the 

two study islands, this will first occur on Upper Sugarloaf Key, as it is significantly 

smaller than Big Pine, and pine rockland and hardwood hammock forests should change 

more rapidly to halophytic vegetation as a result of the press of sea level rise.   



87 
 

The importance of aquifer recharge from precipitation is illustrated by the lower 

groundwater salinity recorded at sites inside the freshwater lens during the most recent 

sampling period of greater than average rainfall. The decrease in salinity at these sites, 

despite the 5 cm of sea level rise, indicates that interior lens locations are still primarily 

influenced by seasonal and inter-annual variation in precipitation. This has important 

ramifications for the freshwater-requiring coastal forests that rely on a combination of 

precipitation and groundwater resources. Predicted summer drying trends in the Central 

American-Caribbean region for the late 21st century (Neelin et al., 2006) would lead to 

greater occurrences of drought and simultaneously decrease aquifer recharge, hastening 

the press disturbance of sea level rise. Coastal forests in south Florida would be 

especially vulnerable to drying trends as the majority of rainfall occurs during the 

summer and fall. The effect of drought on plants is similar to the initial effects of 

increasing salinity (Munns, 2002). Drought would limit water availability, which has 

been found to constrain increases in stand basal area in European forests (Ruiz-Benito et 

al., 2014). In combination with groundwater salinization, drought conditions will likely 

lead to decreased primary productivity and species turnover in these forests.  

 

3.6.2 Press and Pulse Effects by Strata 

In coastal forests, when a pulse event causes immediate change to forest composition and 

structure, the conditions and resources available for recovery are influenced by the 

background press of sea-level rise. While direct mortality of individuals is attributable to 

the pulse disturbance, recovery is dependent on species regeneration capabilities 

combined with differential species tolerances to salinity, which affect growth through 
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salinity effects on photosynthetic capacity (McLeod et al., 1996). While the pulse event 

resulted in tree mortality across all plots, changes related to increasing groundwater 

salinity attributable to the press disturbance of sea level were largely observed in the low 

shrub stratum in this study. A possible explanation is that 5 cm of sea level rise over the 

time period was not enough to result in mortality of overstory trees, but for some species 

in the low shrub strata which includes a combination of ephemeral species, shrubs, and 

seedlings of overstory trees, germination and establishment could be affected by higher 

groundwater salinities associated with the rise in sea level.  

 

In pine rockland plots, the greatest change in structure in the tree stratum was attributable 

to the loss of P. elliottii var. densa. Slash pine was absent from the low shrub / 

herbaceous layer in most of the sites in 2010s sampling despite being present at those 

plots in the 1990s. Low pine regeneration results from a combination of factors. First the 

elimination of the majority of adult trees from storm surge decreases the availability of 

seed source. Secondly the environmental conditions necessary for germination may cease 

to exist once more halophytic shrubby plants invade the understory and soil salinity 

increases. Additionally, the loss of pine trees and associated pine needle litter with an 

increase in woody shrubs alters the fire regime, eventually leading to a forest dominated 

by woody hardwood species (Ross et al., 2009). A lack of recruitment of new individuals 

limited by salt-saturated soils was observed for loblolly pine, Pinus taeda L., in 

Maryland, and it was presumed that combined with a loss of adults from storm surge 

events, recruitment failure would lead to stepwise retreat of these forests (Kirwan et al., 

2007).  
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While the loss of pine trees in this study resulted primarily from the pulse event, whether 

new individuals can recruit into these sites will determine if these pine forests similarly 

follow a step-wise retreat. Seed from adjacent areas of surviving pines on these islands 

would be required to re-establish pine in these locations, assuming soil and litter 

conditions remain suitable at those locations. At sites outside the lens, where groundwater 

salinity has increased over the time period, regeneration seems highly unlikely. A lack of 

regeneration of this species will eventually lead pine rocklands to lose the diverse 

herbaceous understory and succeed to communities resembling those of hammocks.   

 

3.6.3 Species Turnover 

While anthropogenic changes in environment are predicted to lead to species turnover 

and loss of species diversity (Tilman and Lehman 2001), this pattern has not yet been 

observed in the Keys. While I did observe species turnover, as loss in species in the shrub 

strata were balanced by gains in new species, species richness did not significantly 

change over the time period. Instead, a non-significant increase in species was observed 

in the low shrub stratum at sites outside the lens having the highest change in salinity 

over the time period. These results suggest that the combination of disturbance and 

increasing groundwater salinity have created conditions that favor the colonization of 

new species at a greater rate than the disappearance of the previous inhabitants, which is 

a phenomenon that has been observed in other plant communities (Walther et al., 2002). 

Specifically, the loss of woody species in the low shrub stratum was eclipsed by an 

increase in the number of new woody trees and shrubs, grasses, vines, and herbaceous 

species. Several species with relatively high salt tolerance but low shade tolerance 
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colonized these sites over the sampling period. The appearance of two woody shrubs 

typical of saline environments, Borrichia arborescens (L.)DC., tree seaside oxeye, and 

Borrichia frutescens (L.)DC., bushy seaside oxeye, was restricted to plots with the 

greatest increase in salinity over the study period. Similarly, two grass species Spartina 

spartinae (Trin.)Merr. ex Hitchc., Gulf cordgrass, and Sporobolus virginicus (L.)Kunth, 

seashore dropseed, colonized the two lowest elevation sites, while one sedge, Fimbristylis 

spadicea (L.)Vahl, marsh fimbry, appeared at three of the outside lens locations having 

the greatest increase in groundwater salinity. The aforementioned species occur in 

abundance within the mangrove adjacent supratidal scrub community that is found 

coastward of both pine rockland and hardwood hammock forests. 

 

Changes in the abundance of Conocarpus erectus, not only in the tree strata, but across 

all strata, were particularly notable. The dominant woody species of supratidal scrub 

community, which is infrequently inundated with salt water during high tide, C. erectus 

increased in abundance or had newly colonized all but one of the plots in at least one 

strata, with the exception of small decreases in basal area at sites S3 and S4 (lowest 

elevation sites) as a result of mortality from the pulse event. The widespread increase of 

this species seems to provide early evidence of a succession of hardwood hammocks to 

mangrove from a combination of press and pulse disturbance as proposed by numerical 

modeling (Sternberg et al., 2007; Teh et al., 2008) and conceptual model for south 

Florida coastal forests (Ross et al., 2009). The increase of C. erectus across communities 

and strata, combined with the loss of P. elliottii var. densa in pine forests, supports the 
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hypothesis that change from freshwater-requiring coastal forests to salinity tolerant 

forests is ongoing.  

 

3.7 Conclusions 

The study has provided evidence of sea level rise-induced changes to community 

composition in both hardwood hammock and pine rockland communities, focused 

especially on areas outside the boundary of the fresh groundwater resource. The 

synergistic effects of pulse and press disturbances have variable outcomes to community 

composition and structure. Despite a relatively small number of sites whose dynamics 

over time could be documented, a distinction between sites affected and not affected by 

the press disturbance was evident in changes in species composition. As observed in 

other locales in Florida, the interaction of disturbance events shaping the future of coastal 

forests will likely become the norm. Coastal forests in Waccasassa Bay Preserve on the 

west coast of Florida declined faster than predicted from sea level rise alone and a 

drought (pulse event) was suspected to have played an important role in that forest 

decline (Desantis et al., 2007). While the expected end point of the trajectory for these 

coastal forests is a halophytic, mangrove community, novel assemblages of species could 

result during this transition as environmental gradients shift (Williams and Jackson, 

2007). Currently, changes in composition of the low shrub stratum appear to be an early 

indicator of the effects of sea level rise on these coastal forests. Given the prediction of 

increased frequency of severe hurricanes in the western Atlantic (Bender et al., 2010), it 

is expected that the pace of these changes should increase over time, as the interaction 

between pulse and press disturbance in the low-lying coastal areas push succession along 
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new trajectories to halophytic assemblages. Understanding the dynamics of how these 

changes will unfold, including in which strata changes first occur, should allow land 

managers to make decisions that conserve the coastal resource as long as possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

3.8 References 

Alexander, T.R., 1974. Evidence of recent sea level rise derived from ecological studies 
on Key Largo, FL. Miami Geological Society 2, 219–222. 

 
Bender, M.A., Knutson, T.R., Tuleya, R.E., Sirutis, J.J., Vecchi, G.A., Garner, S.T., 

Held, I.M., 2010. Modeled impact of anthropogenic warming on the frequency of 
intense Atlantic hurricanes. Science 327, 454–458.  

 
Bray, J.R., Curtis, J.T., 1957. An ordination of the upland forest communities of southern 

Wisconsin. Ecological Monographs 27, 325-349.  
 
Caballero, J.P., 1993. Salinity variation in the upper saturated zone of Sugarloaf Key, 

Florida. (M.S. Thesis). Univerisity of South Florida, Tampa, FL. 
 
Coniglio, M., Harrison, R.S., 1983. Facies and diagenesis of late Pleistocene carbonates 

from Big Pine Key, FL. Bulletin of Canadian Petroleum Geology 31, 135–147. 
 
Conner, W.H., Inabinette, L.W., 2003. Tree growth in three South Carolina (USA) 

swamps after Hurricane Hugo: 1991–2001. Forest Ecology and Management 182, 
371–380.  

 
Desantis, L.R.G., Bhotika, S., Williams, K., Putz, F.E., 2007. Sea-level rise and drought 

interactions accelerate forest decline on the Gulf Coast of Florida, USA. Global 
Change Biology 13, 2349–2360.  

 
Ellison, J.C., 1993. Mangrove retreat with rising sea-level, Bermuda. Estuarine, Coastal 

and Shelf Science 37, 75–87.  
 
Ford, C.R., Brooks, J.R., 2002. Detecting forest stress and decline in response to 

increasing river flow in southwest Florida, USA. Forest ecology and management 
160, 45–64. 

 
Gardner, L.R., Michener, W.K., Blood, E.R., Williams, T.M., Lipscomb, D.J., Jefferson, 

W.H., 1991. Ecological impact of Hurricane Hugo - salinization of a coastal 
forest. Journal of Coastal Research 8, 301–317. 

 
Glasby, T.M., Underwood, A.J., 1996. Sampling to differentiate between pulse and press 

perturbations. Environmental Monitoring and Assessment 42, 241–252. 
 
Gornish, E.S., Miller, T.E., 2010. Effects of storm frequency on dune vegetation. Global 

Change Biology 16, 2668–2675. 
 
Guha, H., Panday, S., 2012. Impact of sea level rise on groundwater salinity in a coastal 

community of south Florida. Journal of the American Water Resources 
Association 48, 510–529.  



94 
 

 
Halekoh, U., Højsgaard, S., 2014. A Kenward-Roger approximation and parametric 

bootstrap methods for tests in linear mixed models–the R package pbkrtest. 
Journal of Statistical Software 59, 1–32. 

 
Hoffmeister, J.E., Multer, H.G., 1968. Geology and origin of the Florida Keys. 

Geological Society of America Bulletin 79, 1487–1502. 
 
Hoffmeister, J.E., Stockman, K.W., Multer, H.G., 1967. Miami Limestone of Florida and 

its recent Bahamian counterpart. Geological Society of America Bulletin 78, 175–
190. 

 
Kantvilas, G., Minchin, P.R., 1989. An analysis of epiphytic lichen communities in 

Tasmanian cool temperate rainforest. Vegetatio 84, 99–112. 
 
Kasper, K., 2007. Hurricane Wilma in the Florida Keys. National Oceanic and 

Atmospheric Administration (NOAA)/National Weather Service (NWS) Weather 
Forecast Office (WFO), Key West, FL. 

 
Kirwan, M.L., Kirwan, J.L., Copenheaver, C.A., 2007. Dynamics of an estuarine forest 

and its response to rising sea level. Journal of Coastal Research 457–463. 
 
Lake, P.S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North 

American Benthological Society 19, 573–592. 
 
Lidz, B.H., Shinn, E.A., 1991. Paleoshorelines, reefs, and a rising sea: South Florida, 

U.S.A. Journal of Coastal Research 7, 203–229. 
 
McLeod, K.W., McCarron, J.K., Conner, W.H., 1996. Effects of flooding and salinity on 

photosynthesis and water relations of four southeastern coastal plain forest 
species. Wetlands Ecology and Management 4, 31–42. 

 
Meadows, D.G., Caballero, J.P., Kruse, S.E., Vacher, H.L., 2004. Variation of salinity in 

brackish-water lenses of two Florida Keys. Journal of Coastal Research 20, 386–
400. 

 
Munns, R., 2002. Comparative physiology of salt and water stress. Plant, Cell and 

Environment 25, 239–250.  
 
Neelin, J.D., Münnich, M., Su, H., Meyerson, J.E., Holloway, C.E., 2006. Tropical 

drying trends in global warming models and observations. Proceedings of the 
National Academy of Sciences 103, 6110–6115. 

 
Oberdorfer, J.A., Hogan, P.J., Buddemeier, R.W., 1990. Atoll island hydrogeology: flow 

and freshwater occurrence in a tidally dominated system. Journal of Hydrology 
120, 327–340. 



95 
 

Perkins, R.D., 1977. Depositional framework of Pleistocene rocks in south Florida, in: 
Enos, P., Perkins, R.D. (Eds.), Quarternary Sedimentation in South Florida. 
Geological Society of America, pp. 131–198. 

 
Rahmstorf, S., 2007. A semi-empirical approach to projecting future sea-level rise. 

Science 315, 368–370.  
  
Ross, M.S., Carrlngton, M., Flynn, L.J., Ruiz, P.L., 2001. Forest succession in tropical 

hardwood hammocks of the Florida Keys: effects of direct mortality from 
Hurricane Andrew. Biotropica 33, 23–33. 

 
Ross, M.S., Coultas, C.L., Hsieh, Y.P., 2003. Soil-productivity relationships and organic 

matter turnover in dry tropical forests of the Florida Keys. Plant and soil 253, 
479–492. 

 
Ross, M.S., O’Brien, J.J., da Silveira Lobo Sternberg, L., 1994. Sea-level rise and the 

reduction in pine forests in the Florida Keys. Ecological Applications 4, 144-156.  
 
Ross, M.S., O’Brien, J.J., Flynn, L.J., 1992. Ecological site classification of Florida Keys 

terrestrial habitats. Biotropica 24, 488-502.  
 
Ross, M.S., O’Brien, J.J., Ford, R.G., Zhang, K., Morkill, A., 2009. Disturbance and the 

rising tide: the challenge of biodiversity management on low-island ecosystems. 
Frontiers in Ecology and the Environment 7, 471–478.  

 
Rotzoll, K., Fletcher, C.H., 2012. Assessment of groundwater inundation as a 

consequence of sea-level rise. Nature Climate Change 3, 477–481.  
 
Ruiz-Benito, P., Madrigal-González, J., Ratcliffe, S., Coomes, D.A., Kändler, G., 

Lehtonen, A., Wirth, C., Zavala, M.A., 2014. Stand structure and recent climate 
change constrain stand basal area change in European forests: a comparison 
across boreal, temperate, and Mediterranean biomes. Ecosystems 17, 1439–1454.  

 
Saha, A.K., Saha, S., Sadle, J., Jiang, J., Ross, M.S., Price, R.M., Sternberg, L.S.L.O., 

Wendelberger, K.S., 2011. Sea level rise and south Florida coastal forests. 
Climatic Change 107, 81–108.  

 
Sah, J.P., Ross, M.S., Snyder, J.R., Ogurcak, D.E., 2010. Tree mortality following 

prescribed fire and a storm surge event in slash pine (Pinus elliottii var. densa) 
forests in the Florida Keys, USA. International Journal of Forestry Research 2010, 
1–13.  

 
Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic shifts 

in ecosystems. Nature 413, 591–596. 
 



96 
 

Snyder, J.R., Herndon, A., Robertson, W.B., 1990. South Florida rockland, in: Myers, 
R.L., Ewel, J.J. (Eds.), Ecosystems of Florida. University of Central Florida Press, 
Orlando, FL, pp. 230–277. 

 
Sternberg, L. da S.L., Teh, S.Y., Ewe, S.M.L., Miralles-Wilhelm, F., DeAngelis, D.L., 

2007. Competition between hardwood hammocks and mangroves. Ecosystems 10, 
648–660.  

 
Tanner, E.V.J., Bellingham, P.J., 2006. Less diverse forest is more resistant to hurricane 

disturbance: evidence from montane rain forests in Jamaica. Journal of Ecology 
94, 1003–1010.  

 
Tebaldi, C., Strauss, B.H., Zervas, C.E., 2012. Modelling sea level rise impacts on storm 

surges along US coasts. Environmental Research Letters 7, 1-11.  
 
Teh, S.Y., DeAngelis, D.L., Sternberg, L. da S.L., Miralles-Wilhelm, F.R., Smith, T.J., 

Koh, H.-L., 2008. A simulation model for projecting changes in salinity 
concentrations and species dominance in the coastal margin habitats of the 
Everglades. Ecological Modelling 213, 245–256.  

 
Tomlinson, P.B., 1986. The botany of mangroves. Cambridge University Press, New 

York, NY. 
 
Vacher, H.L., Wightman, M.J., Stewart, M.T., 1992. Hydrology of meteroic diagenesis: 

effect of Pleistocene stratigraphy on freshwater lenses of Big Pine Key, Florida, 
in: Fletcher, C.H., III, Wehmiller, J.F. (Eds.), Quarternary Coasts of the United 
States: Marine and Lacustine Systems, SEPM (Society for Sedimentary Geology. 
pp. 213–219. 

 
Van Bloem, S.J., Lugo, A.E., Murphy, P.G., 2006. Structural response of Caribbean dry 

forests to hurricane winds: a case study from Guanica Forest, Puerto Rico. Journal 
of Biogeography 33, 517–523.  

 
Vandermeer, J., 2000. Hurricane disturbance and tropical tree species diversity. Science 

290, 788–791. 
 
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fromentin, 

J.-M., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent 
climate change. Nature 416, 389–395. 

 
Wightman, M.J., 1990. Geophysical analysis and Dupuit-Ghyben-Herzberg modeling of 

freshwater lenses on Big Pine Key, Florida (M.S. Thesis). University of South 
Florida, Tampa, FL 

 
Williams, J.W., Jackson, S.T., 2007. Novel climates, no-analog communities, and 

ecological surprises. Frontiers in Ecology and the Environment 5, 475–482.  



97 
 

Williams, K., Ewel, K.C., Stumpf, R.P., Putz, F.E., Workman, T.W., 1999. Sea-level rise 
and coastal forest retreat on the west coast of Florida, USA. Ecology 80, 2045–
2063. 

 
Zervas, C. 2009. Sea level variations of the United States 1854-2006 (NOAA Technical  

Report NOS CO-OPS 053). National Oceanic and Atmospheric Administration, 
National Ocean Service, Silver Spring, MD. 

 
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects 

Models and Extensions in Ecology with R. Springer, New York, NY. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

3.9 Tables 

Table 3.1. Permanent plot environmental variables and average salinity in ppt for each 

sample period. Island codes: BPK = Big Pine Key, SLK = Sugarloaf Key. Habitat codes: 

PR = pine rockland; HH = hardwood hammock. * Distance to coast. 

Plot Island Hab 
 

Lens 
Loc 

# of 
sub 

plots 

DTC* 
(m) 

Ht  (m) 
above 
LMSL 

1990s 
ave 

(ppt) 

2010s 
ave 

(ppt) 

1990s 
n 

2010s 
n 

B2 BPK PR On 6 189 0.69 2.26 1.13 24 6 
B3 BPK HH Off 6 46 0.91 4.29 7.67 34 6 
S2 SLK HH Off 6 282 0.66 9.76 10.48 34 6 
S3 SLK PR Off 6 758 0.59 9.29 12.68 35 6 
S4 SLK HH Off 5 633 0.52 10.51 28.57 35 6 
S5 SLK PR On 6 535 0.91 1.74 0.67 34 6 
S7 SLK HH On 6 308 0.88 2.77 2.57 35 6 

 

 

Table 3.2 Mean +/- SE of distance to coast and height above local mean sea level for sites 

on and off the freshwater lens. * Distance to coast. 

Lens 
Location n Mean DTC* (m) Min - Max 

DTC* (m) 
Mean ht above 

LMSL (m) 
Min – Max ht 

above LMSL (m) 
Inside 3 344 +/- 102 189 to 535 0.83 +/- 0.07 0.69 to 0.91 

Outside 4 430 +/- 163 46 to 758 0.67 +/-0.08 0.52 to 0.91 
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Table 3.3 Estimate and standard error for each fixed effect from linear mixed effect 

modeling of log10 salinity at 7 wells with 65 sampling events from 1990s to 2010s. 

Estimates and SE are reported as salinity in ppt, n= 237. 

 
Fixed Effects Estimate Std. 

Error df P value 

Intercept 9.77 1.19 6.8 < 0.001 
Lens Location (Inside) -2.83 1.28 5.4 <0.01 
Period (2010s) 1.67 1.23 9.5 0.032 
30 days previous precipitation -1.01 1.01 80.2 0.034 
Lens Location (Inside) : Period (2010s) -1.87 1.31 5.1 0.065 
Lens Location (Inside) : 30 days precipitation -1.01 1.01 223.8 0.017 

 

 

Table 3.4 Means +/- SE of groundwater salinity (PPT) for inside and outside lens 

locations in each period (1990s and 2010s). P-values for each pairwise comparison are 

reported. 

 Inside Outside p-value 
1990s 2.77 +/- 1.21 8.71 +/- 1.18 0.001 
2010s 2.41 +/- 1.33 14.85 +/- 1.29 < 0.001 

p-value ns 0.020  
 

 

Table 3.5 Fitted vectors with correlation coefficients for each stratum. Significant 

correlations are indicated as ***p < 0.001, ** p < 0.01, * p < 0.05. 

Vector Tree High Shrub Low Shrub 
Mean groundwater salinity     0.76**     0.75**    0.88*** 
Plot height above LMSL   0.74* 0.54  0.81** 
Distance to coast (well) 0.56   0.88* 0.79* 
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3.10 Figures 

 

 

Figure 3.1 Study area includes the islands of Big Pine Key and Upper Sugarloaf Key, 
indicated by the arrows. Two permanent plots are located on Big Pine Key and five are 
located on Upper Sugarloaf Key. 
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Figure 3.2 Location of 600 m2 permanent plots and associated groundwater monitoring wells on Big Pine (BPK) and Upper 
Sugarloaf Keys (SLK) are displayed on a digital elevation map derived from LiDAR data (2007). Areas of higher elevation are 
white, while areas of lower elevation are black. The boundary of the freshwater lens on each island is indicated in blue (BPK 
boundary is from Aug 1987 survey, Wightman 1990; and SLK boundary is from a 1990 survey, Caballero 1993). 
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Figure 3.3 Annual mean sea level (mm) at Key West Tide Gauge (1914 - 2013). Data 
obtained from the Permanent Service for Mean Sea Level (PSMSL). Rate of sea level rise 
is equal to the slope of the regression line. 
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Figure 3.4 Deviation from the 30-year average annual precipitation received at Key West 
International Airport from 1984 to 2013 (http://www.ncdc.noaa.gov), SD of mean = 
14.57cm. Years of groundwater monitoring are indicated in red for 1990s and blue for 
2010s. 
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Figure 3.5 Mean +/- SE groundwater salinity (ppt) at each plot in each sampling period 
(1990s versus 2010s). Plots are arranged from left to right according to increasing 
groundwater salinity in 2010s. For 2010s sampling, n = 6. For 1990s sampling, n = 34 or 
35 for all wells, except for B2 where n = 24. 
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Figure 3.6 Percent change in tree stratum basal area per hectare and change in percent 
cover of high and low shrub strata (left y-axis) between 1990 and 2012 sampling events 
with corresponding height above local mean sea level (right y-axis) for each site. Sample 
sites, either pine rockland (PR) or hardwood hammock (HH), are arranged from left to 
right according to increasing groundwater salinity in the 2010s.  
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Figure 3.7 NMDS ordination of (a) tree stratum, (b) high shrub / sapling stratum, and (c) 
low shrub / herb stratum at seven sites in the 1990s (open symbols) and 2010s (closed 
symbols). Inside lens sites are colored blue, while outside lens sites are colored red. Pine 
rockland sites are represented by triangles and hardwood hammock sites are represented 
by squares. Vectors (black arrows) indicating increasing values of three environmental 
variables (groundwater salinity in ppt, distance to coast in m, and height above local 
mean sea level in m). Colored arrows indicate movement from 1990s to 2010s 
composition for each plot.  
 

 

 

B3 B3

S2
S2

S4 S4
S7

S7

B2 B2

S3

S3

S5
S5

-1.0 -0.6 -0.2 0.2 0.6 1.0
Axis 1

-1.0

-0.6

-0.2

0.2

0.6

1.0

A
xi

s 
2

 Inside Lens Pine  
 Inside Lens Hammock  
 Outside Lens Pine  
 Outside Lens Hammock 

Distance to coast

Height above local msl

Groundwater salinity

Minimum stress: 0.17 b

B2
B2

B3

B3

S2

S2

S3

S3

S4

S4

S5S5

S7
S7

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Axis 1

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

A
xi

s 
2

 Inside Lens Pine  
 Inside Lens Hammock  
 Outside Lens Pine  
 Outside Lens Hammock 

Groundwater salinity
Distance to coast

Height above local msl

Minimum stress: 0.13 c

B2

B2

B3
B3

S2S2

S3

S3

S4
S4

S5

S5

S7
S7

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Axis 1

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

A
xi

s 
2

Inside Lens Pine
Inside Lens Hammock

Outside Lens Pine
Outside Lens Hammock

Groundwater salinity

Distance to coast

Height above local msl

Minimum stress: 0.14 a



107 
 

CHAPTER 4. THE RELATIONSHIP BETWEEN CLIMATE, GROUNDWATER 

SALINITY, AND COASTAL FOREST ZONATION ON THE LIMESTONE ISLANDS 

OF THE LOWER FLORIDA KEYS (FLORIDA, USA) 

 

4.1 Abstract 

Species zonation in low-elevation coastal communities is driven by a variety of factors, 

including those related to tolerance to flooding and saline conditions.  On the islands of 

the lower Florida Keys, three freshwater-requiring communities (pine rockland, 

hardwood hammock, and supratidal scrub) having assemblages of glycophytic species, 

occur in close proximity to the coast. Species in these forests rely on a freshwater 

resource that fluctuates throughout the year as a consequence of the seasonality of 

precipitation. My study investigated the relationship between precipitation, 

evapotranspiration, and changes in groundwater salinity through direct groundwater 

monitoring and electrical resistivity tomography (ERT) surveys conducted over one year 

(2011-2012) along transects which traverse a coastal gradient on two islands. Vegetation 

sampling and subsequent split-moving window analysis delineated boundaries between 

adjacent coastal forest communities. The ERT-derived groundwater salinity values in 

May and November, as well as topographic location were assessed for their ability to 

predict the location of forest communities. Decreases in groundwater salinity were 

generally observed subsequent to large rain events on the smaller of the two islands, 

while locations on the larger island were less affected by those events. Similarly, while 

vertical increases in the lens depth occurred between May and November on both islands, 

lateral increases in lens extent were restricted to the smaller island. Using random forest 
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classification, coastal proximity and groundwater salinity were identified as important 

variables in the determination coastal forest location. Pine rockland was restricted to 

salinities of 3 ppt or less and the supratidal scrub community was associated with 

groundwater salinities generally greater than 10 ppt. Both hardwood hammock and low 

pine rockland occurred at locations with a wider range of groundwater salinities and were 

compositionally more similar to one another than the other habitat types. 

 

4.2 Introduction  

Plants growing at the intersection of land and sea cope with a variety of physical stresses 

including tidal inundation, high salinity groundwater, salt spray, and a particular 

frequency of storm disturbance. Community zonation in low-elevation coastal habitats is 

attributable to combinations of these abiotic factors as well as biotic factors and has been 

studied extensively in salt marshes (Baldwin and Mendelssohn, 1998; Pennings et al., 

2005; Moffett et al., 2010), dune systems (Oosting and Billings, 1942; Gornish and 

Miller, 2010), and mangrove forests (Ellison et al., 2000; Méndez Linares et al., 2007). 

Species occurring in these habitats are often halophytic or have some ability to tolerate 

such stresses and are often arranged in zones parallel to the coast based on their tolerance 

to salinity, inundation, and disturbance frequency. In south Florida, several forest 

communities composed primarily of glycophytic species exist within close proximity of 

the shoreline, in areas underlain by fresh to brackish groundwater. Species are situated on 

the landscape with those having greater tolerance to salt exposure typically located at the 

lowest elevations (Ross et al., 1994; Saha et al., 2011).  On lower Florida Keys’ islands, 

formed from an exposed carbonate platform (Lidz and Shinn, 1991), three distinct 
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glycophyte-dominated coastal forests are found over a vertical range of two meters above 

mean sea level (amsl) and a horizontal distance of a couple hundred meters to the coast. 

Pine rockland, hardwood hammock, and supratidal scrub forests display a degree of 

zonation at the community level with pine rockland typically found at the highest 

elevations and at locations interior of hardwood hammock and the most coastward 

supratidal scrub forest (Ross et al., 1992). The configuration of these forests in this 

coastal setting is likely a complex mixture of stress tolerance (Ross et al., 1994), response 

to disturbance (Sah et al., 2010), and the competitive abilities of the constituent species. 

 

The species in these forests rely on a combination of free water in the soil, water trapped 

in rock within the vadose zone, and groundwater present in the form of a freshwater lens 

to maintain positive water balance. Consequently, the distinct seasonality of precipitation 

received in south Florida both exacerbates the stress on the species in these communities 

and dictates timing of aquifer recharge. The extended dry season of the lower Florida 

Keys, typically 7 months, makes the presence of a Ghyben-Herzberg lens an essential 

resource of available freshwater for plants throughout the year (Ross et al., 1994). On 

oceanic islands composed of a permeable bedrock, lower density freshwater can exist as a 

floating lens on underlying salt water with dimensions that can be roughly approximated 

by island elevation and area. However, such lenses are not static and lateral flow exists 

with discharge related to saturated aquifer thickness according to Depuit assumptions 

(Vacher, 1988).  Additionally, the permeability of the underlying bedrock combined with 

tidal pumping can result in a wide zone of intermediate groundwater salinity attributable 

to fresh-salt water mixing; this has been observed on islands in the lower Keys (Meadows 
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et al., 2004) coincident with particular community types (Ross et al., 1992).  The karstic 

nature of the bedrock and low relief provide for rapid infiltration of rainwater into the 

lens with little surface runoff, while secondary diagenesis of the limestone provides 

preferential conduits through which lateral flow moves to the coast (Mylroie and Carew, 

1995).  Combined with loss of the water through evapotranspiration processes that 

increase with temperature (Kosa, 2011), the timing and quantity of precipitation dictates 

the extent to which fresh water is present in a given location in this dynamic system. 

 

The wide availability of spatially explicit data, including high resolution elevation 

datasets, allow for easy extraction of variables to test the relationships between 

environmental drivers and plant communities at the landscape scale. While coastal 

distance and elevation combined with groundwater monitoring at discrete locations can 

be used to estimate the underlying groundwater salinity at coarse scale, these easily 

measured geographic proxies fail to adequately describe differences at a fine scale nor 

can they predict seasonal changes in the resource. Previous work in the lower Keys 

employing geophysical methods, specifically electrical resistivity tomography (ERT) and 

electromagnetic induction (EM) surveys, identified the locations and lateral extents of the 

freshwater lens on Upper Sugarloaf (Caballero, 1993) and Big Pine Keys (Wightman, 

1990). These methods model the bulk electrical resistivity (reciprocal of conductivity) of 

the subsurface (Lesmes and Friedman, 2005). In combination with strategic groundwater 

sampling, geophysical surveys enable the calculation of groundwater salinity across the 

gradient of low elevation, near-coast habitats to interior higher elevation locations.  
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The undeveloped portions of coastal forest located in the island setting of the lower 

Florida Keys provide an ideal location to investigate how the relationship between 

precipitation, evapotranspiration, and fresh water balance affect forest community 

zonation in a coastal setting. My research builds on previous work that successfully 

categorized the terrestrial communities of the Florida Keys, including tidal and interior 

wetlands and upland forest types, according to the combination of geographic location, 

soil type and depth, elevation, and groundwater salinity (Ross et al., 1992).  Here, I 

specifically investigated the role that groundwater salinity plays in structuring plant 

community zonation in three lower Keys’ upland coastal forests on two islands, Big Pine 

Key and Upper Sugarloaf Key. I hypothesized that underlying groundwater salinity is a 

primary driver of coastal forest zonation. After first characterizing the seasonality of 

climate using the ratio of precipitation to potential evapotranspiration received in the 

lower Keys, I investigated whether seasonal changes in climate variables are reflected in 

groundwater salinity across a gradient of near coast to interior island locations. Using a 

combination of groundwater monitoring at monthly intervals and electrical resistivity 

tomography (ERT) surveys conducted at the height of the dry and wet seasons in 2011, I 

determined how the freshwater lens responded to seasonal trends in climate and 

individual precipitation events. Finally, I considered whether freshwater-requiring coastal 

forest communities located along this gradient are associated with specific ranges in 

groundwater salinity or patterns of seasonal change. Using random forest classification 

and conditional density curves, I determined a combination island topographic variables 

and groundwater salinity optima to explain coastal forest community zonation. 
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4.3 Study Area 

The islands of Big Pine Key (N 24.67, W 81.36) and Upper Sugarloaf Key (N 24.66, W 

81.53) are located toward the distal end of the chain of islands known as the Florida Keys 

(Figure 4.1). A large portion of both of these islands is protected and managed as part of 

the USFWS National Key Deer Refuge. The surficial bedrock of the Florida Keys was 

deposited in the late Pleistocene during the last interglacial period and has been dated to 

134,000 years BP (Perkins, 1977). The exposed bedrock formation in the upper and 

middle keys is Key Largo Limestone, derived from a shallow water shelf margin coral 

reef (Harrison and Coniglio, 1985) of peloid-bioclast packstone-grainstone (Hoffmeister 

and Multer, 1968). In the lower Keys, the surficial bedrock is the Miami Limestone, 

which was formed in a backbay environment as a former tidal sandbar (Hoffmeister et al., 

1967) and consists of ooid grainstone. Beginning on Big Pine Key and trending to the 

southwest, the Miami Limestone outcrops over the underlying Key Largo Limestone and 

contacts are separated by subaerial exposures (Coniglio and Harrison, 1983).  While both 

formations are moderately to highly porous (average porosity of 20 to 40%) (Robinson, 

1967; DiFrenna et al., 2008), the Key Largo Limestone is more permeable than the 

Miami Limestone as a result of the greater development of secondary porosity (Coniglio 

and Harrison, 1983).  Longer periods of meteoric diagenesis of the underlying Key Largo 

Limestone are responsible for the increase in secondary porosity and interconnected pore 

spaces (Vacher et al., 1992).  

 

According to Ghyben-Herzberg assumptions, the depth to the salt water interface of a 

freshwater lens can be approximated by multiplying the water table’s elevation above sea 
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level by a factor of 40. However, in the lower Keys, the depth is truncated at the location 

of the contact between the facies as a result of higher hydraulic conductivity of the Key 

Largo Limestone (Vacher, 1988). On Big Pine Key, the difference in permeability 

between the Key Largo Limestone and Miami Limestone results in much greater 

hydraulic conductivity in the former, whose conductivity of 1400 m per day compares 

with 120 m per day in the Miami Limestone (Vacher et al., 1992). Groundwater sampling 

on Big Pine Key verified a five-fold increase in conductivity of the groundwater just 

below the contact, which occurs at approximately 5 m below the ground surface (Hanson, 

1980).  

 

Residential development on the islands has impacted both aquifer recharge and discharge. 

Compared to pre-development conditions, dredging for canals is estimated to have 

resulted in a 20% loss of the lens volume on Big Pine Key (Langevin et al., 1998). While 

some residents do extract water from the lenses for outdoor residential use, this is likely a 

negligible output from the system. Additional inputs to the system do occur from septic 

seepage as potable water is provided via the Florida Aqueduct Authority to residential 

homes and businesses from the Biscayne Aquifer on the mainland. However, many of 

these homes are associated with the network of canals and the additional source of water 

very likely flows to the adjacent Florida Bay or Atlantic Ocean. In the undeveloped 

portions of the islands where I focus my research efforts, these additional inputs and 

outputs should have minimal effect on seasonal lens dynamics. 
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The climate of south Florida is humid subtropical becoming increasingly warm and dry 

as one moves south through the chain of islands of the Florida Keys. Precipitation is 

seasonal with a distinct wet season (June through October) in which approximately two-

thirds of the rain in any given year falls, followed by a dry season (November through 

May). In the lower Keys, the annual average rainfall is 102.2 cm and temperatures range 

from an average monthly low of 20°C to a high of 29°C, in January and August, 

respectively (30-year average 1984-2013 at Key West International Airport, 

http://www.ncdc.noaa.gov). Rainfall events can be sporadic, with large quantities of 

precipitation accompanying tropical storms. For south Florida, the average tropical 

storm/hurricane return interval is 3 years, with Cat 3- 5 storms occurring at an interval of 

every 15 years for Key West (Keim et al., 2007). The majority of hurricane landfalls 

occur August through October (Elsner and Kara, 1999). The last major hurricane to 

impact the lower Keys occurred in 2005; Hurricane Wilma, a Category 3 storm, flooded 

the islands with salt water to locations up to 1 meter above mean sea level, but was 

accompanied by very little precipitation (Kasper, 2007). 

 

Freshwater-requiring coastal forest communities on these islands include supratidal scrub 

forest, hardwood hammock, and pine rockland. Pine rocklands are found on the interior 

of the islands, typically inland of hardwood hammocks, with the final freshwater-

requiring community, supratidal scrub, occurring coastward of both and adjacent to 

mangrove. In the lower Keys, these communities are found at elevations ranging from 0.2 

to 2 meters amsl. Soils are shallow (0 to 20 cm) and predominately organic in pine 

rockland and hardwood hammock (Ross et al., 2003), while supratidal scrub has lower 

http://www.ncdc.noaa.gov/
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litter input and is typified by more rocky/ mineral soils (Ross et al., 1992). Supratidal 

scrub forests are dominated by Conocarpus erectus L., buttonwood, with a maximum 

height of 7 m and have an understory of graminoids and/or succulents (Ross et al., 1992). 

These forests are often inundated with salt water at high tide. Hardwood hammocks are 

of low stature (3 to 7 m) and consist of a variety of West Indian hardwood species and 

palms. As defined here, the community spans the full elevation range found in the lower 

Keys, and at low elevations is occasionally subjected to tidal flooding. Pine rockland is 

characterized by a single canopy dominant, Pinus elliottii var. densa Engelm., south 

Florida slash pine, ranging in height from 7 to 14 meters. While many of the species 

found in hardwood hammock also occur in varying abundance in pine rockland, the more 

open canopy in pine rockland allows a diverse herbaceous understory to flourish. 

However, without periodic fire, pine rockland succeeds to a hardwood hammock 

community (Snyder et al., 1990). Pine rockland is restricted to elevations typically 

greater than 0.4 meters.  Here, pine rockland was divided into high and low elevation 

communities, with low elevation pine rockland typified by many standing dead trees that 

resulted from Hurricane Wilma storm surge flooding in 2005. 

 

4.4 Materials and Methods 

4.4.1 Climate Data 

Weather data were obtained from a station (TS607) operated by the National Key Deer 

Refuge and located at the north end of Big Pine Key (N 24.72422, W 81.38864). Hourly 

precipitation, temperature, and solar radiation data, available beginning in 2007, were 

downloaded from MesoWest (website maintained by the University of Utah, 
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(http://raws.wrh.noaa.gov/cgi-bin/roman/meso_base.cgi?stn=TS607). Data recorded by 

the station were used to generate daily totals and monthly averages for precipitation and 

to calculate a daily ratio of precipitation to potential evapotranspiration (P:E). The 

weather station is equipped with a pyranometer placed at a height of 2 m above the 

ground surface to record solar radiation and a tipping bucket gauge to record the amount 

of rainfall received. The Simple Abtew method (Abtew, 1996) was used to estimate daily 

potential evapotranspiration (ET) with the following equation: 

 

where ET is potential evapotranspiration in mm/day, K1 is a dimensionless coefficient 

equal to 0.53, Rs is solar radiation as measured in MJ/m2/day, and λ is equal to the latent 

heat of vaporization of water with units of MJ/kg and varies with temperature according 

to the following equation:  

 

 where T is equal to daily average temperature in ° Celsius.  

Results obtained from this method for Everglades’ wetlands are comparable to other 

methods of ET estimation requiring a greater number of parameters (Abtew, 1996). Five-

year monthly averages (Jun 2007 to May 2012) were calculated for precipitation, ET, and 

P:E ratio. 

 

4.4.2 Groundwater Salinity Sampling and Analysis 

Beginning in May 2011 and ending in April 2012, groundwater salinity was sampled on a 

monthly basis in shallow monitoring wells. Wells were installed within each coastal 

forest type occurring along five transects coincident with trails located within the 

λ/*1 sRKET =

T*00263.0501.2 −=λ

http://raws.wrh.noaa.gov/cgi-bin/roman/meso_base.cgi?stn=TS607
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USFWS National Key Deer Refuge on Big Pine and Upper Sugarloaf Keys for a total of 

24 wells (Table 4.1, Figure 4.1). Wells were named with an alpha-numeric code that 

includes the first letter of each island name, the transect number for each island, and the 

well position along each transect in relation to the coast (Table 1). Boreholes with 

diameters of 8.89 cm were drilled through bedrock to a depth of 1 to 1.25 m below the 

ground surface. Within each borehole I placed a PVC pipe with an internal diameter of 

3.175 cm, screened along the bottom 0.5 m so that groundwater entered the well at a 

depth of 0.5 to 1.25 m below the ground surface.  Wells were packed with sand to a level 

above the well screen and finished with cement. Prior to each sampling event, the depth 

(cm) to the water table was recorded and three well volumes were evacuated with a 

peristaltic pump. Groundwater salinity in PPT, specific conductivity in mS/cm, and 

temperature were measured with a YSI model 30 handheld probe with a resolution of 0.1 

ppt and accuracy of +/- 0.1 ppt.   

 

Monthly groundwater salinity at each well was plotted over the course of the study period 

with daily precipitation totals and the mean salinity calculated for each well location. I 

calculated a z-score for each sampling event given the mean and standard deviation of 

salinity values over the 12 month sample period for each well. Z-scores for the month of 

November were compared using t-tests to determine the effect of island on response of 

groundwater salinity to precipitation at all sample locations. 
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4.4.3 ERT Theory and Background 

Electrical resistivity tomography is a geophysical method used to generate a profile of 

subsurface resistivity by applying a direct current into the ground and measuring changes 

in electrical potential as the current flows through the subsurface. The method is derived 

from the relationship between resistivity, current, and voltage potential measured in a 

typical electrical circuit according to Ohm’s Law:  

 

where V is voltage in volts, I is current in amperes, and R is resistance in ohms. As 

resistance of an object is related both to its geometry and the ability of the material to 

conduct current -- the intrinsic property of the material, resistivity is calculated using the 

following equation: 

 

where 𝜌𝜌 is resistivity in ohm-m, and A and L are equal to area and length in meters.  

In locations of known lithology, as in the case of the islands of the lower Florida Keys, 

differences in apparent resistivity are attributable to pore fluid conductivity (reciprocal of 

resistivity) according to Archie’s Law (1942): 

 

where ρ = resistivity in ohm-m, ϕ = porosity, and A and m are empirically derived 

constants specific to the bedrock formation. Archie defined the relationship between bulk 

resistivity and pore fluid resistivity as the formation factor, F:  

 

 

m
fluidbulk A −= φρρ **

IRV =

LRA /=ρ

ρ

ρ

fluid

bulkF =
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For limestones, the cementation factor, m, is approximately 2, and the tortuosity factor, A, 

averages 1, therefore the equation can be rewritten to show the relationship to bedrock 

porosity (Tiab and Donaldson, 2004): 

 

Thus, it is possible to solve for the resistivity and calculate corresponding salinity of the 

underlying groundwater from the output of the ERT survey combined with the calculated 

formation factor. 

 

4.4.4 ERT Data Collection 

The ERT surveys were conducted twice along each transect except for B2 (Table 4.2, 

Figure 4.1) during field campaigns in May and November 2011.  Surveys began near the 

coast at the ecotone between supratidal scrub and adjacent mangrove community and 

ended in interior pine rockland. An AGI (Advanced Geophysical Instruments) Super-

Sting R1 IP multi-electrode resistivity system, which includes 28 stainless steel 

electrodes, a control box, cable, and switching box, was used to inject electrical current 

into the ground through two current electrodes, while the voltage drop was measured 

across two potential electrodes. Electrodes were placed according to a Wenner Array 

with a fixed spacing of 2 meters. In a Wenner Array, all electrodes are placed at equal 

distances from one another, known as the a-spacing. In this commonly used array, 

apparent resistivity (ρa) is calculated on the basis of how current flows through a unit 

area of an equipotential surface (Telford et al., 1990):  

 

φ 2

1
=F

I
Va

a
∆

=
πρ 2
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The current and potential electrodes switch throughout the survey, resulting in 118 

measurements (92 for each subsequent section) taken along an interval of 54 m to a depth 

of 9.3 m. After each individual segment run, the cable is disconnected in the middle and 

moved to the end, and a new segment is surveyed, allowing for continuous profiling. The 

survey is termed a roll-along as each segment of the survey overlaps the last segment by 

28 meters. Coincident with each ERT survey, groundwater salinity and temperature were 

measured in each well along each transect. The GPS coordinates were obtained for each 

well, ERT survey start point and end point using a Magellan Promark 3 system, with a 

horizontal accuracy of 10 cm.  The location for each electrode was calculated from the 

start and end points of each survey line. NAVD88 elevation was obtained for each 

electrode location from digital terrain models (DTMs) derived from LiDAR data having a 

spatial resolution of 1 m2 for Big Pine Key and 5 m2 for Upper Sugarloaf Key (Robertson 

and Zhang, 2007; Zhang et al., 2010).  

 

4.4.5 ERT Inverse Modeling 

Resistivity sections were generated by modeling the apparent resistivity values obtained 

from the ERT survey using the 2-D inversion program (Binley and Kemna, 2005), R2 

v.2.7 (Binley, 2011). Modeling of ERT data is an underdetermined problem that leads to 

non-unique results and requires an optimization algorithm. The desired model is the 

smoothest one that fits the data within a specific tolerance; Occam’s inversion achieves 

this (Constable et al., 1987).  Occam’s inversion for ERT (LaBrecque et al., 1996) was 

used. A quadrilateral mesh was created for the inversion having a horizontal spacing of 

0.5 m (4 nodes between each electrode) and a vertical spacing of 0.2 m at the surface that 
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increased with depth by a factor of 1.1 to a maximum of 9.3 m below the ground. In R2 

settings, patch size was set to 2 blocks in the x direction and 1 block in the y direction, 

inverse type was set to regularized with a linear filter, and the error variance model 

parameters were set to 0.01 and 0.02 ohms for a and b respectively, where 

222 *)var( RbaR weightweight += . 

 

4.4.6 Groundwater Salinity Calculation 

A formation factor was calculated by Tucker (2013) for each island using orthogonal 

regression. Specific conductivity of the groundwater measured in wells during the 

surveys was converted to pore water resistivity and regressed against corresponding bulk 

resistivity output from the R2 inversions. As the formation factor for each island was 

similar and within each island’s range of uncertainty, an average formation factor of 9.05 

with a SD of 1.44 was used to calculate salinity (Tucker, 2013). Bulk resistivity values 

were converted to pore water resistivity by dividing by the above formation factor 

according to Archie’s Law. Pore water resistivity in ohm-m was then converted to 

conductivity (σ) in mS/cm using the following equation: 

 

 

Finally, conductivity was converted to salinity (S) in PPT at 25°C: 

 

where R is the ratio of the calculated conductivity to that of standard sea water at 25°C 

(53.087 mS/cm) (Wagner et al., 2006).  

 

fluidρ
σ 10  =

)*58.2()*48.6()77.13()*328.25()*217.0(012.0 2/522/32/1 RRRRRS +−++++−+=
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Dry season (May 2011) and wet season (November 2011) salinity sections for each 

transect were plotted using Surfer 8.0. Based on salinity associated with living pine trees 

from previous work (Ross et al., 1994), I chose the 3 ppt contour line to delineate the 

boundary of the freshwater lens for dry to wet season comparison. This value is higher 

than that which would be considered for a potable freshwater source (250 mg/L, < 1 ppt). 

Since the average depth to contact between the formations occurs at approximately 5 m 

below the surface and the calculated formation factor is valid only for the Miami 

limestone, I show modeled groundwater salinity to a maximum depth of 5 m. Modeled 

May and November salinity values at a depth of 1.07 m below the ground surface were 

extracted at each 1 meter interval along the profile for use in subsequent random forest 

classification. The depth of 1.07 m was selected as it corresponds to the approximate 

location of measured groundwater salinities in wells and is a location that was within the 

saturated zone during the ERT surveys. At each groundwater well location, the modeled 

salinity values beginning at the water table to a depth of 5.25 m below the surface were 

extracted to generate a depth profile and compare measured to modeled groundwater 

salinities.    

 

4.4.7 Transect Vegetation Characterization  

Vegetation was sampled along a 4 meter-wide belt transect that ran parallel to each of the 

four ERT survey transects (Figure 4.1). Each vegetation transect began in the near coast 

community and was offset from the ERT transect by 20 meters. The belt transect was 

divided into 5-meter intervals, such that percent cover was estimated for all woody 

species having a height greater than or equal to 1 m in a series of 4 m by 5 m rectangular 
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plots. Cover was estimated using the following six categories, the midpoint of which was 

used for subsequent analyses: 1 = <1%, 2 = 1-4%, 3 = 4-16%, 4 = 16-32%, 5 = 32-66%, 

and 6 = 66-100%. Along each transect, boundaries between adjacent coastal forest 

communities were defined based on discontinuities in vegetation composition.  I used a 

moving split-window analysis (Ludwig and Cornelius, 1987; Wierenga et al., 1987) to 

locate peaks in Bray-Curtis (BC) dissimilarity between adjacent sampling units along 

each transect. Bray-Curtis dissimilarity is a distance measure calculated between 

sampling units that is derived from Sorenson similarity -- the shared abundance in species 

between two sample sites divided by total abundance (McCune and Grace, 2002). I 

varied window size from two to six sample units to determine the size with the best 

separation. Bray-Curtis dissimilarity ranges from 0, where adjacent units are identical in 

composition, to 1 where adjacent units contain no overlapping species. Extracted ERT-

salinity values falling along each transect (1-meter interval spacing) were assigned to one 

of six community types based on the results of the moving split-window analysis: 

supratidal scrub (STS), hardwood hammock (HH), very low elevation hardwood 

hammock (HHl), interior occurring low elevation pine rockland (LPi), exterior occurring 

low elevation pine rockland (LPe), or high elevation pine rockland (HP). Characteristic 

species for each community type were determined using the SIMPER routine in Primer 

6.1.9 based on the four major community types: hardwood hammock, high elevation pine 

rockland, low elevation pine rockland, and supratidal scrub. The SIMPER routine 

calculates the average similarity between all samples in each community type. Species 

with high percent contribution to community similarity between samples are considered 

to be characteristic of that community. Composition data was analyzed using Non-Metric 
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Multidimensional Scaling (NMDS) in Primer 6.1.9. No transformation was applied to the 

percent cover data, but data were standardized to the species maximum across all plots. 

All plots from each transect were considered in the ordination for a total of 169 samples 

and 41 species, with samples assigned to each of the six community types based on the 

results of the moving split-window analysis. 

 

4.4.8 Prediction of Community Types  

Random forest classification was used to predict coastal forest type from a combination 

of ERT-generated groundwater salinities at 1.07 m depth, NAVD88 elevation (cm), and 

coastal proximity (m) for 873 data points. In ArcGIS 10.2, elevation was extracted for 

each 1 meter location along the transects from Lidar-derived DTMs and distance to coast 

was calculated using the Near tool. Models were run in R v.3.1.2 (R core team, 2014) 

using the Caret package. The dataset was sub-sampled using five-fold cross validation so 

that all data was part of both the training and testing data sets. Ten repeats were selected, 

and for each iteration 1000 trees were built. The average percent accuracy was recorded 

with a 95% confidence interval and variable importance was calculated. Conditional 

densities for each community type along each gradient (elevation, distance to coast, May 

groundwater salinity, and November groundwater salinity) were derived using the 

package ‘sm’ in R v.3.1.2 (R core team, 2014). These plots provided information on the 

proportional abundance of each community compared to all other communities along 

each point of the environmental gradient (Gann and Richards, 2015).  
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4.5 Results 

4.5.1 Precipitation and Potential Evapotranspiration 

While the time frame spanned by this study (April 2011 through March 2012) fell within 

a period of average annual precipitation (110.5 cm fell during the study period), monthly 

rainfall varied substantially (>1 SE) from the 5-year average for Big Pine Key (Figure 

4.2). For most months during the study period, including those of the June-October wet 

season, less than average rainfall resulted in drought conditions. However, 40% of the 

total annual precipitation fell over the course of five days in October 2011. The total 

amount of precipitation received during October 2011 was more than three times the 5-

year average (2007 to 2012) for the month of October on Big Pine Key.  

 

The relationship between precipitation and evapotranspiration over the study period was 

also indicative of drought conditions, as 8 of 12 months fell below their 5-year average. 

On average, the water balance of the wet season (June through October) is positive with a 

P to E ratio greater than 1, while the dry season months display P to E ratios less than 1. 

The five-year average for Big Pine Key confirms this typical climatic pattern of the Keys 

(Figure 4.3). However, considering the climate conditions six months prior to both the 

dry and wet season ERT surveys, P to E ratios were below the 5-year average for several 

months, while the P to E ratio for the month of October immediately preceding the wet 

season ERT survey was well above average for that month.  
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4.5.2 Seasonal Changes in the Freshwater Lens 

Results of monthly groundwater monitoring indicated that not only was groundwater 

salinity highest near the coast, but monthly changes were generally of larger magnitude at 

these coastal locations (Figures 4.4 through 4.8). Wells on Upper Sugarloaf Key show a 

pattern of increasing variability around the mean salinity measurement along each 

transect from interior to coast that is not present on Big Pine Key (Table 4.1). Between 

sample events, decreasing groundwater salinity was observed following the two largest 

rain events of the study period (June 6th - 7th and October 15th - 19th). While the majority 

of wells at sites on Upper Sugarloaf Key (Figure 4.7 and 4.8) followed this trend, fewer 

sites on Big Pine Key exhibited the same decrease in groundwater salinity in response to 

precipitation (Figures 4.4, 4.5, and 4.6). In fact, groundwater salinity in several wells on 

transects B1 (Figure 4.4) and B3 (Figure 4.6) actually increased after these rain events. 

While not statistically significant at p < 0.05, sample locations on Upper Sugarloaf Key 

generally had more negative z-scores for November compared to sites on Big Pine Key. 

The generally lower z-score for this month, especially for Upper Sugarloaf Key locations 

is attributable to decreases in groundwater salinity presumably from the large rain event 

in October.  

 

The salinity sections derived from the ERT surveys are displayed for each transect 

(Figures 4.9 through 4.12).  The expectation is that between the dry season and wet 

season survey, sites would increase in both the lateral extent and depth of the freshwater 

lens. The lateral boundary of the fresh water lens (designated as 3 ppt) did not move 

between surveys for transect B1 (Figure 4.9). However, there is a clear increase in depth 
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of the freshwater lens from dry to wet season along this transect. The seasonal increase in 

salinity observable near the coast for transect B1 is most likely attributable to incoming 

tide. Along transect B3 no appreciable change occurred in the extent or depth of the 

freshwater lens (Figure 4.10) which could be attributable to the number of homes in the 

nearby vicinity just to the south (Figure 4.1)  providing a year round supply of freshwater 

from septic input. For the Upper Sugarloaf Key transects, S2 and S3, there was an 

increase in depth of the freshwater lens between May and November and lateral increase 

in extent along S3 (Figure 4.11 and 4.12). On the basis of results of the ERT surveys, the 

lens on Upper Sugarloaf appears to break up during the dry season. A visual comparison 

of freshwater lens and community boundaries shows that high elevation pine rockland is 

restricted to salinities of 3 ppt or lower, while a much greater range exists for both low 

elevation pine rockland and hardwood hammock. Supratidal scrub is typified by salinities 

greater than 10 ppt, but observed at locations as low as 6 ppt. The average groundwater 

salinity for both May and November ERT-modeled salinities, along with average 

elevation and coastal proximity for each community type is display in Table 4.3. 

 

4.5.3 Porosity and Seasonality Effects Evident in Profiles  

Depth profiles for May and November were extracted from ERT-modeled salinities at 

each well location (Figures 4.13 through 4.16). For the majority of locations, the 

measured groundwater salinity in the monitoring well agreed with the ERT-modeled 

salinity at that depth. Exceptions occurred where the measured salinity was much lower 

or higher than that of the estimated value. The result is expected given the use of an 

average value for the formation factor. The overall agreement between measured and 
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modeled values provides confidence for use of modeled data in subsequent analyses. A 

comparison between dry and wet season depth profiles mirrored the results presented in 

the salinity sections; a general increase in depth of the freshwater lens with the wet 

season. Wet season salinities were less than those of the corresponding dry season 

(Figures 4.15 and 4.16) or did not change appreciably between seasons (Figure 4.13 and 

4.14). Wells having wet season depth profiles that were more saline than that of the 

corresponding dry season occurred primarily in locations near to the coast influenced by 

incoming tide at the time of the survey. ERT-modeled salinities at 1.07 m depth are 

shown with corresponding community types derived from moving split-window analysis 

in Figures 4.17 through 4.20. Dry season salinities at this depth are typically more saline 

than those of the wet season survey in agreement with the salinity sections and 

differences between wet and dry season salinity at this depth are much greater on Upper 

Sugarloaf than compared to Big Pine Key transects. Salinities in both surveys steadily 

decreased from the near coast community to the interior coastal forest and the slopes of 

these lines flatten out when the boundary of the fresh water lens (3 ppt contour) is 

reached. Deviations from a smooth line that are observable in both surveys are 

attributable to local eccentricities in porosity; for instance, Figure 4.18, meter 20 is likely 

an area of lower porosity bedrock. However, differences in ERT-modeled salinity 

between surveys at a particular location (e.g., Figure 4.20, meter 160) must be 

attributable to differences in pore water salinity between the two surveys. 
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4.5.4 Community Boundaries and Characteristic Species 

A moving split-window of size 5 provided the best discrimination between adjacent 

community types. Spikes in Bray-Curtis dissimilarity indicated the breakpoints between 

community-types and can be considered the boundary between adjacent communities on 

each transect (Figures 4.17 through 4.20). Peaks in BC dissimilarity greater than 0.5 (0.6 

for transect B1) were considered to be breakpoints. Characteristic woody species of each 

coastal forest type were designated by their percent contribution. Only species that 

contributed 5% or more to the similarity within each community type were included 

(Table 4.4). The analysis found STS to be overwhelmingly dominated by C. erectus 

(buttonwood). The other three communities were characterized by several species, 

including C. erectus, several which were found in more than one community type, but in 

varying proportions. Species constituting the largest percent cover include: Leucothrinax 

morrisii (H.Wendl.)C.Lewis & Zona (Key thatch palm), Metopium toxiferum (L). Krug & 

Urb. (poisonwood), Manilkara jaimiqui (C.Wright ex. Griseb)Dubard ssp. emarginata 

(L.)Cronquist (wild dilly), and Byrsonima lucida (Mill.)DC. (locustberry). Species 

abundance varied between communities along a gradient of decreasing average 

groundwater salinity with a decrease in abundance for buttonwood and wild dilly and 

increase in abundance for Key thatch pine. Although contributing less than 5% to 

similarity among samples, P. elliotti var. densa was present but restricted to high 

elevation pine rockland. Low elevation pine rockland had pine snags, but no living pines 

as a result of Hurricane Wilma storm surge. The overlap between species composition 

between community types is evident in the ordination results (Figure 4.21) where 

hardwood hammock and low elevation pine rockland overlap to a large extent in species 
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space. However, the general clustering of each community type within a distinct portion 

of species space supports the efficacy of the moving split-window analysis to 

successfully delineate these communities across both islands.  

 

4.5.5 Prediction of Coastal Forest Communities 

Using random forest classification, community types were predicted from a combination 

of elevation, distance to coast, and May and November ERT-modeled groundwater 

salinities with an accuracy of 98.5% with a 95% confidence interval of (0.975 to 0.992) 

and having an out-of-bag estimate of error rate of 1.49%. Variable importance was 

assessed through a calculation of the mean decrease in accuracy resulting from the 

elimination of each variable, with the largest decrease in accuracy attributable to distance 

to coast and May and November groundwater salinity as next most important (Table 4.5). 

Conditional probabilities for each community type along the May and November 

gradients (Figure 4.22a-d) identified peaks in likelihood of occurrence for high elevation 

pine rockland, hardwood hammock, and supratidal scrub (Figure 4.22c and d). However, 

probability distributions along the gradients in elevation and distance to coast for each 

community type were either multi-modal or not well-defined by any optima (Figure 4.22a 

and b). 

  

4.6 Discussion 

The seasonal aspect of precipitation in the lower Keys results in coastal plant 

communities reliant on fresh water to be composed of stress tolerant species that are 

adapted to periods of drought punctuated by heavy rainfall events. The study period 
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(2011-2012) occurred during a period highly illustrative of this phenomenon – many 

months of below average precipitation followed by a several-day rain event in which 

close to half of the rain for the entire study period fell. The combination of a drier than 

normal dry season prior to the May survey and a wetter than normal October prior to the 

November survey resulted in climate extremes that enabled the testing of differences in 

dry season versus wet season climate impacts on the fresh water lenses of these two 

islands.  

 

4.6.1 Effects of Bedrock Porosity on ERT-Estimation of Groundwater Salinity 

From the formation factor as calculated by Tucker (2013), the porosity of the Miami 

oolite used in modeling is equal to approximately 33%, well within the bounds of 

previous estimates (Robinson, 1967; DiFrenna et al., 2008). Underestimations of the 

measured salinity at a well by the ERT-estimated value indicate a location where bedrock 

porosity is lower than this average, while overestimations indicate locations of higher 

bedrock porosity. Higher and lower bedrock porosities occur locally from dissolution and 

precipitation of calcium carbonate, respectively. Locations of higher bedrock porosity can 

result from dissolution in the freshwater – saltwater mixing zone, a process that 

elsewhere leads to the development of flank margin caves in relatively short time spans 

(Mylroie and Carew, 1995). Conversely, lower porosities can result from calcrete 

formation as CaCO3 is precipitated in locations of evaporation as well as in areas of 

saline upconing where water is supersaturated with respect to calcium carbonate (Mylroie 

and Carew, 1995). The noticeable dip in some depth profiles around 2 m in depth (Figure 

4.14) is coincident with a low porosity layer 5 to 20 cm thick occurring at a depth of 1.8 
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to 2.1 m reported by Hanson (1980) for Big Pine Key. Conversely, terrain conductivity 

surveys indicate a zone of higher porosity at shallow depths to 1 m below the surface on 

Upper Sugarloaf Key (Meadows et al., 2004). The above processes do not appear to 

affect the values extracted from the ERT-modeled groundwater salinity at a depth of 1.07 

m in this study. 

 

4.6.2 Effects of Precipitation and ET on the Freshwater Lens 

Recharge of the lens occurs during the months of the year when precipitation is greater 

than losses from evapotranspiration (P:E  > 1) which occurs primarily during the wet 

season, June through October. However, during the study year, the P:E ratio was greater 

than 1 only in the month of July and October, associated with short periods of heavy 

rainfall, illustrating that recharge to the freshwater lens is sometimes more reliant on 

input from severe events then from a continuous rainy season. Given the predicted 

summer drying trend in the Caribbean region for the 21st century (Neelin et al., 2006), 

this type of recharge may become the norm.   

 

While large changes in salinity over the course of the study at wells located closest to the 

coast can be partially attributed to the effects of tide and the timing of sample collection, 

the decrease in groundwater salinity post-rain events was larger than the change 

attributable to tide for near coast wells on the SLK and B2 transects. For reference, the 

groundwater salinity measured at well B11 was found to vary by approximately 0.5 ppt 

over the course of the tidal cycle (Tucker, 2013) and at S31 by approximately 2 ppt 

(Ogurcak, unpublished data 2012). The increase in groundwater salinity observed after 
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rain events at interior well locations, specifically at wells on the B1 and B2 transects 

(Figure 4.4 and 4.5), could be the result of salts in the soil being flushed into the aquifer. 

Overall, decreases in groundwater salinity subsequent to large rain events in July and 

October were observed for the majority of wells on SLK but not on BPK. Additionally, 

the dry season ERT surveys showed that lenses lost depth on both islands, but only on 

Upper Sugarloaf Key did a lateral decrease occur along with apparent breaking up of the 

lens into smaller areas of fresh water surrounded by areas of apparent upconing saline 

water.  

 

The difference in response of the two lenses is most certainly linked to their areal extent 

on each island, which is dictated by the amount of contiguous land area above a certain 

height above sea level. Estimates of the size of each island’s freshwater lens based on the 

work of Wightman (1990) and Caballero (1993) indicate that the lens on BPK is more 

than an order of magnitude larger in size than that of SLK. While the apparent breakup of 

the lens on SLK could be an artefact of how the inverse modeling procedure handles high 

surface resistivities present in the dry season survey, the disintegration of the lens could 

also be attributable to evapo-transpirative processes. The presence of a shallow vadose 

zone (less than 1 meter thick) filled with dissolution holes allows deep-rooted species to 

easily reach the water table as many sub-tropical hardwood species and slash pine have 

rooting depths of several meters (van Rees and Comerford, 1986; Querejeta et al., 2007) . 

The withdrawal of groundwater by established woody species can lead to transpiration 

driven advective flux of deeper groundwater, especially in the dry season (Sullivan, 

2011). Additionally, larger sinkholes with standing water serve as foci of evaporation. In 
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the case of the freshwater lenses of the Florida Keys, the deeper groundwater is higher in 

salinity. Locations of saline water upconing as modeled from ERT surveys along the SLK 

transects correspond to locations of sinkholes and large pine trees. The smaller lens on 

SLK is apparently below a minimum size threshold, causing it to be especially sensitive 

to these dry season processes. Similarly, the smaller size of the SLK aquifer is likely the 

reason for the responsiveness in terms of groundwater salinity decrease post-rain events, 

whereas an aquifer the size of the one on northern BPK responds at longer time intervals 

to the balance between recharge and water loss.  

 

4.6.3 Characteristic Species, Environmental Drivers, and Community Succession  

The overlap in characteristic species, samples in the ordination space, and groundwater 

salinity conditional density curves between exterior low elevation pine rockland and 

hardwood hammock point to low pine rockland as a location of succession to hardwood 

hammock that accompanies increasing groundwater salinity. Increases in groundwater 

salinity are driven by variable aquifer recharge, in conjunction with the current rate of sea 

level rise. As sea level rise rises brings the water table nearer to the ground surface, 

interior locations of low elevation pine rockland might be expected to instead succeed to 

freshwater wetlands.  

 

Hurricane disturbance in the form of storm surge flooding may provide a tipping point to 

quickly move from one community type to the other. The lack of dominance of P. elliottii 

var. densa in high elevation pine rockland is an artifact of where transects were located in 

this study combined with the widespread loss of pine trees post-Hurricane Wilma. On 
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Upper Sugarloaf Key, which has a relatively small area of elevations approaching only 1 

m amsl, mortality of pine trees from Hurricane Wilma was extensive. On Big Pine Key, 

many areas of denser pine are located beyond the end points of transects. Slash pine still 

functions as a keystone species despite having lower coverage than other species in the 

community. Pine needles provide the flashy fuels necessary to carry fire through the 

community, thereby maintaining an open, high light environment that favors a high 

diversity herbaceous layer. Without a certain percent cover of pine and frequent fire, pine 

communities succeed to hardwood hammock, which hold many species in common. The 

transition to hammock will be hastened by the loss of a source of fresh groundwater as 

the lens shrinks from the lack of recharge and increasing sea level. Mid-20th century 

surveys of coastal forests of the lower Keys indicated presence of pine trees on all islands 

with fresh groundwater resources for at least part of the year (Dickson, 1955). The 

locations noted for having pine trees present have declined since that time. These changes 

confirm the importance of a freshwater lens as an essential water source for pine trees 

and pine rockland forests. 

 

4.7 Conclusions 

Over the course of the study, changes in groundwater salinity attributable to the timing of 

precipitation varied across near-coast to interior transect locations and between islands. 

Decreases in groundwater salinity subsequent to the two large rain events were observed 

primarily on SLK. A comparison of the two ERT surveys showed that while lenses 

increased in depth on both islands from the May to November survey, lateral increases 

occurred only on SLK. The finding that groundwater salinity in both seasons was an 
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important variable in the classification of community types while elevation provided 

much less explanatory power coincides with findings in salt marsh zonation where 

edaphic factors performed better than geographic proxies (Moffett et al., 2010). Coastal 

proximity clearly plays a role in predicting coastal forest community type, especially near 

the coasts where low elevation forests have a high probability of being flooded with 

saline water. However, the distinct peaks in conditional probabilities for community 

types along the groundwater salinity gradient points to the strong connection between the 

extent of the freshwater resource on these islands and coastal forest community zonation, 

and the wider overlap of low elevation pine rockland along the gradient suggests that this 

community is the process of succeeding to hardwood hammock.  
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4.9 Tables 

Table 4.1. Well codes and location, habitat (Hab), elevation, distance to coast (DTC), and 

average depth to water table (m) and average salinity (ppt) measured monthly in each 

well sampled during the study time period (May 2011 to April 2012). Means +/- SE are 

reported (n=12) for depth to water table and salinity. Elevation is the average of pixels 

from Lidar DTM contained within a 10 m radius circle inscribing each well. Habitat 

types: hardwood hammock (HH), high elevation pine rockland (HP), low elevation pine 

rockland (LP), and supratidal scrub (STS). 

Well Hab Lon (W) Lat (N) Elev 
(m) 

DTC 
(m) 

Depth to H2O 
table (m) Salinity (ppt) 

B11 STS 81.39357 24.71279 0.21 37 0.31 +/- 0.03 6.68 +/- 0.09 
B12 HP 81.39331 24.71278 0.56 53 0.58 +/- 0.03 2.63 +/- 0.16 
B13 HP 81.39268 24.71287 0.69 113 0.71 +/- 0.03 1.46 +/- 0.05 
B14 LP 81.39089 24.71289 0.53 277 0.47 +/- 0.03 0.73 +/- 0.04 
B15 LP 81.38957 24.71287 0.38 401 0.35 +/- 0.03 0.49 +/- 0.02 
B21 STS 81.36469 24.69552 0.19 191 0.39 +/- 0.04 19.45 +/- 1.79 
B22 HH 81.36536 24.69545 0.41 249 0.50 +/- 0.03 8.14 +/- 0.14 
B23 HH 81.36633 24.69549 0.61 332 0.48 +/- 0.03 1.64 +/- 0.06 
B24 LP 81.36842 24.69552 0.47 532 0.44 +/- 0.03 0.74 +/- 0.08 
B25 HP 81.36933 24.69555 0.57 621 0.64 +/- 0.03 2.56 +/- 0.12 
B26 HP 81.37100 24.69556 0.87 682 0.76 +/- 0.03 0.43 +/- 0.02 
B31 STS 81.36216 24.69343 0.20 150 0.34 +/- 0.03 14.27 +/- 0.17 
B32 HH 81.36216 24.69303 0.33 188 0.31 +/- 0.03 13.02 +/- 0.39 
B33 HH 81.36219 24.69265 0.31 227 0.53 +/- 0.03 6.03 +/- 0.16 
B34 LP 81.36219 24.69238 0.45 254 0.52 +/- 0.03 2.93 +/- 0.25 
B35 HP 81.36219 24.69186 0.51 300 0.50 +/- 0.03 3.08 +/- 0.02 
S21 HH 81.54875 24.67645 0.20 394 0.14 +/- 0.03 20.27 +/- 1.09 
S22 LP 81.54833 24.67696 0.35 456 0.28 +/- 0.04 5.63 +/- 0.19 
S23 HP 81.54784 24.67751 0.42 525 0.29 +/- 0.04 2.43 +/- 0.03 
S31 STS 81.54434 24.67871 0.29 239 0.33 +/- 0.04 28.40 +/- 1.50 
S32 HH 81.54451 24.67850 0.62 261 0.44 +/- 0.04 7.68 +/- 0.96 
S33 HH 81.54477 24.67822 0.80 295 0.57 +/- 0.03 2.38 +/- 0.30 
S34 HP 81.54507 24.67786 1.16 338 0.91 +/- 0.04 1.02 +/- 0.14 
S35 LP 81.54562 24.67717 0.58 405 0.40 +/- 0.04 0.95 +/- 0.08 

 



143 
 

Table 4.2 ERT transect location, length (m), elevation range (m), number of wells located 

along each transect, and dates of each survey (BPK = Big Pine Key, SLK = Upper 

Sugarloaf Key). 

Transect Island Length 
(m) 

# of 
wells 

Elevation range 
(min to max in m) 

Dry season 
survey 

Wet season 
survey 

B1 BPK 222 3 0.21 – 0.76 5/20/2011 11/13/2011 
B3 BPK 250 5 0.20 – 0.67 5/21/2011 11/11/2011 
S2 SLK 166 3 0.03 – 0.50 5/23/5011 11/13/2011 
S3 SLK 250 5 0.24 – 1.20 5/22/2011 11/12/2011 

  

 

Table 4.3 Mean +/- SE of ERT-derived groundwater salinity at 107 cm below ground 

surface for May and November 2011 in each community type. Salinity (ppt) was 

determined at 1 m intervals along each transect. Elevation is in NAVD88 meters. DTC is 

distance to nearest coastline in meters. 

Habitat n Elevation (m) DTC (m) May Salinity 
(ppt) 

Nov Salinity 
(ppt) 

High Pine 426 0.60 +/- 0.01 275 +/- 7.0 1.91 +/- 0.06 1.55 +/- 0.05 
Low Pine 167 0.44 +/- 0.01 347 +/- 6.9 4.95 +/- 0.36 4.44 +/- 0.32 
Hammock 180 0.53 +/- 0.02 281 +/- 5.4 8.52 +/- 0.52 7.01 +/- 0.46 
Supratidal Scrub 100 0.31 +/- 0.01 148 +/- 7.2 13.49 +/- 0.73 11.70 +/- 0.35 
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Table 4.4 Average percent cover and percent contribution and cumulative contribution of 

species to the similarity between samples assigned to each community type. Only species 

contributing greater than 5% to species composition of the community are included. 

Habitat types include: supratidal scrub (STS), hardwood hammock (HH), low elevation 

pine rockland (LP), and high elevation pine rockland (HP). 

Habitat Species Percent 
Cover 

Percent 
Contribution 

Cumulative 
Contribution 

STS Conocarpus erectus 58.68 94.57 94.57 

HH 

Metopium toxiferum 
Conocarpus erectus 
Manilkara jaimiqui 
Leucothrinax morrisii 
Pithecellobium keyense 
Eugenia foetida 

28.59 
23.46 
16.59 
20.61 
13.30 
16.96 

22.34 
20.86 
13.63 
11.02 
10.99 
10.80 

22.34 
43.20 
56.83 
67.85 
78.84 
89.64 

LP 

Leucothrinax morrisii 
Metopium toxiferum 
Manilkara jaimiqui 
Conocarpus erectus 

35.86 
15.77 
11.02 
10.47 

47.78 
13.23 
9.47 
9.23 

47.78 
61.01 
70.48 
79.72 

HP 

Leucothrinax morrisii 
Metopium toxiferum 
Byrsonima lucida 
Pithecellobium keyense 
Serenoa repens 

28.21 
19.79 
8.64 
8.04 
6.75 

40.18 
22.02 
7.86 
6.49 
6.18 

40.18 
62.20 
70.06 
76.56 
82.73 

 

 

Table 4.5 Mean decrease in accuracy of random forest classification of 4 variables for 6 

community types.  

Environmental Variable Mean Decrease in Accuracy % 

May Groundwater Salinity 26.8 
November Groundwater Salinity 26.6 
Elevation 16.9 
Distance to Coast 41.1 
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4.10 Figures 

                 

Figure 4.1 Big Pine and Upper Sugarloaf Key ERT transects, vegetation transects, and well locations.

Upper Sugarloaf Key

Big Pine Key

Transect B2

Transect B3

Transect S3

Transect S2
S23

S22

S21

S35

S32
S33

S34

S31

B15B13 B14B12B11

B35

B34
B33
B32

B31

Transect B1

B25 B23B24 B22 B21B26



146 
 

 

Figure 4.2 Total precipitation (mm) received on Big Pine Key in each month prior to 
groundwater monitoring (May 2011 through April 2012). Five-year average monthly 
precipitation totals (mm) for the time period starting at the onset of the wet season in June 
2007 to the end of the dry season in May 2012 are included for comparison.  

Apr-11
May-11

Jun-11
Jul-11

Aug-11
Sep-11

Oct-11
Nov-11

Dec-11
Jan-12

Feb-12
Mar-12

0

100

200

300

400

500

600

To
ta

l P
re

ci
pi

ta
tio

n 
(m

m
)

 Monthly precipitation total (2011-2012)
 Five-year monthly average +/- SE 



147 
 

 

Figure 4.3 Ratio of total monthly precipitation to potential evapotranspiration (P:ET) 
beginning November 2010 (6 months prior to dry season ERT survey) through October 
2011 (month prior to wet season ERT survey) with 5-year monthly averages plotted (Jun-
07 through May-12) for comparison.  
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Figure 4.4 Relationship between measured groundwater salinities at wells along transect 
B1 (obtained at monthly intervals) and daily precipitation totals from April 1, 2011 to 
April 30, 2012. Wells are located along the transect with B11 nearest and B15 farthest 
from the coast. 
 

 

 

 

4/
1/

20
11

5/
2/

20
11

6/
2/

20
11

7/
3/

20
11

8/
3/

20
11

9/
3/

20
11

10
/4

/2
01

1

11
/4

/2
01

1

12
/6

/2
01

1

1/
6/

20
12

2/
6/

20
12

3/
8/

20
12

4/
8/

20
12

0

2

4

6

8

10

12

14

16

Pr
ec

ip
ita

tio
n 

(c
m

/d
ay

)

0

2

4

6

8

10

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
G

ro
un

dw
at

er
 sa

lin
ity

 (p
pt

)  B11
 B12
 B13
 B14
 B15



149 
 

 

Figure 4.5 Relationship between measured groundwater salinities at wells along transect 
B2 (obtained at monthly intervals) and daily precipitation totals from April 1, 2011 to 
April 30, 2012. Wells are located along the transect with B21 nearest and B26 farthest 
from the coast. 
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Figure 4.6 Relationship between measured groundwater salinities at wells along transect 
B3 (obtained at monthly intervals) and daily precipitation totals from April 1, 2011 to 
April 30, 2012. Wells are located along the transect with B31 nearest and B35 farthest 
from the coast. 
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Figure 4.7 Relationship between measured groundwater salinities at wells along transect 
S2 (obtained at monthly intervals) and daily precipitation totals from April 1, 2011 to 
April 30, 2012. Wells are located along the transect with S21 nearest and S23 farthest 
from the coast. 
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Figure 4.8 Relationship between measured groundwater salinities at wells along transect 
S3 (obtained at monthly intervals) and daily precipitation totals from April 1, 2011 to 
April 30, 2012. Wells are located along the transect with S31 nearest and S35 farthest 
from the coast. 
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Figure 4.9 Transect B1 groundwater salinity profile derived from May and November 2011 ERT surveys with 3 ppt contour lines 
identified, red for May survey, blue for November survey (PR = pine rockland, STS = supratidal scrub). 
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Figure 4.10 Transect B3 groundwater salinity profile derived from May and November 2011 ERT surveys with 3 ppt contour lines 
identified, red for May survey, blue for November survey (PR = pine rockland, STS = supratidal scrub).                                        
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Figure 4.11 Transect S2 groundwater salinity profile derived from May and November 
2011 ERT surveys with 3 ppt contour lines identified, red for May survey, blue for 
November survey (PR = pine rockland). 
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Figure 4.12 Transect S3 groundwater salinity profile derived from May and November 2011 ERT surveys with 3 ppt contour lines 
identified, red for May survey, blue for November survey (PR = pine rockland, STS = supratidal scrub).
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Figure 4.13 ERT-derived groundwater salinity profiles for wells on transect B1 for May 2011 (red line) and November 2011 (blue 
line) surveys compared to salinity measured in wells at time of each survey (circles). 
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Figure 4.14 ERT-derived groundwater salinity profiles for wells on transect B3 for May 2011 (red line) and November 2011 (blue 
line) surveys compared to salinity measured in wells at time of each survey (circles). 
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Figure 4.15 ERT-derived groundwater salinity profiles for wells on transect S2 for May 2011 (red line) and November 2011 (blue 
line) surveys compared to salinity measured in wells at time of each survey (circles). 
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Figure 4.16 ERT-derived groundwater salinity profiles for transect S3 in May 2011 (red) and November 2011 (blue) compared to 
salinity measured in wells at time of each survey (circles).  
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Figure 4.17 ERT-derived groundwater salinity at a depth of 107 cm below ground surface 
for May 2011 and November 2011 surveys on transect B1 with associated coastal forest 
communities as defined by Bray-Curtis dissimilarity for woody vegetation ≥ 1.0 m in 
height using a moving window of size 5. Arrows indicate breakpoints that distinguish 
boundaries between adjacent communities. Coastal forest types include: supratidal scrub 
(STS), high elevation pine rockland (PR), and low elevation pine rockland (PR). 
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Figure 4.18 ERT-derived groundwater salinity at a depth of 107 cm below ground surface 
for May 2011 and November 2011 surveys on transect B3 with associated coastal forest 
communities as defined by Bray-Curtis dissimilarity for woody vegetation ≥ 1.0 m in 
height using a moving window of size 5. Arrows indicate breakpoints that distinguish 
boundaries between adjacent communities. Coastal forest types include: supratidal scrub 
(STS), HH (hardwood hammock), low elevation pine rockland (PR), and high elevation 
pine rockland (PR). 
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Figure 4.19 ERT-derived groundwater salinity at a depth of 107 cm below ground surface 
for May 2011 and November 2011 surveys on transect S2 with associated coastal forest 
communities as defined by Bray-Curtis dissimilarity for woody vegetation ≥ 1.0 m in 
height using a moving window of size 5. Arrows indicate breakpoints that distinguish 
boundaries between adjacent communities. Coastal forest types include: HH (hardwood 
hammock), low elevation pine rockland, and high elevation pine rockland. 
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Figure 4.20 ERT-derived groundwater salinity at a depth of 107 cm below ground surface 
for May 2011 and November 2011 surveys on transect S3 with associated coastal forest 
communities as defined by Bray-Curtis dissimilarity for woody vegetation ≥ 1.0 m in 
height using a moving window of size 5. Arrows indicate breakpoints that distinguish 
boundaries between adjacent communities. Coastal forest types include: STS (supratidal 
scrub), HH (hardwood hammock) high elevation pine rockland (PR), and low elevation 
pine rockland (PR). The zone to the right of low PR is a freshwater wetland.  
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Figure 4.21 NMDS ordination of sample plots in 4 transects separated into 6 community 
types. Community types are as follows: hardwood hammock (purple open square), low 
elevation hardwood hammock (purple solid square), high elevation pine rockland (green 
solid triangle), exterior low elevation pine rockland (blue solid diamond), interior low 
elevation pine rockland (blue open diamond) and supratidal scrub (red circle), n= 169.  
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Figure 4.22 Conditional density plots of each coastal forest community type along each 
environmental gradient (a) elevation (cm), (b) distance to coast (m), (c) ERT-derived 
May 2011 salinity (ppt), and (d) ERT-derived November 2011 salinity (ppt). Community 
types are as follows: high elevation pine rockland (HP), hardwood hammock (HH), low 
elevation hardwood hammock (HHl), exterior low elevation pine rockland (LPe), interior 
low elevation pine rockland (LPi) and supratidal scrub (STS). 
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CHAPTER 5. WATER SOURCE PARTITIONING AND PLANT STRESS IN TWO 

COASTAL TREE SPECIES, PINUS ELLIOTTII VAR. DENSA AND CONOCARPUS 

ERECTUS 

 

5.1 Abstract 

Seasonal drought and salinity stress co-occur in coastal communities typified by 

seasonality of precipitation. Glycophytic species in these communities must uptake 

adequate water to maintain cellular functions while minimizing salt exposure. As plant 

available water occurs in different pools and these pools differ isotopically, it is possible 

to identify the sources of water species are accessing. I investigated plant water source 

partitioning and plant water stress as indicated by foliar δ13C over temporal and spatial 

scales in two species dominants of lower Keys’ coastal forests, slash pine, Pinus elliottii 

var. densa, and buttonwood, Conocarpus erectus.  For each species, I sampled stem water 

δ18O and leaf δ13C at three time periods (late dry season, late wet season, and mid dry 

season) at locations along a gradient of increasing groundwater salinity (interior 

freshwater lens to tidally influenced zone). Groundwater salinity was sampled on a 

monthly basis (May 2011 – April 2012). Both species, with the exception of buttonwood 

located within the tidally influenced zone, accessed a high proportion of groundwater 

compared to water available in the unsaturated vadose zone during the dry season 

sampling events, and switched to other water sources in the wet season sampling. The 

wet season sampling occurred two weeks after a large rain event, in which slash pine was 

observed to use a large percentage of soil water derived from the precipitation event. 

However, buttonwood used a wide variety of sources, but used a minimal amount of soil 
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water derived directly from the precipitation event. Plant stress as indicated by δ13C 

increased throughout the extended drought that occurred over the study period and was 

highly correlated with increasing groundwater salinity. Slash pine located at sites outside 

the freshwater lens (sites with maximum salinity > 3ppt) had significantly larger changes 

in foliar δ13C enrichment than sites within the lens boundary. 

 

5.2 Introduction 

Seasonal water stress is a condition typical of plants growing in sub-humid climates. In 

the coastal zone where plants are growing adjacent to areas of brackish and saline water, 

the situation is even more pronounced as plants balance adequate water uptake while 

minimizing salt exposure. Woody plants have devised a variety of solutions to tolerate 

conditions of drought and high salinity, including those that prevent water loss through 

stomatal regulation and thick leaf cuticles, and mechanisms that either actively exclude 

salts or tolerate increased salinity in stems and leaves (Kozlowski, 1997).  As most 

glycophytic species in terrestrial coastal forests have neither the ability to exclude salt 

uptake actively by roots or to sequester salt in leaves, having access year-round to a 

freshwater source is essential. The freshwater resources of coastal ecosystems are often in 

flux, driven by the tidal cycle over the course of a day, and by seasonal precipitation 

regimes over the year. The ability of a species to access freshwater from multiple pools 

and tolerate stress during episodes of fresh water scarcity are traits that allow for success 

and contribute to competitive dominance in coastal forest ecosystems.  
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Fresh water available to plants can occur in several reservoirs, including groundwater, 

soil water that is tightly held in micropores, and water in soil above field capacity from 

recent precipitation events. Deep-rooted woody species (phreaophytes) can potentially 

access water from both soil and the underlying groundwater aquifer while shallow rooted 

species would be limited to water available in the vadose zone (Zencich et al. 2002). In 

coastal forests, water source partitioning and water stress are likely driven not only by 

species rooting depth, but also by environmental variables such as groundwater salinity 

and tidal inundation frequency. Additionally, the community in which the species is 

located could affect water source use and stress through competition or emergent 

properties of the community like primary production and the amount of canopy cover. 

Water acquisition of a species might allow it to tolerate conditions better in one 

environment while the same strategy puts it at a competitive disadvantage in an adjacent 

environment.  

 

In the lower Florida Keys, with a seasonal precipitation regime, three freshwater-

requiring forest communities exist within close proximity to the coast and at elevations 

no greater than 2 m above mean sea level (amsl). Pine rockland, hardwood hammock, 

and supratidal scrub forests are arranged on these islands based on a combination of 

topography, inundation tolerance, groundwater salinity, and fire history (Ross et al., 

1992). Across these habitat types, soils, productivity, and litter vary as a function of the 

underlying abiotic conditions and the species that dominate these community types. 

Compared to pine rocklands, hammocks typically have deeper soils, greater litter 

accumulations, and higher canopy cover, increasing shade and possibly soil moisture 
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conditions. Pine rocklands that are subject to frequent fire have comparatively more open 

canopies and lower litter accumulations and minimal soil. Supratidal scrub has pockets of 

deep marl soil as well as exposed surficial rock, with typically minimal litter 

accumulation (Ross et al. 1992). The supratidal scrub is typically inundated with salt 

water during spring tides and storm events. Groundwater exists on these islands in the 

form of freshwater lenses, whose lateral extent is affected by island topography, 

underling bedrock, and recharge by precipitation. The three coastal forests types occur 

either within the boundaries of the central freshwater lens or within the mixing zone 

between fresh water and surrounding sea water. The depth to the shallow water table is 

no greater than 1.5 meters at the highest elevation, which is well within the known 

rooting depth for slash pine - 2 to 3 meters deep in north central Florida (van Rees and 

Comerford, 1986). While some species in dry tropical forests have shallow roots, many 

species have roots which extend several meters below the surface (Canadell et al., 1996), 

with trees often sending roots through bedrock to obtain water deeper within the 

soil/bedrock profile (Querejeta et al., 2007). 

 

In species that access a large amount of water from the groundwater resource, the 

expectation is that the amount of water stress experienced by the plant is related to 

groundwater salinity.  A species growing in a location of higher groundwater salinity 

should experience greater water stress than the same species growing at sites of lower 

groundwater salinity. Conversely, species that primarily use water from the vadose zone 

to meet water demands should be unaffected by underlying groundwater salinity and 

instead would show stress related to drought conditions. However, during the course of a 
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year in a location where precipitation is distributed unevenly, temporal changes in both 

plant water use and water stress might be expected as plants take advantage of freshwater 

recharge conditions. Water use and stress caused by both drought and salt exposure 

should vary by species, both spatially and temporally, as species employ different 

strategies to balance water acquisition and tolerance to drought and salinity.  

 

The current research considers two freshwater-requiring species that occur at the 

extremes of the gradient in relation to salinity tolerance, south Florida slash pine (Pinus 

elliottii var. densa Engelm.) and buttonwood (Conocarpus erectus L.). While pine is 

restricted to the pine rockland ecosystem, buttonwood occurs in all three coastal 

environments. Previous work has demonstrated that many hammock species rely 

primarily on soil water, while pines depend on groundwater for at least part of the year 

(Ish-Shalom et al., 1992; Ross et al., 1994). Plant stress in coastal forests has been shown 

to be highly correlated with the frequency of tidal inundation (Desantis et al., 2007). I ask 

how water source partitioning and plant water stress vary spatially along a groundwater 

salinity gradient from interior to near-coast locations and I follow temporal changes from 

the peak of the dry season through the wet season and into the middle of the subsequent 

dry season. For buttonwood, I additionally determine whether habitat influences either 

water source partitioning or plant stress. I assess water source through δ18O isotopes of 

stem water and track changes in plant stress in these two species as determined through 

measurements of foliar δ13 C abundance. 
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5.3 Study Area 

Big Pine Key (BPK) (N 24.67, W 81.36) and Upper Sugarloaf Key (SLK) (N 24.66, W 

81.53) are located within the lower Florida Keys, toward the distal end of the chain of 

islands that forms a southwest trending arc from mainland Florida. The maximum 

elevation in the undeveloped portions of the islands is just over 1 m amsl. Originating 

from late Pleistocene shallow marine deposits, the surficial bedrock of these islands is 

Miami Limestone (Hoffmeister et al., 1967) which is underlain by Key Largo Limestone 

at several meters or more depth (Hoffmeister and Multer, 1968). While both formations 

are highly permeable, the Key Largo Limestone has much greater secondary porosity 

with interconnected pore spaces (Coniglio and Harrison, 1983). Within the lower 

permeability Miami Limestone, Ghyben-Herzberg lenses form and serve as potential 

sources of fresh water for plants in the overlying plant communities. On Big Pine and 

Upper Sugarloaf Keys, the lateral extent and depths of the lenses have been established 

using geophysical methods (Caballero, 1993; Wightman, 1990). However, the boundary 

between fresh and salt water is not discrete, but is instead better described as a gradient of 

increasingly brackish water as one moves away from the central lens toward the coast. 

The lens is recharged by seasonal precipitation and water is lost from the system through 

evapotranspiration and discharge to the coast.  

 

The climate of the lower Keys is humid tropical with a distinct seasonality in rainfall. The 

average annual precipitation is 102.2 cm and the monthly average temperature ranges 

from a minimum of 20°C in January to a high of 29°C in August (30 year average, 1984-

2013, Key West International Airport, http://www.ncdc.noaa.gov). The wet season (June 
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through October), in which approximately two-thirds of the precipitation falls annually, is 

followed by a prolonged dry season of 7 months (November through May). Additionally, 

the wet season is bimodal, with a peak in precipitation typically occurring in June, 

followed by another peak later in the summer. Large amounts of precipitation can 

accompany storm events including tropical storms and hurricanes that impact south 

Florida an average of every 3 years, with 15 years for category 3 - 5 storms (Keim et al., 

2007).  The majority of these storms impact the Keys during August through October 

(Elsner and Kara, 1999). The last hurricane to significantly impact the Keys, Hurricane 

Wilma in 2005, flooded the islands with salt water to elevations of 1 m, but was 

accompanied by little precipitation (Kasper, 2007). 

 

The freshwater-requiring coastal forests considered in this study include the following: 

pine rockland (PR), hardwood hammock (HH), and supratidal scrub (STS). Pine 

rockland, which occurs at the interior-most locations on these islands and at elevations as 

low as 0.3 m (Ross et al., 1992), is characterized by a the single-canopy dominant 

species, south Florida slash pine, with an understory of palm trees and woody shrubs of 

West Indian origin (Snyder et al., 1990). Tree heights for pine range from 10 to 14 meters 

and the canopy remains relatively open in the presence of frequent fire. However, fire 

suppression leads to succession to the hardwood hammock community (Snyder et al., 

1990). Hardwood hammocks are typically found coastward of pine rockland and occur at 

all elevations greater than 0.2 m on these islands. Canopies are shorter (3 -7 meters in 

height) and denser than pine rockland. The supratidal scrub community is found 

coastward of both pine rockland and hardwood hammock, separating them from the 
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adjacent mangrove forest that fringes the coast. It can be flooded with salt water during 

high tides and is dominated by the mangrove associate species Conocarpus erectus 

(Tomlinson, 1986). Soils of all three communities are relatively shallow (10 to 20 cm, 

less in pine rockland) and much exposed rock is present particularly in pine rockland and 

supratidal scrub. Organic soils are found in pine rockland and hardwood hammocks and 

rocky marl soils are found in supratidal scrub (Ross et al., 2003).  

 

5.4 Materials and Methods 

5.4.1 Climate Data 

Hourly precipitation data were obtained from a station (TS607) operated by the USFWS 

National Key Deer Refuge and located at the north end of Big Pine Key (N 24.72422, W 

81.38864). Data were available beginning in 2007 and were downloaded from MesoWest 

(website maintained by the University of Utah, http://raws.wrh.noaa.gov/cgi-

bin/roman/meso_base.cgi?stn=TS607) for the time period covering June 2007 through 

May 2012. Data recorded by the station were used to generate daily and monthly 

precipitation totals for the duration of the study period, as well as one year prior to the 

start of the study. Additionally, five-year monthly averages were calculated. The weather 

station is equipped with a tipping bucket gauge to record the amount of rainfall received. 

 

5.4.2 Groundwater Salinity Sampling 

Two sampling transects (ranging in length from 200 to 700 m) were established on each 

island on land owned and managed by the USFWS National Key Deer Refuge and a 

small portion of private land (Figure 5.1). On Big Pine Key, an additional sampling 

http://raws.wrh.noaa.gov/cgi-bin/roman/meso_base.cgi?stn=TS607
http://raws.wrh.noaa.gov/cgi-bin/roman/meso_base.cgi?stn=TS607
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location was established nearby one of the two transects within pine rockland. 

Groundwater salinity (ppt) was sampled in shallow monitoring wells on a monthly basis 

over the course the one-year study period (May 2011 – April 2012). Twenty wells were 

installed along these transects, including representation in each coastal forest type. 

Boreholes having diameters of 8.89 cm were drilled through bedrock to a depth of 1 to 

1.25 m below the ground surface. PVC pipe, screened at the base for 0.5 m and having an 

internal diameter measuring 3.175 cm, was placed in the borehole, packed with sand to a 

level above the well screen, and sealed with cement. Wells were named according to an 

alphanumeric code with the letter corresponding to the island (Big Pine or Sugarloaf), the 

first number corresponding to the number of each transect, and the second number 

corresponding to the location of the well in reference to the coast. GPS coordinates were 

obtained for each well using a Magellan Promark 3 system having a horizontal accuracy 

of 10 cm. Prior to sampling, three well volumes were evacuated using a peristaltic pump. 

Groundwater salinity was sampled using a YSI model 30 handheld probe with a 

resolution of 0.1 ppt and accuracy of +/- 0.1 ppt.  The value was recorded at each well 

and the mean +/- SE for the study period was calculated. Monthly groundwater salinity 

was plotted over the course of the study period with sites grouped by coastal forest 

habitat and the range of salinity for each site was calculated.  Sites were categorized into 

three salinity zones based on the maximum groundwater salinity observed during the 

year. Sites with maximum groundwater salinities below 3 ppt were categorized as being 

within the freshwater lens (FWL). Sites having a groundwater salinity measurement 

greater than 3 ppt in any month were classified as being within the mixing zone (MZ), 
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while sites that fluctuated in salinity by more than 10 ppt throughout the course of the 

sampling period were considered tidally influenced (TDL). 

 

5.4.3 Collection of Source Waters and Stem Waters 

Using the stable isotopes of oxygen and hydrogen, water within a plant stem can be 

traced to various pools in the environment. The method relies on previous work which 

established that the stable isotope ratio of oxygen (18O/16O) in plant stem water was 

equivalent to that of the available source waters (Wershaw et al., 1966; White et al., 

1985), and that the 18O/16O for freshwater in south Florida differs from that of ocean 

water (Sternberg and Swart, 1987). Additionally, groundwater in humid environments, 

not subject to saline intrusion, has approximately the same isotopic composition as that of 

the weighted average annual precipitation (Gat, 1980), while rain water that stays within 

the vadose zone (soil water) goes through isotopic fractionation from evaporative 

processes (Gonfiantini, 1986) leading to discrete isotopic signatures present in plant 

available water. Groundwater in areas located outside the central core of the freshwater 

lens should have a signature that is a mixture of the weighted average annual 

precipitation and the surrounding sea water. The water of actively transpiring trees should 

reflect that of recent uptake on the scale of a couple of days (James et al., 2003). 

Collections for water isotopic analysis were conducted on three occasions: May 2011 in 

the late dry season, November 2011 in the late wet season, and February 2012 in the 

middle of the subsequent dry season. In the vicinity of each groundwater monitoring 

well, five individuals of P. elliottii var. densa and five individuals of C. erectus were 

selected for sampling at each site located along each transect in community types where 
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they were present (Figure 1). Additionally, at the most coastward sampling site on each 

transect, individuals of the mangrove species Rhizophora mangle L., red mangrove, 

Avicennia germinans (L.)L., black mangrove, and Laguncularia racemosa 

(L.)C.F.Gaertn., white mangrove, were also sampled where present.  

 

At each location, a suberized stem of approximately 1 cm diameter was collected for 

stem water analysis from five mature individuals (1 stem per plant). Collected stems 

contained fully flushed sun leaves whenever possible. High canopy branches were 

accessed with a telescoping pole pruner. After removal of bark and phloem, a 3 to 4 cm 

length of stem, located at sufficient distance from leaves to avoid evaporative enrichment 

(Dawson and Ehleringer, 1993), was clipped and immediately placed within a glass vial 

with dimensions of 18 cm length and internal diameter of 10 mm. After placement of a 

stainless steel mesh screen, vials were subsequently corked with a silicone stopper and 

sealed with Parafilm® to prevent evaporation. At each site, soil was collected for 

subsequent extraction of water from the unsaturated vadose zone, hereafter referred to as 

soil water. First, a small hole was dug to bedrock at 3 randomly selected locations in the 

vicinity of sample trees. Samples were obtained by pushing a 4 cm length glass vial 

having an internal diameter of 7 mm into the side of each hole at depths below the 

surface at approximately 5 cm, and 10 cm where depth permitted, resulting in three to six 

soil samples collected for each site. Soil samples were similarly placed in vials and 

sealed. Vials were placed on dry ice during field collection and were subsequently placed 

in the freezer in the lab until further processing during the following week. Groundwater 

samples for isotopic analysis were collected at the time of each groundwater salinity 
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sampling event which occurred within 1 week of stem and soil water collection. 

Groundwater samples were filtered with a Millipore® groundwater sampling filter of 

0.45µm and were kept refrigerated in 60 ml plastic bottles until analysis. An average 

value for Florida Bay water was obtained from surface samples taken near Tarpon Belly 

Keys (N 24.73, W 81.52) on April 26, 2011, July 25, 2011, December 7, 2011, and 

February 8, 2012. 

 

Precipitation was collected at the end of each month from collectors, i.e., 2-liter reservoir 

glass bottles, established on both islands. At the top of each bottle, a 7.5 cm diameter 

funnel was placed securely into a silicone stopper which was vented with a small 

diameter needle. Collectors were of the oil-type, which uses a 1 cm layer of mineral oil to 

prevent evaporation (Scholl et al., 1996). Collectors had an outlet valve at their base to 

obtain a sample that minimized the amount of oil included in the sample for subsequent 

isotopic analysis. The total monthly volume of precipitation accumulated in the bottle 

was recorded. On each island, collectors were placed in open areas free of overhanging 

branches or obstructions. The collector on Big Pine was located on the grass outside of 

the refuge headquarters building. The collector on Upper Sugarloaf was located on open 

rock in a clearing along transect S3. Both collectors were placed on low concrete 

platforms approximately 5 cm off the ground and were housed inside a wooden box in 

which only the funnel opening was visible at the top to the outside. The structure 

provided both a stable platform and shade to further minimize potential evaporation. The 

weighted mean (WM) δ18O and δ2H of collected precipitation at each collector for the 
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sampling period of April 2011 through March 2012 was calculated using the following 

equation:  

 

 

 

5.4.4 Stem and Source Water Extraction and Analysis 

Stem and soil water were extracted using the cryodistillation method of Vendramini and 

Sternberg (2007). Following the procedure of Ellsworth and Sternberg (2015), extracted 

stem and soil water, groundwater, surface water, and precipitation samples were analyzed 

at the Laboratory of Stable Isotope Ecology in Tropical Ecosystems (LSIETE) at the 

University of Miami for oxygen and hydrogen isotope ratios by equilibration with carbon 

dioxide on a GV IsoPrime™ isotope ratio mass spectrometer (IRMS) attached to a 

Multiflow system. The results have a precision of +/-0.1‰ and +/-2.0‰ standard 

deviation for oxygen and hydrogen, respectively. A subset of  samples from the May 

2011 sample collection were analyzed on a Los Gatos DTL-100™ liquid-water isotope 

analyzer having a precision of 0.1‰ and +/-1.0‰. While values for soil samples were 

found to be similar on both machines, the presence of small amounts of plant alcohols in 

the stem water samples led to incorrect values obtained from the DTL and all subsequent 

samples were analyzed with the IRMS. Oxygen and hydrogen isotopic ratios for each 

sample were calculated according to the following equation:   

  

where Rsample and RSMOW  = 18O/16O or 2H/H of the sample and standard mean ocean water 

(SMOW)(Craig, 1961).  
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5.4.5 Leaf Collection and Foliar δ13C Analysis 

 The carbon isotope ratio of leaves provide an indication of the amount of water stress a 

plant experiences over the course of the leaf lifespan. During the process of 

photosynthesis, C3 plants discriminate against the heavier carbon isotope, 13C, first 

through stomatal diffusion and secondly as a result of the carboxylation enzyme, 

Rubisco, according to the following equation (Farquhar et al., 1982):  

 

 where a is the fractionation factor related to stomatal diffusivity (4‰), b is the 

fractionation factor resulting from discrimination by Rubisco (29‰), pi is the partial 

pressure of CO2 inside the leaf, pa  is the partial pressure outside the leaf, and 

δ13Catmosphere has been measured at -8‰. When water-stressed plants reduce the stomatal 

opening to limit further water loss, they also limit entry of atmospheric CO2 into the leaf, 

leading to a decrease in the discrimination process by Rubisco against 13C and subsequent 

enrichment in the leaf (Farquhar et al., 1982).  

 

Ten leaves, including the petiole, were selected from each stem sampled for oxygen and 

hydrogen isotopes. Leaves were placed in paper bags and kept cool until they could be 

dried in the lab oven at 50 °C for 72 hours. After being hand-crushed and homogenized, 

leaf samples were placed in 2.0 mm polymer microcentrifuge tubes along with two 5 mm 

diameter stainless steel balls and were ground to fine powder using a Retsch® mixer mill 

MM 200 at a frequency of 25s-1. Two to 3 mg of each sample was placed in a tin 

Elemental MicroAnalysis capsule and rolled into a small ball. Samples were analyzed on 

a Finnigan Delta C Elemental Analyzer connected to an IRMS having a precision of 0.2 

aiatmosphereplant ppabaCC /*)(1313 −−−=δδ
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+/- standard deviation for δ13C. The instrument simultaneously analyzes samples for 

percent nitrogen, high values of which can also result in δ13C enrichment (Cordell et al 

1999). The carbon isotopic ratio for each sample was calculated according to the 

following equation:  

 

where Rsample and RPDB =  13C/12C of the leaf sample and that of the standard from the 

PeeDee beleminite formation of South Carolina.  

 

5.4.6 Collection of Site Environmental Variables and Species Metrics 

The GPS coordinates were obtained for each sampled tree using a Garmin GPSmap76Cx 

with 5 m horizontal accuracy (Figure 1). Diameter at breast height (dbh, in cm) was 

measured, as was the height (m) to each tree’s tallest branch, using a telescoping height 

pole. For trees greater than 10 m in height, a TruPulse™ 200 laser range finder was used 

to measure height. For each sampling site, soil depth was measured at three randomly 

selected locations on 4 separate occasions. NAVD88 elevation (m) for each site was 

extracted from Lidar-derived digital terrain models (DTMs) having a horizontal 

resolution of 1 m2 for Big Pine Key and 5 m2 for Upper Sugarloaf Key (Robertson and 

Zhang, 2007; Zhang et al., 2010). The value for each site was obtained by averaging all 

pixels contained within the 10 m radius circle circumscribing each well. The distance to 

nearest coastline (DTC, in meters) was obtained for each site from the well location with 

the Near tool in ArcGIS 10.2. Percent species cover of all woody species having a height 

greater than 1 m was estimated at each site. A 4 meter-wide belt transect, aligned parallel 

to the transect, was run through each site and was divided into 5-meter intervals, such 

1000*]1)/[(‰ −= PDBsample RRδ
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that percent cover was estimated in a series of 4 m by 5 m rectangular plots with an 

average of 4 plots per site. Cover was estimated using the following six categories, the 

midpoint of which was used for subsequent analyses: 1 = <1%, 2 = 1-4%, 3 = 4-16%, 4 = 

16-32%, 5 = 32-66%, and 6 = 66-100%. As total cover was calculated for each plot by 

summing the cover for each species in each plot, it was possible for total cover to be 

greater than 100%. Therefore, mean canopy cover for each habitat was derived by 

standardizing by the highest mean percent cover value recorded at a site to scale the 

values from 0 to 100%. The mean species cover of C. erectus and P. elliottii var. densa in 

each community type was calculated by averaging sites in which each species occurred.  

 

5.4.7 Data Analysis 

The percentage of groundwater being used by a plant at each site during each sample 

period was calculated using δ18O via two separate methods. The δ18O value was used 

instead of δ2H as plants taking in water through their roots do not fractionate δ18O, while 

some halophytic and xerophytic species have been observed to fractionate δ2H (Lin and 

Sternberg, 1993; Ellsworth and Williams, 2007).  As groundwater and soil water were the 

only sources available for each site in May 2011 and February 2012, a two-end-member 

mixing model was used to determine percent groundwater use in those months, using the 

following equation: 

 

Values of δ18O for soil water varied slightly between 5 cm and 10 cm soil depths, but the 

difference was not large enough to justify separating soil layers into separate end 

members. For the November 2011 sampling, the large amount of precipitation received at 
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the end of October necessitated the use of a three end member mixing model as the 

isotopic value of the water available to plants in the saturated vadose zone was different 

from both the groundwater and the soil water. For each stem sample, the δ18O value of 

each species, along with the corresponding groundwater, soil water (average per site), 

and the δ18O of October precipitation was input into Isosource (EPA v.1.3.1). Isosource 

finds the range of all possible solutions in specified small increments (1%) when the 

number of potential sources is greater than n +1, n being equal to the number of isotopes 

used in the mixing model (Phillips and Gregg, 2003).  Combinations summing to the 

isotopic signature of the observed value (stem) within a specified tolerance (0.1 was used 

in this study) are considered feasible solutions. The mean value for each end-member 

(groundwater, soil water, and precipitation) output by Isosource was used in statistical 

analyses. 

 

Linear mixed effects modeling with repeated measures (Zuur et al., 2009) was used to 

test the effect of groundwater salinity zone (FWL, MZ, TDL) or habitat type (PR, HH, 

STS), sample month (May, November, February), average groundwater salinity at a site, 

and the interactions between spatial and temporal factors on 1) the percentage of 

groundwater used by each species and 2) plant stress expressed as foliar δ13C. Random 

effects of site within the month of sampling were included to address non-independence 

arising from repeated measures. Models were run in R v.3.1.2 (R core team, 2014) using 

the lmer function in the lme4 package and p-values were obtained for each effect using 

the Satterthwaite approximations to degrees of freedom (merModLmerTest) (Bates, D., 

Maechler, M., Bolker, B., and Walker S., 2014). Restricted maximum likelihood (REML) 
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was used to correct the estimator for the variance. Competing models were evaluated 

using the krmodcomp function in the pbkrtest package with the Kenward-Roger 

approximation for F-test with p-value for the comparison between the full-model that 

included the effect in question compared to a model minus that effect (Halekoh and 

Højsgaard, 2014). Factor level means +/- SE (for categorical variables) and average 

slopes (for continuous variables) were obtained using the lsmeans package (Lenth, R. and 

Herva, M., 2015). P-values were obtained for pairwise contrasts using Bonferonni 2-

sided tests. 

 

5.5 Results 

5.5.1 Climate Conditions 

The amount of precipitation received during the study period (April 2011 through March 

2012) was 110.5 cm, which is well within the average annual rainfall observed in the 

lower Keys. However, in more than half of the months within the period, the monthly 

rainfall totals fell below the 5-year average rainfall amount for that month (Figure 5.2). 

Since the typical leaf lifespan of C. erectus is 5 months (Tovilla Hernandez and de la 

Lanza Espino, 1999) and that of P. elliottii is up to 2 years (Sargent, 1922; Ewers and 

Schmid, 1981), I considered the climate conditions of the previous dry season and 

previous year, respectively, to have implications on foliar δ13C in the study species. The 

precipitation received in the dry season prior to the start of the study (November 2010 

through April 2011) was 23.1 cm, well below the 5-year average, while the 77.7 cm of 

rainfall in the previous wet season of June 2010 through October 2010 was near the 5-

year average. Thus, drought conditions were present in the lower Keys for almost 12 
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months, beginning with the end of the wet season in October 2010 and extending 

throughout the majority of the 2011 wet season. These dry conditions were interrupted in 

October 2011 by the largest rain event of the year, when more than 40% of the total 

annual precipitation for 2011 fell over the course of five days.  

 

5.5.2 Groundwater Salinity 

While large rain events which occurred in July and October 2011 are reflected in the 

groundwater salinity of a majority of sites, in none of the community types does the 

groundwater salinity of all sites change to the same degree, pointing to site-specific 

factors of topography affecting groundwater availability (Figures 5.3, 5.4, and 5.5). At 

tidally influenced sites in the supratidal scrub community, the largest decreases in 

groundwater salinity are observed post-rain event in October, however sites return to pre-

event salinity in the subsequent month (Figure 5.3). At the majority of sites in hardwood 

hammock, decreases in groundwater salinity persist for several months (Figure 5.4), and 

smaller decreases were similarly persistent in the pine rocklands (Figure 5.5).  Over the 

entirety of the study period, groundwater salinity of pine rockland sites varied from less 

than 1 ppt to as much as 6.7 ppt, with the majority of the sites characterized as occurring 

within the freshwater lens boundary and only a few sites characterized as within the 

mixing zone (salinities greater than 3ppt) (Table 5.1, Figure 5.5). Supratidal scrub was at 

the other end of the groundwater salinity range, and maximum salinities at some sites 

approached that of sea water (Table 5.1); these sites were characterized as tidally 

influenced, or located within the mixing zone (Figure 5.3).  Hardwood hammock sites 
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were found overlying the entire range of groundwater salinities from those within the 

freshwater lens to those in tidally influenced locations (Figure 5.4).  

 

5.5.3 Species Cover and Site Environmental Variables 

Sample locations for P. elliottii var. densa were restricted to pine rockland. While 

comprising a relatively small percentage of overall percent cover (13.5 +/- 3% on 

average), pine trees typically contribute most to pine rockland biomass (Sah et al. 2006) 

(Table 5.2). In contrast, C. erectus was found across all community types with the highest 

percent cover in supratidal scrub and lowest in pine rockland. Tree height of sampled 

individuals was similar in supratidal scrub and hardwood hammock with much smaller 

trees available for sampling in pine rockland (Table 5.2). Soil depths were generally 

shallow regardless of community type, with pine rockland soils being the thinnest of the 

three types. Hardwood hammock had the densest canopy cover, which coincides with the 

relatively high values of litter production reported for this community (Ross et al., 1992).  

 

5.5.4 Plant Water Use End-Member Identification 

The values obtained for the weighted-mean precipitation over the study period for δ18O 

and δ2H on BPK and SLK were -3.80‰, -20.2‰, and -3.69‰, -17.43‰, respectively for 

each island,  and corresponded closely to the previously reported value for precipitation 

collected on Long Key, located 65 km northeast of Big Pine ( -3.64‰, -20.2‰) (Price et 

al., 2008). Similarly, the average bay water value measured near Tarpon Belly Keys 

(1.54‰ for δ18O, 8.3 ‰ for δ2H) agreed closely with previously reported values for sea 

water in Biscayne Bay near Elliott Key (1.7‰ for δ18O, 14‰ for δ2H) (Sternberg and 
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Swart, 1987). As groundwater at each sampling site is a mixture of precipitation and sea 

water, its isotopic characteristics should fall between these two end-members at all sites 

(Figure 5.6).  As sites become more saline, they approach the values of the surrounding 

sea water for δ18O and δ2H, while those within the freshwater lens fall close to the value 

of the weighted-mean precipitation and fall along the global mean water line (GMWL) 

(Figure 5.7). Tidally influenced sites have a groundwater composition more highly 

influenced by sea water and move off the GMWL toward the bay end-member. Soil 

water, which is derived from the precipitation of prior months, goes through evaporative 

enrichment and average values observed in each groundwater salinity zone fall 

approximately along an evaporative line having an origin on the GMWL (Figures 5.8, 

5.9, and 5.10). 

 

5.5.5 Plant Water Use  

Stem water of all species fell between the soil and groundwater end-members for sites 

within the freshwater lens and mixing zone in May 2011, with C. erectus, P. elliottii var. 

densa, and mangrove species using a larger percentage of groundwater than soil water, 

while the opposite scenario was observed at the tidally influenced sites (Figure 5.8). In 

November 2011, plant stem water of samples in the freshwater lens and mixing zone sites 

was more depleted than both the soil water and groundwater end-members and fell on a 

line between October precipitation and soil water (Figure 5.9). The average soil water for 

all sites in all three salinity zones had similar δ18O values in November. The values were 

highly depleted compared to the average soil water in May and February, indicating the 

strong influence of the recent rainfall event on soil water isotopic composition. At tidally 
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influenced sites, C. erectus δ18O values coincided closely with soil water, while 

mangroves values fell between soil water and groundwater. In February 2012, without a 

substantial rain event prior to sampling, stems again fell between the groundwater and 

soil water end-members (Figure 5.10). Within the freshwater lens, both C. erectus and P. 

elliottii plotted closer to the groundwater end-member, however in the mixing zone, P. 

elliottii primarily used soil water. At tidally influenced sites, C. erectus and mangrove 

species fell between the groundwater and soil water end-members, indicating the use of a 

combination of the two sources. Several of the C. erectus stems in the February 2012 

sampling had δ18O values which were more highly enriched than the soil end-member. 

These samples were not used in calculation of percent groundwater usage as those plants 

may not have been actively transpiring at the time of collection. Stem water enrichment 

occurs in plants on stems that have been defoliated and do not yet have fully mature 

leaves (Ellsworth and Sternberg, 2015).  While C. erectus is not drought deciduous, it 

does go through a period of extended dormancy during the winter months (Tomlinson, 

1986), which is the most likely explanation for the enriched stem water for these samples. 

 

The results of linear mixed effects modeling for P. elliottii var. densa considered 

temporal and spatial differences in the percentage of groundwater usage and included a 

random intercept and slope for site within sample month (Table 5.3). Significant 

differences in the percentage of groundwater used were found between the sampling 

months of May and November (p = 0.004), but no difference was found between 

groundwater salinity zone (FWL vs. MZ) in any sampling month. Mean annual 

groundwater salinity at a site did not predict the proportion of groundwater used in any 
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sampling period (Figure 5.11a). Slash pine used a large proportion of groundwater in 

May, but used substantially less groundwater in November when water derived from the 

recent rain event was available in the unsaturated zone (Table 5.4). In February, pine 

trees again used a higher proportion of groundwater compared to water available in the 

vadose zone, however a large variation in groundwater usage was observed in this month. 

 

For C. erectus, I considered models based on the relationship between month and habitat 

and month and groundwater salinity zone. The model that considered sampling month, 

habitat, and the interaction between the two was significant (p=0.02) compared to the 

model with only month, while models that included groundwater salinity zone with 

month were not significant. The addition of groundwater salinity at the time of sampling 

to the habitat x month model was not significant. Similar to what was observed in slash 

pine, there was no relationship between mean groundwater salinity and the proportion of 

groundwater usage in any month (Figure 5.11b). Estimates for fixed effects in the model 

are presented in Table 5.5, read as the proportion of groundwater usage that varies for 

each factor level compared to the intercept (hardwood hammock in May 2011). On 

average, buttonwood used a higher proportion of groundwater in both May and February 

compared to November (Table 5.6). Only in the month of February was there a 

significant difference in proportion of groundwater used between habitat types (Figure 

5.12). While the proportion of groundwater as a source varied across sample months in C. 

erectus growing in hardwood hammock and pine rockland, groundwater use did not 

change within the supratidal scrub habitat throughout the study period. Instead, trees in 
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this habitat generally used a smaller proportion of groundwater compared to water 

available in the vadose zone.   

 

In November, while both C. erectus and P. elliottii var. densa both continued to use 

groundwater, slash pine used a much larger proportion of water having a signature 

heavily influenced by recent precipitation and very little soil water, with the majority of 

sites falling in an area of the ternary plot constituting a mixture of 30% groundwater, 

20% soil water, and 50% precipitation (free water in the vadose zone that had not 

undergone evaporation) (Figure 5.13). Conocarpus had a much wider variability of 

proportional water usage from all three sources. 

 

5.5.6 Plant Water Stress 

As assessed by foliar δ13C, plant water stress in C. erectus was positively correlated with 

average annual groundwater salinity in all sample months (Figure 5.14a). As groundwater 

salinity increased across the study area, leaves of buttonwood were increasingly enriched 

in δ13C. The addition of habitat as a categorical variable to describe the relationship 

between sampling month, average site groundwater salinity, and C. erectus foliar δ13C 

did not add explanatory power to the model. The preferred model considered sampling 

month, mean average groundwater salinity, and the interaction of the two variables 

(Table 5.7). The slope of the relationship between average groundwater salinity and foliar 

δ13C increased over the study period (Figure 5.14a), with significant differences between 

May and November (p=0.013) and May and February (p=0.03). This is an indication that 

plants at sites having greater average groundwater salinity recorded increasingly stressful 
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conditions over the course of the study period.  While a similar positive linear 

relationship between mean groundwater salinity and δ13C was observed in P. elliottii var. 

densa, it was not significant at p < .05 in any month (Figure 5.14b). The lack of 

significance may be attributable to the lower number of sites and narrower range in 

groundwater salinity for pine. Additionally, despite visually increasing over the time 

period, the slope of the relationship between average site groundwater salinity and 

pine δ13C did not differ significantly between sampling months (Figure 5.14b). However, 

when the effect of the categorical variable of groundwater salinity zone (FWL or MZ) 

was considered in the model, differences between sampling month and zone were 

statistically significant (Table 5.8). While the preferred model did not include the 

interaction, paired contrasts between factors in that model were significant (Figure 5.15).  

Compared to sites on the freshwater lens, sites located in the mixing zone experienced 

much larger changes in foliar δ13C from May to February and were more enriched by the 

end of the study. 

 

5.6 Discussion 

The results of this research indicate that both P. elliottii var. densa and C. erectus access 

and rely on the freshwater lenses on these islands as a primary source of water throughout 

the year.  While the time period of the study fell within a year of average annual rainfall, 

drought conditions preceded the study and persisted well into the typical wet season. As a 

result, I was able to capture plant water use and stress during extremes of the driest and 

wettest conditions experienced in the Keys. The species investigated in this study span 

the range of salinity tolerance for glycophytes, from the salt intolerant slash pine to a 
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mangrove associate, buttonwood. Yet water use was not directly correlated with 

underlying groundwater salinity. However, the strong relationship observed between 

increasing groundwater salinity and enrichment in leaf δ13C in both species is an 

indication of the importance of groundwater across these communities.   

 

5.6.1 Plant Water Source Partitioning  

The identification of groundwater as an important freshwater source for slash pine in the 

dry season has been previously established in the lower Florida Keys (Ross et al., 1994), 

but it was not determined to what extent, if any, the proportion of groundwater used 

varied as a function of seasonal changes in precipitation. On mainland south Florida in a 

seasonally dry, but non-saline environment, species in the pine rockland community, 

including slash pine, have been observed to primarily use groundwater throughout the 

year, using a slightly smaller percentage only in the late wet season (October) (Ewe et al., 

1999; Saha et al., 2009).  Pines in the lower Keys used a much lower proportion of 

groundwater in November than reported for the same season on the mainland; instead, 

most of the water use was derived from a storm event that occurred two weeks prior to 

sampling. The tight cluster of pine in the ternary plot suggests that the species was able to 

switch quickly from a water conservation strategy employed during the extended dry 

season to utilize the pulse of fresh water from the storm event. Additionally, given the 

projected summer drying trend for the Caribbean region (Neelin et al., 2006), extended 

drought conditions could become common, necessitating a shift in thinking about climate 

in the Keys from one defined by wet and dry seasons as found currently in south Florida, 

to one increasingly typified by periods of drought punctuated by sporadic rain events 
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more typical of arid regions. The ability of slash pine to take advantage of pulses in 

precipitation as observed in this study is likely an advantage for this species in this 

climate compared to species that are have slower reaction times to changes in water 

status.  

 

While buttonwood similarly used a much lower proportion of groundwater on average in 

November across all sites, its percentage use of water within the vadose zone available 

from recent precipitation was much lower than for slash pine. Given the small range in 

groundwater salinity across the sites occupied by pine (~ 3 ppt), a direct relationship 

between water use patterns in slash pine and groundwater salinity might not be expected. 

However, the lack of a relationship between groundwater salinity and buttonwood water 

use was a bit more surprising, given that the salinity of groundwater available to some of 

the sample trees approached sea water concentrations.  Instead, different patterns in water 

use were revealed when among-community differences were explored.  The high 

percentage of groundwater used in both May and February in the hardwood hammock is 

in contrast to previous work on Upper Sugarloaf Key (Ish-Shalom et al., 1992), where 

hammock species as a group were observed to use primarily soil water. However, 

buttonwood was not one of the species sampled in that study. It is possible that within the 

hardwood hammock, buttonwood cannot successfully compete with other species for 

water available in the shallow vadose zone and as a result makes use of deeper 

groundwater. In coastal buttonwood hammocks of Everglades National Park, buttonwood 

was found to use a high percentage of groundwater in the dry season and switched to soil 

water in the wet season (Saha et al., 2015), although the salinity underlying sites in ENP 
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was much higher (~ 30 ppt) in comparison to that of the hammock sites in this study (~ 8 

ppt). In the supratidal scrub community, buttonwood used a smaller proportion of 

groundwater throughout the study, though groundwater use varied widely by site and 

sampling period. In this tidally influenced community, the large changes in groundwater 

salinity make groundwater a less reliable water source, likely leading to increased site to 

site variability. The generally wide use of evaporatively-enriched soil water by 

buttonwood in November may reflect a delayed response of buttonwood to the storm 

event in October, perhaps signifying that its stomatal sensitivity to plant water status is 

lower than species better adapted to such pulse events (Schwinning and Ehleringer, 

2001).  

 

5.6.2 Plant Water Stress  

The strong positive correlation between annual average groundwater salinity and foliar 

δ13C in buttonwood confirms my hypothesis that water stress is related to groundwater 

salinity in species that use a significant portion of groundwater as a water source. Species 

are essentially recording the availability of freshwater across the spatial dimension. 

Temporally, the increases in δ13C over the time period of the study record the extended 

drought that lasted well into the typical wet season in 2011.  As leaf life spans differ 

between species, the δ13C value that is obtained from each sample will integrate different 

time periods of available resources and environmental stressors, 5 months for buttonwood 

and up to two years for pine.  Damesin et al. (1998) report that the δ13C of a mature leaf 

is determined by differing carbon reserves at budburst, carbon assimilation at expansion, 

and finally assimilates produced during the onset of drought when the leaf is mature. The 
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significant increase in the slope of the relationship between groundwater salinity and 

buttonwood δ13C over the course of the study suggests that as drought conditions 

persisted, the effects of water stress became more severe for trees located at higher 

groundwater salinities. In both species, the depletion in leaf δ13C in February compared 

to November, while statistically non-significant, suggests that in the aftermath of the 

storm event in October, conditions became less stressful for trees at many locations, 

despite lower than average monthly precipitation during the period from November 

through January.  

 

While a significant correlation was not observed between groundwater salinity and slash 

pine foliar δ13C in any sampling period, this was likely a result of the small range in 

groundwater salinity among sites occupied by the species along the transects. Previous 

work on Upper Sugarloaf Key comparing pine at locations inside the freshwater lens (< 1 

ppt) to those within the mixing zone (8 ppt) found that pine sapwood was comparatively 

enriched in δ13C at the higher salinity site, indicative of plant stress (Ross et al., 1994). 

The significant difference in leaf δ13C for slash pine between sites within the freshwater 

lens compared to those located in the mixing zone, where groundwater salinities greater 

than 3 ppt occur during part of the year, was surprising given the small range in 

groundwater salinity across these sites. While increasing foliar δ13C enrichment over time 

was expected given the extended drought conditions, the larger change in δ13C at sites 

located within the mixing zone compared to those within the freshwater lens points to the 

importance that small changes in groundwater salinity have on this species and suggests 
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that slash pine may not be able to tolerate groundwater salinities beyond a particular 

threshold.   

 

5.7 Conclusions 

The results of the study indicate that groundwater serves as significant source of water for 

both species throughout the year, yet each species also utilizes water from the unsaturated 

vadose zone as well as free water in the soil immediately following large precipitation 

events, but to differing degrees. The observed enrichment in foliar δ13C for both species 

over the spatial and temporal scales of the study indicates increasing plant stress related 

to groundwater salinity and extended drought respectively. The ability of both species to 

access water at depth surely plays a considerable role in their success and dominance in 

this low elevation island setting, where soils are poorly developed and water sources are 

limited. However, the future for both species on these islands is uncertain given the 

predicted increase in sea level by the end of the century (Rahmstorf, 2007). The reduction 

of the pine rockland community will surely result from mortality of slash pine exposed to 

groundwater salinity beyond its tolerance and subsequent invasion by woody hammock 

species. However, it’s location in the interior of these islands makes it likely that pine 

rockland will persist at least until the central core of the freshwater lens reaches salinities 

greater than 3 ppt, assuming this is not preceded by a large storm surge event leading to 

widespread pine mortality. Whereas buttonwood is clearly the more salt-tolerant species 

of the two, evidence from a 10-year study in the coastal forests of Everglades National 

Park found no change in the density of adult buttonwood while white mangrove increased 

in density over the same period (Saha et al., 2011). The reliance by buttonwood on 
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groundwater as a water source and its lack of regeneration suggests that the supratidal 

scrub community could be overstepped by sea level rise, especially as it accelerates 

(Watson et al., 2015), as groundwater salinity surpasses the tolerance of this dominant 

species. As a result, it is entirely possible that hardwood hammock could be the most 

persistent of the three freshwater-requiring communities into the 21st century. 
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5.9 Tables 

Table 5.1 Location, habitat, elevation, distance to coast (DTC), and average salinity (ppt) 

measured monthly during the study time period (May 2011 to April 2012) for each well 

with associated plant samples. Means +/- SE are reported (n=12) for salinity. Elevation is 

the average of pixels from Lidar DTM contained within a 10 m radius circle inscribing 

each well. Habitat (Hab) codes: supratidal scrub (STS), hardwood hammock (HH), and 

pine rockland (PR). Groundwater salinity zone (GW zone): freshwater lens (FWL), 

mixing zone (MZ), and tidal (TDL).  

Well Hab GW 
zone Lon (W) Lat (N) Elev 

(m) 
DTC 
(m) 

Average 
Salinity (ppt) 

Max 
Salinity 

(ppt) 
B11 STS MZ 81.39357 24.71279 0.21 37 6.68 +/- 0.09 7.50 
B12 PR MZ 81.39331 24.71278 0.56 53 2.63 +/- 0.16 4.30 
B13 PR FWL 81.39268 24.71287 0.69 113 1.46 +/- 0.05 1.70 
B14 PR FWL 81.39089 24.71289 0.53 277 0.73 +/- 0.04 0.90 
B15 PR FWL 81.38957 24.71287 0.38 401 0.49 +/- 0.02 0.60 
B21 STS TDL 81.36469 24.69552 0.19 191 19.45 +/- 1.79 26.40 
B22 HH MZ 81.36536 24.69545 0.41 249 8.14 +/- 0.14 9.10 
B23 HH FWL 81.36633 24.69549 0.61 332 1.64 +/- 0.06 1.80 
B24 PR FWL 81.36842 24.69552 0.47 532 0.74 +/- 0.08 1.50 
B25 PR MZ 81.36933 24.69555 0.57 621 2.56 +/- 0.12 3.20 
B26 PR FWL 81.37100 24.69556 0.87 682 0.43 +/- 0.02 0.60 
B35 PR MZ 81.36219 24.69186 0.51 300 3.08 +/- 0.02 3.20 
S21 HH TDL 81.54875 24.67645 0.20 394 20.27 +/- 1.09 29.10 
S22 PR MZ 81.54833 24.67696 0.35 456 5.63 +/- 0.19 6.70 
S23 PR FWL 81.54784 24.67751 0.42 525 2.43 +/- 0.03 2.60 
S31 STS TDL 81.54434 24.67871 0.29 239 28.40 +/- 1.50 38.40 
S32 HH MZ 81.54451 24.67850 0.62 261 7.68 +/- 0.96 13.30 
S33 HH MZ 81.54477 24.67822 0.80 295 2.38 +/- 0.30 3.70 
S34 PR FWL 81.54507 24.67786 1.16 338 1.02 +/- 0.14 1.70 
S35 PR FWL 81.54562 24.67717 0.58 405 0.95 +/- 0.08 1.40 
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Table 5.2 Mean +/- SE of measured site environmental variables for each habitat and 

study species within that habitat: supratidal scrub (STS), hardwood hammock (HH), and 

pine rockland (PR). Groundwater salinity was measured at each site once each month for 

12 months. Species cover refers to percent cover of either Conocarpus erectus (CE) or 

Pinus elliottii var. densa (PE) in the particular habitat only at sites where it was sampled. 

Site-level (average yearly salinity, elevation, DTC, and % species cover) n = 3 (CE STS), 

5 (CE HH), 8 (CE PR), and 7 (PE PR). Soil depth n = 45 (CE STS), 72 (CE HH), 119 

(CE PR), and 104 (PE PR). Tree height n = 15 (CE STS), 25 (CE HH), 40(CE PR), and 

35 (PE PR).   a GW = groundwater. b DTC = distance to coast. c Canopy cover is equal to 

the average total percent cover of all species having a height greater than 1 m in each 

habitat type scaled to that of hardwood hammock. d Fine litter production values were 

obtained from Ross et al. 2002 for those habitat types in the Keys. 

Habitat STS HH PR PR 
Species C. erectus C. erectus C. erectus P. elliottii 

Tree height (m) 4.50 +/- 0.37 4.56 +/- 0.29 2.40 +/- 0.18 9.70 +/- 0.50 
Species Cover (%) 66.11 +/- 7.02 36.03 +/- 14.29 10.57 +/- 4.82 13.51 +/- 3.1 

Soil Depth (cm) 10.70 +/- 0.53 11.42 +/- 0.54 7.97 +/- 0.29 7.67 +/- 0.32 
Mean GWa Sal. (ppt) 18.18 +/- 5.33 8.02 +/- 3.05 2.02 +/- 0.57 1.64 +/- 0.38 

Elevation (m) 0.23 +/- 0.03 0.53 +/- 0.09 0.48 +/- 0.03 0.66 +/- 0.10 
DTCb (m) 156 +/- 51.7 306 +/- 24.1 409 +/- 59.3 426 +/- 70.3 

Canopy Coverc 0.45 1.0 0.45 0.64 
Litterd (g/m2/yr) 176 - 376 460 - 485 281 - 409 281 - 409 
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Table 5.3 Estimate and standard error for each fixed effect from linear mixed effect 

modeling of P. elliottii var. densa proportion groundwater use for 7 sites in 3 sample 

periods (May 2011, November 2011, and February 2012). n = 102 

Fixed Effect Estimate SE df p-value 
Intercept (May 2011) 0.64 0.05 6 < 0.001 
Month (Nov 2011) -0.34 0.06 6 0.0013 
Month (Feb 2012) -0.08 0.06 5.88 ns 

 

 

Table 5.4 Mean, standard error, and upper and lower 95% confidence interval (CI) for 

each sampling month for P. elliottii var. densa proportion groundwater usage for 7 sites 

in 3 sample periods (May 2011, November 2011, and February 2012) (n = 102). 

Month Mean +/- SE Lower 95% CI Upper 95% CI 
May 2011 0.64 +/- 0.05 0.52 0.77 
Nov 2011 0.31 +/- 0.03 0.22 0.39 
Feb 2012 0.57 +/- 0.07 0.39 0.74 

 

 

Table 5.5 Estimate and standard error for each fixed effect from linear mixed effect 

modeling of C. erectus proportion groundwater use for 16 sites in 3 sample periods (May 

2011, November 2011, and February 2012) (n = 219). 

Fixed Effect Estimate SE df p-value 
Intercept (May 2011 HH) 0.81 0.1 13.09 < 0.001 
Habitat (PR) -0.16 0.13 13.07 ns 
Habitat (STS) -0.40 0.16 13.15 0.03 
Month (Nov 2011) -0.54 0.10 13.11 < 0.001 
Month (Feb 2012) 0.14 0.09 12.43 ns 
Habitat (PR) : Month (Nov 2011) 0.20 0.13 13.12 ns 
Habitat (STS) : Month (Nov 2011) 0.58 0.17 12.97 0.004 
Habitat (PR) : Month (Feb2012) -0.20 0.11 12.84 0.097 
Habitat (STS) : Month (Feb2012) -0.28 0.14 12.82 0.075 
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Table 5.6 Mean, standard error, and upper and lower 95% confidence interval (CI) for 

each sampling month for proportion groundwater usage by C. erectus for 16 sites in 3 

sample periods (May 2011, November 2011, and February 2012) (n = 219). 

Month Mean +/- SE Lower 95% CI Upper 95% CI 
May 2011 0.65 +/- 0.06 0.52 0.79 
Nov 2011 0.32 +/- 0.04 0.24 0.40 
Feb 2012 0.64 +/- 0.08 0.47 0.81 

 

 

Table 5.7 Estimate and standard error for each fixed effect from linear mixed effect 

modeling of C. erectus δ13C for 16 sites in 3 sample periods (May 2011, November 2011, 

and February 2012) (n = 237). 

Fixed Effect Estimate SE df p-value 
(Intercept) (May 2011) -29.45 0.19 14.4 < 0.001 
Month (Nov 2011) -0.17 0.13 19.14 ns 
Month (Feb2012) -0.08 0.13 103.91 ns 
Average site salinity 0.09 0.02 14.76 <0.001 
Month (Nov 2011) : Ave salinity 0.04 0.01 20.08 0.003 
Month (Feb 2012): Ave salinity 0.04 0.01 107.83 0.004 

  

 

Table 5.8 Estimate and standard error for each fixed effect from linear mixed effect 

modeling of P. elliottii var. densa foliar δ13C for 7 sites in 3 sample periods (May 2011, 

November 2011, and February 2012) (n = 105). 

Fixed Effect Estimate SE df p-value 
Intercept (May 2011 FWL) -29.60 0.18 6.86 < 0.001 
Month (Nov 2011) 0.78 0.23 6.23 0.015 
Month (Feb 2012) 0.92 0.17 6.18 0.002 
GW salinity zone (MZ) 1.01 0.28 8.84 0.006 
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5.10 Figures 

 

 

Figure 5.1 Transects on BPK (B1 – B3) and SLK (S2 – S3) with locations marked for each well and sampled trees.
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Figure 5.2 Total precipitation (mm) received on Big Pine Key for each month beginning 
in May 2010 through the end of the groundwater sampling period, April 2012. Five-year 
average monthly precipitation totals +/- SE for the time period beginning June 2007 
through May 2012 are shown for comparison. Stem and leaf sampling occurred at the 
beginning of the month in May 2011, November 2011, and February 2012.  
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Figure 5.3 Monthly (May 2011 – April 2012) groundwater salinity (ppt) in monitoring 
wells (right y-axis) located in the supratidal scrub (STS) community with daily 
precipitation totals (cm) from April 1, 2011 to April 30, 2012 (left y-axis). Groundwater 
salinity zone codes: freshwater lens (FWL) and mixing zone (MZ). 
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Figure 5.4 Monthly (May 2011 – April 2012) groundwater salinity (ppt) in monitoring 
wells (right y-axis) located in the hardwood hammock (HH) community with daily 
precipitation totals (cm) from April 1, 2011 to April 30, 2012 (left y-axis). Groundwater 
salinity zone codes: freshwater lens (FWL), mixing zone (MZ), and tidal (TDL). 
 

 

 

4/
1/

20
11

5/
1/

20
11

6/
1/

20
11

7/
1/

20
11

8/
1/

20
11

9/
1/

20
11

10
/1

/2
01

1

11
/1

/2
01

1

12
/1

/2
01

1

1/
1/

20
12

2/
1/

20
12

3/
1/

20
12

4/
1/

20
12

0

5

10

15

Pr
ec

ip
ita

tio
n 

(c
m

/d
ay

)

0

5

10

15

20

25

30

35

40

G
ro

un
dw

at
er

 sa
lin

ity
 (p

pt
)

Hardwood Hammock  Daily precipitation
 Groundwater (FWL)
 Groundwater (MZ)
 Groundwater (TDL)



211 
 

 

Figure 5.5 Monthly (May 2011 – April 2012) groundwater salinity (ppt) in monitoring 
wells (right y-axis) located in the pine rockland (PR) community with daily precipitation 
totals (cm) from April 1, 2011 to April 30, 2012 (left y-axis). Groundwater salinity zone 
codes: mixing zone (MZ) and tidal (TDL). 
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Figure 5.6 Relationship between average salinity and mean +/- SE for δ18O (‰) of 
groundwater at all sample sites organized by coastal forest community (pine rockland - 
PR, hardwood hammock - HH, and supratidal scrub – STS) and groundwater salinity 
zone (freshwater lens - FWL, mixing zone - MZ, and tidal - TDL) for the three sample 
months (May 2011, November 2011, and February 2012). Bay water is the average value 
(n=4) from surface samples taken near Tarpon Belly Keys (N 24.73, W 81.52) on 
4/26/11, 7/25/11, 12/7/11, and 2/8/12. Precipitation is the weighted average value (n=12) 
of monthly collections on Big Pine Key beginning April 3, 2011 and ending April 2, 
2012.  
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Figure 5.7 Average δ18O and δ2H (‰) of groundwater at all sample sites organized by 
coastal forest community (pine rockland - PR, hardwood hammock - HH, and supratidal 
scrub - STS) and groundwater salinity zone (freshwater lens - FWL, mixing zone - MZ, 
and tidal - TDL) for three sample months (May 2011, November 2011, and February 
2012). Bay water is the average value (n=4) from surface samples taken near Tarpon 
Belly Keys (N 24.73, W 81.52) on 4/26/11, 7/25/11, 12/7/11, and 2/8/12. Precipitation is 
the weighted average value (n=12) of monthly collections on Big Pine Key beginning 
April 3, 2011 and ending April 4, 2012. Global mean water line (GMWL): δ2H = δ18O*8 
+10 ‰. 
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Figure 5.8 May 2011 average +/- SE δ18O and δ2H (‰) of stem water and source water 
end members organized by groundwater salinity zone: freshwater lens (blue), mixing 
zone (green), and tidal (red). Mean precip is the weighted average value (n=12) of 
monthly precipitation collections on Big Pine Key beginning April 3, 2011 and ending 
April 4, 2012. Apr precip includes accumulated precipitation for the month of April 
preceding the sampling event. Bay water was sampled near Tarpon Belly Keys (N 24.73, 
W 81.52) on 4/26/11. Global mean water line (GMWL): δ2H = δ18O*8 +10 ‰. 
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Figure 5.9 November 2011 average +/- SE δ18O and δ2H (‰) of stem water and source 
water end members organized by groundwater salinity zone: freshwater lens (blue), 
mixing zone (green), and tidal (red). Mean precip is the weighted average value (n=12) of 
monthly collections of precipitation on Big Pine Key beginning April 3, 2011 and ending 
April 4, 2012. Oct precip includes accumulated precipitation for the month of October 
preceding the sampling event. Bay water was sampled near Tarpon Belly Keys (N 24.73, 
W 81.52) on 12/7/11. Global mean water line (GMWL): δ2H = δ18O*8 +10 ‰. 
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Figure 5.10 February 2012 average +/- SE δ18O and δ2H (‰) of stem water and source 
water end members organized by groundwater salinity zone: freshwater lens (blue), 
mixing zone (green), and tidal (red). Mean precip is the weighted average value (n=12) of 
monthly collections of precipitation on Big Pine Key beginning April 3, 2011 and ending 
April 4, 2012. Jan precip includes accumulated precipitation for the month of January 
preceding the sampling event. Bay water was sampled near Tarpon Belly Keys (N 24.73, 
W 81.52) on 2/8/12. Global mean water line (GMWL): δ2H = δ18O*8 +10 ‰. 
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Figure 5.11 Relationship between site mean groundwater salinity (ppt) and percent 
groundwater use (%) for (a) Pinus elliottii var. densa and (b) C. erectus in May 2011 
(brown), November 2011 (green), and February 2012 (pink) where n = 5 for each site. 
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Figure 5.12 Percent groundwater usage by C. erectus by habitat type in each sample period: May 2011 (brown), November 2011 
(green), February 2012 (pink). Different subscripts indicate statistically significant difference between factor levels at p <  
0.05 in pairwise contrasts using Bonferroni 2-sided tests.
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Figure 5.13 Average percent use of each source water type, groundwater (gw), soil water 
(soil), and precipitation (precip), in November 2011 by Pinus elliottii var. densa (PE) and 
Conocarpus erectus (CE) organized by habitat: hardwood hammock (HH), pine rockland 
(PR), and supratidal scrub (STS). Each symbol represents the average for stems of each  
species at that site (n=5). 
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Figure 5.14 Relationship between site average annual groundwater and mean +/- SE 
foliar δ13C in ‰ for (a) C. erectus and (b) P. elliottii var. densa in May 2011 (brown), 
November 2011 (green), and February 2012 (pink) where n = 5 for each site. 
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Figure 5.15 Box plots of median δ13C values for Pinus elliottii var. densa in freshwater 
lens sites (blue) and mixing zone sites (green) for three sample months: May 2011, 
November 2011, and February 2012. Different subscripts indicate statistically significant 
difference between factor levels at p < 0.05 in pairwise contrasts using Bonferroni 2-
sided tests.  
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

The interaction between press (sea level rise) and pulse disturbances (hurricane storm 

surge) within the seasonal climate regime of the lower Florida Keys directly impacts 

species within coastal forest communities and alters the resources on which they rely. My 

work, which focused on three low-elevation freshwater-requiring coastal forests (pine 

rockland, hardwood hammock, and supratidal scrub), determined that changes in 

vegetation composition and structure over two decades were related to a combination of 

increasing groundwater salinity attributable to sea level rise and disturbance impacts from 

hurricane storm surge.  

 

Storm surge from Hurricane Wilma (2005) was larger in magnitude than that of 

Hurricane Georges (1998), and hence impacted forests over a larger area, reaching into 

the interior of the islands to elevations of 1 meter and causing severe damage to 

vegetation. Differences in elevation on the scale of tens of centimeters were important in 

determining the magnitude of disturbance impact and the amount of storm surge 

flooding. Post-Hurricane Wilma responses differed sharply between forest types; 

hardwood hammocks appeared to recover within a couple years of the event, while pine 

rockland had still not attained pre-disturbance values of the vegetation indices six years 

post-Hurricane Wilma.  

 

An assessment of two satellite-derived vegetation indices used to identify disturbance 

impact revealed that NDMI had a greater capacity to detect changes from hurricane 

disturbance in these forests compared to the more widely used NDVI. The presence in the 
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index of the Landsat TM band 5, located in the mid infrared range and associated with 

plant water status, appears to be an important attribute for assessing post-storm surge 

forest recovery. Additionally, by using EOF analysis, I was able to investigate spatial 

patterns in the entire temporal sequence of Landsat TM data from 1986 to 2011. The 

results revealed diverging trajectories of disturbance recovery between hardwood 

hammock and pine rockland.  

 

Over a 22-year period, changes in composition attributable to increasing groundwater 

salinity were primarily found within the low shrub-herbaceous stratum of these forests, 

but these effects were concentrated in locations outside the central core of the freshwater 

lens. In these locales, the appearance of halophytic species typical of the supratidal scrub 

community was first observed in hammocks and pinelands in 2012, having been absent 

from both types in 1990.  Across all strata, at locations both inside and outside the 

boundary of the freshwater lens, general increases in the abundance of buttonwood were 

notable. While buttonwood currently accounts for a small percentage of total cover in 

communities other than supratidal scrub, both pulse and press events likely contribute to 

its increase in hardwood hammock and pine rockland. In these fresh water-dependent 

forests, species that are less salt tolerant but might be better competitors for other 

resources than buttonwood were highly impacted from the storm surge, thus allowing 

buttonwood to colonize. Combined with its ability to access groundwater as a year-round 

freshwater resource, buttonwood’s tolerance to inundation by salt water likely explains 

this pattern.  
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My studies indicated that changes in the groundwater resource coincided with 

precipitation events, especially on the smaller island of Upper Sugarloaf Key. While both 

islands experienced increases in the depth of the freshwater lens between the dry and wet 

season ERT surveys, lateral increases were restricted to Upper Sugarloaf Key. As coastal 

communities are frequently arranged according to the salinity tolerance of their dominant 

species, I investigated the accuracy with which presence of these terrestrial coastal forests 

could be predicted based on a combination of topography and ERT-derived groundwater 

salinity. Ranges of groundwater salinity were established for each community. Although 

coastal proximity was the most important variable, inclusion in the random forest 

classification of groundwater salinity from both ERT surveys were important variables in 

determining coastal forest location. Conditional density plots for each environmental 

variable included in the classification indicated a high probability of occurrence for the 

majority of forest community types in a distinct range along both salinity gradients that 

was not present for the elevation or coastal proximity gradient. The overlap in the range 

of low elevation pine rockland along the salinity gradients with hardwood hammock and 

supratidal scrub, combined with the significant overlap in the NMDS ordination of low 

elevation pine rockland and hardwood hammock samples, suggests that low pine 

rockland is in the process of succeeding to hardwood hammock.   

 

Through an assessment of water use and plant water stress in two of the coastal 

landscape’s dominant species, slash pine and buttonwood, I determined that both relied 

heavily on groundwater throughout the year but pine readily accessed precipitation after a 

large rain event. As indicated by foliar δ13C, plant stress in both species increased 
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throughout an extended drought that prevailed over the study period, bringing with it 

increasing groundwater salinity. Slash pine located at sites outside the boundary of the 

freshwater lens - at sites with groundwater salinity greater than 3 ppt during the year - 

had significantly larger changes in foliar δ13C enrichment compared to pines at sites 

located inside the lens boundary, where maximum salinities did not surpass 2.6 ppt. 

 

The identification of groundwater salinity as a critical variable in coastal forest location, 

combined with the year-round use of groundwater by the dominant species in two of the 

study communities, suggests that a major driver of plant community succession in these 

coastal forests is related to the freshwater lens present on these islands. While other 

drivers, especially inundation frequency and fire frequency, clearly interact to direct 

successional trajectories, these occur against a background governed by the underlying 

groundwater resource. The combined results of this work suggest a conceptual model for 

coastal forest community dynamics driven by the combination of press and pulse 

disturbances.  

 

The sensitivity of pine trees at locations of relatively low groundwater salinity signifies 

more than the species’ narrow threshold of tolerance. More broadly, it suggests the 

influence of the interactions of press and pulse in defining areas of optimal and 

suboptimal groundwater resource. The pulse effects from hurricane storm surge may have 

more severe consequences for trees in suboptimal habitat, perhaps causing increases in 

mortality among already stressed individuals, while also altering the groundwater 

resource on which the species relies. While post-storm surge dynamics of the freshwater 
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lens are not currently understood, evidence from groundwater monitoring indicates that 

conditions of increased salinity can persist for a minimum of several years post-event. If 

conditions at the edge of the lens remain at higher salinities for longer time periods than 

those at more interior locations, the freshwater resource becomes increasingly 

suboptimal. Thus, succession to hardwood hammock becomes likely, as hardwood 

hammock species rely predominantly on soil water.  

 

Post-storm surge dynamics of the freshwater lens, specifically changes in groundwater 

salinity throughout the lens after saltwater inundation, and the influence of recharge in 

shortening the time required for the lens to revert to pre-storm salinities is an area of 

research that is necessary for understanding the dynamics of coastal forests in the lower 

Florida Keys. One step in addressing this question would be establishment of permanent 

groundwater monitoring on these islands. Combined with continued monitoring of 

species composition in these forests, assessing changes in the groundwater resource will 

be essential as impacts from sea level rise, storm surge, and climate warming proceed. 
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