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ABSTRACT OF THE DISSERTATION 

ROBUST MODELING AND PREDICTIONS OF GREENHOUSE GAS FLUXES FROM 

FOREST AND WETLAND ECOSYSTEMS 

by 

Khandker Saqib Ishtiaq 

Florida International University, 2015 

Miami, Florida 

Professor Omar I. Abdul-Aziz, Major Professor 

The land-atmospheric exchanges of carbon dioxide (CO2) and methane (CH4) are major drivers 

of global warming and climatic changes. The greenhouse gas (GHG) fluxes indicate the dynamics 

and potential storage of carbon in terrestrial and wetland ecosystems. Appropriate modeling and 

prediction tools can provide a quantitative understanding and valuable insights into the ecosystem 

carbon dynamics, while aiding the development of engineering and management strategies to 

limit emissions of GHGs and enhance carbon sequestration. This dissertation focuses on the 

development of data-analytics tools and engineering models by employing a range of empirical 

and semi-mechanistic approaches to robustly predict ecosystem GHG fluxes at variable scales. 

Scaling-based empirical models were developed by using an extended stochastic 

harmonic analysis algorithm to achieve spatiotemporally robust predictions of the diurnal cycles 

of net ecosystem exchange (NEE). A single set of model parameters representing different 

days/sites successfully estimated the diurnal NEE cycles for various ecosystems. A systematic 

data-analytics framework was then developed to determine the mechanistic, relative linkages of 

various climatic and environmental drivers with the GHG fluxes. The analytics, involving big 

data for diverse ecosystems of the AmeriFLUX network, revealed robust latent patterns: a strong 

control of radiation-energy variables, a moderate control of temperature-hydrology variables, and 

a relatively weak control of aerodynamic variables on the terrestrial CO2 fluxes. 
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The data-analytics framework was then employed to determine the relative controls of 

different climatic, biogeochemical and ecological drivers on CO2 and CH4 fluxes from coastal 

wetlands. The knowledge was leveraged to develop nonlinear, predictive models of GHG fluxes 

using a small set of environmental variables. The models were presented in an Excel spreadsheet 

as an ecological engineering tool to estimate and predict the net ecosystem carbon balance of the 

wetland ecosystems. The research also investigated the emergent biogeochemical-ecological 

similitude and scaling laws of wetland GHG fluxes by employing dimensional analysis from fluid 

mechanics. Two environmental regimes were found to govern the wetland GHG fluxes. The 

discovered similitude and scaling laws can guide the development of data-based mechanistic 

models to robustly predict wetland GHG fluxes under a changing climate and environment.  
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panel). Bottom panel figure showed standard deviations of the predicted 
hourly NEE as an overall measure of the model uncertainty for 
simultaneously changing all parameters by their respective standard 
deviations at two wetland sites………………………………………………... 
 

 84 

4.1 Locations of the selected eight deciduous forest study sites…………………. 100 

4.2 The data-analytics methodology to determine the relative carbon flux 
linkages of different climate and environmental variables…………………… 
 

105 

4.3 Biplots obtained from principal component analysis showing the groupings 
and interrelation patterns of the climate, environmental, and biological 

110 



xviii 

variables for (a) Bartlett Experimental Forest (NH), (b) Harvard Forest 
(MA), (c) UMBS Forest (MI), and (d) Missouri Ozark Forest (MO). Percent 
variance explained by each PC is shown in parenthesis……………………… 
 

4.4 Biplots obtained from principal component analysis showing the groupings 
and interrelation patterns of the climate, environmental, and biological 
variables for (a) Silas Little Forest (NJ), (b) Willow Creek Forest (WI), (c) 
Morgan Monroe State Forest (IN), and (d) Ohio Oak Openings Forest (OH). 
Percent variance explained by each PC is shown in parenthesis……………... 
 

111 

4.5 Plot of cross-validated (a) normalized AIC and (b) fitting efficiency (R2) for 
FCO2 with the number of incorporated partial least squares (PLS) 
components. 
 

116 

4.6 Variable importance on the partial least squares projection (VIP) of different 
predictors for the response variable (FCO2) for (a) Bartlett Experimental 
Forest (NH), (b) Harvard Forest (MA), (c) UMBS Forest (MI), (d) Missouri 
Ozark Forest (MO), (e) Silas Little Forest (NJ), (f) Willow Creek Forest 
(WI), (g) Morgan Monroe State Forest (IN), and (h) Ohio Oak Openings 
Forest (OH). Dashed line indicates predictors having VIP score greater than 
unity (1.0)……………………………………………………………………... 
 

118 

5.1 Locations of six diverse AmeriFlux ecosystem study sites…………………... 142 

5.2 The data-analytics framework. ……………………………………………….. 
 

148 

5.3 Biplots from principal component analysis, showing the interrelation and 
grouping patterns of climatic, ecohydrological and biological variables for 
(a) Fermi Prairie (IL), (b) Sylvania Wilderness (MI), (c) Niwot Ridge Forest 
(CO), (d) Everglades (FL), (e) Mead Irrigated (NE), and (f) Morgan Monroe 
State Forest (IN). Percent variance explained by each PC is shown in 
parentheses……………………………………………………………………. 
 

153 

5.4 Plot of cross-validated (a) normalized AIC and (b) fitting efficiency (R2) of 
NEE with the number of partial least squares components…………………… 
 

159 

5.5 Variable importance on the partial least squares projection (VIP) scores for 
different predictors of NEE for (a) Fermi Prairie (IL), (b) Sylvania 
Wilderness (MI), (c) Niwot Ridge Forest (CO), (d) Everglades (FL), (e) 
Mead Irrigated (NE), and (f) Morgan Monroe State Forest (IN). Dashed line 
indicates variables with VIP score greater than unity (1.0)…………………... 
 

160 

6.1 Locations of the four wetland sites in the Waquoit Bay, MA…………………  187 

6.2 Measured CO
2 

fluxes for the different days and diurnal hours of 2013 at the 
four study ponds of Waquoit Bay, MA. Positive values of the fluxes indicate 
downward (atmosphere to soil) fluxes (i.e., potential sequestration). 
 

188 



xviiii 

6.3 The data-analytics methodology to determine the relative linkages of 
different climatic and environmental variables with FCO2 for the Waquoit 
Bay salt marshes………………………………………………………………. 
 
 
 
 
 
 
 

193 

6.4 Biplots obtained from the loadings of the 1st two principal components (PC) 
showing the groupings and interrelation patterns of the climatic, 
environmental, and biological variables for both (a) WD>0 and (b) WD<0 
conditions. Percent variance explained by each PC is shown in parenthesis. 
PAR, RD, AT, ST, pH, SS, SM, and FCO2 refer, respectively, to 
photosynthetic active radiation, water depth relative to water marsh surface, 
air temperature, soil temperature, soil pH, soil salinity, soil moisture, and 
daytime CO2 exchanges of the salt marshes………………………………….. 
 

198 

6.5 Plot of 10-fold cross-validated (a) fitting efficiency, R2 and (b) Normalized 
AIC for both WD>0 and WD<0 conditions of instantaneous FCO2 with the 
number of incorporated partial least squares (PLS) components 
instantaneous………………………………………………………………….. 
 

201 

6.6 Plot shows the histograms of the estimated parameters of the prediction 
model (option 1: without soil moisture) obtained from the Monte Carlo cross 
validation through 10000 iterations…………………………………………... 
 

204 

6.7 Plot of the predicted and observed instantaneous daytime FCO2 of 2013 
growing season for the four study ponds of Waquoit Bay, MA. The dashed 
line represents the 1:1 perfect fit line…………………………………………. 
 205 

6.8 Change of daytime CO2 exchange (FCO2) with the change of soil salinity for 
all the four study ponds. The slope of linear fit indicated a negative 
correlation between them……………………………………………………... 
 

210 

7.1 Measured CH4 emission fluxes for the different days and diurnal hours of 
2013 at the four study ponds of Waquoit Bay, MA. The negative values of 
the fluxes indicate emission from the marsh surface………………………. 
 

225 

7.2 Biplots obtained from the loadings of the 1st two principal components (PC) 
showing the groupings and interrelation patterns of the climatic, 
environmental, and biological variables for both (a) WD>0 and (b) WD<0 
conditions. Percent variance explained by each PC is shown in parenthesis. 
PAR, WD, AT, ST, pH, SS, SM, and FCH4 refer, respectively, to 
photosynthetic active radiation, water depth relative to water marsh surface, 
air temperature, soil temperature, soil pH, soil salinity, soil moisture, and 
CH4 from the salt 
marshes…………………………………………………….. 

231 



xixi 

 
7.3 Plot of 10-fold cross-validated (a) fitting efficiency, R2 and (b) Normalized 

AIC for both WD>0 and WD<0 conditions of instantaneous FCH4 with the 
number of incorporated partial least squares (PLS) components……………. 
 

235 

7.4 Plot shows the histogram of the estimated parameters of the predictive model 
for WD>0 condition obtained from the Monte Carlo cross validation through 
10000 iterations………………………………………………………………. 
 
 

240 

7.5 Plot shows the histogram of the estimated parameters of the 4- parameter 
predictive model for WD<0 condition obtained from the Monte Carlo cross 
validation through 10000 iterations…………………………………………... 
 

241 

7.6 Plot shows the histogram of the estimated parameters of the 2-parameter 
predictive model obtained from the Monte Carlo cross validation through 
10000 iterations. ……………………………………………………………… 
 

242 

7.7 Plot of the observed versus predicted CH4 fluxes of the coastal wetland for 
(a) WD>0 condition, (b) WD<0 condition with three variable model, and (C) 
WD<0 condition for the one variable (WD only) model……………………... 
 

242 

8.1 PCA biplots showing correlation strength and orientation of variables for 
wetland F

CO2 
for all the study ponds of Waquoit Bay, MA. Percent variance 

explained by each PC is shown in parentheses. R1 and R2 are carbon flux 
group (R1=[(FCO2*t)/(WD*SS)] and R2=[(FCO2*WD2)/(PAR*t)]); P1 and P4 
are the radiation-redox group (P1=[(PAR*t3)/(WD3*SS)] and 
P4=[(PAR*t3)/(WD3*H+)] ; P2 is the hydro-climatic group 
[(ST*Cp*t2)/WD2)]; and P3 is the salinity-redox group [SS/H+]. FCO2, PAR, 
WD, ST, SS, Cp, H+, and t refer, respectively, to net CO2 sequestration flux, 
photosynthetic active radiation, water depth relative to soil surface, soil 
temperature, soil salinity, specific heat at constant pressure, hydrogen ion 
concentration, and time.  ……………………………………………………... 
 

269 

8.2 PCA biplots showing correlation strength and orientation of variables for 
wetland FCH4 for all the study ponds of Waquoit Bay, MA. Percent variance 
explained by each PC is shown in parentheses. R1 and R2 are are carbon flux 
group (R1=[(FCH4*t)/(WD*SS)] and R2=[(FCH4*WD2)/(PAR*t)]); P1 and P4 
are the radiation-redox group (P1=[(PAR*t3)/(WD3*SS)] and 
P4=[(PAR*t3)/(WD3*H+)] ; P2 is the hydro-climatic group 
[(ST*Cp*t2)/WD2)]; and P3 is the salinity-redox group [SS/H+]. FCH4, PAR, 
WD, ST, SS, Cp, H+, and t refer, respectively, to CH4 emission flux, 
photosynthetic active radiation, water depth relative to soil surface, soil 
temperature, soil salinity, specific heat at constant pressure, hydrogen ion 
concentration, and time.  ……………………………………………………... 
 

272 

8.3 Plot of the predictor dimensionless groups (log10P1 and log10P2) with the 
response dimensionless group (log10R1), revealing collapse of different 
variables on the power-law scaling relationships.  R1 is the CO2 flux group 

274 



xxi 

[(FCO2*t)/(WD*SS)]; P1 is the radiation-redox group [(PAR*t3)/(WD3*SS)]; 
and  P2 is the hydro-climate group [(ST*Cp*t2)/WD2)]………………………. 
 

8.4 Plot of the predictor dimensionless groups (log10P1 and log10P2) with the 
response dimensionless group (log10R1) for two different hydrological 
regimes (flood and no-flood), revealing collapse of different variables on the 
power-law scaling relationships.  R1 is the CO2 flux group 
[(FCO2*t)/(WD*SS)]; P1 is the radiation-redox group [(PAR*t3)/(WD3*SS)]; 
and  P2 is the hydro-climate group [(ST*Cp*t2)/WD2)]………………………. 275 

8.5 Plot of the predictor dimensionless groups (log10P1 and log10P2) with the 
response dimensionless groups (log10R1 and  log10R2), revealing collapse of 
different variables on the power-law scaling relationships.  R1 and R2 are the 
CH4 flux group (R1=[(FCH4*t)/(WD*SS)] and R2=[(FCH4*WD2)/(PAR*t)]); 
P1 is the radiation-redox group [(PAR*t3)/(WD3*SS)]; and  P2 is the hydro-
climate group 
[(ST*Cp*t2)/WD2)]…………………………………………….. 
 

278 

8.6 Plot of the predictor dimensionless groups (log10P1 and log10P2) with the 
response dimensionless groups (log10R1 and log10R2) for two different 
hydrological regimes (flood and no-flood), revealing collapse of different 
variables on the power-law scaling relationships.  R1 and R2 are the CH4 flux 
group (R1=[(FCH4*t)/(WD*SS)] and R2=[(FCH4*WD2)/(PAR*t)]); P1 is the 
radiation-redox group [(PAR*t3)/(WD3*SS)]; and  P2 is the hydro-climate 
group 
[(ST*Cp*t2)/WD2)]……………………………………………………... 279 



1 

Chapter 1: Introduction 

1.1 Background and motivation 

The land-atmospheric exchanges of carbon dioxide (CO2) and methane (CH4) are major drivers 

of global warming and climatic changes. The annual escalation rate of atmospheric CO2 

concentration is 1.4 ppm per year (1960-2005), and the rate is increasing (1.9 ppm per year based 

on average during 1995-2005) (IPCC, 2007). The atmospheric concentration of CH4 has 

increased over 150% during 1750 to 2011 (Hartmann et al., 2013; Zhu et al., 2015). The global 

warming potential of CH4 (compared to CO2) is 34 and 86 for, respectively, 100 and 20 years 

(Stocker et al., 2003). Furthermore, the lifespan of CH4 in the atmosphere is very high compared 

to that of CO2; CH4 is one of the contributors of the ozone layer depletion in the stratosphere 

(Randeniya et al., 2002). The greenhouse gas (GHG) fluxes also indicate the dynamics and 

potential storage of carbon in terrestrial and wetland ecosystems. Appropriate modeling and 

prediction tools can provide valuable insights into the ecosystem carbon dynamics, and aid in the 

development of engineering and management strategies to limit emissions of GHGs and enhance 

carbon sequestration. Therefore, explanatory and predictive models of ecosystem GHG fluxes are 

essential ecological engineering tools for ecosystem managers to set priorities for ecosystem 

conservation and adaptation; to achieve sustainability and resilience under a changing climate and 

environment.  

Turbulent land-atmospheric fluxes of vertical CO2 contribute to ecosystem-scale carbon 

budget by balancing between photosynthesis and respiration (both autotrophic and heterotrophic) 

(Heimann and Reichstein 2008). If below-canopy carbon storage is considered with turbulent 

carbon exchange, the flux is then called net ecosystem exchange (NEE) (Xiao et al., 2008). NEE 

follows periodic oscillations, whereas available measurements are often not continuous due to 

instrumental failure, inclement weather condition, and probable breach in micrometeorological 



2 

hypothesis (Moffat et al., 2007). Therefore, a standard method is necessary to generate fine-

resolution, continuous carbon fluxes from a limited number of observations for a proper 

estimation of the net ecosystem carbon budget. 

The carbon flux-climate feedback process is sensitive to an array of environmental and 

ecological variables at different spatiotemporal scales. Although much research has been 

conducted to characterize the role of key environmental stressors and climatic variability on land-

atmospheric carbon and heat fluxes (e.g., Schmidt et al. 2011), their robust linkage patterns are 

yet to be understood well in variable space and time. Investigation of the relative linkages of 

climatic and environmental variables with the GHG fluxes is also a major step towards building 

relatively simple empirical to complex mechanistic models for predictions.  

Coastal wetland illustrated highest sequestration rate of carbon among all ecosystems 

(Chmura et al., 2003; Duarte et al., 2005). The carbon storage and sequestration capacity of 

coastal and marine wetlands are often referred to as “blue carbon” (in contrast to forest or “green 

carbon”). Blue carbon is an emerging concept for coastal management that can potentially attract 

much private and public investment in coastal protection and restoration (Nellemann et al. 2009).  

Mechanistic knowledge on the relative linkages of the wetland GHG fluxes with the 

biogeochemical and ecological drivers would guide the development of parsimonious (i.e., 

involving minimum parameters) predictive models that are simple, computationally inexpensive 

and handy for the end-users and decision makers. Such modeling tools can provide proper 

estimations and predictions of net ecosystem carbon budget (NECB) for wetlands on an 

appropriate scale (e.g., annual) to develop GHG offset protocols.  

Furthermore, available mechanistic and empirical models of ecosystem GHG fluxes are 

mostly site-specific and can rarely predict the GHG fluxes that are robust at variable time, space 

and process scales. Investigations and utilization of scaling and similitude laws of the ecosystem 
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GHG fluxes can lead to the identification of crucial environmental regimes, guiding the 

development of scale-invariant models for robust predictions of ecosystem GHG fluxes and 

carbon storage. This dissertation focuses on the application of data-analytics to develop 

engineering models and relatively simple tools by employing a range of empirical and semi-

mechanistic approaches to robustly predict ecosystem GHG fluxes at variable scales. 

1.2 Research goal, hypotheses, and objectives  

The overall research goal of this dissertation is to unravel the organizing principles of ecosystem 

GHG fluxes to develop empirical and data-based mechanistic models for obtaining robust 

predictions in diverse terrestrial and wetland ecosystems. The research is expected to provide 

crucial understanding and insights into the linkage and emergence patterns of ecosystem GHG 

fluxes. The predictive modeling tools for CO2 and CH4 fluxes are expected to assist ecologists, 

engineers and stakeholders with a proper management of ecosystem carbon and associated 

services under a changing climate and environment.  

The entire dissertation is designed on the evaluation of three research hypotheses and 

four supporting objectives. The associated research hypotheses are as follows:   

Hypothesis 1: Scaling-based empirical modeling provides spatiotemporal robust predictions of 

the different diurnal cycles of terrestrial and wetland GHG fluxes. 

Hypothesis 2: Data-analytics can lead to the development of parsimonious data-based 

mechanistic models of ecosystem GHG fluxes.  

Hypothesis 3: Wetland GHG fluxes follow emergent similitude, environmental regimes, and 

scaling laws.  

The hypotheses are tested based on the following specific research objectives: 

1. Develop scaling and similarity based empirical models for spatiotemporally robust predictions 

of the diurnal cycles of terrestrial and wetland NEE. 
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2. Develop a systemic data-analytics framework to determine the latent interrelation and relative 

linkage patterns of different climatic and environmental variables with the terrestrial CO2 fluxes 

across different ecosystems. 

3. Determine the key drivers of wetlands GHG fluxes using the data-analytics framework, and 

develop data-based mechanistic models to predict GHG fluxes of tidal wetlands. 

4. Unravel the emergent similitudes, environmental regimes, and scaling laws associated with the 

wetland GHG fluxes. 

1.3 Organization of the dissertation 

The dissertation is organized into 9 chapters (Figure 1.1). Chapter 1 displays the introduction and 

overview of the dissertation, including background and motivation, research goal, hypothesis and 

the supporting objectives.  

Chapter 2 and 3 test the first hypothesis by pursuing objective 1. Chapter 2 demonstrates 

the development and application of an extended stochastic harmonic algorithom (ESHA) 

framework for a robust estimation and prediction of hourly NEE from different forest ecosystems. 

The model was calibrated and validated for the growing season (June-September) diurnal cycles 

of NEE during 2005-2013 for five AmeriFLUX deciduous forest sites. The site-specific models 

were successfully scaled up to a generalized deciduous forest model to robustly predict hourly 

NEE for different days across different ecosystems. The chapter is submitted to Agriculture and 

Forest Meteorology for publication with the title, “Scaling-based robust empirical modeling of 

growing season net ecosystem exchange: Application for deciduous forests” (in revision).  
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Figure 1.1: Chart showing the research hypotheses and organization of the dissertation  
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Chapter 3 presents a scaling-based harmonic model for robust predictions and 

simulations of the diurnal cycle of wetland NEE from a single reference observation. The 

harmonic model utilizes the ESHA algorithm presented in chapter 2. One inland wetland and one 

coastal wetland from the AmeriFlux network were the case study sites, and the developed models 

were calibrated and validated to predict different diurnal cycles of NEE by using a temporally 

ensemble set of model parameters for the respective study sites.  Sensitivity and uncertainty of the 

estimated parameters were also computed to demonstrate model robustness. 

Chapter 4-7 test the second hypothesis by pursuing objectives 2 and 3. Chapter 4 

introduces a new, systematic data-analytics framework to determine the interrelation patterns, 

similarity based groupings, and relative linkages of different climatic and environmental variables 

with the ecosystem GHG fluxes. The data-analytics approach was tested by quantitatively linking 

the canopy-level, half-hourly CO2 fluxes with the different process variables of eight deciduous 

forests from the AmeriFlux network. The chapter is published with the title, “Relative Linkages 

of Canopy-level CO2 Fluxes with the Climatic and Environmental Variables for US Deciduous 

Forests” in Environmental Management, 55-4(943-960), 2015.  

Chapter 5 tests the utility and applicability of the data-analytics framework in diverse 

ecosystems. The relative orientations, linkages and similarity-based grouping patterns of different 

climatic and environmental variables with hourly NEE were quantified for six diverse 

ecosystems, including wetlands, grasslands, croplands, deciduous broadleaf forest, evergreen 

needle-leaf forest, and mixed forest.  

Leveraging the data-analytics framework, Chapter 6 presents a parsimonious, non-linear 

(power-law), data-based mechanistic model to predict CO2 fluxes of coastal wetlands. The most 

significant drivers and predictors of the wetland CO2 fluxes were identified by determining the 

relative control and linkages of different abiotic drivers of CO2 fluxes based on the data-
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analytics. Four coastal salt marsh sites of Waquoit Bay, MA were considered as the case studies, 

representing a moderate ecological and biogeochemical gradient.  

Chapter 7 demonstrates the development of a parsimonious, non-linear (power-law), 

data-based mechanistic model to predict CH4 emissions from coastal wetlands by using the 

observations of Waquoit Bay study sites. The model input variables were selected based on the 

mechanistic attributes of the most important drivers of CH4 emissions. The model is capable of 

predicting the wetland CH4 emissions under a range of salinity, temperature and inundation 

conditions. Models presented in chapter 6 and 7 can jointly estimate the net ecosystem carbon 

balance (NECB) (i.e., potential sequestration) of the coastal salt marshes.  

Chapter 8 tests the third hypothesis in pursuit of objective 4. It presents the investigation 

of biogeochemical-ecological similitude, environmental regimes, and emerging scaling laws and 

organizing principles for GHG fluxes of coastal wetlands. The most important ecological drivers 

of CO2 and CH4 fluxes based on analytics of the Waquoit Bay data were used for developing the 

scaling relationships. Dimensional scaling models of the GHG fluxes were also presented for the 

coastal wetlands.  

Chapter 9 summarizes the overall findings of the dissertation research, and discusses the 

utility of the research findings and tools to the user-communities for managing ecosystem carbon 

and mitigating climatic changes. The chapter also provides recommendations for future research 

to further the scientific knowledge and understanding of ecosystems’ biological fluxes; and to 

enhance the modeling and engineering tools for robust estimations and predictions of ecosystem 

carbon based on emergent scaling laws and organizing principles.  
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Chapter 2: Scaling-based robust empirical modeling of growing season net ecosystem 

exchange: application for deciduous forests 

Abstract  

Gap-filling of net ecosystem exchange (NEE) in eddy covariance time series is necessary for the 

accurate estimation of the terrestrial ecosystems’ carbon balance. Available gap-filling techniques 

are mostly site-specific and require meteorological data (non-linear regression, artificial neural 

network, semi-parametric models) and historical NEE information (mean diurnal variation 

method) as inputs. These limitations require the development of a model that is robust in space 

and time and needs minimum parameter set. Application of scaling can lead to such generalized 

modeling approach for the gap-filling of different diurnal hours of NEE. In this connection, a 

scaling based empirical model was developed for spatiotemporally robust predictions of the 

diurnal cycle of terrestrial growing season NEE from a corresponding single reference 

observation by using an extended stochastic harmonic algorithm (ESHA). A reference-time 

observation from each diurnal cycle was utilized as the scaling parameter to normalize the 

corresponding hourly observations of NEE for different days into a single, dimensionless diurnal 

curve. The scaled harmonic model was evaluated by predicting the hourly observed growing 

season NEE time-series of June to September during 2005-2013 for five AmeriFlux sites, 

representing distinct deciduous forest ecosystems as the case studies. The developed model 

incorporated a parsimonious set of five parameters, which exhibited spatiotemporal robustness by 

collapsing into narrow ranges with no apparent trends or groupings among the different days and 

sites. Model calibrations demonstrated good modeling efficiency (coefficient of determination, R2 

= 0.68 to 0.88) and accuracy (ratio of root-mean-square error to the standard deviation of 

observations, RSR = 0.35 to 0.57) for different sites. Model validations with the years of growing 

season observations outside the calibration period also showed good performance (R2 = 0.66 to 
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0.79, and RSR = 0.47 to 0.60). Upscaling of the individual forest-specific models to that at the 

generalized deciduous forest level was performed by averaging the temporal ensemble of model 

parameters among all study sites; the upscaled model was tested for the same forest sites for the 

validation years and modeling efficiencies were similar to the calibration and validation results. 

The empirical NEE model is applicable for simulating continuous (e.g., hourly) NEE time-series 

from a corresponding single reference observation at the same or similar ecosystem sites. Once 

the model is parameterized, it needs only single NEE observational data for each diurnal cycle to 

predict the entire cycle. The method can potentially be used for a robust estimation of missing 

data in observed time-series of NEE or other periodic ecohydrological variables for diverse 

terrestrial ecosystems. 

2.1 Introduction 

Terrestrial net ecosystem exchange (NEE) is a key measure of ecosystem carbon budget (balance 

between photosynthesis and respiration), representing the overall exchange of CO2 between the 

ecosystem and the atmosphere (Law et al., 2002; Xiao et al., 2014). The terrestrial NEE is 

dictated by daytime photosynthesis (resulting in downward or negative fluxes of CO2) and 

nocturnal respiration (upward or positive fluxes), leading to a concave diurnal cycle. However, 

the NEE cycle can substantially vary from different days, seasons, years and ecosystem sites due 

to the numerous biological, climatic, hydrological, and ecological processes factors (e.g., 

ecosystem structure and function, plant type, solar radiation, ambient temperature, soil 

characteristics, and water availability). The eddy-covariance (EC) method (Baldocchi, 2003, 

2008; Aubinet et al., 2012) has led to the emergence of large regional and global network of 

monitoring towers and databases such as the AmeriFlux and the FluxNET (Baldocchi et al., 2001, 

Friend et al., 2007), which include measurements of NEE and relevant climate, ecological and 

environmental variables. The fluxes measured by the EC technique have the temporal resolution 
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of half-hourly to hourly. However, continuous measurements of the fluxes in the field with such 

fine resolution are difficult because of the instrument failure, unfavorable weather condition, and 

a probable breach in the micrometeorological hypothesis.  The amount of missing NEE data in 

AmeriFlux and EuroFlux is 35% in a year as reported by Falge et al. (2001). Proper modeling 

techniques can estimate these missing measurements (i.e., gap-filling) for an accurate upscaling 

(instantaneous to weekly, monthly, seasonal time scales) through utilization of the “big ecological 

data” to derive appropriate management and policy strategies for the enhancement of ecosystem 

carbon sequestration.  A standard method is, therefore, necessary to generate fine-resolution, 

continuous NEE data from the limited available observations. The site- and day-specific variation 

in NEE also warrants the development of robust modeling and prediction tools, which can 

provide a proper reconstruction of different diurnal cycles using the available incomplete 

information at the same ecosystem sites. 

 Numerous mechanistic models were developed to predict terrestrial CO2 exchanges by 

involving different process drivers and detailed parameterizations of relevant process components 

(i.e., photosynthesis, respiration, soil biogeochemistry). Examples of process-based models 

include DLEM (Tian et al., 2010), ED2 (Medvigy, 2009), ORCHIDEE (Krinner et al., 2005), 

BIOME-BGC (Thornton et al., 2002), HYBRID (White et al., 1999), and ECOSYS (Grant et al., 

2012). A comparative evaluation of available biosphere models using data the from the North 

American Carbon Program (NACP) showed overall higher uncertainty in predicting CO2 

exchanges; suggesting a need for improved parameterization at various temporal scales (Schwalm 

et al., 2010; Deitze et al., 2011; Barr et al., 2013; Stoy et al., 2013; Raczka et al., 2013). Data-

driven models have also been developed to fill gaps in measured data of ecosystem CO2 

exchanges; these methods include the mean diurnal variation technique (Falge et al., 2001), 

environmental conditions based ‘look-up’ tables, (Falge et al., 2001, Reichstein et al., 2005), 

semi-parametric and non-parametric statistical approaches (Jarvis et al., 2004; Hui et al., 2004; 
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Stauch and Jarvis, 2006; Gove and Hollinger. 2006;   and Menzer et al., 2013), non-linear 

regressions for photosynthesis and respiration (Michaelis and Menten, 1913; Lloyd and Taylor, 

1994; Valentini et al., 1996; and Aubinet et al., 1999 ), and artificial neural network (Papale and 

Valentini, 2003; Braswell et al., 2005; Ooba et al., 2006; Schmidt et al., 2008; and Moffat et al., 

2010). Papale (2012) summarized the existing gap-filling methods in EC NEE time series and 

provided a detailed guideline of the NEE time series data treatment. Data-driven predictive 

models of carbon fluxes were also developed using both remotely sensed and in-situ observations 

of geographical, environmental and meteorological variables for different ecosystems (e.g., 

Oechel et al., 2000; Byrne et al., 2005; Wylie et al., 2007; Makela et al., 2008; and Jahan and 

Gan, 2013). Most of the available data-driven gap-filling techniques (except mean diurnal 

variation) use meteorological data (e.g., PAR, air temperature, net radiation) as inputs. Even 

single imputation based look-up table method also utilize different environmental conditions for 

gap-filling. Only gap-filling method available that is independent of meteorological and 

environmental data is single imputation based mean diurnal variation (MDV) technique, which 

relies on historical NEE values to fill gaps.  

 Several studies have been conducted to compare the performance of the existing gap-

filling methods (Falge et al., 2001, Van Wijk et al., 2002, Ooba et al., 2006). Moffat et al. (2007) 

made a comprehensive comparison among 15 gap-filling methods and reported superior 

performance of the artificial neural network (ANNs) based techniques. Based on the findings of 

this study Fluxnet has adopted artificial neural network with pre-sampling and smoothing 

(ANN_PS), and improved look-up table (marginal distribution sampling) (Reichstein et al., 2005) 

as standard gap-filling methods (Papale et al., 2012). However, both of the methods are site 

specific and depend on meteorological and environmental conditions.      
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 Harmonic analysis has been an extensively applied data-driven method to characterize 

periodic variables (or signals) and develop prediction models by using Fourier series and Fourier 

transformations. The advantage of harmonic analysis is that it does not require additional 

environmental variables other than the predictant itself for model development. Several studies 

have applied harmonic functions for the analysis and modeling of ecosystem CO2 exchanges. For 

example, Richardson and Hollinger (2005) and Hollinger et al. (2004) used a second order 

Fourier regression to predict nocturnal CO2 exchanges. Griffis and Rouse (2001) applied a power 

spectral analysis with the fast Fourier transform to analyze and model the inter-annual variability 

of net ecosystem exchange. Apart from the carbon flux domain, classical harmonic analysis has 

been utilized to develop empirical models for numerous applications of ecological, environmental 

and water resources engineering (e.g., Nestler and Long, 1997; Meyers et al., 2001; Dyar and 

Alhadeff, 2005; and Kumar et al., 2006; ).  

A notable advantage of data-driven modeling over the process-based counterpart is that 

the data-driven method can involve a relatively small parameter set and does not necessarily 

require numerous, complex scientific hypotheses; increasing the scope of obtaining predictions 

with reduced uncertainty. Further, data-driven models are often much simpler in structure and 

computationally less expensive. Data-driven models can, therefore, be used as handy tools to 

estimate ecosystem carbon fluxes and derive appropriate management strategies without requiring 

expert domain knowledge and heavy computational resources. However, a data-driven model is 

developed based on certain environmental and metrological conditions; any change of this 

assumption may require model re-parameterization. A common limitation, however, with the 

data-driven, as well as the process-based carbon dynamics models is the site-specificity of model 

parameters, which often requires a new calibration for application at a different site. Moreover, in 

some cases the interpretability of the data-driven model parameters are more limited than for 

process-based models.  
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Scaling is a key concept that can collapse dynamic observations of different references 

onto a comparable reference platform. Application of scaling in diurnal NEE cycles can lead to 

the development of a generalized (both in space and time) modeling approach with minimum 

input requirement for the estimation of missing data. Scaling has been applied in various 

applications of ecological/environmental science to develop modeling and prediction tools (e.g., 

West et al., 2001; Milne et al., 2002; O’Connor et al., 2006; Warnaars et al., 2007; and Hondzo 

and Wannaars, 2008; and).  Enquist et al. (2003) applied the scaling concept to build a general 

model of ecosystem respiration for different terrestrial ecosystems across the globe that provided 

a platform for the quantitative understanding of the energy and martial flux exchanges between 

the atmosphere and biosphere. Abdul-Aziz et al. (2007a) presented a scaling-based extended 

stochastic harmonic analysis algorithm (ESHA) to convert stream dissolved oxygen (DO) 

measured at different clock-times of the day to that at  a single  referenced time (e.g., noon). 

Abdul-Aziz and Ishtiaq (2014) utilized the ESHA to develop a scaling based model to predict the 

entire diurnal cycle of stream DO from a single reference observation. Here the term ‘single 

reference observation’ defines a single observational NEE value of the each diurnal cycle that is 

used for scaling the entire diurnal cycle.  

The objective of this paper is to develop a scaling-based robust data-driven model for 

simulating the diurnal cycle of terrestrial growing season (June to September) NEE from a single 

reference observation by leveraging the ESHA model of Abdul-Aziz et al. (2007a). It has been  

hypothesized that scaling of the different diurnal cycles of NEE by the corresponding single 

reference observations would generate a unique, dimensionless NEE curve for the same site or 

different sites of similar ecosystems. Fitting of the unique NEE curve with observations is 

expected to provide an empirical model that can predict high-resolution NEE. Hourly NEE values 

of different growing season days for different years (2005-2014) from five AmeriFlux deciduous 

forest sites (Table 2.1, 2.4) are used for the model calibrations and validations. Finally, a 
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generalized deciduous ecosystem scale model is developed with the ensemble mean of model 

parameters obtained from all study sites.  

2.2 Materials and methods 

2.2.1 Scaling concept  

Generally NEE should follow a diurnal cycle because of the daily cyclic pattern of photosynthesis 

and respiration (mainly driven by PAR and temperature). However, during the dormant period 

(winter and spring) productivity (i.e., photosynthesis) is very insignificant because of the absence 

of sunlight; this interrupts typical diurnal pattern of NEE at these seasons of the year. On the 

contrary, growing season (June to September) NEE represents well defined diurnal pattern 

because of the coupled effect of high daytime productivity and nighttime respiration.  The 

discrepancy among NEE diurnal cycles in different seasons was shown in Figure 2.1a.  The plot 

of hourly NEE of Morgan Forest for 61st (representing dormant period) and 158th (representing 

growing period) Julian day provided a clear difference in NEE cycles among seasons. Figure 2.1b 

depicted the time-averaged growing season (June to September) NEE having well defined diurnal 

cycles (oscillating around zero) for five different deciduous forests (Table 2.1).  

The scaling based harmonic modeling method is applicable for those days that have a 

clear diurnal pattern. To demonstrate the scaling-based modeling concept, a schematic of 

hypothetical diurnal NEE cycles representing different days (1, 2, ….., N) (N= number of days) 

for a single or multiple ecosystem sites is shown (Figure 2.2a). Ideally a classical harmonic model 

(Priestley, 1981) would require a unique set of parameter values to represent each day-specific 

NEE cycle, leading to N parameter sets for N diurnal cycles. Following ESHA (Abdul-Aziz et al., 

2007a), each diurnal cycle is normalized (i.e., scaled) by a corresponding reference-time (tref) 

single observation (NEEref); the scaling should ideally collapse different NEE cycles onto a 
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general, dimensionless diurnal NEE curve (NEE*) with a value of unity (i.e., NEE*=1.0) at the tref 

(Figure 2.2b). The general NEE curve can be parameterized from the measured NEE data for all 

the available days with the ESHA estimation framework. The scaled, dimensionless model is 

inherently robust because it represents all days at the same or different sites with a single set 

(rather than N sets) of parameters. Finally, the NEE cycles of different days are predicted by 

multiplying the dimensionless model (NEE*) by the corresponding single reference observations 

(NEEref).  

Both the ESHA and a classical harmonic analysis (Priestley, 1981) obtain the best-fit 

model with all available data; however, the ESHA additionally forces the harmonic model 

through the reference-time normalized observation (i.e., 1.0). As such, the scaling-based ESHA 

facilitates the proper representation and reconstruction of the entire diurnal cycle of NEE for 

different days from the corresponding single reference observations at the same or similar  

 

 

 

 

 

 

Figure 2.1: Schematics showing (a) comparison of the 24 hour diurnal cycles of NEE for 61th 
(representing dormant season) and 158th (representing growing season) Julian day of Morgan 
forest to demonstrate the significant temporal disparity in the shape of the NEE curve and  (b) the 
time averaged growing season (June to September) NEE having well defined diurnal cycles for 
five different deciduous forests (Table 2.1) considered in the study   
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Table 2.1: Summary of the selected case study deciduous forests and the associated growing 
season (June to September) hourly NEE data periods.   

Site name Harvard 
Forest, MA 

Missouri 
Ozark, MO 

Morgan 
Forest, IN 

UMBS Forest, 
MI 

Willow Creek, 
WI 

Location (0N, 
0W) 

46.08, 89.98 38.74, 92.20 39.32, 86.41 45.56, 84.71 45.81, 90.08 

Elevation  
(m) 

340.0 219.4 275.0 234.0 520 

Stand age 
(years) 

80.5 77 70 79 66 

Canopy 
height (m) 

23 24.2 27 21 24.3 

Mean annual 
temperature 
(degree C) 

6.62 12.11 10.85 5.83 4.02 

Mean annual 
precipitation 
(mm) 

1071 986 1032 803 787 

Climate 
(Koeppen 
climate 
indices) 

Dfb (Warm 
Summer 
Continental) 

Cfa (Humid 
Subtropical: 
mild with no 
dry season, 
hot summer) 

Cfa (Humid 
Subtropical: 
mild with no 
dry season, 
hot summer) 

Dfb (Warm 
Summer 
Continental) 

Dfb (Warm 
Summer 
Continental) 

Dominant 
Species 

Quercus 
rubra, Acer 
rubrum 

Quercus alba Acer 
saccharum, 
liriodendron 
tulipifera, 
Sassafras 
albidium, 
Quercus alba, 
Quercus nigra 

Populus 
grandidentata, 
Populus 
tremuloides 

Acer 
saccharum, 
Tilia 
Americana, 
Fraxinus 
pennsylvanica 

Terrain type Hilly Flat to 
rolling 
uplands 

Ridge/ravine Gentle slope, 
glacial drift 

Rolling to 
undulating 
oval-shaped 
ridges 

Soil type Glacial till, 
acidic, low 
fertility, high 
organic 
content 

Weller silt 
loam, acidic 
to neutral 

mesic typic 
Dystrochrepts 

Entic 
Haplorthod, 
sandy 

Coarse glacial  
till 

Reference Urbanski et 
al., 2007; 
Dang et al., 
2011 

Gu et al., 
2006, 2007  

Schmid et al., 
2000; Dragoni 
et al., 2011 

Schmid et al., 
2003 

Cook et al., 
2004; Desai et 
al., 2005 
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Figure 2.2: Schematic of the conceptual framework for development and application of the 
scaled net ecosystem exchange (NEE) model.  
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ecosystem sites. This is useful because (1) NEE data of fine temporal resolutions (e.g., hourly, 

half-hourly) often have gaps due to instrumental errors or unfavorable weather conditions (Falge 

et al., 2001), and (2) NEE for many ecosystems in the U.S. and around the world are not yet 

continuously measured and monitored; posing a challenge to the accurate estimations of carbon 

budget at the longer time-scales (e.g., weekly, monthly, seasonally). Once the model is 

parameterized with data from the same or similar ecosystems (e.g., deciduous forests), the scaling 

-based ESHA model can be utilized to estimate the entire diurnal cycles of NEE for other days 

and sites by using the corresponding limited observations. Summary of the parameter estimation 

framework along with the system of solving equations are presented in the Appendix. 

2.2.2 Steps of model development and application 

The sole input required to develop an ESHA model is a continuous (e.g., hourly) NEE data set 

representing the full diurnal cycle (24 hours) for at least a single day (and preferably for multiple 

days) at a single site or multiple sites. The model development steps can be stated as follows: 

1. Obtain observed NEE data, NEE(t) for 24-hour cycles at an hourly time (t) intervals.  

2. Choose a reference time (tref) for each cycle to identify the corresponding reference 

observation, NEEref=NEE(tref). 

3. Scale each NEE cycle by normalizing NEE(t) with the corresponding day-specific 

reference value to derive a dimensionless cycle as NEE*(t)=NEE(t)/NEEref. 

4. Apply ESHA to fit the NEE*(t) cycles by forcing the harmonic process through the 

reference-time normalized observation of 1.0; i.e., h(tref)=NEE*(tref)=ƙ=1. 

5. Obtain a generalized scaled model NEE*
mod(t) with the ensemble estimates of daily 

parameters. 
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The parameterized dimensionless model of NEE*
mod, representing all days, are then 

multiplied by the corresponding single reference observations, NEEref  to predict the individual 

diurnal cycles (NEEmod) for the same site or different sites as follows: 

NEEmod(t)=NEEref  X NEE*
mod(t)       

 (1) 

2.2.3 Selection of optimal number of harmonics 

The Selection of the optimal number of harmonics (W) is an important aspect of ESHA to obtain 

a critical balance of model parsimony, simplicity, and prediction accuracy. The optimal number 

of harmonics was selected from the calibration dataset based on an Akaike Information Criterion 

(AIC), which is a well-established measure of the relative performance of a data-driven model in 

terms of accuracy (Akaike, 1974). Minimum value of the AIC for a particular harmonic value 

indicates the optimum number of harmonics. Following Abdul-Aziz et al. (2007a), a modified 

AIC (normalized by the total number of observations) was defined to bring data from different 

sites on a comparable scale as  

( ) ( )122ln
*

* ++







= W

NN
SSE

WAIC NEE
NEE           (2) 

where W= total number of harmonics, ∑
=

−=
N

i
iiNEE NEENEESSE

1

2*
mod,

* )(* = total sum of 

squared deviations between the normalized observations (NEE*
i) and the corresponding 

predictions (NEE*
mod,i) assuming the mid-point of diurnal cycle as the reference time (i.e., tref= 12 

hours), and N = number of observational data considering all diurnal cycles. 
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2.2.4 Measurement of model sensitivity and uncertainty 

Dimensionless sensitivity coefficients for different model parameters were analytically derived to 

determine the responses of predicted NEE for any changes in parameters for any day and site. 

The sensitivity measures 
0âS ,

kaS ˆ , and 
kb

S ˆ , respectively, for 0â , kâ , and kb̂ are stated as 

follows: 

0.1
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where Wk ,....,2,1=  indicates the parameter sensitivity coefficients for the oscillatory model 

components (e.g.,
1̂aS ,

1̂b
S ,

2âS , and 
2̂b

S for a two harmonic model) and t refers to any hour of the 

diurnal cycle. Normalization of the sensitivity parameters by the day- and site-specific single 

reference observations ( refNEE ) ensured their comparability for any day and site. Furthermore, 

a combined first order uncertainty analysis was conducted (Eq. 6) by applying Taylor series 

expansion (Mays, 2011) and keeping only the first order terms; model uncertainty was measured 

by estimating the standard deviation of the predicted NEE with a simultaneous change of 

parameters by their respective standard deviations as follows:  
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where W is the optimal number of harmonics (e.g., W = 2 for a two harmonic model); 
0âσ ,

kâσ , 

and 
kb̂σ = standard deviations of the model parameters; and t  = any hour of the diurnal cycle of 

any day and site. 

2.2.5 Case study sites and data sets 

Performance evaluation of the model requires a careful selection of study sites that represent 

similarities as well as distinctive diversities. Based on the availability of continuous (e.g., hourly) 

eddy covariance measurements, hourly NEE data from June to September  of different years for 

five broad-leaf deciduous forest sites of the AmeriFlux network (AmeriFlux website, 2014) were 

selected (Table 2.1, Figure 2.3) for the modeling. The case study sites that ranged from the upper 

mid-western to the northeastern U.S.A. were the (1) Harvard Forest, Massachusetts, (2) Missouri 

Ozark, Missouri, (3) Morgan Monroe State Forest, Indiana, (4) UMBS Forest, Michigan, and (5) 

Willow Creek, Wisconsin. Although the selected sites represent a similar vegetation cover, they 

incorporated a relatively moderate variability in carbon flux exchanges and land-atmospheric 

feedback through the topography, forest stand age, climate, soil type, and hydrology, and ecology 

(Table 2.1). Selected sites have two types of climate with a moderate gradient in elevation, 

terrain, forest stand age, mean annual temperature, and precipitation. 

 The data sets represent both hourly “gap-filled” and “with-gap” NEE (µmol/m2/s) of 

different diurnal (24-hour, starting 1.00 AM) cycles from June to September of different years 

(2005-2014) collected from AmriFlux (http://ameriflux.ornl.gov/) database (Table 2.2). 

According to the AmeriFlux sign conventions, positive sign represents upward fluxes (land/forest 

to atmosphere) of NEE and negative sign denotes downward fluxes. “Gap-filled” NEE data were 

used for the site-specific parameter estimation and calibration because entire diurnal cycles of 

different days are required to simulate the ESHA framework. However, once the parameter set is 

http://ameriflux.ornl.gov/
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estimated, the model no longer requires complete diurnal cycles for prediction; only different, day 

specific single values of NEE (NEEref) are needed to simulate the NEE cycles. With the estimated 

mean parameter set for each forest, site- specific model validation for two separate growing 

seasons (i.e., prediction) was performed with the “with-gap” data that ensures the applicability of 

the model. Moreover, “with gap” data of the validation years were used to test the performance of 

an upscaled generalized deciduous ecosystem model (mean of the estimated parameters of all the 

sites); this additional layer of analysis established the relevance of this model in gap-filling of 

NEE cycles even though model parameters were determined from the “gap-filled” data. 

Two-step data filtering procedures were applied to ensure the quality of the NEE data set. 

Firstly, extreme values and data outliers were removed based on the interquartile range (IQR) 

criteria (Turkey, 1977).  Any hourly NEE observations outside the range obtained from Q1-

1.5*IQR and Q3+1.5*IQR (here, Q1= first quartile, Q3=third quartile, and IQR=Q3-Q1) were 

removed from the dataset for each forest site. Gaps created from such removals were filled 

through the linear interpolation.  Secondly, since one of the critical assumptions of the model is 

the requirement of well-defined diurnal cycles of NEE, outlaying diurnal cycles (i.e., cycles that 

are not well-defined) were identified and removed based on the  daily estimated parameter values 

that were outside their corresponding 3rd and 97th percentiles (refer to section 2.3.1 for detail 

description) to avoid bias toward any outlying diurnal cycles for each site .Additionally, to  

remove the nighttime and early morning venting effect from the NEE data for the southeast (SE) 

wind direction at the Willow Creek site (Cook et al., 2005), growing season NEE time series were 

additionally filtered for the SE wind (90-1800 from true north) and gaps were filled through linear 

interpolation. 

Different four years of hourly filtered data were used for model calibrations and 

parameter estimation (Harvard Forest: 2007-10, 415 diurnal cycles; Missouri Ozark: 2009-12, 
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426 diurnal cycles; Morgan Forest: 2009-12, 411 diurnal cycles; UMBS: 2008-11, 410 diurnal 

cycles; Willow Creek: 2005-06, 2011-12, 432 diurnal cycles). Similarly, data for different 

(independent of calibration years) two growing seasons were used for site-specific and ecosystem 

scale generalized model validations; e.g.,  Harvard Forest (2011, 2012), Missouri Ozark (2008, 

2013), Morgan Forest (2008, 2013), UMBS (2006, 2012), and Willow Creek (2013, 2014). 

Further, data for the photosynthetic active radiation (PAR), air temperature (TA), and soil water 

content (SWC) were obtained from the AmeriFlux network for the calibration periods at different 

study sites (Table 2.2) to explore any relationships of the model parameters with the important 

drivers of NEE. The data for hourly NEE and associated climate/environmental variables would 
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incorporate the intra-, as well as inter-annual variability of the growing season carbon fluxes and 

their major drivers in evaluating the model performance. 

Figure 2.3: Study area and geographic locations of the selected AmeriFlux deciduous forest sites.  
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Table 2.2: Growing season (June to September) averages of NEE and associated 
environmental/meteorological variables for the calibration years for the study sites 

 

2.3 Results and discussion 

2.3.1 Optimal number of harmonics 

Minimum *NEEAIC (Equation 5) resulted at W = 2 for nearly all the sites (Figure 2.4). Only for 

the Missouri Ozark Forest, *NEEAIC for three harmonics (i.e., W = 3) was slightly (0.05%) 

smaller than that of two harmonics; however, the slight accuracy increased the number of model 

parameters by 40% (5 and 7 parameters for, respectively, 2 and 3 harmonics). To keep a desired 

balance of model parsimony and accuracy, W = 2 was selected as the optimal number of 

harmonics for all the study forests, leading to the estimation of five parameters ( 0â , 1â , 2â , 1̂b , 

and 2b̂ ) at each site. Abdul-Aziz et al. (2007a) also considered an optimal number of two 

harmonics for their stream DO scaling model using the same ESHA method.  

2.3.2 Optimal reference time 

The theoretical formulation of ESHA (Abdul-Aziz et al., 2007a) allows anytime from the 24-hour 

NEE cycle to be the reference-time ( reft ) to identify the corresponding single observation as the 

scaling operator. Practically, however, it is important to assess the model response to the different 

choices of tref and identify the desirable set, if any, for an optimal model performance. Utilizing 

the observed data for different study sites with W = 2, coefficient of determination, R2 was used 

to measure the impacts of different reference-times on the quality of model predictions. As shown 

Site Name Calibration years  NEE  
(µmol/m2/s) 

PAR 
(µmol/m2/s) 

Air temperature 
(0C) 

Soil Water 
Content (%) 

Harvard 2007-10 -5.34 303.44 7.90 - 
Missouri 2008-11 -3.61  657.38 23.40 35.16 
Morgan 2009-12 -3.65 528.08 23.11 26.26 
UMBS 2008-11 -3.46 439.84 18.04 7.01 
Willow Creek 2005-06, 2011-12 -4.59 485.32 18.19 28.77 
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(Figure 2.5), all the sites moderate to high sensitivity to the choice of tref. Overall, the maximum 

prediction efficiency fell into the window of 10-15 hours (i.e., 10:00 AM to 3:00 PM local time) 

for different study sites. The results also suggest that scaling different diurnal cycles by the 

corresponding midday window (10-15 hours) reference observations can provide an adequately 

high modeling efficiency for all stations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Plots of the normalized AICNEE* with the number of harmonics )(W for different 
study forests.  
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Figure 2.5: Impact of choosing different reference time ( reft ) on the modeling efficiency, R2 for 
the five study forests. 
 

The finding is similar to that of Abdul-Aziz et al. (2007a) who used midday as the tref for 

parameterizing the diurnal cycles of DO in different streams. Based on the calculated R2, different 

tref were selected for different stations within the optimal model fitting range (i.e., 10:00 AM to 

1:00 PM local time) to demonstrate the flexibility of selecting reference-time with ESHA. As 

such, 10 hours (i.e., 10:00 AM) for Harvard forest, 11 hours (i.e., 11:00 AM) for Missouri, 13 

hours (i.e., 1:00 PM) for Morgan, UMBS, and Willow Creek  were selected as the reference-times 

(Tables 2.4, 2. 5). 

2.3.3 Model evaluations for individual deciduous forests  

Estimation of model parameters in time and space 

Five dimensionless parameters ( 0â , 1â , 2â , 1̂b , and 2b̂ ) of the scaled NEE model (NEE*
mod) 

were estimated for the calibration days (June-September for four years) for each of the five 

deciduous forest sites. To omit the outliers, site-specific daily parameter values outside their 
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corresponding 3rd  and 97th percentiles were removed from further analysis; this filtering led to the 

exclusion of around 12-15% of the daily parameter values and corresponding diurnal NEE cycles 

for each site. The temporal ensemble (June-September) set of parameters were obtained by 

averaging the filtered daily estimates over the filtered calibration days (Table 2.3) at each site; the 

spatiotemporal ensemble parameters (i.e., a generalized set to represent all the study sites) were 

calculated by averaging the corresponding June-September  means of the five forests over the 

calibration period.  

Table 2.3: Temporal ensembles (multi-year site-specific averages over June-September) and 
spatiotemporal means of daily estimated model parameters for the five deciduous forests. 

Notes: Notes: (1) Values in parentheses are the standard deviations of the estimated parameters; 
(2) Hat (˄) sign represents fitted or estimated parameters of the harmonic (Fourier) series.  

 

Among the different sites, the constant parameter 0â  (the non-oscillating, major model 

component representing a quasi-average daily NEE*) varied from 0.177 to 0.272 with a 

spatiotemporal mean of 0.213. The first harmonic parameters of 1â  and 1̂b  (representing the 

primary oscillations of the diurnal cycle) varied, respectively, from -0.655 to -0.692 (with a 

spatiotemporal mean of -0.670) and from -0.092 to 0.149 (with a spatiotemporal mean of -0.025). 

The second harmonic parameters of 2â and 2b̂ (representing the secondary oscillations) varied, 

respectively, from 0.102 to 0.171 (spatiotemporal mean = 0.138) and from -0.060 to 0.025 

Site name Parameterization year 0â  1â  2â  1̂b  2b̂  
Harvard Forest, MA 2007-10 (415 days) 0.235 

(0.075) 
-0.660 
(0.094) 

0.134 
(0.076) 

0.149 
(0.080) 

-0.060 
(0.080) 

Missouri Ozark, MO 2008-11 (426 days) 0.196 
(0.062) 

-0.669 
(0.101) 

0.145 
(0.096) 

-0.057 
(0.095) 

-0.035 
(0.115) 

Morgan Forest, IN 2009-12 (411 days) 0.191 
(0.059) 

-0.668 
(0.082) 

0.163 
(0.068) 

-0.062 
(0.071) 

0.015 
(0.086) 

UMBS Forest, MI 2008-11 (420 days) 0.174 
(0.085) 

-0.690 
(0.102) 

0.158 
(0.087) 

-0.062 
(0.080) 

0.014 
(0.087) 

Willow Creek, WI 2005-06, 2011-12 (432 
days) 

0.272 
(0.093) 

-0.678 
(0.106) 

0.102 
(0.114) 

0.013 
(0.130) 

-0.024 
(0.104) 

Spatiotemporal Mean  0.214 -0.673 0.140 0.019 -0.018 
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(spatiotemporal mean = -0.02). The relatively small parameter ranges and standard deviations 

indicated the spatiotemporal robustness of the dimensionless model parameters and subsequent 

predictions. Spatiotemporal trends of model parameters were also investigated by plotting the 

filtered (i.e., within the respective 3rd and 97th percentiles), day-specific estimates of 0â , 1â  and 

1̂b with the corresponding parameterization days  (June to September for four years) of 

calibrations  for all the study forests (Figure 2.6). In general, the parameters ( 0â , 1â  and 1̂b ) did 

not show any notable increasing or decreasing trend over the 16 months (four months per year for 

the four years) within and among the different forest sites.  However, parameters showed 

clustered dispersions for September, 2012 at Missouri site; this is likely caused by the less well-

defined diurnal cycles of NEE during transitions with the winter season for this particular time. 

Overall, the model parameters collapsed into narrow bands among different days and sites, 

indicating spatiotemporal robustness. 

The relationships between the model parameters and the major 

meteorological/environmental process drivers of NEE were investigated to achieve mechanistic 

insights into the spatiotemporal robustness of estimated parameters for varying environmental 

conditions. As an example, the daily estimates of the principal parameter, 0â  were plotted with 

the corresponding 24-hour photosynthetic active radiation (PAR), air temperature (TA) and soil 

water content (SWC) for different study sites (Figure 2.7; SWC were not available for the 

Harvard Forest). The daily PAR, TA and SWC from different stations were normalized by their 

corresponding temporal averages (over June to September for four calibration years) to bring 

them on a comparable scale. The 0â did not display any noteworthy trend with the PAR, TA and 

SWC for any forests, reemphasizing the robustness of model parameters. However, the higher 

dispersion of 0â for the Missouri site suggested more variable response of the quasi-average 

dimensionless daily NEE to the major process drivers at these stations than that for the other 
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study sites; this can also explain the higher dispersions of 0â  when plotted with the cumulative 

model days for this site (see Fig. 6). The 1st harmonic parameters ( 1â and 1̂b ), also did not exhibit 

any noteworthy trend with the PAR, TA, and SWC (Figure 2. 8 and 2.9) except the Missouri 

forest, where some clustered dispersion of parameters were observed. The observed dispersion of 

the parameters at the Missouri site can be attributed to its relatively higher temperature, PAR, and 

higher soil water content (due the existence of silty loam soils and flat topography) compare to 

the other sites (Table 2.1, 2.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Daily time-series of estimated parameters during the four years of calibration for the 
five deciduous forests, demonstrating the spatiotemporal robustness of the model parameters. The 
a0, a1, and b1, respectively, refer to 0â , 1â   and 1̂b where the hat (ˆ) represents estimations.  

Growing season parameterization days for the calibration years  
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The observed collapse (i.e., robustness) of the estimated parameters is a unique outcome 

of scaling; normalization of the each diurnal NEE cycle by the corresponding single reference 

observation brought parameters of different days and sites into the comparable ranges. The 

impressive spatiotemporal robustness of the model parameters suggests that hourly NEE 

predictions made by using the June-September aggregations (i.e., site-specific ensemble mean) of 

daily parameters over the 4-year calibration periods would also be robust in time and space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Plots of the daily estimates of the principal model parameter, 0â  with the 
corresponding (as normalized by the respective site-specific averages) (a) photosynthetic active 
radiation (PARdaily/PARaverage), (b) air temperature (TAdaily/TAaverage), and (c) soil water content 
(SWCdaily/SWCaverage) over the four different years of model calibrations for different sites.  

a 0
 



33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.8 Plots of the daily estimates of the principal model parameter, 1â  with the 
corresponding (as normalized by the respective site-specific averages) (a) photosynthetic active 
radiation (PARdaily/PARaverage), (b) air temperature (TAdaily/TAaverage), and (c) soil water content 
(SWCdaily/SWCaverage) over the four different years of model calibrations for different sites.  

a 1
 



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.9: Plots of the daily estimates of the principal model parameter, 1̂b  with the 
corresponding (as normalized by the respective site-specific averages) (a) photosynthetic active 
radiation (PARdaily/PARaverage), (b) air temperature (TAdaily/TAaverage), and (c) soil water content 
(SWCdaily/SWCaverage) over the four different years of model calibrations for different sites.  

b 1
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2.3.4 Temporally robust predictions from model calibrations and validations 

The site-specific, temporally ensemble parameters were used to predict the hourly NEE cycles 

from the corresponding day-specific single reference observations for the growing season 

calibration days. Three criteria were used to evaluate the model prediction performance (Table 

2.4): (i) ratio of root-mean-square error  to the standard deviation of observations (RSR) that 

indicates model accuracy (Singh et al., 2004); (ii) coefficient of determination (R2), indicating the 

amount of observed data variance explained by the model (R2 =1.0 indicates a perfect model); and 

(iii) Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) that also measures the goodness 

of model fit (see Appendix for the mathematical expressions of RSR and NSE). Following the 

extensive analysis of Moriasi et al. (2007) on model performance, an RSR from 0 to 0.50 

indicates a perfect to very good model, from 0.5 to 0.6 indicates a good model, and from 0.6 to 

0.7 refers to a satisfactory model; a model with RSR > 0.70 is considered unsatisfactory. Similar 

to the R2, the NSE of 1.0 indicates a perfect model, whereas NSE > 0 indicates better fitting with 

the harmonic model than that of the daily mean of hourly observations as an alternative model. 

Among the five different forests, RSR of the calibrated models varied between 0.35 to 0.557 

(good to very good prediction accuracy); R2 ranged from 0.68 to 0.88 and NSE ranged from 0.68 

to 0.88, indicating high model fitting efficiency (Table 2.4).  

The calibrated NEE model was validated with independent two years of growing season 

NEE data among the different study forests (Table 2.4). The NEE diurnal cycles (outside of the 

respective calibration years) were predicted from their corresponding reference-time single 

observations by using the previously estimated site-specific, temporal ensemble parameters. The 

model validation demonstrated nearly equivalent prediction performance (RSR = 0.47 to 0.60; R2 

= 0.66 to 0.79; and NSE = 0.64 to 0.78), compared to that of the calibrations among the different 

study sites.  
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Table 2.4: Results of calibrations and validations for the individual forest-specific NEE models. 

Notes: (1) Data represent June through September each year; (2) Ref. time represents the 
cumulative hour of a 24-hour clock at which the reference observation was made; (3) RSR is the 
ratio of root-mean-square error to the standard deviation of observations; and (4) NSE (Nash-
Sutcliffe Efficiency) is the measure of the goodness of model fit.  

 

Performance of the model in the dimensional form was evaluated by separating the 

daytime and nighttime NEE and comparing the predicted means (in µmol/m2/s unit) against 

observed means for all the sites for both calibration and validation periods (Table 2.6). Daytime 

and nighttime were defined as periods of the day when photosynthetic active radiation (PAR) was 

positive (higher than zero), and zero (additionally, PAR corresponding to the nocturnal 

respiration was set to zero), receptivity (Moffat et al., 2007). The calibration mean differences 

(i.e., deviation of model mean from the observed mean) between observed and predicted varied 

from 0.33 to 0.62 µmol/m2/s and 0.01 to 0.55 µmol/m2/s for daytime and nighttime NEE, 

respectively for all the sites; validation mean deviations were slightly higher than the calibration 

mean differences (daytime:0 .04 to 1.22 µmol/m2/s, nighttime:0.39 to 0.78 µmol/m2/s) (Table 

2.6). Overall, the site-specific calibrations and validations illustrated the ability of the scaling-

based ESHA model for predicting the entire diurnal cycles of hourly NEE from the respective 

single reference observations. The success in simulating hourly NEE for June-September during 

  Calibrations Validations 
Sites Year  Ref. time (hr) R2 RSR NSE Year  R2 RSR NSE 
Harvard Forest 2007-10 10 0.87  0.37 0.86 2011 0.78 0.48 0.77 
      2012 0.75 0.50 0.75 
Missouri Ozark 2008-11 11 0.71 0.54 0.71 2007 0.64 0.60 0.63 
      2013 0.69  0.57 0.68 
Morgan Forest 2009-12 13 0.87 0.36 0.87 2008 0.79 0.47 0.78 
      2013 0.76 0.50 0.75 
UMBS Forest 2008-11 13 0.87 0.36 0.87 2006 0.76 0.51 0.74 
      2012 0.76 0.50 0.75 
Willow Creek 2005-06,  

2011-12 
13 
 

0.79  0.47 0.79 2013 0.77  0.48 0.77 

      2014 0.75 0.51 0.74 
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2005-2014, by using the temporally ensemble (multi-year, multi-season means) single set of site-

specific model parameters, also demonstrated the temporal robustness of the scaled model. Since 

the diurnal NEE cycle varies significantly among different days even at the same site (Richardson 

et al., 2007), a harmonic model without proper scaling cannot predict the different hourly NEE 

cycles using a single set of ensemble parameters. Scaling by the day-specific single reference 

observations resulted in the collapse of different cycles into a general dimensionless diurnal curve 

(as shown in Figure 2.2) and provided the comparable values of estimated parameters over the 

entire simulation (calibration and validation) periods; which led to the temporally high quality 

predictions for each forest. Moreover, since the model uses day-specific NEE observation (i.e., 

NEEref) to simulate the entire diurnal cycle, the inter-annual variability of the predicted NEE, if 

any for a site, would be reflected through NEEref.  The successful validation of the scaled model 

reemphasized its applicability for predicting the entire diurnal cycles of NEE based on limited 

available data; aiding to fill gaps in time-series of observed NEE at the study forests.  

2.3.5 Spatiotemporal robustness: upscaling to a generalized deciduous forest model 

The spatiotemporal robustness of the model predictions (spatiotemporal robustness of the model 

parameters was demonstrated in section 2.3.3) was tested by upscaling the site-specific hourly 

NEE models to a generalized deciduous forest model; parameters of the upscaled model were 

obtained by spatially averaging the temporally ensemble, site-specific parameters (previously 

estimated through calibrations) for all the sites (the last row of Table 2.3). The generalized 

deciduous model was then used to predict hourly growing season diurnal NEE cycles from their 

corresponding single reference observations at different study sites for independent (of 

calibration) years representing two different decades (e.g., the years of 2006 and 2012 for the 

UMBS; Table 2.5 for further details). The hourly NEE, as predicted by the upscaled generalized 

model, showed a nearly similar accuracy (RSR = 0.48 to 0.58) and model fitting efficiency (R2 = 
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0.66 to 0.77; NSE = 0.66 to 0.77) compare to the validation results (Table 2.5); comparison of 

NEE means also resembled the validation and calibration results (daytime mean difference: 0.05 

to 1.21 µmol/m2/s, nighttime mean difference: 0.03 to 0.51 µmol/m2/s) (Table 2.6).  

For visualization, scattered plots of the observed versus the generalized model predicted 

NEE for different years between 2006 and 2013 (independent of the calibration years) for the five 

study forests were presented (Figure 2.10). Similar to the performance of the site-specific models 

(calibrations and validations), the quality of predictions from the generalized model was notably 

good for all the sites except the Missouri Ozark. The scaled harmonic model could not entirely 

predict the extreme peaks (carbon emissions) and troughs (sequestrations) of NEE, resulting in a 

reduction of modeling performance. The possible reasons could be (i) the existence of higher 

parameter sensitivity and modeling uncertainty in the nighttime hours away from the reference 

hour (Figure 2.11, 2.12) that is being reflected in the predicted extreme values,  (ii) use of the 

temporally and spatiotemporally averaged parameters (day-specific model parameters would 

make far better predictions for extremes), (iii) random sampling errors, which are a function of 

averaging time (Baldocchi, 2003) and statistical error from gap filling (Falge et al., 2001), and 

(iv) inability of the model to predict instantaneous perturbations amid the moderate geographical 

gradients in climate, topography, soil type, hydrology, forest stand age and ecology among the 

five deciduous forests (Table 2.1). The predictions of different diurnal NEE cycles for all the 

study sites using a single parameter set demonstrated a high spatiotemporal robustness of the 

dimensionless, scaled model. The overall results indicate that the scaling-based generalized 

ESHA model can be utilized to predict diurnal NEE cycles at other deciduous forest ecosystems 

(which are not included in this study) if the corresponding day-specific single reference 

observations are available. However, incorporation of data from more deciduous forests could 

further improve the robustness of the generalized model by enhancing the ecosystem-based 

spatial coverage and domain of the scaled NEE model. 
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Figure 2.10: Plots of the hourly predicted and observed NEE of different years for the (a) 
Harvard Forest, (b) Missouri Ozark, (c) Morgan State Forest, (d) UMBS, and (e) Willow Creek 
Forest using the generalized deciduous forest model. Dashed line represents the 1:1 perfect fit 
line.  

Harvard Forest (2011) 
R2 = 0.71 
 

Missouri Ozark (2013) 
R2 = 0.68 
 

Morgan Forest (2008) 
R2: 0.77 
 

UMBS (2006) 
R2: 0.75 
 

Willow Creek (2013) 
R2: 0.77 
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Table 2.5: Performance of the generalized deciduous forest model in predicting the hourly NEE 
of different days and years for the five study forests. 
 

 

 

 

 

 

 

Notes: (1) Data represent May through October each year; (2) Ref. time represents the cumulative 
hour of a 24-hour clock at which the reference observation was made; (3) RSR is the ratio of root-
mean-square error to the standard deviation of observations; and (4) NSE (Nash-Sutcliffe 
Efficiency) is the measure of the goodness of model fit.  

3.3.6  Comparison of the model with the existing gap-filling techniques   

The daytime and nighttime performances of the ESHA model were compared with the root mean 

square error (RMSE) values of the existing gap-filling techniques reported by Moffat et al. 

(2007). The calculated daytime RMSE of the ESHA model ranged between 4.10-5.98, 5.52-6.88, 

and 5.56-7.66 gC/m2/day (1.0 gC/m2/day = 0.96 µmol/m2/s) for the calibration, validation, and 

upscaled generalized model, respectively for all the sites. Similarly, nighttime RMSE varied from 

2.24-6.32, 3.20-5.70, and 3.30-5.87 gC/m2/day for the calibration, validation, and upscaled 

generalized model, respectively for all the sites.  These RMSE values are comparable to the 

RMSE values of mean diurnal variation (MDV) (Falge et al., 2001), and multiple imputation 

method (MIM) (Hui et al., 2004) as obtained from Moffat et al. (2007). However, both daytime 

and nighttime RMSE values of the ESHA model were higher than the sophisticated gap-filling 

methods like ANNs (artificial neural network), NLRs (non-linear regressions), and MDS 

(marginal distribution sampling) (Moffat et al., 2007)

Sites Year Ref. time (hr) r2 RSR NSE 
Harvard Forest, MA 
 

2011 
2012 

10 
 

0.71 
0.71 

0.55 
0.54 

0.70 
0.71 

Missouri Ozark, MO 
 

2007 
2013 

11 
 

0.64 
0.68  

0.60 
0.58 

0.64 
0.67 

Morgan Forest, IN 
 

2008 
2013 

13 
 

0.77 
0.73 

0.49 
0.52 

0.76 
0.73 

UMBS Forest, MI 
 

2006 
2012 

13 
 

0.75 
0.75 

0.51 
0.51 

0.74 
0.74 

Willow Creek, WI 2013 13 0.77 0.49 0.76 
 2014  0.75 0.50 0.75 
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Table 2.6: Comparison of the daytime and nighttime predicted means against the observed daytime and nighttime means of NEE for the 
calibration, validation and generalized model for all the study forests 

 

Site name 

Calibration Validation Generalized Model 
Average daytime 
NEE (µmol/m2/s) 

Average nighttime 
NEE 
(µmol/m2/s) 

Average daytime 
NEE 
(µmol/m2/s) 

Average nighttime 
NEE 
(µmol/m2/s) 

Average daytime 
NEE 
(µmol/m2/s) 

Average nighttime 
NEE 
(µmol/m2/s) 

Obs Mod Obs Mod Obs Mod Obs Mod Obs Mod Obs Mod 
Harvard Forest 9.77 9.44 4.53 5.02 12.18 12.55 5.28 4.60 12.18 12.01 5.28 4.96 
Missouri Ozark 6.89 6.51 4.62 5.17 4.22 3.32 3.39 3.01 4.22 3.78 3.39 2.89 
Morgan Forest 9.84 9.22 4.46 4.47 10.43 9.93 4.05 4.83 10.43 10.38 4.05 4.42 
UMBS 7.60 7.10 4.97 5.39 9.19 7.97 4.43 4.82 9.19 8.38 4.43 3.92 
Willow Creek 10.48 9.97 3.31 3.52 10.46 10.42 4.33 3.60 10.46 9.25 4.33 4.36 



42 

Although the ESHA model did not perform equally with the high ranked gap-filling 

methods, it has the benefit of predicting hourly NEE values without requiring meteorological 

inputs and historical NEE values that are necessary for the ANNs, NLRs and look-up tables; 

rather, the ESHA model requires a single day-specific NEE observation to simulate the entire 

diurnal cycle of NEE once parameterized.   

2.3.7  Model sensitivity and uncertainty  

At any diurnal hour, the dimensionless sensitivity coefficient for 0â (the non-oscillatory, 

principal model component parameter) was 1.0; referring to a constant, linear rate of change in 

predicted NEE for any change of 0â . The sensitivity coefficients for the oscillatory model 

component parameters ( kâ and kb̂ ) varied dynamically with the diurnal hours due to the 

presence of sine-cosine functions (Figure 2.11; see Equation 4-5). Among the different diurnal 

hours at the five study forests, the sensitivity coefficients of the first harmonic parameters ( 1â  

and 1̂b ) varied, respectively, between -0.13 to 1.96 and -1.5 to 1.25, whereas the second 

harmonic parameters ( 2â and 2b̂ ) varied between -1.87 to 0.5 and -0.5 to 1.86 . The oscillatory 

component parameters did not show any sensitivity at the reference time since the harmonic 

process (the dimensionless diurnal curve) was forced to pass through the reference-time 

observation.  

Model uncertainty due to the individual parameter uncertainty was computed by 

separately changing each parameter value by the corresponding standard deviation (Table 2.3).  

The Morgan forest was considered as an example to demonstrate the computed model 

uncertainty; since the reference-time observation ( refNEE ) in Equations (3-5) can be different on 

different days, I used average NEEref = -17.27 µmol/m2/s for simplicity and convenience of 
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demonstrating model responses to the parameter changes for any day. For the Morgan forest, 

changing the temporal mean of 0â (0.191) by the corresponding standard deviation (0.059) 

resulted in a change of -1.02 µmol/m2/s in the predicted NEE; changing the harmonic parameters 

( 1â , 1̂b , 2â , 2b̂ ) by their respective standard deviations resulted in absolute changes of the 

predicted NEE by up to -2.78, -1.54, -2.18, and -2.23 µmol/m2/s, respectively. However, an 

overall measure of the model uncertainty for all study forests was obtained by computing the 

standard deviations of the predicted NEE for simultaneously changing all random parameters by 

their corresponding standard deviations. Based on the first-order uncertainty measure (Equation 

6), for the site-specific average (from on the growing season data used for calibration) of the 

reference observations (average NEEref = -16.56 to -21.11 µmol/m2/s), standard deviations of the 

predicted NEE for different diurnal hours varied between -1.06 and 5.07 µmol/m2/s among the 

different forests (Figure 2.12). The 95% confidence limits of the uncertainties were also shown in 

Figure 2.12.    

 The analytical measure of model sensitivity and uncertainty is an essential attribute of the 

scaled NEE model. The results showed that the prediction uncertainties of the scaled harmonic 

model were higher in case of the simultaneous perturbations in parameters than the standalone 

perturbations. Moreover, uncertainties were high for all the sites during the nighttime hours as  

time deviates from the reference time. Since, the diurnal cycles are predicted from the day-

specific noontime (i.e. 10:00 AM to 1:00 PM) reference observations (Equation 1), prediction 

uncertainties propagate from the reference time, which also explains the inability of the model in 

predicting extreme NEE fluxes as discussed in section 2.3.5.  Although for simplicity and ease of 

demonstration, the average values of reference NEE for each site was used for Equation (4-6), the 

refNEE  can be different for different days and sites. 
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Figure 2.11: Plot of dimensionless parameter sensitivity coefficients (
0âS ,

1âS ,
1̂b

S ,
2âS , and 

2̂b
S )  with the hours of any diurnal cycle, indicating the model sensitivity for the (a) Harvard 

Forest, (b) Missouri Ozark and Willow Creek, (c) Morgan State Forest, and UMBS Forest (Sa0, 
Sa1, Sa2, Sb1, and Sb2, respectively, refer to model sensitivity to 0â , 1â , 2â , 1̂b and 2b̂ ). 

 
2.3.8  Gap-filling of NEE time-series and predictions in relatively ungauged forests 

Success in constructing the diurnal NEE cycles from a single reference observation indicated the 

potential of the scaling-based harmonic NEE model for filling gaps in high resolution (e.g., half-

hourly, hourly) time-series of growing season NEE, as well as for predicting the entire diurnal 
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cycles of  growing season NEE from available limited observations for relatively ungauged 

forests of similar ecosystem type. The flux towers in historically monitored forests can encounter 

around 35% missing data annually at the half-hourly scale (Falge et al., 2001), which poses a 

challenge to achieve accurate estimations of carbon budget at the longer time-scales (e.g., weekly, 

monthly, seasonally). The available gap-filling methods such as the empirical mean diurnal 

variation (MDV) and the semi-empirical non-linear regressions and artificial neural networks (see 

Falge et al., 2001 and Moffat et al., 2007 for details) are generally site-specific in applications 

(i.e., values or parameters derived for one site cannot be transferred to a different site). Further, 

the MDV method can fill gaps at a particular time if the corresponding NEE data for 7 to 14 

neighboring days are available (Falge et al., 2001); the semi-empirical regressions  and ANNs can 

be used only if the corresponding data for the relevant mechanistic predictors (e.g., radiation, 

temperature) are available. None of the existing methods can leverage the limited available data 

for one time instant to estimate the missing NEE for other times within the same or different 

diurnal periods. In contrast, the scaling-based  harmonic NEE model can provide 

spatiotemporally robust  estimations of missing data and predictions of the entire diurnal cycle of 

NEE based on a corresponding single NEE measurement made at the reference time (mostly 

noon; can be flexibly chosen between 10:00 AM and 3:00 PM). Once the model is parameterized 

with continuous NEE data (of preferably multiple days) at the same or similar ecosystems (e.g., 

different deciduous forests), the scaled NEE model can be utilized to estimate the entire diurnal 

cycles of NEE for other days and sites by utilizing the corresponding limited observations.  

2.3.9  Model generalization and applicability in different ecosystems 

Every forest ecosystem has some innate climatic, physiological, biogeochemical and ecological 

characteristics; the differing characteristics pose a formidable challenge to the generalization of 
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prediction models among different forests. In contrast, the estimated parameters of the scaling-

based harmonic NEE model showed notable robustness in time (June-September of four different  

 

years) and space (five different deciduous forests) (Figure 2. 6). Moreover, absence of any mean 

dependence between the crucial drivers (PAR, temperature, and SWC) of ecosystem carbon 

exchanges and NEE ) reiterated the robustness of the parameters (Figure  2.7,2.8, and 2.9). The 

spatiotemporal robustness of model parameters ultimately led to the successful spatial 
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Figure 2.12 Standard deviations, estimated from eqn. 6, of the predicted hourly NEE as an 
overall measure of the model uncertainty for simultaneously changing all parameters by their 
respective standard deviations at the five deciduous forests.   
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aggregation and generalization of the scaled NEE model among the five different deciduous 

forests. Future studies should investigate whether the scaling-based harmonic (ESHA) model can 

provide acceptable predictions of the diurnal NEE cycles for other types of ecosystems. If 

parameters estimated for diverse ecosystem types collapse into narrow ranges, as in the case of 

different deciduous forests, a scaling-based generalized NEE model for many ecosystems may 

not be impossible to achieve. 

2.3.10  Data reliability and model limitations 

The ESHA model parameterization requires at least one (and preferably multiple) 24-hour diurnal 

cycle(s) of NEE for the calibration period. I used level-2 gap-filled NEE data of Ameriflux sites 

to estimate the parameters of the empirical NEE model. These gaps were filled by the AmeriFlux 

data community mostly by using the artificial neural network (ANN) and MDV methods (see 

http://ameriflux.ornl.gov/), which could introduce input data bias and uncertainty in the ESHA 

model evaluations. However, the evaluation data set included gap-filled data at different clock-

hours (mostly during the night time) for different days, while the day-time NEE contributed the 

most part of the diurnal variation of NEE. Impact of data gap-filling bias was also theoretically 

reduced by incorporating a common (two) harmonic model structure for different days during the 

model evaluation period (2005-2013) among different stations. Any input gap-filled data bias on 

parameter estimation was further reduced practically (in an inverse manner) by averaging the 

daily estimated parameters temporally (May-October) and spatiotemporally (among the five study 

forests) during the four years of model calibrations (i.e., parameter estimation periods) in order to 

obtain, respectively, the site-specific and the generalized prediction models for the deciduous 

forests. The calibrated ensemble models can be utilized to obtain spatiotemporally robust 

predictions and gap-filling of the high resolution (e.g., hourly) NEE diurnal cycles (particularly 

those not included in the calibration) from their corresponding single reference observations. 
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Reliability of the AmeriFlux NEE data is another crucial aspect for evaluation of the 

ESHA model. Schmidt et al. (2012) reported 8.2% relative error (random sampling errors for 

specific averaging times) for carbon dioxide fluxes of the AmeriFlux measurements; other studies 

(Berger et al., 2001; Soegaard et al., 2000) reported around 7% or less error during the day and 

12% at night. Presence of outliers, particularly at the reference time, would lead to inaccurate 

scaling of the diurnal NEE cycles, ultimately providing unreliable predictions of the hourly NEE 

(Grove and Hollinger, 2006). The extreme outliers were removed from the NEE time series based 

on IQR criteria. Further, to minimize the impact of outliers on predictions, the estimated daily 

parameters of the harmonic model were filtered by retaining values within their respective 3rd and 

97th percentile ranges. Although the filtering excluded 12-15% of daily parameters from the 

calculation of the ensemble parameters for each forest, the ensemble parameters were utilized to 

predict all diurnal cycles of the model evaluation periods (including the calibration days filtered 

by the 3rd to 97th parameter percentiles criteria). The impressive prediction performance of the 

site-specific and the generalized deciduous forest models, in hindsight, indicate the effectiveness 

of the applied parameter filter to reduce the impact of outliers on the overall model predictions.  

The temporally and spatiotemporally ensemble harmonic models could not accurately 

predict the extreme values of NEE for some study forests (Figure 2.10); this can be seen as a 

limitation of temporal and spatiotemporal aggregations (averaging) of the harmonic model 

parameters. However, the day-specific parameters of the harmonic model can more accurately 

predict the extreme values of NEE. Furthermore, reliable prediction of high extremes is also 

unlikely from a conventional process-based model (see the “Introduction” for examples of 

process models). The extreme values could be better predicted using statistical models 

specifically designed to predict extremes.  
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2.4  Conclusions  

A scaling-based empirical model was developed by utilizing an extended stochastic harmonic 

analysis algorithm (ESHA) to obtain spatiotemporally robust predictions of the diurnal cycles of 

growing season terrestrial NEE from the corresponding single reference observations. Model 

evaluations with data from five deciduous forests during 2005-13 showed a parsimonious set of 

five dimensionless parameters, which exhibited spatiotemporal robustness by collapsing into 

relatively narrow ranges (i.e., no clear trends or groupings) among different days and sites. The 

model parameters were also insensitive to the individual forest-specific crucial drivers (PAR, 

temperature, and SWC) of ecosystem carbon exchange. Impressive predictions of the hourly NEE 

for different days and years with an ensemble seasonal (June-September of four calibration years) 

set of model parameters demonstrated the temporal robustness of the scaled harmonic model. The 

analytically derived parameter sensitivity coefficients and uncertainty measure showed a notable 

robustness of the model predictions to the standalone and simultaneous perturbations in 

parameters. An upscaled, generalized deciduous forest model showed similar performance to that 

of the individual forest-specific models; demonstrating the spatiotemporal robustness of the 

scaled NEE model in predicting the diurnal NEE cycles for different forest sites. 

The relatively robust empirical NEE model, once parameterized, can be applied for 

simulating continuous (e.g., hourly) NEE time-series from a single reference observation (or a set 

of limited observations) at the same or similar ecosystem sites without requiring day- or site-

specific calibrations. The method can potentially be used for a robust estimation of missing data 

and gap-filling in observed time-series of NEE or other periodic ecohydrological variables (e.g., 

latent heat flux, sensitive heat flux) for diverse terrestrial ecosystems. Since the harmonic model 

can construct the entire diurnal cycle of NEE, it can lead to an accurate estimate of the longer 

temporal-scale (e.g., weekly, monthly, seasonally) ecosystem carbon budget; aiding to derive 
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appropriate strategies for green carbon management.  Currently, the model is limited to the 

growing season NEE because of the requirement of well-defined diurnal cycles; however future 

work should investigate the possibility of the inclusion of dormant season in the model. A 

possible option could be the use of day-specific multiple reference observations to force the 

model to predict the daily NEE cycles, which are not well-defined.  

The scaling-based ESHA algorithm (Abdul-Aziz et al., 2007a) to predict the diurnal NEE 

cycles is a novel approach in ecological modeling. The spatiotemporal robustness of model 

parameters, as well as the good predictions from the individual and the generalized deciduous 

forest models, highlighted the effectiveness of the scaling method to unravel and utilize the 

underlying ecological similitude (i.e., similarities leading to the parametric reduction) for 

achieving a useful generalization among different days and forests, which represented a moderate 

geographical gradient in climate, topography and land uses, soil type, hydrology, forest stand age 

and ecology. The ecological similitude and scaling merits further research in order to achieve 

robust estimations and predictions of the carbon budget for diverse ecosystems across a range of 

spatial and temporal scales. 
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Appendix 

Parameter estimation framework of ESHA 

The development of the mathematical framework of ESHA was presented in details by Abdul-

Aziz et al. (2007a). Compared to the classical harmonic analysis, we briefly describe the ESHA 

parameter estimation framework here. According to Priestley (1981), a stochastic Fourier series 

)(ty  is defined as  
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number of harmonics, W = optimum number of harmonics (wave frequencies and corresponding 

wave patterns are knows as harmonics) to avoid frequency aliasing (for proper representation of 

the diurnal cycle with minimum number of harmonics), 0a = non-oscillatory ( 0=k ) model 
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known value κ (kappa), which is the observation at the reference time ( reft ). At that particular 

reference point (tref)  i.e., κ== )()( refref tyth (for our application, 0.1)(* == reftNEEκ ) the 

observed and modeled values are same because h(t) is passed through at the reference point. The 

non-oscillatory component parameter of 0a  is, therefore, defined from Eq. (1) as  
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The parameters associated with the oscillatory model components ( ka , kb ;

Wk ,...,2,1= ) are estimated first using the least-squares error minimization method. Abdul-

Aziz et al. (2007a) presented a system of equations to estimate ka  and kb  as 
 

RQP 1−=                  (iii) 

where P  = parameter (i.e., kk ba ˆ,ˆ  for 0≠k with ‘hat’ representing estimation) vector of length 

W2 , Q = WW 22 ×  non-singular transition matrix, and R = vector of length W2 with terms 

associated with the observations )(ty  and the reference-time observation κ . The parameter 0â  

is then computed from Eq. (ii).  

ESHA parameter estimation matrix for two harmonics:  
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where n  is the total number of observations in a complete cycle ( n  = 24 for our diurnal NEE 

cycle), and 

)2(cos
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Mathematical expressions for RSR and NSE: 

The ration of root-mean-square error to the standard deviation of observations (RSR) can be 

computed as: 
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where N= total number of observations, obsiNEE , and mod,iNEE = the thi observed and predicted 

NEE (respectively), and 
obsNEEσ is the standard deviation of all NEE observations. 

The Nash-Sutcliffe Efficiency (NSE) can be calculated as follows: 

2
1 obsobs,

2
1 obs,mod,

)(
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∑
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−
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i i
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i ii

NEENEE

NEENEE
NSE  

where obsNEE is the average of all NEE observations and others are as previously defined.  
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Chapter 3: Harmonic modeling of wetland net ecosystem exchange (NEE): Application of 

scaling for similarity and robust predictions 

Abstract 

A scaling-based harmonic model is developed by using an extended stochastic harmonic 

algorithm (ESHA) to achieve robust predictions and simulations of the diurnal cycle of wetland 

net ecosystem exchange (NEE) from a single reference observation. Scaling of the diurnal NEE 

cycles was performed by normalizing each diurnal cycle with a corresponding reference-time 

observation; leading to a single, generalized diurnal curve and dimensionless model of NEE.  The 

scaled, dimensionless model was evaluated with different five year data for a coastal freshwater 

wetland (Florida Everglades Taylor slough marsh; 2008-12) and an inland shrub wetland (Lost 

Creek, Wisconsin; 2004-08), as available in the AmeriFlux network. The optimal model involved 

only five parameters, which exhibited temporal robustness by collapsing into narrow ranges 

among different days and years. The model parameters did not show any notable trends or 

patterns with the commonly known drivers (e.g., photosynthetically active radiation, temperature, 

and wind speed) of wetland NEE. Model calibrations showed impressive efficiency (R2 = 0.64 to 

0.70; Nash-Sutcliffe Efficiency, NSE = 0.62 to 0.66) and accuracy (ratio of root-mean-square-

error to the standard deviation of observations, RSR = 0.58 to 0.62) in predicting the hourly NEE 

for the study wetlands. The equally impressive performance was noted in model validations with 

independent data. Successful predictions of the hourly NEE for different days of different years at 

each site with the corresponding temporally ensemble set of model parameters indicated the 

robustness of the scaled model. Model robustness was further demonstrated by analytically 

deriving the parameter sensitivity and model uncertainty measures, and quantifying them with 

observed data. The research presents an important example of scaling applications in ecological 

engineering to achieve ecological similitude and useful generalization in time despite the complex 
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processes of wetland carbon dynamics. The scaled harmonic NEE model can be used for a robust 

prediction and gap-filling of continuous (e.g., hourly) NEE time-series of different days and years 

from the corresponding single (or multiple) reference observations for various wetland 

ecosystems.  

3.1 Introduction 

Wetlands are considered one of the most productive ecosystems on earth (Reddy and DeLaune, 

2004). Subject to the high rates of carbon sequestration (Bridgham et al., 2006), wetlands play an 

important role in global carbon dynamics. Wetland net ecosystem exchange (NEE) is a key 

indicator of wetland carbon balance, representing the net exchange of CO2 between the ecosystem 

and the atmosphere (Xiao et al., 2014). Availability of continuous (e.g., hourly) NEE data is 

essential for accurate estimations of wetland carbon budgets for the relatively longer time-scales 

(e.g., daily, monthly, annually), which ultimately contributes to the development of strategies for 

an appropriate management of wetland carbon. NEE generally represents a concave diurnal cycle 

due to the daytime photosynthesis (downward, negative fluxes) and nocturnal respiration 

(upward, positive fluxes). However, subject to the influence of diverse biological, hydrological 

and climatic attributes and drivers (e.g., ecosystem structure, plant type, solar radiation, 

aerodynamic turbulence, temperature, soil characteristics, water level), the diurnal NEE cycles 

can substantially vary among different days  (both intra- and inter-annually) at the same 

(Sagerfors et al., 2008) and/or different sites (Moore et al., 2002). Multiple constraints (e.g., 

instrument failure, rough weather condition, and a breach in micrometeorological hypothesis, lack 

of resources and manpower) can make it difficult to collect high frequency, continuous NEE for 

all 24-hours of a day using latest technologies such as the eddy-covariance towers (Baldocchi, 

2003) or flux chambers. The sampling constraints result in sparse data or gaps in the 

measurement of continuous NEE for wetlands. For example, eddy-covariance based AmeriFlux 
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network (Baldocchi, 2003) encounters on average 35% gaps in their half-hourly observations 

annually for different ecosystems (Falge et al., 2001). A standard modeling approach is, therefore, 

needed for robust predictions and gap-filling of continuous (e.g., hourly) NEE for wetland 

ecosystems from the available sparse or incomplete time-series observations. 

Several process-based (i.e., mechanistic) models (e.g., Cao et al., 1996; Potter, 1997; 

Walter and Heimann, 2000; Zhang et al., 2002; van Huissteden et al., 2006) are available for the 

estimation and prediction of carbon (CO2 and CH4) fluxes mainly from the freshwater wetlands. 

The wetland-DNDC (Zhang et al., 2002; Cui et al., 2005) exemplifies a commonly used wetland 

model in the last decade. More recent process models of wetland carbon dynamics can include the 

LPJ-WHy v1.2 (Wania et al., 2009), McGill (St-Hilaire et al., 2010), ecosys (Dimitrov et al., 

2010; Grant et al., 2012), peatland DOS-TEM (Fan et al., 2013), WetQual-C (Sharifi et al., 2013), 

and CoupModel (Jansson, 2012; Metzger et al., 2015). The mechanistic models are generally 

built on numerous scientific hypotheses, incorporating different process-components (climate, 

hydrology, plant biology and ecology, and soil biogeochemistry) and drivers (e.g., vegetation 

structure and functions, solar radiation, temperature, soil formation, water level) of wetland 

ecosystems. The process-oriented carbon dynamics models, therefore, often involve a complex 

structure and are over-parameterized, requiring data for many input variables that are not always 

available; the large parameter sets and input variables also lead to predictions with high 

uncertainty. 

Data-driven carbon dynamics models can be built on robust empirical patterns hidden in 

observed data, without necessarily relying on complex scientific hypotheses. Empirical models 

formulated by mainly considering dominant process variables, as identified by applying 

ecological data-analytics tools (see Ishtiaq and Abdul-Aziz, 2015), would require a significantly 

reduced set of input variables and parameters, which can ultimately lead to predictions with much 
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less uncertainty. The structurally simple empirical models are computationally inexpensive, and 

can be used as efficient and handy ecological engineering tools for predictions, estimations and 

gap-filling of wetland NEE without requiring much expert knowledge.  

Available data-driven wetland models were developed mainly to explain (rather than 

predict) the influence of different climatic, hydrologic, ecological and biogeochemical drivers on 

the wetland carbon (CO2 and CH4) fluxes. Previous research (e.g., Yvon-Durocher et al., 2014; 

Schedlbauer et al., 2012; Yurova et al., 2007; Xing et al., 2005; Smith et al., 2003; Hargreaves 

and Fowler; 1998; Frolking and Crill, 1994; Dise et al., 1993; Roulet et al., 1992; Moore and 

Knowles, 1990; Bartlett et al., 1987; Sebacher et al., 1986) presented regression-based empirical 

models mainly for explaining the correlations of carbon fluxes with the climate, soil, and other 

environmental variables. Furthermore, various empirical models of CO2 fluxes were used to fill 

gaps in the relatively large, continuous (e.g., half-hourly) database of the AmeriFlux network, 

which includes many terrestrial (and some wetland) ecosystems. These empirical gap-filling 

methods include the application of mean diurnal variation (Falge et al., 2001); ‘look-up’ tables 

developed based on ambient environmental conditions (Falge et al., 2001); and parametric and 

non-parametric statistical approaches, including  artificial neural networks and non-linear 

regressions (e.g., Stauch and Jarvis, 2006; Braswell et al., 2005; Jarvis et al., 2004; Hui et al., 

2004; Papale and Valentini, 2003; Aubinet et al., 1999; Valentini et al., 1996; Lloyd and Taylor, 

1994; Michaelis and Menten, 1913).  

The cyclic pattern of ecological and environmental variables such as the wetland NEE 

inspires the development of relatively simple, predictive harmonic (i.e., empirical) models by 

leveraging the well-known Fourier series expansion (Priestley, 1981). A remarkable advantage of 

harmonic analysis over other regression (empirical) or complex process-based models is that the 

Fourier model development mainly requires data for only the predictant (e.g., NEE) itself. An 
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optimal (parsimonious) harmonic model can also provide useful predictions with a small set of 

parameters, which can lead to reduced model uncertainty (e.g., see Abdul-Aziz et al., 2007; 

Abdul-Aziz and Ishtiaq, 2014). Although the classical harmonic analysis (Priestley, 1981) has 

been widely used to develop empirical models in numerous applications of environmental and 

water resources engineering (e.g., Kumar et al., 2006; Dyar and Alhadeff, 2005; Meyers et al., 

2001; and Nestler and Long, 1997), only a few studies applied harmonic functions for the 

modeling of ecosystem CO2 exchanges. Richardson and Hollinger (2005) and Hollinger et al. 

(2004) developed second order harmonic regression models to predict nocturnal CO2 fluxes of 

terrestrial ecosystems. Griffis and Rouse (2001) utilized the fast Fourier transformation and 

power spectral analysis to predict the inter-annual variability of NEE from a northern wetland 

(i.e., peatland). 

A general shortcoming of both the empirical and process-oriented carbon dynamics 

models is that the model parameters are mostly specific to the particular sites and/or time-frames 

of evaluation data, often requiring a new model calibration for a different site or time domain. 

Application of scaling can transform observations of different time and/or space domains to a 

comparable reference platform. Scaling has been widely used in numerous environmental science 

and water resources engineering applications (e.g., Hondzo and Wannaars, 2008; Warnaars et al., 

2007; Milne et al., 2002; and O’Connor et al., 2006) to develop robust models by leveraging the 

underlying similitude (similarity) among different references. Abdul-Aziz et al. (2007a) proposed 

a novel scaling approach to develop an extended stochastic harmonic analysis algorithm (ESHA), 

which can convert periodic variables (e.g., stream dissolved oxygen, DO) measured at different 

clock-times to that at a referenced time (e.g., noon) of the day. Abdul-Aziz and Ishtiaq (2014) 

expanded the ESHA to develop a scaling-based empirical model that can robustly predict the 

entire diurnal cycles of stream DO for different days and sites from the corresponding single 

reference observations. Following the successes, Ishtiaq and Abdul-Aziz (2015) leveraged the 
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scaling and ESHA framework to successfully develop a spatiotemporally robust model for the 

prediction and gap-filling of terrestrial NEE time-series with a high resolution (e.g., hourly) based 

on limited available data by considering five different AmeriFlux deciduous forests as the case 

studies (see chapter 3). Upscaling of the five forest-specific models to a generalized deciduous 

forest model (i.e., one set of parameter values for all forests, seasons, and years) showed a 

remarkable robustness in predicting the diurnal NEE cycles of different deciduous forest sites 

with impressive model efficiency (e.g., coefficient of determination, R2 = 0.60 to 0.81) and 

accuracy (ratio of root-mean-square error to the observed standard deviation, RSR = 0.46 to 

0.64). 

This paper leverages the ESHA-based stream DO model of Abdul-Aziz and Ishtiaq 

(2014) (see chapter 2) to develop a scaling-based harmonic model to robustly predict/simulate the 

different diurnal cycles of wetland NEE from the corresponding single reference observations. 

The study builds on a hypothesis that an appropriate scaling of the different diurnal cycles of 

NEE by the corresponding single reference observations would lead to a general, dimensionless 

diurnal NEE curve for the same or similar wetlands. The generalized NEE curve, once fitted with 

observations, would provide a parsimonious set of parameters that are relatively invariant (i.e., 

stationary) in time, leading to an empirical model to robustly predict wetland NEE with high 

temporal resolutions. The model is evaluated with hourly NEE observations of different days for 

different years from two AmeriFlux wetland sites, representing a coastal freshwater wetland and 

an inland shrub wetland (i.e., to incorporate the coastal vs. inland gradient). Analytical measures 

of model sensitivity and uncertainty are derived and quantified with the evaluation data to further 

demonstrate the model robustness.  
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3.2 Materials and methods 

3.2.1  The scaling-based harmonic model theory  

The underlying theory of the proposed harmonic model is that wetland NEE follow cyclic 

(periodic) diurnal patterns, which can be generalized into a single, dimensionless NEE diurnal 

cycle through scaling (normalizing) by the corresponding single reference observations. The 

assumption of periodic diurnal variation for NEE appears reasonable year round for tropical 

wetlands, while representing mainly the growing seasons (e.g., June-September) for wetlands of 

the temperate and colder regions. Abdul-Aziz and Ishtiaq (2014) described the ESHA modeling 

concept and scaling application for stream DO. Following their work, a conceptual illustration is 

made by using a schematic of several hypothetical diurnal cycles of NEE representing different 

days (1, 2, ….., N) for a single or similar wetland sites (Figure 2.2a). An un-scaled harmonic 

model would ideally require N unique sets of parameter values to represent the N diurnal cycles 

of NEE. In contrast, the scaling-based ESHA (Abdul-Aziz et al., 2007a; Abdul-Aziz and Ishtiaq, 

2014) can provide a single set of model parameters across time. The ESHA scales (i.e., 

normalizes) each diurnal cycle by a corresponding reference-time ( reft ) single observation

refNEE . The normalization leads to a desired collapse of different NEE cycles on a generalized, 

dimensionless diurnal NEE curve ( *NEE ) that has a value of unity (i.e., 0.1* =NEE ) at the reft

(Figure 2.2b). The scaled model ( *NEE ) is then estimated with the ESHA parameterization 

framework (Section 4.2.2) using observational data. The dimensionless model is ideally robust 

because it represents all simulation days at the same or similar sites with a single set (instead of N 

sets for N days) of parameters. The different day-specific NEE cycles are then obtained by 

multiplying the estimated *NEE  model by the corresponding single reference observations,

refNEE .  
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3.2.2 Estimation of ESHA model parameters 

The theoretical framework of ESHA was originally developed and presented in rigorous details 

by Abdul-Aziz et al. (2007a). A simplified summary of the ESHA parameter estimation 

framework was also presented by Abdul-Aziz and Ishtiaq (2014). To aid the readers, the 

mathematical framework of ESHA is also briefly, but adequately described in this paper. A 

stochastic Fourier series, )(ty  (Priestley, 1981) is defined as   

)()()()]2sin()2cos([)(
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0 tthttfbtfaaty kk
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k
kk εεππ +=+++= ∑

=
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where =)(ty periodic response variable (i.e., *NEE ), =t time (predictor variable), k = number 

of harmonics, W = optimum number of harmonics for avoiding frequency aliasing, 0a = non-

oscillatory ( 0=k ) model component, ka  and kb = Fourier coefficients associated with the 

oscillatory components of the harmonic series, 
tn

k
t
kfk ∆
=

′
=  = k th harmonic frequency, n = 

total number of observations within one diurnal cycle t ′ (e.g., n = 24 for t ′= 24 hours of a diurnal 

cycle), t∆  = sampling interval (e.g., 1 hour), )(tε  = random error, and )()()( ttyth ε−= is the 

harmonic process. 

Unlike classical harmonic analysis to simultaneously estimate the model parameters ( 0a , 

ka  and kb ) by a least-squares error minimization between the model and observations, the ESHA 

first forces the harmonic process )()()( ttyth ε−=  to pass through a known value κ (kappa), 

which is the observation at the reference time ( reft ). This additional forcing results in a “zero” 

modeling error at reft , i.e., κ== )()( refref tyth ; based on Fig. 1b, 0.1)(* == reftNEEκ
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for our NEE modeling. The non-oscillatory model component parameter of 0a  is then derived 

from Eq. (1) as 

)]2sin()2cos([
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             (2)
 

First, the parameters associated with the oscillatory model components ( ka , kb ; Wk ,...,2,1= ) 

are estimated using a least-squares error minimization method from a system of equations as 

(Abdul-Aziz et al., 2007a)
 

RQP 1−=                   (3) 

where P  = parameter (i.e., kk ba ˆ,ˆ  for 0≠k with ‘hat’ representing estimation) vector of length 

W2 , Q = WW 22 ×  non-singular transition matrix, and R = vector of length W2 with terms 

associated with the observations )(ty  and the reference-time observation κ . The parameter 0â  is 

then computed from Eq. (2). An explicit form of Eq. (3) for two harmonics (i.e., 2=W ) is 

presented in the Appendix of chapter 3 for convenience of the readers. 

Compared to a classical harmonic analysis, the ESHA provides the correct parameter 

estimation framework to force the harmonic model through the reference-time normalized 

observation (e.g., 0.1)(* =reftNEE ).  The forcing, in turns, allows the proper reconstruction of 

the entire diurnal cycle of NEE from a single reference observation. 

3.2.3 The ESHA modeling algorithm for wetland NEE 

Development of the scaling-based ESHA model requires continuous (e.g., hourly) NEE data for 

at least one (and for preferably multiple) 24-hour diurnal cycle(s) for a single or multiple similar 
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wetlands. Model application requires at least a single reference-time observation to predict the 

corresponding diurnal cycle. The modeling algorithm is stated as follows:  

1. Collect hourly ( t ) NEE data, )(tNEE  for multiple 24-hour cycles. 

2. Select a reference-time ( reft ) observation, )( refref tNEENEE = for each cycle. 

3. Normalize (i.e., scale) each NEE cycle by the corresponding day-specific reference 

observation ( refNEE ) to obtain a dimensionless cycle as: refNEEtNEEtNEE /)()(* = . 

4. Fit each diurnal cycle of )(tNEE ∗ by applying the ESHA parameter estimation 

framework (Section 4.2.2). 

5. Obtain a robust (generalized for different days) scaled model, )(*
mod tNEE with the 

ensemble averages of daily estimated parameters. 

6. Predict the individual diurnal cycles, )(mod tNEE  by multiplying the generalized scaled 

model, )(*
mod tNEE  by the corresponding single reference observations ( refNEE ) as: 

)()( *
modmod tNEENEEtNEE ref ×= . 

3.2.4 Study wetlands and data sets 

Although the eddy-covariance technique has become a major mode of measuring ecosystem level 

CO2 fluxes, wetlands are not extensively represented in the flux (i.e., AmeriFlux) network (Lund 

et al., 2010). In fact, AmeriFlux (Baldocchi, 2001) includes a limited number of wetlands and all 

of them are not fully operational. Choice of the wetland case study sites was primarily based on 

the availability of continuous (e.g., hourly) NEE data with periodic diurnal patterns. Further, the 

presence of spatial, climatic, hydrological, biogeochemical, and ecological gradients among 

different study sites were considered critical to test the model effectiveness for different wetland 
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types. Based on the criteria, the scaling-based harmonic NEE model were evaluated for two 

wetlands (Table 3.1, Figure 3.1) from the AmeriFlux network (AmeriFlux website, 2014): (1) 

Florida Everglades Taylor Slough short hydroperiod marsh, Florida (US-Esm) and (2) Lost 

Creek, Wisconsin (US-Los); representing coastal freshwater marsh and inland shrub wetland, 

respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Study area and geographic locations of the selected AmeriFlux wetland study sites  
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The Taylor Slough marsh typically experiences seasonal flooding for approximately five 

months in a year (Schedlbauer et al., 2010). It has been one of the extensively managed wetlands 

in terms of hydrology, with water flows being controlled by a combination of optimized pumping 

and constructed levees (Kotun and Renshaw, 2014). Sawgrass (Cladium jamaicense) and C4 

muhly grass (Muhlenbergia capillaris) are the most prevailing vegetation and primary producers 

at this site; additionally, periphyton and submerged macrophytes geochemically fixed CO2 (e.g., 

as CaCO3) during flooding seasons (Schedlbauer et al., 2012). The Lost Creek is a minerotrophic 

shrub wetland located around 480 m above the mean sea level (Sulman et al., 2009). Alder (Alnus 

incana subsp. rugosa), willow (Salix sp.) and sedges (Carex sp.) dominate the vegetation around 

the flux tower at this site. Soil is poorly drained, mostly composed of Totagatic-Bowstring-

Ausable complex, Seelyeville and Markey mucks.  

Table 3.1: Summary of the study sites and NEE data collection period 

 

The hourly NEE (µmol/m2/s) observations of different 24-hour (starting from 1:00 A.M.) 

diurnal cycles during 2004-12 (US-Los: 2004-08, and US-Esm: 2008-12) were sub-sampled from 

the AmeriFlux half-hourly time-series. In addition, daily average photosynthetic active radiation 

(PAR), air temperature (TA), wind speed (WS), and water level (WL) were obtained from the 

AmeriFlux network to investigate the temporal relationship between the model parameters and 

the important drivers of wetland NEE at the study sites. The selected data sets would reflect the 

impact of seasonal and inter-annual variability of the wetland carbon fluxes and associated major 

drivers in evaluating the model performance. 

Site name Latitude 
(0N) 

Longitude 
(0W) Climate Data Period 

Florida Everglades Taylor Slough 
Short Hydroperiod Marsh, FL (US-
Esm) 

25.44 80.59 Tropical 2008-12 

Lost Creek, WI (US-Los) 46.08 89.98 Northern 
Continental 2004-08 
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Based on the standard AmeriFlux sign conventions, negative NEE indicates the 

downward (atmosphere to wetland) fluxes and positive NEE represents the upward (emissions to 

the atmosphere) fluxes. The hourly NEE time-series of the study periods showed year-round 

productivity for the Taylor Slough (US-Esm); the Lost Creek (US-Los) was substantially less 

productive during winter and spring compared to that for the growing seasons (Figure 3.2). 

Taylor Slough NEE also showed clear diurnal cycles for the entire year, whereas a periodic 

diurnal pattern for the Lost Creek were apparent mainly during the growing period (June-

September). Since ESHA assumes periodic diurnal cycles in NEE, hourly gap-filled data for four 

years (2008-11) (total 1461 diurnal cycles) were considered for parameter estimation and model 

calibration at the Everglades Taylor Slough site. In contrast, the extended growing period (June-

September) NEE time-series between 2005 and 2008 (480 diurnal cycles) were used for model 

calibration at the Lost Creek wetland site. However, un-filled NEE data of different one year 

periods (independent of the model calibration years; Taylor Slough: 2012, Lost Creek: 2004) 

were used for the model validations. Consideration of un-filled data for model validations would 

strengthen the model evaluation process by avoiding any bias originating from the usage of gap-

filled data during the calibration phase of the model.  

3.3 Results  

3.3.1 Selection of an optimal model 

Optimal number of harmonics 

Following Abdul-Aziz and Ishtiaq (2014), a slightly modified version of the Akaike Information 

Criterion (AIC) (Akaike, 1974) was used to determine the optimal number of harmonics for a 

parsimonious model (involving minimum parameters) without compromising the prediction 

accuracy. For both the study sites, two harmonics (W = 2) resulted in the minimum AIC to 
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optimally predict hourly *NEE by the dimensionless, scaled model over the entire study periods 

(Figure 3.3a). The selection limited the number of model parameters to five dimensionless 

numbers ( 0â , 1â , 2â , 1̂b , and 2b̂ ) for each site. Ishtiaq and Abdul-Aziz (2014) and Abdul-Aziz 

et al. (2007) also considered an optimal number of two harmonics for their scaling based ESHA 

models to predict terrestrial NEE and stream DO, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Plot of the hourly net ecosystem exchange (NEE) of Taylor Slough and Lost Creek 
sited for 2008 showing variation in diurnal cycles of NEE (upper panel).  100th and 200th Julian 
days are zoomed in for Taylor slough and Lost creek from 2008 hourly NEE data to see the 
diurnal variation of NEE for these two sites at different season (lower panel).  
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Figure 3.3: Optimization of the ESHA model for the selection of (a) maximum number of 
harmonics required for model simulation by plotting  the normalized AICNEE* with the number of 
harmonics )(W and (b) best reference time )( reft from the 24-hour period  that could be used for 
modeling from a plot of  coefficient of determination, R2 and different diurnal hours  for two 
study wetlands. 

 
Optimal reference time 

In theory the ESHA framework allows the selection of any diurnal hour as the reference-time       

( reft ) and the associated NEE observation as the reference observation for scaling the respective 

diurnal cycle. The impact of using different diurnal hours (from the 24-hour cycle) as the 

reference time on the wetland *NEE model predictions was assessed by plotting the chosen 

diurnal hours versus the coefficient of determination (R2), as obtained by using a two harmonic 

(a) 

(b) 
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model. As shown in Figure 3.3b, the time-window of 10-14 hours (i.e., 10:00 A.M. to 2:00 P.M.) 

provided the higher model prediction efficiencies (i.e., explaining more variance in observed 

data) for both study sites. Specifically, it is reasonable to state that scaling different diurnal cycles 

by the corresponding midday (12:00 P.M.) reference observations provided an optimal modeling 

performance for both the Taylor Slough (coastal Everglades freshwater wetland) and Lost Creek 

(inland shrub wetland) study sites. Similar finding was reported by previous studies (e.g., Abdul-

Aziz et al., 2007a; Abdul-Aziz and Ishtiaq, 2014) that predicted the different diurnal cycles of 

stream DO using the ESHA framework. 

3.3.2 Robust estimation of model parameters 

The site-specific model fitting and calibration estimated five dimensionless model parameters (

0â , 1â , 2â , 1̂b , and 2b̂ ) of the scaled NEE model ( *
modNEE ) with hourly NEE data of 1461 

days (January-December, 2008-11) and 480 days (June to September, 2005-08) from, 

respectively, the Taylor Slough and Lost Creek wetlands. To avoid model bias toward any 

outlying diurnal cycles for each site, the respective daily parameter values outside their 1st  and 

99th percentiles were identified, and the corresponding diurnal cycles of observed NEE were 

removed from the calibration data sets for both study sites. This filtering led to the exclusion of 

around 4%  and 15% of the NEE data-days for Taylor Slough and Lost Creek sites, respectively. 

The model parameters were re-estimated by using the filtered data sets for Taylor Slough (1403 

diurnal cycles) and Lost Creek (408 cycles). The 4-year ensemble sets of different parameters for 

each wetland site were obtained by averaging the respective daily estimates (Table 3.2). 

The multi-year, multi-season temporal means of constant parameter 0â  (the non-

oscillating, major model component representing a quasi-average daily NEE*) were -0.053 and 

0.136 for US-Esm and US-Los, respectively. Observed significant difference of 0â between the 
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wetland sites revealed two separate climatic and biogeochemical processes that lead to a 

variability in NEE, which is also apparent from Figure 3.2.  However, first harmonic parameters 

of 1â  and 1̂b  (representing the primary oscillations of the diurnal cycle) and the second harmonic 

parameters of 2â and 2b̂ (representing the secondary oscillations) had more comparable values for 

the two drastically different case study wetlands (Table 3.2).  

Table 3.2: Means of (averaged over the calibration period) estimated model parameters at study 
sites 

 

 

 

Notes: Notes: Values in parentheses are the standard deviations of the estimated parameters. Hat 
(˄) sign represents fitted or estimated parameters of the Fourier series. 
 

Temporal trends of model parameters were investigated by plotting the filtered (i.e., 

within the respective 1st and 99th percentiles), day-specific estimates of 0â , 1â  and 1̂b with the 

corresponding cumulative parameterization days of calibrations for the study wetlands (Figure 

3.4a,b). The parameters ( 0â , 1â  and 1̂b ) did not show any notable increasing or decreasing trend 

over the estimation period  revealing temporal robustness of the model parameters.  However, 

both 0â  and 1â showed clustered dispersions for each year in late October (late fall) at US-Esm 

(Fig 3.4a); this is likely caused by the less well-defined diurnal cycles of NEE during transitions 

with the winter season. Dispersion in parameter values at the end of September (Fig 3.4b) was 

observed in the US-Los. However, consideration of higher percentile values during filtering could 

eliminate these dispersions, which would reduce the calibration data set of US-Los. Overall, the 

model parameters collapsed into narrow bands among different days for both the wetlands, 

demonstrating impressive temporal robustness.  

Site name 0â  1â  2â  1̂b  2b̂  

Taylor Slough (US-Esm), FL -0.053 
(0.409) 

-0.857  
(0.411) 

0.196 
(0.186) 

-0.091  
(0.20) 

-0.050 
(0.191) 

Lost Creek (US-Los), WI 0.136 
(0.322) 

-0.756  
(0.535) 

0.109 
(0.419) 

0.102 
(0.352) 

-0.058  
(0.320) 
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Figure 3.4: Daily time-series of estimated parameters during the four years of calibration for the 
for the study wetlands, demonstrating the temporal robustness of the model parameters. The a0, 
a1, and b1, respectively, refer to 0â , 1â   and 1̂b where the hat (ˆ) represents estimations.  

 
The relationships between the model parameters and the major process drivers of NEE 

were investigated for the study wetlands to attain mechanistic insights into the temporal 

robustness of estimated parameters. As an example, the daily estimates of the principal parameter, 

0â  and the 1st harmonic parameters ( 1â  and 1̂b ) were plotted with the corresponding 24-hour 

average air temperature (TA),wind speed (WS) and photosynthetic active radiation (PAR) of 

2008 for the study sites for (see Figure 3.5). The daily TA, WS and PAR were normalized by 

their corresponding temporal averages (annual average for US-Esm and June-September average 
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for US-Los) to bring them on a comparable reference scale. Plotted parameters did not display 

any noteworthy trend with the TA, WS and PAR for the wetlands, reemphasizing the robustness 

of model parameters. However, the higher dispersion of 0â and 1â  for the US-Esm suggested 

more variable response of the quasi-average dimensionless daily NEE to the major process 

drivers at this site than that for the other study wetland; this can also explain the higher 

dispersions of 0â  and 1â when plotted with the cumulative model days (see Figure 3.4a).   

The observed collapse (i.e., robustness) of the estimated model parameters is a unique 

outcome of scaling; normalization of the each diurnal NEE cycle by the corresponding single 

reference observation brought parameters of different days into the comparable ranges. The 

impressive temporal robustness of the model parameters suggest that hourly NEE predictions 

made by using the aggregations (i.e., site-specific ensemble mean) of daily parameters over the 4-

year calibration periods would also be robust in time. 

3.3.3 Model evaluations and robust predictions 

The site-specific, temporally ensemble parameters (Table 3.2) were used to predict the hourly 

NEE cycles from the corresponding day-specific single reference observations for all the filtered 

days (US-Esm: 1403 days; US-Los: 408 days) of the study wetlands. Three criteria were used to 

evaluate the model performance (Table 3.3): (i) ratio of root-mean-square error  to the standard 

deviation of observations (RSR) that indicates model accuracy (Singh et al., 2004); (ii) coefficient 

of determination (R2), indicating the amount of observed data variance explained by the model 

(R2 =1.0 indicates a perfect model); and (iii) Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 

1970) that also measures the goodness of model fit (see supplementary note  for the mathematical 

expressions of RSR and NSE). Following the extensive analysis of Moriasi et al. (2007) on model 

performance, an RSR from 0 to 0.50 indicates a perfect to very good model, from 0.5 to 0.6 

indicates a good model, and from 0.6 to 0.7 refers to a satisfactory model; a model with RSR >   
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Figure 3.5: Plots of the daily estimates of the principal model parameter, 0â  and 1st harmonic 

parameters 1â   and 1̂b with the corresponding (as normalized by the respective site-specific 
averages), air temperature (TAdaily/TAaverage), wind speed (WSdaily/WSaverage) and photosynthetic 
active radiation (PARdaily/PARaverage) for the year 2008 at two wetland ecosystesms. The a0, a1, 
and b1, respectively, refer to 0â , 1â   and 1̂b where the hat (ˆ) represents estimations.  

TAdaily/TAaverage 

WSdaily/WSaverage 

PARdaily/PARaverage 
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Figure 3.6: Calibration plots of the hourly predicted and observed NEE of different calibration 
periods for the (a) Taylor Slough (US-Esm) and, (b) Lost Creek (US-Los) using temporally 
ensemble means of site-specific model parameters. Dashed red line represents the 1:1 perfect fit 
line. 
 

Table 3.3: Summary of the results for site specific model calibration and validation at different 
study sites 
  Calibration Validation  
Site Year  R2 RSR NSE Year  R2 RSR NSE 
Taylor Slough (US-Esm) 2008-11 0.70 0.58  0.66 2012 0.70 0.58 0.66 
Lost Creek (US-Los)* 2005-08 0.64  0.62  0.62 2004 0.63 0.64 0.59 
Note: At US-Los hourly NEE data from June to September of different calibration and validation 
years were used 

 

0.70 is considered unsatisfactory. Similar to the R2, the NSE of 1.0 indicates a perfect model, 

whereas NSE > 0 indicates better fitting with the harmonic model than that of the daily mean of 

hourly observations as an alternative model. Model calibration showed an impressive model 

fitting (R2: 0.70 and 0.64; NSE: 0.66 and 0.62) and accuracy (RSR: 0.58 and 0.62) in US-Esm 

and US-Los, respectively (Table 3.3, Figure 3.6).  However, as shown in Figure 3.6, model was 

not able to predict some of the extreme values of NEE properly; the long-term temporal 

aggregation of model parameters might have caused this extreme value induced inaccuracy. 
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Although relatively larger data set was considered for model calibration, US-Esm demonstrated 

better model fitting compare to US-Los. 

The calibrated NEE model was validated with independent single year of NEE data of 

2012 and 2004 (June- September) for US-Esm and US-Los, respectively (Table 3.3, Figure 3.7). 

The data that were used for validation was not gap filled to test the ESHA modeling efficiency for 

both gap-filled and non-gap -filled data as calibration was done from gap-filled data. Since day-

specific single NEE observation at 12: PM ( refNEE ) is required to multiply the *
modNEE  

(estimated from the calibration parameters ) ( Equation 4) for the prediction of the entire diurnal 

cycle during validation period, the days having observed NEE at 12:00 PM were considered for 

validation. As such 191 and 89 days of  NEE diurnal cycles (outside of the respective calibration 

years) were predicted from their corresponding reference-time single observations by using the 

previously estimated site-specific, temporally ensemble parameters. The model validation 

demonstrated nearly equivalent prediction performance (RSR = 0.58 and 0.64; R2 = 0.70 and 

0.63; and NSE = 0.66 to 0.59), compared to that of the calibrations among the study sites (Figure 

3.8).  

Overall, the site-specific model calibrations and validations revealed an impressive 

ability of the scaling-based ESHA model in predicting the entire diurnal cycles of hourly NEE 

from the respective single reference observations. The success in simulating hourly NEE by using 

the temporally ensemble (multi-year, multi-season means) single set of site-specific model 

parameters, also showed the temporal robustness of the scaled model. Since the diurnal NEE 

cycle varies significantly among different days at the same site, a harmonic model without scaling 

cannot predict the different diurnal NEE cycles from a set of ensemble parameters. Scaling by the 

day-specific single reference observations resulted in the collapse of different cycles into a 

general dimensionless diurnal curve (as shown in Figure 2.2) and provided the comparable values 
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of estimated parameters over the entire simulation periods; which led to the temporally robust 

predictions for each wetland 

 

 

 

 

 

 

 

Figure 3.7: Time series plot of the hourly predicted and observed NEE of different validation 
period for the Taylor Slough (US-Esm) and  Lost Creek (US-Los) sites showing impressive 
validation.  
 

3.3.4 Model sensitivity and uncertainty 

Dimensionless sensitivity coefficients of model parameters were analytically derived from 

Equations (3), (4) and (5) presented in chapter 3 (section 3.2.4) to determine the response of 

predicted NEE for any changes in parameters for any day and site.  Normalization of the 

sensitivity parameters by the day- and site-specific single reference observations ( refNEE ) 

ensured their applicability for any day and site.  

At any diurnal hour, the dimensionless sensitivity coefficient for 0â (the non-oscillatory, 

principal model component parameter) was 1.0; referring to a constant, linear rate of change in 

predicted NEE for any change of 0â . The sensitivity coefficients for the oscillatory model 
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component parameters ( kâ and kb̂ ) varied dynamically with the diurnal hours because of the 

involvement with sine-cosine functions (Figure 3.8). Among the different diurnal hours at the 

study wetlands, the sensitivity coefficients of the first harmonic parameters ( 1â  and 1̂b ) varied, 

respectively, between 0 to 2 and -1.0 to 1, whereas both the second harmonic parameters ( 2â and

2b̂ ) varied between -2.0 to 0 and –1 to 1. . The oscillatory component parameters did not show 

any sensitivity at the reference time since the harmonic function (the dimensionless diurnal curve) 

was forced to pass through the reference-time observation.  

Model uncertainty due to the individual parameter uncertainty was computed by 

separately changing each parameter value by the corresponding standard deviation (Table 3.2).  

The Missouri Ozark Forest was considered as an example to demonstrate the computed model 

uncertainty; since the reference-time observation ( refNEE ) can be different on different days, we 

assumed 0.1=refNEE  µmol/m2/s for simplicity and convenience of demonstrating model 

responses to the parameter changes for any day. For the US-Esm, changing the absolute temporal 

mean of 0â (0.053) by the corresponding standard deviation (0.409) resulted in a change of 

0.409 µmol/m2/s in the predicted NEE; changing the harmonic parameters ( 1â , 1̂b , 2â , 2b̂ ) by 

their respective standard deviations resulted in absolute changes of the predicted NEE by up to 

0.822, 0.372, 0.20 and 0.191 µmol/m2/s, respectively. For the US-Los site, changing the 

parameters ( 0â , 1â , 1̂b , 2â , 2b̂ ) by their corresponding standard deviations resulted in absolute 

changes of the predicted NEE by up to 0.322, 1.07, 0.838, 0.352 and 0.320 µmol/m2/s, 

respectively. Overall, individual parameter uncertainty was higher in US-Los than US-Esm due to 

higher standard deviation of the estimated parameters, which was due to fewer observed 

dispersions of the parameter values at US-Esm.  
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Figure 3.8: Variation of dimensionless parameter sensitivity coefficients (
0âS ,

1âS ,
1̂b

S ,
2âS , 

and 
2̂b

S )  with the hours of any diurnal cycle, indicating the model sensitivity for  the study 

wetlands. Since same 12:00 PM was used as a reference time )( reft  for both the wetlands, of 
dimensionless parameter sensitivity coefficients are identical. (Sa0, Sa1, Sa2, Sb1, and Sb2, 
respectively, refer to model sensitivity to 0â , 1â , 2â , 1̂b and 2b̂ ) (upper panel). Bottom panel 
figure showed standard deviations of the predicted hourly NEE as an overall measure of the 
model uncertainty for simultaneously changing all parameters by their respective standard 
deviations at two wetland sites.  

 
However, an overall measure of the model uncertainty for the study wetlands was 

obtained by computing the standard deviations of the predicted NEE for simultaneously changing 

all random parameters by their corresponding standard deviations with a combined first order 

uncertainty analysis (Equation 6, Chapter 2, section 2.2.4) by applying Taylor series expansion 
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(Mays, 2011) and keeping only the first order terms. For a unit reference observation (

0.1=refNEE  µmol/m2/s), standard deviations of the predicted NEE for different diurnal hours 

varied between 0.41 and 0.92 µmol/m2/s for US-Esm the standard deviation of predicted NEE 

varied between 0.32 and 1.15 µmol/m2/s (Figure 3.8).  

3.4  Discussion 

3.4.1 Success in scaling and potential of finding wetland ecological similitudes  

Scaling each diurnal cycle by their corresponding single reference observation brings the collapse 

of all the different diurnal cycles of wetland NEE into a dimensionless single curve that 

ultimately leads to a set of parameters that are temporally robust (Figure 3.4); leverages the 

successful prediction of different NEE cycles of fine resolution. The estimated parameters were 

insensitive to influential drivers of wetland CO2 exchanges (PAR, TA and WS) (Figure 3.5) for 

both the study wetlands (represent coastal freshwater and inland wetland systems) revealing a 

remarkable attribute of scaling in the domain of one of the most complex systems in nature. 

Consideration of four years of data while estimating the parameters strengthen the efficiency of 

the applied scaling technique. Overall, observed success in estimating temporally robust 

parsimonious set of model parameters and good predictions of different entire diurnal cycles of 

NEE representing two completely different wetland environment  and climate, highlighted the 

effectiveness of the scaling method to unravel and utilize the underlying ecological similitude 

(i.e., similarities leading to the parametric reduction) for achieving a useful generalization among 

different days and feasibly among different wetland types representative of  a temporal and 

geographical gradient in climate, topography and land uses, soil type, hydrology, 

biogeochemistry and ecology. The wetland ecological simulates, and scaling analysis requires 

further research for robust estimation and prediction of wetland C budget and sequestration.  
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3.4.2 Gap-filing of wetland NEE time series and predictions 

Proper calibration and validation and the construction of the different diurnal NEE cycles from a 

corresponding day-specific single reference observation provided the potential of gap-filling in 

fine resolution (e.g., half-hourly, hourly) time-series of NEE. Presented modeling approach is 

applicable for the predictions of the NEE diurnal cycles of the relatively ungauged wetlands from 

available limited observations. The AmeriFlux towers historically encountered approximately 

35% missing data annually (includes all types of ecosystems) at the half-hourly scale (Falge et al., 

2001), which hinders the precise estimations of CO2 exchanges and C budget at the longer time-

scales (e.g., weekly, monthly, seasonally). The available gap-filling methods such as the 

empirical mean diurnal variation (MDV) and the semi-empirical non-linear regressions (Falge et 

al., 2001 for details) are generally difficult to apply in complex wetlands; application of MDV 

requires corresponding NEE data for 7 to 14 neighboring observations around the missing value 

for gap filling (Falge et al., 2001)  and the semi-empirical regressions can be applied  when 

corresponding data for the relevant mechanistic predictors (e.g., radiation, temperature) are 

available. So, any of the existing gap-filling methods cannot leverage the limited available data 

for one time instant to estimate the missing NEE for other times within the same or different 

diurnal periods. In contrast, presented scaling-based NEE model can provide  temporally robust 

estimations of missing data and predictions of the entire diurnal cycle of NEE based on a 

corresponding single NEE measurement made at the reference time (mostly noon; can be flexibly 

chosen between 10:00 AM and 2:00 PM). Once the model is parameterized with continuous NEE 

data (of preferably multiple days), the scaled NEE model can be utilized to estimate the entire 

diurnal cycles of NEE for other days by utilizing the corresponding limited observations.  
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3.4.3 Applicability in different ecosystems and spatiotemporally robust predictions 

Each ecosystem has unique climatic, physiological, biogeochemical and ecological 

characteristics, which impose a formidable challenge to the generalization of the predictive 

models for different natural systems. Bringing different ecosystems into a comparable modeling 

framework (time and space transition) for the robust predictions of NEE is an extremely 

challenging undertaking. Although estimated model parameters in this study are temporally 

robust, they did not show significant special robustness since estimated parameters of US-Esm 

were not totally comparable to the parameters of US-Los; presence of high biogeochemical and 

hydrological gradients (one is coastal freshwater marsh, and other is inland shrub wetland) in the 

study ecosystems hinder such spatial collapse. However, presented study and the earlier 

application of this scaling-based ESHA model provided the potential of developing 

spatiotemporally robust predictive models of NEE. Ishtiaq and Abdul-Aziz (2014) successfully 

predicted diurnal cycles of NEE for five different deciduous forests using a single set of model 

parameters derived from the spatiotemporal ensemble of the parameters of five deciduous forests. 

Further research is, therefore, needed to test the applicability of this scaling-based harmonic 

(ESHA) model that can offer acceptable predictions of the diurnal NEE cycles for other types of 

ecosystems apart from deciduous forests and wetlands.  

3.4.4 Limitations of model evaluations 

The ESHA model parameterization requires at least one (and preferably multiple) well-defined 

24-hour diurnal cycle(s) of NEE for the calibration period. Subject to the limited availability of 

continuous (e.g., hourly) time-series data for wetland NEE, we were able to evaluate the model 

for only two sites that mainly represented two different freshwater wetland types (coastal vs. 

inland). Since, US-Los does not have defined diurnal cycle throughout the year (Figure 3.2), only 

summer growing season (June-September) hourly NEE was considered in this study; however, 
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US-Esm had relatively defined diurnal cycle for the entire years of simulations. Level-2, gap-

filled NEE data of AmeriFlux sites were used to estimate the parameters and calibration of the 

NEE model. These gaps were filled by the AmeriFlux data community by using the artificial 

neural network (ANN) and MDV methods (see http://ameriflux.ornl.gov/), which could cause 

input data bias and uncertainty in the ESHA model evaluations. However, consideration of 

common (two) harmonic structure for different days of the model simulation period should 

theoretically lessen the potential gap-filling bias. Data bias was further reduced by the use of the 

temporal ensemble mean (average of daily estimates of parameters) of model parameters during 

model calibration.  Moreover, the successful high-quality validation of the model for the two 

study sites with the non-gap-filled data proved the applicability of the gap-filled data for the 

model calibration.  

Since ESHA model is completely data-driven, the reliability of the AmeriFlux NEE data 

is an essential aspect while modeling. A study on AmeriFlux data quality showed the presence of 

8.2% relative error for CO2 flux measurements (Schmidt et al., 2012).  At daily scale, AmeriFlux 

measurement error was around 7% or less during day 12% at night (Berger et al., 2001; Soegaard 

et al., 2000).  However, if there are outliers being present, particularly at the reference time, that 

might cause inaccurate scaling of the diurnal NEE cycles, which would lead to the unreliable 

predictions of the hourly NEE. Since the NEE data used in this study passed through the QA/QC 

checks, it was assumed that the extreme outliers were removed. Further, to minimize the effect of 

outliers on predictions, the estimated daily parameters of the harmonic model were filtered by 

retaining values within their respective 1rd and 99th percentile ranges and corresponding days were 

excluded from the calibration dataset.  

The temporally ensemble harmonic models could not accurately predict the extreme 

values of NEE for the study wetlands. (Figure 3.6), which is one of the limitations of temporal 
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aggregations (averaging) of the harmonic model parameters. However, the day-specific 

parameters of the harmonic model theoretically can more accurately predict the extreme values of 

NEE. Furthermore, reliable predictions of high extremes are also unlikely by a conventional 

process-based model. The extreme values could be better predicted using statistical models 

specifically designed to predict extremes.  

3.5 Conclusions 

Presented scaling-based ESHA model is a novel way of utilizing scaling technique in modeling 

wetland NEE. Successful scaling of the different NEE cycles without any definite trend of the 

estimated parsimonious set of model parameters lead to the temporally robust predictions of 

different diurnal cycles of wetland NEE from a corresponding single reference observations. 

However, use of multiple reference observations instead of single reference observation as the 

scaling parameter could ideally improve the model predictions, and this assumption is subjected 

to further research.  The model parameters were also nearly insensitive to the individual wetland-

specific crucial drivers (PAR, TA, and WS) of ecosystem carbon exchange. The analytically 

derived parameter sensitivity coefficients and uncertainty measure showed a notable robustness 

of the model predictions to the standalone and simultaneous perturbations in parameters.  

The temporally robust empirical NEE model after parameterization, can be applied for 

simulating continuous (e.g., hourly) NEE time-series from a single reference observation (or a set 

of limited observations) without requiring day -specific calibrations. The method can potentially 

be used for a robust estimation of missing data and gap-filling of observed time-series of NEE or 

other periodic ecohydrological variables (e.g., latent heat flux, sensitive heat flux) for wetland 

ecosystems. Since the harmonic model can construct the entire diurnal cycle of NEE, it can lead 

to an accurate estimate of the longer temporal-scale (e.g., weekly, monthly, seasonally) 

ecosystem C budget; aiding to derive appropriate strategies of wetland carbon management.  
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Presented modeling work also highlighted the scope of applying scaling for the investigation of 

wetland ecological similitude (i.e., similarities leading to the parametric reduction) for achieving 

a useful generalization among different days and wetlands that lead to the robust estimation of 

wetland C budget at different spatial and temporal scales.  
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Chapter 4: Relative linkages of canopy-level CO2 fluxes with the climatic and 

environmental variables for US deciduous forests 

Abstract 

A simple, systematic data-analytics approach was used to determine the relative linkages of 

different climate and environmental variables with the canopy-level, half-hourly CO2 fluxes of 

US deciduous forests. Multivariate pattern recognition techniques of principal component and 

factor analyses were utilized to classify and group climatic, environmental, and ecological 

variables based on their similarity as drivers, examining their interrelation patterns at different 

sites. Explanatory partial least squares regression models were developed to estimate the relative 

linkages of CO2 fluxes with the climatic and environmental variables. Three biophysical process 

components adequately described the system-data variances. The ‘radiation-energy’ component 

had the strongest linkage with CO2 fluxes, whereas the ‘aerodynamic’ and ‘temperature-

hydrology’ components were low to moderately linked with the carbon fluxes. On average, the 

‘radiation-energy’ component showed 5 and 8 times stronger carbon flux linkages than that of the 

‘temperature-hydrology’ and ‘aerodynamic’ components, respectively. The similarity of observed 

patterns among different study sites (representing gradients in climate, canopy heights and soil-

formations) indicates that the findings are potentially transferable to other deciduous forests. The 

similarities also highlight the scope of developing parsimonious data-driven models to predict the 

potential sequestration of ecosystem carbon under a changing climate and environment. The 

presented data-analytics provides an objective, empirical foundation to obtain crucial mechanistic 

insights; complementing process-based model building with a warranted complexity. Model 

efficiency and accuracy (R2 = 0.55 to 0.81; ratio of root-mean-square error to the observed 

standard deviations, RSR = 0.44 to 0.67) reiterate the usefulness of multivariate analytics models 

for gap-filling of instantaneous data.   
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4.1 Introduction 

Terrestrial ecosystems are the major components of earth’s carbon cycle and traditionally 

regarded as the reservoirs of green carbon. Turbulent land-atmospheric fluxes of vertical CO2 

contribute to ecosystem-scale carbon budget by balancing between the above-ground assimilatory 

processes (photosynthesis) and both above-ground and below-ground respiratory processes 

(Heimann and Reichstein 2008; Cao and Woodward 1998; Schimel et al., 2001). The carbon flux-

climate feedback process is sensitive to various meteorological, hydrological, and ecological 

variables at different spatiotemporal scales. Although much research has been conducted to 

characterize the role of key environmental stressors and climatic variability on land-atmospheric 

carbon and heat fluxes (e.g., Schmidt et al., 2011), a robust understanding and prediction of 

turbulent carbon flux dynamics is yet to be achieved (Piao et al., 2013; Morales et al., 2005; 

Geider et al., 2001). Investigation of the relative effects of climatic and environmental variations 

on turbulent carbon fluxes is, therefore, an area of active research. In particular, quantification of 

the relative linkages of climatic and environmental variables with the vertical CO2 fluxes is an 

important step towards building relatively simple empirical to complex mechanistic (i.e., process-

based) models for robust predictions and management of ecosystem carbon. For example, altering 

land uses/cover can change surface albedo (light reflectance), net radiation, temperature, soil 

moisture, heat fluxes, canopy height, and roughness height and friction velocity. Knowledge and 

insights on the relative carbon flux linkages of climatic and environmental variables would, 

therefore, help in developing land management strategies and priorities for a maximum uptake 

(sequestration) and minimum emission of ecosystem carbon.  

Numerous process-oriented biosphere models are available for simulation and prediction 

of carbon fluxes by mechanistically capturing the necessary ecosystem constituents such as plant 

photosynthesis, respiration and soil biogeochemical processes. Examples of mechanistic models 
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include IFUSE (Desai 2010), Ecosystem Demography (ED) (Moorcroft et al., 2001), BIOME-

BGC (Running and Coughlan 1988; Running and Gower 1991), Equilibrium Boundary Layers 

(EBL) (Shir and Bornstein 1977), Carbon Tracker (CT) (http://carbontracker.noaa.gov), HYBRID 

(White et al., 1999), ECOSYS (Grant et al., 2012), CENTURY (Glimanov et al., 1997), 

LINKAGE (Post and Pastor 1996), etc. Most models use photosynthetically active radiation, 

vegetation index, atmospheric CO2 concentration, air and soil temperatures, vapor pressure 

deficit, and soil moisture as inputs (Chen et al., 2011; Sims et al., 2008; Schubert et al., 2012; Li 

et al., 2007). These models attempt to predict sub-daily to seasonal and inter-annual variability of 

carbon flux dynamics. 

Process-based models are built on numerous scientific hypotheses and their outcome 

inherently depends on the embedded process formulations and parameterizations (Beer et al., 

2010; Keenan 2012). Further, mechanistic modeling generally involves a complex structure; 

requires data for many input variables that are not always available, and involves a large 

parameter set making the model predictions quite uncertain. Application of the mechanistic 

models also requires high computational resources, expert knowledge and specialized skills, 

hindering their wide-spread applications as tools for a sustainable management of ecosystem 

carbon under a changing climate and environment.  

Data-driven analytic approaches can lay out the foundation for building an appropriate 

process-based model of warranted complexity. Standard techniques (e.g., linear regressions, non-

linear regressions using mainly Arrhenius and Michaelis–Menten equations, artificial neural 

networks) have already been successfully applied to fill gaps in measured data of ecosystem 

fluxes and environmental variables (Falge et al., 2001; Carrara et al., 2003; Lloyd and Taylor 

1994; Richardson et al., 2006; Hollinger et al., 2004; Barr et al., 2004; Gove and Hollinger 2006; 

Aubinet et al., 1999; Braswell et al., 2005; Hui et al., 2004; and Stauch and Jarvis 2006). Multi-
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scale models were also developed to estimate carbon fluxes from selected ecosystems using 

remotely sensed and in-situ observations of geographical, environmental and meteorological 

variables (e.g., Jahan and Gan 2013;Wylie et al., 2007; Makela et al., 2008; Byrne et al., 2005; 

Oechel et al., 2000). However, lack of knowledge on the general pattern of dominant predictors 

and their complex interactions, as well as site-specificity of estimated model parameters, still 

pose as major gaps in data-driven, robust predictions of terrestrial carbon fluxes.   

In this paper, I present a simple, systematic data-analytics approach to analyze 

observational data and determine the relative linkages of different climate and environmental 

variables with the canopy-level, vertical CO2 fluxes of eight US deciduous forests. Multivariate 

pattern recognition techniques such as the principal component analysis (PCA) and factor 

analysis (FA), in concert with the Pearson correlation analysis, were utilized to classify and group 

climatic, environmental, and ecological variables based on their similarity as drivers, examining 

their interrelation patterns and relative influences in different forest sites. Explanatory partial least 

squares regression (PLSR) models were then developed to estimate the relative linkages of CO2 

fluxes with the climatic and environmental variables. The findings will guide the development of 

parsimonious empirical models, while informing the building of appropriate mechanistic models, 

for robust predictions of ecosystem carbon fluxes from the deciduous forests and other similar 

ecosystems. 

4.2 Materials and methods  

4.2.1 Study sites  

The study sites include the following eight deciduous broad-leaf forests, ranging from the upper 

mid-western to the northeastern USA (Figure 4.1): (i) Bartlett Experimental Forest, New 

Hampshire; (ii) Harvard Forest, Massachusetts; (iii) Missouri Ozark, Missouri; (iv) Morgan 
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Monroe State Forest, Indiana; (v) Ohio Oak Openings, Ohio; (vi) Silas Little Experimental 

Forest, New Jersey;(vii) University of Michigan Biological Station (UMBS), Michigan; and (viii) 

Willow Creek Forest, Wisconsin. Although these sites have similarity in vegetation cover, they 

represent diversity in climate, topography, land uses, soil and hydrologic patterns, etc. 

Consideration of the relatively large geographical region, therefore, incorporates a potentially 

high spatial gradient in land-atmospheric carbon flux dynamics. 

 
Figure 4.1: Locations of the selected eight deciduous forest study sites 
 

The Bartlett Experimental Forest (canopy height: 19 m) has a rolling to mountainous 

topography with gentle slope and spodosol soil order; climate is nearly extreme with a minimum 

daytime temperature of around 900 F during summer and -300 F during winter. Harvard forest 

(canopy height: 23 m) has a temperate climate and a sandy soil formation in the top layer and 

sand-gravel-silt at the bottom. Missouri Ozark (canopy height: 24.2 m) and Morgan Monroe State 

Forests (canopy height: 27 m) share a similar temperate continental climate, while representing 
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different soil formations (silty loam with a rocky, thin soil cover at Missouri, whereas a 

combination of clay, loam and limestone residue at the Morgan site). Ohio Oak Forest (canopy 

height: 24 m) has a humid climate and a flat terrain with sandy mixed soil. Silas Little 

Experimental Forest (canopy height: 9.52 m) has a cool, temperate climate and a sandy soil 

formation. The UMBS site (canopy height: 12 m) is characterized by the temperate northern 

climate and a sandy Entic Haplorthod, glacial till soil. The Willow Creek site (canopy height: 

24.2m) represents the northern continental climate with short, moist growing seasons and cold 

winters, and a soil formation similar to that of the UMBS site. Overall, the selected eight study 

sites incorporate the potential effects of a variable canopy height (9.52 to 27 m), different climatic 

regimes (humid to temperate to nearly extreme), and diverse soil morphology on the carbon flux 

dynamics. 

4.2.2 Data sets 

Observational data of the half-hourly, canopy-level CO2 fluxes and the corresponding climate 

and environmental variables were obtained for different, recent annual cycles (2006-2011) for the 

study sites from the AmeriFlux network (AmeriFlux website, 2014) (Table 4.2); selection of the 

5-year period incorporated the effect of multi-year temporal gradients on carbon flux dynamics. 

Selected variables were vertical CO2 flux (measured above the canopy without correcting for 

underlying storage and advection) (FCO2; denoted as FC in AmeriFlux); ambient CO2 

concentration (CCO2); net radiation (RN); incoming photosynthetically active radiation (PAR); 

sensible heat flux (SHF); latent heat flux (LHF) (ecosystem water exchanges); air temperature 

(TA); soil temperature (TS); vapor pressure deficit (VPD); soil water content (SWC); wind speed 

(WS); and friction velocity (UST). The TA, WS, PAR, LHF and SHF represent measurement just 

above the canopy level. The radiation measurements reflect the impacts of cloudiness, which can 

significantly control plant photosynthesis (Fuentes and Wang, 1999).
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Table 4.1: Means and standard deviations (in parenthesis) of the observed carbon fluxes, and climate and environmental variables for the eight 
broad-leaf deciduous forest sites of USA. 

Notes: “Year” and “N” refer to data collection year and sample size, respectively. “Blank” cells in the table indicate the “missing data”. FCO2, 
UST, TA, WS, SHF, LHF, TS. CCO2, VPD, SWC, RN, and PAR refer, respectively, to CO2 flux, friction velocity, air temperature, wind speed, 
sensible heat flux, latent heat flux, soil temperature, ambient CO2 concentration, vapor pressure deficit, soil water content, net radiation, and 
photosynthetically active radiation

Site FCO2 
(μmol/m2/s) 

UST 
(m/s) 

TA 
( oC) 

WS 
(m/s) 

SHF 
(W/m2) 

LHF 
(W/m2) 

TS 
( oC) 

CCO2 
(umol/mol) 

VPD 
( KPa) 

SWC 
(%) 

RN 
(W/m2) 

PAR 
(μmol/
m2/s) 

Bartlett Forest, NH 
Year:2009; N = 5597 

-3.34 
(8.18) 

0.44 
(0.29) 

11.7 
(8.90) 

1.7 
(0.96) 

49.00 
(112.4) 

41.58 
(72.38) 

9.86 
(5.3) 

383.4 
(17.5) 

0.51 
(0.51) 

35.69 
(8.9) 

143.4 
(224.5) 

457 
(544.7) 

Harvard Forest, MA 
Year: 2006; N =  4446 

-1.37 
(7.89) 

0.53 
(0.30) 

8.71 
(8.69) 

2.19 
(0.95) 

36.04 
(120.48) 

30.17 
(63.03) 

8.61 
(6.25)  0.41 

(0.39)  95.85 
(198.86) 

316.1 
(481.0) 

Missouri Ozark, MO 
Year:2009; N = 13194   

-1.43 
(6.71) 

0.435 
(0.30) 

12.97 
(9.97) 

2.74 
(1.29) 

33.28 
(92.01) 

54.61 
(92.73) 

12.69 
(7.31) 

390.90 
(15.27) 

0.635 
(0.55) 

43.12 
(7.91) 

107.40 
(233.69) 

411.1 
(599.4) 

Morgan Forest, IN 
Year: 2010; N = 7080 

-1.51 
(6.63) 

0.46 
(0.27) 

12.29 
(11.9) 

3.54 
(1.28) 

32.46 
(88.71) 

42.86 
(90.80)   0.71 

(0.65) 
35.14 
(11.48) 

99.45 
(221.57) 

360.50 
(526.7) 

Ohio Oak, OH  
Year: 2009; N = 7729 

-4.47 
(10.49) 

0.49 
(0.32) 

11.10 
(10.6) 

2.41 
(1.14) 

48.48 
(106.34) 

66.45 
(108.8) 

11.68 
(5.66) 

384.1 
(16.55) 

0.61 
(0.59) 

6.13 
(1.58) 

132.6 
(236.83) 

500.50 
(634.5) 

Silas Forest, NJ 
Year:2011; N = 13188 

-0.44 
(6.07) 

0.41 
(0.28) 

12.69 
(10.4) 

1.82 
(1.08) 

36.44 
(93.90) 

56.29 
(109.9) 

12.91 
(7.41)  0.67 

(0.69)  84.43 
(194.25) 

336.14 
(495.9) 

UMBS Forest, MI 
Year:2011; N = 11688 

-1.76 
(6.97) 

0.49 
(0.32) 

9.85 
(11.0) 

3.67 
(1.65) 

38.67 
(94.98) 

44.10 
(89.95) 

10.14 
(7.10) 

389.5 
(11.76) 

0.49 
(0.48) 

7.81 
(2.41) 

113.2 
(209.67) 

406.6 
(539.4) 

Willow Creek, WI 
Year: 2006; N = 8879 

-2.21 
(6.99) 

0.55 
(0.29) 

7.38 
(11.1) 

2.52 
(1.09) 

41.38 
(93.70) 

40.84 
(81.62) 

8.87 
(7.03) 

389.4 
(13.00) 

0.24 
(0.41) 

30.86 
(4.32) 

110.5 
(214.21) 

398.6 
(550.2) 
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Choice of the selected study years (2006-2011) was based on the most recent, relatively 

high availability of reliable data; the set of participatory variables was determined by a 

preliminary data analysis and leveraging current understanding of carbon flux dynamics in the 

selected ecosystems. The data sets contain four distinct process partitions of flux, radiation, above 

ground and below ground environmental variables. Most of the process-based carbon flux 

prediction models used these components for system representation (Carvalhais et al., 2005; 

Desai 2010; Chen et al., 2011); some empirical models also adopted a similar approach (e.g., 

Wylie et al., 2007).  

Collected data are classified as level-2, which passed through QA/QC checks. Since data 

sample for each forest site was very large, gaps in the data matrix were not filled in order to avoid 

any additional biases in the empirical model building. I applied a two-step procedure to remove 

the unsuitable data and prepare the final data set for each of the eight sites. First, half-hourly data 

panels representing gaps for more than two participatory variables were removed from further 

analysis. This procedure led to the exclusion of half-hourly panel data over a year by around 24% 

for both Missouri Ozark and Silas Forests, by 33% from the UMBS, by 49% from the Willow 

Creek, by 55% from the Ohio Oak Forest, by 59% data from the Morgan Forest, by 67% from the 

Bartlett Forest, and by 74% from the Harvard Forest (see Table 4.1 for the final sample sizes). 

Although according to Falge et al., (2001), flux towers can encounter around 35% missing data 

annually at the half-hourly scale, the removal percentages were higher for most stations because 

some variables (e.g., soil water content), which had not been collected by the eddy covariance 

method, encountered higher gaps than the flux data. Second, the gap-filtered data for each 

variable at each station were plotted with time (not shown) to visually check the presence of any 

unreasonable spikes (i.e., outliers), which were subsequently removed. This secondary filtering 

led to the removal of 1 half-hourly observation panel for the Silas Forest, 3 observation panels for 
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the UMBS, 2 observation panels for the Willow Creek, 3 observation panels for the Harvard 

Forest, and 14 observation panels for the Bartlett Forest. The final data sets (N = 4446 to 13194; 

see Table 4.1) incorporated the effects of analyzing an equivalent single to multiple seasons on 

carbon flux dynamics among different stations. Per AmeriFlux sign conventions, positive sign 

represents upward fluxes (land/forest to atmosphere) of FCO2, LHF and SHF; negative refers to 

their downward fluxes (atmosphere to land/forest). In contrast, positive values of radiation (RN 

and PAR) indicate downward (atmosphere to forest) fluxes and vice versa. 

Although photosynthesis and respiration are two different processes and can be dictated 

by different drivers (e.g., radiation versus temperature), they often share common stressors. 

Partitioning of FCO2 into photosynthesis and respiration was not considered in this study because 

the objective was to understand (and quantify) the relative linkages and groupings of different 

variables influencing the overall diurnal (24-hr) cycle of carbon exchanges. Since the study goal 

was to determine the relative linkages of mainly climate and environmental variables with the 

canopy-level vertical carbon fluxes, biological variables such as the canopy leaf-area-index (LAI) 

were not included in the data matrices. Precipitation was not also included because of the lack of 

availability of 30-minutes interval; instead SWC was used as a surrogate variable to represent 

hydrologic effect. I also considered latent and sensible heat fluxes in the data matrix in order to 

directly incorporate ecohydrologic dynamics. 

4.2.3 Data analysis and empirical modeling 

I used a simple data-analytics approach that incorporates Pearson correlation analysis, as well as 

the multivariate PCA, FA and PLSR to emphasize the entire methodology and overall outcomes, 

rather than the individual analyses or analysis steps. The data-analytics methodology is briefly 

summarized in a flow diagram (Figure 4.2); the analyses and modeling were done using multiple 

computation software and programming platforms such as MATLAB, R, and Microsoft Excel.  



107 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The data-analytics methodology to determine the relative carbon flux linkages of 
different climate and environmental variables 

 
Pearson correlation analysis 

Pearson product-moment correlation coefficients were computed to obtain background 

information on the linear dependency between FCO2 and the climatic/environmental variables for 

the different deciduous forest sites. Triangular correlation matrices involving all participatory 

variables were also computed to obtain a preliminary understanding on the multicollinear 

structure of the data matrix.  

Principle component analysis (PCA) and factor analysis (FA) 

Multivariate advanced data reduction, interpretation and pattern recognition techniques such as 

the PCA and FA mine relationships among participating variables in a matrix of independent 

factors. PCA explains the variance-covariance structure of a data matrix through some 

orthogonal, linear combinations of original variables, emphasizing data interpretation and 

reduction in an unsupervised manner (Peres-Neto et al., 2003; Jolliffe 1993; Mahbub et al., 2010). 

It was previously applied to investigate the spatial representativeness of AmeriFLUX network by 

Obtain the correlation structure of variables 
through Pearson correlation matrix 

Identify groupings and inter-relation patterns of 
variables using principal component analysis 

Determine the relative importance of different predictors 
using variable importance on the PLS projection 

Quantify the relative linkages of different variables with 
the CO2 fluxes using PLSR model coefficients  

 

Extract significant, hidden factors by factor analysis 
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grouping homogeneous areas (Hargrove and Hoffman 2005). A virtue of PCA is that it can 

unravel relationships hidden in the original data and allows interpretations that are not easy to 

make using a Pearson correlation matrix. I applied explanatory PCA on the data matrices of the 

biological, climatic, and environmental variables for the eight study sites. In order to bring 

different variable units and data sources on a comparable reference scale, data for all the variables 

were standardized (and made dimensionless to obtain Z-scores) by dividing their instantaneous 

deviations from the corresponding annual averages by the respective standard deviations (i.e.,

σ
µ−

=
XZ ; where Z  = Z-score = normalized variable, X = original variable, µ = annual 

average of X , and σ = standard deviation of X ). First two principal components (PCs) were 

extracted from the loading matrix (that represents correlation between the PCs and the original 

variables) and displayed through biplots, which exhibit the possible groupings and interrelations 

(orientation and correlation strengths) among participatory variables. 

FA characterizes the covariance liaisons among many variables with a few rudimental, 

but unobservable, quantities called factors. FA has been successfully applied for data mining and 

analysis in many disciplines (Panda et al., 2006; Dragon 2006; and Liu et al., 2003). I applied FA 

in order to reanalyze the normalized data and verify findings from the PCA by explaining the 

system variances with fewer latent variables (factors). Individual latent factors were extracted 

based on an initial eigenvalue criterion (eigen value > 1.0). Additionally, the “varimax” 

orthogonal rotation was performed, maximizing the sum of the variances of the loading matrices 

to optimize loading (i.e., correlation) values of the different variables in each factor. Factors 

extracted thereby were able to describe most of the variances of the data matrices for different 

study sites.  
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Partial least squares regression (PLSR) 

PLSR is a sophisticated data-driven method to integrate features from a supervised principal 

component analysis and multiple regressions, explaining the linear relationships between the 

dependent (i.e., response) variable and independent (i.e., predictor) variables (Wold 1966, 1982). 

The unique advantage of using PLSR over traditional multiple linear regressions is that it largely 

eliminates high variability and instability of estimated parameters caused by multicollinearity 

among predictors. Since the PLSR regression is performed in the transformed orthogonal planes 

using the independent PLS components by maximally linking data covariance with the response 

variable, all the predictor variables can be kept in the final model (Kuhn and Johnson 2013). The 

regression coefficients of the optimal PLSR model are leveraged to compute the regression 

coefficients (BETA) of the original independent variables by inverting the linear transformations 

between the PLS components and original variables. Since the issue of multicollinearity is 

resolved in the PLSR domain, the derived regression coefficients (BETA) of the original 

variables should ideally be unaffected by any multicollinearity existing in the data matrices. 

In order to quantify the relative linkages of climatic and environmental variables with the 

vertical CO2 fluxes, normalized (dimensionless) PLSR models were developed by using Z-scores 

of all participatory variables. The PLSR models were trained (i.e., fitted) and verified (i.e., tested) 

with half-hourly data (N = 4446 to 13188 among different stations) using the SIMPLS algorithm 

(de Jong 1993; Hubert and Branden 2003) and a 10-fold cross-validation method (Kuhn and 

Johnson 2013). The model intercept was “zero” for all sites since Z-score variables were used for 

the model fitting. 

Application of PLSR requires the selection of optimum number of PLS components to 

ensure minimal prediction error (optimum F statistics) while retaining model stability. The 

optimal numbers of PLS components were determined using the Akaike Information Criterion 
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(AIC) (Akaike 1974) and coefficient of determination (R2), as obtained from the 10-fold cross-

validations. Subject to the different sample sizes, a normalized 2FCOAIC  was defined to bring all 

sites to a comparable scale as follows: 

( )
N
p

N
SSEpAIC FCO

FCO
2ln 2

2 +





=        (1) 

where p  is the total number of the model PLS components, N  is the sample size, and 2FCOSSE  

is the total sum of squared error upon estimation of carbon fluxes (FCO2). Using the optimum 

number of PLS components, I employed both the “variable importance in the projection (VIP)” 

(i.e., PLS-VIP) and “regression coefficients (BETA)” (i.e., PLS-BETA) methods as the 

complementary approaches to determine the relative importance of different predictors for the 

model response (Wold et al., 1993, 2001; Chong and Jun 2005). Higher VIP scores and higher 

regression coefficients indicate more influential predictors in the latent predictor-response matrix; 

as a rule of thumb, VIP scores exceeding 1.0 can be considered as the most informative predictors 

for the response (Kuhn and Johnson 2013). Further, the regression coefficients (BETA) of the Z-

score PLSR models can represent the relative linkages of the predictor variables (CCO2, RN, PAR, 

SHF, LHF, TA, VPD, TS, WS, UST, and SWC) with the response variable (FCO2).  

4.3 Results  

4.3.1 Correlation structure of the data 

The Pearson correlation coefficients between half-hourly FCO2 and the corresponding 

climatic/environmental variables were significant at the 95% level of confidence (α = 0.05 for a 

two tailed test) (Table 4.2). Since the participatory variables (e.g., carbon and heat fluxes, 

temperatures) had both positive and negative values, absolute values of the correlation 

coefficients were used to describe the linear correspondences of different variables. For all the 
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study sites, FCO2 demonstrated strong linear correspondences with the biosphere radiations (RN 

and PAR) (| r | = 0.61 to 0.71) and LHF (ecosystem-atmospheric heat and water exchanges due to 

evapotranspiration) (| r | = 0.65 to 0.87); while showing moderate correlations (| r | = 0.29 to 0.56) 

with the SHF (ecosystem-atmospheric heat exchanges due to temperature gradient), as well as 

with the ambient carbon storage (CCO2) (| r | = 0.46 to 0.57). Moderate linear correspondences of 

FCO2 were also apparent with the air temperature (TA) (| r | = 0.28 to 0.51) and soil temperature 

(TS) (| r | = 0.24 to 0.51) among the different study sites. Vapor pressure deficit (VPD) and 

available soil moisture (SWC) showed weak to moderate correlations with FCO2 (| r | = 0.10 to 

0.54 and | r | = 0.01 to 0.33, respectively). In contrast, the linear correspondences of FCO2 with the 

aerodynamic drivers (WS and UST) were relatively weak (| r | = 0.03 to 0.24). Furthermore, the 

triangular correlation matrices (not shown) for different study sites revealed high mutual 

correlations among the flux related variables (SHF, LHF, RN and PAR). For example, the 

correlation coefficient (r) between RN and PAR was 0.99; correlation of the radiation variables 

(PAR and RN) with the SHF and LHF ranged, respectively, from 0.80 to 0.87 and from 0.71 to 

0.80. The temperatures variables (TS, TA and VPD), as well as the velocity variables (WS and 

UST), were also notably correlated within each group. This indicates the presence of a substantial 

multicollinearity in the data matrix of the climatic and environmental variables. 

4.3.2 Dominant groups and orientation of the variables 

For the eight study forests, the first two PCs explained from 61.95% to 75.17% of the total data 

variances exhibited by the participatory (climatic, environmental, and biological) variables. PCA 

loading matrices (showing the correlation coefficients between the PCs and the original variables) 

for different stations are presented through biplots (Figure 4.3 and Figure 4.4). 

The first two PCs explained 61.95% of total data variances for the Bartlett Experimental 

Forest (Figure 4.3a).The orientations and lengths of SHF, PAR, RN, VPD and LHF suggest  
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Table 4.2: Pearson correlation coefficients between the carbon fluxes (FCO2) and the 
climate/environmental variables for the eight deciduous forest study sites (Blank indicates 
missing data). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Biplots obtained from principal component analysis showing the groupings and 
interrelation patterns of the climate, environmental, and biological variables for (a) Bartlett 
Experimental Forest (NH), (b) Harvard Forest (MA), (c) UMBS Forest (MI), and (d) Missouri 
Ozark Forest (MO). Percent variance explained by each PC is shown in parenthesis.  

Site  RN PAR LHF SHF CCO2 TA TS VPD SWC WS UST 
Bartlett Forest -0.70 -0.70  -0.72 -0.56  0.46 -0.51 -0.39 -0.10 0.06 0.03  0.03  
Harvard Forest -0.66  -0.67  -0.65  -0.37  -0.39  -0.37  -0.44   -0.03  -0.12 
Missouri Ozark -0.61 -0.61  -0.71  -0.33  0.47  -0.28  -0.24  -0.40  0.17 -0.04  -0.18  
Morgan Forest -0.71  -0.71  -0.84  -0.40   -0.39   -0.38  0.01  0.24 0.06  
Ohio Oak -0.71  -0.70  -0.87  -0.29  0.52  -0.43  -0.33  -0.16  0.26  0.09  0.04  
Silas Forest -0.69 -0.66  -0.77 -0.46   -0.36 -0.26  -0.54   0.05  -0.15  
UMBS Forest  -0.67  -0.67  -0.80 -0.44  0.53 -0.38 -0.34 -0.50 0.25 0.07 -0.16 
Willow Creek -0.65   -0.67   -0.84  -0.40  0.57  -0.51 -0.51 -0.42 0.33 -0.20 0.05 

Group A 

Group C 

Group B Group C 

Group B 

Group C 

Group B 

Group A 
(a) 

(c) 

(b) 
Group A 

Group C 

Group B 

Group A 
(d) 
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Figure 4.4: Biplots obtained from principal component analysis showing the groupings and 
interrelation patterns of the climate, environmental, and biological variables for (a) Silas Little 
Forest (NJ), (b) Willow Creek Forest (WI), (c) Morgan Monroe State Forest (IN), and (d) Ohio 
Oak Openings Forest (OH). Percent variance explained by each PC is shown in parenthesis. 

 

strong interrelationships, forming a dominant group (A) that highly correlates with FCO2 and 

CCO2. TA and TS formed a second group (B), which were moderately correlated with FCO2. SWC, 

WS and UST formed the third group (C) that is relatively orthogonal to (i.e., weakly correlated 

with) FCO2. Nearly orthogonal orientations of groups A, B and C suggest three different and 

relatively uncorrelated variance-based clusters of variables hidden in the data; A is dominated by 

the radiation and flux variables, whereas B and C are dictated by, respectively, the temperature 

Group A1 

Group C 

Group A2 

Group C 
Group A1 

Group A2 

Group B 

Group A 

Group C 

Group D 

Group F 

Group E 

(a) (b) 

(c) (d) 
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and aerodynamic variables. The group-A variables and CCO2, due to their strongly non-orthogonal 

orientations with FCO2, are likely the dominant predictors; group-B variables would be the 

moderately strong predictors, while group-C variables could be the weakest predictors. Similar 

variable-groupings and interrelation patterns were observed for the Harvard Forest (with missing 

SWC data) (Figure 4.3b), UMBS Forest (Figure 4.3c), and Missouri Ozark Forest (Figure 5.3d), 

where the first two PCs explained, respectively, 71.26%, 68.46%, and 63.65% of their total data 

variances. Although the quadrant-locations of group-B and C were flipped for the Missouri 

Forest, compared to the other three stations, the relative orthogonality of the three groups, as well 

as that between FCO2 and group-C variables, were common for all four sites (Figure 4.3). 

The Silas Little Forest (with missing SWC data), as well as the Willow Creek Forest, 

demonstrated a slightly different pattern than that of Bartlett Forest, with the first two PCs 

explaining, respectively, 75.17% and 67.03% of the total data variances  (Figure 4.4). The group-

A variables still demonstrated the strongest links with FCO2; however, they split into two distinct, 

non-orthogonal groups of A1 (RN, PAR, SHF) and A2 (VPD, LHF). Similar to the Bartlett 

Forest, the group-B (temperature) variables showed moderate correspondences, wheras the group-

C (wind speed and soil water) variables appeared to be weakly interrelated with the FCO2. The 

Morgan Monroe State Forest (the first two PCs explained 64.38% of the total data variance) also 

showed a slightly different correlation and grouping pattern compared to that of Bartlett or similar 

forests (Figure 4.4). Although group-C was similar to the previous stations showing a relatively 

orthogonal orientation with FCO2, the VPD emerged out of group-A and loaded highly with TA to 

form a moderately linked group, D; this regrouping could be partly caused by the missing soil 

temperature data for this station. However, at the Ohio Oak Forest, where the two PCs explained 

65.33% of total data variance, all the variables appeared to cluster into two distinct groups of E 

(SHF, PAR, RN, LHF, TA and TS) and F (SWC, WS, UST and VPD) (Figure 4.4). The group-E 

has a nearly linear (with 180 degree) orientation with FCO2, suggesting likely strong linkages 
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between them; the group-F variables were nearly orthogonally oriented with FCO2, indicating their 

possibly weak linkages. The ambient carbon storage (CCO2) was non-orthogonally oriented with 

FCO2, suggesting their strong linkage. 

4.3.3 Significant hidden factors  

The eigenvalue criterion (eigenvalue >1) led to three independent latent factors for all eight sites 

(Table 4.3). This means that the extracted three factors adequately summarized the system 

variance at each site; the first factor explained the most variance (40.69% to 52.6%), then the 

second factor (16.8 to 24.64 %), while the third factor described the least variance (8.9 to 15.5 

%). FA with ‘varimax’ optimization provided more precise information into the hidden patterns 

of the data matrices than that shown by the two PCs (see Figure 4.3, 4.4). Since the standardized 

participatory variables had both positive and negative values, the FA outcomes were interpreted 

mainly based on the magnitudes (ignoring the positive or negative signs) of the factor loadings. 

The radiation and heat fluxes (RN, PAR, SHF, and LHF) generally loaded highly (0.65 to 0.99) 

on the first factor, which had moderate to high loadings (-0.57 to -0.70) with FCO2 at different 

stations. The pressure variable (VPD) showed moderate loadings (0.41 to 0.53) on Factor-1 for all 

but one (Morgan State Forest) sites. The near-canopy carbon storage (CCO2) showed a moderate 

loading (-0.38) on Factor-1 only for the Bartlett Forest site. The higher loadings of RN, PAR, 

SHF and LHF indicate their dictating role on the first hidden factor, which, therefore, can be 

termed ‘radiation-energy’ factor. Temperature variables (TA and TS) loaded highly (0.75 to 0.98) 

with Factor-2, which showed low to moderate loadings (-0.19 to -0.45) with FCO2. The VPD had 

moderate to high loadings (0.46 to 0.88) on Factor-2 for all stations; the soil hydrology variable 

(SWC) loaded moderately (-0.44 to -0.50) on Factor-2 for the Missouri Ozark, Morgan State, and 

Ohio Oak Forests, while loading slightly (-0.60) for the UMBS Forest. The CCO2 showed 
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Table 4.3: Dominant latent factors extracted from the data matrices of the eight deciduous forest study sites. “Fac” represents factor 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Factors WS UST SWC VPD TS TA CCO2 SHF LHF RN PAR FCO2 

B
ar

tle
tt 

Fo
re

st
 

(N
H

) Fac 1 0.02 0.20 -0.01 0.48 0.08 0.28 -0.38 0.91 0.65 0.97 0.97 -0.65 
Fac 2 0.04 0.02 -0.14 0.53 0.88 0.94 -0.35 -0.01 0.43 0.20 0.22 -0.38 
Fac 3 0.99 0.89 0.14 0.22 -0.10 -0.02 -0.04 0.06 0.05 0.09 0.12 0.03 

H
ar

va
rd

 
Fo

re
st

 
(M

A
) 

Fac 1 0.08 0.25  0.51 0.12 0.16  0.86 0.68 0.95 0.97 -0.63 
Fac 2 -0.06 -0.06  0.49 0.93 0.98  -0.03 0.27 0.19 0.17 -0.29 
Fac 3 0.91 0.97  0.08 -0.07 -0.06  0.20 0.19 0.14 0.16 0.02 

U
M

B
S 

 
Fo

re
st

 
(M

I)
 Fac 1 -0.07 0.27 -0.05 0.46 0.03 0.14 -0.22 0.85 0.67 0.98 0.98 -0.63 

Fac 2 -0.06 -0.10 -0.60 0.64 0.96 0.96 -0.72 -0.10 0.42 0.12 0.16 -0.34 
Fac 3 0.86 0.96 0.19 0.03 -0.11 -0.07 0.00 0.12 0.07 0.10 0.07 -0.03 

M
is

so
ur

i 
O

za
rk

 
(M

O
) 

Fac 1 0.03 0.30 -0.07 0.41 0.09 0.17 -0.29 0.83 0.71 0.97 0.97 -0.58 
Fac 2 -0.08 -0.09 -0.50 0.62 0.91 0.97 -0.26 -0.09 0.39 0.18 0.19 -0.20 
Fac 3 0.99 0.78 0.18 0.22 -0.15 0.00 -0.14 0.12 0.08 0.12 0.13 -0.04 

   
   

   
   

  
Si

la
s 

Fo
re

st
   

 
(N

J)
 

 

Fac 1 0.13 0.29  0.53 0.11 0.23  0.84 0.72 0.95 0.94 -0.67 
Fac 2 -0.09 0.00  0.60 0.91 0.97  0.01 0.37 0.24 0.22 -0.21 

Fac 3 0.99 0.86  0.15 -0.17 0.01  0.22 0.07 0.19 0.23 0.02 

W
ill

ow
 

C
re

ek
 

(W
I)

 Fac 1 0.08 0.28 -0.02 0.41 0.18 0.25 -0.34 0.88 0.67 0.95 0.95 -0.57 
Fac 2 -0.10 -0.07 -0.36 0.46 0.95 0.92 -0.39 0.01 0.51 0.21 0.26 -0.45 
Fac 3 0.88 0.96 0.16 0.03 -0.12 -0.08 -0.04 0.21 0.07 0.16 0.14 -0.08 

M
or

ga
n 

Fo
re

st
 

(I
N

) 

Fac 1 -0.21 0.30 0.04  0.34  0.29   0.82 0.78 0.99 0.98 -0.70 
Fac 2 0.04 -0.14 -0.44 0.88  0.75  0.00  0.32 0.09 0.17 -0.19 
Fac 3 0.74 0.94 0.01 0.04  -0.09  0.12 -0.05 0.03 0.02 0.13 

O
hi

o 
O

ak
 

(O
H

) Fac 1 0.07 0.25 -0.03 0.52 0.05 0.25 -0.34 0.83 0.67 0.96 0.97 -0.65 
Fac 2 -0.15 -0.11 -0.49 0.60 0.87 0.90 -0.44 -0.14 0.50 0.21 0.22 -0.37 
Fac 3 0.96 0.89 0.22 0.09 -0.24 -0.07 -0.13 0.25 0.04 0.13 0.11 0.04 
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moderate to high loadings (-0.44 to -0.72) on Factor-2 for the Ohio Oak and UMBS sites only; of 

the radiation and heat fluxes, only LHF loaded moderately (0.42 to 0.51) on Factor-2 for the 

UMBS, Ohio Oak, and Willow Creek Forests. Since temperature related variables and SWC 

dominated Factor-2, it was termed ‘temperature-hydrology’ factor. Factor-3 (termed 

‘aerodynamic’ factor) had a poor loading (0.02 to 0.13) with FCO2; only the WS and UST showed 

notable loadings (0.74 to 0.99) on Factor-3 at different sites. 

Similar to the PCA outcomes, the highest loadings of FCO2 with Factor-1 (which 

explained most of the system variances) refer to the relatively strong linkages of radiation and 

heat fluxes with the turbulent, vertical CO2 fluxes; the strong loadings of LHF with both Factor-1 

and Factor-2 (ranking second in explaining system variances and FCO2 loadings) indicate a 

dictating linkage of LHF with FCO2. Notable double-factor (Factor-1 and 2) associations of VPD 

and CCO2 also suggest their relatively strong linkages with the vertical carbon fluxes. The very 

high loadings of TA and TS on Factor-2, as well as that of WS and UST on Factor-3, can also be 

indicative of their appreciable linkages with FCO2. The moderate to strong loadings of multiple 

variables on the ‘radiation-energy’ and ‘temperature-hydrology’ factors reiterate the interrelations 

(i.e., collinearity) among the radiation, heat fluxes and temperature variables. 

4.3.4 Relative carbon flux linkages of the climate and environmental variables  

A combination of AIC and R2 criteria, obtained through a 10-fold cross-validation method, 

showed that a total of 3 to 5 PLS components led to the optimum PLSR models (minimum

2FCOAIC and maximum R2), whereas 3 PLS components captured most variations in FCO2 for 

different sites (Figure 4.5a, b); this is consistent with the FA outcome of 3 independent factors 

adequately describing the variation in the overall data matrices (Table 4.3). Ranges of optimal 

model fitting efficiency (R2: 0.55 to 0.81) and accuracy (ratio of root-mean-square error to the 
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standard deviation of observations, RSR: 0.44 to 0.67; mean square error, MSE: 0.19 to 0.45) 

showed impressive predictions of FCO2 for different study sites (Table 4.4). The model residuals 

were approximately normally distributed with constant variances (not shown) 

The R2 indicated the amount of observed data variance explained by the model (i.e., 

model efficiency), whereas the RSR (see notes of Table 4.4 for the mathematical expression) and 

MSE indicated the accuracy of model fitting. Moriasi et al. (2007) provided a range of RSR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5: Plot of cross-validated (a) normalized AIC and (b) fitting efficiency (R2) for FCO2 
with the number of incorporated partial least squares (PLS) components  

(a) 

(b) 
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values for the evaluation of model accuracy; an RSR from 0 to 0.50 indicates a perfect to very 

good model, from 0.5 to 0.6 indicates a good model, and from 0.6 to 0.7 refers to a satisfactory 

model; a model with RSR > 0.70 is considered unsatisfactory. 

The variable importance in the PLS projection (VIP) scores and regression coefficients 

(BETA), as obtained with the optimum number of PLS components, quantified the relative 

linkage of each predictor with the model response (FCO2) (Figure 4.6; Table 4.4). Since the Z-

scores of the participatory variables had both positive and negative values, interpretation of the 

type (e.g., mutual increase or decrease) of their relative carbon flux linkages based on the positive 

or negative sign of BETA (β ) would be potentially misleading; the predictive influence of 

individual predictors of FCO2 was, therefore, evaluated by comparing the absolute values of the 

associated β . Total relative linkages of the ‘radiation-energy’ ( RHFβ ), ‘temperature-hydrology’ 

( Tβ ), and ‘aerodynamic’ ( Wβ ) components were computed, respectively, as:  

2222
SHFLHFPARRNRHF βββββ +++= ; 2222

SWCVPDTSTAT βββββ +++= ; and 

 22
USTWSW βββ += .  

Bartlett Experimental Forest 

The LHF, RN, PAR, SHF, VPD had VIP scores higher than unity (1.0) and were potentially 

strongly linked with FCO2 (Figure 4.6a); smaller VIPs of TA, CCO2, and TS indicated their likely 

moderate linkages with FCO2; much lower VIP scores indicated relatively weak linkages of FCO2 

with UST, WS and SWC. Model coefficients ( β ) revealed almost similar linkage pattern with 

some exceptions (Table 4.4); FCO2 showed relatively strong linkage with CCO2 and relatively weak 

linkages with SHF and TA. LHF was the strongest predictor in regression, exhibiting around 2 

times stronger linkages with FCO2 than that of RN, PAR and CCO2; 2.5 to 3.5 times stronger 

linkages than that of VPD and TS; and around 9 to 36 times stronger linkages than that of the 



120 

aerodynamic and soil moisture variables (WS, UST, and SWC). Based on the ratio of TRHF ββ

and WRHF ββ , the ‘radiation-energy’ component had around 2.5 and 11 times stronger linkages 

with the carbon fluxes than that of, respectively, the ‘temperature-hydrology’ and ‘aerodynamic’ 

components. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: Variable importance on the partial least squares projection (VIP) of different 
predictors for the response variable (FCO2) for (a) Bartlett Experimental Forest (NH), (b) Harvard 
Forest (MA), (c) UMBS Forest (MI), (d) Missouri Ozark Forest (MO), (e) Silas Little Forest 
(NJ), (f) Willow Creek Forest (WI), (g) Morgan Monroe State Forest (IN), and (h) Ohio Oak 
Openings Forest (OH). Dashed line indicates predictors having VIP score greater than unity (1.0).  

Predictors 
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Table 4.4: Coefficients ( β ) of the normalized (dimensionless) PLSR models of carbon fluxes 
(FCO2) for different deciduous forest study sites. 
 

Notes: Blank indicates missing data; RSR, the ratio of root-mean-square error to the standard 
deviation of observations, was calculated as: obsF

N
i obsiCOiCO CO

NFFRSR ,1
2

,,mod,, 222
/)( σ∑ =

−= , 

where N  is the total number of standardized observations of FCO2, obsiCOF ,,2
and mod,,2 iCOF are the 

thi observed and predicted value of standardized FCO2 (respectively), and 0.1,2
=obsFCO

σ  is the 

standard deviation of the observed, normalized FCO2; and MSE is the mean square error of 
predicted, normalized FCO2. The total relative linkages of the ‘radiation-energy’ ( RHFβ ), 
‘temperature-hydrology’ ( Tβ ), and ‘aerodynamic’ ( Wβ ) components were computed, 
respectively, as: 2222

SHFLHFPARRNRHF βββββ +++= ; 2222
SWCVPDTSTAT βββββ +++= ; and 

22
USTWSW βββ += . 

 
Harvard Forest 

The VIP scores and PLSR coefficients slightly differed for this site. The radiation and heat flux 

variables of PAR, RN, LHF, and SHF had the higher VIP scores, referring to their strong linkages 

with FCO2 (Figure 4.6b). Lower VIP scores of the temperature and aerodynamic variables (VPD, 

TA, TS, WS, and UST) indicated their relatively weak to moderate linkages with FCO2. In terms 

Predictor 
Variables 

Bartlett 
Forest 
(NH) 

Harvard 
Forest 
(MA) 

UMBS 
Forest 
(MI) 

Missouri 
Ozark 
(MO) 

Silas 
Forest 
(NJ) 

Willow 
Creek 
(WI) 

Morgan 
Forest 
(IN) 

Ohio 
Oak 
(OH) 

RN -0.20 -0.53 -0.19 -0.17 -0.22 -0.19 -0.23 -0.26 
PAR  -0.17 -0.60 -0.15 -0.16 -0.15 -0.14 -0.18 -0.20 
LHF -0.36 -0.30 -0.54 -0.44 -0.58 -0.69 -0.64 -0.67 
SHF -0.08 0.68 0.07 0.11 0.11 0.22 0.24 0.23 
VPD 0.14 0.11 0.09 0.04 -0.10 0.16 0.09 0.17 
CCO2 0.18  0.26 0.28  0.15  0.13 
TA -0.05 0.01 0.07 0.06 0.07 0.00 -0.06 0.07 
TS -0.10 -0.06 0.03 0.02 0.10 0.00  0.00 
WS 0.04 -0.06 0.11 0.07 0.06 0.02 0.04 0.10 
UST 0.01 0.15 0.01 0.05 0.09 -0.04 0.02 -0.04 
SWC -0.03  -0.01 -0.03  0.05 -0.07 0.01 
PLS  
components 3 5 3 3 4 4 3 4 

R2 0.64 0.64 0.69 0.55 0.63 0.75 0.74 0.81 
RSR 0.60 0.59 0.56 0.67 0.61 0.50 0.51 0.44 
MSE 0.37 0.35 0.31 0.45 0.37 0.25 0.26 0.19 

TRHF ββ  2.5 8.3 5.0 6.3 4.1 4.5 5.8 4.2 

WRHF ββ  11 6.8 5.4 5.9 6.0 18.8 16.6 7.2 
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of regression coefficients ( β ; Table 4.4), FCO2 had relatively high linkages with SHF, RN, PAR, 

and LHF; moderate linkages with VPD and UST; and low linkages with TA, TS, and WS. Unlike 

other study sites, SHF appeared to be the strongest predictor of FCO2, although VIP scores 

indicated stronger dominance of LHF over SHF. Overall, the ‘radiation-energy’ group had 

approximately 7 and 8 times stronger linkages with FCO2 than that of the ‘aerodynamic’ and 

‘temperature-hydrology’ groups, respectively. The relatively high coefficient of UST, compared 

to other sites, indicated a notable influence of canopy layer turbulent mixing on carbon flux 

transfer at this site. 

UMBS 

The VIP scores of LHF, PAR, RN, CCO2,VPD, and  SHF were greater than (or equal to) 1.0, 

suggesting their strong relative linkages with FCO2; lower VIP scores indicated relatively weak to 

moderate linkages of FCO2 with TA, TS, SWC, UST, and WS (Figure 4.6c). Relative influence (

β ) of the PLSR model variables were mostly similar to that of VIPs (Table 4.4). LHF was the 

strongest predictor of FCO2; around 2 to 3.5 times stronger than that of the CCO2, RN and PAR. In 

contrast, the variables of WS, VPD, TA and SHF showed around 5 to 7.5 times lower linkages 

with FCO2. Based on β , FCO2 was very weakly linked with TS, UST and SWC. The ‘radiation-

energy’ component had around 5 times stronger linkages with FCO2 than that of the ‘temperature-

hydrology’ and ‘aerodynamic’ components. 

Missouri Ozark Forest  

The higher VIP scores of LHF, RN, PAR, CCO2, and VPD indicate that these variables were 

potentially strongly linked with FCO2; lower VIPs of the other variables refer to their low to 

moderate linkages with the carbon fluxes (Figure 4.6d). These results were consistent with the 

regression modeling outcomes with the exceptions of SHF and VPD, which showed, respectively, 

relatively high and low coefficients with FCO2. The LHF was the strongest predictor of carbon 

fluxes, showing around 1.5 times stronger linkages than that of CCO2; 2.5 to 4 times stronger 
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linkages than the PAR, RN and SHF; and 6 to 8 times stronger linkages than TA, WS, and UST. 

The SWC and TS did not show noteworthy linkages with FCO2. Relatively lower model fitting 

efficiency and accuracy (R2 = 0.55; RSR= 0.67; MSE = 0.45) also indicate the presence of more 

complicated (exceedingly nonlinear) carbon processes. Overall, the ‘radiation-energy’ group had 

approximately 6 times stronger linkages with FCO2 than that of the ‘aerodynamic’ or 

‘temperature-hydrology’ group (Table 4.4). 

Silas Little Experimental Forest  

Based on the common outcomes of VIP scores (Figure 4.6e) and PLSR coefficients (Table 4.4), 

the LHF, RN and PAR had high linkages with FCO2, while the VPD, SHF, TA, TS, WS, and UST 

were relatively low to moderate carbon flux linkages. Per β , LHF was the strongest carbon flux 

predictor; around 2.5 to 4 times stronger than the RN and PAR; 5 to 6 times stronger than SHF, 

VPD, TS, and UST; and 8 to 10 times stronger than TA and WS. The ratio of TRHF ββ and 

WRHF ββ  showed that the ‘radiation-energy’ component had around 4 and 6 times stronger 

linkages with FCO2 than that of, respectively, the ‘temperature-hydrology’ and ‘aerodynamic’ 

components.  

Willow Creek Forest 

Both the VIP scores (Figure 4.6f) and regression coefficients (Table 4.4) showed stronger 

linkages of carbon fluxes with the LHF, PAR, RN, CCO2, SHF, and VPD for this site; the soil 

moisture (SWC), wind speed (WS) and friction velocity (UST) had relatively low carbon flux 

linkages. The air and soil temperatures (TS and TS) showed negligible linkages with FCO2. Based 

on β , the predictive influence of LHF was around 3 to 4 times stronger than that of RN, PAR, 

SHF, CCO2; and 13 to 17 times stronger than SWC and UST. Overall, the ‘radiation-energy’ 

group had approximately 4.5 and 19 times stronger linkages with FCO2 than that of the 

‘temperature-hydrology’ and ‘aerodynamic’ group (Table 4.4).  
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Morgan Monroe State Forest  

The radiation and heat flux variables of LHF, RN, PAR and SHF had high VIP scores (>1.0), 

indicating their potentially strong linkages with the carbon fluxes; small VIP scores indicated 

relatively weak linkages of FCO2 with VPD, TA, WS, UST, and SWC. The PLSR model 

coefficients ( β ) (Table 4.4), as well as the outcomes of PCA (Figure 4.4c) and FA (Table 4.3), 

revealed nearly an identical linkage pattern. The LHF was the strongest predictor in regression, 

exhibiting around 2.5 to 3.5 times stronger linkages with FCO2 than that of RN, PAR and SHF; 7 

to 10 times stronger linkages than that of VPD, SWC, and TA; and around 16 times stronger 

linkages than WS. Based on TRHF ββ and WRHF ββ , the ‘radiation-energy’ component had 

around 6 and 16.5 times stronger linkages with the carbon fluxes than that of, respectively, the 

‘temperature-hydrology’ and ‘aerodynamic’ components. 

Ohio Oak Openings 

The PLSR model had the highest fitting accuracy (MSE = 0.19; RSR = 0.44) and efficiency (R2 = 

0.81) for this site. Both the VIP scores (VIP >1; Figure 4.6h) and regression coefficients (Table 

4.4) showed relatively strong linkages of carbon fluxes with the LHF, PAR, RN, and VPD; the 

ambient carbon concentration (CCO2) had a moderate linkage, whereas the soil moisture (SWC) 

and friction velocity (UST) had very low carbon flux linkages. Although the sensible heat flux 

(SHF) and air temperature (TA) had moderate VIP scores, the associated PLSR model 

coefficients ( β ), as well as the PCA biplot (Figure 4.4d) and FA results (Table 4.3), showed 

relatively strong influence of SHF and weak influence of TA in predicting FCO2. However, 

contrary to the VIP scores and the PCA and FA results, the wind speed (WS) had a moderately 

high regression coefficient (i.e., moderate carbon flux linkage), while the soil temperature (TS) 

showed a negligible coefficient (little linkage) with FCO2. Based on β , the predictive influence 

of LHF was around 2.5 to 4 times stronger than that of the RN, PAR, SHF and VPD; 5 to 6.5 
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times stronger than CCO2 and WS; and 9.5 to 17 times stronger than that of TA and UST. Overall, 

the ‘radiation-energy’ group had approximately 4 and 7 times stronger carbon flux linkages than 

that of the ‘temperature-hydrology’ and ‘aerodynamic’ group, respectively (Table 4.4).  

4.4 Discussion 

4.4.1 Linking vertical carbon fluxes with the climatic and environmental variables  

For all eight deciduous forest sites, the ‘radiation-energy’ component of RN, PAR, SHF and LHF 

was strongly linked with the canopy-level CO2 fluxes. Previous research (e.g., Jung et al., 2011; 

Schmidt et al., 2011; Morales et al., 2005; Zhang et al., 2005; Baker et al., 2003; Sellers et al., 

1997) also reported a similar finding. However, most studies considered the latent heat flux 

(LHF) and sensible heat flux (SHF), along with FCO2, as the response variables as functions of 

some common drivers such as the radiation, temperature, vapor pressure, etc. In contrast, alike 

Melesse and Hanley (2005), this study included the two heat fluxes in the matrix of predictor 

variables; quantifying their relatively high linkages with FCO2 exchanges within a large set of 

climatic and environmental variables.  

The mutual correlations among the three fluxes of FCO2, SHF and LHF could partly stem 

from the common dynamic term (vertical wind speed fluctuations) of their eddy covariance 

measurement equations (Launiainen et al., 2005); however, their interrelationships identified in 

this study were mostly process-oriented. The carbon and energy fluxes together represent the 

ecosystem’s biological exchanges with atmosphere (Baldocchi et al., 2001). Heat fluxes (LHF 

and SHF) help to maintain balance in atmospheric radiation through evapotranspiration (ET) and 

turbulent energy diffusion (Sellers et al., 1997). Plants’ stomata tend to close with increasing 

transpiration and LHF slows down to maintain ecosystem water budget, indirectly affecting 

carbon flux exchanges (Heber et al., 1986). Furthermore, the relative weight (i.e., ratio) between 
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the canopy-level photosynthesis and ET is a moderate function of atmospheric humidity deficit 

(Baldocchi and Meyers 1998), indicating ET-control on high rate of canopy growth.  

Although the ambient CO2 concentration (CCO2) was not available for three of the eight 

selected study sites, it showed relatively moderate to strong linkages with carbon fluxes (FCO2) 

for all available sites. Elevated CCO2 stimulates the photosynthesis by increasing the 

carboxylation and oxygenation, leading to a fast plant growth and ultimately increasing the litter 

production and soil carbon storage (Masle 2000). Furthermore, high atmospheric carbon 

concentrations often facilitate more efficient use of available soil water for plant growth and 

productivity (Schlesinger 1999). In contrast, Drake et al., (1999) reported a negative functional 

relation between plant respiration and CCO2.  

The ‘temperature-hydrology’ component (formed by TA, TS, VPD and SWC) had a 

moderate linkage with the vertical carbon fluxes for almost all study forests. Water availability, 

temperature and light can play a significant role in plants’ energy and water exchanges by 

transforming stomatal aperture (short-term) and density (long-term) (Haworth et al., 2011). High 

vapor pressure deficit (VPD) can lead to stomatal closure (Loescher et al., 2003), affecting the 

plant-atmospheric energy (latent heat) and carbon fluxes. VPD also loaded appreciably in the 

‘radiation-energy’ factor (Table 4.3), which is consistent with previous studies (e.g., Lund et al., 

2010). Although soil moisture (SWC) at most study sites grouped with the velocity variables in 

the PCA biplots (Figure 4.2, 4.3), more detailed (3-dimensional) information emerged in FA 

analysis showing its appropriate association with the ‘temperature-hydrology’ component (Table 

4.3). The SWC can contribute to the plants’ photosynthesis by influencing the water potential 

difference between the tree leaves and root system. However, the five layer analysis (Pearson 

correlation, PCA, FA, PLSR-VIP, and PLSR-BETA) with half-hourly data of different years from 

different US deciduous forests indicate a relatively low predictive influence of soil moisture on 
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vertical CO2 fluxes for the small time-scale. The ‘aerodynamic’ component (WS, UST) was also 

relatively weakly linked with the carbon flux exchanges. Mechanistically UST and WS are not 

direct contributors of carbon fluxes (Wilson et al., 2002); rather they influence the boundary layer 

vertical mixing to facilitate transport. Future studies should focus into the attributions of these 

low carbon flux linkages of SWC, WS, and UST; for example, whether aggregating data in larger 

time-scales (e.g., daily, weekly, monthly, yearly) reveal a more notable linkage of SWC with the 

FCO2. 

Despite the gradients of a variable canopy height (9.52 to 27 m), different climatic 

regimes (humid to temperate to nearly extreme), and diverse soil morphology among the study 

sites, the relative linkages of major process components, as well as individual climate and 

environmental variables, with FCO2 were essentially similar. The findings of the relative carbon 

flux linkages, using a simple method on half-hourly data for exclusively deciduous forests, 

complement the findings of Schmidt et al., (2011) that applied a complex neural network 

approach to analyze daily averaged data for different type of ecosystems, including five 

deciduous forests. For example, both studies conclude that air temperature had a much lower 

effect on turbulent carbon fluxes than that of other variables such as the radiations; the same is 

true for the relatively weak carbon flux linkage of wind and friction velocities. However, Schmidt 

et al., (2011) reported notably strong linkages of daily precipitation and soil temperature with 

FCO2, whereas this study found relatively low to moderate carbon flux linkages of soil moisture 

and soil temperature for the smaller (half-hourly) time-scale.   

4.4.2 Data quality and uncertainty  

Error and uncertainty associated with the eddy fluxes and other variables can cause superfluous 

biases in analysis and modeling (Williams et al., 2009). The two-step data filtering procedure 
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substantially eliminated the unsuitable data representing gaps (for more than two variables in one 

half-hourly panel) and unreasonable spikes (outliers) from the final data sets, which were 

analyzed to derive and report the results. Furthermore, previous research (Schmidt et al., 2012) 

reported relatively low measurement uncertainties for canopy-level meteorological variables 

(relative error  ≤  2%), heat fluxes (relative error: 1.7% to 5.2%) and vertical CO2 fluxes (FCO2) 

(relative error  ≤  8.2%) of the AmeriFlux network. Schmidt et al. (2012) also suggested high 

quality research applicability of the AmeriFlux data. Nevertheless, it is possible that the analysis 

and modeling with half-hourly data may not be completely free from the effect of random 

sampling errors of measurements (Baldocchi 2003). 

4.4.3 Explanatory modeling and analysis 

Theoretically process-based carbon dynamics models should be more reliable than the empirical 

models, but all the relevant processes are not understood yet (Keenan et al., 2011). This 

reemphasizes the importance of developing data-informed carbon flux modeling system (Keenan 

et al., 2012), which requires proper mechanistic judgments in the selection of model variables. 

The multicollinearity effect generally provides biased models with the traditional least squares 

regression method, which may be partially resolved by eliminating predictors stepwise (backward 

or forward) or simultaneously based on statistical significance. However, this elimination 

sometimes results in removal of variables that has important mechanistic basis, hampering the 

evaluation of comparative linkages of relevant predictors with the response variable. The 

dimensionless, optimal PLSR modeling approach (capturing maximum system variance and 

mechanisms) provided the flexibility and statistical stability for retaining all predictors since 

regression was primarily done with the orthogonal PLS components and then transformed to the 

original domain. Predictions with the linear PLSR models were quite impressive (R2: 0.55 to 

0.81), as compared to the nonlinear half-hourly data-driven models of Byrne et al. (2005) for GPP 
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(R2: 0.78 to 0.81) and respiration (R2: 0.86 to 0.83), hourly mechanistic model of Wu et al. (2013) 

for deciduous forest carbon fluxes (R2: 0.66 to 0.91), for example.  

The PLSR models could not satisfactorily predict extremely positive (upward) and 

negative (downward) carbon fluxes likely due to the linear structure. Primary production (GPP) 

and respiration have different mechanisms and are not necessarily controlled by the same set of 

drivers. Representing these two distinct processes by one of set of regression coefficients at the 

half-hourly scale can contribute errors to the model predictions. Seasonal variability in terrestrial 

carbon fluxes can also cause uncertainty in a data-driven model developed with half-hourly data 

(Jarvis et al., 1997; Xu and Baldocchi 2004). Furthermore, instead of including multiple years of 

observations for each study site, single-year data, encompassing a 5-year time-frame (2006-11) 

among the eight deciduous study forests, were chosen for the analysis and modeling. Although a 

10-fold cross-validation improved consistency in model-fitting and robustness of estimated 

parameters, incorporation of single (rather than multiple) year data for an individual site could be 

seen as a limitation of this study. 

Carbon fluxes can strongly respond to precipitation and vegetation productivity (Piao et 

al., 2013; Schmidt et al., 2011) considering their control over the long-term carbon balance. I 

used soil moisture (SWC) data as a surrogate for precipitation subject to the lack of availability of 

half-hourly precipitations. Since the study goal was to determine the relative linkages of mainly 

climate and environmental variables with the canopy-level vertical carbon fluxes, biological 

variables such as the canopy leaf-area-index (LAI) was excluded from the predictor data matrix. 

Further, variables such as SWC and LAI are less likely to change much over a half-hourly 

interval; the results showed little carbon flux linkages of SWC for the half-hour scale at the US 

deciduous forests. Although ambient atmospheric concentrations of CO2 were included in the 

data matrices, I did not explicitly incorporate anthropogenic carbon sources, which could 
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influence the large-scale ecosystem carbon emissions. Exclusion of these process components, 

apart from the linear structure of PLSR, could have contributed to the reduction of the model 

fitting accuracy (MSE; RSR) and efficiency (R2) for different study sites. 

Building linkages between statistical and mechanistic modeling approaches has been a 

major challenge in ecological modeling research (Larocque et al., 2011). Issues such as the data 

requirements, complex parameterizations, prediction uncertainties, computational expenses and 

expert knowledge basis of available mechanistic carbon-cycle models highlight the importance of 

developing relatively simple models without conceding the representation of important processes 

at the relevant spatiotemporal scales. The study presented a simple, systematic multivariate 

approach to identify the dominant process components by classifying the relevant climate and 

environmental variables, quantifying their relative linkages with the canopy-level vertical carbon 

fluxes. The modeling and analysis provides an objective, empirical foundation to obtain crucial 

mechanistic insights a priori; complementing process-based model building with a warranted 

complexity. 

4.5. Conclusions 

A data-analytics method was used to determine the relative linkages of different climate and 

environmental variables with the canopy-level, half-hourly CO2 fluxes of US deciduous forests. 

Three biophysical process components were identified to adequately explain the canopy-level 

vertical CO2 fluxes.  The ‘radiation-energy’ component had the strongest linkages with the 

canopy-level CO2 fluxes. The ‘temperature-hydrology’ component showed low to moderate 

carbon flux linkages. The ‘aerodynamic’ component was relatively weakly connected with the 

carbon fluxes. The relative linkage of ambient CO2 concentrations with the vertical carbon fluxes 

was moderate to strong among different sites. The latent heat flux was the most influential 
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predictor of instantaneous CO2 fluxes at all study sites except for Harvard Forest. On average, the 

‘radiation-energy’ component showed around 5 and 8 times stronger carbon flux linkages than 

that of the ‘temperature-hydrology’ and ‘aerodynamic’ components, respectively. The similarity 

of observed patterns among different study sites (representing sharp gradients in canopy heights, 

climatic regimes and soil formations) indicates that the findings are potentially transferrable to 

other deciduous forests around the world. The observed similarities also highlight the scope of 

developing robust, parsimonious models for appropriate predictions of ecosystem carbon fluxes 

and potential sequestrations under a changing climate and environment. Relatively good model 

accuracy and efficiency reiterate the usefulness of multivariate analytics models for gap-filling in 

time-series of instantaneous flux data.  

Future research should investigate the relative linkage patterns by aggregating data in 

larger time-scales (e.g., daily, weekly, monthly). Multi-scale linkage patterns in other terrestrial 

ecosystems should also be investigated and compared. More advanced data-analytics approaches 

such as the system and network modeling, machine learning, and fuzzy logic may also contribute 

towards developing a robust understanding and prediction of ecosystem carbon fluxes at different 

spatiotemporal scales.  
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Chapter 5: Data-analytics for comparative linking of net ecosystem exchange (NEE) with 

the climatic and ecohydrological variables for diverse ecosystems 

Abstract 

The relative linkages of net ecosystem exchange (NEE) with the climatic and ecohydrological 

variables for six diverse AmeriFlux ecosystems were quantified by employing a systematic data-

analytics method. Multivariate techniques of correlation matrix, principal component analysis, 

factor analysis, and explanatory partial least squares regression models were utilized to identify 

similarity-based groupings of climatic and ecohydrological variables, quantifying their 

interrelation patterns and comparative linkages with NEE. The analytics with large hourly 

datasets for the 2002-2012 period indicated a robust pattern of the biophysical process 

components and their relative linkages with NEE among the six diverse ecosystems, 

incorporating a large gradient in geographical locations, vegetation and land uses (wetland, 

grassland, cropland, deciduous, evergreen and mixed forests), hydro-climatic regimes (tropical, 

temperate, and continental), forest stand age and canopy heights, and soil formations. Four 

variance-based biophysical components adequately described the overall system-data variation 

for all six ecosystems. ‘Radiation-energy’ group demonstrated the strongest linkage with NEE; 

exhibiting 4, 5 and 8 times stronger linkages than that of the ‘temperature-hydrology’, ‘ambient 

atmospheric CO2’ and ‘aerodynamic’ components, respectively. Model performance (training 

R2 = 0.57-0.77, validation R2 = 0.58-0.75) indicated the effectiveness of multivariate analytics to 

predict NEE fluxes from diverse ecosystems. The observed similarity in latent patterns and 

relative linkages showed the scope of formulating parsimonious empirical models to obtain robust 

predictions of ecosystem carbon fluxes at local to regional scales. The data-analytics can be used 

as an objective empirical framework to achieve crucial mechanistic insights into ecosystem fluxes 

a priori, guiding process-based modeling of a warranted complexity. 
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5.1 Introduction  

Net ecosystem exchange (NEE) represents the net flux of CO2 between an ecosystem and the 

atmosphere, indicating the dynamics of ecosystem carbon (Law et al., 2002; Xiao et al., 2008; 

Tang et al., 2012). NEE accounts for the above-ground assimilatory (photosynthesis by foliage), 

as well as the above-ground (autotrophic) and below-ground (heterotrophic) respiratory 

processes. Quantification of the relative linkages of NEE with the relevant climatic and 

ecohydrological drivers can, therefore, provide important insights and useful information for an 

appropriate management of ecosystem carbon. Specifically, a quantitative understanding of the 

comparative linkages can lead to land management strategies and priorities to maximize 

ecosystem carbon uptake (sequestration) and minimize emissions thereof. Furthermore, 

transferable patterns of the relative climatic/ecohydrologic linkages of NEE across diverse 

ecosystems would guide the development of robust models and tools to achieve reliable 

predictions of ecosystem carbon under a changing climate and environment.  

NEE can substantially vary among different ecosystems due to differences in ecosystem 

functional groups, developmental stages and stand ages, plant heights, disturbance history, and 

climatic and environmental conditions (Rustad et al., 2001; Wilson et al., 2001; Thornton et al., 

2002; Litvak et al., 2003). In particular, the perplexing associations between NEE and its physical 

drivers impede an integrated, quantitative assessment of their relative linkages (Stoy et al., 2005). 

The vegetation disparity can also contribute to site-specific discrepancies in environmental 

drivers of NEE (Goulden et al., 1996; Law et al., 2003). Given the multi-faceted associations and 

interactions of NEE processes, a systematic multivariate data-analytics framework can help to 

identify the dominant process variables and quantify their relative linkages with NEE; exploring 

similarity and robust patterns among diverse ecosystems. 
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Previous research (e.g., Archibald et al., 2009; Reverter et al., 2010) suggested solar 

radiation, air and soil temperatures as the major drivers of NEE. Loescher et al. (2003) reported a 

very strong correlation (R2 = 0.98) between the nocturnal NEE and the corresponding friction 

velocity (UST) for a tropical wet forest; however, the day-time UST and NEE were not notably 

correlated. Loescher et al. also found a moderate correlation (R2 = 0.51) between NEE and 

photosynthetic active flux density, while weak correlations with air temperature (R2 = 0.18) and 

vapor pressure deficit (VPD) (R2 = 0.21). Otieno et al. (2012) investigated the sensitivities of 

NEE for peatland herbaceous vegetation in response to variation of VPD, peat temperature, 

ground-water level and stomatal conductance. They largely attributed the low rate of NEE to the 

stomatal closure and low light utilization efficiency (decreased photosynthetic capacity) of the 

vegetation subject to high VPD during summer. 

Various process-based models have been developed to simulate and predict ecosystem 

CO2 exchanges by mechanistically describing different process components. Process-based 

models are generally developed based on preconceived scientific hypotheses, and the outputs are 

inherently tied to the embedded hypotheses, model structure, and parameterizations (Beer et al., 

2010). They are typically more suitable for the longer time-scales, requiring a broad range of 

data, methodologies and ecological process descriptions (Keenan, 2012). Larocque et al. (2008) 

expressed concerns over the inadequate availability of mechanistic model functions for fully 

describing the carbon cycle processes, emphasizing the accurate evaluation of natural variability 

and uncertainty estimation of the associated parameters. 

Examples of process-based carbon dynamics models are ecosys (Grant et al., 2012), 

IFUSE (Desai, 2012), DLEM (Tian et al., 2010), ED2 (Medvigy et al., 2009), SiB3 (Baker et al., 

2008), CT (Peters et al., 2007), ORCHIDEE (Krinner et al., 2005), Forest-DNDC (Li and Cui, 

2004), Biome-BGC (Thornton et al., 2002), ISOLSM (Riley et al., 2002), IBIS (Foley et al., 
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1996; Kucharik et al., 2000), HYBRID (White et al., 1999), CENTURY (Glimanov et al., 1997), 

LINKAGE (Post and Pastor, 1996), and EBL (Shir and Bornstein, 1977). Despite involving 

detailed process descriptions at varying levels, the mechanistic models cannot often predict 

ecosystem carbon exchanges with much certainty. Schwalm et al. (2010) compared 22 terrestrial 

biosphere models to predict monthly CO2 exchanges for 44 eddy covariance sites, and reported 

an overall poor performance of the models and high uncertainty in the existing parameter sets.  

Following the advent of the current data acquisition and computation era, ecological 

research is quickly moving toward a ‘rich data’ paradigm. Significant advancements have been 

made in building public databases (e.g., AmeriFlux; see Baldocchi, 2003) for ecosystem carbon-

water-energy fluxes and the associated biophysical variables. Data-analytics can be a crucial 

vehicle to unveil the latent and useful information from the plethora of ‘raw ecological data’. The 

advantage of data-analytics based empirical approaches is that they do not necessarily rely on 

preconceived hypotheses or assumptions and, therefore, do not require any governing mechanistic 

equations. Empirical models can be relatively simple in structure, parsimonious (involving 

minimum parameters), and computationally inexpensive; often building the necessary foundation 

to develop appropriate mechanistic models with a warranted complexity.  

Linear and non-linear regressions, artificial neural network, and probabilistic models 

have already been successfully used for gap-filling and estimations of ecosystem carbon, water 

and energy fluxes (e.g., Lloyd and Taylor, 1994; Oechel et al. 2000; Falge et al., 2001; Papale and 

Valentini, 2003; Carrara et al. 2003; Hollinger et al., 2004; Hui et al., 2004; Braswell et al., 2005; 

Byrne et al. 2005; Gove and Hollinger, 2006; Richardson et al., 2006; Stauch and Jarvis, 2006; 

Wylie et al., 2007; Mäkelä et al., 2008; Xiao et al., 2008; Jahan and Gan, 2013; Menzer et al., 

2013). However, existing data-driven models are mostly limited to the at-site scale; the site-

specific parameterizations are often not transferable to another similar, let alone diverse, 
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ecosystem site. Further, a quantitative understanding on the possible general set of dominant 

predictors, their complex interactions, and relative linkages with NEE across diverse ecosystems 

is yet to be achieved. Filling this information-gap on ecological similitude is crucial for 

developing at-site (ecosystem) to regional-scale parsimonious empirical models to achieve robust 

predictions of ecosystem carbon fluxes.  

 Ishtiaq and Abdul-Aziz (2015) developed a multivariate data-analytics and informatics 

approach to determine the relative linkages of canopy-level, half-hourly CO2 fluxes with the 

climatic and environmental variables for eight US deciduous forests. The study reported robust 

carbon flux linkage patterns across different deciduous forests, representing geographical 

gradients in climate, canopy heights, topography, hydrology, and soil-formations. On average, the 

vertical CO2 fluxes showed substantially (5-8 times) stronger linkages with the radiation-energy 

component (representing radiation and heat fluxes) than that with the temperature-hydrology 

(e.g., VPD, air and soil temperatures, soil moisture) and aerodynamic (e.g., wind speed, friction 

velocity) components.    

The scientific objective of this paper is to quantify interrelations and comparative 

linkages of NEE with the relevant climatic and ecohydrological variables for diverse ecosystems, 

incorporating a large gradient in geographical locations, vegetation and land uses (wetland, 

grassland, cropland, deciduous, evergreen and mixed forests), hydro-climatic regimes (tropical, 

temperate, and continental), forest stand age and canopy heights, and soil formations. The paper 

builds on the study of Ishtiaq and Abdul-Aziz (2015) by employing the systematic data-analytics 

framework with large hourly data matrices for six diverse AmeriFlux ecosystems. Multivariate 

pattern recognition techniques of correlation matrix, principal component and factor analyses 

were utilized to discern the interrelations, relative influence, similarity, and grouping patterns of 

the climatic, environmental and ecological variables for different ecosystems. Dimensionless (i.e., 
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standardized) partial least squares regression (PLSR) models were then developed to quantify the 

relative linkages (weights) of different climatic and environmental variables with NEE. The 

findings will enrich the current understanding of carbon flux dynamics for diverse ecosystems, 

and guide the development of parsimonious empirical to detailed process-based models of a 

warranted complexity to achieve robust predictions of NEE at variable scales. 

5.2 Materials and methods  

5.2.1  Diverse ecosystem case study sites 

Six different ecosystems were chosen as case studies from the AmeriFlux network 

(http://ameriflux.ornl.gov) to represent distinct climate, vegetation and land cover types based on 

the International Geosphere-Biosphere Programme for land cover classification (Belward, 1996). 

The selected study sites are as follows (Figure 5.1, Table 5.1): (i) Sylvania Wilderness, Michigan 

(mixed forest); (ii) Fermi Prairie, Illinois (grassland); (iii) Mead Irrigated, Nebraska (croplands); 

(iv) Niwot Ridge, Colorado (evergreen needleleaf forest); (v) Morgan Monroe State Forest, 

Indiana (deciduous broadleaf forest); and (vi) Florida Everglades Taylor Slough Short 

Hydroperiod Marsh, Florida (permanent, coastal wetlands). The study ecosystems, therefore, 

represented an extensive variation in plant characteristics (e.g., canopy heights, leaf area, root 

zones), photosynthesis-respiration, and associated carbon fluxes. Further, the large geographical 

region represented different climate (e.g., continental vs. temperate vs. tropical), land uses 

(vegetation), hydrology, soil geomorphology, and terrain patterns; incorporating a spatial gradient 

in land-atmospheric NEE fluxes.  

The Sylvania Wilderness (canopy height: 22 m) is one of the oldest US forests with an 

average stand age of 350 years. It has a warm summer continental climate with a short, moist 

growing season and relatively cold winter; its soil is moderately drained coarse or sandy loam  

http://ameriflux.ornl.gov/
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Figure 5.1: Locations of six diverse AmeriFlux ecosystem study sites. 

spodosols (ashy gray, acidic soils). The Mead Irrigated and Fermi Prairie share a humid 

continental climate The Mead Irrigated (plant height: 2.9 m) has mostly been used as an 

agricultural land; it is characterized by a deep silty, clay loam soil (typical for eastern Nebraska). 

The Fermi Prairie has tall prairie grasses since 1989; the topsoil is silty clay loam, while the 

subsoil contains clay. The Niwot Ridge (canopy height: 11.5 m) has a subarctic climate and an 

average forest stand age of 102 years; its soil is characterized by extremely rocky (granite) 

mineral clays. The Morgan Forest (canopy height: 27 m) is an old forest having an average stand 

age of 70 years, with a humid subtropical climate and mesic typic, Dystrochrept, clay soil. The 

Florida Everglades Taylor Slough is a sub-tropical, coastal, permanent freshwater wetland with a 

short hydroperiod; the climate is represented by tropical wet and dry seasons. The oligotrophic 

marsh is characterized by marl (calcium carbonate) soils, whereas the plant community is 
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Table 5.1: Bio-physical summary of the diverse ecosystem study sites from the AmeriFlux network 

 

Ecosystems Vegetation 
types 

Latitude 
(ºN) 

Longitude 
(ºW) 

Canopy 
height 
(m) 

Koppen climate 
classification 

Mean 
annual 
temperature 
(oC) 

Mean annual 
precipitation 
(mm) 

References  

Sylvania Wilderness 
(MI) 
 

Mixed forest 
 
 

46.24 
 
 

89.35 
 
 

22 
 
 

Dfb (Warm 
summer 
continental) 

3.81 
 
 

826 
 
 

Desai et el., 2005 
 
 

Fermi Prairie (IL) Grassland 41.84 88.24  Dfa (Humid 
continental) 

9.04 930 Matamala et al., 
2008 

Mead Irrigated (NE) Cropland 41.17 96.48 2.9 Dfa (Humid 
continental) 

10.07 790 Verma et al., 2005; 
Suyker et al., 2004, 
2005 

Niwot Ridge (CO) Evergreen 
needleleaf 
forest 

40.03 105.55 11.5 Dfc (Subartic) 1.50 800 Monson et al., 2005, 
2002 

Morgan Monroe State 
Forest (IN) 

Deciduous 
broadleaf 
forest 

39.32 86.41 27 Cfa (Humid 
subtropical) 

10.85 1032 Dragoni et al., 2010; 
Oliphant et al., 2004 

Florida Everglades 
Taylor Slough Short 
Hydroperiod Marsh 
(FL) 

Wetland 25.44 80.59  Am (Tropical) 23.9 1430 Schedlbauer et al., 
2010; 2012 
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dominated by a relatively uniform grass-sedge canopy (Davis et al., 2005; Schedlbauer et al., 

2012).  

5.2.2 The AmeriFlux data sets  

Eddy covariance-based hourly measurements of NEE and the corresponding climatic and 

ecohydrologic variables were obtained from the AmeriFlux network (http://ameriflux.ornl.gov) 

for different five years (2002-2006; 2005-2009; 2007-2011; 2008-12) during 2002-2012 for the 

six different study ecosystems. The 5-year periods for each ecosystem and the overall 11-year 

period among different ecosystems incorporated the multi-scale (e.g., hourly, daily, seasonal, 

inter-annual, and decadal) temporal variabilities of NEE and relevant climate and ecohydrologic 

processes (see Table 5.2 for data summary and statistics). Selected variables were NEE (including 

sub-canopy CO2 storage); ambient atmospheric CO2 concentration (CCO2); net radiation (RN); 

photosynthetically active radiation (PAR); sensible heat flux (SHF); latent heat flux (LHF) 

(ecosystem water exchange); soil heat flux (FG); air temperature (TA); soil temperature (TS); 

vapor pressure deficit (VPD); soil water content (SWC) (unavailable for the Mead Irrigated site); 

wind speed (WS); and friction velocity (UST). Overall, the observational data matrix included 12 

potential explanatory variables of NEE for an individual ecosystem. The participating variables 

were chosen based on a preliminary data analysis and the existing knowledge of ecosystem 

carbon flux dynamics. According to the AmeriFlux sign conventions, positive sign represented 

upward fluxes (land/forest to atmosphere) of NEE, LHF, and SHF; negative refers to their 

downward fluxes (atmosphere to land/forest). In contrast, positive values of radiation (RN and 

PAR) and FG indicate downward fluxes and vice versa. 

 This study utilized the level-2 AmeriFlux data that had passed through the 

preliminary QA/QC checks. Given the very large sample sizes (N = 26660-41999) for different 

ecosystems representing different periods of five consecutive years, gaps in the primary data sets 

http://ameriflux.ornl.gov/
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Table 5.2: Summary of data records and statistics (averages and standard deviations) for the observed hourly NEE, climate and 
ecohydrological variables of the six study sites. Standard deviations are given in parenthesis. 
 
Ecosystem sites Data 

Records 
RN 
(W/m2) 

PAR 
(μmol/m2/s
) 

LHF 
(W/m2) 

SHF 
(W/m2) 

FG 
(W/m2) 

TA 
(oC) 

TS 
(oC) 

VPD 
(KPa) 

SWC 
(%) 

WS 
(m/s) 

UST 
(m/s) 

CCO2 
(μmol/m
ol) 

NEE 
(μmol/m
2/s) 

Sylvania 
Wilderness  

2002-06 64.98 323.38 29.60 18.53 0.32 5.76 7.97 0.41 20.34 3.15 0.54 380.75 -0.31 
N=24475 (172.97) (516.25) (62.03) (76.02) (17.63) (12.08) (7.36) (0.49) (3.22) (1.16) (0.28) (11.38) (5.02) 

Fermi Prairie 2007-11 106.93 389.87 58.15 20.56 2.39 9.12 12.32 0.51 38.47 2.88 0.31 376.72 -1.44 
N=29131 (189.76) (534.13) (91.36) (66.69) (36.89) (12.04) (7.96) (0.53) (6.67) (1.63) (0.18) (26.75) (6.38) 

Mead Irrigated 2008-12 111.45 407.20 60.59 22.55 3.86 10.81 11.57 0.53  3.96 0.29 399.97 -1.62 
N=30787 (218.92) (564.02) (103.96) (71.56) (50.12) (12.00) (10.1) (0.62)  (2.41) (0.19) (29.57) (11.83) 

Niwot Ridge 2008-12 100.07 351.11 48.09 40.04 -0.41 2.36 2.56 0.46 9.88 4.80 0.75 391.37 -0.69 
N=35592 (236.60) (525.42) (63.62) (140.3) (5.67) (9.08) (4.10) (0.41) (7.09) (3.40) (0.58) (4.52) (3.74) 

Morgan Forest  2005-09 146.94 485.89 55.91 37.70 0.49 11.84 11.06 0.61 37.43 3.80 0.57 392.04 -2.73 
N=23422 (226.58) (585.00) (95.53) (90.59) (9.60) (10.87) (6.76) (0.57) (7.25) (1.51) (0.26) (12.81) (7.90) 

Florida 
Everglades  

2008-12 251.75 709.46 96.42 71.57 9.45 25.31 23.82 1.05 68.05 3.19 0.35 388.45 -0.93 
N=16457 (269.93) (637.66) (73.17) (97.41) (32.18) (5.80) (4.50) (0.60) (15.9) (1.30) (0.13) (12.08) 1.78 

Notes: ‘Blank’ in the table refer to ‘missing data’. N = sample size. RN, PAR, LHF, SHF, FG, TA, TS, VPD, SWC, WS, UST, CCO2, and 
NEE, respectively, refer to net radiation, photosynthetically active radiation, latent heat flux, sensible heat flux, soil heat flux, air temperature, 
soil temperature, vapor pressure deficit, soil water content, wind speed, friction velocity, ambient atmospheric CO2 concentration, and net 
ecosystem exchange.  
 
Table 5.3: Pearson correlation coefficients between the NEE and climatic/ecohydrological variables for the diverse ecosystem study sites 
 
Ecosystem sites RN PAR LHF SHF FG TA TS VPD SWC WS UST CCO2 
Fermi Prairie -0.74 -0.73 -0.84 -0.33 -0.54 -0.34 -0.25 -0.49 0.16 -0.09 -0.15 0.39 
Sylvania Wilderness -0.69 -0.68 -0.70 -0.54 -0.48 -0.22 -0.18 -0.39 0.05 -0.01 -0.15 0.39 
Niwot Ridge -0.67 -0.67 -0.66 -0.53 -0.52 -0.33 -0.24 -0.34 -0.19 0.10 0.01 0.34 
Florida Everglades -0.69 -0.71 -0.61 -0.76 -0.25 -0.36 0.01 -0.51 0.14 -0.28 -0.45 0.22 
Mead Irrigated -0.60 -0.56 -0.78 -0.15 -0.30 -0.31 -0.26 -0.35  0.04 -0.21 0.41 
Morgan Forest -0.72 -0.71 -0.85 -0.32 -0.39 -0.52 -0.52 -0.49 0.23 0.36 0.19 0.41 
Notes: Blank indicates missing dat
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were not filled to avoid artificial biases in the data-analytics outcomes. To remove outliers and 

unsuitable data from each site, we applied a two-layer filtering approach following Ishtiaq and 

Abdul-Aziz (2015). The first filter removed hourly data panels having gaps for more than two 

participatory variables; the gap-filtering led to exclusion of hourly panel data by around 18% for 

Niwot Ridge, by 30% for Mead Irrigated, by 33% for Fermi Prairie, by 44% for Sylvania 

Wilderness, by 46% for Morgan forest, and by 62% for Florida Everglades from their respective 

primary data sets of 5-year periods. The removal percentages were higher for the latter three 

stations, compared to the 35% missing data encountered annually on average among different 

ecosystems at the half-hourly scale (see Falge et al., 2001). Apart from inclement weather 

conditions and instrument (eddy covariance tower equipment) malfunctioning, gaps in the hourly 

data panels were contributed by missing data for ecohydrologic variables such as soil moisture 

(SWC) that had not been measured by the eddy covariance technique. In the second filtering step, 

gap-filtered data of each variable for each ecosystem were plotted with time (not shown) to 

visually identify the unreasonable spikes (i.e., outliers), which were excluded from further 

analysis. This second filtering removed no hourly observation panels from the Florida Everglades 

and Morgan Forest, while removing 4 hourly observation panels from the Niwot Ridge, 6 

observation panels from the Fermi Prairie, 12 observation panels from the Mead Irrigated, and 20 

observation panels from the Sylvania Wilderness. Encompassing a large geographical extent over 

the 11 year period (2002-12), the final data sets for diverse ecosystems (N= 16457-35592; see 

Table 5.2) incorporated the effects of relatively large spatiotemporal gradients and variability of 

climatic, hydrological, biological, and ecological processes on NEE fluxes.  

Overall, the data sets included atmospheric, hydrological, and ecological variables 

controlling NEE (photosynthesis and respiration) at different levels; e.g., from the leaf-level gross 

primary production (GPP) to the ecosystem-level autotrophic and heterotrophic respiration. On 

average among different ecosystems, the final data sets represented positive and negative NEE 
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equally (i.e., by around 50% for each flux type). Biological variables (e.g., biomass, leaf-area-

index) were not included in the data-analytics since the objective of this study was to determine 

the relative linkages of mainly climatic and environmental variables with the NEE. Subject to the 

lack of precipitation data at the hourly scale, SWC was considered to represent the hydrologic 

forcing on the NEE processes. Further, the partitioned heat fluxes (LHF, SHF, and FG) were 

included in the analysis to incorporate the ecohydrologic forcing of NEE.  

5.2.3 The data-analytics framework 

The data-analytics (Figure 5.2), as employed in this study, involved a systematic application of 

Pearson product-moment correlation analysis, unsupervised principal component analysis (PCA) 

(Jolliffe I. T., 1993; Peres-Neto et al., 2003; Mahbub et al., 2010), maximum likelihood 

estimation based factor analysis (FA) (Panda et al, 2006; Dragon, 2006; and Liu et al., 2003), and 

orthogonal component based partial least squares regression (PLSR) modeling (Wold 1966, 

1982). For PCA, FA and PLSR modeling, data for all the variables were first transformed to the 

respective Z-scores (i.e., ( ) σµ−= XZ , where Z = Z-score = standardized variable, X = original 

variable, µ = site-specific mean of X over the study period, and σ = standard deviation of X ) in 

order to bring different units of variables to a comparable reference scale. Pearson correlation 

matrix indicated the linear correspondence between NEE and the climate/ecohydrological 

variables, as well as the multicollinear structure of the data. PCA and FA identified the hidden 

grouping and inter-relation patterns of explanatory variables, indicating their relative linkages 

with NEE. The PLSR models with Z-scores, upon transformation from the orthogonal component 

domain to the original variables, quantified the relative linkages of NEE with the different 

climatic and ecohydrological drivers for the respective study ecosystems.  
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Figure 5.2: The data-analytics framework 

Data for the respective five years (i.e., 2002-2006, 2005-2009, 2007-2011, and 2008-12) 

for different ecosystems were used for correlation analysis, PCA, and FA. The advantage of PCA 

is that it can extract hidden multivariate patterns from the original data in an unsupervised manner 

by deriving some orthogonal entities called principal components (PCs), which are linear 

combinations of the original variables. The orthogonalization ensures representation of the 

multivariate data sets on uncorrelated planes. Typically, the first two PCs are extracted from a 

loading matrix (indicating correlations between the PCs and the original variables) and 

represented through biplots to visualize any hidden grouping and interrelations (orientations and 

correlation lengths) among the participatory variables. In contrast, FA can be considered a 

supervised PCA, converting the original variables into a set of rudimental but unobservable 

orthogonal quantities called factors. The maximum likelihood estimation of a factor loading 

matrix maximizes the total system variance explained, while the ‘varimax’ factor-rotation 
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optimizes the loadings (i.e., correlation coefficients) of participatory variables on each factor. 

Individual latent factors are then extracted based on the eigenvalue criterion (eigenvalue > 1.0) to 

represent the most system variance of a data matrix with a minimum number of factors.  

The PLSR modeling is performed on the transformed orthogonal planes by fitting the 

independent partial least squares (PLS) components (rather than the original predictor variables) 

with the response variable, and by maximally linking the predictor-data covariance with that of 

the response. The issue of multicollinearity among the original predictors (and unreliable 

predictions therefrom) is thus resolved in the orthogonal domain, allowing the retention of all 

original predictors in the final model. The regression coefficients of the original, independent 

variables are then obtained from that of the optimal PLSR model by leveraging the linear 

transformations between the PLS components and the original variables (Kuhn and Johnson, 

2013).  

The site-specific PLSR models were trained (i.e., calibrated) for each ecosystem with the 

corresponding data of the first four years (i.e., Fermi Prairie: 2007-2010; Morgan State Forest: 

2005-2008; Sylvania Wilderness: 2002-2005; Mead Irrigated, Niwot Ridge and Florida 

Everglades: 2008-2011). Data for the remaining single years (Fermi Prairie: 2011; Morgan State 

Forest: 2009; Sylvania Wilderness: 2006; Mead Irrigated, Niwot Ridge and Florida Everglades: 

2012) were used for model testing and validations. The SIMPLS algorithm (de Jong, 1993) along 

with a10-fold cross-validation (Kuhn and Johnson, 2013) was applied to achieve a consistent 

model fitting and robust estimation of parameters for the 4-year calibration periods. A modified 

Akaike Information Criterion (AIC) (Akaike, 1974; Abdul-Aziz and Ishtiaq, 2014) and the 

coefficient of determination (R2) were used to determine the minimum number of PLS 

components required to obtain the optimal PLSR model based on the minimum prediction error 

(minimum AIC) and maximum explained variance of NEE (maximum R2). The modified, 
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normalized NEEAIC  was computed to bring data for different ecosystems (having different sample 

sizes) to a comparable scale as: ( ) ( ) NpNSSEpAIC NEENEE 2ln += ; where p  is the total 

number of the PLS components, N  is the sample size, and NEESSE  is the total sum of squared 

errors between the modeled NEE (Z-scores) and the corresponding observations. Apart from the 

model efficiency metric (R2), ratio of root-mean-square error to the standard deviation of 

observations (RSR) and mean square error (MSE) were used to assess accuracy of the final 

models. RSR was computed as: obsNEE
N
i obsii NNEENEERSR ,1

2
,mod, /)( σ∑ =

−= , where  obsiNEE ,

and  mod,iNEE  are the  thi  observed and predicted (respectively) Z-scores of NEE, 

0.1, =obsNEEσ  is the standard deviation of the observed Z-scores of NEE, and N   is the sample 

size. Following Moriasi et al. (2007), a perfect to very good model has an RSR between 0 and 

0.50, a good model has an RSR between 0.50 and 0.60, and a satisfactory model has an RSR 

between 0.60 and 0.70; RSR> 0.70 indicates an unsatisfactory model. 

Since the PLSR model was developed with Z-score variables (leading to a ‘zero’ model 

intercept), the model coefficients (BETA), along with the ‘variable importance in the projection 

(VIP)’ scores (Wold et al., 1993, 2001; Chong and Jun, 2005), were used to determine the relative 

contributions and linkages of different predictors (PAR, RN, LHF, SHF, FG, VPD, TA, TS, 

SWC, CCO2, UST and WS) to the response variable (NEE). Higher VIP scores and BETA 

coefficients indicated the stronger predictors of NEE in the latent predictor-response matrix; VIP 

> 1.0 referred to the most informative predictors (Kuhn and Johnson 2013). The dimensionless 

PLSR model coefficients were also aggregated to quantify the overall relative linkages (see 

section 3.4) of different process components (e.g., radiation, heat fluxes, temperature, hydrology, 

aerodynamic) with the NEE for the different study ecosystems.  
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5.3 Results  

5.3.1 Linear correspondences of NEE, climatic and ecohydrological variables 

The statistically significant, Pearson correlation coefficients (α = 0.05 for a two-tailed test) 

between hourly NEE and the corresponding climatic and ecohydrological variables were reported 

for the six study ecosystems (Table 5.3). Although correlation analysis was performed with 

untransformed (i.e., non-standardized) data of the original variables, only absolute values of the 

correlation coefficients were used to illustrate linear correspondences among the participatory 

variables given that NEE, heat fluxes, net radiation, air and soil temperatures included both 

positive and negative observations. For all ecosystems, the radiation variables (RN and PAR) 

demonstrated relatively high linear correspondences (| r | = 0.56-0.74) with NEE. Among the heat 

fluxes (SHF, LHF, and FG), LHF (ecosystem-atmospheric heat and water exchanges due to 

evapotranspiration) were relatively highly correlated (| r | = 0.61-0.85) with NEE. SHF 

(ecosystem-atmospheric heat exchanges due to temperature gradient) and FG (soil heat flux) 

showed relatively moderate correlations (| r | = 0.15-0.54) with NEE for all but one ecosystem; 

NEE was strongly correlated (| r | = 0.76) with SHF for the Florida Everglades. Relatively 

moderate linear correspondences of NEE were observed with TA (air temperature, | r | = 0.22-

0.52), TS (soil temperature, | r | = 0.18-0.52), VPD (vapor pressure deficit, | r | = 0.34-0.51), and 

CCO2 (ambient CO2 concentration, | r | = 0.22-0.41) at all ecosystems except for the Florida 

Everglades, where TS was very weakly correlated with NEE (| r | = 0.01). Relatively weak linear 

correspondences of hourly NEE were generally noted with the aerodynamic drivers (UST and 

WS; | r | = 0.01-0.21) and with the hydrological variable (SWC; | r | = 0.05 -0.23) with some 

exceptions for Morgan Forest and the Florida Everglades. Wind speed (WS) showed a moderate 

correlation (| r | = 0.36) with NEE at Morgan Forest, while both WS and friction velocity (UST) 

were moderately correlated (| r | = 0.28 and 0.45, respectively) with NEE at the Everglades site; 
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indicating a relatively stronger influence of boundary layer mixing on carbon fluxes in the coastal 

wetland. 

The triangular correlation matrix (not shown) for each study site indicated high mutual 

correlations (| r | =0.82-0.98) among the radiation and heat flux variables (SHF, LHF, FG, RN and 

PAR). Mutual correlations (| r | =0.73-0.94) among the temperature variables (TS, TA and VPD), 

as well as that between the aerodynamic variables (WS and UST; | r | =0.72-0.95) were also 

notably high. The high mutual correlations indicated the presence of a considerable 

multicollinearity in the climate and ecohydrological data matrices. 

5.3.2 Relative orientations and groupings of NEE and driving variables 

The PCA loadings (correlation coefficients between the PCs and the original variables) for the 

different study ecosystems are presented through biplots (Figure 5.3). Among the six diverse 

ecosystems, the first two PCs explained 87% to 91% of the total data-system variance.  

The interrelation and hidden grouping patterns of the participatory variables were similar 

for Fermi Prairie (grassland; Figure 5.3a), Sylvania Wilderness (mixed forest; Figure 5.3b), and 

Niwot Ridge (evergreen needle leaf forest; Figure 5.3c) ecosystem sites. In Fermi Prairie, for 

example, the relative orientations, loadings and correlation lengths of RN, PAR, LHF, SHF and 

FG suggested high interrelationships, forming a dominant group (A) that had strong linkages 

(highly non-orthogonal orientations) with NEE and ambient CCO2  (Figure 5.3a). The TA, TS and 

VPD formed a second group (B) that showed a moderately non-orthogonal orientation and 

moderate linkage with NEE despite the relatively long correlation lengths and loadings on both 

principal components (PCs). The opposite orientation (1800) between SWC and Group-B 

variables indicated their notably negative mutual correlations. The UST and WS formed a third 

group (C), exhibiting a nearly moderate non-orthogonality with NEE and long correlation lengths  
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Figure 5.3: Biplots from principal component analysis, showing the interrelation and grouping 
patterns of climatic, ecohydrological and biological variables for (a) Fermi Prairie (IL), (b) 
Sylvania Wilderness (MI), (c) Niwot Ridge Forest (CO), (d) Everglades (FL), (e) Mead Irrigated 
(NE), and (f) Morgan Monroe State Forest (IN). Percent variance explained by each PC is shown 
in parentheses. 

 
similar to that of Group-B; however, the substantially small loadings of both WS and UST on 

PC1 suggested a relatively weak linkages of Group-C variables with NEE. 

Although the interrelation, grouping and NEE linkage patterns for the other three 

ecosystems (Florida Everglades, Mead Irrigated, and Morgan State Forest) were nearly similar to 

that of Fermi Prairie, some important exceptions were evident. For the Florida Everglades 

(coastal wetland) and Mead Irrigated (cropland) sites, VPD emerged out of the group of 

temperature variables (Group-B1 and B2) and loaded on Group-A1 with the radiation-heat flux 

variables (see Figure 5.3d,e). Further, the SWC (missing for the Mead Irrigated site) loaded with 

the temperature variables (group-B1) at the Everglades site. However, unlike other study 

ecosystems, both Group-B1 (or B2) and Group-C appeared nearly equally (moderately) linked 

with the hourly NEE for the Everglades and Mead Irrigated sites. For Morgan State Forest 

(deciduous broadleaf forest), soil heat flux (FG) emerged out of the radiation-heat fluxes cluster 

(Group-A2) and loaded with the temperature variables (TA, TS and VPD; Group-B3) (Figure 

5.3f); although SWC grouped with the aerodynamic variables (UST and WS; Group-C1), strongly 

negative correlations of SWC with the temperature variables (Group-B3) were evident. However, 

similar to Fermi Prairie, the Group-B3 and Group-C1 appeared, respectively, moderately and 

weakly linked with NEE for the Morgan Forest site.  

In general, PCA identified three variance-based groups hidden in the data matrices; 

Group-A (or A1-A2) was dominated by the radiation and heat flux variables; Group-B (or B1-B3) 

was dominated by the temperature variables; and Group-C (or C1) was dominated by the 
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aerodynamic variables. For all six ecosystems, the near-canopy atmospheric carbon dioxide 

concentration (CCO2) emanated alongside NEE with small angels. However, relatively small 

correlation lengths of CCO2 on the biplots, compared to the other variables, indicated its moderate 

linkage with hourly NEE.  

5.3.3 Dominant biophysical variables based on optimal, orthogonal latent factors 

The ‘varimax’ factor-rotation based optimal loadings of participatory variables from FA 

complemented the two-dimensional PCA biplots with a more detailed understanding of the 

hidden variance-based grouping patterns. The eigenvalue based factor extraction criteria 

(eigenvalue >1) resulted in 3 to 4 independent latent factors that maximally explained the total 

data-system variance among the different study sites (Table 5.4). The FA results are explained 

based on the magnitudes (i.e., ignoring signs) of the factor loadings given that the transformed 

data (Z-scores) of the participatory variables consisted of both positive and negative values. 

The radiation and heat flux variables (except for FG) had relatively high loadings (0.68 to 

0.98) on the first factor (Factor-1) for all but the Mead Irrigated study sites (Table 5.4); NEE also 

loaded relatively highly (-0.63 to -0.70) on Factor-1 for these sites, reiterating strong carbon flux 

linkages of the radiation-heat flux variables (i.e., RN, PAR, SHF and LHF). For Mead Irrigated 

site, the third factor (Factor-3) showed high loadings of NEE (-0.78) and LHF (0.87), as well as 

moderate loadings of RN (0.55) and PAR (0.50); Factor-1 had a weak loading (-0.16) of NEE and 

high loadings (0.76 to 0.91) for RN, PAR, SHF and FG. The FG loaded moderate to highly (0.50 

to 0.76) on Factor-1 for Niwot Ridge, Sylvania and Fermi Prairie sites. Other notable loadings of 

FG were apparent on the second factor (Factor-2) for the Everglades (0.48) and Morgan (0.75) 

sites (Table 5.4). 
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Table 5.4: Dominant latent factors and optimized loadings of variables for the diverse ecosystem study sites. 
 

Notes: F1-4 refer to four different factors. Bold indicate variables having moderate to high loadings on factors. ‘Blank’ refers to ‘missing data’.

Ecosystems Factor RN PAR LHF SHF FG TA TS VPD SWC WS UST CCO2 NEE 

Fermi Prairie 
F1 0.95 0.96 0.77 0.80 0.76 0.21 0.05 0.47 -0.07 0.10 0.19 -0.26 -0.70 
F2 0.25 0.21 0.45 -0.15 0.19 0.95 0.94 0.65 -0.29 -0.11 -0.14 -0.21 -0.24 
F3 0.15 0.14 0.13 0.09 0.16 -0.03 -0.08 0.13 0.12 0.90 0.97 -0.30 -0.05 

Sylvania Wilderness 

F1 0.97 0.96 0.71 0.91 0.65 0.17 0.09 0.44 0.01 -0.01 0.22 -0.30 -0.67 
F2 0.19 0.22 0.35 0.02 0.35 0.98 0.90 0.63 -0.03 -0.06 -0.04 -0.34 -0.07 
F3 0.10 0.08 0.06 0.08 0.11 -0.03 -0.10 0.01 -0.01 0.85 0.97 0.01 -0.01 
F4 0.07 0.06 0.53 -0.14 0.17 0.09 0.16 0.33 -0.13 0.06 0.02 -0.34 -0.37 

Niwot Ridge 
F1 0.98 0.98 0.68 0.91 0.50 0.17 0.09 0.26 0.10 -0.01 0.11 -0.16 -0.64 
F2 0.16 0.20 0.24 0.07 0.36 0.94 0.77 0.81 0.21 -0.14 -0.15 -0.33 -0.23 
F3 -0.03 0.01 0.12 0.01 -0.03 -0.20 -0.22 -0.05 -0.15 0.95 0.98 -0.05 0.05 

Florida Everglades 

F1 0.96 0.97 0.71 0.79 0.24 0.35 -0.02 0.68 -0.09 0.23 0.31 -0.13 -0.66 
F2 0.17 0.12 0.31 0.04 0.48 0.93 0.82 0.33 0.15 -0.04 -0.03 -0.33 -0.11 
F3 0.18 0.17 0.26 0.20 0.08 0.01 -0.15 0.18 -0.10 0.83 0.93 -0.16 -0.21 
F4 -0.01 0.04 -0.13 0.43 0.41 0.10 -0.22 0.22 -0.64 0.18 0.18 0.09 -0.25 

Mead Irrigated 

F1 0.77 0.80 0.30 0.91 0.76 0.13 0.07 0.36  0.12 0.18 -0.13 -0.16 
F2 0.25 0.23 0.32 0.04 0.16 0.97 0.93 0.59  -0.13 0.15 -0.07 -0.16 
F3 0.55 0.50 0.87 -0.01 0.26 0.18 0.15 0.29  -0.01 0.18 -0.39 -0.78 
F4 0.17 0.17 0.13 0.13 0.15 0.01 -0.07 0.18  0.89 0.88 -0.34 0.004 

Morgan Forest 
F1 0.96 0.96 0.71 0.83 0.28 0.21 0.16 0.42 -0.09 -0.28 0.09 -0.27 -0.63 
F2 0.25 0.27 0.43 -0.08 0.75 0.97 0.87 0.65 -0.35 -0.05 -0.17 -0.22 -0.38 
F3 -0.07 -0.08 -0.14 0.12 0.08 -0.11 -0.24 -0.03 0.18 0.82 0.94 0.06 0.21 
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In general, the temperature variables (TA and TS) loaded highly (0.77 to 0.98) on Factor-

2, which had low to moderate loadings (-0.07 to -0.38) of NEE. VPD exhibited moderate to high 

loadings on Factor-1 (0.68) for the Everglades and on Factor-2 (0.59 to 0.81) for the other study 

sites. SWC showed low to moderate loadings (-0.03 to -0.35) on Factor-2 among the different 

ecosystem sites. For the Florida Everglades, however, SWC loaded relatively highly (-0.64) on 

Factor-4 that had a notable loading of NEE (-0.25); suggesting an important linkage between 

SWC and NEE for the coastal wetland site characterized by a short hydroperiod.  

The aerodynamic drivers (WS and UST) loaded heavily on Factor-3 for most ecosystems 

(0.82 to 0.98) and on Factor-4 for the Mead Irrigated site (0.88 to 0.89). The corresponding low 

loadings (0.004 to ±0.21) of NEE on Factor-3 and 4 suggested relatively weak linkages of the 

aerodynamic variables with NEE at the hourly scale. The ambient CCO2 did not demonstrate 

strong loadings on any factor; however, the multi-factor associations of CCO2 with low to 

moderate loadings (0.09 to -0.39) indicated a moderate linkage between ambient CO2 

concentration and NEE.  

5.3.4 Climatic and environmental process components driving NEE 

Overall, the explanatory PCA and FA identified similar relative linkages and grouping patterns of 

climatic and ecohydrologic process variables among the six diverse ecosystems that represented a 

high geographical gradient and range in vegetation and land uses, climate, hydrology, and soil 

formation. Based on the biplots (Figure 5.3) and factor loadings (Table 5.4), the radiation and 

heat fluxes (PAR, RN, LHF, SHF and FG) were grouped together as the most dominant process 

cluster and termed the ‘radiation-energy’ component, which included the strongest drivers (and 

covariates) of hourly NEE. Although FG sometimes showed the highest loadings outside of 

Group-A (see Figure 5.3f) or Factor-1 (e.g., Factor-2 for the Everglades and Morgan Forest sites; 

see Table 5.4), we included FG in the ‘radiation-energy’ component considering the energy 
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balance closure. Subject to hydrologic process linkages and close associations, the temperature 

and hydrologic variables (TA, TS, VPD and SWC) were grouped together and termed the 

‘temperature-hydrology’ component that represented the moderately strong drivers of hourly 

NEE. The group of wind speed and friction velocity (WS and UST) was termed the 

‘aerodynamic’ component, which represented the relatively weak drivers of NEE.  The near-

canopy atmospheric CCO2 was termed the ‘ambient atmospheric CO2’component for quantifying 

its relative linkage with NEE.  

5.3.5 Quantitative relative linking of NEE through explanatory PLSR  

Based on a 10-fold cross-validation based optimization, incorporation of the first 3 to 4 PLS 

components provided the optimal PLSR models for standardized NEE (i.e., Z-scores); resulting in 

minimum prediction errors (minimum AIC) and explaining the most variance (maximum R2) of 

NEE among the different study ecosystems (Figure 5.4). The finding was consistent with the 

outcomes of PCA and FA. PLSR model calibrations (training) and validations (testing with 

independent data) with the optimal number of PLS components demonstrated good fitting 

efficiencies (calibration R2 = 0.57-0.77; validation R2 = 0.58-0.75) and accuracies (calibration 

RSR = 0.48-0.66; validation RSR = 0.50 to 0.65) (Table 5.5). Model residuals were 

approximately normally distributed representing constant variances (not shown).  

Relative linkages of NEE with the climatic and ecohydrological variables were quantified 

based on variable importance in the projection (VIP) scores (Figure 5.5) and absolute values of 

regression coefficients (BETA) (Table 5.5), as obtained from the optimal models upon 

transformation from the orthogonal (PLS) domain to the original variable domain. Since Z-scores 

of the participatory variables had both positive and negative values, the sign of BETA was not 

considered to avoid misleading interpretations on the type (e.g., mutual increase or decrease) of 

relative NEE linkages of the climatic and ecohydrological variables. The VIP scores  
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Figure 5.4: Plot of cross-validated (a) normalized AIC and (b) fitting efficiency (R2) of NEE with 
the number of partial least squares components. 

 

demonstrated almost similar linkage patterns among different study ecosystems (Figure 5.5). 

Variables (LHF, RN, PAR, SHF, FG) representing the ‘radiation-energy’ group had VIP scores 

greater than or close to unity (1.0) for most ecosystems, suggesting their higher importance and 

linkages with NEE (see Kuhn and Johnson, 2013). LHF was the most influential predictor 

(highest VIP scores) of NEE for all but the Everglades site, where SHF appeared to be the 

strongest predictor. Overall, the ‘temperature-hydrology’ group variables showed relatively 
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Figure 5.5: Variable importance on the projection (VIP) scores for different predictors of NEE for (a) Fermi Prairie (IL), (b) Sylvania 
Wilderness (MI), (c) Niwot Ridge Forest (CO), (d) Everglades (FL), (e) Mead Irrigated (NE), and (f) Morgan Monroe State Forest (IN). 
Dashed line indicates variables with VIP score greater than unity (1.0).  
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Table 5.5: Coefficients (BETA) of standardized (Z-score) PLSR models of NEE for different 
study ecosystems. 

Notes: ‘Blank’ indicates ‘missing data’. MSE refers to mean square error. RSR, the ratio of root-mean-
square error to the standard deviation of observations, was calculated as: 

obsNEE
N
i obsii NNEENEERSR ,1

2
,mod, /)( σ∑ =

−= ; where  obsiNEE , and  mod,iNEE  are, respectively, the  

thi  observed and predicted values of transformed (Z-score) NEE; 0.1, =obsNEEσ  is the standard deviation of 
the observed (Z-score) NEE, and N   is the sample size 

 
moderate VIP scores (with the exceptions of VPD and TA that had a VIP of 1.0 or higher for 

some sites, while SWC generally exhibiting small VIPs), referring to their moderate linkages with 

NEE. For both Mead Irrigated and Florida Everglades sites, TA, TS, UST, and WS had similar 

VIPs, indicating equally moderate NEE linkages of the ‘temperature-hydrology’ and 

‘aerodynamic’ components. Otherwise, the ‘aerodynamic’ group variables appeared to be 

relatively weak predictors of NEE among the different ecosystems. Similar to the outcomes of 

PCA and FA, the CCO2 demonstrated moderate VIP scores, suggesting moderate linkages of 

‘ambient atmospheric CO2’ with NEE for most study ecosystems.  

Variables Fermi 
Prairie 

Sylvania 
Wilderness 

Niwot 
Ridge 

Florida 
Everglades  

Mead 
Irrigated 

Morgan 
Forest 

RN -0.25 -0.22 -0.16 -0.06 -0.27 -0.23 
PAR  -0.27 -0.21 -0.16 -0.11 -0.20 -0.19 
LHF -0.67 -0.55 -0.28 -0.21 -0.64 -0.56 
SHF 0.30 0.09 -0.05 -0.52 0.19 0.20 
FG 0.03 0.04 -0.13 0.09 0.20 0.11 
TA 0.12 0.12 0.01 -0.14 0.04 -0.04 
TS 0.06 0.08 0.06 0.09 0.05 -0.13 
VPD 0.11 0.12 0.04 0.16 0.12 0.11 
SWC 0.01 0.02 -0.11 0.02  -0.04 
WS 0.07 0.00 0.06 0.18 0.15 0.06 
UST 0.05 0.05 0.04 -0.18 -0.02 0.02 
CCO2 0.11 0.17 0.22 0.16 0.11 0.12 
PLS components 4 4 3 4 4 3 
Calibrations 2007-10 2002-05 2008-11 2008-11 2008-11 2005-08 
R2  0.75 0.58 0.57 0.66 0.68 0.77 
MSE  0.25 0.42 0.43 0.37 0.32 0.23 
RSR  0.50 0.64 0.66 0.58 0.57 0.48 

Validations 2011 2006 2012 2012 2012 2009 
R2  0.73 0.58 0.64 0.61 0.61 0.75 
MSE  0.27 0.42 0.36 0.39 0.39 0.25 
RSR  0.52 0.65 0.60 0.62 0.63 0.50 



164 

Table 5.6: Aggregated relative linkages of the major biophysical groups with NEE for different ecosystems. 

 

 

 

 

Notes: The aggregated relative linkages of the ‘radiation-energy’ ( RHFβ ), ‘temperature’ ( Tβ ), ‘aerodynamic’ ( Wβ ), and ‘ambient atmospheric CO2’ (

Cβ ) components were computed, respectively, as: 22222
FGSHFLHFPARRNRHF ββββββ ++++= ; 2222

SWCVPDTSTAT βββββ +++= ;

22
USTWSW βββ += ; and 2

2COC ββ = . 

 

Study  
Ecosystems 

TRHF ββ
 
 

WRHF ββ
 

CRHF ββ
 

Radiation-
energy 
contribution 
(%) 

Temperature
-hydrology 
contribution  
(%) 

Aerodynamic 
contribution  
(%) 

Ambient 
CO2 
contribution 
(%) 

Fermi Prairie 4.7 9.6 7.5 69 15 7 9 
Sylvania Wilderness 3.4 12.7 3.7 61 18 5 16 
Niwot Ridge 2.9 5.4 1.8 48 16 9 27 
Florida Everglades 2.5 2.3 3.6 47 19 21 13 
Mead Irrigated 5.7 5.1 7.0 66 12 13 9 
Morgan Forest 3.8 10.7 5.6 65 17 6 12 
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Magnitudes of the regression coefficients (BETA) exhibited similar linkage patterns of 

NEE, compared to that of VIPs, with the four variance-based biophysical components and the 

associated climatic/ecohydrological variables (Table 5.5). Latent heat flux showed the highest 

linkage with NEE for all ecosystems except for the Florida Everglades (where sensible heat flux 

had the highest linkage), underlining a strong connection among the ecosystems’ carbon, water 

and energy fluxes. Given that the regression coefficients had both positive and negative signs, the 

component-wise linkages (aggregated weights) of the ‘radiation-energy’ ( RHFβ ), ‘temperature-

hydrology’ ( Tβ ), ‘aerodynamic’ ( Wβ ) and ‘ambient atmospheric CO2
’
  ( Cβ ) groups were 

computed, respectively, as: 22222
FGSHFLHFPARRNRHF ββββββ ++++= ;

2222
SWCVPDTSTAT βββββ +++=  ; 22

USTWSW βββ += ; and  2
2COC ββ = . The relative 

linkages of the climatic and ecohydrologic process components with NEE (compared to the 

‘radiation-energy’ component) were obtained by calculating the ratios of TRHF ββ , WRHF ββ , and 

CRHF ββ . The percent contributions of the four process components to the predictions and 

explanation of NEE were then computed as: )(100* CWTRHFRHF βββββ +++ ; 

)(100* CWTRHFT βββββ +++ ; )(100* CWTRHFW βββββ +++ ; and 

)(100* CWTRHFC βββββ +++ . 

Among the different study ecosystems, aggregated relative weights (i.e., linkages) of the 

‘radiation-energy’ component were approximately 2.5-6 times higher than that of the 

‘temperature-hydrology’ component; 2-8 times higher than the ‘ambient atmospheric CO2’ 

component; and 2-13 times higher than the ‘aerodynamic’ component (Table 5.6). Therefore, the 

‘radiation-energy’ contributed by 47-69% to the predictions of NEE, whereas the ‘temperature-

hydrology’, ‘ambient atmospheric CO2
’
  and ‘aerodynamic’ groups contributed by, respectively, 
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12-19%, 9-27% and 5-21%. However, NEE linkages (and percent contributions) of the 

‘temperature-hydrology’ and ‘aerodynamic’ groups were nearly equal (moderate) in the Florida 

Everglades and Mead Irrigated ecosystem sites, reiterating similar findings from PCA (see Fig. 

3d,e) and VIP scores. On average among all study ecosystems, the ‘radiation-energy’ component 

was around 4, 5, and 8 times strongly linked with NEE than that of the ‘temperature-hydrology’, 

‘ambient atmospheric CO2’, and ‘aerodynamic’ components, respectively. 

5.4 Discussion 

5.4.1 On the variable groupings and their comparative linkages 

The grouping and interrelation patterns of process variables and their comparative linkages with 

hourly NEE were essentially similar among the diverse ecosystem sites. The similarity indicated 

robustness in ecosystem carbon flux process partitions and linkages across a gradient and range of 

time (2002-12), geographical locations (latitude: 250N to 460N, longitude: 810W to 1060W), 

vegetation and land uses (wetland, grassland, cropland, deciduous, evergreen and mixed forests), 

forest stand age and canopy heights (2.9-27m), climatic regimes (tropical, temperate, and 

continental), hydrology, and soil formations (e.g., sand, silt, and clay). The overall findings of the 

relatively simple data-analytics study are consistent with previous studies. For example, Schmidt 

et al. (2011) identified similar comparative dominance of process components on daily vertical 

CO2 fluxes across diverse ecosystems by applying a complex neural network method. Both 

studies concluded that the air temperature had a substantially smaller influence on turbulent 

carbon fluxes than that of the radiation variables; the relatively weak carbon flux linkages of wind 

and friction velocities were also corroborated by these studies. Further, Ishtiaq and Abdul-Aziz 

(2015) reported similar grouping, interrelation and relative carbon flux linkage patterns of climate 

and environmental variable by applying the data-analytics method to half-hourly data of five 

different years for five U.S. deciduous forests. 
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Contrary to many previous studies, instead of considering the heat fluxes (LHF, SHF and 

FG) as ecosystem’s response variables alongside NEE, we included them in the predictor data 

matrix to quantify their relative linkages with NEE within a large set of climate and 

ecohydrological variables. Melesse and Hanley (2005) also considered heat fluxes as predictors 

of carbon fluxes in their machine learning based modeling study. This inclusion of heat fluxes 

acknowledged the mechanistic linkages of ecosystem’s carbon, energy and water fluxes. Heat 

fluxes maintain balance in atmospheric radiation through evapotranspiration (ET) and turbulent 

energy diffusion (Sellers et al., 1997). Closure of plants’ stomata with increasing transpiration, as 

well as the associated deceleration of LHF to retain water, ultimately affect ecosystem CO2 

fluxes (Heber et al., 1986). Therefore, radiation and heat fluxes work in an integrated system 

(photosynthesis-respiration feedback) to drive terrestrial carbon, water and energy cycles.  

For all study ecosystems, the ‘radiation-energy’ component (PAR, RN, LHF, SHF and 

FG) had the strongest link with NEE, supporting findings from previous research (e.g., Morales et 

al., 2005; Zhang et al., 2005; Jung et al, 2011; Schmidt et al., 2011). LHF showed the highest 

linkage with NEE for all ecosystems (except for the Florida Everglades site where SHF had the 

highest linkage), reemphasizing a strong coupling between ecosystems’ carbon, water and energy 

fluxes. A substantially high water availability at the Everglades wetland site (SWC = 68%; see 

Table 5.2), compared to other ecosystems (SWC = 10-37%), may have resulted in the lower 

linkage of NEE with the water fluxes (LHF) than that with SHF. 

The ‘temperature-hydrology’ group (TA, TS, VPD and SWC) emerged as the second 

prominent biophysical component, displaying a moderate linkage with NEE. Mechanistically, 

temperature-related variables play an important role in ecosystem’s carbon, water and energy 

fluxes. Haworth et el. (2011) reported significant changes in plants’ water and energy fluxes due 

to transformation of stomatal aperture (short-term) and density (long-term) with the variation of 
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temperature, water availability and light. High VPD can affect fluxes due to stomatal closure 

(Loescher et al. 2003); a moderate to high linkage of VPD with NEE was apparent for all our 

study ecosystems. Ryan and Law (2005) reported a strong influence of air temperature (TA) on 

autotrophic respiration, as well as that of soil temperature (TS) and soil moisture (SWC) on 

heterotrophic respiration (e.g., high SWC can lead to an anaerobic condition, hindering oxidation 

processes). Davidson et al. (1998) reported exponentially decreasing trend of soil respiration with 

increasing drought stress during summer in a temperate mixed forest, although SWC was 

negatively correlated with respiration during other seasons. However, Bouma et al. (1997) 

reported a relatively weak correlation between root respiration and SWC. 

SWC can also influence plants’ photosynthesis by determining the water potential 

difference between tree leaves and root systems; Desai (2014) reported a significant positive 

correlation of soil moisture and photosynthesis at different temporal scales (e.g., daily, monthly, 

yearly) for a temperate mixed forest. However, our analyses with the hourly data generally 

showed weak linkages between NEE and SWC among the five different ecosystems. Although 

the PLSR model coefficient (BETA) of SWC was relatively high for the Niwot Ridge site (see 

Table 5.5), the suggested moderate linkage with NEE was not corroborated by the corresponding 

PLSR-VIP score (Figure 5.5), factor loading (Table 5.4), PCA biplot (Figure 5.3c) or correlation 

coefficient (Table 5.3). Similarly, the moderate NEE linkage of SWC, as suggested by factor 

analysis, for the Everglades site was not corroborated by PLSR or correlation analysis. Future 

research should investigate whether aggregation of data in longer time-scales (e.g., daily, weekly, 

monthly, yearly) reveal a more notable linkage of SWC with NEE.  

The relatively weak linkages of hourly NEE with the corresponding ‘aerodynamic’ 

component (WS and UST) (except for the Everglades and Mead Irrigated sites) are consistent 

with similar findings from previous studies (e.g., Wilson et al., 2002). Loescher et al. (2003) also 
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found an overall insignificant relationship between UST and NEE at small temporal resolutions 

for a tropical wet forest, while reporting a strong linear relationship of UST with nighttime NEE. 

However, moderately strong influence of ‘aerodynamic’ component for the Everglades and Mead 

Irrigated sites (see Table 5.6) reflects that NEE is relatively strongly influenced by boundary 

layer mixing at the coastal wetland (Florida) and cropland (Nebraska) ecosystems.  

Identified moderate linkages of NEE with the ‘ambient atmospheric CO2’ (i.e., CCO2) for 

different ecosystems can be supported by mechanistic explanations. Elevated atmospheric CO2 

can enhance photosynthesis by stimulating the processes of carboxylation and oxygenation; this 

primarily results in a faster plant growth and eventually leads to higher litter production and soil 

carbon storage (Masle 2000). Further, high atmospheric CO2 results in a maximum utilization of 

soil water for plant growth and productivity (Schlesinger 1999). Elevated CO2 can also reduce the 

rate of plant’s respiration (Bunch, 2001; Pinelli and Loreto, 2003) by impacting mitochondrial 

enzymes and plant’s chemical composition (Amthor, 1991, 2000; Gonzàlez-Meler et al., 1996a, 

b) and/or dark CO2 fixation (Amthor, 1997; Drake et al., 1999). However, Gonzàlez-Meler et al. 

(2004) reported much uncertainty regarding the relationship between elevated CO2 and whole-

plant respiration rate.  

5.4.2 On the effectiveness of the data-analytics method 

The systematic data-analytics framework effectively unraveled hidden robust patterns and process 

components in the climatic, hydrological and ecological data matrices for diverse ecosystems 

(representing notable spatiotemporal gradients) using a complementary set of data-mining 

techniques. Achieved mechanistic insights into the dominant process-drivers and their 

interrelation patterns can guide the development of relatively user-friendly data-driven and 

process-based models (e.g., by involving a reduced parameter set and simpler structure) to 
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robustly predict ecosystem carbon fluxes at local to regional scales. In essence, the data-analytics 

provides an objective empirical framework to analyze ecosystem carbon-water-energy fluxes a 

priori and develop data-based mechanistic understanding, which will ultimately guide and 

complement process-based modeling of a warranted complexity. More generally, the data-

analytics method can be viewed as an important tool to link statistical and process-based 

modeling approaches—a challenge in ecological modeling research (Larocque et al., 2011).  

Although different layers of data-analytics (Figure 5.2) provided complementary and 

often similar information on the relative linkages of NEE with the climatic and ecohydrological 

drivers, some occasional disagreements were also observed. For example, FA suggested relatively 

moderate linkage between NEE and the aerodynamic component (WS and UST) for Morgan 

Forest (see Table 5.4), whereas a corresponding lower linkage was found based on the PLSR VIP 

scores (Figure 5.5c) and coefficients (BETA) (Table 5.5, 5.6). However, the suggested moderate 

carbon flux linkage of aerodynamic component was inferred based on the relatively moderate 

loading of NEE on Factor 3, which also had very high loadings of WS and UST (see Morgan 

Forest in Table 5.4). As such, FA provided an indirect quantification of relative linkages by 

including both response (NEE) and predictors (climatic/ecohydrological variables) in the data 

matrices. In contrast, PLSR modeling with standardized data (Z-scores) estimated the relative 

linkages (BETA, VIP) by maximally linking observed data variances of response and predictors. 

Therefore, the entire data-analytics methodology (combination of correlation coefficient, PCA, 

FA, and PLSR modeling), rather than any single analysis step, provides a complete representation 

of the climatic and ecohydrological linkages of NEE. 

Subject to the effect of multicollinearity, which is prevalent in ecological and 

environmental data sets, a conventional multiple regression approach often provides biased 

estimates of parameters (regression coefficients), resulting in less reliable models. Stepwise 
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regression modeling (forward addition or backward elimination of predictors) based on statistical 

significance could partially resolve multicollinearity; however, this can also exclude 

mechanistically important drivers of the response variable. The first advantage of PLSR modeling 

with the optimal number of PLS components (i.e., orthogonal predictors) is that the approach 

mostly resolves multicollinearity existing in predictor data matrices by fitting the model in the 

orthogonal domain. The second advantage of an optimal PLSR is that transformation of the fitted 

coefficients associated with predictor PLS components to the original  variable (Z-score) domain 

provides a relatively unbiased estimation of regression weights (i.e., relative NEE linkages) for 

different climate and ecohydrological variables. The Z-score based PLSR model is, therefore, a 

convenient and relatively simple approach to quantify comparative carbon flux linkages of 

different process variables, compared to a more detailed process-based (e.g., Medvigy et al., 

2009) or complex data-driven  (e.g., Schmidt et al., 2011) model.  

Robust estimation of the developed PLSR models was further enhanced by implementing 

a 10-fold cross-validation technique with large hourly data sets of different 5-year periods 

spanning over a decade (2002-2012) for six diverse ecosystems. Despite the linear model 

structure (while the underlying processes can be inherently non-linear), performance of the 

hourly-scale PLSR models  was notably good (training R2 = 0.57-0.77; validation R2 = 0.58-

0.75); compared to existing models such as the piecewise linear regression model of Xiao et al. 

(2008) for daily NEE (R2 = 0.53), and half-hourly semi-mechanistic (non-linear regression) 

models of  Byrne et al. (2005) for GPP (Michaelis-Menten type model; R2 = 0.78-0.81) and 

respiration (Arrhenius type exponential model; R2 = 0.83-0.86). However, similar to most 

existing models (linear or non-linear), our linear PLSR models did not show a good skill in 

predicting extreme positive (source) and negative (sink) fluxes of NEE, which might have 

resulted in reduced R2. Furthermore, modeling of negative and positive NEE fluxes (representing 
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the domination of GPP and respiration, respectively) with one set of regression coefficients may 

have reduced R2. Significant temporal variability of NEE (Jarvis et al., 1997; Xu and Baldocchi, 

2004) also warrants further investigations into the relative linkages with aggregated data of 

different temporal scales (e.g., daily, weekly, monthly, seasonal, annual) in future research.   

5.4.3 On the reliability and uncertainty of empirical data sets 

Modeling and analysis with AmeriFlux data can be impacted by measurement errors and 

uncertainty of eddy fluxes and relevant climate/environmental variables (Williams et al., 2009). 

Schmidt et al. (2012) performed a comprehensive analysis of errors and uncertainty associated 

with the AmeriFlux level-2 data, which were used in our study. They reported low relative errors 

(including random and systematic instrumental errors) for meteorological variables (<2%), CO2 

fluxes (8.2%), and sensible and latent heat fluxes (1.7% to 5.2%); confirming the high quality of 

AmeriFlux data for research applications. Previous studies (e.g., Moore, 1986; Soegaard et al., 

2000; Berger et al., 2001) also suggested the high quality of data measured by using eddy-

covariance techniques. We have also avoided artificial biases (e.g., stemming from gap-filling) by 

using very large sets (N =16457-35592) of un-filled level-2 data among the six different 

ecosystems. Furthermore, a two-step data filtering procedure was applied on our un-filled data 

sets to remove hourly data-panels representing gaps for more than two variables in one panel, and 

to substantially clean the final data sets off unreasonable spikes (outliers). Therefore, our analysis 

and modeling results were likely to be least impacted by any superfluous measurement errors and 

uncertainty of AmeriFlux data. 

5.5 Conclusions 

Relative linkages of NEE with the corresponding climatic and ecohydrological variables were 

quantified for six diverse AmeriFlux ecosystems by employing a systematic data-analytics 
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method. The analytics with hourly-scale big data indicated a robust pattern of the biophysical 

process components and their comparative linkages with NEE across different ecosystems, 

representing a large gradient in geographical locations, vegetation and land uses, hydro-climatic 

regimes, forest stand age and canopy heights, and soil formations. Four variance-based 

biophysical components adequately described the overall system-data variation for all six 

ecosystems. ‘Radiation-energy’ group demonstrated the strongest linkage with NEE; exhibiting 

on average (among different ecosystems) 4, 5 and 8 times stronger linkages than that of, 

respectively, the ‘temperature-hydrology’ group (moderate linkage), ‘ambient atmospheric CO2’ 

group (moderate linkage), and ‘aerodynamic’ group (weak linkage). However, a moderate linkage 

of ‘aerodynamic’ component was found for the Everglades and Mead Irrigated sites, indicating 

notable influence of boundary layer mixing on NEE at the coastal wetland (Florida) and irrigated 

cropland (Nebraska) ecosystems. Latent heat flux showed the highest linkage with NEE for all 

ecosystems except for the Florida Everglades (where sensible heat flux had the highest linkage), 

underlining a strong connection among the ecosystems’ carbon, water and energy fluxes.  

The data-analytics can be used as an objective empirical framework to achieve crucial 

mechanistic insights into the processes and dynamics of ecosystem carbon-water-energy fluxes a 

priori, guiding process-based modeling of a warranted complexity. Performance of the developed 

models (training R2 = 0.57-0.77, validation R2 = 0.58-0.75) indicated effectiveness of multivariate 

analytics to predict NEE fluxes from diverse ecosystems. Specifically, observed similarities in 

latent patterns and relative linkages showed the scope of formulating parsimonious empirical 

models to obtain robust predictions of ecosystem carbon fluxes at local to regional scales. Future 

research should investigate the relative carbon flux linkages at larger spatiotemporal scales across 

various ecosystems. 
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Chapter 6: Relative environmental controls and empirical predictive modeling of daytime 

CO2 fluxes of coastal salt marshes 

Abstract 

The relative controls and linkages of different climatic and environmental variables on daytime 

net CO2 exchanges of coastal wetlands were determined by using a robust multivariate data-

analytics framework. Four different tidal wetlands of Waquoit bay, MA were used as the case 

study sites, which are subjected to moderate nitrogen gradient. The linkages were then utilized to 

develop a parsimonious (minimum parameter), nonlinear, data-driven model for the prediction of 

the CO2 fluxes of the study wetlands. Dominant controls of radiation (photosynthetically active 

radiation, PAR), temperature (air and soil temperature), as well as a moderate control of soil 

salinity on daytime CO2 exchanges were observed for the salt marshes during the flood condition 

(when the water table is above the marsh surface). On the contrary, soil salinity, temperature, and 

water depth demonstrated strong to moderate CO2 flux linkages during the low tide condition 

(when the water table is below the marsh surface). A predictive empirical model of the CO2 

fluxes was developed as a nonlinear function of the three most important drivers (PAR, soil 

temperature, and soil salinity) as determined from the data-analytics framework. The model 

exhibited very good modeling efficiency (coefficient of determination, R2=0.83) and accuracy 

(ratio of root-mean-square error to the standard deviation of observations, RSR=0.41, and mean 

absolute error, MAE=1.40 µmole/m2/s) in estimating the fluxes. The study facilitates to improve 

the understanding of the dominant control and mechanism of different environmental drivers in 

daytime CO2 exchanges. The predictive model can be used as an ecological engineering tool to 

aid the development of appropriate GHG offset protocols for restoring and maintaining tidal 

wetlands.   
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6.1 Introduction  

Coastal salt marshes play a critical role in soil-atmospheric exchanges of one of the major 

greenhouse gas (GHG) fluxes, carbon dioxide (CO2), which has a significant global warming 

potential. Tidal marsh sediments demonstrate the highest ecosystem-specific carbon (C) 

sequestration rate (Chmura et al., 2003; Duarte et al., 2005; Bridgham et al., 2007; Mcleod et al., 

2011). Therefore, tidal wetlands have the potential to play a pivotal role in global warming 

mitigations. The C storage and sequestration capacity of coastal and marine wetlands are often 

referred to as “blue carbon” (in contrast to a forest or “green carbon”). "Blue carbon" is an 

emerging concept for coastal management that can potentially attract much private and public 

investment in coastal protection and restoration (Nellemann et al., 2009; Crooks et al., 2010, 

2011; Morris et al., 2012). However, an overarching science question is how CO2 flux rates of the 

coastal wetlands respond to the changes in climate (e.g., temperature,  solar radiation ), sea level 

rise (SLR) and inundation (e.g., soil moisture, salinity), and land managements (e.g., nutrient 

loading). The lack of understanding of wetland C sequestration and C fluxes, and their relative 

interactions and linkages with the climatic, hydrological, and biogeochemical drivers hinders the 

development of appropriate models and engineering tools to predict (or project) potential future 

outcomes. Consequently, the dearth of prediction tools hampers the development of appropriate 

GHG offset protocols to set guidelines for monitoring requirements for wetlands restoration and 

maintenance projects. Ultimately, the science and engineering gaps create critical barriers to the 

management of Blue C stocks in coastal wetland hotspots and their incorporation into a potential 

C market. 

The net CO2 exchanges of a wetland refer to the net balance of the photosynthesis and 

respiration (difference between gross primary productivity and both heterotrophic and autotrophic 

respiration). The daytime net ecosystem exchanges (NEE) are mostly governed by the 
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photosynthesis (sequestration fluxes). When the fluxes were measured by enclosing the small 

height (like coastal salt marshes) plants within the chamber, the daytime flux incorporates the 

daytime respiration from the plants.  However, daytime respiration fluxes are significantly lower 

than the nighttime fluxes for wetlands when all the nighttime flux data are taken into 

consideration (Juszczak et al., 2012). The daytime NEE or sequestration fluxes are driven by the 

light as an energy source for photosynthesis. However, ambient climate, hydrology, and 

biogeochemical processes play an imperative role in regulating the entire process. The 

comparative contribution of these process variables to the sequestration fluxes vary across 

wetlands. Therefore, it is important to determine the primary physical controls of the daytime 

CO2 flux exchanges of wetlands. Appropriate knowledge on the relative controls of the variables 

then can guide towards the development of the parsimonious predictive model of wetland CO2. 

Several process-based models are available for the prediction of wetland greenhouse gas 

(GHG) fluxes (e.g., Cao et al., 1996; Potter 1997; Walter and Heimann 2000; Zhang et al., 2002; 

van Huissteden et al., 2006). More recent process models of wetland carbon dynamics can 

include the LPJ-WHy v1.2 (Wania et al., 2009), McGill (St-Hilaire et al., 2010), ecosys 

(Dimitrov et al., 2010; Grant et al., 2012), peatland DOS-TEM (Fan et al., 2013), WetQual-C 

(Sharifi et al., 2013), and CoupModel (Jansson, 2012; Metzger et al., 2015). These models are 

mainly applicable to the freshwater ecosystems but may be adapted for coastal saline water 

systems. However, mechanistic GHG emissions models are highly detailed, often over 

parameterized, and requires data for many input variables, while failing to provide 

spatiotemporally robust predictions. In fact wetland GHG fluxes vary so much in time and space 

that a robust mechanistic modeling is extremely difficult to achieve with the current state of 

knowledge. Further, the complexity, expert knowledge requirement, and computational expenses 

of the mechanistic models hamper their widespread usage as handy ecological engineering tools 

for ecological and environmental management.  
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In contrast, relatively simple and parsimonious (involving minimum parameters) data-

driven carbon dynamics models can be built on robust empirical patterns hidden in observed data, 

without necessarily relying on complex scientific hypotheses. Previous research (e.g., Sebacher et 

al., 1986; Bartlett et al., 1987; Moore and Knowles 1990; Roulet et al., 1992; Dise et al., 1993; 

Frolking and Crill 1994; Hargreaves and Fowler 1998; Smith et al., 2003; Xing et al., 2005; 

Yurova et al., 2007; Schedlbauer et al., 2012; Yvon-Durocher et al., 2014) manifested regression-

based empirical models mainly for explaining the correlations of GHG fluxes with soil, climate, 

and other environmental variables. These explanatory empirical models are mostly developed for 

inland freshwater systems and tailored to be site-specific, and cannot be applied as generic 

predictive tools for different time and space scales. Generalization in parsimonious 

parameterization and predictive model development requires explicit mechanistic understanding 

of relative linkages of the climatic, hydrological and ecological drivers of the wetland CO2 

fluxes. The selection of the best set of unbiased predictive variables for modeling depends on 

their relative effects on carbon fluxes, co-linearity in a multivariate space, and process 

descriptions.  

Ecological and biogeochemical research has entered into a new regime of data analysis 

based empirical approaches because of the significant advancements in flux data measurements 

and computation technologies. Utilization of the ‘ecological data’ for process understating and 

robust modeling of GHG fluxes has been a major challenge in the recent time. Application of 

robust data-analytics methodologies on a multivariate data space could be a viable option to mine 

latent information of dominant pattern and relative linkages of different climatic, chemical and 

hydrological variables on CO2 fluxes for complex coastal wetlands. Ishtiaq and Abdul-Aziz 

(2015) developed a systematic data-analytics and informatics framework to identify the dominant 

controls of terrestrial CO2 fluxes and quantify their relative linkages with various climatic and 

environmental drivers. Multivariate pattern recognition techniques of principal component and 
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factor analysis along with Pearson correlation analysis were included in the analytics framework 

for the similarity based classifications and groupings of the climatic, environmental and 

ecological variables; interrelation pattern identifications and relative influences. The analysis 

method also includes explanatory, partial least squares regression (PLSR) models to quantify the 

relative linkages (weights) of different climatic and environmental stressors on GHG fluxes.  

The objectives of this study were to investigate and identify the dominant controls of 

wetland net CO2 sequestration fluxes (daytime net ecosystem exchange) and quantify their 

relative linkages, interrelation patterns and similarity with various hydro-climatic, 

biogeochemical and environmental drivers by using the systematic multivariate data-analytics and 

informatics framework developed by Ishtiaq and Abdul-Aziz (2015). The knowledge of similarity 

and interrelation patterns of the dominant controls were then leveraged to develop a data-driven, 

parsimonious (minimum parameter) non-linear (e.g., power-law) model for the prediction of 

wetland CO2 fluxes. 

6.2 Materials and methods 

6.2.1 Study sites and data set 

The primary data required for the analysis were collected from field measurements at the National 

Estuarine Research Reserve (NERR) sites of Waquoit Bay, MA (Waquoit Bay website, 2015) as 

a part of the recently accomplished NOAA-NERRS collaborative project. The Waquoit Bay 

system comprises of several sub-embayments representing diverse human population densities 

and an extensive gradient of nitrogen (N) loads per unit area of estuary (as much as 50 fold 

difference) (Kroeger et al. 2006; Valiela et al. 2000). Four sites representing a range of 

vegetation, elevation, land use, and inundation were selected for the study: (i) Sage Lot Pond 

(SL), (ii) Eel Pond (EP), (iii) Great Pond (GP), and (iv) Hamblin Pond (HP) (Figure 6.1). These 
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selected study ponds have following ecological, hydrological and biogeochemical features: (i) 

moderate to high level of salinity, (ii) recurrent flooding due to tidal effect, (iii) native Spartina 

Alterniflora (C4 plant) dominated community, and (iv) distinctive low marsh and high marsh 

zones (only low marsh zone data was considered for this study) 

Figure 6.1: Locations of the four wetland sites in the Waquoit Bay, MA.  

Instantaneous daytime CO2 fluxes and corresponding biogeochemical, hydrological and 

climatic variables were subsampled from the collected dataset for different days between June to 

November, 2013 (5 different days in June, 2 days in July, 4 days in August, 2 days in September, 

2 days in October, and 1 day in November) (Figure 6.2) in the low marsh zone of the four study 

ponds. The data collection days represent growing summer and fall seasons (June to November) 

of coastal salt marshes. Several instantaneous measurements were carried out in each day at 

different clock hours to cover the entire daytime temporal variability, and both low and high tide 
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conditions. The complete dataset included net CO2 sequestration fluxes (can also be termed as 

daytime net ecosystem exchange, NEE) and seven hydrological, biogeochemical and climatic 

variables (Table 6.1, Figure 6.1, 6.2): net daytime CO2 sequestration flux (FCO2, µmol/m2/s), air 

temperature (AT, oC), soil temperature (ST, oC), photosynthetic active radiation (PAR, 

µmol/m2/s), water depth relative  to the marsh surface (WD, m), soil salinity (pore water) (SS, 

ppt), soil moisture (SM, %) and soil pH (pH). The collected climatic and environmental variables 

cover potential mechanistic processes (temperature group: AT and ST; radiation group: PAR; 

hydrology group: WD and SM; and soil biogeochemical group: SS and pH) associated with the 

CO2 fluxes. 

Figure 6.2: Measured CO
2 

fluxes for the different days and diurnal hours of 2013 at the four 
study ponds of Waquoit Bay, MA. Positive values of the fluxes indicate downward (atmosphere 
to soil) fluxes (i.e., potential sequestration). 

 
The standard GHG flux sign convention, a positive sign represents sequestration was 

followed for the CO2 fluxes. Moreover, a positive sign was used when water depth is above the 

salt marsh surface and –ve sign was used when water depth is below the surface. The CO2 fluxes 

were measured by using a Picarro G2501 gas analyzer placed in a chamber (2ft X 2ft X 2ft) in 
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different adjacent plots of the study sites. The gas concentrations recorded in the gas-analyzer 

were converted to fluxes through a linear regression from corresponding air temperature by 
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Table 6.1: Data statistics (mean, standard deviation, maximum, and minimum) of the observed (76 observations) climatic, environmental, and 
biological variables for the study wetlands. 

 

 

Note: PAR, WD, AT, ST, pH, SS, SM, and FCO2 refer, respectively, to photosynthetic active radiation, water depth relative to water marsh 
surface, air temperature, soil temperature, soil pH, soil salinity (pore water), soil moisture, and daytime CO2 exchanges of the salt marshes. 
Positive sign of WD means water table above the salt marshes. Positive sign of FCO2 refers downward fluxes (i.e., atmosphere to soil). The unit 
of each variable was given in the parenthesis

Variable PAR 
(µmol/m2/s) 

WD 
(m) 

AT 
(oC) 

ST 
(oC) 

pH SS (pore water) 
(ppt) 

SM 
(%) 

FCO2 
(µmol/m2/s) 

Data 
Statistics 

1451.8±531.2 
Max=2080.4 
Min=303.7 

0.09±0.1 
Max=0.33 
Min=-0.08 

27.7±5.9 
Max=37.6 
Min=12.8 

19.7±4.9 
Max=27.8 
Min=8.9 

6.8±0.33 
Max=7.9 
Min=6.1 

29.7±3.8 
Max=36 
Min=20 

63.5±3.5 
Max=68.7 
Min=51.2 

7.5±4.9 
Max=19.6 
Min=0.05 
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incorporating the ideal gas law. pH of the soil was measured by using a surface probe pH meter 

(ExStick® Instruments, Nashua, NH).  

6.2.2 Data preparation and data statistics  

Different QA/QC filters were applied prior to the data analysis and modeling to ensure the quality 

of the flux and corresponding climatic and environmental data. The first data treatment step was 

based on the linear regression coefficient, r2 that was used to linearly convert instantaneous GHG 

concentrations to fluxes. The r2 of 0.90 was set as a threshold for the CO2 fluxes; any 

instantaneous flux observation that was below the threshold limit was removed from the data 

matrix along with the corresponding observations of climatic variables. The second data 

treatment step included the removal of the extreme values (i.e., outliers) from the dataset by 

applying the interquartile range (IQR) criteria (Tukey, 1977). Any instantaneous observation in 

each variable outside a range obtained from Q1-1.5*IQR and Q3+1.5*IQR (here, Q1= first 

quartile, Q3=third quartile, and IQR=Q3-Q1) were removed from the dataset along with the entire 

data panel. Thirdly, each variable was plotted with time to find out any irregularity in their pattern 

(e.g., sudden high or low values that does not have mechanistic sense) and observations that did 

not follow the regular pattern were removed based on the mechanistic judgment on wetland 

biogeochemistry and climate. Gaps created in the data matrix from such removal were not filled 

to avoid artificial ‘gap-filling’ biases into the analysis. The final dataset contains 76 observations 

from four study ponds (fifty two observations from the Sage Lot, eleven observations from the 

Hamblin pond, four from the Eel pond, and nine observations from the Great pond). Figure 6.2 

showed the range of data collection days where each day had multiple data points at different 

daytime hours.  

The FCO2 ranged from very low to as high as 19.62 µmol/m2/s (Table 6.1); the spread of 

the CO2 fluxes in magnitude suggested the incorporation of different regimes (low and high CO2 
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uptake) of CO2 sequestration fluxes across the selected study wetlands. All the ponds covered the 

entire FCO2 range except the Eel Pond where available CO2 flux was comparably less (Figure 

6.2). The observed variation in soil temperature (ST) replicated the climate variation of Waquoit 

Bay since ST can be considered as the surrogate of the ambient air temperature. The mean pH 

was found to be neutral, and that suggest high productivity of the salt marshes and adjacent plant 

communities. Sediment salinity (pore water) was considerably high over the growing period (SS 

ranged from 20-36). The measured PAR covered both cloudless (when PAR is high), and cloudy 

and evening environments (Low PAR) or the study wetlands. The positive value of mean WD 

was the indicative of persistent anoxic state in the study sites. 

6.2.3 Data Analysis and predictive modeling 

The biogeochemical activity and soil-atmospheric exchanges of GHG fluxes from the coastal salt 

marshes largely depend on the oxygen availability in the sediment pores. Soil water level 

determines this aerobic-anaerobic state of the salt marshes. Since the coastal wetlands are 

subjected to diurnal flood and ebb tides (high and low tide), the potential linkages between the 

different climatic variables and FCO2 due to the fluctuating water table were investigated for two 

conditions. 

Condition 1: Water above the salt marsh surface (WD>0) 

Condition 2: Water below the salt marsh surface (WD<0).  

The final dataset was divided based on the above mentioned conditions, and all the 

multivariate statistical analysis methodology described below was performed discretely for these 

two settings. Out of the 76 observation panels, 60 observations that comprise all the four study 

sites had water above the salt marsh surface. The rest of the 16 observation panels followed the 

condition 2 subset (WD<0).  
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Data-analytics Framework  

A systematic data-analytics approach (Figure 6.3) was utilized to identify the dominant controls 

and drivers of wetland FCO2 and quantify their relative linkages. The Pearson correlation analysis 

showed the univariate correlations among the participatory variables. The principal component 

analysis (PCA), a multivariate pattern recognition technique (Peres-Neto et al., 2003), was used 

to group environmental and ecological variables based on their similarity as drivers, testing their 

interrelation patterns and relative influences using bi-plots. The factor analysis (FA) (Panda et al., 

2006) was performed with the “varimax” orthogonal rotation to optimally describe the system 

variance with fewer latent factors. The optimal latent factors were extracted based on an initial 

eigenvalue criterion (eigenvalue>1.0).  The partial least squares regression (PLSR) models (Wold 

et al., 2001) were developed on orthogonal planes to quantify the relative linkages of FCO2 as a 

function of the independent variable set (PAR, WD, AT, ST, SS, pH, and SM). The PLSR 

negates the presence of multicollinearity, if any, in the independent variable data set (Kuhn and 

Johnson 2013). As a part of the data treatment for the statistical analysis, data of all the 

participatory variables were first log-transformed (base 10) to replicate the non-linear process 

interactions among the variables. Secondly, all the data were standardized by calculating their 

respective Z-scores (normalizing each observation’s deviation from the respective mean by the 

standard deviation) to bring different units onto a comparable scale.  The optimum number of 

PLS components were selected for the PLSR modeling based on the Akaike Information 

Criterion (AIC) (Akaike 1974), and coefficient of determination (R2). The selection of optimum 

PLS components assured minimum modeling error and statistical stability (higher F-value) of the 

PLSR model. A 10-fold cross-validation (Kuhn and Johnson 2013) was performed to achieve a 

robust estimate of the PLSR model parameters. Finally, the regression coefficient (BETA) of the 

log-transformed and normalized (i.e., dimensionless) PLSR models represented the non-linear 

relative CO2 flux linkages of the different climate, environmental and hydrologic variables. The 
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detail of the data-analytics framework for the investigation of relative linkages was described in 

Ishtiaq and Abdul-Aziz (2015). 

 

 

 

 

 

 

 

Figure 6.3: The data-analytics methodology to determine the relative linkages of different 
climatic and environmental variables with FCO2 for the Waquoit Bay salt marshes.  

 
Predictive modeling 

The most important and dominant drivers controlling the daytime FCO2 fluxes in the coastal salt 

marshes were identified based on the data-analytics framework and mechanistic judgment. The 

selected variables were then utilized to develop a power-law based non-linear parsimonious (i.e., 

minimum parameter set) model (Equation 1 type) of CO2 sequestration fluxes for coastal 

wetlands. The predictive modeling used the original, untransformed (i.e., without log 

transformation and normalization) data to reduce the prediction uncertainty that may come from 

different data transformations. Similar to the analysis dataset, the predictive modeling data set 

incorporated all the observations (76 observations) of the four study ponds to achieve a spatial 

robustness while fitting the model. Finally, the model was developed by applying a non-linear, 

Determination of the correlation of the variables 
through Pearson correlation analysis 
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numerical solution based Levenberg-Marquardt least squares algorithm (a modified form of the 

Gauss-Newton algorithm) (Seber and Wild, 2005, 2003) in the MATLAB environment. 

∏
=

=
1

2 10
i

bi
i

a
CO XF          (1) 

where a and b = model parameters (a is the scaling factor, and b represented shape factors), X = 

independent variables driving FCO2. 

Because of the absence of independent years of measured data for model validation, the 

predictive model was developed by using the “leave-group-out cross-validation” (i.e., Monte 

Carlo cross-validation) approach with 10000 iterations (Kuhn and Johnson 2013). For each 

iteration, 80% of the data was randomly chosen for model training (i.e. fitting), and the rest of the 

20% was used for testing (i.e., validating).  The choice of 10000 repetitions reduced the 

uncertainty of the estimated model parameters since different observations were randomly 

allocated to the training and testing subsets. Mean values of the parameters obtained from the 

iterations were used as the final parameter set to predict the FCO2 from the predictor variables for 

the wetlands.  

6.2.4 Measures of modeling performance 

The effectiveness of the developed models was assessed by comparing the observed and 

predicted FCO2 for both explanatory PLSR and predictive models. The coefficient of 

determination (R2), ratio of the root-mean-square error to the standard deviations of the 

observations (RSR), and mean absolute error (MAE) were used as model performance indicators. 

The R2 is an indicative of the amount of the observed data variations that is explained by the 

model. Moffat et al. (2007) provided following four different ranges of R2 to evaluate a model 

performance: (i) “very good” (R2>0.85, “good” (0.75<R2≤0.85), “medium” (0.5<R2≤0.75), and 
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low (R2≤0.50). The accuracy and error distribution of a model is shown by RSR in dimensionless 

form. Similar to R2, Moriasi et al. (2007) provided a range of RSR values for ranking model 

accuracy: “perfect to very good” (0<RSR<0.50), “good” (0.50≤RSR<0.60), “satisfactory” 

(0.60≤RSR<0.70), and unsatisfactory (RSR≥0.70). The MAE, ranged from zero to infinity, 

measures the average magnitude and distribution of the individual errors in the dimensional form. 

The lower the MAE values, the better.  
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Where, N=total number of observations, iobsCOF ,,2 and iCOF mod,,2 =the ith observed and predicted 

CO2 sequestrating fluxes (respectively), obsCOF ,2 and obsFCO ,2σ =average and standard deviation 

of all CO2 flux observations. 

6.3 Results  

6.3.1 Correlation analysis 

Condition 1: Water above the salt marsh surface (WD>0) 

Since data was log-transformed and standardized prior to the analysis, only absolute values of the 

correlations were considered in interpreting the results. The CO2 sequestration flux, FCO2 was 

highly correlated (|r|=0.73-0.94) with temperature and radiation related variables (AT, ST, and 

PAR) and moderately correlated (|r|=0.56) with soil salinity (SS) (Table 6.2). Relative water 
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depth (WD) was low to moderately correlated (|r|=0.27) with FCO2 in the flooding condition. All 

the correlations were significant at 95% level of confidence. The radiation and temperature 

related variables demonstrated significant inter-variable correlations as obtained from the 

triangular correlation matrix (not shown) implying the presence of a multicollinearity in the 

independent variable data set. 

Condition 2: Water below the salt marsh surface (WD<0) 

TA, SS and WD showed moderate non-linear dependence with the FCO2 (|r|=0.53-63), while ST 

and PAR were weakly correlated with the FCO2 (Table 6.2). SM, and pH demonstrated weak to 

moderate correlation (|r|=0.30-0.36) with the CO2 sequestration fluxes. The presence of the multi 

collinear structure in the independent variable data set was apparent since moderate correlations 

were observed between AT-ST, AT-WD, and PAR-pH (not shown).  

Table 6.2: Pearson correlation coefficient between the daytime carbon fluxes (FCO2) and the 
corresponding climatic and environmental variables for the study area for both WD>0 (water 
table above the soil marsh) and WD<0 (water table below the soil marsh) conditions.  

 PAR WD AT ST pH SS SM 
Condition 1 
(WD>0) 0.73 -0.27 0.94 0.87 0.18 

-
0.56 0.13 

Condition 2 
(WD<0) 0.02 -0.55 -0.63 -0.12 0.24 

-
0.53 0.39 

Note: PAR, WD, AT, ST, pH, SS, SM, and FCO2 refer, respectively, to photosynthetic active 
radiation, water depth relative to water marsh surface, air temperature, soil temperature, soil pH, 
soil salinity, soil moisture, and daytime CO2 exchanges of the salt marshes.  

 
6.3.2 Relative orientations and groupings of the variables  

Condition 1(WD>0) 

1st two principal components (PC) explained 64.23% of the total data variances for all the study 

ponds. The loadings of each variable on the 1st two orthogonal components were presented 

through biplot (Figure 6.4a). The relative orientation and length of the participatory variables in 

the biplot revealed the existence of three different variable clusters for the anoxic condition. The 
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non-orthogonal (O or 180 degree) orientations between the FCO2 and the group of PAR-AT-ST 

suggested their higher interrelationship and linkages (all of these variables loaded highly on 1st 

PC). The relative position of SS and FCO2 in the 2-D plane indicated their moderate linkages. A 

nearly orthogonal (90 degree) orientation was observed between FCO2 and group of WD-SM-pH 

(position of SM flipped); suggesting their weak linkages (WD and SM loaded moderately on 2nd 

PC while FCO2 loaded high on 1st PC). Orthogonal loading between the group of radiation and 

temperature variables (PAR, AT, and ST) and the group of hydrology variables (WD, SM) 

suggested the presence of two different process clusters in the data matrix. The radiation-

temperature variables were driven by climate and light, and highly linked with the FCO2. The 2nd 

cluster (WD and SM) resembled wetland hydrology and found to be nearly uncorrelated with 

FCO2. The wetland biogeochemical variables SS showed moderate relation (loaded moderately 

with both PC’s) with FCO2. pH was weakly linked with the FCO2 since it loaded highly only on 2nd 

PC. 

Condition 2 (WD<0) 

The 1st two PC’s explained 62.87% of the total data variances (Figure 6.4b). Contrary to the 

observations of condition 1, no apparent variable based clustering emerged from the biplot for the 

condition 2. Nearly non-orthogonal orientations between FCO2 and AT, SM, SS and WD 

suggested their high to moderate linkages. However, relatively small length of SM indicated 

relatively low dominance.  PAR and ST were relatively orthogonally linked with the FCO2 

suggesting a weak to moderate CO2 flux linkage. pH loaded moderately on both of the PCs that 

suggests moderate FCO2 linkages as FCO2 loaded highly on the 1st PC.  
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Figure 6.4: Biplots obtained from the loadings of the 1st two principal components (PC) showing 
the groupings and interrelation patterns of the climatic, environmental, and biological variables 
for both (a) WD>0 and (b) WD<0 conditions. Percent variance explained by each PC is shown in 
parenthesis. PAR, WD, AT, ST, pH, SS, SM, and FCO2 refer, respectively, to photosynthetic 
active radiation, water depth relative to water marsh surface, air temperature, soil temperature, 
soil pH, soil salinity, soil moisture, and daytime CO2 exchanges of the salt marshes. 

 
6.3.3 Extracted orthogonal latent factors 

Condition 1(WD>0)  

Three latent factors optimally explained the overall data variances based on the initial Eigenvalue 

criterion (Eigen value>1) for the water level above the salt marsh condition (Table 6.3); such 

optimization while extracting the factors ensured the systematic consideration of most of the data 

variances (78.8% of the data variances were explained by the 1st three factors) for process 

description.  The factors were ranked on the basis of the percent data explained by each factor; 1st 

factor explained 46.54%, 2nd factor explained 16.68%, and 3rd factor explained 14.61% of the 

total data variances. Since, log-transformed Z-scores were used for the analysis, only magnitude 

of the loadings were considers for the explanation of the FA results.  

(a) (b) 

FCO2 (WD>0) FCO2 (WD<0) 
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Temperature variables (AT, ST) loaded highly (0.81-0.98) on 1st factor along with a very 

high loading (correlation between a factor and a variable) of FCO2 (0.84) on this factor; suggesting 

a strong relationship between them. Since loading of ST was higher than the loading of AT in 

factor one, the FCO2 linkage of ST was higher than the AT. In the second factor, loading of PAR 

was high (0.92) along with a moderate loading of FCO2 (0.45), which indicated an existence of a 

moderate linkage between them. Although SS loaded highly (-0.93) on factor 3, relatively low 

loading of FCO2 (0.24) on this factor compare to loading of factor 1 and 2 suggested their weak to 

moderate linkage. The other participatory variables (WD, pH, and SM) did not load significantly 

on the extracted factors. The lower loading of these variables indicated their very weak linkages 

and correlation with the FCO2 in the flooding condition. 

Table 6.3: Extracted latent factors from the factor analysis for the study wetlands for both WD>0 
and WD<0 (shaded area in the table) conditions.  

Note: PAR, WD, AT, ST, pH, SS, SM, and FCO2 refer, respectively, to photosynthetic active 
radiation, water depth relative to water marsh surface, air temperature, soil temperature, soil pH, 
soil salinity, soil moisture, and daytime CO2 exchanges of the salt marshes. Bold values indicate 
most important variables in each factor.  

 

Condition 2 (WD<0) 

Similar to the condition 1, three latent factors were extracted for the optimal interpretation of the 

overall data variances. Three extracted factors explained 76.5% of the variance where the 1st 

factor explained 38.02%, the 2nd factor explained 24.85%, and the 3rd factor explained 13.62% of 

the total variations.  

 Factors PAR WD AT ST pH SS SM FCO2 
 
WD>0 

1 0.33 -0.31 0.81 0.98 0.12 -0.29 0.06 0.84 
2 0.92 0.10 0.39 0.06 0.03 -0.21 0.24 0.45 
3 0.20 0.05 0.35 0.10 0.37 -0.93 -0.19 0.24 

WD<0 1 0.03 -0.69 0.83 0.12 0.38 -0.77 0.19 0.77 
2 -0.23 0.57 0.37 0.94 0.13 0.13 -0.30 0.06 
3 -0.97 0.07 -0.16 0.31 -0.42 0.05 -0.17 0.06 
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 AT loaded highly (0.83) and, WD and SS loaded moderately (-0.69 to -0.77) on the 1st 

factor while loading of FCO2 on this factor is also high (0.7); indicating a strong relationship 

between AT and FCO2, and a moderate FCO2 linkages with WD and SS (Table 6.3). ST loaded 

highly (0.94) on the second factor; low loading of FCO2 on this factor suggested a weak to 

moderate linkage. Similarly very high loading of PAR (0.97) on the third factor along with a low 

loading of FCO2 (0.06) on the same factor suggested their weak to moderate linkage. SM and pH 

did not load significantly on any of the factors indicating a weak FCO2 linkage.  

6.3.4 Partial least squares modeling in non-linear domain 

The correlation analysis, PCA, and FA facilitated to identify the dominant variables that mostly 

triggered daytime CO2 exchanges at varying hydrological conditions. However, these series of 

statistical investigations did not shed light on the relative magnitude of the linkages between the 

independent variables and FCO2.  To quantify the linkages, nonlinear partial least squares models 

were developed for both aerobic and anaerobic conditions with the log-transformed, normalized 

data to explain the dependent variable (FCO2) from the independent (PAR, AT, ST, SM, WD, SS, 

and pH) variables. The AIC optimization (minimum AIC) and R2 (maximum R2) led to the 

selection of 1st two PLS components for both WD>0 and WD<0 conditions (Figure 6.5) while 

developing the PLSR models.  

Condition 1(WD>0) 

In terms of modeling efficiency and accuracy, the PLSR model could be labeled as “very good” 

and the model is statistically significant (F3,56=251.02, p-value<0.001, R2=0.95, RSR=0.23, and 

MAE=0.18) (Table 6.4). The observed high modeling efficiency indicated a presence of dominant 

non-linear liaison between the dependent and independent variables.   The estimated model 

coefficients, BETA were reported in Table 6.4. Temperature variable (AT and ST) and radiation 
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variable PAR received most of the weights (ST got the height weight) in the regression. Weight 

of SS and WD were moderate to weak compare to the weight of PAR, AT, and ST. 

 

 

 

 

 

 

 

Figure 6.5: Plot of 10-fold cross-validated (a) fitting efficiency, R2 and (b) Normalized AIC for 
both WD>0 and WD<0 conditions of instantaneous FCO2 with the number of incorporated partial 
least squares (PLS) components instantaneous 

 

Condition 2(WD<0) 

The modeling efficiency was not as efficient as compared to condition 1. However, the model 

was statistically significant based on the overall F-statistics (F3,12=4.57, p-value<0.05, R2=0.54, 

RSR=0.66, and MAE=0.55) (Table 6.4). Based on the labeling criteria, the model could be 

ranked as “satisfactory” and “medium”. The lack of ability of the model to describe the system 

variance efficiently could be linked to the use of relatively small data set (16 observations) while 

modeling, and complexity in biogeochemical activity beneath the soil when water just recedes 

due to ebb tide. AT and WD were the most influential in the regression and the Soil salinity (SS) 

received a moderate weight. ST and PAR were weak to moderately linked with FCO2 based on 

their BETA value.  

(a) (b) 

Number of partial least squares components  
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Table 6.4: Coefficients (BETA) of the log-transformed, normalized (dimensionless) PLSR 
models (2 PLS component based) of the daytime FCO2 for both WD>0 and WD<0 conditions. R2, 
RSR, and MAE refer, respectively, to coefficient of determination, ratio of root-mean-square 
error to the standard deviation of observations, and mean absolute error.  

Variable PAR WD AT ST pH SS SM R2 RSR MAE 

Condition 1 (WD>0) 0.28 -0.12 0.34 0.38 -0.02 -0.10 0.09 0.95 0.23 0.18 

Condition 2 (WD<0) 0.19 -0.34 0.37 0.11 0.03 0.18 0.05 0.54 0.66 0.55 

Note: PAR, WD, AT, ST, pH, SS, SM, and FCO2 refer, respectively, to photosynthetic active 
radiation, water depth relative to water marsh surface, air temperature, soil temperature, soil pH, 
soil salinity, soil moisture, and daytime CO2 exchanges of the salt marshes. R2, RSR, and MAE 
refer, respectively, to coefficient of determination, ratio of root-mean-square error to the standard 
deviation of observations, and mean absolute error.  
 

6.3.5 Predictive model development 

Choice of variables for predictive modeling 

The 4-layer multivariate statistical provided a clear insight and direction in selecting the most 

dominant and mechanistically viable drivers for the development of the parsimonious predictive 

model. Data-analytics did not indicate any firm and direct role of water depth on FCO2 

sequestration (daytime NEE) for the WD>0 condition. However, WD was moderately linked with 

FCO2 for WD<0 condition. Temperature and PAR were the most common factors that showed 

high to moderate contribution on FCO2. Hydrology mediated biogeochemical processes (SS) were 

moderately linked with FCO2.  As such, PAR, ST, and SS were considered as predictor variables 

for model development. WD was not considered in the predictor variable set for three reasons: (i) 

It did not show evidence of a significant linkage for the completely submerged condition, (ii) 

since the model follows a power law function (Equation 1), inclusion of WD in the predictor 

variable set lead to the separation of the data set based on the position of the water table related to 

the marsh surface. If WD showed moderate to strong linkage for both of the cases under 

consideration, it would be worth to develop two different models for WD>0, and WD<0 

respectively, and (iii) the explanatory non-linear PLSR model only explained 54% of the 
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variances for the WD>0 condition, which suggests developing a separate model for WD<0 would 

have indicated similar modeling efficiencies. The predictive model did not use long-transformed 

and normalized data to model FCO2; rather original units of all the participatory variables (ST, 

PAR, SS, and FCO2) as reported in Table 6.1 were used for the predictive modeling. Finally, the 

predictor variable set consisted of PAR, ST, and SS; leading to the development of four 

parameter model (one scaling factor, a and three shape factors for PAR, ST, and SS, 

respectively) (equation 1). 

Parameter estimation 

The model training and fitting were done based on the Monte-Carlo cross-validations with 10000 

iterations. The model showed “good” agreement with the observed data for training (i.e., 

calibration), and testing (i.e., validation) (mean calibration R2=0.84; mean validation R2= 0.82). 

The histograms of the parameters plotted with the estimations from 10000 simulations indicated 

that the parameters were normally distributed (Figure 6.6). The standard deviation of each 

parameter from the mean was quantified (Table 6.5); the standard deviations indicated the 

uncertainty of the parameters for the model simulation.  The standard deviation varied from 0.06-

0.40 for all the parameters. The mean p-value of the parameters indicated the statistical 

significance of the parameters in the nonlinear regression (mean p-value<0.005) (Table 6.5). 

Finally, instantaneous daytime FCO2 were predicted as a function of instantaneous PAR, ST, and 

SS from the mean (mean over 10000 iterations) of the estimated parameters (Table 6.5). The 

model (Equation 2) was statistically significant and the modeling performance can be labeled as 

“good” and “very good”, respectively for R2 and RSR (F3,72=64.08, p-value<0.001, R2= 0.83, 

RSR=0.41, MAE=1.40 µmole/m2/s). Figure 6.7 showed the 1:1 plot of the predictions with the 

observed data for the study ponds. Apart from the two observations of Sage lot and one 
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observation of Great Pond, model predictions were very impressive suggesting an existence of 

spatial robustness of the developed data-driven model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Plot shows the histograms of the estimated parameters of the prediction model (option 
1: without soil moisture) obtained from the Monte Carlo cross validation through 10000 iterations 
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Table 6.5: The estimated model parameters (equation 2) of the predicted model (obtained from 
the mean of the parameters through 10000 iterations) of daytime FCO2 for the Waquoit bay, MA  
salt marshes. 

 Scaling 
factor, a PAR ST SS 

Mean of estimated 
parameters 
 

-3.26 
 

0.76 
 

2.42 
 

-1.01 
 

Standard deviation 
 

0.4 
 

0.06 
 

0.19 
 

0.13 
 

P-value 
 

<0.05 
 

<0.05 
 

<0.05 
 

<0.05 
 

R2 0.83 
RSR 0.41 
MAE 
(µmol/m2/s) 1.40 

 

 

 

 

 

 

 
Figure 6.7: Plot of the predicted and observed instantaneous daytime FCO2 of 2013 growing 
season for the four study ponds of Waquoit Bay, MA. The dashed line represents the 1:1 perfect 
fit line. 
 

6.4. Discussion 

6.4.1 FCO2 linkages of the climatic and environmental variables 

The data-analytics revealed high control of the radiation (photosynthetic active radiation, PAR), 

temperature (air temperature and soil temperature), moderate control of soil salinity, SS (pore 
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water) on CO2 exchanges during flood tide condition (when the water table is above the marsh 

surface).  On the contrary, SS, air temperature, and water depth demonstrated strong to moderate 

CO2 flux linkages during low tide condition (when the water table is below the marsh surface). 

Being a C4 grass, Spartina has the characteristics of high photosynthesis rate (CO2 

fixations) compare to the C3 plants (Phragmites) (Mantlana et al., 2008) because of the absence 

of  photorespiration and significantly less stomatal conductance. Moreover, Spartina has the well-

developed aerenchyma to adopt with the anoxic and hypoxic conditions imposed by the coastal 

wetlands (Maricle and Lee 2007). Although a distinct zonation (low marsh and high marsh) was 

apparent for the New England marshes, this study solely focused on the environment driven 

response of the low marshes (low elevation zone) on the daytime gas exchanges. A combination 

of different environmental factors controls the physiological responses of the low marsh Spartina 

under the influence of the tidal cycle. 

As apparent from the results (Figure 6.4, Table 6.3, 6.4), light (PAR) showed high FCO2 

linkages for WD>0 condition and moderate linkages for WD<0 condition. Overall, fixation of 

CO2 by salt marshes largely depends on the availability of sunlight and incident of photons on 

leafs. Upon diffusion of CO2 through the stomata opening into the leaf cells, Spartina salt 

marshes follow standard C4 photosynthesis pathway to generate glucose in the bundle sheath 

cells. Observed correlation between PAR and temperature variables (ST, AT) suggested their 

simultaneous contribution on daytime NEE, and the location of the water table (WD>0 and 

WD<0) determines whether PAR could be the strong driver of FCO2. The stomatal conductance 

control the initial CO2 fixation pathway; stomatal conductance increases with the increase of 

vapor pressure deficit (vapor pressure deficit increases with temperature) and decrease of xylem 

water potential (Giurgevich and Dunn 1982). Plants keep the stomata open during high tide 

(WD>0), and that would probably increase the fixation of light. However, an opposite 



210 

phenomenon may occur as water resides below the marsh surface, and stomata resistance starts to 

develop. The relatively low FCO2 linkages with PAR at WD<0 can also be attributed due to 

temperature induced daytime heterotrophic respiration. However, Tuittila et al. (2004) reported a 

decrease of carbon uptake due to the high water table for Sphagnum moss; the study also 

acknowledged the lack of information and mechanistic judgment on the influence of water level 

variation in regulating carbon flux exchanges. PAR can also be considered as a surrogate of 

aboveground biomass; observed higher FCO2-PAR linkage may also reflect the role of 

aboveground plant properties in explaining CO2 uptake.  

Temperature, another principal control of CO2 exchanges, demonstrated very high 

linkages with FCO2 in both WD>0 and WD<0 conditions. The control of temperature on CO2 

assimilation was also mediated by the ambient CO2 concentration (Laisk and Edwards, 1997). 

Ambient temperature controls the activity of the primary C4 photosynthetic enzyme, Rubisco. 

Rubisco is limited to the low temperature (mostly nighttime) causing decrease in CO2 

assimilation efficiency, whereas at the elevated temperature the turnover rate of Rubisco 

increases resulting higher CO2 uptake (Sage and Kubien 2007).  Kubien et al. (2003) explained 

the mechanism of reduced CO2 exchanges at low temperature as CO2 leaks out from the bundle 

sheath. The inability of Spartina to fix CO2 at low temperature also explained the reason behind 

the dormancy of the Spartina cord grasses during cold episodes (winter season) at the study sites. 

Since, the study covers only the daytime FCO2 and study period is limited to the extended growing 

season, the temperature was adequate to generate high Rubisco turnover. The average air and 

sediment temperature over the study period was 27.7 and 19.7 oC (Table 6.1), which is higher 

than the generally acceptable Rubisco activation temperature range (20-25 oC) as reported by 

Sage and Kubien (2007) from a study on C4 plants. The overall superior controls of PAR, TA, 

and ST on FCO2 were similar to findings of GUO et al. (2009); the paper investigated the major 

controls of environmental drivers on tidal wetland carbon balance at short temporal scales. The 
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study also supported the higher correlation of PAR and FCO2 during inundated condition for 

Spartina salt marshes.  

Generally, salt marshes are more tolerant of salt stress; however, productivity of the 

marshes is limited to the optimum salinity level above which productivity decreases (Lewis and 

Weber 2002; Wang et al., 2006).  The study found low to moderate effect of salinity on FC02 for 

WD>0, and higher impact during the low tide (WD<0) condition. The analyzed dataset showed a 

negative correlation between salinity and FCO2 (Figure 6.8). Soil salinity also could be linked to 

the root O2 consumption and stomatal resistance to gas diffusion (Howes et al., 1986).  Although 

no mean difference of salinity was apparent in the data for WD>0 (mean salinity: 29.5 ppt) and 

WD<0 (salinity: 30 ppt) conditions, higher control of salinity on WD<0 could be explained from 

the stomatal resistance perspective.  The coupled effect of water receding and salinity may cause 

stomatal resistance to increase and thereby limit the gas exchanges. 

The study did not find any notable control of WD on FCO2 during the completely 

submerged condition; however, a moderate FCO2 linkage was observed for the WD<0 condition. 

The plant metabolism (aerobic and anaerobic) largely depends on the availability of the diffused 

O2 in the roots during water logged condition (Mendelssohn et al., 1981). Sediment oxidation 

could be linked with the productivity via a positive feedback loop (King et al., 1982; Dacey and 

Howes 1984). The observed moderate linkages of water depth during the low tide condition may 

be due to role of WD in regulating CH4 oxidation in aerobic condition (CH4 oxidization in the 

oxidizing layer at the soil surface). The inability of the PLSR model to explain more that 54% of 

the FCO2 at WD<0 could due to a complex coupled effect of CO2 uptake through photosynthesis 

and CO2 emission from CH4 oxidation. The possible higher control of CO2 emission in this 

condition could also explain the comparatively lower effect of PAR when water is below the soil 

surface. As the CO2 uptake/emission ratio decreases, the relative dominance of PAR decreases 
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and influence of WD in the exchange mechanism increases. The soil oxygen-reduction potential 

(Eh) data could also be a good surrogate of the water table to explain the oxygenation and 

reduction mechanism.  

The study revealed minor FCO2 linkages with pH. The pH varied with a narrow range 

(pH=6.05-7.87) for the entire dataset with an overall mean of 6.86; the mean pH value suggested 

the overall acidic characteristic and high productivity of the organic salt marshes. Since H+ is 

released during redox reaction (i.e., reduction reactions) based microbial activities (Reddy and 

DeLaune, 2008) pH tends to vary with the O2 availability in the pores, which is not clearly 

evident in the analysis. The mechanism of pH in wetland could be more linked to the soil 

autotrophic respiration (nighttime NEE) than the photosynthesis (daytime NEE).   

It was explicitly evident from the analysis that all the factors integrally linked with each 

other to mechanistically drive the daytime CO2 exchanges in coastal salt marshes. Although 

radiation, temperature, and salinity indicated relatively higher control than other participatory 

variables in the analysis, the role of water availability in the soil pores and also in the xylem 

tissue in controlling the plant water loss and CO2 fixation cannot be overemphasized. The 

described linkages could be altered due to the perturbations caused by the climate change 

(increased CO2 concentration, sea level rise). Recent studies suggested higher plant productivity 

due to elevated CO2 concentration that increases the marsh surface level to keep pace with the sea 

level rise (Erickson et al., 2007; Langley et al., 2008). Since photosynthetic rate and stomatal 

conductance decrease with elevated CO2 (Nowak et al., 2004; Ainsworth and Long 2005), it 

could change the quantitative controls of the environmental variables on FCO2. 
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Figure 6.8: Change of daytime CO2 exchange (FCO2) with the change of soil salinity for all the 
four study ponds. The slope of linear fit indicated a negative correlation between them.  

 
6.4.2 Predictive model fitting with a minimum parameter set 

Available general photosynthesis models (daytime CO2 exchanges) mostly incorporated radiation 

and temperature variables (PAR and temperature) (Monteith 1972; Monteith and Moss 1977; 

Farquhar et al., 1980) to simulate the photosynthetic biochemistry. Different Q10 based 

temperature functions (i.e., Arrhenius function) were used to represent the temperature 

dependency of photosynthesis (Smith and Dukes 2013). Moreover, most of the processes based 

wetland models that are applicable to the freshwater systems used primary productivity (GPP) to 

estimate CO2 related carbon uptake (Cao et al., 1996; Walter and Heimann, 2000). The daytime 

respiration from the wetland is also a function of temperature. Similarly, radiation and 

temperature (PAR, ST) were included in the model (Equation 2); however, to account for the 

saline environment of the coastal salt marshes, based on the results obtained from the data-

analytics framework, soil salinity was incorporated in the independent variable set. The inclusion 

of salinity in the model provided the potential for testing the impact of different climatic event 

related to the climate change (sea level rise mediated salinity increase) on the daytime NEE. The 

developed 4-paramter model (one scaling factor, and three shape factors representing the effect of 
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PAR, ST, and SS, respectively) (Equation 2), therefore, empirically incorporated the primary 

environmental factors associated with daytime NEE, and the model robustness and parsimony 

was reserved because of the consideration of such small predictor set. Moreover, the quantitative 

estimation of the instantaneous daytime fluxes from the small set of environmental variables 

leveraged the estimation of the long time ecosystem carbon balance (NECB), since CO2 uptake is 

one of the important components of NECB.  

Since the final model was developed from the mean of the parameters estimated from 

10000 iterations and parameters relatively followed the normal distribution with the significantly 

small standard deviations (Figure 6.6, Table 6.5), the uncertainties of the parameters were less. 

The final predictive model described 83% (Table 6.5) of the data variances showing the elegance 

of data-driven empirical modeling in predicting such complex mechanism.  

6.4.3 Significance of the estimated parameters  

Since the predictive model was developed from the original data set without any data-

transformations, the input variables contained their original measuring units (different variable 

has different unit), thereby it is not feasible to discuss the relative weight of the final estimated 

parameters regarding magnitude. However, the explanatory PLSR modeling that were performed 

on the normalized dataset already highlighted the relative importance and interactions between 

the input variables and the FCO2. In this section, the significate of the estimated parameters on the 

basis of their signs were explained. 

The value of the scaling parameter, a , was -3.26 (more elaborately 10-3.26 =0.00055) 

indicating the scaling relationship between the dependent and independent variables. However, a

does not represent or explain the underlying shape of the physical parameters in the fitting. Rather

a resembles the limit of the equation in the fitting domain. The reason behind the estimation of 
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the scaling factor as a power of 10 was that it eliminated the model limitation imposed by the 

scaling factor; if the scaling parameter is estimated without raising to the power of 10 while 

fitting the data, the value of a can be 0 for a particular combination set during iteration and would 

then estimate the FCO2 as zero. By raising the a to the power of 10, this limiting factor was 

avoided.  

 The shape factors were estimated as 0.76, 2.42, and -1.01 for PAR, ST, and SS, 

respectively.  The positive sign of the parameters in PAR and ST indicated a positive relation 

with the FCO2 while the negative sign associated with SS indicated a negative relation. However, 

the observed associations could be described as an independent function to illustrate the behavior 

of the each parameter in determining the shape of the predictive curve. Since shape factor 

associated with PAR was between of 0 to 1, the FCO2 will increase with the increase of PAR, but 

the rate of increase of FCO2 will reduce for a very high value of PAR. In the case of ST, since the 

shape factor is greater than 1, the FCO2 increases exponentially with the increase of soil 

temperature. However, beyond a certain air temperature (optimum temperature) the daytime NEE 

rate (photosynthesis) declines (Sage and Kubien 2007; Smith and Dukes 2013; Atkin and 

Tjoelker 2003), and there could be a case when the soil temperature and the corresponding air 

temperature exceeds the thermal optimum. Nevertheless, previous studies reported a typical 

optimum range of air temperature between 38 oC to 45 oC above which thermal sensitivity rises 

for C4 plants (Sage 2002; Pittermann and Sage 2000; Sage and Kubien 2007). The maximum air 

and soil temperature as obtained from the dataset from the study sites were 37.6 and 27.5 oC, 

respectively, which is below the optimum range. Since the model is fitted with ST and ST 

remains below AT, the obtained value of the ST parameter did not contradict the existing 

mechanism. 
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 The CO2 flux model (Equation 2) was incorporated in an excel spreadsheet along with 

the wetland CH4 flux model (see chapter 7) to estimate the net ecosystem carbon balance of a 

given wetland site. The Excel-based model was named as “BWM Wetland C and GHG Model” 

and developed as a part of recently completed project “Bringing wetland to market: nitrogen and 

coastal blue carbon” funded by NOAA. The incorporation of the model into the Excel 

spreadsheet leverages the prediction of the GHG fluxes in a much easier way. The Excel model 

can be considered as a user-friendly engineering tool that required minimum input data. The 

BWM wetland C model is available in the Waquoit Bay National Estuarine Research Reserve 

website (http://www.waquoitbayreserve.org/research-monitoring/salt-marsh-carbon-project/), and 

detail information of the model and the user-guide is also available as a form of factsheet in the 

Waquoit Bay website (http://www.waquoitbayreserve.org/wp-content/uploads/BWM-Model-for-

Predicting-Greenhouse-Gas-Fluxes_FS_FINAL.pdf) 

6.4.4 Generalization of the model  

The entire data-analysis and the predictive modeling combined the data from four Waquoit bay 

wetlands that are subjected to a moderate ecological gradient. The success in model fitting 

suggested the spatial robustness of the model in the Waquoit bay system. However, to make to 

model applicable to the regional scale (i.e., New England area) or even more general, the model 

needs to be validated for new sets of data of different salt marsh sites of New England area along 

a gradient of nitrogen, salinity, and tidal inundation. The model is only applicable for the low 

marsh zones; a new model could be developed by incorporating data from the high marsh zone.  

On the temporal scale, the model was developed by considering the 2013 growing season only. 

The potential temporal spread of the model could be tested for seasonal and annual upscale values 

to ensure the applicability of the model in upscaling for the estimation of NECB.  

http://www.waquoitbayreserve.org/research-monitoring/salt-marsh-carbon-project/
http://www.waquoitbayreserve.org/wp-content/uploads/BWM-Model-for-Predicting-Greenhouse-Gas-Fluxes_FS_FINAL.pdf
http://www.waquoitbayreserve.org/wp-content/uploads/BWM-Model-for-Predicting-Greenhouse-Gas-Fluxes_FS_FINAL.pdf


217 

6.5 Conclusions 

The relative control and linkages of different climatic and environmental variables on daytime net 

CO2 exchanges of coastal salt marshes of four different wetlands of Waquoit Bay, MA were 

determined by using a robust multivariate data-analytics framework. The linkages were then 

leveraged to develop a parsimonious (minimum parameter), nonlinear, data-driven model for the 

prediction of the CO2 flux exchanges of the study wetlands. The data-analytics revealed high 

control of the radiation (photosynthetic active radiation, PAR), temperature (air temperature and 

soil temperature), and moderate control of soil salinity (SS) on CO2 exchanges during flood tide 

condition (when water table is above the marsh surface).  On the contrary, soil salinity, air 

temperature and relative water depth demonstrated strong to moderate CO2 flux linkages during 

low tide condition (when the water table is below the marsh surface). The empirical predictive 

model of instantaneous CO2 fluxes was developed as a nonlinear function of the most three 

important drivers (PAR, sediment temperature, and SS) as determined from the data-analytics 

framework. The developed data-driven model could be used as a supplement to the existing 

process-based models to provide empirical foundation in obtaining critical decisions on “blue 

carbon’ sequestration. 

The study facilitates to improve the understanding of the dominant control and 

mechanism of different environmental drivers in daytime CO2 exchanges. The developed 

predictive model coulde be used to complement the existing process based models. Since the fate 

of the “blue carbon” under the current change in climate and sea level rise is quite uncertain, the 

predictive model developed in this study as a component of net ecosystem carbon balance will act 

as an ecological engineering tool to aid the development of appropriate GHG offset protocols for 

settling monitoring guideline for tidal wetland restoration and maintenance projects.  
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Chapter 7: Data-driven mechanistic modeling of CH4 emission from coastal wetlands: 

Application of a data-analytics framework 

Abstract 

Methane (CH4) is one of the major greenhouse gasses (GHGs) emitting from the wetlands and 

has a significant global warming potential (GWP). In this data analysis based study, the major 

controls and relative linkages of the environmental and biogeochemical drivers of the 

instantaneous CH4 emission fluxes from coastal wetlands were determined. Four different coastal 

wetlands of Waquoit Bay, MA that are subjected to a moderate ecological gradient were used as 

the case study sites. The mechanistic attributes of the CH4 emission acquired from the linkages 

were then utilized to develop a parsimonious (minimum parameter), nonlinear, data-driven model 

for the prediction of the CH4 emission fluxes. The position of the water table relative to the salt 

marsh surface was identified as the most dominant factors controlling CH4 flux emissions; 

temperature (air and soil) and soil salinity also demonstrated high to moderate linkages depending 

on the soil O2 availability. The predictive empirical models of instantaneous CH4 fluxes were 

developed for two different hydrological regimes separated by the water table. The models were 

built as a nonlinear function of the three most important drivers (water depth relative to the marsh 

surface, soil temperature, and soil salinity) of wetland CH4 emission. The models exhibited very 

good modeling efficiency (coefficient of determination, R2=0.79-89) and accuracy (ratio of root-

mean-square error to the standard deviation of observations, RSR=0.32-0.45, and mean absolute 

error, MAE=0.64-1.00 nmole/m2/s) in predicting the instantaneous emissions. The predictive 

model can be used as an ecological engineering tool to aid the policy makers and land managers 

to take prompt decision regarding the tidal wetland restoration and maintenance under a current 

change of climate and sea level rise.   
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7.1 Introduction  

Methane (CH4) is one of the major greenhouse gasses (GHGs) and has a significant global 

warming potential (GWP) compare to carbon dioxide (CO2). According to the 2013 IPCC report, 

the GWP of methane is 34 and 86 for 100 and 20 years, respectively (Stocker et al., 2013; 

Howarth, 2014). The atmospheric concentration of CH4 has increased over 150% from 1750 to 

2011 (Hartmann et al., 2013) and CH4 is considered as one of the contributors to ozone layer 

depletion. These alarming facts warrant the development of an appropriate management protocol 

to limit the emission rate and preserve the carbon stored beneath the soil. The wetland is regarded 

as the primary source of natural CH4 to the atmosphere and plays a vital role in the soil-

atmospheric exchange of the GHG fluxes (CH4 and CO2) (Zhu et al., 2014). Although CH4 

emission from the coastal saline water wetlands were comparatively less than the freshwater 

wetlands because of the high saline concentration (Poffenbarger et al., 2011), the estimation and 

future prediction of the CH4 fluxes were crucial for the determination of net carbon (C) balance 

(net C sequestration) of the coastal wetlands. The C storage and sequestration capacity of coastal 

and marine wetlands are often referred to as “blue carbon” (in contrast to a forest or “green 

carbon”). "Blue carbon" is an emerging concept for coastal management that can potentially 

attract much private and public investment in coastal protection and restoration (Nellemann et al., 

2009; Crooks et al., 2010, 2011; Morris et al., 2012). For the successful implementation of the 

“blue carbon” concept, the response of CH4 emissions to the changes in climate (e.g., 

temperature, radiation), sea level rise (SLR) and inundation (e,g., soil moisture, salinity) should 

by investigated by determining the relative control and interactions of these climatic and 

hydrologic factors. Moreover, a robust and handy modeling protocol is necessary as an ecological 

engineering tool to estimate and predict the CH4 emissions from the coastal wetlands for the 
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quantification of the ecosystem scale CH4 budget and net C balance, which would leverage the 

ongoing effort for setting up GHG offset methodology for wetland restoration and maintenance.  

 CH4 emissions from the coastal saline water wetlands are the function of CH4 production 

in an anaerobic condition and CH4 oxidation in aerobic condition. The entire emission 

mechanism is controlled by a set of biogeochemical processe mediated by ambient climate, 

hydrology, and soil properties. The intricate processes associated with the CH4 emission are not 

independent of each other; rather a complex interaction of all the controls influence the system 

and set the rate of CH4 emission from the wetlands. However, the driving factors need to be 

ranked based on their quantitative linkages with CH4 emissions for the development of an 

optimum predictive model that will incorporate only necessary drivers to limit the number of 

input variables to ensure the model parsimony.  

The available process-based models for the prediction of wetland greenhouse gas (GHG) 

fluxes were already mentioned in Chapter 6. The utility of the data-driven models compare to the 

available process-based models were also discussed in Chapter 6 along with a comprehensive 

summary of the currently available data-informed explanatory and predictive models.  Moreover, 

the usefulness of the “big ecological data” in describing and developing wetland GHG flux 

models was also highlighted in the previous chapter. The systematic data analytics framework 

explained in chapter 4, 5 and 6 that leverage the relative linkages and pattern identification of the 

major drivers of terrestrial and wetland CO2 fluxes were also applied for the determination of the 

relative linkages of wetland CH4 fluxes. 

The objectives of this study were to investigate and identify the dominant controls of 

wetland CH4 emission fluxes and determine their relative linkages, interrelation patterns and 

similarity with various hydro-climatic, biogeochemical and environmental drivers by using the 

systematic multivariate data-analytics and informatics framework. The knowledge of similarity 
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and interrelation patterns of the dominant controls were then utilized to develop a data-driven, 

parsimonious (minimum parameter) non-linear (e.g., power-law) model for the prediction of 

coastal wetland CH4 emission fluxes.  

7.2 Materials and methods 

7.2.1 Study sites and data set 

The same study wetland ponds (Sage lot pond, Eel pond, great pond and Hamblin pond) that were 

used for the development of the daytime CO2 exchange model in chapter 6 were used in this 

study to develop the predictive model of the CH4 emission fluxes (Figure 6.1) under the NOAA-

NERRS collaborative project (Waquoit Bay website, 2015).  

Instantaneous CH4 emission fluxes and corresponding biogeochemical, hydrological and 

climatic variables were subsampled from the collected dataset for different days between June to 

October, 2013 (4 different days in June, 2 days in July, 5 days in August, 1 day in September, and 

1 day in October, and 2 days in November) (Figure 7.1) in the low marsh zone of the four study 

wetlands. The data collection days represent growing summer and fall seasons (June to 

November) of coastal salt marshes. Several instantaneous measurements were carried out in each 

day at different clock hours to cover the temporal variability, and both low and high tide 

conditions. The complete dataset included net CH4 emission fluxes from the salt marshes and 

seven hydrological, biogeochemical and climatic variables (Table 7.1, Figure  7.1): CH4 emission 

flux (FCH4, nmol/m2/s), air temperature (AT, oC), soil temperature (ST, oC), photosynthetic active 

radiation (PAR, µmol/m2/s), water depth related to marsh surface (WD, m), soil salinity  (pore 

water ) (SS, ppt), soil moisture (SM, %) and soil pH (pH). The collected climatic and 

environmental variables cover potential mechanistic processes/groups (temperature group: AT 
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and ST; radiation group: PAR; hydrology group: WD and SM; and soil biogeochemical group: 

SS and pH) associated with the methane flux emissions. 

The standard flux sign convention, a negative sign represents emission was followed for 

the CH4 fluxes. Moreover, a positive sign was used when water depth is above the salt marsh 

surface and –ve sign was used when water depth is below the surface. The measurement 

procedures of the CH4 flux and other variables considered in this study were discussed in chapter 

7 (see section 6.2.1) 

Figure 7.1: Measured CH4 emission fluxes for the different days and diurnal hours of 2013 at the 
four study ponds of Waquoit Bay, MA. The negative values of the fluxes indicate emission from 
the marsh surface. 

 
7.2.2 Data preparation and data statistics  

The data preparation and outlier removing techniques that were applied in this study were 

discussed in the previous chapter (see section 6.2.2). However, in the 1st data treatment step, the 

linear regression coefficient, r2 of 0.80 was used to linearly convert instantaneous CH4 

concentrations to fluxes as opposed to the r2 value of 0.90 for FCO2. The r2 of 0.80 was set as a 

threshold for the CH4 fluxes to retain as much as possible flux data while preserving the data 

quality. The final dataset contains 66 observations from four study ponds (forty-four 

measurements from the Sage Lot, eight observations from the Hamblin pond, five from the Eel
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Table 7.1: Data statistics (means, standard deviations, maximum, and minimum) of the observed (66 observations) climatic, environmental, 
and biological variables for the study wetlands.  

 

 

Note: PAR, WD, AT, ST, pH, SS, SM, and FCH4 refer, respectively, to photosynthetic active radiation, water depth relative to water marsh 
surface, air temperature, soil temperature, soil pH, soil salinity, soil moisture, and CH4  emissions  from the salt marshes. Positive sign of WD 
means water table above the salt marshes. The unit of each variable was given in the parenthesis.

Variable PAR 
(µmol/m2/s) 

WD 
(m) 

AT 
(oC) 

ST 
(oC) 

pH SS 
(ppt) 

SM 
(%) 

FCO4 
(nmol/m2/s) 

Data 
Statistics 

1389.4±639.5 
Max=2080.4 
Min=115.6 

0.09±0.1 
Max=0.33 
Min=-0.07 

28.1±6.3 
Max=37.6 
Min=12.8 

20.5±4.1 
Max=27.8 
Min=8.9 

6.9±0.32 
Max=7.9 
Min=6.1 

29.2±3.8 
Max=34 
Min=20 

63.3±3.5 
Max=68.7 
Min=51.2 

1.53±1.5 
Max=7.7 
Min=0.096 
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pond, and nine observations from the Great pond). Figure 7.1 showed the range of data collection 

days where each day had multiple data points at different daytime hours.  

The observed methane emissions from the wetlands were not high; the growing season 

average of the collected FCH4 for the study wetlands was 1.53 nmol/m2/s (Table 7.1). The 

maximum emission rate was 7.67 nmol/m2/s as measured in the Hamblin pond (Figure 7.1). 

Overall, the Hamblin pond demonstrated higher CH4 emissions compare to the other study ponds 

in Waquoit bay system. The spread of the CH4 fluxes as seen in Figure 7.1 suggested the 

incorporation of different emission regimes (low and high emission) of CH4 fluxes across the 

selected study wetlands. The ambient air temperature was as high as 37.6 oC with a corresponding 

high soil temperature. The mean pH was found to be neutral, and that suggest high productivity of 

the salt marshes and adjacent plant communities. Soil salinity (pore water) was considerably high 

over the growing period (SS ranged from 20-34). The measured PAR covered both cloudless 

(when PAR is high), and cloudy and evening environments (Low PAR) of the study wetlands. 

The positive value of mean WD indicated the presence of a dominant anoxic state in the study 

sites. 

7.2.3 Data analysis and predictive modeling 

The biogeochemical activity and CH4 emission from the coastal salt marshes largely depend on 

the oxygen availability in the sediment pores. Soil water level determines this aerobic-anaerobic 

state of the salt marshes. Since the coastal wetlands are subjected to diurnal flood and ebb tides, 

the potential linkages between the different climatic variables and FCH4 due to the fluctuating 

water table were investigated for two conditions. 

Condition 1: Water above the salt marsh surface (WD>0) 

Condition 2: Water below the salt marsh surface (WD<0).  



231 

The final dataset was divided based on the above-mentioned conditions, and all the 

multivariate statistical analysis methodology described below was performed discretely for these 

two settings. Out of the 66 observation panels, 51 observations that comprise all the four study 

sites had water above the salt marsh surface. The rest of the 16 observation panels followed the 

condition 2 subset (WD<0).  

Data-analytics framework and modeling 

The data analytics framework (Figure 6.3) discussed in the chapter 6 was applied to determine the 

relative controls and linkages of the climatic and environmental variables with wetland FCH4 

(please see section 6.2.3). The detail description of the framework is given in chapter 4 (see 

section 4.2.3). The most important and dominant drivers controlling the CH4 emission fluxes in 

the coastal salt marshes were identified based on the data-analytics framework and mechanistic 

judgment. These selected variables were then utilized to develop a power-law based non-linear 

parsimonious (i.e., minimum parameter set) model (Equation 1) of FCH4 for the coastal salt 

marshes. The details of the power-law based cross-validated modeling were discussed in chapter 

6 (please see section 6.2.3) 

∏
=

=
1

4 10
i

bi
i

a
CH XF          (1) 

where a and b = model parameters(a is the scaling factor, and b represented shape factors), Xi = 

independent variables (important process drivers of FCH4). 
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7.3 Results  

7.3.1 Correlation analysis 

Condition 1: Water above the salt marsh surface (WD>0) 

Since data was log-transformed and standardized prior to the analysis, only absolute values of the 

correlations were considered for result interpretation. The CH4 emission flux, FCH4 showed a high 

correlation with temperature (AT, ST) variables (|r|=0.85-0.88) while PAR, WD, and SS showed 

a moderate correlation (|r|=0.41-0.65) (Table 7.2). However, soil moisture (SM), a surrogate 

indicator of soil O2 availability, and pH were poorly correlated with the FCH4 (|r|=0.03-0.04). All 

the correlations were significant at 95% level of confidence. The radiation and temperature-

related variables demonstrated significant inter-variable correlations (AT-ST, PAR-AT, and 

PAR-ST) as obtained from the triangular correlation matrix (not shown) implying the presence of 

a multicollinearity in the independent variable data set. 

Condition 2: Water below the salt marsh surface (WD<0) 

The hydrologic variable, WD showed a high correlation with the FCH4 for the low tide condition 

(|r|=0.77).  The other hydrology related variable, SM was weakly correlated (|r|=0.22) with FCH4. 

The temperature and radiation variables did not demonstrate notable correlations with methane 

(|r|=0.10-0.20). Similarly, soil redox variables (SS and pH) showed low correlations.  The 

presence of the multi-collinear structure in the independent variable data set was apparent since 

moderate correlations were observed between AT-ST, SS-WD, and PAR-pH (not shown).  

For both of the hydrologic conditions (WD>0 and WD<0), the dominant influence of 

water depth on CH4 emission was observed; however, temperature and radiation variables 

demonstrated two different correlation strengths for the varying hydrologic conditions.  
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Table 7.2: Pearson correlation coefficients between the CH4 emission fluxes (FCH4) and the 
corresponding climatic and environmental variables for the study area for both WD>0 (water 
table above the soil marsh) and WD<0 (water table below the soil marsh) conditions.  

 PAR WD AT ST pH SS SM 
Condition 1 (WD>0) 0.65 -0.43 0.88 0.85     -0.03 -0.41 0.04 
Condition 2 (WD<0) 0.10 0.77 -0.19 0.20 -0.15 0.06 -0.22 
Note: PAR, WD, AT, ST, pH, SS, SM, and FCH4 refer, respectively, to photosynthetic active 
radiation, water depth relative to water marsh surface, air temperature, soil temperature, soil pH, 
soil salinity, soil moisture, and CH4  emissions  from the salt marshes.  
 
 
Condition 1(WD>0) 

1st two principal components (PC) explained 63.6 % of the total data variances for all the study 

ponds. The loading of each variable on the 1st two orthogonal components were presented 

through biplot (Figure 7.2a). The relative orientation and length of the participatory variables in 

the biplot revealed the existence of two different variable clusters for the anoxic condition. The 

non-orthogonal (0 or 180 degree) orientations between the FCH4 and the group of PAR-AT-ST 

suggested their higher interrelationship and linkages (all of these variables loaded highly on 1st 

PC). The relative position of WD and FCH4 in the 2-D plane indicated their moderate linkages and 

control. A nearly orthogonal (90 degree) orientation was observed between FCH4 and group of 

pH-SM; suggesting their weak linkages (pH loaded highly on 2nd PC while FCH4 loaded high on 

1st PC and SM loaded very weakly on both of the PCs). Soil salinity (SS) loaded moderately to 

high on the both PCs; the relative orientation of SS with FCH4 suggested a moderate CH4 flux 

linkages. Orthogonal loading pattern between the temperature and radiation variables (PAR, AT, 

and ST) and the hydrology-redox variables (WD, pH, SS, and SM) indicated the presence of two 

process clusters that was previously hidden in the data. The 1st cluster (radiation-temperature) was 

driven by climate and highly linked with the FCH4. The 2nd cluster (WD, SM, pH and SS) 

resembled wetland hydrology and biogeochemistry, which were weak to moderately correlated 

with FCH4. 
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Figure 7.2: Biplots obtained from the loadings of the 1st two principal components (PC) showing 
the groupings and interrelation patterns of the climatic, environmental, and biological variables 
for both (a) WD>0 and (b) WD<0 conditions. Percent variance explained by each PC is shown in 
parenthesis. PAR, WD, AT, ST, pH, SS, SM, and FCH4 refer, respectively, to photosynthetic 
active radiation, water depth relative to water marsh surface, air temperature, soil temperature, 
soil pH, soil salinity, soil moisture, and CH4 from the salt marshes.  

Condition 2 (WD<0) 

The 1st two PC’s explained 58.3% of the total data variances (Figure 7.2b) of the analysis data-

matrix. Contrary to the observations of condition 1, no apparent cluster of variables emerged from 

the biplot for the condition 2. Hydrology variables (WD and SM) were highly linked with FCH4 

because of their non-orthogonal orientation. However, WD had the most CH4 linkage than SM; 

WD loaded heavily on both PCs similar to the loading of FCH4 while SM loaded moderately on 

both PCs. The orientation of SS and ST relative to FCH4 suggested a moderate CH4 flux linkages. 

Since AT and pH were orthogonally linked with FCH4, they had relatively lower linkages. 

7.3.3 Extracted orthogonal latent factors 

Condition 1(WD>0) 

Three latent factors optimally explained the overall data variances for the water level above the 

salt marsh condition (Table 7.3); Eigen value>1 based optimization while extracting the factors 

ensured the systematic consideration of most of the data variances (78% of the data variances 

(a) (b) 

WD>0 WD<0 
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were explained by the 1st three factors) for process description.  The factors were ranked on the 

basis of the percent data explained by each factor; 1st factor explained 46.38%, 2nd factor 

explained 17.30%, and 3rd factor explained 14.29 % of the total data variances. Since, log-

transformed Z-scores were used for the analysis, only the magnitudes of the loadings were 

considered for the explanation of the FA results.  

Table 7.3: Extracted latent factors from the factor analysis for the study wetlands for both WD>0 
and WD<0 (shaded area in the table) conditions.  
 
Note: PAR, WD, AT, ST, pH, SS, SM, and FCO2 refer, respectively, to photosynthetic active 

radiation, water depth relative to water marsh surface, air temperature, soil temperature, soil pH, 
soil salinity, soil moisture, and CH4  emissions  from the salt marshes. Bold values indicate most 
important variables in each factor.  

 
Temperature variables (AT, ST) loaded highly (0.83-0.94) on 1st factor along with a very 

high loading (correlation between a factor and a variable) of FCH4 (0.87) on this factor; suggesting 

a strong methane flux linkages. Moderate loading of WD in factor 1 (-0.38) showed the existence 

of moderate hydrological control on FCH4. PAR loaded moderately on the 1st factor (0.48) and 

very highly on the 2nd factor (0.84); however, loading of FCH4 on the 2nd factor was not high 

(0.23) suggesting a moderate linkage with PAR. SS loaded highly on the 3rd factor (0.83) with a 

low loading of FCH4 (-0.17) indicating a weak to moderate dominance of SS on FCH4. The other 

participatory variables (pH and SM) did not load significantly on the extracted factors. The lower 

loading of these variables indicated weak linkages and correlation with the FCH4 in the flooding 

condition.  

 

Condition Factors PAR WD AT ST pH SS SM FCO2 
 
WD>0 

1 0.48 -0.38 0.83 0.94 -0.10 -0.23 -0.03 0.87 
2 0.84 0.09 0.41 0.13 0.05 -0.24 0.28 0.23 
3 -0.23 0.01 -0.36 0.02 -0.27 0.83 0.22 -0.17 

WD<0 1 0.11 0.76 -0.21 0.17 -0.15 0.06 -0.21 0.99 
2 0.07 0.54 -0.75 -0.05 -0.29 0.83 -0.30 0.01 
3 -0.38 0.30 0.48 0.98 0.23 0.04 -0.11 0.03 
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Condition 2 (WD<0) 

Similar to the condition 1, three latent factors were extracted for the optimal interpretation of the 

overall data variances. Three extracted factors explained 71.2% of the variance where the 1st 

factor explained 34.4%, the 2nd factor explained 23.90%, and the 3rd factor explained 12.90% of 

the total variations.  

 Water depth (WD) loaded highly (0.76) on the 1st factor with a very high loading of FCH4 

on this factor (0.99); indicating a strong relationship between WD and FCH4 at WD<0 condition 

(Table 7.3). Although loading of AT and SS on factor 2 were high (-0.75 and 0.83), very small 

loading of FCH4 (0.01) on factor 2 suggested their weak to moderate influences. Similarly, ST 

loaded profoundly (0.98) on factor 3 along with a low loading of FCH4 (0.03); inferring weak 

linkage. PAR, SM, and pH did not exhibit any notable loading on any on the extracted factors in 

this condition.  

7.3.4 Partial least squares modeling in non-linear domain 

The correlation analysis, PCA, and FA facilitated to identify the dominant variables that mostly 

triggered CH4 emissions from the salt marsh dominated wetlands at varying hydrological 

conditions. However, these series of statistical investigations did not shed light on the relative 

magnitude of the CH4 flux linkages and percent variance explained by the different process 

groups.  To quantify the relative linkages for individual variables as well as for different process 

groups , nonlinear partial least squares models were developed for both aerobic and anaerobic 

conditions with the log-transformed, normalized data of the dependent (FCH4) and independent 

(PAR, AT, ST, SM, WD, SS, and pH) variables . The AIC optimization (minimum AIC) and R2 

(maximum R2) led to the selection of 1st three PLS components for both WD>0 and WD<0 

conditions (Figure 7.3) while developing the PLSR models.  The individual quantitative linkages 

were calculated by dividing the highest weighted coefficient (BETA) in the regression by the 
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other estimated coefficients. The optimized PLSR coefficients (BETA) were also leveraged to 

determine the percent of modeled FCH4 explained by the different process groups (i.e., 

temperature, radiation, hydrology, and biogeochemical). Since regression weights BETA contain 

positive and negative signs, to calculate the component/group wise quantitative linkages, the 

combined weights of the “radiation” group ( Rβ ), “temperature” group ( Tβ ), “hydrology” group 

( Hβ ) and “biogeochemical” group ( Bβ ) were computed, respectively based on following 

equations: 

2
PARR ββ = ; 22

STATT βββ += ; 22
SMWDH βββ += ; and 22

pHSSB βββ +=  

The percent influence of these groups on FCH4 was then obtained by calculating percent explained 

by them, as: 100*
BHTR

R

ββββ
β

+++
(Influence of radiation factor)

100*
BHTR

T

ββββ
β

+++
(Influence of temperature factor); 100*

BHTR

H

ββββ
β

+++

(Influence of hydrology factor); and  100*
BHTR

B

ββββ
β

+++
(Influence of biogeochemical 

factor). 

Condition 1(WD>0) 

The developed 3-component PLSR model was statistically significant and based on the modeling 

efficiency and accuracy, the model could be labeled as “good” (F2,48=130.45, p-value<0.0001, 

R2=0.84, RSR=0.39, and MAE=0.32) (Table 7.4). The observed high modeling efficiency 

indicated a presence of dominant non-linear liaison between the dependent and independent 

variables. The estimated model coefficients, BETA were reported in Table 7.4. Temperature 

variable (AT and ST) and hydrology variable WD received most of the weights (ST got the 
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highest weight) in the regression, which is consistent with the observation of PCA and FA. 

Overall, ST exhibited 1.3- 2.2 times stronger linkages with FCH4 than that of WD and AT; 7.2-7.7 

times stronger linkages than that of PAR and SM; 11.1-13.8 times stronger linkages than that of 

SS and pH. Regarding the group wise influence of the variables on FCH4, temperature and 

hydrology group explained much of the modeled FCH4 (63.5% and 23.8%) while the radiation 

(6.9%) and biogeochemical (5.6%) group together explained only 12% of the variances.  

 

 

 

 

 

 

 

 

 

Figure 7.3: Plot of 10-fold cross-validated (a) fitting efficiency, R2 and (b) Normalized AIC for 
both WD>0 and WD<0 conditions of instantaneous FCH4  with the number of incorporated partial 
least squares (PLS) components. 
 

Condition 2(WD<0) 

Similar to the condition 1, PLSR model developed for condition 2 efficiently described the data 

variances and the model was statistically significant (F2,13=23.01, p-value<0.0001, R2=0.78, 

RSR=0.45, and MAE=0.38) (Table 7.4). Based on our labeling criteria, the model could be 

ranked as “good”. Water depth (WD) was the most influential variables in the regression 

followed by a moderate dominance of SS and PAR. Coefficients of the temperature variables (AT 

and ST) were low that suggest weak linkages. Overall, WD showed 1.8 times stronger linkages 

(a) (b) 
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with FCH4 than that of SS; 5 times stronger linkages than that of PAR; 9.2 times stronger linkages 

than that of pH; and 18.9-33.5 times linkages than that of AT, ST, and SM. The hydrology group 

(54.55%) and the biogeochemical group (30.92%) collectively explained almost 86 % of the 

variances of model FCH4 when water is below the salt marsh surface while rest of the variances 

were explained by the temperature and radiation components.  

Table 7.4: Coefficients (BETA) of the log-transformed, normalized (dimensionless) 3- 
component (optimized) PLSR models of the FCH4  for both WD>0 and WD<0 conditions.  

Variable PAR WD AT ST pH SS SM R2 RSR MAE 
Condition 1 (WD>0) 0.06 -0.21 0.35 0.45 0.03 -0.04 0.06 0.84 0.39 0.32 
Condition 2 (WD<0) 0.20 1.02 -0.05 -0.04 -0.11 -0.57 0.03 0.78 0.45 0.38 
Note: PAR, WD, AT, ST, pH, SS, SM, and FCO2 refer, respectively, to photosynthetic active 
radiation, water depth relative to water marsh surface, air temperature, soil temperature, soil pH, 
soil salinity, soil moisture, and CH4  emissions  from the salt marshes. R2, RSR, and MAE refer, 
respectively, to coefficient of determination, ratio of root-mean-square error to the standard 
deviation of observations, and mean absolute error.  
 

7.3.5 Predictive model development 

Choice of variables for predictive modeling 

The 4-layer multivariate statistical analysis provided a clear insight and direction in selecting the 

most dominant and mechanistically viable drivers for the development of the parsimonious 

predictive model. Although different response-feedback loops were observed under different 

hydrologic conditions, a common pattern related to the control of variables on FCH4 emerged. 

Water depth played the most important role in CH4 emission in concert with the temperature and 

hydrology mediated biogeochemical activity. To incorporate these mechanistic attributes in the 

predictive model, the predictor variable set should include at least one variable from each of the 

process group (temperature, hydrology, and biogeochemistry, radiation,) given that the selected 

variables have direct mechanistic link with the FCH4. As such, based on the relative controls of the 

drivers of each group ST, (represents ambient temperature and climate), WD (hydrology group), 

and SS (biogeochemical group) were considered as the predictor variables for the parsimonious 
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nonlinear model development for both WD>0 and WD<0 conditions. Although radiation related 

variable, PAR showed weak to moderate linkages with FCH4, it was not included in the predictor 

variable set because CH4 emission was not directly driven by PAR. Since AT was used to 

calculate the FCH4 exchanges and ST showed higher linkages than AT, ST was considered in the 

predictor set as a temperature input. Finally, the predictor variable set was consisted of ST, WD, 

and SS; leading to the development of four parameter model (one scaling factor, a  and three 

shape factors for WD, ST, and SS, respectively) (Equation 1 for i=1).  

 Since WD had both positive and negative value depending on the location of the water 

table, only absolute values of WD was considered while developing the predictive model for 

WD<0 condition. Finally two models were developed for WD>0 and WD<0 to predict the CH4 

emission from the salt marshes by using a Monte-Carlo simulation (10000 iterations for training 

and testing) based power law (i.e., nonlinear) function (Equation 1). 

Predictive model simulation 

WD>0 condition 

The model showed “good” agreement with the observed data for training (i.e., calibration), and 

testing (i.e., validation) (mean calibration R2=0.79; mean validation R2= 0.77). The histograms of 

the estimated parameters plotted with the results of 10000 simulations indicated that the 

parameters were normally distributed (Figure 7.4). The standard deviation of the each parameter 

from the mean was quantified (Figure 7.4); the standard deviations indicated the uncertainty of 

the parameters for the model simulation.  The standard deviation varied from 0.02-0.35 for all the 

parameters. The mean p-value of the parameters ensured the statistical significance of the 

parameters in the nonlinear regression (mean p-value<0.005) (Table 7.5). Finally, instantaneous 

FCH4 for WD>0 condition were predicted as a function  of instantaneous ST, WD, and SS from 

the mean (mean over 10000 iterations) of the estimated parameters (Table 7.5) and final model 
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showed overall high statistical significance, and modelling efficiency and accuracy (F3,47=63.84, 

p-value <0.0001, R2= 0.79, RSR=0.45, MAE=1.00 nmole/m2/s). Figure 7.7 (a) showed the 1:1 

plot of the predictions with the observed data for all the study ponds. 

WD<0 condition 

The model for the no-flood condition demonstrated “very good”, and “good” modeling efficiency 

during training, and testing respectively (Calibration R2=0.89, validation R2=0.71). Although 

estimated parameters were relatively normally distributed (Figure 7.5), none of the parameters but 

WD were statistically significant at the 95% level of significance (Table 7.5); that implied model 

developed from only WD could be sufficient to predict the CH4 fluxes with a comparatively 

similar accuracy. A very high dominance and control of WD on FCH4 as unraveled from the data-

analytics framework nullified the influence of the other predictor variables in the model. From the 

mean of the estimated parameters, CH4 fluxes were predicted and model showed “very good” 

agreement with the observations and the entire model was statistically significant (F3,12= 36.43, 

P-value<0.0001, R2= 0.89, RSR=0.32, MAE=0.64 nmole/m2/s) (Table 7.5). The 1 to 1 plot of the 

observed and predicted FCH4 showed a very good agreement except for one very low value of the 

observation (Figure 7.7b). Since the parameter corresponds to WD was the only statistically 

significant parameter in the regression, another nonlinear predictive model of CH4 fluxes was 

developed for the WD<0 condition by considering only WD as the independent variable.   The 

cross-validated model (WD only) calibration and validation showed “very good” modeling 

efficiency (Calibration R2=0.86, validation R2=0.70). The model parameters were normally 

distributed (Figure 7.6) and the standard deviation of the scaling factor a and the shape factor 

associated with WD were 0.21 and 0.16, respectively. The final model based on the mean of the 

estimated parameters also demonstrated “very good” performance in predicting instantaneous 

CH4 fluxes (F3,12=27.73, p-value<0.0001, R2= 0.86, RSR=0.37, MAE=0.66 nmole/m2/s) (Table 
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7.5) and the parameters were statistically significant (p-value<0.05).  The 1 to 1 plot (Figure 7.7c) 

was nearly as good as Figure 7.7b. 

The choice about the selection of the model equation for the WD<0 condition largely 

depends on the data availability and users discretion. Although, all the parameters of the 1st model 

(WD<0) were not statistically significant (the overall model is statistically significant based on  

F-statistics), it is recommended to  use  the 1st model (equation 2) because it incorporated most 

fundamental mechanistic attributes of CH4 emissions for the Waquoit Bay. However, the 

instantaneous CH4 emission fluxes of coastal salt marshes could be predicted from any of the 

following equations (Equation 2 and 3) 

 

 

 

 

Table 7.5: The estimated parameters of the predicted model (obtained from the mean of the 
parameters through 10000 iterations) of FCH4 for the Waquoit bay, MA wetlands. The mean p-
values of the estimated parameters are given in parenthesis 

Note: ST, WD, and SS refer, respectively, to soil temperature, water depth relative to the marsh 
surface, and soil salinity. R2, RSR, and MAE refer, respectively, to coefficient of determination, 
ratio of root-mean-square error to the standard deviation of observations, and mean absolute 
error.  

 

Condition Scaling factor, a Shape factor, b R2 RSR MAE 
(nmol/m2/s) ST WD SS 

WD>0 -3.12 
(<0.05) 

3.54 
(<0.05) 

-0.19 
(<0.05) 

-1.17 
(<0.05) 0.79 0.45 1.00 

WD<0 
(3 variable model) 

1.55 
(>0.05) 

-0.95 
(>0.05) 

1.10 
(<0.05) 

1.20 
(>0.05) 0.89 0.32 0.64 

WD<0 
(1 variable model) 

2.24 
(<0.05)  1.25 

(<0.05)  0.86 0.37 0.66 
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Figure 7.4: Plot shows the histogram of the estimated parameters of the predictive model for 
WD>0 condition obtained from the Monte Carlo cross validation through 10000 iterations. 

 
7.4 Discussion 

7.4.1 Relative CH4 flux linkages of the participatory physical drivers  

The temperature and hydrology variables showed dominant control on CH4 emission for the 

completely submerged condition (Figure 7.2, Table 7.3, 7.4). Soil temperature was identified as 

the most important driver of CH4 emission in this condition.  However, the dominance of 

Scaling factor, a 
Parameter related to ST 

Parameter related to WD Parameter related to SS 

Mean = -3.12 
SD = 0.35 

Mean = 
3.54 
SD = 0.24 

Mean = -0.19 
SD = 0.02 

Mean = -1.17 
SD = 0.17 
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temperature subsided in WD<0 condition as hydrology and biogeochemical group together 

explained more than 80% of the variances of modeled CH4. Position of the water table relative to 

the marsh surface emerged as the most dominating factor affecting FCH4.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.5: Plot shows the histogram of the estimated parameters of the 4- parameter predictive 
model for WD<0 condition obtained from the Monte Carlo cross validation through 10000 
iterations.  

Scaling factor, a Parameter related to ST 

Parameter related to WD Parameter related to SS 

Mean = 1.55 
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Mean = -0.95 
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Mean = 1.20 
SD = 1.05 
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Figure 7.6: Plot shows the histogram of the estimated parameters of the 2-parameter predictive 
model obtained from the Monte Carlo cross validation through 10000 iterations. 

 

 

 

 

 

 

 

 

 

 
Figure 7.7: Plot of the observed versus predicted CH4 fluxes of the coastal wetland for (a) WD>0 
condition, (b) WD<0 condition with three variable model, and (C) WD<0 condition for the one 
variable (WD only) model.  
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The overall higher control of water depth and soil saturation on CH4 emission fluxes was 

comprehensively documented in the literature (Cui et al., 2005; Cheng et al., 2007; Bridgham et 

al., 2013; Moore et al., 2011; Bubier and Moore 1994). The CH4 emission from a wetland is the 

function of CH4 production (methanogenesis), CH4 oxidation, and CH4 emission 

(methanotrophy); all of these microbial-mediated processes are regulated by the water table 

dynamics as water table and soil saturation determine the reduced environment below the soil 

surface.  An extremely reduced environment (negative redox potential), which is favorable for the 

CH4 production and emission, occurs during the flood conditions. On the contrary, as the water 

subsides during ebb tide, CH4 oxidization occurs in the anoxic zone of the soil surface (typically 

in the upper soil layer) that reduces the rate of CH4 emission.  

The microbial activity associated with CH4 production is also a function of the 

temperature and heat (mainly soil temperature). Since water table determines the heat diffusion in 

the organic soil, the influence of water table position and soil temperature is closely linked 

(Roulet et al., 1992). The average control of temperature on the CH4 emission for a range of 

ecosystems is explained through the Arrhenius equation where CH4 emission responds 

exponentially with the temperature (Yvon-Durocher et al., 2014).  Temperature also controls the 

seasonal variation of CH4 emission. Since methane oxidation in the aerobic condition (WD<0) 

reduces the emission amount, the control of temperature on the net CH4 emission diminishes as 

most of the methane produced in the anoxic condition in an ambient soil climate are converted to 

CO2 (oxidizing). That explains the relatively lower control of temperature during the low flood 

condition than the flood condition scenario.   

A relatively low CH4 flux linkages of soil salinity and pH were observed for the Waquoit 

Bay system for WD>0 condition, and moderate influence of these variables for WD<0 condition. 

The optimum pH favorable for the CH4 production is 7, which is the optimum pH level for 
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methanogenic bacteria (Segers, 1998). The optimum pH value is nearly equal to the average value 

of pH as measured in this study (Table 7.1). However, Dunfield et al. (1993) reported an optimum 

pH value of 6 for both the production and consumption. Moreover, there was an evidence of lack 

of correlation between pH and methane fluxes as reported by Bubier and Moore (1994).  

Regarding the soil salinity, being a polyhaline tidal marsh the Waquoit Bay is subjected to the 

low CH4 emission compare to the relatively less saline wetlands. In the sulfate-rich salt marshes 

(available in the salt-rich ocean water), methanogens have to compete with the sulfate-reducing 

bacteria for the production of CH4 and that limit the CH4 emission for the salinity-driven 

wetlands to some extent (Poffenbarger et al., 2011); however, this relationship may vary from site 

to site depending on the adaptation mechanism of the system (Megonigal et al., 2004). The study 

indicated a moderate control of SS on the CH4 emissions for WD<0 condition. Data analytics 

showed that SS was not significantly linked or correlated with any other independent variables 

(Figure 7.2); this suggests the role of salinity on CH4 emission could not be strongly combined 

with the influence of other variables. However, as SS decreases with the decrease of the water 

table, the observed moderate linkage of SS could due be to the WD mediated production-

oxidization ration of CH4. It could be hypothesized that due to a relatively lower influence of 

temperature factor in the WD<0 condition, the dominance of SS on FCH4 was developed as SS 

varied with the change of WD.   

 PCA and FA indicated moderate to high methane flux linkage of PAR for WD>0 

condition and weak to moderate linkage for WD<0 condition (Figure 7.2, Table 7.3). However, 

explanatory PLSR coefficients indicated low, and moderate control of PAR for WD>0 and 

WD<0, respectively (Table 7.4). Such discrepancy between the PCA and PLSR may be due to the 

existence of the co-linearity between PAR-ST, and PAR-AT at WD>0 condition. Since PAR, ST 

and AT were correlated, ST and AT shared the influence of PAR in the PLSR modeling for 

WD>0 condition. The moderate BETA value of PAR at WD<0 conditions may reflected the true 
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weight since PAR was not highly correlated with other variables in the case. Nevertheless, 

observed methane flux linkage of PAR could be explained from the biomass perspective. Since 

both aboveground and belowground productions of the plant largely depend on the 

photosynthesis, PAR can be considered as a surrogate of biomass. Previous studies found 

evidence of possible linkages between plant properties and CH4 fluxes (Garnet et al., 2005; King 

and Reeburgh, 2002); however, the mechanisms driving the process is not yet understood well. 

Trace of “new carbon” in CH4 fluxes emitted from wetlands indicated a potential link between 

the gross primary productions (GPP) and CH4 emissions (Chanton et al., 1995). Moreover, King 

and Reedburgh (2002) connected CH4 production with the photosynthesis (a surrogate of 

biomass) through root exudation. Future research should investigate whether there is a clear 

mechanism (e.g., mediated by the primary productivity) to drive CH4 productions and emissions.  

The type, quality and availability of the substrate, plant type, and CH4 emission pathways 

(ebullition, diffusion) also play an important role in the net emission from the salt marshes. 

Previous studies reported a wide range (30-100%) of contribution of plant-mediated CH4 fluxes 

on overall CH4 emission (Dorodnikov et al., 2011; Bridgham et al., 2013).  However, this study 

focused on the relative control of the abiotic factors to mechanistically link and quantifies their 

contribution in regulating CH4 emission fluxes. 

7.4.2 Parsimonious predictive modeling  

Most of the available predictive CH4 emission models are process based and these models 

incorporated detail mechanisms (from microbial level to the emission pathways) of CH4 

production and emission.  However, such detailing involved a large parameter set and a thorough 

understanding of the system. On the contrary, the model developed in the study only needs three 

input variables (soil temperature, water depth, and soil salinity) to predict the CH4 emission from 

the wetlands. Bubier and Moore (1995) developed a predictive CH4 emission model as a function 
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of water depth by using a weighted averaging regression technique for Canadian peatlands and 

the model estimated daily emissions with a good fitting efficiency (correlation coefficient, r2 

varied between 0.70 to 0.88 for different peatland sites). However, the absence of temperature 

and biogeochemical processes in the predictor set made the model exclusively site specific and 

hinders its application for different climate change scenarios. Huang et al. (1998) proposed a 

semi-empirical model of methane emission for flood paddy soil by making parameterization for 

CH4 production and emission separately.  The methane emission model predicted the 

observations with a high correlation coefficient (r2=0.87).  Both of the models are applicable for 

freshwater wetlands unlike the model developed in this study, which is explicitly trained for the 

saline water wetlands.  

The developed 4-parameter model (one scaling factor, and three shape factors 

representing the effect of WD, ST, and SS, respectively) (Equation 2), therefore, empirically 

incorporated the primary environmental  and hydrological factors associated with CH4 emission, 

and the model robustness and parsimony were preserved because of the consideration of such 

small predictor set. Moreover, the quantitative estimation of the instantaneous fluxes from the 

small set of environmental variables leveraged the estimation of the annual scale ecosystem 

carbon balance (NECB), since CH4 uptake is one of the most important components of NECB. 

An alternative model (Equation 3) was developed that only considers WD as input for the 

partially submerged condition (WD<0). However, it is strongly recommend to use the 4-

parameter model (Equation 2), since it covers all the important process variables and the model 

could be helpful to estimate CH4 emissions under different climate change (increase of 

temperature, sea level rise and change in salinity gradient) scenarios.  

Since the final model was developed from the mean of the parameters estimated from 

10000 iterations and parameters relatively followed the normal distribution with the significantly 
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small standard deviations (Figure 7.4, 7.5, and 7.6), the uncertainties of the parameters were less. 

Moreover, the modeling performance during calibration and validation also suggested relatively 

less uncertainty in the model. The final predictive model described 79% and 89% (Table 7.5) of 

the data variances for WD>0 and WD<0, respectively showing the elegance of data-driven 

empirical modeling in predicting such complex mechanism. 

7.4.3 Significance of the estimated parameters  

As the model was fitted and tested in the original untransformed domain, the importance of each 

of the input variable in the model cannot be explained based on the magnitude of the associated 

shape factors; this is not necessary because the importance and relative linkages of the variable 

were already investigated by the explanatory PLSR model. In this section, we tried to explain the 

significance of the estimated parameters on the basis of their signs.  

The scale factor, a does not represent or explain the underlying shape of the physical 

parameters in the fitting. Rather a resembles the limit of the equation in the fitting domain. The 

reason behind to the estimation of the scaling factor as a power of 10 was that it eliminated the 

model limitation imposed by the scaling factor; If the scaling parameter is estimated without 

raising to the power of 10 while fitting the data, the value of a can be 0 for a particular 

combination set during iteration and that could estimate the FCH4 as zero. By raising the a to the 

power of 10, this limiting factor was avoided.  

 For the WD>0 condition the shape factors were estimated as 3.54, -0.19, and -1.17 for 

ST, WD, and SS, respectively (Table 7.5).  The positive sign of the parameter of ST indicated a 

positive relation with the FCH4 while the negative sign associated with WD and SS indicated a 

negative relation. Since the shape factor is greater than 1 for ST, the FCH4   increases exponentially 

with the increase of soil temperature.  A previous study also reported a similar phenomenon of 
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higher positive temperature dependency on CH4 emission during completely submerged 

condition (Walter et al., 2000). However, it was quite difficult to readily describe the negative 

value of the shape factor associated with WD, since par our mechanistic knowledge CH4 emission 

should increase with the increase of WD. There could be two possible explanations for the 

negative relation of WD.  Firstly, water could act as a barrier to the diffusion of CH4 from the soil 

when flooding condition persists predominantly. That could also refer a potential of higher CH4 

emission for the nearly submerged condition than the completely submerged condition (Cheng et 

al., 2007).  The second possible explanation could be the use of all the available substrates for the 

CH4 production if the water table was constantly above the soil surface. That might reduce the 

CH4 emission rate in a substrate limiting environment. The negative value of the parameter 

corresponds to SS was consistent with our mechanistic understating. As more salt water intrudes 

in the marshes (an increase of flood depth), the CH4 production and emission will be decreased as 

discussed previously.  

 However, for the WD<0 condition, the estimated shape factors (-0.95, 1.10, and -1.20 for 

ST, WD, and SS, respectively) (Equation 2) revealed different biogeochemical attributes. The 

positive sign of the parameter regarding WD referred a positive link between the WD and FCH4. 

However, the negative sign of the parameter associated with ST indicated a decrease of methane 

flux with an increase in soil temperature. In opposed to our general mechanistic knowledge of 

FCH4-temperature linkage, Hoehler and Alperin (2014) argued a possible negative effect on CH4 

emission due to temperature change, which was referred as a “piece of puzzle” in the climatic 

research.  They provided an evidence of higher methane emission at low temperature as contrary 

to the well-known FCH4-temperature relationship described in Arrhenius equation. However, their 

study did not distinguish the flood and non-flood conditions. The different type of temperature 

dependency for the varying hydrologic condition that emerged from the study is subjected to 

much detail investigation.  One possible explanation for such negative dependence could be the 
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higher rate of evapotranspiration at a higher temperature level that could decrease the CH4 

emission rate. Moreover, dominant positive linkage of the water table and CH4 emission for the 

WD<0 condition might limit the temperature dependency (Roulet et al., 1993; Valentine et al., 

1994).  Similarly, the positive sign of the soil salinity parameter during the no flood condition 

could be due to the complete control of WD on CH4 production. The emission rate could be 

higher when the system is nearly submerged because of the more convenient emission pathways 

than the submerged condition even though salinity is increasing. For the two-parameter model 

(CH4 emission as a function of WD) (Equation 3), the estimated parameter value of WD was 

higher than one and illustrates the similar positive relation with FCH4 as discussed before.  

The estimated coefficients of the predictive model provided critical insights on how the 

most important process drivers are linked with the wetland methane emissions at varying 

hydrologic conditions. However, some of the relations that were revealed from this study are 

subjected to further investigations by using data from a range of coastal wetlands.  

The developed CH4 flux model (equation 2) was incorporated into an Excel spreadsheet 

along with the wetland CO2 flux model to estimate the net ecosystem carbon balance of a given 

wetland site. The Exce-based model was named as “BWM Wetland C and GHG Model” and 

developed as a part of recently completed project titled “Bringing wetland to market: nitrogen and 

coastal blue carbon” funded by NOAA. The incorporation of the model in the Excel spreadsheet 

leverages the prediction of the GHG fluxes in a much easier way. The Excel-based model can be 

considered as a user-friendly engineering tool that required minimum input data. The BWM 

wetland C model is available in the Waquoit Bay National Estuarine Research Reserve website 

(http://www.waquoitbayreserve.org/research-monitoring/salt-marsh-carbon-project/), and detail 

information of the model and the user-guide is also available as a form of factsheet in the 

http://www.waquoitbayreserve.org/research-monitoring/salt-marsh-carbon-project/
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Waquoit bay website (http://www.waquoitbayreserve.org/wp-content/uploads/BWM-Model-for-

Predicting-Greenhouse-Gas-Fluxes_FS_FINAL.pdf) 

7.5 Conclusions 

The relative controls and linkages of different physical variables on CH4 emission fluxes coastal 

salt marshes of four different wetlands of Waquoit Bay, MA were determined by using a robust 

multivariate data-analytics framework. The linkages were then leveraged to develop a 

parsimonious (minimum parameter), nonlinear, data-driven model for the prediction of the CH4 

emission of the study wetlands along an ecological gradient. The data-analytics revealed high 

control of temperature and hydrology (soil temperature and water table position) on CH4 

emissions during completely submerged condition (when water table is above the marsh surface).  

On the contrary, hydrology and soil biogeochemistry (water table position and soil salinity) 

demonstrated strong CH4 flux linkages during partially submerged condition (when the water 

table is below the marsh surface). The empirical predictive model of instantaneous CH4 fluxes 

was developed as a nonlinear function of the most three important drivers (water depth, soil 

temperature, and soil salinity) as determined from the data-analytics framework. The developed 

data-driven model could be used as a supplement to the existing process-based models to provide 

empirical foundation in obtaining critical decisions on “blue carbon’ sequestration.  

http://www.waquoitbayreserve.org/wp-content/uploads/BWM-Model-for-Predicting-Greenhouse-Gas-Fluxes_FS_FINAL.pdf
http://www.waquoitbayreserve.org/wp-content/uploads/BWM-Model-for-Predicting-Greenhouse-Gas-Fluxes_FS_FINAL.pdf
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Chapter 8: Investigation of biogeochemical similitudes, environmental regimes, and scaling 

relationships of greenhouse gas (GHG) fluxes from coastal wetlands 

Abstract 

Wetland is one of the complex geographic features in the earth and subjected to an intricate 

process of biotic-abiotic interactions and the exchanges of greenhouse gasses (GHGs) of CO2 and 

CH4.  Based on the analysis of the observed data of four coastal salt marsh wetlands of Waquoit 

Bay, MA, the study explored the potential of finding similitudes, environmental regimes, and 

scaling relationships of GHG fluxes from coastal wetlands. The study identified two important 

dimensionless physico-chemical groups to predict the dimensionless GHG flux groups. The study 

revealed the existence of two different environmental regimes governed by the hydrological and 

biogeochemical process variables; the emergent environmental regimes showed that the coastal 

wetland system becomes most productive (high sequestration and low emission) when the water 

table position is at the surface.  Different power-law based dimensionless scaling relations were 

obtained for flood and non-flood conditions for the dimensionless CO2 and CH4 groups. The 

scaling relations were later expressed in a dimensional domain to find the GHG fluxes scaling 

relations with the physical drivers. The power-law based scaling of PAR was identified as the 

most dominating factor in CO2 sequestration whereas the position of the water table was the most 

influential scaling factor for the CH4 emission. The research provided a crucial knowledge into 

the wetland biogeochemical emergence and similitudes that can lead to the development of the 

parsimonious (minimum parameter), spatiotemporally robust predictive models of GHG 

emissions and carbon sequestration under a current change of climate and sea level rise.   
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8.1 Introduction 

Wetlands play a critical role in soil-atmospheric exchanges of the major GHGs of carbon dioxide 

(CO2) and methane (CH4). On a molar basis CH4 yield 34 and 86 times the global warming 

potential of CO2 for 100 years and 20 years, respectively (Stocker et al., 2013, Howarth 2014). 

Because of its unique biogeochemical characteristics, the carbon (C) sequestration rate of the tidal 

marshes (i.e., coastal wetlands) is ranked first among the different ecosystems (Chmura et al., 

2003, Duarte et al., 2005, and Bridgham et al., 2007). Therefore, tidal wetlands have the potential 

to play a pivotal role in global warming mitigation. However, an overarching science question is 

how the C storage and GHG flux rates of the coastal wetlands respond to the changes in climate 

(e.g., temperature, precipitation), sea level rise (SLR) and inundation (e.g., soil moisture, 

salinity), and land managements (e.g., nutrient loading)? What are the different environmental 

regimes of wetland GHG emissions and C sequestration? Can we identify any biogeochemical 

similitudes for GHG emissions and sequestered C? Do the emissions and sequestrations scale in 

time and space? 

Fluxes of GHGs are produced through soil microbial processes under the influence of 

climate and soil physicochemical factors (Smith et al., 2003). Conrad (1989) described wetland 

methane (CH4) emissions as a result of the following soil biogeochemical processes: (i) CH4 

production by methanogenic bacteria under anaerobic conditions; (ii) CH4 oxidation by 

methanotrophic bacteria mainly under aerobic conditions; and (iii) CH4 transport to the 

atmosphere. Major predictors of CH4 emissions are water table position (determining the anoxic 

soil zone for CH4 production), soil temperature (influencing the rates of organic matter 

degradation, CH4 production and oxidation), vegetation, soil carbon content, pH, salinity, sulfate, 

and pathways of CH4 transportation to the atmosphere (Conrad 1989, Wang et al., 1996, Walter 

and Heimann 2000). Previous research (e.g., Sebacher et al., 1986) reported a positive correlation 
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of CH4 emissions to the atmosphere with soil temperature and moisture content. Bartlett et al. 

(1987) and Poffenbarger et al. (2011) reported a strong negative correlation between CH4 

emissions and soil salinity over a gradient from freshwater to highly saline (> 26 ppt) tidal 

marshes. Wetland CO2 sequestration fluxes are mainly driven by vegetation biomass and light 

(i.e., photosynthesis), temperature, salinity, pH, water table position, moisture content, and sulfate 

(Smith et al., 2003).  

The influence of these factors on the biological processes (CO2 sequestration and CH4 

emission) is not independent. Rather all the factors are connected to each other and collectively 

drive the GHG exchanges. The linkage between the process factors and GHG fluxes are highly 

complex and nonlinear. Yu (2006) reported that peatland environmental and biological variables 

follow a power-law function at different temporal scales. Moreover, GHG fluxes varied spatially 

depending on the salinity, nutrient, and vegetation gradient. The spatiotemporal variability of the 

different factors that controls the coastal wetland flux exchanges hinders the development of a 

generalized scaling relations and modeling framework across wetland salt marshes. 

A crucial advantage of identifying similitude and dimensionless parameters is that 

estimations and predictions for other systems can be obtained from equations and curves 

developed from a few sites representing different gradients of response and predictor variables. In 

classical fluid mechanics and hydraulic engineering, similitude is defined as the parametric 

reduction of physical problems to develop independent dimensionless numbers and a 

dimensionless formulation of the physical system (Kundu and Cohen 2004). Similitude can be 

obtained through dimensional analysis using Buckingham pi-theorem (particularly useful for 

systems lacking sound and simple governing equations) and/or through normalizing (i.e., scaling) 

the underlying governing equations by appropriate characteristic parameters (e.g., length, 

velocity, density).  
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A classical hydraulic engineering example of similitude and scaling applications can be 

the Moody chart for pipe flow design. It is a dimensionless scaling formulation applicable to 

different combinations of flow velocity, viscosity, density, as well as pipe surface roughness, 

diameter and length for determining dimensionless friction factors based on dimensionless 

Reynolds Number (Re) and relative roughness (dimensionless ratio of pipe surface roughness to 

pipe diameter, ε/d). The friction factor quantifies the friction head loss (i.e., pressure drop) along 

the pipe length. The reduction of 7 parameters for pipe flow design (flow pressure, velocity, 

viscosity, density, pipe roughness, diameter, and length) to 3 dimensionless parameters (friction 

factor, Re, and ε/d) is called “similitude” and the functional relationships between them are 

“scaling relationships” that can have different forms depending on the flow regimes (laminar, 

transitional, and turbulent), as defined by the critical values of Re. Abdul-Aziz et al. (2007a, b) 

presented an important scaling application in aquatic health and ecological engineering. They 

conceptually identified a site-specific, reference-time (e.g., noon) dissolved oxygen (DO) 

measurement as a scaling parameter to normalize hourly DO data from different streams and 

obtain a general, dimensionless diurnal cycle. The dimensionless formulation resulted in robust 

predictions of DO both in time (hours, days, and seasons) and space (different streams 

representing various distinct ecoregions of Minnesota).  

Chapter 2 provides an important evidence of ecological similitude in terrestrial Net 

Ecosystem Exchange (NEE). Different diurnal cycles representing different days of NEE of five 

deciduous forests were scaled to a dimensionless curve from where the hourly NEE were 

predicted. The estimated parameters were spatiotemporally robust and did not show any 

sensitivity with the major driver of the NEE. The means of the parameters represent a generalized 

modeling parameter set for the prediction of NEE of deciduous forest.  Warnaars et al. (2007) 

applied dimensional analysis to identify similitude in stream biogeochemistry and ecology and 

developed useful scaling relationships between biotic (e.g., biomass) and abiotic (e.g., climatic, 
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hydrologic, and geomorphic) variables in different streams and rivers across North America. 

West et al. (2001) demonstrated similitude and robust scaling in biology by deriving a single, 

parameter less universal curve to describe the growth rate of many diverse species, including 

shrimp, salmon, heron, cow, etc. 

The goal of this study is to unravel wetland similitudes, environmental regimes in 

wetland greenhouse gas (GHG) emissions and carbon sequestration and apply them to formulate 

spatiotemporally robust scaling relationships. The research tests a fundamental hypothesis that 

GHG emissions and C sequestration from wetland ecosystems follow distinct biogeochemical 

similitudes and robust scaling relationships. The dimensional analysis is applied to formulate 

useful dimensionless numbers, identify similitude and environmental regimes, and scaling 

relationships for major GHG (CO2, CH4) fluces from wetland ecosystems. The similitude and 

scaling relationships were evaluated from the observed data of four different coastal wetland 

ponds of Waquoit Bay, MA. The research is expected to provide crucial knowledge into the 

wetland biogeochemical emergence pattern and to identify different environmental regimes and 

the associated transitional threshold for the robust development of the predictive model of 

wetland GHG fluxes. 

8.2 Materials and methods 

8.2.1 Study sites and data set 

The same study wetland ponds (Sage lot pond, Eel pond, great pond and Hamblin pond)  that 

were used for the development of the daytime CO2 exchange and CH4 emission models, were 

also used in this study (please see chapter 6 and 7, section 6.2.1) (Waquoit Bay website, 2015) 

Instantaneous greenhouse gas (GHG) fluxes (CO2 and CH4) and corresponding 

biogeochemical, hydrological and climatic variables were measured in different days between 
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June to November, 2013 (5 days in June, 2 days in July, 4 days in August, 2 days in September, 2 

days in October, and 2 days in November) in the low marsh zone of the study ponds by using the 

state-f-the-art technologies. The complete dataset included GHG fluxes and five hydrological, 

biogeochemical and climatic variables (Table 8.1): CO2 sequestration flux (FCO2), CH4 emission 

flux (FCH4), photosynthetic active radiation (PAR), soil temperature (ST), soil salinity (pore 

water) (SS), pH, and water depth (WD; water level is converted to water depth relative to the 

marsh surface). The predictor variables were selected based on the vigorous analysis conducted in 

the dimensional domain for the identification of the dominant hydro-climatic and biogeochemical 

predictors responsible for CO2 uptake and CH4 emissions.  The air temperature was not 

considered in this analysis since it was used to calculate the GHG fluxes. Instead as a surrogate of 

the ambient climate, soil temperature was included in the analysis. The measurement 

methodology of the fluxes and other participatory variables were discussed in chapter 6 (see 

section 6.2.1). 

Table 8.1: List of variables, units, and data range and mean for all the study wetlands. 

 

8.2.2  Data preparation and data statistics  

The data preparation, filtering and data statistics of FCO2 and FCH4 and corresponding 

environmental and biogeochemical variables were disused in chapter 6 and 7 (Please see section 

6.2.2 and 7.2.2) 

Variable Unit  Range Mean 
CO2 sequestration Flux (FCO2) µmol/m2/s -0.05 to -19.62 -7.34 
CH4 emission Flux (FCH4) µmol/m2/s 0.000096 to 0.0077 0.0016 
Soil Temperature (ST) oC 8.89 to 27.83 20.19 
Sediment Salinity (SS) ppt 20 to 36 29.58 
Photosynthetic Active Radiation (PAR) µmol/m2/s 115.56 to 2080.67 1424.18 
Water Depth (WD) m -0. 075 to 0.329 0.088 
pH   3.83-7.80 6.804 
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8.2.3  Analysis methodology  

The methodology was designed to achieve the study goals. Four-step analysis procedures were 

used to study the wetland ecological similitude and scaling relationships for FCO2 and FCH4: (i) 

formulation of different dimensionless numbers through dimensional analysis, (ii) identification 

of important and meaningful dimensionless numbers from the observed data by using a 

multivariate data-analytics framework, (iii) examining similitude and scaling relationships across 

different environmental regimes for the FCO2 and FCH4 from the important dimensionless 

numbers, and (iv) developing scaling relations of CO2 sequestration and CH4 emission fluxes 

through non-linear modeling.  

Formulation of different dimensionless numbers through dimensional analysis 

Dimensional analysis, extensively used in fluid mechanics and hydraulic engineering (Kundu and 

Cohen 2004), was used to formulate dimensionless functional groups (or numbers) and derive 

scaling relationships between the dimensionless response variables (GHG emissions and 

sequestered carbon) and the independent predictor variables (hydro-climatic, and 

biogeochemical). A dimensional analysis involves different combinations of the predictor and 

response variables resulting in several dimensionless numbers or groups, which represent 

biogeochemical similitude and emergence patterns among different wetland ecosystems. Only the 

independent dimensionless groups/numbers were considered as predictor variables in developing 

a scaling relationship with the respective dimensionless response numbers. 

 The dimensions, units and notations of the variables considered in the dimensional 

analysis were given in Table 8.2. I considered PAR, ST, SS, pH, and WD as the predictor 

variables to drive the dimensionless groups for both FCO2 and FCH4, which holds four fundamental 

dimensions (M, L, T, K). Since temperature dimension (K) is only available for ST (Table 8.2), I 

included specific heat of soil in the data matrix that has temperature dimension to balance the 
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temperature dimension. Moreover, time (T) was also considered as a variable in the dimensional 

analysis by hypothesizing that time would leverage the temporal scale transitions (i.e., 

instantaneous scale to hourly, daily, monthly scale) in future studies. Finally, eight variables that 

include the response variable (either FCO2 or FCH4) were considered in the dimensional analysis. 

The most appropriate and meaningful set of dimensionless π numbers were obtained through a 

diligent iterations procedure and each iteration produced 4 π groups (number of total variables (8) 

– total fundamental dimensions (4)) that incorporated both predictor and response numbers.  

Table 8.2: List of variables used for the dimensional analysis of wetland GHG fluxes. 
 

 

 

 

 

Identification of important dimensionless numbers from the observed data by using a multivariate 

data-analytics framework 

Important and meaningful dimensionless numbers were identified separately for both CO2 and 

CH4 fluxes from the different combinations of numbers by using a modified form of the 

multivariate data-analytic framework proposed by Ishtiaq and Abdul-Aziz (2015). The data-

analytics method included Pearson correlation matrix, explanatory principal component analysis 

(PCA), and factor analysis (FA). Results obtained from PCA were presented through biplots by 

considering 1st two major principal components (PCs). The optimal number of factors were 

extracted based on an initial eigenvalue criterion (eigenvalue>1) to ensure that the extracted 

factors optimally explained the overall data variance. Moreover, the varimax orthogonal rotation 

was performed in the FA to maximize the loadings (i.e., a correlation between a factor and a 

Variable Unit  Dimension Notation 
GHG Fluxes (FCO2 and FCH4) g/m2/s [M/L2/T] A 
Soil Temperature (ST) Kelvin (K) [K] B 
Sediment Salinity (SS) g/m3 [M/L3] C 
Photosynthetic Active Radiation (PAR) g/s3 [M/T3] D 
Specific Heat of Air (Cp) J/g/K [L2/T2/K] E 
Water Depth (WD) m [L] F 
Time (t) s [T] G 
Concentration of H+  g/m3 [M/L3] H 
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variable) of the variables on each extracted factor. Since different variables were in different 

unitary systems, they were converted to SI units by using appropriate conversion factors (Table 

8.3).   

Table 8.3: Unit conversion factors of all the variables used in dimensional analysis  
 

 

 

 

Note: FCO2 and FCH4 conversion: Micromole is converted to mole and then multiplied by the 
molecular weight of C (M=12 g); PAR: micromole/m2/s was converted to W/m2 (kg/s3) by 
applying a multiplication factor of 0.21277 and then multiplied by 1000 to convert kg/s3 to g/s3 
(McCree 1981);  ppt conversion: 1 ppt= 1000 mg/L=1000 g/m3.H+: 10

-pH
*2.02* 1000 g/m

3
, where 

2.02 is the molecular weight of hydrogen (H
2
). 

 

Examining similitude and scaling relationships across different environmental regimes for the 

FCO2 and FCH4 from the important dimensionless numbers 

At first, the most important and meaningful predictor dimensional numbers that were identified 

through the data-analytic framework were plotted against the response dimensionless number (for 

both FCO2 and FCH4) for different spatial (i.e., across sites) conditions. Flood and dry conditions 

(based on WD>0 and WD<0) were considered as the hydro-climatic and environmental regimes 

to examine the existence of similitude and scaling relationship, if any, in the derived groups. A 

potential collapse of the different groups in a comparable zone (Shield type diagram) would 

indicate the existence of ecological similitude and scaling relationships in GHG fluxes.  

 Secondly, the nonlinear scaling relationships ( bXY = ) among the predictor (X) and 

response (Y) dimensionless groups were investigated by applying the Levenberg-Marquardt non-

Variables  Original Unit (X) Converted Unit (Y) Conversation  
FCO2 micromole/m2/S gC/m2/s Y = 0.000012 * X 
FCH4 micromole/m2/S gC/m2/s Y = 0.000012 * X 
ST °C K Y = 273.15 + X 
Cp (air) = 1.005 kJ/kg/K J/g/K Y = X 
PAR micromole/m2/s g/s3 Y = 212.77 * X 
SS ppt g/m3 Y = 1000 *X 
H+ g/L g/m3 Y = 1000 *X 
WD m m Y=X 
t s s Y=X 
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linear least squares algorithm. The comparable values of the shape factor (b) in different regimes 

would indicate the potential similitude and scaling relations among the response and predictor 

groups that could lead to the robust predictive model development in the dimensionless domain.  

Developing scaling laws of CO2 sequestration and CH4 emission fluxes through non-linear 

modeling  

Wetland similitudes and scaling laws can be utilized to formulate empirical models for robust 

predictions of GHG fluxes. The choice of the empirical equation (e.g., power law, polynomial, 

and linear) depends on the functional relationship between the response (Y) and predictor (X) 

dimensionless groups.  The power law based predictive empirical models (

bn
n

bbb XXXY ....10 2
2

1
1= type) was used for the model development. Ideally, the model parameters 

(b, b1….bn) should be same across all the environmental regimes; comparable parameter values 

in a range of spatial and environmental gradient would develop the spatially robust predictive 

models of CO2 sequestration and CH4 emission.  

8.3 Results  

8.3.1 Formulation of dimensionless numbers 

According to the Buckingham pi theorem, different combinations of repetitive primary variables 

can be chosen to form various pi groups. Different iterations were performed while formulating 

the pi groups by changing the primary variables. As examples, the detailed derivations of the two 

possible alternatives were given below, which provided most significant dimensionless groups:  

Iteration 1  

Number of Variables, n = 8 

Considered Dimensions, m = 4 
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Number of dimensionless groups  = n-m = 4 
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Considering B, D, F and G as repeating primary variables, possible Π terms should be  



269 

AGFDB dcba=Π1  

CGFDB dcba=Π 2  

EGFDB dcba=Π 3  

HGFDB dcba=Π 4  

1Π : 

( ) ( ) ( ) 













=

TL
MTL

T
MKKTLM dc

b
a

23
0000  

2;013:
2:

1:
0:

−==−+−
=

−=
=

ddbT
cL
bM
aK

 

( ) ( ) ( ) ( ) ( )

2

2

1

2210
1

DG
AF

AGFDB

=Π

=Π −−

 

2Π : 

( ) ( ) ( ) 













= 33

0000

L
MTL

T
MKKTLM dc

b
a  

3;03:
3:

1:
0:

−==+−
=

−=
=

ddbT
cL
bM
aK

 

( ) ( ) ( ) ( ) ( )

3

3

2

3310
2

CF
DG

CGFDB

=Π

=Π −−

 

3Π : 

( ) ( ) ( ) 













=

KT
LTL

T
MKKTLM dc

b
a

2

2

3
0000  



270 

2;023:
2:
0:

1:

==−+−
−=
=
=

ddbT
cL
bM
aK

 

( ) ( ) ( ) ( ) ( )

2

2

3

2201
3

F
BEG

EGFDB

=Π

=Π −

 

4Π : 

( ) ( ) ( ) 













= 33

0000

L
MTL

T
MKKTLM dc

b
a  

3;03:
3:

1:
0:

−==+−
=

−=
=

ddbT
cL
bM
aK

 

( ) ( ) ( ) ( ) ( )

3

3

4

3310
4

HF
DG

HGFDB

=Π

=Π −−

 














































+HWD

tPAR
WD

tCST
SSWD
tPAR

tPAR
WDF pCHCO

*
***

*
*

*
*

3

3

2

2

3

32
4/2φ  

The dimensional analysis generated two dimensionless response groups and four predictor 

dimensionless groups. For simplicity in presenting the dimensionless groups, I denoted the 

derived dimensionless groups with R (response group) and P (predictor group) as follows:  

R1=
SSWD

tF CHCO

*
*4/2  (dimensionless response group that includes FCO2/FCH4)  

R2=
tPAR
WDF CHCO

*
* 2

4/2 (dimensionless response group that includes FCO2/FCH4) 

P1=
SSWD
tPAR

*
*

3

3

(radiation-redox group) 
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P2= 2

2**
WD

tCST p (hydro-climate group) 

P3= +H
SS

(salinity-redox group) 

P4= +HWD
tPAR

*
*

3

3

(radiation-redox group) 

8.3.2 Identification of important and meaningful dimensionless numbers 

CO2 sequestration flux 

Pearson correlation analysis  

Among the response groups, the R1 showed high correlation with P1, P2, and P4 (Table 8.4). 

Since P1 and P4 were relatively similar in terms of mechanism, it can be stated that the 

“radiation-redox” and “hydro-climatic” groups were strongly linked with R1. The other response 

group R2 did not exhibit high correlation with the predictor groups; only weak to moderate 

correlation was observed between R2 and P3. Moreover, strong correlations were observed 

between P1 and P2, and P2 and P4; indicating the presence of a high level of multi-collinearity in 

the data matrix. 

 
Principal component analysis  

The first two PCs explained around 88% of the total data and system variance (Figure 8.1). Non-

orthogonal (0 degree) orientations between the predictor groups (P1, P2, P4) and response 

number, R1 suggested high linkages. The P3 and R2 were orthogonally placed related to the P1, 

P2, P4, and R1 groups, indicating a very weak linkage between them. Overall, PCA analysis 

supported the observations obtained from the correlation analysis.  
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Table 8.4: Pearson correlation matrix for wetland CO2 sequestration flux dataset for all the study 
ponds showing linear correlations among the participatory dimensionless numbers.  

 

 

 

 

Notes: R1=[(FCO2*t)/(WD*SS)]; R2=[(FCO2*WD2)/(PAR*t)]); P1=[(PAR*t3)/(WD3*SS)] ; P2 = 
[(ST*Cp*t2)/WD2)]; P3 =[SS/H+]; and P4=[(PAR*t3)/(WD3*H+)]. FCO2, PAR, WD, ST, SS, Cp, 
H+, and t refer, respectively, to net CO2 sequestration flux, photosynthetic active radiation, water 
depth relative to soil surface, soil temperature, soil salinity, specific heat at constant pressure, 
hydrogen ion concentration, and time.   
 

 

 

 

 

 

 

 

 

 
 
 
Figure 8.1: PCA biplots showing correlation strength and orientation of variables for wetland 
F

CO2 
for all the study ponds of Waquoit Bay, MA. Percent variance explained by each PC is 

shown in parentheses. R1 and R2 are carbon flux group (R1=[(FCO2*t)/(WD*SS)] and 
R2=[(FCO2*WD2)/(PAR*t)]); P1 and P4 are the radiation-redox group (P1=[(PAR*t3)/(WD3*SS)] 
and P4=[(PAR*t3)/(WD3*H+)] ; P2 is the hydro-climatic group [(ST*Cp*t2)/WD2)]; and P3 is the 
salinity-redox group [SS/H+]. FCO2, PAR, WD, ST, SS, Cp, H+, and t refer, respectively, to net 
CO2 sequestration flux, photosynthetic active radiation, water depth relative to soil surface, soil 
temperature, soil salinity, specific heat at constant pressure, hydrogen ion concentration, and 
time.    

 P1 P2 P3 P4 R1 R2 
P1 1.00      
P2 0.93 1.00     
P3 -0.07 -0.10 1.00    
P4 0.99 0.94 -0.03 1.00   
R1 0.87 0.93 -0.06 0.91 1.00  
R2 -0.11 -0.23 0.43 -0.13 -0.23 1.00 
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Factor analysis  

First two factors were extracted based on the initial eigenvalue criterion, eigenvalue >1 (Table 

8.5). The high loadings of R1, P1, P2, and P4 on the first factor suggested their powerful linkages. 

None of the dimensionless groups loaded markedly on the factor 2 implying other response group 

R2 did not have a genuine predictive ability.  

The data-analytics showed that the “radiation-redox, P1” and “hydro-climatic, P2” 

numbers were the most meaningful and important number in explaining the response number, R1 

and R1 can be expressed as a function of P1 and P2 (Equation 1). Other response group R2 did not 

have the adequate predictive capability to be used for the further relationship analysis.  
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Table 8.5: Latent factors extracted from the data matrix for F
CO2

. Bold indicates variables that 
loaded highly on each factor. 

 

 

 
Notes: R1=[(FCO2*t)/(WD*SS)]; R2=[(FCO2*WD2)/(PAR*t)]); P1=[(PAR*t3)/(WD3*SS)] ; P2 = 
[(ST*Cp*t2)/WD2)]; P3 =[SS/H+]; and P4=[(PAR*t3)/(WD3*H+)]. FCO2, PAR, WD, ST, SS, Cp, 
H+, and t refer, respectively, to net CH2 sequestration flux, photosynthetic active radiation, water 
depth relative to soil surface, soil temperature, soil salinity, specific heat at constant pressure, 
hydrogen ion concentration, and time.  

 
CH4 emission flux 

Pearson correlation analysis  

Among the response groups, the R1 showed high correlation with P1, P2, and P4 (Table 8.6). The 

other response group R2 exhibited moderate correlations with P1, P3, and P4; suggesting both R1 

and R2 could potentially be used while forming scaling relations. P3 did not show any notable 

correlation with the response groups. Moreover, strong correlations were observed between P1 

Dimensionless group P1 P2 P3 P4 R1 R2 
Factor 1 0.99 0.96 -0.06 0.99 0.93 -0.14 
Factor 2 -0.12 0.12 0.00 -0.04 0.37 -0.27 
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and P2, P1 and P4, and P2 and P4; indicating the presence of a high level of multi-collinearity in 

the data matrix. 

Table 8.6: Pearson correlation matrix for wetland CH4 flux dataset for all the study ponds 
showing linear correlations among the participatory dimensionless numbers. 

 

 

 

 

R1=[(FCH4*t)/(WD*SS)]; R2=[(FCH4*WD2)/(PAR*t)]); P1=[(PAR*t3)/(WD3*SS)] ; P2 = 
[(ST*Cp*t2)/WD2)]; P3 =[SS/H+]; and P4=[(PAR*t3)/(WD3*H+)]. FCH4, PAR, WD, ST, SS, Cp, 
H+, and t refer, respectively, to CH4 emission flux, photosynthetic active radiation, water depth 
relative to soil surface, soil temperature, soil salinity, specific heat at constant pressure, hydrogen 
ion concentration, and time.  

 
Principal component analysis  

The first two PC’s explained around 77% of the total data and system variance (Figure 8.2). Non-

orthogonal (0 degree) orientations among P1, P2, and R1 suggested high linkages. P4 was 

moderately linked with R1 and the linkage between the P3, and R1 were very weak. On the other 

hand, a moderate orientation between R2 and (P1, P2, and P3) implied the existence of moderate 

linkages between them.  

Factor analysis  

First two factors were extracted based on the initial eigenvalue criterion, eigenvalue >1 (Table 

8.7). The high loadings of R1, P1, P2, and P4 on the first factor suggested their strong linkages. 

Moreover, R2 loaded highly on 1st factor indicated its moderate linkage with P1, P2, and P4. 

Although, P3 loaded highly on factor 2, none of the response groups (R1 and R2) loaded 

significantly on this factor; suggesting P3 was not an important predictor group.  

 

 P1 P2 P3 P4 R1 R2 
P1 1.00      
P2 0.88 1.00     
P3 -0.07 -0.07 1.00    
P4 0.72 0.68 0.17 1.00   
R1 0.79 0.77 -0.16 0.61 1.00  
R2 -0.35 -0.43 0.18 -0.30 -0.41 1.00 
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Table 8.7: Latent factors extracted from the data matrix for FCH4. Bold indicates variables that 
loaded highly on each factor. 

 

 

 
Notes: R1=[(FCH4*t)/(WD*SS)]; R2=[(FCH4*WD2)/(PAR*t)]); P1=[(PAR*t3)/(WD3*SS)] ; P2 = 
[(ST*Cp*t2)/WD2)]; P3 =[SS/H+]; and P4=[(PAR*t3)/(WD3*H+)]. FCH4, PAR, WD, ST, SS, Cp, 
H+, and t refer, respectively, to CH4 emission flux, photosynthetic active radiation, water depth 
relative to soil surface, soil temperature, soil salinity, specific heat at constant pressure, hydrogen 
ion concentration, and time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.2: PCA biplots showing correlation strength and orientation of variables for wetland 
FCH4 for all the study ponds of Waquoit Bay, MA. Percent variance explained by each PC is 
shown in parentheses. R1 and R2 are are carbon flux group (R1=[(FCH4*t)/(WD*SS)] and 
R2=[(FCH4*WD2)/(PAR*t)]); P1 and P4 are the radiation-redox group (P1=[(PAR*t3)/(WD3*SS)] 
and P4=[(PAR*t3)/(WD3*H+)] ; P2 is the hydro-climatic group [(ST*Cp*t2)/WD2)]; and P3 is the 
salinity-redox group [SS/H+]. FCH4, PAR, WD, ST, SS, Cp, H+, and t refer, respectively, to CH4 
emission flux, photosynthetic active radiation, water depth relative to soil surface, soil 
temperature, soil salinity, specific heat at constant pressure, hydrogen ion concentration, and 
time.   

 
The results obtained from the data-analytics framework for CH4 fluxes were not similar 

to the results of CO2 fluxes. For CH4, both of the response variables (R1 and R2) were detected as 

the important response groups while formulating the scaling relations. As such both R1 and R2 

Dimensionless group P1 P2 P3 P4 R1 R2 
Factor 1 0.95 0.92 -0.03 0.76 0.83 -0.41 
Factor 2 -0.04 -0.04 0.99 0.19 -0.14 0.17 
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can be expressed as a scaling function of P1 and P2 (Equation 2 and 3). However, identified 

important predictor groups of CH4 were similar to the predictor groups that were identified for 

CO2 flux. 
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8.3.3 Examination of similitude and environmental regimes   

CO2 sequestration flux 

Similitude, environmental regimes, and scaling relations across study ponds  

The dimensionless predictor group, P1 was plotted against the dimensionless response group, R1 

on a logarithmic scale (Figure 8.3a) for different study sites. To plot the data in the logarithmic 

scale, absolute values of the WD (when WD<0) were considered. Two clear spatial regimes 

emerged from the plot that was not apparent in the dimensional domain. The lower regime (P1< 

1000000) of the “radiation-redox, P1” group had driven the CO2 flux uptake of the sage lot salt 

marshes; this indicated sage lot salt marshes had sequestrated CO2 fluxes in a PAR limiting 

(relatively less available sunlight) and high anoxic- saline (high redox) condition. The Hamblin 

pond CO2 sequestration followed a transitional regime between the high and low values of P1. 

For the other ponds (GP and EP) high regime (P1>1000000) of “radiation-redox” (plenty of 

sunlight and less anoxic) was required for the CO2 sequestration.  Similarly, Sage lot salt marshes 

sequestrated carbon for the low values of P2 (hydro-climatic regime) (figure 9.3b); suggesting the 

Sage lot salt marshes can uptake CO2 in a relatively low temperature and high flooding condition 

and other ponds needed relatively higher “hydro-climatic” regime for CO2 uptake.   
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Figure 8.3: Plot of the predictor dimensionless groups (log10P1 and log10P2) with the response 
dimensionless group (log10R1), revealing collapse of different variables on the power-law scaling 
relationships.  R1 is the CO2 flux group [(FCO2*t)/(WD*SS)]; P1 is the radiation-redox group 
[(PAR*t3)/(WD3*SS)]; and  P2 is the hydro-climate group [(ST*Cp*t2)/WD2)].  
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(b) P1 = PAR*t3/ WD3*SS 
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Figure 8.4: Plot of the predictor dimensionless groups (log10P1 and log10P2) with the response 
dimensionless group (log10R1) for two different hydrological regimes (flood and no-flood), 
revealing collapse of different variables on the power-law scaling relationships.  R1 is the CO2 
flux group [(FCO2*t)/(WD*SS)]; P1 is the radiation-redox group [(PAR*t3)/(WD3*SS)]; and  P2 is 
the hydro-climate group [(ST*Cp*t2)/WD2)].  

P1 = PAR*t3/WD3*SS 

P2 = ST*Cp *t2/WD2 

R
1 =

 F
C

O
2*

t/S
S*

W
D

 

(b) 

(a) 



279 

Moreover, CO2 sequestration rate was relatively less in lower P1, and P2 regime compare to the 

high P1 and P2 environment. The higher stress condition in the lower regime (PAR limiting, low 

temperature, high salinity, and flooding) is probably limiting the CO2 sequestrating rates in the 

tidal wetlands.  

Similitude, environmental regimes, and scaling relations for flood/non-flood condition 

To investigate the potential existence of the hydrologic regime in the study sites, data were 

separated based on the flood (WD>0) and no-flood (WD<0) conditions. The P1 and P2 were then 

plotted separately against R1 in a logarithmic scale (Figure 8.4a, b). Observations of both the 

hydrological conditions collapsed on top of each other, which indicated that functional 

relationship between the response and predictor numbers would be similar for both of the 

conditions. However, the lower and higher environmental regimes observed in Figure 8.3 was 

also a function of the hydrological regime since WD was included in both P1 and P2 numbers.  

The shape factor values (b1, b2) were estimated from the data for both WD>0 and WD<0 

cases by using the following power-law model to investigate the scaling relationships: 

2
2

1
11 * bb PPR =  

The estimated parameter values were 3.46 and -4.71 for b1 and b2, respectively in the case of 

WD>0 and the model fitting was satisfactory (NSE: 0.58, RSR=0.64). However, for the WD<0 

condition the b1 and b2 values were not similar (2.90 and -4.1 for b1 and b2, respectively), which 

suggested the presence of two different regimes govern by the hydrology.  The poor fitting 

efficacy of the model in WD< 0 condition (NSE: -0.23, RSR = 1.1) also indicated that without a 

scaling factor the model prediction would be very uncertain. Moreover, relatively higher b1 and 

b2 values that were observed for WD>0 than the WD<0 conditions indicated a higher response of 

CO2 sequestration with change in physical factors during completely submerged scenario. 
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CH4 emission flux 

Similitude, environmental regimes, and scaling relations across study ponds  

The dimensionless predictor group, P1 was plotted against both of the dimensionless response 

groups (R1 and R2) on a logarithmic scale (Figure 8.5a). Similar to the CO2 observations, two 

clear regimes emerged in the plot for both R1 and R2, which was not apparent in the dimensional 

domain. The lower regime of the “radiation-redox, P1” group (P1<1000000) showed strong 

functional relationship with R1 and R2 in the Sage lot site; this indicated Sage lot salt marshes 

followed a PAR limiting (relatively less available sunlight) and high anoxic- saline (high redox) 

condition. Hamblin pond CH4 emission also followed the lower regime. The other ponds (GP and 

EP) were scaled in the higher regime of “radiation-redox” (High PAR and less anoxic) related to 

the CH4 emission.  Similarly, Sage lot and Hamblin pond salt marshes emitted CH4 for the low 

values of P2 (hydro-climatic regime) (Figure 8.5b) and other sites responded with the high values 

of P2. Comparing the collapse of the response groups, it was evident that both R1 and R2 can 

potentially be used for scaling relationships. It was also evident from the Figure 8.5a, b that R1 

increased with the increase of both P1 and P2 but R2 decreased with the increase of P1 and P2.  

Similitude, environmental regimes, and scaling relations for flood/non-flood condition 

To investigate the existence of the hydrologic regime in the study sites, data were separated based 

on the flood (WD>0) and no flood (WD<0) conditions. The P1 and P2 were then plotted 

separately against R1 and R2 in a logarithmic scale (Figure 8.6a, b). P1 and P2 did not show any 

scaling relationship with R1 at WD<0 condition based on the fitting efficiency (b1=3.86, b2=-

5.66, NSE=-3.95, RSR=2.15). However, R2 showed a significant evidence of scaling with P1 and 

P2 for WD<0 condition (b1=-1.83, b2=1.35, NSE=0.91, RSR=0.29). Completely opposite 

phenomenon was observed for WD>0 condition. R1 scaled very efficiently with P1 and P2 in the 

flooding condition (b1=5.07, b2 = -7.05, NSE = 0.35, RSR =0.80) whereas R2 did not scaled with 

P1 and  
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Figure 8.5: Plot of the predictor dimensionless groups (log10P1 and log10P2) with the response 
dimensionless groups (log10R1 and  log10R2), revealing collapse of different variables on the 
power-law scaling relationships.  R1 and R2 are the CH4 flux group (R1=[(FCH4*t)/(WD*SS)] and 
R2=[(FCH4*WD2)/(PAR*t)]); P1 is the radiation-redox group [(PAR*t3)/(WD3*SS)]; and  P2 is the 
hydro-climate group [(ST*Cp*t2)/WD2)].  
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Figure 8.6: Plot of the predictor dimensionless groups (log10P1 and log10P2) with the response 
dimensionless groups (log10R1 and  log10R2) for two different hydrological regimes (flood and 
no-flood), revealing collapse of different variables on the power-law scaling relationships.  R1 
and R2 are the CH4 flux group (R1=[(FCH4*t)/(WD*SS)] and R2=[(FCH4*WD2)/(PAR*t)]); P1 is 
the radiation-redox group [(PAR*t3)/(WD3*SS)]; and  P2 is the hydro-climate group 
[(ST*Cp*t2)/WD2)].  
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P2 as apparent from the model fitting measures (b1=0.81, b2=-4.41, NSE=0.11, RSR=0.93).  

Overall, although different groups collapsed onto each other for both WD>0 and WD<0 

condition, the scaling relationship between prediction and response variables was different for 

these conditions. These suggested different modeling scenarios should be explored by considering 

the hydrologic regime while predicting the CH4 group. 

8.3.4 Development of scaling laws and modelling 

CO2 sequestration flux 

Since investigation on scaling and similitude for different spatial and hydro-climatic regimes 

indicated the existence of the two environmental regimes in salt marsh CO2 uptake, two sets of 

models were developed based on the previously discussed cased of WD>0 and WD<0 to 

formulate scaling relationship and predict the response dimensionless group, R1 from the 

important and meaningful predictor groups (P1 and P2) by using the following power-law 

equation: 

2
2

1
11 *10 bbbo PPR =  

Case 1: modeling when WD>0 condition 

Since the data were separated based on the position of the water table relative to the marsh 

surface, there is no need to mix the positive and negative values of the WD. The model (Equation 

4) result was very impressive (NSE=0.97, RSR=0.18) (Table 8.8), and all the model parameters 

were statistically significant. The higher positive dominance of P1 was observed whereas 

estimated parameter value of P2 was negative. The scaling relation implied that dimensionless 

CO2 flux group scaled positively with the radiation-redox group, P1 and scaled negatively with 

the temperature-hydrology group, P2.  
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Equation 4 can be written as a sole function of FCO2: 
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 The scaling relationship of the FCO2 then can be expressed from Equation 5 as (considering t is 

fixed for a particular temporal scale) 

21.073.073.0

11.089.0

2 ~
WDCST

SSPARF
p

CO         (6) 

Equation 6 showed FCO2 scaled to PAR0.89, SS0.11 and inversely scaled to ST0.73 and WD0.21. 

Table 8.8: The estimated model parameters and model fitting efficacy for different modeling 
scenarios to predict CO2 dimensionless number (shaded area is for WD<0 condition). 

Note:  R1=10b0P1
b1*P2

b2 is the predictive power law model for the prediction of FCO2. 
R1=[(FCO2*t)/(WD*SS)]; P1=[(PAR*t3)/(WD3*SS)] ; P2 = [(ST*Cp*t2)/WD2)]. FCO2, PAR, WD, 
ST, SS, Cp, and t refer, respectively, to net CO2 sequestration flux, photosynthetic active 
radiation, water depth relative to soil surface, soil temperature, soil salinity, specific heat at 
constant pressure, and time. b0, b1 and b2 are the estimated model parameters.  

 
Case 2: modeling when WD<0 condition 

The model (Equation 7) fitting was satisfactory (NSE=0.71, RSR=0.52) (Table 8.8), and all the 

model parameters were statistically significant (p-value<0.05).  A comparison between b1 and b2 

showed higher control of P2 over P1 on FCO2 group contrast to the case 1 where P1 had the higher 

Case Parameter Estimate SE t-stat p-value NSE RSR 
WD>0 b0 -7.75 0.20 -38.61 <0.001 0.97 0.18 

b1 0.89 0.06 15.23 <0.001 
b2 -0.73 0.09 -8.45 <0.001 

WD<0 b0 -16.55 2.14 -7.72 <0.001 0.71 0.52 
b1 -1.65 0.46 -3.58 <0.01 
b2 3.25 0.78 4.16 <0.001 
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influence. Moreover, the dimensionless CO2 flux group, R1 scaled negatively with the radiation-

redox group, P1 and scaled positively with the temperature-hydrology group, P2.  
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Equation 7 can be written as a sole function of FCO2: 
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 The scaling relationship of the FCO2 then can be expressed from Equation 8 as (considering t is 

fixed for a particular temporal scale) 

55.065.1
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2 ~
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SSCST
F p

CO         (9) 

Equation 9 showed FCO2 scaled to ST3.25, SS2.65 and inversely scaled to PAR1.65 and WD0.55. 

CH4 emission flux 

Since the investigation on scaling and similitude on the range of spatial and hydro-climatic 

regimes indicated the existence of different regimes (based on high and low values of P1 and, 

WD>0, and WD<0 conditions) in wetland CH4 emission, we developed different sets of models 

by considering different regime (WD>0 and WD<0 ) scenarios to predict both of the response 

dimensionless groups (R1 and R2) from the important and meaningful predictor groups (P1 and 

P2) by using the following power-law equation: 

2
2

1
11 *10 bbbo PPR =  

2
2

1
12 *10 bbbo PPR =  
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This analysis is also helpful to identify appropriate response group from R1 and R2 that had 

profound scaling relationship with P1 and P2 under different regimes. 

Case 1: modeling when WD>0 (flood condition) 

Modeling result with R1 (Equation 10) was very good (NSE=0.93, RSR=0.26) (Table 8.9) and all 

the model parameters were statistically significant; whereas model developed using R2 (Equation 

11) showed moderate modeling accuracy (NSE=0.67, RSR=0.57).  The model fitting for the 

WD>0 condition suggested the scaling relations and predictive model could be competently 

developed by using R1.  Although scale factor, b0 of both the models were comparable, the shape 

factors were different for both R1 and R2. The dimensionless CH4 flux group, R1 scaled 

positively with the radiation-redox group, P1 and scaled negatively with the temperature-

hydrology group, P2. 
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Equation 10 can be written as a sole function of FCH4: 
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 The scaling relationship of the FCH4 then can be expressed from Equation 12 as (considering t is 

fixed for a particular temporal scale) 
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Case 2: modeling when WD<0 (no-flood condition) 

With the WD<0 condition, an opposite phenomenon emerged indicating the existence of two 

different hydrological regime in wetland CH4 emission. R2 was predicted (Equation 15) very 

successfully (NSE= 0.98, RSR=0.11) from P1 and P2 but the same predictor set did not able to 

predict the response group, R1 (NSE=0.04, RSR=0.94) (Table 9) (Equation 14) (Table 8.9). All 

the estimated parameters for R2 were statistically significant.  
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Equation 15 can be written as a sole function of FCH4:
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The scaling relationship of the FCH4 then can be expressed from Equation 16 as (considering t is 

fixed for a particular temporal scale) 

38.038.012.0
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p

CH CSTPAR
SSWDF         (17) 

8.4 Discussion 

8.4.1 Biogeochemical-ecological similitudes and environmental regimes  

Since many dimensionless groups can be formed from the different combinations of the variables, 

it was quite important to identify the most relevant and mechanistically explainable normalized 

groups that can explain a significant part of the normalized GHG flux groups.  From the data- 
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Table 8.9: The estimated model parameters and model fitting efficiencies for different modeling 
scenarios to predict CH4 dimensionless numbers. 

Notes: R1 or R2=10b0*P1
b1*P2

b2 is the predictive power law model for the prediction of FCH4. 
R1=[(FCH4*t)/(WD*SS)]; R2=[(FCH4*WD2)/(PAR*t)]); P1=[(PAR*t3)/(WD3*SS)] ; P2 = 
[(ST*Cp*t2)/WD2)]. FCH4, PAR, WD, ST, SS, Cp, and t refer, respectively, to CH4 emission flux, 
photosynthetic active radiation, water depth relative to soil surface, soil temperature, soil salinity, 
specific heat at constant pressure, and time. b0, b1 and b2 are the estimated model parameters.  

 

analytics framework, two most important normalized groups (radiation-redox group, P1 and 

hydro-climate group, P2) were identified to establish scaling relationship with the response 

groups of FCO2 and FCH4 (R1 and R2) (Equation 1, 2, and 3).  For FCO2, both P1 and P2 

demonstrated strong linkages with R1 (Figure 8.1, Table 8.4, 8.5). However, P1 and P2 were 

strongly linked with R1 and moderately linked with R2 for FCH4 (Figure 8.2, Table 8.6, 8.7), 

which suggested scaling relations should be investigated for both R1 and R2 while modeling FCH4. 

Equation 1, 2, 3 indicate normalized CO2 and normalized CH4 groups were the unknown 

functions (f1, f2, and f3) of two dimensionless predictor groups of P1 and P2. The unknown 

functions were needed to be determined from the cause-effect interactions between the predictor 

groups and the response groups. 

Plotting of R1 against P1 and P2 for CO2 unraveled an existence of the environmental and 

biogeochemical regimes that were previously hidden in the data (Figure 8.3a, b). Figure 8.3a, b 

Response 
group 

Case Parameter Estimate SE t-stat p-value NSE RSR 

R1 

WD>0 
b0 -12.47 0.26 -47.23 <0.001 

0.93 0.26 b1 0.47 0.06 7.96 <0.001 
b2 -0.14 0.09 -1.56 <0.05 

WD<0 
b0 -11.14 0.92 -12.10 <0.001 

0.04 0.94 b1 -0.16 0.28 -0.59 >0.05 
b2 0.27 0.43 0.65 >0.05 

R2 

WD>0 
b0 -12.92 0.47 -27.26 <0.001 

0.67 0.57 b1 -0.21 0.07 -2.96 <0.01 
b2 -0.32 0.15 -2.09 <0.05 

WD<0 
b0 -8.03 0.80 -10.08 <0.0001 

0.98 0.11 b1 -1.12 0.08 -13.18 <0.0001 
b2 -0.38 0.14 -2.75 <0.05 
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suggested that the dimensionless FCO2 group, R1 increases with the increase of P1 and P2,. 

However, it does not straightly imply that an increase of PAR and decrease of WD, and SS would 

increase the CO2 uptake, although it is mechanistically understandable and well known that PAR 

facilitates CO2 uptake. Rather a comparative ratio of radiation (PAR) and soil biogeochemical 

factors (WD and SS) determines how it interacts with the R1 group. Similar concepts apply to the 

P2 group. The fascinating mechanism that was unraveled from the plots was the identification of 

two different environmental and biogeochemical based regimes separated by the P1 and P2 

threshold. Observations that cascade below the P1 threshold of 1000000 were governed by the SL 

and HP sites whereas observations of GP and EP sites falls in the upper regime (P1>1000000). 

Similarly, the P2 threshold was 10000 that separated two regimes. The observations imply that 

CO2 uptake of SL and HP site may be low because of a high biogeochemical stress and a low 

photosynthetic ability of the salt marshes in these sites. The soil temperature can also play an 

important role on this. On the contrary, the GP and EP ponds could be subjected to high 

photosynthesis and temperature, and low inundation and salinity.   

 However, to test the hypothesis of low photosynthesis, temperature, high salinity and 

inundation of SL and HP resulted lower CO2 uptake in a lower environmental regime, the mean 

differences of PAR, ST, SS, and WD between the low environmental regime sites (SL, HP) and 

high regime sites (GP, EP) (Table 8.10) were compared. No significant mean differences were 

observed for PAR, ST, and SS. However, WD varies significantly between two regimes; for the 

low regime the mean WS was positive meaning the overall flooding condition, and for the high 

regime sites the mean water table was negative and very close to the marsh surface.  This 

indicated inundation of the marsh plays a significant role in CO2 uptake and the favorable 

situation for the CO2 uptake occurs when the water table is close the marsh surface. To further 

test this hydrological dependency, the dimensionless groups (P1 and P2) were separated based on 

the hydrological regimes and then plotted against R1 irrespective of sites (Figure 8.4a, b). Most of 
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the observations were in the lower regime for the completely submerged (WD>0) condition, 

which supports our hypothesis of hydrological dependency. For the WD<0 condition when 

uptake is relatively high, most of the observations fall in a transitional zone of low to high P1 and 

P2, and in the high regime.   

 Analogous similitude based regimes were observed for the FCH4. Figure 8.5a, b 

revealed comparable threshold of P1 and P2 that define the environmental regimes. SL clearly 

falls in the lower zone and HP followed a transitional zone. GP and EP site were in the higher 

environmental zone. The FCH4 group, R1 was positively linked to the P1 and P2. However, R2, 

which is a ratio of FCH4, WD, and PAR were negatively linked with P1 and P2. To test the regime 

based separation of the sites, the mean of variables of the different regimes were compared (last 

two rows of Table 8.10).  Similar to the observations on CO2 uptake, CH4 emissions was also 

found as a strong function of water depth. Water table very close to the surface or at the surface 

was the most favorable condition for the CH4 emission rather than the completely submerged 

condition when CH4 was scaled by SS and WD. However, when CH4 was scaled by the PAR, 

emission was comparatively lower in the higher regime. The overall higher control of water depth 

and soil saturation on CH4 emission fluxes was comprehensively documented in the literature 

(Cui et al., 2005; Cheng et al., 2007; Bubier and Moore 1994).  The net CH4 emission from the 

wetlands is the functions of CH4 production (methanogenesis), CH4 oxidation and CH4 emission 

(methanotrophy) and all of these microbial-mediated processes are regulated by the water table 

dynamics as water table and soil saturation determine the reduced environment below the soil 

surface.  An extremely reduced environment (negative redox potential), which is favorable for the 

CH4 production and emission, occurs during the flood conditions. On the contrary, as the water 

subsides during ebb tide, CH4 oxidization occurs in the anoxic zone of the soil surface (typically 

in the upper soil layer) that reduces the rate of CH4 emission. 
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Table 8.10: Mean based comparison of the physical factors of CO2 and CH4 fluxes for low (SL 
and HP site) and high environmental regimes (GP and EP site) based on the observations.  

 

8.4.2 Scaling laws and modeling  

CO2 sequestration flux 

A robust dimensionless scaling relationship was established between the R1 and the predictor 

groups (P1 and P2) for both WD>0 and WD<0 conditions.  For the WD<0 condition, the model 

explained most of the variances of the R1 (NSE=0.97). However, for WD<0 condition model 

explained 71% of the variances. Since WD<O condition involves both sequestration and CO2 

emission from the CH4 oxidation, the mechanism is much complex than WD>0, which explains 

the inability of the model in predicting the rest of the variances from only the physical variables.  

 The equation 4 shows the scaling relation in the dimensionless domain for WD>0 

condition. The positive power of P1 suggests a positive correlation with R1 and the negative 

power of P2 indicates an inverse scaling. However, the negative power of P2 does not imply an 

increase of ST causes a decrease of R2, since the regression model fitted dimensionless carbon 

flux number, R1 with the ratio of different variables (dimensionless numbers) as a form of P1 and 

P2. However, an important scaling relation can be derived if both sides of the Equation 4 is 

multiplied by the scaling factor of R1 that is (SS*WD/t). The multiplication and compilation of 

the shape factors of the parameters led to the Equation 6 that represents how each variable scales 

to the FCO2 for the WD>0 condition. The power law scaling of the variables indicated PAR and 

ST are the most dominating variables that scale with FCO2. WD has the moderate scaling relation, 

GHG flux Environmental 
Regime 

PAR 
(µmol/m2/s) 

ST 
(oC) 

SS 
(PPT) 

WD 
(m) 

FCO2 
 

Low (SL, HP) 1477.83 19.14 29.56 0.108 
High (GP, EP) 1432.391 22.82 31.23 -0.004 

FCH4 
 

Low (SL, HP) 1381.96 20.06 28.96 0.119 
High (GP, EP) 1288.50 22.30 30.69 -0.002 
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but SS did not show a significant scaling association with the FCO2. The high power of PAR 

(0.89) indicates that the CO2 sequestration is mostly dominated by PAR. However, the negative 

value of ST resembles a stomatal closure at high temperature to reduce flux exchanges. Since the 

entire system is already anoxic and completely submerged, increase of WD may provide a signal 

to the plant to keep the stomata open. 

 Equation 7 expressed the scaling relationship of R1 for the WD<0 condition. Equation 9 

showed how each of the independent variable scaled with the FCO2 in the dimensional domain. 

The dominance of PAR decreases as the respiration part increases with the increase of aerobic 

layer in the upper part of the marsh surface.  The increase of the power of SS in this condition is 

an indicator of the overall higher sensitivity of the gas exchanges with the salinity. Since salt 

marshes are tolerant to the salt stress, up to an optimum level of salinity, marshes maintain their 

normal productivity (Lewis and Weber 2002; Wang et al., 2006). The higher scaling dependence 

of SS-FCO2 may be described as a correlation perspective rather than a cause-effect viewpoint.  

CH4 emission flux 

A robust dimensionless scaling relationship was established between the R1 and the predictor 

groups (P1 and P2) for WD>0 (Equation 10). The model explained 93% variances of the R1 

(NSE=0.93). However, for WD<0 condition instead of R1, R2 was better predicted by P1 and P2 

(NSE=0.98) (Equation 14). 

 In WD>0 condition, P1 was positively linked with the R1 whereas P2 was negatively 

linked. The dimensionless scaling Equation 13) showed that FCH4 scaled positively with SS and 

PAR and negatively with ST and WD; these observations contradict our mechanistic 

understanding on methane emission and indicate further investigation. For the WD<0 condition, 

R2 was negatively linked with both P1 and P2 Equation 17 showed FCH4 scaled with WD 

positively (high WD leads to CH4 production and emission).  However, the negative scaling of 
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ST is hard to describe; the inclusion of Cp in the P2 group to normalize ST could be responsible 

for the negative scaling of ST with FCH4. SS scaled negatively with FCH4 indicates a potential 

reduction of CH4 emission under high saline condition. Regarding the soil salinity, being a 

polyhaline tidal marsh the Waquoit Bay is subjected to the low CH4 emission compare to the 

relatively less saline salt marsh systems. In the sulfate-rich salt marshes, methanogens have to 

compete with the sulfate-reducing bacteria for the production of CH4 and that limit the CH4 

emission for the wetland to some extent (Poffenbarger et al., 2011); however, this relationship 

may vary from site to site depending on the adaptation mechanism of the salt marshes (Megonigal 

et al., 2004).  The scaling relations obtained for FCH4 with ST requires further investigation by 

using the measured flux data from different coastal wetlands to independently validate the 

finding.  

8.5 Conclusions 

The study provides a primary understating of the similitude, different regimes and scaling 

relationships of coastal wetland CO2 sequestration and CH4 emission fluxes. Two useful and 

important dimensionless GHG flux predictor groups that consist of physical drivers of the fluxes 

were identified from a diligent application of the Buckingham-Pie theorem. The existence of two 

different environmental regimes among the study wetland ponds were identified which are 

governed by the wetland hydrology and biogeochemistry. The study reveals that the coastal 

wetland system becomes most productive (high sequestration and less emission) when the water 

table position is at the surface. Different power-law based dimensionless scaling relations were 

obtained by fitting the observed data for flood and non-flood conditions for both the CO2 

sequestration and CH4 emissions dimensionless numbers. The scaling relations were later 

expressed in a dimensional domain to find the GHG fluxes scaling relations with the physical 

drivers. The power-law based scaling of PAR was identified as the most dominating factor in 
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CO2 sequestration whereas the position of the water table was the most influential scaling factor 

for the CH4 emission.  

The study revealed an evidence of biogeochemical similitude across different study 

ponds that are subjected to a moderate nitrogen gradient. Although two separate regimes were 

identified, the final scaling relationships were successfully determined by combing the data from 

both the regimes; supported our initial hypothesis of an existence of biogeochemical similitude 

across sites of similar ecosystem type. However, more investigation is needed by incorporating 

the data from different coastal salt marshes to independently calibrate and validate the observed 

scaling relations. A successful calibration and validation with different sites would leverage the 

potential spatial translation of the scaling relationships. On the temporal scale, the study is limited 

to the instantaneous fluxes that are in per second scale. However, since the time dimension is kept 

in the derived dimensionless groups, a temporal upscaling would not change the scaling relations, 

which is subjected to further research. Incorporation of the entire year data for consecutive years 

could validate the temporal robustness of derived scaling relations.  This study could be 

considered as the 1st step in the domain of coastal wetland GHG flux exchanges that investigates 

the possibility of finding wetland biogeochemical similitudes and scaling relations from a 

vigorous data analysis and mining among different physical and biological factors.   
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Chapter 9: Summary and conclusions 

The dissertation investigated the organizing principles of ecosystem GHG fluxes, and developed 

empirical and data-based mechanistic models for obtaining robust predictions of GHG fluxes 

from diverse ecosystems. The spatial scale of the models varies from site-specific to ecosystem to 

regional scales, encompassing different forest and wetland ecosystems. The research provided 

crucial understanding and insights into the linkage and emergence patterns of ecosystem GHG 

fluxes. The predictive modeling tools for CO2 and CH4 fluxes are expected to assist ecologists, 

engineers and stakeholders with a proper management of ecosystem carbon and associated 

services under a changing climate and environment.  

 Chapter 2 and 3 examined the first hypothesis and introduced a scaling-based modeling 

framework in an entirely empirical domain to predict the diurnal cycles of terrestrial net 

ecosystem exchange (NEE) from a single reference observation.The scaled-based, empirical 

modeling framework was developed and successfully applied to predict the diurnal cycles of 

terrestrial NEE in chapter 2. The developed model incorporated a parsimonious set of five 

parameters, which exhibited spatiotemporal robustness by collapsing into narrow ranges with no 

apparent trends among the different days and sites. The model parameters were also insensitive to 

the individual, crucial process drivers (e.g., photosynthetically active radiation, temperature, and 

soil water content) of NEE. Model calibrations illustrated good fitting efficiency (coefficient of 

determination, R2 = 0.68 to 0.88) and accuracy (ratio of root-mean-square error to the standard 

deviation of observations, RSR = 0.35 to 0.57) for different forests. Upscaling of the individual 

forest-specific models to that at the generalized deciduous forest level was performed by 

averaging the temporal ensemble of model parameters among all study forests. The applicability 

of the model as a gap-filling method was also tested by comparing the accuracy and efficiency of 

the proposed model with the different available NEE gap-filling methods.  
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 The scaling-based modeling framework was also applied to robustly predict the diurnal 

cycles of wetland NEE from the corresponding single reference observations in chapter 3. The 

scaled, dimensionless model was evaluated with different five year data for a coastal freshwater 

wetland (Florida Everglades Taylor slough marsh; 2008-12) and an inland shrub wetland (Lost 

Creek, Wisconsin; 2004-08), as available in the AmeriFLUX network.  The model calibrations 

and validations showed good efficiency (R2 = 0.64 to 0.77; Nash-Sutcliffe Efficiency, NSE = 0.63 

to 0.77) and accuracy (RSR = 0.48 to 0.61) in predicting the hourly NEE for the study wetlands. 

Therefore, chapter 2, 3, and 4 successfully tested the first hypothesis by developing predictive 

models of diurnal cycle of terrestrial and wetland NEE; the models were robust in space and time, 

and presented important examples of scaling application in ecological engineering.  

 Development of a parsimonious data-driven model of GHG fluxes demands a selection of 

the most relevant and meaningful drivers. A systematic, multivariate data-analytics approach was 

proposed in this research to determine the relative linkages and controls of different 

environmental and climatic drivers with the GHG fluxes. The framework was examined to 

determine the physical linkages of instantaneous CO2 fluxes of deciduous forests in chapter 4. 

The study showed that the ‘radiation-energy’ component had the strongest linkages with the 

canopy-level CO2 fluxes, whereas the ‘temperature-hydrology’ component had low to moderate 

carbon flux linkages. The study did not find any significant CO2 linkages with the ‘aerodynamic’ 

component. On average, the ‘radiation-energy’ component showed around 5 and 8 times stronger 

carbon flux linkages than that of the ‘temperature-hydrology’ and ‘aerodynamic’ components, 

respectively. Moreover, all the study sites exhibited comparable linkages and groupings with the 

CO2 fluxes, indicating a potential for developing a generalized, data-driven predictive model of 

CO2 fluxes for the deciduous forests. Moreover, the explanatory empirical models, as developed 

to quantify the linkages, showed relatively good model accuracy and efficiency (R2 = 0.55 to 
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0.81; RSR = 0.44 to 0.67), indicating the usefulness of the multivariate analytics models for 

estimating and predicting GHG fluxes.   

 In chapter 5, the applicability of the data-analytics methodology for diverse terrestrial 

ecosystems was tested. Six different AmeriFLUX ecosystems were used as the study sites to 

determine the relative linkages of the climatic and environmental variables with the NEE. The 

study found that the ‘radiation-energy’ group demonstrated the strongest linkages (60% 

contribution) with the NEE; exhibiting on average 4 (17% contribution), 5 (14% contribution) 

and 8 (9% contribution) times stronger linkages than that of ‘temperature-hydrology’, ‘ambient 

carbon concentration’ and ‘aerodynamic’ components, respectively. The developed explanatory 

models showed satisfactory accuracy (training RSR= 0.48-0.66, validation RSR= 0.50 to 0.65) 

and efficiency (training R2= 0.57-0.77, validation R2= 0.58-0.75) to link NEE with its physical 

drivers. The findings from this chapter demonstrated the ability and scope of data-analytics to 

select the most meaningful and major drivers of GHG fluxes in developing a parsimonious 

predictive model for diverse ecosystems, including wetlands.  

 Utilizing the data-analytics framework, predictive models of CO2 and CH4 fluxes from 

coastal wetlands were developed in chapter 6 and 7, respectively.  Dominant controls of 

radiation (photosynthetically active radiation) and temperature, as well as a moderate control of 

soil salinity on daytime CO2 exchanges were observed for the salt marshes. In contrast, soil 

temperature, sediment salinity, and water depth were identified as the most important physical 

drivers of wetland CH4 emission. Predictive, data-based mechanistic models of instantaneous 

CO2 and CH4 fluxes were then developed as nonlinear (power-law) functions of the most 

important variables influencing the gas fluxes. The models exhibited very good fitting efficiency 

(R2=0.79-0.89) and accuracy (RSR=0.32-0.45) in predicting the wetland CO2 and CH4 fluxes. 

The models were presented in an Excel spreadsheet as a handy ecological engineering tool for 
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estimations and predictions of GHG fluxes and carbon storage in tidal marshes of the New 

England region. Estimations of the net ecosystem carbon balance (NECB) using the tool will 

guide preservation and restoration project activities in relation to ‘blue carbon’. Overall, chapter 

5-8 tested the second hypothesis by pursuing objectives 2 and 3. 

Chapter 8 tested the third hypothesis and provided an understanding of the 

biogeochemical-ecological similitudes, critical environmental regimes, and scaling laws for 

wetland CO2 sequestration and CH4 emission fluxes. The study identified two important 

dimensionless physico-chemical groups to predict the dimensionless GHG flux groups. Two 

distinct environmental regimes were found based on wetland hydrology and biogeochemistry.  

The study found dominant control of water table in regulating GHG fluxes; the New England 

tidal marshes appeared most productive (high sequestration and low emission) when the water 

table position is at the ground surface. The dimensionless scaling relations of CO2 and CH4 

fluxes with the climatic and biogeochemical drivers were obtained through a power-law based 

regression analysis. The study revealed an evidence of biogeochemical-ecological similitude for 

wetland GHG fluxes across the Waquoit Bay study ponds, which represented a low to moderate 

nitrogen and a high salinity and hydrologic (water table) gradients. This study could be 

considered as the first step in the research domain that investigates the possibility of finding 

wetland biogeochemical-ecological similitudes and scaling laws for GHG fluxes by involving 

data-analytics of relevant physical and biological factors.  

Future research is necessary to expand the spatial and temporal boundary of the 

developed models by incorporating data from different sites along a gradient of nitrogen, climate, 

canopy height, vegetation, inundation, and salinity. Furthermore, model generalization should be 

achieved through a successful validation. Investigation of the temporal robustness of the 

developed data-analytics framework is another potential avenue of further research. Since the 
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dissertation tests the usefulness of the data-analytics framework up to hourly scales, future works 

could incorporate a multi-time scale feature (daily, weekly, monthly, and annually) to investigate 

the multi-scale linkages of climatic and environmental variables with the GHG fluxes. Usefulness 

of the developed models in estimating the annual balance (i.e., temporal upscaling) should also be 

tested in future research. The topic of discovering similitude, scaling laws and organizing 

principles for ecosystem GHG fluxes clearly merits further investigations and many future 

efforts. 

The data-analytics based study is an emerging field in the domain of ecological sciences 

and engineering. This research presented a novel and systematic approach for data-based 

mechanistic knowledge-building, model generalization, and parsimonious predictive modeling of 

terrestrial and wetland GHG fluxes. Utilization of scaling and similitudes within a data-analytics 

framework enriches the existing mechanistic knowledge to develop scale-invariant models for 

obtaining robust predictions of ecosystem GHG fluxes under a changing climate and 

environment. The predictive models developed in this dissertation will act as ecological 

engineering tools to aid the development of appropriate GHG offset protocols for setting design 

and monitoring guidelines for ecosystem restoration and maintenance projects. 
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