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ABSTRACT OF THE THESIS 

CELLULAR EVENTS UNDER FLOW STATES PERTINENT TO HEART 

VALVE FUNCTION 

by 

Glenda Castellanos  

Florida International University, 2015 

Miami, Florida 

Professor Sharan Ramaswamy, Major Professor 

Heart valve disease (HVD) or a damaged valve can severely compromise the 

heart's ability to pump efficiently. Balloon valvuloplasty is preferred on neonates with 

aortic valve stenosis. Even though this procedure decreases the gradient pressure across 

the aortic valve, restenosis is observed soon after balloon intervention. Tissue 

engineering heart valves (TEHV), using bone marrow stem cells (BMSCs) and 

biodegradable scaffolds, have been investigated as an alternative to current non-viable 

prosthesis. By observing the changes in hemodynamics following balloon aortic 

valvuloplasty, we could uncover a potential cause for rapid restenosis after balloon 

intervention. Subsequently, a tissue engineering treatment strategy based on BMSC 

mechanobiology could be defined. Understanding and identifying the mechanisms by 

which cytoskeletal changes may lead to cellular differentiation of a valvular phenotype is 

a first critical step in enhancing the promotion of a robust valvular phenotype from 

BMSCs. 
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CHAPTER 1: INTRODUCTION 

Valvular heart disease is a serious cardiovascular complication. Approximately 275000 

people in the United States undergo heart valve replacement every year; ~5000 are 

children1. Heart valves perform a critical role in maintaining unidirectional blood flow. 

The tissue and cells that constitute the leaflets must have unique characteristics that allow 

them to open and close properly, as well as remodel as needed2. The leaflets also 

experience complex mechanical stresses which their composition and structure allows 

them to endure3. They are comprised of three different layers, which include the fibrosa 

(facing the artery), ventricularis (facing the ventricle), and the spongiosa, which is 

located between the fibrosa and the ventricularis4. Similar to blood vessels, the surface of 

the heart valves are lined with endothelial cells, which have been known to have the 

ability to sense and respond to different mechanical and hemodynamic environments, and 

rapidly change their behavior2,3. However, in vitro studies have suggested that vascular 

and valvular endothelial cells are distinct in their response to hemodynamics2. 

Congenital heart defects are the most common birth defect, with about 1% of the 

population being affected by them4. Around 24.5% of neonatal mortality is due to 

congenital heart defects5, one of the most severe being critical aortic valve stenosis 

(AVS), a life-threatening condition with high morbidity despite early intervention. Open 

surgical valvotomy and a less invasive procedure, transcatheter balloon valvuloplasty of 

the aortic valve, are two of the most used and recognized procedures done TO neonates 

with AVS. Balloon valvuloplasty has been shown to reduce the pressure gradient across 

the aortic valve around 60%6. Even though this procedure has shown promising results, 
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reintervention following aortic balloon valvuloplasty is high due to several factors, 

including restenosis in one third of the patients6. Recent studies have shown that in 

vascular endothelial cells, flow patterns are critical in the sense that they influence the 

initiation of atherosclerosis, in-stent restenosis, and bypass graft failure. After balloon 

valvuloplasty, there is a relief in the pressure gradient across the aortic valve, however 

the hemodynamics do not resemble that of a normal valve, which could play an important 

role in the cause of restenosis. Valvular leaflet remodeling has been traced to endothelial 

cell dysfunction and denudation2, which is the primary suspect for the cause of restenosis 

in patients with balloon valvuloplasty. Valvular endothelial cells, like vascular 

endothelial cells, are known to remodel in response to hemodynamic environments by 

sensing the mechanical signals, and reorganizing the cytoskeletal filaments and the focal 

adhesion complexes2. The process by which valvular endothelial cells remodel after 

balloon intervention is not well known. By evaluating the changes in valvular endothelial 

cells’ intracellular structural proteins in response to flow profiles following balloon 

intervention, we can delineate potential abnormal responses, which could be linked to the 

underlying cause of rapid restenosis after balloon implantation.  

The need for reintervention after balloon valvuloplasty is very common, eventually 

leading to surgical valve repair or valve replacement. Tissue engineering heart valves 

(TEHVs), based on bone marrow stem cells (BMSCs) and biodegradable scaffolds, have 

been investigated as the next step to current prosthesis limitations, particularly the lack of 

somatic growth, which is critical in the pediatric patient population7. BMSCs are a 

promising cell source due to their accessibility and phenotypic plasticity under 
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biochemical and mechanical stimulation. TEHVs have shown a resemblance in the tri-

layer structure found in the heart valve; however structural differences such as the 

absence of surface ridges in TEHVs are evident and may contribute to the early failure of 

these constructs8. Recent studies have shown that shear stress can regulate the 

proliferation and differentiation of BMSCs through a variety of signaling pathways9. 

Heart valves experience mechanical stresses, including cyclic flexure, tensile, and fluid-

induced shear stress patterns, such as oscillatory shear stresses (OSS), during their 

lifetime10. It was previously demonstrated that coupled flexure and flow environments 

augmented tissue formation using PGA:PLLA scaffolds seeded with BMSCs11. At the 

intracellular scale, changes in BMSC cytoskeleton have also been observed when BMSCs 

were exposed to fluid induced shear stress. Alterations in F-actin structure and 

distribution may thus be closely linked to gene expression and protein synthesis in the 

mechanobiology of stem cells2. In addition, we believe that focal adhesion patterns are 

important to observe, as they sense mechanical forces and act as conduits for translating 

these physical forces into chemical and genetic cellular responses. OSS may also further 

regulate BMSC structure, hence its phenotype specifically towards the valvular lineage.  

In this investigation, we are going to apply OSS to growing valvular endothelial cells and 

BMSCs to understand their structural changes to this environment, which would 

subsequently have implications to the underlying cellular basis for restenosis and for 

optimizing heart valve tissue engineering protocols, respectively 
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SPECIFIC AIMS 

Specific Aim 1: To compare changes in the hemodynamic environment after balloon 

valvulplasty compared to a normal patient using a computational fluid dynamic model 

(ANSYS CFD).  

Specific Aim 2:  To observe changes on F-actin and nuclear deformation on bone 

marrow stem cells when exposed to pulsatile flow, steady flow, and no flow 

environments.  
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CHAPTER II- LITERATURE REVIEW 

Composition of the Aortic Heart Valve and Function 

The aortic heart valve is composed of three leaflets, which open and close during systole 

and diastole respectively. Over a single lifetime, hear valves will open and close at least 

3x109 times (sacks 2015, heart valve function). The tissue and cells that constitute the 

leaflets must have unique characteristics that allow them to open and close properly, as 

well as remodel as needed4. The leaflets are comprise of three different layers, which 

include the fibrosa (facing the artery), ventricularis (facing the ventricle), and the 

spongiosa, which is located between the fibrosa and the ventricularis, each containing 

different cells and molecules and each experiencing different fluid flow profiles7,12 

(Figure 1). The ventricularis surface is exposed to a high velocities and unidirectional 

shear stress, while the fibrosa side undergoes through OSS and lower velocities13. The 

ventricularis side is composed of elastin, which is radially aligned, and collagen, with an 

isotropic alignment. On the other hand, the fibrosa is longitudinally aligned collagen 

fibers. The spongiosa, consists with glycosaminoglycan and proteoglycan, create a shear 

slip buffer zone during leaflet movement12. These three layers provides the tensile 

strength the valves need in order to resist the mechanical forces being exerted14.The 

leaflets composition and structure allow them to endure demanding mechanical forces as 

they function under a complex of cyclic tensile-flexure-shear stress, such as oscillatory 

shear stress (OSS), loading environment3,14. During the cardiac cycle the heart pumps 

about 3-5 liters of blood every minute through the valves 15 which results in transvalvular 

pressures of 10mmHg in the pulmonary valve and 80mmHg in the aortic valve, as well as 
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shear stress estimated values of 10-80dynes/cm²  on the aortic valve16. The aortic valve, 

needing to withstand very demanding and complex mechanical stress, makes it difficult 

for prosthesis to endure without causing health risks on the patient.  

 

 

 

  

 

 

Valvular Endothelial Cells (VECs)  

The leaflets are also composed of valvular endothelial cells (VECs) and of valvular 

interstitial cells (VICs).  Endothelial cells, lining most of the organs, carry many critical 

function for blood and tissue homeostasis3. There are three main roles carried out by 

valvular endothelial cells: regulation of coagulation, regulation of underlying interstitial 

cells, and the diffusion or clearance of threatening agents from the blood3. It is well 

established that the endothelial cells are the first responders to tissue damage, controlling 

coagulative response to ensure clotting during injury. VECs have also shown to express 

von Willebrand factor, a blood glycoprotein involved in homeostasis, and also modulate 

the expression of factors involved in coagulation in response to shear stress3. However 

Figure 1. Heart valve composition showing fibrosa, 
spongiosa, and ventricularis. (Wirrig, 2013) 
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the dysfunction of VECs can result in many clinical conditions such as inflammatory 

reactions, calcification and blood clots17.  

As stated previously, shear stress is one of the main mechanical stresses found in blood 

vessels and heart valves. Butcher et al. has previously shown that there are morphological 

and behavioral differences between VECs and aortic endothelial cells due to the different 

biomechanical environments they are exposed to2. Several groups have studied the effect 

of shear stress on endothelial cells, and have demonstrated that VECs respond differently 

by orienting perpendicular to flow and parallel to the circumferentially aligned 

underlying tissue3; whereas vascular endothelial cells align parallel to flow regardless 

matrix orientation18. VECs do not only show phenotypic differences from vascular 

endothelial cells, they also express different genes as a response to fluid induced shear 

stress. Aortic endothelial cells show an increase expression of proinflammatory genes 

such as interlukins, connexin 43, BMP-4, and Collagen type II, all of which have been 

shown to contribute to vascular endothelial cell inflammatory atherosclerosis. On the 

other hand, VECs have shown a more abundant expression of anti-inflammatory genes 

and a less abundant expression of pro-inflammatory genes, suggesting that VECs may be 

innately more anti-inflammatory than aortic endothelial cells19. Previous studies have 

also shown that VECs are more proliferative than aortic endothelial cells20.  

One of endothelial cells unique characteristics is the ability to change from VECs to a 

contractile myofibroblast-like VICs, a process called endothelial-mesenchymal 

transformation (EMT)21. EMT has been shown to begin with endothelial cells losing cell-

cell contact and separating from the monolayer. Subsequently losing endothelial markers 
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and gaining mesenchymal markers, and migrating to the interstitial space22.  

Balachandran et al reported to induce endothelial cells to undergo EMT by applying a 

pathological cyclic strain, suggesting that mechanical strain does regulate EMT in a 

directionally dependent manner21.The role of EMT in the adult heart valve is not well 

known, however it is a critical event for embryonic development of the heart valve23 

(Figure 2). 

 

Valvular Interstitial Cells (VICs) 

VICs are the most prevalent cell in the heart valve and are found in all three layers of the 

valve24. The interstitial cells are made up of fibroblasts, smooth muscle cells, and 

myofibroblast which share the characteristics as smooth muscle cells and fibroblasts25. 

VICs main function is to maintain the structural integrity of the leaflets by constantly 

remodeling the tissue and by secreting matrix metalloproteinases. The dualistic mode for 

VICs is not well understood, however it is thought that the phenotype associated with 

smooth muscle actin is involved in proliferation and migration. Furthermore, the 

Figure 2. EMT process during heart valve formation. Endothelial cells going through                                                     
EMT  and migrating into the interstitial space (cardiac jelly) (Bischoff, 2007) 
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contractile phenotype found on these cells is associated with the remodeling of the 

extracellular matrix26.  In vivo studies have suggested that VICs produce high amount of 

proteins and glycosaminoglycans17.  

It has been established that pulsatile hemodynamic shear stress, which found in the heart 

valve, affects VICs through VECs as well as through other pathways including matrix 

shear stress24. When VICs are applied a mechanical force they respond by altering 

cellular stiffness and by producing matrix component24. Recent studies have shown 

collagen production of VICs after being subjected to stretching forces, however the type 

of collagen being produced was dependent on the level of the stretch. Collagen III gene 

expression increased as the level of stretch increased as well24. Mechanical stresses, 

sensed initially by VECs, are transduced by same to regulate VICs through paracrine 

signaling. VECs also stimulate a decrease in VICs proliferation, an increase in protein 

synthesis with shear stress, and a reduction of glycosaminoglycan loss under flow24. 

Aortic Heart Valve Hemodynamics 

The hemodynamic environment surrounding the heart valve, controls and ensures its 

proper functionality. The heart valves, as previously mentioned, are exposed to different 

mechanical stresses including, high levels of cyclic flexure, stretch and fluid-induced, 

oscillatory shear stresses (OSS). Wall shear stress (WSS) is considered the most 

important hemodynamic parameter for endothelial cells, defined by the following 

equation: Tw= 4µQ/πR³. Q is the volume flow rate, µis the viscosity and R is the radius 

of the vessel. In blood vessels, the mean wall shear stress reported is believed to be 10-20 

dynes/cm². However, WSS on the heart valves are difficult to obtain, and several groups 
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have reported figures ranging from 20 dynes/cm² to 1000 dynes/cm² 3.In healthy heart 

valves, the peak blood velocity, occurring at peak systole, on the aortic heart valve has 

been shown to be 1.35± 0.35ms-1 27. However, due to the fact that each side of the leaflet 

experience different velocity gradients, we would expect them experiencing different 

shear stresses as well. The fibrosa side of the leaflet undergoes pulsatile unidirectional 

shear stress, and the ventricularis undergoes oscillatory shear stress (OSS) caused by 

vortices present on this side of the leaflet. These vortices are thought to facilitate the 

movement of the leaflets to a close position during diastole25. 

In addition to WSS, we have other mechanical components affecting the heart valves: 

flexure and stretch.  Valvular leaflets are stained in a biaxial pattern, having peak 

circumferential trains of approximately 10% and radial strain of more than 40%.28,29. 

When opening, leaflets also experience a high degree of flexure, resulting in a 

compressive strain in the fibrosa side and a tensile strain in the ventricularis side 30. Thus, 

the fibrosa and the ventricularis undergo different mechanical stress patterns which could 

affect the behavior of the endothelial and interstitial cells. However due to the 

composition of the heart valves, they are able to withstand high mechanical stresses. 

Heart Valve Disease 

Heart valve diseases include, heart valve regurgitation, stenosis, and atresia. 

Regurgitation occurs when the valve doesn’t close tightly causing blood to flow back into 

the ventricle. Atresia consists of lacking an orifice or having the orifice abnormally 

closed, preventing blood to pass through. In the case of stenosis, which is the most 
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common condition in heart valve disease, involves the thickening and hardening of the 

heart valve preventing the valve to fully open during the cardiac cycle (Figure 3).        

 

 

 

 

 

 

 

There are people who are born with this condition, congenital heart valve stenosis, 

whereas other people develop AVS through their lifetime. Aortic valve stenosis (AVS) 

was considered a “wear and tear” degenerative conditions which resulted in the formation 

of calcium deposits in the heart valves. However, new evidence have shown that AVS 

can be developed as part of a complex, regulated series of processes similar to 

atherosclerosis31.  As in atherosclerosis, the damaging of the endothelial layer due to an 

increase in mechanical stresses, is thought to be the initial event for developing AVS. 

Following endothelial injury, the same lipids involved in atherosclerosis, are shown to be 

involved in heart valve calcification, in particular oxidized low-density lipoprotein 

cholesterol (LDL) and lipoprotein A32. The lipid oxidation then establishes an 

inflammatory response by recruiting macrophages, T lymphocytes and mast cells32. At 

Figure 3. The composition of a normal heart valve and a stenotic 
heart valve (USC, 2012). 
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this stage, studies have shown the initiation of calcium deposition in the area of injury, 

which has been associated with cell death. Apoptotic bodies have demonstrated to have 

similar characteristics as matrix vesicles found in bone32. Thus the formation of aortic 

stenosis has been associated with inflammation and lipid deposition. 

Endothelial damage can be caused by several factors, including abnormal hemodynamics 

and tissue mechanics 3. It has been previously shown VECs undergoing physiological 

shear tress values, respond by expressing anti-inflammatory genes, however when they 

are exposed to abnormal fluid flow shear stress there was an activation of inflammatory 

mediators33.  Studies have also shown the activation of calcification genes, chondrogenic 

genes, after VECs have been exposed to abnormal shear stresses33. Besides inducing the 

cells to express calcific genes through shear stress, other studies have also shown an 

increase in calcific gene expression when VECs are exposed to high levels of strain, 

another innate mechanical force found in heart valves.   

Yoganthan et al. has previously shown an even distribution of flow field during peak 

systole on a normal heart valve with maximum velocity of 1.2 ms-1, while a jet-type flow 

field with maximum velocity of 7.0 ms-1 was observed in a stenotic valve34. In the 

stenotic heart valve, Yoganthan also observed a high turbulent shear layer around the 

heart valve which could cause damage to the blood elements and the endothelial cells 

lining the valve and the walls34.  

Heart Valve Tissue Engineering 

The replacement of the diseased heart valve, is not a common procedure done in order to 

enhance the survival and quality of life of the patients. Current mechanical and 
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bioprosthetic heart valves give the patient 15-20 years of adequate function in adults3. 

However, the mechanical heart valves are prone to inflammation, infection and 

thrombosis, while the bioprosthetic heart valves experience calcification on the valve 

cusps, leading to regurgitation and reduced orifice area 35. Furthermore, in the pediatrics 

application, reoperation are required in order to accommodate larger valve diameters as 

they grow older.  Tissue engineered heart valve (TEHV) has a great potential to generate 

suitable viable heart valve replacement, and overcome the risks associated with 

mechanical and bioprosthetic heart valves. The ideal heart valve is characterized as a 

non-thrombogenic, viable living tissue that lasts the lifetime of the patient, providing 

remodeling and repair of injuries and potentially allows somatic growth25.  

The approach that most groups are implementing is the seeding of cells into a 

biodegradable scaffold, and culturing the construct under appropriate environmental cues 

to induce tissue formation, and then implanting these pre-conditioned constructs in 

vivo35. Hoerstrup et al.  pre-conditioned the construct using a pulsatile flow bioreactor 

device and implanted the constructs into six lambs36. Through echocardiogram, the 

leaflets were shown to function correctly without stenosis, thrombus or aneurysm up to 

20 weeks. They also revealed a layer of cuspal tissue with collagen and elastin, and 

covered by endothelium.  Other groups have been using mesenchymal stem cells and the 

biodegradable scaffold PGLA/PGA for TEHV. Mesenchymal stem cells, due to their 

accessibility, self-renewal properties, and phenotypic plasticity under biochemical and 

mechanical stimulation, are a promising cell source for tissue engineering. Sutherland et 

al. has previously used ovine bone marrow stem cells to construct an autologous 
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semilunar heart valve, which showed deposition of extracellular matrix and distribution 

cell phenotypes reminiscent of that in a native pulmonary heart valve, after implantation 

in a sheep37.  We have previously created a construct using PGA/PLLA and BMSCs 

cultured under flex-flow conditions in a bioreactor. We observed BMSC differentiation 

and migration within the engineered tissue, leading to cells expressing endothelial 

markers lining the surface, and cells expressing myofibroblast-markers within the tissue, 

resembling the cell distribution in a native heart valve.  

These advances can help us understand the multiscale hierarchical arrangements typically 

found in heart valves, and therefore develop viable tissue engineered heart valves.   
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CHAPTER III: STEM CELL STRUCTURAL ADAPTATION TO FLOW: 
IMPLICATIONS FOR VALVULOGENESIS 

Bone marrow stem cells (BMSCs) have been implicated in the development of heart 

valve tissue engineering. OSS, a mechanical force present in heart valves, has been 

shown to differentiate BMSCs into a cell showing endothelial cells markers. 

Furthermore, OSS coupled with flexure has shown an increase of valvular endothelial 

cells markers on BMSCs suggesting a potential differentiation of these cells. The 

differentiation of stem cells has been linked to changes in actin filaments, causing a 

change in gene expression. We previously observed the effects of oscillatory shear stress 

(OSS) on the BMSC cytoskeleton after terminal chemical fixation of the cells. The 

alterations in BMSC cytoskeleton during OSS has not yet been understood. Thus, in this 

study we applied OSS to growing BMSCs to understand fundamental cellular structural 

responses that precede the resulting gene expression, in the context of the heart valve 

phenotype. By identifying these changes a deeper understanding of specific changes at 

the cell structural-level, could be achieved and potentially fine tune the flow conditions to 

achieve an optimized valvular phenotype. 

 
INTRODUCTION 

Critical valvular heart disease is a serious cardiovascular complication38. In infants, 

congenital heart defects occur in four to six infants for every 1000 births39. 

Approximately 24.5% of neonatal mortality is attributed to congenital heart defects40.   

Among the plethora of cardiovascular defects, one of the more common, yet life-

threatening conditions is critical aortic valve stenosis (AVS),  which results in high 

mortality and morbidity despite early intervention41. Under normal circumstances, valve 
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leaflet composition and structure permits endurance of demanding mechanical forces as 

they function under a complex, coupled loading state of cyclic tensile, cyclic flexure-and 

fluid-induced shear stresses, including oscillatory shear stresses (OSS)2. However, in 

AVS, significant systolic transvalvular pressure gradients with a mean > 60mmHg 

resulting from narrowing of the aortic root imposes considerable workload on the left 

ventricle, resulting in rapid heart failure if left untreated17,35,42.  Intervention to relieve 

aortic valve stenosis in the neonate is usually approached via balloon dilation of the aortic 

valve, performed through an interventional cardiac catheterization (balloon aortic 

valvuloplasty/BAV).   Although the short term results are beneficial usually leading to 

relief of the narrowed structure and temporary avoidance of the consequent left 

ventricular failure, mid to long term prognosis is variable41.  Moreover, sizing limitations, 

risks associated with anti-coagulant use in children, accelerated calcification and an 

inability to accommodate somatic growth severely limit use of commercially available 

prosthetic valves for replacement of the infant’s stenosed valve. 

Over the last ten years, tissue engineered heart valves (TEHVs) derived from stem cells 

have been investigated to overcome the shortcomings associated with treatment of critical 

valve anomalies in children. Recent studies have applied mechanical stimuli, to construct 

superior tissue structures with properties resembling native heart valves, in particular, 

using bone marrow-derived stem cells (BMSCs) seeded onto biodegradable scaffolds11,37. 

BMSCs are a promising cell source due to their accessibility, self-renewal properties, and 

phenotypic plasticity under biochemical and mechanical stimulation. Stem cell 

differentiation using growth factors, molecular inhibitors, and biochemical cues have 

been extensively studied, however the mechanotransduction regulatory pathways in stem 
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cell differentiation remains uncertain43. Mechanical loads have shown to play an 

important role in the development, growth, and maintenance of tissue functions, such as 

the remodeling of cardiovascular tissues and bone formation44. Recent studies have 

demonstrated that fluid-induced shear stresses can regulate mesenchymal stem cell 

migration and stimulate stem cell differentiation into different cell lineages, including 

osteoblasts and endothelial cells (ECs)45. However, the effect of mechanical forces in the 

context of stem cells used in heart valve tissue engineering, where the mechanics play a 

foundational role, is yet to be delineated. Nonetheless, a few pertinent, landmark studies 

are summarized as follows: It was previously demonstrated that coupled flexure and flow 

environments augmented tissue formation using PGA:PLLA scaffolds seeded with 

BMSCs11. Elsewhere, Sutherland et al utilized BMSCs isolated from ovine and 

PGLA/PGA biodegradable scaffolds to make autologous semilunar heart valves, which 

were later implanted in sheep, and subsequently showed extracellular matrix and 

distribution of cells in the engineered valve were similar to native heart valves37. 

However, structural differences such as the absence of surface ridges in TEHVs were 

evident and were thought to potentially result in early failure of these constructs11.  

Mechanical stimuli are sensed by the cell membrane receptors which are later transferred 

to the cytoskeleton; consequently this initiates a biochemical signaling cascade 19. In 

BMSCs, the cytoskeletal structure has shown to be altered after exposure to fluid-induced 

shear stress46. Fundamental changes in actin structure and distribution may thus closely 

be linked to gene expression and protein synthesis in the shear stress stimulation of stem 

cells3, similar to ECs47. The actin filaments of the cell cytoskeleton serve as structural 

contributors to modulation of subsequent cell biological responses, including gene 
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expression, cellular and matrix protein synthesis. In general, it has been shown that the 

application of mechanical stress on actin filaments causes cytoskeleton reorganization 

leading to tissue remodeling affecting stem cell viability, self-renewal, and 

differentiation48, although detailed characterization of intracellular structures specifically 

in response to fluid-induced shear stress is not known. In addition, other cellular 

components such as focal adhesions, integrins, and the nucleus collectively play 

important roles in modulating cellular biological responses37. For example, the 

connection between the matrix and the cytoskeleton allows the cell to transmit external 

forces to the cell’s nucleus, thus triggering biochemical signals such as the synthesis of 

signaling proteins49.   

We previously observed the effects of oscillatory shear stress (OSS) on the BMSC 

cytoskeleton after terminal chemical fixation of the cells50. OSS regulates BMSC 

structure and has been shown to be highly relevant to native heart valve development and 

to TEHVs51. However, as was previously stated, the fluid-induced, OSS-related structural 

changes that precede BMSC phenotypic switching and matrix production are not known. 

Yet, identifying alterations in the BMSC cytoskeleton during OSS exposure may lead to a 

deeper understanding of specific changes at the cell structural-level, that lead to 

differential regulation, which in turn can be used to fine tune the flow conditions to 

achieve an optimized valvular phenotype.  Thus, in this investigation we applied OSS to 

growing BMSCs to understand fundamental cellular structural responses that precede the 

resulting gene expression, in the context of the heart valve phenotype.  These efforts are 

novel and unusual in that OSS is a relatively lesser known mechanical stimulus which to 

our knowledge has never been applied in order to identify the structural responses of 
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BMSCs; yet such a study is highly relevant to heart valve tissue engineering 

developments. 

METHODS 

Culture and Expansion of BMSCs 

Approximately 5x105 BMSCs/mL (Fisher Scientific, Pittsburgh, PA) were cultured in 

T75 vented cell culture flask using AdvanceStem Mesenchymal Stem Cell Medium (GE 

Healthcare Hyclone, Logan, UT) with 10% mesenchymal stem cell growth supplement 

(GE Healthcare, Malborough, MA)  and 1% penicillin and streptomycin (Fisher 

Scientific, Waltham, CA) for growth and expansion. Cells were grown in a standard cell 

culture incubator operating with 5% CO2 at 37°C with 95% humidity. BMSCs culture 

expanded to passages 4 to 6 were utilized for subsequent studies.  

BMSC Transfection 

BMSCs were transfected for purposes of cell visualization with green fluorescent protein 

(GFP) via electroporation as previously described52.  In brief, a density of 1x106 BMSCs 

were transfected using electroporation (Gene Pulser Xcell Electroporation System BIO-

RAD, Hercules, CA) and plasmid-delivery of 60µg pTAGGFP-actin, a vector encoding 

TagGFP fusion with actin used for labeling actin filaments in living cells (Evrogen, 

Moscow, Russia). The following settings were used for electroporation: Exponential 

Decay Pulse, Voltage of 350 V, capacitance of 950 uF, and Resistance: of 200 ohms52. 

Transfection Efficiency 

Cell viability and cell apoptosis was assessed using propidium iodide (PI) solution and 

Annexin protein respectively following manufacturer supplied instructions (Biolegend, 
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San Diego, CA). In brief, two days following transfection, BMSCs were re-suspended in 

Annexin V Binding Buffer at a concentration of 2.5x 105 cells/ml. PI was added to 100µL 

of cell suspension. After 15 min of incubation without light exposure, they were 

evaluated by flow cytometry (BD Bioscientific, San Jose, CA). 

Fluid-Induced Mechanobiology Experiments 

Transfected BMSCs were plated in Collagen Type I (Fisher Scientific) coated 

microchannels. A square wave was used in order to create a pulsatile flow environment to 

which the cells were going to be exposed to using a shear stress cell assay system 

(Fluxion Biosciences, South San Francisco, CA). Images of the cells under no flow, 

steady flow and OSS environments were acquired using fluorescent microscopy 

(Olympus IX81, CA) every hour for 5 hours for the first 2 days. After the second day, 

cells were monitored every 24 hours.  Cells in the no flow, steady-state (SS) flow and 

OSS groups were cultured for a total of 3 days.   

Cell Structure Quantification  

Cell actin filaments and nucleus were quantified by analyses of images acquired during 

the time course of the cell culture experiments (ImageJ, NIH Image, Bethesda, MD). 

Actin filament quantification was performed using two metrics. The initial quantification 

was based on simple filament counting.  For the second metric, the actin filament 

distribution and deformation were observed.  Quantification of the cell nucleus was 

conducted by computing the nuclear eccentricity parameter. Nuclear eccentricity 

(circularity) is a measure of nuclear elongation and is in a range of [0,1]; a circle has an 
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eccentricity of 1 whereas a more elongated shape would be associated with a lower 

number (ImageJ). 

Statistical Analysis 

One-way Anova followed by a Tukey’s post hoc test was conducted to test for any 

significant differences between the three groups: no flow, SS and OSS (n=8 wells/group; 

SPSS, V16, IBM, Armonk, NY). A statistically significant result was interpreted to have 

occurred when p < 0.05.  

RESULTS 

Transfection Efficiency 

GFP Transfection was initially found to occur in 77.4% of the cells.  (Figure 4). However 

of all the cells utilized, eventually ∼50% of the cells were found to be both viable and 

Figure 4. Transfected BMSCs with actin GFP were assessed two days 
after electroporation using flow cytometry; 77.43% of the cells were 
shown to express high GFP intensity as seen in the first quadrant. 
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successfully transfected (Figure 5). Viable transfected were subsequently segregated from 

the general population for use in subsequent experiment. 

 

Number of Actin filaments 

BMSC actin filaments increased in number by 122.6% after 48 hours of OSS (Figure 6). 

On the other hand, cells exposed to SS demonstrated only an 18.2% increase in the 

average number of filaments/cell after 48 hours of exposure, while the no flow group 

displayed a marginal changes.  The average increase in the number of filaments in cells 

exposed to OSS compared to both SS and no flow groups was found to be significant (p < 

0.05). However, there was no significant difference in comparing the average number of 

filaments/cell between cells exposed to SS and no flow (p > 0.05). 

Figure 5.  Transfected BMSCs with actin GFP assessed two days after 
transfection were incubated in propidium iodide (PI) solution to evaluate 
cellular viability;  50.07% of cells were efficiently transfected and viable 
after electroporation, as seen in 
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Figure 7. OSS, SS, and No Flow (static) conditions on average BMSC actin 
filament length (n=8 wells/group). 

Figure 6.The effect of BMSC when exposed to OSS, SS, and No 
Flow (static) conditions on the number of actin filaments (n=8 
wells/group). 



24 
 

F-actin filament length  

There was a 53.8% decrease in the average length of the filaments after 48 hours in the 

cells exposed to OSS (Figure 7). On the other hand, there was a 19.5% increase in 

average filament length on cells exposed to SS and marginal changes in cells in the no 

flow group. A significant decrease in the average actin filament length (p <0.05) in 

BMSCs exposed to OSS compared to cells in both the SS and no flow groups was 

observed.  

Nuclear Eccentricity 

We observed noticeable short term changes in nuclear shape in the SS and OSS groups 

during the first five hours after treatment compared to the no flow controls (Figure 8). 

However, after 48 hours, nuclear eccentricity was found to return to its original 

configuration and was not found to be significantly different amongst the no flow, SS and 

OSS groups (p < 0.05).  

Figure 8. Nuclear eccentricity (circularity) in BMSCs while being exposed to OSS, SS, 
and No Flow (static) conditions (n=8 wells/group). 
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Figure 10. Transfected cells showing filament orientation at 0 and 48 hours. SS group. 

Figure 9. Transfected cells showing filament orientation under OSS. 

Figure 11. Transfected BMSCs imaged at No Flow (static) conditions at 0 hours 
and at 48hours. Yellow arrows point to the actin filaments and red arrows show 
the nucleus 
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DISCUSSION 

Pediatric patients suffering from congenital aortic valve anomalies such as a critical 

valvular stenosis have extremely limited treatment options.  Balloon aortic valvuloplasty 

is typically performed longitudinally to relieve the narrowing and eventually the patient 

may undergo a total valvular replacement with a prosthetic device. Unlike prosthetic 

heart valves, TEHVs offer the possibility of overcoming the risks associated with 

artificial valve replacement in children and by offering the potential to support somatic 

growth. BMSCs remain a promising cell source because they promote tissue repair and 

can differentiate along cardiovascular and valvular pathways. Biochemical environments 

play a key role in determining cell fate and the differentiation of BMSCs. However, 

recent studies that have applied mechanical stimuli to BMSCs clearly demonstrate that 

the resulting cellular cues regulate proliferation and cell differentiation events; 

chondrogenic, endothelial, as well as cardiomyocyte phenotypes have been observed 15.   

BMSCs have been exposed to different mechanical stress states, such as tension, 

compression, and fluid-induced shear stress7. The application of tensile strain has been 

shown to result in an increased gene expression of bone markers, such as Runx2, alkaline 

phosphate (ALP), collagen type I (Col1), and bone morphogenic proteins (BMPs) 7. 

Recent studies have also shown the effect of mechanical stretch on the differentiation of 

stem cells, resulting in an increase in ALP activity and extracellular matrix formation as 

well as phosphorylation of focal adhesion kinase (FAK)13.  A fundamental response to 

mechanical stimuli can thus be observed within the cell cytoskeletal structure.  For 

example, McBeath et al. demonstrated that mechanical signals influence stem cell fate 

through linkages between cell shape, cytoskeletal mechanics, and protein activation20. 



27 
 

They disrupted the actin cytoskeleton using an actin-disrupting agent, cytochalastin D, 

and were able to observe differentiation of stem cells towards adipocytes, rather than 

osteocytes, suggesting a vital role of the cytoskeleton in the differentiation of stem cells 

towards an osteoblast lineage.  Similar to tensile strain, fluid induced shear stress has also 

been shown to regulate osteogenic genes in BMSCs5. Specifically, upon exposure of 

BMSCs to OSS, cells demonstrated an increase in calcium mobilization, and an increase 

in expression of osteocalcin and osteopontin18. Furthermore, exposure of BMSCs to OSS 

also increased DNA methylation, a central cellular mechanism for modulating gene 

expression.  We subsequently wanted to identify fundamental changes in BMSC structure 

to OSS as a precursor to cellular signaling activity and eventual gene expression.  A 

priori knowledge of BMSC structural events leading to the valvular phenotype may be 

leveraged to optimize engineered heart valve tissues intended for subsequent animal 

studies or clinical translation.  Such optimization is important in the context of enhancing 

mechanical and biological resilience of the engineered construct when subjected to the in 

vivo environment. 

OSS is an innate mechanical state present on the surfaces of native heart valves and has 

been hypothesized to enhance valve coaptation26. We previously demonstrated that the 

actin filaments in BMSCs orient themselves parallel to the flow direction when exposed 

to OSS23. In this study we applied a mean OSS of 1 dyne/cm2 and observed the changes 

in actin filaments and the nucleus over 48 hours. The BMSCs exposed to OSS and SS 

were found to orient themselves in the direction of flow (Figure 10, Figure 11) which is 

not unlike ECs which also orient themselves in this manner4.  Moreover, we found a 

significant increase (p<0.05) in the average number of actin filaments (Figure 6) in 



28 
 

BMSCs while being exposed to OSS (48 hours), which we speculate, could be a result of 

augmented focal adhesions (FAs). FAs play an important role in the force-mediated 

differentiation of stem cells 28. At the same time it has been reported that the formation of 

FAs is rapidly activated by specific forces exerted on cells, thereby resulting in the 

generation of additional actin filaments 28, which is indicative of what we observed here 

for the BMSCs exposed to OSS.  This finding therefore suggests that OSS may serve as a 

more appropriate trigger of stem cell differentiation compared to uni-directional shear 

stress.  In particular, OSS may promote BMSC differentiation towards the cardiovascular 

and valvular cell types as it is blood or fluid-induced and therefore highly relevant to 

these phenotypes. We also observed a significant difference (p<0.05) in the average 

length of actin filaments between the OSS and SS groups (Figure 7).  We speculate that 

the dramatic decrease in the length of actin filaments in BMSCs exposed to OSS could be 

a result of the activation of cofilin, an actin-binding protein which disassembles actin 

filaments 23. The context of this process is the similar response of endothelial cells to 

fluid shear stress that results in dissociation of actin filaments, thereby permitting cellular 

alignment to flow 23.  Therefore, we speculate that a decrease in actin filament length 

under OSS states to be a triggering event for mesenchymal to endothelial transformation, 

an important process in promotion of an endothelium in the tissue engineered heart valve.  

We have previously demonstrated that in fact, OSS states do augment the endothelial 

phenotype in in vitro dynamically cultured engineered valvular tissues 24 .  Note that SS 

conditions resulted in an increase in filament length (Figure 7) which may indicate 

reduced actin disassembly and hence, more restrictive differential regulation of BMSCs 

compared to OSS. 
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In conclusion, we presented the changes in F-actin filaments and nuclear deformation 

responses of BMSCs to OSS, SS and no flow conditions over a period of 48 hours. 

Structural changes and differences were clearly observed between the groups. 

Specifically, OSS-conditioned cells responded with a substantial increase in the number 

of actin filaments but a considerable decrease in the length of the filaments.  These events 

could serve as structural precursors that may differentially regulate BMSCs towards a 

valvular phenotype.  On the other hand, we did not observe a significant difference in the 

nuclear shape among the OSS, SS and no flow groups; however further studies need to be 

conducted to determine the effects of fluid-induced nuclear deformation on BMSC 

differentiation.  Even though our results are preliminary, our study provides a simple, yet 

unique perspective on specific cytoskeletal changes, particularly under OSS states that 

could regulate stem cell fate in a manner conducive for engineering valvular tissues.  

Nonetheless, further studies will be needed to confirm a direct correlation between the 

cytoskeletal changes observed here to the differentiation and gene expression activity of 

BMSCs. 
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CHAPTER IV: OBSERVING CHANGES IN HEMODYNAMICS OF A HEALTHY 
HEART VALVE AND A TREATED HEART VALVE USING A COMPUTATIONAL 
MODEL 

INTRODUCTION 

Congenital heart defects are the most common birth defects, with about 1% of the 

population being affected by them4. One of the most severe being critical aortic valve 

stenosis (AVS), a life-threatening condition with high morbidity despite early 

intervention. In AVS, significant systolic transvalvular pressure gradients with a mean > 

60mmHg resulting from narrowing of the aortic root imposes considerable workload on 

the left ventricle, resulting in rapid heart failure if left untreated3,35,42 . Open surgical 

valvotomy and a less invasive procedure, transcatheter balloon valvuloplasty of the aortic 

valve, are two of the most used and recognized procedures done in neonates with AVS. 

Balloon valvuloplasty has been shown to reduce the pressure gradient across the aortic 

valve around 60%6. Even though this procedure has shown promising results, 

reintervention following aortic balloon valvuloplasty is high due to several factors, 

including restenosis in one third of the patients6. Recent studies have shown that in 

vascular endothelial cells, flow patterns are critical in the sense that they influence the 

initiation of atherosclerosis, in-stent restenosis, and bypass graft failure6. After balloon 

valvuloplasty, there is a relief in the pressure gradient across the aortic valve, however 

the hemodynamics do not resemble that of a normal valve, which could play an important 

role in the cause of restenosis. Valvular leaflet remodeling has been traced to endothelial 

cell dysfunction and denudation2, which is the primary suspect for the cause of restenosis 

in patients with balloon valvuloplasty. Valvular endothelial cells, like vascular 
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endothelial cells, are known to remodel in response to hemodynamic environments by 

sensing the mechanical signals, and reorganizing the cytoskeletal filaments and the focal 

adhesion complexes, therefore altering gene expression2. By evaluating the changes in 

hemodynamics following balloon intervention, we can delineate the potential primary 

precursor which could be linked to underlying cause of rapid restenosis after balloon 

implantation.  

METHODS 

Isolation of porcine valvular endothelial cells (VECs) 

Side specific porcine valvular endothelial cells were isolated as previously described in 

Gould, et.al 201053. In brief, porcine heart valves were dissected and valvular endothelial 

cells from the ventricularis side and fibrosa side were dislodge using collagenase type II 

(Worthington Biochemicals, Lakewood, NJ). After isolation, cells were grown for 3 days 

for them to recover from the harsh process.  

Immunostaining VECs 

Isolated VECs were plated in pre-coated slides with collagen (BD Biosciences, Franklin 

Lakes, NJ). The following procedure was followed for subsequent staining: Isolated cells 

were cultured to ~80% confluence and fixed with 4% formaldehyde. Fixed cells were 

permeabilized with 0.1%TritonX-100 for 5 min (this step was excluded for CD31 

staining). Additional washing steps were performed three times with DPBS. Blocking 

nonspecific epitopes was facilitated by adding 3% BSA in DPBS for 30 min. The primary 

antibodies used were rabbit polyclonal anti-smooth muscle actin (Abcan, Cambridge, 

MA) and goat polyclonal anti-CD31 (Abcan, Cambridge, MA). An overnight incubation 
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at 4° was done. Samples were later washed and the second antibody was added for 1 

hours at room temperature. Fixed cells were later viewed under a fluorescent microscope 

(Olympus BX51, Center Valley, PA). 

Computational Fluid Dynamics 

In order to extract the shear stress waveforms, we conducted a CDF (Ansys Canonsburg, 

PA) simulation depicting the aortic structure from the normal patient and the patient who 

underwent balloon valvuloplasty. The geometry consisted of a 3D (x, y, and z 

dimensions) structured mesh with 1.5million nodes. However analysis will be done along 

the 2D plane from which the geometry was built because the cross-section of the valve 

and artery geometry was not available from medical images.  The measurements for each 

patient were obtained from JDCH through a sonogram (Figure 12, Figure 13). The 

velocity profile was fed to the inlet and the pressure profile was inputted to the output 

(Figure 14, Figure 15, Figure 16, and Figure 17). A transient simulation was used, 

placing the convergence criteria to 1x10-6 for momentum and continuity, with time steps 

Figure 12. Echocardiography flow profiles from normal 
patient obtained from JDCH. 
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of 0.1s. Blood properties were used in order to run the model.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 13. Velocity profile from a normal fed to the inlet in the simulation (Ansys 
CFD). 

Figure 14. Echocardiography flow profiles from patient 
after balloon valvuloplasty obtained from JDCH 
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Figure 15. Pressure profile from a normal patient fed to the outlet in the simulation 
(Ansys CFD). 

Figure 16. Velocity profile from a patient after balloon valvuloplasty fed to the inlet in 
the simulation (Ansys CFD) 
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RESULTS 

Model Validation 

In order to validate our model, the transvalvular pressure gradient from our model was 

compared to the transvalvular pressure from the clinical data. The inlet pressure 

waveform was also measured and compared the clinical data provided by the hospital. 

For the post-balloon model, the pressure gradient calculated by our model was 

26.06mmHg, whereas the clinical was 26.00mmHg, giving a 0.23% error (Figure. 18). 

The inlet waveform calculated by the model is seen to resemble that of the clinical data 

(Figure. 19). For the normal heart valve, the transvalvular pressure calculated by the 

model was 8.20mmHg, while the clinical calculate measurement was 6.50mmHg, 

estimating a 25.15% error (Figure.20). The error observed is negated by the fact that the 

Figure 17. Pressure profile from a patient after balloon valvuloplasty fed to the outlet in 
the simulation (Ansys CFD). 
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pressure drops are relatively small. Also, due to the fact that the pressure was not 

measured directly using a catheter, clinical measurement may not be accurate, calculating 

a high error. The calculated inlet pressure was 111.75mmHg, as compared to the 

estimated value observed in clinical setting which was 120mmHg (Figure 21).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
   

 

 

 

Figure 18. Transvavlular pressure gradient validation on the post-balloon 
valvuloplasty model. 

Figure 19. Inlet pressure waveform validation from treated heart valve. 
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Figure 20. Transvalvular pressure gradient validation on the normal heart valve 
model. 

Figure 21 Inlet pressure validation from a healthy heart valve. 
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Immunostaining of VECs 

VECs were stained with CD31 to check for the presence of endothelial cells and α-SMA 

to check for interstitial cells. Hoascht was used to stain the nucleus. We observe positive 

staining for CD31 (Figure 18), whereas we do not observe positive staining for α-SMA 

suggesting successful isolation of valvular endothelial cells.  

Figure 22. Isolated VECs stained positive for CD31 (Left). VECs stained negative for α-
SMA (Right). 
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Time-Averaged Wall Shear stress (TAWSS) 

There is a clear difference in the TAWSS (axial) between the normal patient and the 

patient who underwent balloon valvuloplasty on the fibrosa side. We observed peak shear 

stresses of ~2.2Pa on the leaflets of the normal patient (Figure 23). However, on the 

patient who underwent the treatment, we observed a peak wall shear stress of ~3.2Pa 

(Figure 24). Furthermore we observe a difference in the waveform between both patients.    

Figure 23. Time average wall shear stress on a normal patient. 



40 
 

 

 

Spatial-Averaged Wall Shear Stress 

The axial wall shear stress was averaged spatially throughout the heart valve for each 

time point. We observe a difference in the waveforms from the normal patient and the 

patient after the treatment on the fibrosa side. Moreover the shear spatially-averaged wall 

shear stress from the normal patient has a peak value of ~0.165 Pa (Figure 25), while 

after the treatment the peak value is observed to be ~0.45 Pa (Figure 26).  

Figure 24. Time average wall shear stress on patient after treatment 
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Figure 26. Spatially-averaged wall shear stress after balloon 
valvuloplasty. 

Figure 25. Spatially-averaged wall shear stress from the normal patient 
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Oscillatory Shear Index (OSI) 

OSI, is a measurement which quantifies the change in direction and magnitude of the 

wall shear stress (WSS), and it is calculated with the following formula: 

𝑂𝑂𝑂𝑂𝑂𝑂 =
1
2
�1 −

�∫ 𝜏𝜏𝜏𝜏𝜏𝜏𝑇𝑇
0 �

∫ |𝜏𝜏|𝑇𝑇
0 𝜏𝜏𝜏𝜏

� 

 

A Matlab code was created in order to measure the OSI throughout the valve. Side 

specific OSI was measure, fibrosa and ventricularis. We observe higher OSI in the 

fibrosa side compared to the ventricularis (Figure 27, Figure 28, Figure 29, and Figure 

30). Comparing a healthy heart valve and a valve that underwent treatment, we also 

observe a difference in the OSI. There is higher OSI in the fibrosa side of the treated 

heart valve (Figure 27, Figure 29).  

Figure 27. OSI fibrosa side of the healthy heart valve 
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Figure 29. OSI fibrosa side of a heart valve that underwent treatment. 

Figure 28.OSI ventricularis side of the healthy heart valve. 
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DISCUSSION 

Aortic valve stenosis (AVS) was considered to be caused by deterioration of the heart 

valve which resulted in the formation of calcium deposits. However, recent studies have 

shown that AVS can be developed as part of a complex series of processes similar to 

atherosclerosis. As in atherosclerosis, the damaging of the endothelial layer due to an 

increase in mechanical stresses, is thought to be the initial event for developing AVS. 

Balloon aortic valvuloplasty, a treatment usually done on teenagers and children with 

aortic valve stenosis, consists of the widening of the valve using a balloon catheter. The 

balloon is inflated in between the valve in order to increase the effective orifice area and 

improve the blood flow. This less invasive approach for aortic stenosis treatment, allows 

the pressure gradient across the heart valve to decrease (~60%), however restenosis is 
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Figure 30. OSI ventricularis side of the heart valve that underwent treatment. 
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observed soon after balloon intervention. Furthermore, flow profiles revealed by 

echocardiograms of a healthy heart valve (Figure 12) and a heart valve after treated using 

balloon valvuloplasty (Figure 13) show a difference in the velocity profiles. The peak 

velocity calculated in the heart valve that underwent treatment was 1.11m/s, while the 

peak velocity observed in the healthy heart valve was 0.66m/s. Even though this 

treatment reduces the stenosis, this difference in the hemodynamics can inherently affect 

the valvular endothelial function in a negative manner. Appropriate hemodynamics is 

important for the function of the heart valve, however changes in velocities and pressures 

can have consequences in the microscopic scales. 54 In atherosclerosis, recent studies 

have shown that the vascular endothelium is critical in the response of hemodynamic 

stimuli, and that atherosclerosis and endothelial inflammation occurs at the areas of 

disturbed flow 55. Furthermore, high shear stress gradients have also been observed to 

alter endothelial cell function by altering growth factor and cytokine production, as well 

as altering the permeability of macromolecules and lipoproteins 56. Similar to vascular 

endothelial cells, valvular endothelial cells (VECs) dysfunction is coupled with disturbed 

flow and leaflet degeneration and is also characterized by the expression of 

proinflammatory receptors57.  

Blood flow-induced shear stress is an important mechanical stimuli that is found in the 

surface of the leaflets and it is important for VECs function. VECs have been shown to 

respond to shear stress, as they change morphologically and genetically when they are 

exposed to different shear stress conditions58. Shear stress profiles present in the fibrosa 

differ from that in the ventricularis side as they are exposed to different flow profiles.  
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The ventricularis side, undergoes high shear stress values, and unidirectional flow, while 

the firbosa side experiences low shear stress values but oscillatory shear stress (OSS). 

Shear tress values in a normal heart valve from the fibrosa go up to ~0.18 Pa (Figure 25) 

and in the ventricularis values go up to ~28 Pa. Valvular pathology seems to occur 

preferentially on the fribosa side, suggesting that oscillations observed in the firbosa side 

may contribute to the calcification of the heart valves. The vortices present in the firbosa 

side help the heart valve to close more efficiently at end systole. In our model we can 

observe such oscillations, however we can see a higher magnitude of oscillations in the 

treated heart valve. In order to quantify such oscillations we calculated the OSI from both 

sides, fibrosa and ventricularis. The OSI in the ventricularis is negligible as the OSI≈0 

(Figure 28, Figure 30), however in the fibrosa side we see a higher OSI value. An even 

higher OSI distribution is observed in the heart valve which underwent balloon aortic 

valvuloplasty treatment (Figure 27, Figure 29). This finding suggests aberrant fluid 

oscillations along the arterial surface of the aortic valve that potentially may exceed 

physiologically-healthy states.  As a consequence, we interpret abnormal VEC signaling 

and tissue factor activity may be provoked, leading to restenosed states.  Confirmation of 

this hypothesis is a focus of current efforts in our laboratory, wherein arterial-side aortic 

VECs will be exposed to the aberrant levels of fluid-induced oscillations that were 

identified here.    . Studies have shown endothelial phenotypes differ on opposite sides of 

the aortic valve.58 The fibrosa side, which is more prone to lesion formation, has shown 

to express multiple inhibitor of cardiovascular calcification in a lower degree than the 

ventricularis side58. Therefore the increase in oscillations seen in the treated heart valve, 
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may cause the valve to restenosis in a more rapid manner as the fibrosa side is more 

vulnerable.  

As we could observe in our model, there is a distinct difference in the hemodynamics of a 

healthy heart valve and a heart valve that underwent balloon valvuloplasty. Changes in 

hemodynamics have been linked to endothelial dysfunction, and therefore expression of 

certain markers that may play a role in calcification. Further in vitro studies need to be 

conducted in order to observe the response of the VECs to these altered profiles, such as 

shear stress.  

. 
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CHAPTER V: FURTHER STUDIES 

As we have demonstrated, there are structural changes happening in BMSCs when 

exposed to OSS that may lead to the differentiation towards a valvular phenotype. We 

have previously shown the expression of valvular endothelial cell markers in BMSCs 

after being dynamically cultured using flex and OSS. We would like to confirm the 

correlation between the cytoskeletal changes observed to the differentiation and gene 

expression of BMSCs. Gene expression will be tested after BMSCs undergo OSS and SS 

in order to link it to the cytoskeletal changes. We clearly have shown the difference in 

averaged wall shear stress between the normal heart valve and one that has undergone 

balloon valvuloplasty. This change in hemodynamics can potentially damage the 

endothelial layer, which may lead to early calcification observed in patients that have 

been treated with balloon valvuloplasty. Here we have only shown results from the 

fibrosa side, however we would like to see the response of VECs in the ventricularis side 

as they are exposed to a higher shear stress. Changes in actin filaments and focal 

adhesions would be assessed as they have been shown to alter after being exposed to OSS 

and SS.  
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