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ABSTRACT OF THE DISSERTATION 

MODELING SECURITY AND RESOURCE ALLOCATION FOR MOBILE  

MULTI-HOP WIRELESS NETWORKS USING GAME THEORY  

by 

Laurent Lavoisier Yamen Njilla 

Florida International University, 2015 

Miami, Florida 

Professor Niki Pissinou, Major Professor 

This dissertation presents novel approaches to modeling and analyzing security and 

resource allocation in mobile ad hoc networks (MANETs). The research involves the 

design, implementation and simulation of different models resulting in resource sharing 

and security’s strengthening of the network among mobile devices. Because of the 

mobility, the network topology may change quickly and unpredictably over time. 

Moreover, data-information sent from a source to a designated destination node, which 

is not nearby, has to route its information with the need of intermediary mobile nodes. 

However, not all intermediary nodes in the network are willing to participate in data-

packet transfer of other nodes. The unwillingness to participate in data forwarding is 

because a node is built on limited resources such as energy-power and data. Due to 

their limited resource, nodes may not want to participate in the overall network 

objectives by forwarding data-packets of others in fear of depleting their energy power. 

To enforce cooperation among autonomous nodes, we design, implement and simulate 

new incentive mechanisms that used game theoretic concepts to analyze and model the 
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strategic interactions among rationale nodes with conflicting interests. Since there is no 

central authority and the network is decentralized, to address the concerns of mobility 

of selfish nodes in MANETs, a model of security and trust relationship was designed 

and implemented to improve the impact of investment into trust mechanisms. A series 

of simulations was carried out that showed the strengthening of security in a network 

with selfish and malicious nodes. Our research involves bargaining for resources in a 

highly dynamic ad-hoc network. The design of a new arbitration mechanism for 

MANETs utilizes the Dirichlet distribution for fairness in allocating resources. Then, 

we investigated the problem of collusion nodes in mobile ad-hoc networks with an 

arbitrator. We model the collusion by having a group of nodes disrupting the bargaining 

process by not cooperating with the arbitrator. Finally, we investigated the resource 

allocation for a system between agility and recovery using the concept of Markov 

decision process. Simulation results showed that the proposed solutions may be helpful 

to decision-makers when allocating resources between separated teams. 
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1 

 

The continuing advances in wireless communications and hardware design technology 

have led to the manufacturing of low-cost, low-maintenance and easy to deploy devices 

in order to create an ad-hoc network without relying on pre-existing infrastructure. The 

nurturing dream of building a pervasive and ubiquitous network is becoming highly 

plausible. A pervasive network by definition has the ability to offer spontaneous services 

created on-the-fly by autonomous mobile devices that interact with ad-hoc connections. 

Moreover, the ubiquitous network is the concept that provides available services in a 

network by giving users the ability to access services anytime and irrespective of their 

location. [1] [2]. 

To fulfill this vision of a network, it requires the participation of several devices or nodes, 

from multiple network domains with completely diverse objectives and preferences. With 

the rapid advances in computer and wireless communications, devices and all associated 

techniques and concepts, mobile sensor networks are becoming practical and attracting 

more research attention in recent years. The decentralized nature, minimal configuration 

and quick and easy deployment of wireless ad hoc networks make them suitable for 

emergency situations, such as natural disasters or military conflicts where there is no 

infrastructure or central nodes to depend on. Wireless ad hoc networks have emerged as 

an important information transmission paradigm in both military and commercial 

applications such as intrusion detection, battlefield surveillance, disaster rescue missions, 

CHAPTER 1 

INTRODUCTION 
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hostile environment monitoring and target tracking. Flexibility, on the other hand, brings 

in many research challenges.  

The mobility of the device is also a challenge due to the ubiquity of the network. By 

nature, wireless ad-hoc network is a highly dynamic self-organizing network with limited 

channels. Servicing mobile users brought a new prospective to an already dynamic 

network, the mobile ad-hoc networks (MANETs). A MANET is a self-organizing, self-

configuring network of mobile hosts wirelessly interconnected. The mobile hosts or 

mobile nodes (MNs) are free to move randomly and organize themselves arbitrarily. 

Therefore, the network connectivity and topology could be dynamically changed rapidly 

and unpredictably [3]. A MANET can be operated in a stand alone, or connected to other 

networks. Moreover, a MANET can be quickly deployed in any area. Without the support 

of any fixed infrastructure, mobile nodes need to cooperate with each other to maintain 

the link and routing information. Each MN acts not only as a host, but also as a router for 

data forwarding between other MNs. 

Network security and device autonomy, for example, are major issues in order to achieve 

robust and reliable communication in wireless ad hoc networks. The wireless 

communication between typically autonomous devices, where each device makes a 

decision whether and to what extent it wishes to be part of the network's main purpose, 

can become a challenge. In the pursuit of their own objectives, the participating devices 

in the network could therefore exhibit some misbehavior patterns – either by being selfish 

or by being malicious [4]. Because of their limited resources like battery power, low 

radio transmission range, memory spaces and computational power, a selfish node 

attempts to save its resources by not participating in any network task. As a consequence, 
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each node will strive to save its limited supply while competing against needy nodes with 

a depleted supply to gain access to others’ resources with the goal of maximizing their 

own capacity. A malicious node’s main objective is to cause damage to the network. 

They use their available resources to launch various attacks, for example, Denial of 

service (DoS), selective forwarding, Sybil attack and sinkhole attack. The faulty node 

misbehaves in the network because of the default in its circuitry which may be due to a 

physical damage. The internal damage causes the node not to follow the protocol 

recommendations. 

The security is the primary concern of an ad-hoc network deployed infrastructure-less. 

The network needs to guarantee a secure data transmission between different nodes and 

also, the confidentiality, the integrity and the availability of the data should be 

guaranteed. Henceforth, the primary issue that would arise with autonomous nodes in an 

ad hoc network would be packet forwarding. Moreover, here is a scenario, nodes are 

selfish and there is neither infrastructure nor a central authority. When the sender and the 

destination are not in transmission range, packets are sent through a multi-hop 

communication. Intermediary nodes are needed to facilitate packet forwarding. But, there 

is a transmission cost in battery power usage and bandwidth associated with forwarding 

packets and therefore, it is not in the best interest of an intermediate node to deplete its 

own resources to forward others’s packets. Meanwhile, if all nodes behave the same way 

by refusing to forward packets for others, the network will collapse. However, no node is 

interested in a collapsed network as the outcome.  

The network performance degradation can be attributed to node misbehavior. Therefore, 

proficient mechanisms need to be implemented to enforce node cooperation and 
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strengthen network security at all layer levels. In fact, selfish behavior is a thorn in the 

side of networks without central authority. Selfishness and overall network objectives 

may be the cause of misbehaviors in other layers of the network with autonomous nodes. 

For instance, by looking at the different layers of the network, there is a tremendous 

impact that selfish nodes can cause. For example, at the physical layer, a node can 

selfishly decide to ignore the network protocol by increasing its power to transmit its 

packets at a successful rate after detecting failure. The general response of other selfish 

nodes in the vicinity would be to follow the actions generating the successful 

transmission rate. As for the result, the overall network performance will decrease and 

deteriorate tremendously which will cause the collapse of the network. At the link/MAC 

layer, some nodes may attempt to send more packets by ignoring the backoff period. 

While the backoff period occurs for other nodes to use the medium for transmission, so 

instead of waiting for other nodes to finish sending their packets, a selfish node may 

attempt to quickly send its own packets. As a consequence, an increase in packet collision 

would drastically affect the network performance because of selfish nodes. On the 

transport layer, the most widely used protocol in this layer is the User Datagram Protocol 

(UDP) and the Transmission Control Protocol (TCP) [5] [6]. The main reasons for TCP 

performance degradation in MANETs are contention between sharing terminals, hidden 

terminal problems, and packet losses in the MAC layer. Furthermore, path disconnections 

arising from mobility and exponential retransmission backoff in the TCP layer also 

exacerbate performance. A selfish node may be unwilling to decrease its window size 

during congestion to take full advantage of its own flow. Therefore, in the case that all 
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nodes follow the same behavior, congestion and contention in the network will be 

worsened.  

Security mechanisms in traditional wired networks rely on trusted systems like certificate 

authority (CA) to manage security operations. In the absence of such authority, nodes are 

required to integrate tools to auto-secure themselves and to rely (trust) on each other to 

secure the network and protect their privacy. Trust, in this circumstance, can be defined 

as the confidence a node in the network has about the appropriate participation of others 

in the security mechanism. Without trust, no rational node will participate in any security 

mechanism that involves the cooperation of numerous nodes to be successful. Therefore, 

several security mechanisms require some level of trust in their design and 

implementation [7]. Let us consider a provider with users to provide network services. 

Securing the network service in order to protect the users’ privacy and personal 

information against cyberattacks or hackers is costly for the service providers. A provider 

would prefer to minimize its investment in upgrading the network infrastructure while 

financially increasing its bottom line with customers using the service or product. On the 

other hand, without regular upgrades to the network infrastructures from the provider, 

there are vulnerabilities generated from the software used or developed by programmers 

and components installed in the network; the upgrade of a vulnerability may open the 

system to other vulnerabilities. With the attackers always launching attacks, it is just a 

matter of time to breach the system due to an undetected or un-patched vulnerability. A 

breached system would have private information and privacy of the users compromised. 

One option available to unsatisfied users is to quit their service provider. Without any 
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doubt, we are faced with a conflict of interest between a service provider and its users. 

The optimum behavior of the provider will be linked to the users’ strategies. 

Game theory is the unifying mathematical framework able to model the conflict of 

interests faced by different players in each circumstance above-mentioned and examine 

the possible solutions with a precise depiction of their properties [1]. Clearly, this is our 

justification of using game theory as the principal method employed in our research. It 

clearly shows that the realization of the ultimate of interconnection between any mobile 

devices, anytime, anywhere (ubiquitous) in life is not possible if the efficient connection 

and security mechanisms were not designed to stimulate nodes’ participation or provide 

sufficient incentives to all network entities. Therefore, a network protocol at all layers 

must take into account the heterogeneity of sub-network components, interfacing 

between different MANETs and components and finally, the self-interest of autonomous 

nodes performing separate optimization. Cooperation among wireless multi-hop ad hoc 

nodes can also protect a network from malicious attacks. The absence of a central 

authority, trusted entity, new and different classes of distributed security mechanisms and 

privacy protections require cooperation among several mobile nodes to protect and secure 

a network from malicious attacks [8]. This dissertation addresses selfish and malicious 

nodes present in MANETs. The interconnection among highly mobile nodes, cooperation 

in resource sharing, and network security is studied and solutions are investigated. 

1.1 RESEARCH OBJECTIVES 

The evolvement from traditional wired to wireless networks has brought a shift in the 

primary concerns which need to be addressed for ad hoc wireless networks. Like their 
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wired counterparts, wireless networks are interested in high throughput and low-cost 

design, network priorities will dictate a tradeoff for an increase in power efficiency and 

bandwidth optimization. The mobility of the node increases the primary concerns with 

the connectivity and moving patterns. The more confidently a node shares its resources 

with other nodes belonging to the same network; the more secure is the network and their 

applications. Our research stems from the recognition that mobile autonomous nodes with 

different intent will remain elusive unless a MANET with incentive mechanism is 

developed. The presence of selfish nodes in a mobile heterogeneous ad hoc network 

where autonomous put their own objectives ahead of the overall network objectives must 

be modified due to the fact that network protocols do not have a better control of the node 

mobility and the network operations. This dissertation involves the mechanism design, 

implementation, analysis and simulation evaluation of the resource allocation model and 

security strengthening model of strategic interactions in mobile ad hoc wireless multi-hop 

networks with selfish and malicious users using the game theoretic framework. 

Specifically, our investigative objective of this research is threefold: 

1. Design distributed game theoretic algorithms using only local information to 

enforce nodes cooperation at the network routing layer and optimize network 

performance with autonomous nodes, and imperfect monitoring. 

2. Investigate and propose satisfactory game theoretic solutions to the remarkable 

enhance in bandwidth demand and throughput due to an increase of the number of 

mobile devices. 
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3. Use game theory to analyze new security mechanisms for MANETs with 

autonomous nodes without a trusted authority or a central manager to strengthen 

the overall network. 

Specially, our work focuses on: 

- The study of various techniques for incorporating arbitration monitoring, 

incomplete information into the game model for networks using game theory. 

- Evaluating the performance of models developed using game theory and 

investigating the underlying assumptions of those theories in the context of ad hoc 

networks with mobile nodes and dynamic change in the network topology. 

- Designing a game theoretic algorithm for autonomous networks that achieve 

performance similar to those of cooperative networks with a central authority. 

- Providing and detailing mathematical analysis of ad hoc network security models 

to capture in a general contest the equilibrium conditions in the MANET. 

- Predicting the user and provider behaviors under diverse type of noise conditions. 

- Simulating the designed models with known conventional software and tools that 

will allow any researcher to replicate the results if deem necessary. 

1.2 SIGNIFICANCE 

This research has an unprecedented impact in several areas. First, our work on 

cooperation enforcement at the routing layers provides significant insight into the 

problem of distributed decision-making, random mobility, random neighboring 

interactions, self-healing, self-organizing, and the resource proficiency needed to deal 
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with rapid topology changes of the network. Our approach leads to a precise 

characterization of the properties of cooperation in MANETs.  

Second, this research establishes solid frameworks for integrating practical network 

conditions into autonomous mobile network models. Practically, we mean incorporating 

random mobility, real arbitration monitoring, and private information into the model. Our 

research allows the self-interest of individual nodes to be in agreement with the overall 

interest network performance. Furthermore, as with traditional networks, autonomous 

networks need to be secured to authenticate the nodes, avoid exploitation, identify 

abnormality, and protect user’s private data.  

Our research provides novel concepts and fundamental knowledge concerning the 

modeling, mechanism design, analysis, and simulation of complex dynamic systems, 

including distributed autonomous network security. This work evaluates distributed 

security mechanism adequate for mobile ad hoc networks. Evidently, this research 

strengthens the interconnection of mobile autonomous devices in cyberspace for the 

peace of mind of each user.  

1.3 ORGANIZATION AND CONTRIBUTION  

The work in this dissertation is divided into several chapters. We have introduced the 

background, challenges, research objectives and approaches of this dissertation. The 

remainder of this dissertation is organized as follows. We review the comprehensive 

literature works related to mobile ad hoc networks and game theory that will provide an 

understanding and significant analysis of the tremendous contribution of the scientific 

world within the domain in chapter 2.  
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In chapter 3, we tackle the issue of dynamics of data delivery in MANETs using the 

bargaining game theoretic approach. The mobility of nodes makes it difficult to have a 

better timeframe when two nodes are in transmission range on top of the volatility of the 

wireless communication. The presence of selfish nodes in the path of routing to 

destination renders packet forwarding extremely weak. We model the dynamic packet 

forwarding problem as a modified Rubinstein-Ståhl bargaining game. In our model, a 

mobile player negotiates with the other mobile node to obtain an agreeable and 

respectable sharing rule of packet forwarding based on its own resource available, such 

that a node should not agree to forward packets without the energy or storage capacity to 

do so. We also consider finite horizon of the bargaining game because of the mobility of 

the nodes and the rupture of communication due to their velocity. The solution obtained 

from bargaining ensures that a mobile device always finds a peer to help forward packets 

in order to keep the network at flow.  

In Chapter 4, the mobility that causes the topology changes provides to selfish nodes the 

ability to move around and not being participative to the overall network objectives. In 

order to incentivize in packet forwarding, an arbitrator is tasked to negotiate with nodes 

in need of data transfer. The arbitrator is considered like a temporary cluster head and the 

nodes in need of service are one hop away from the cluster head. The negotiation game is 

applied with one-way offer by the arbitrator and the players either accept or reject the 

offer. There is no alternating between players, only the arbitrator makes offers. The 

generate offers follows the Dirichlet distribution. 

In chapter 5, security and trust are considered in cyberspace. Three types of entities are 

interacting in the game, the users, the service providers and the attackers. The attackers 
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launch attacks on the service provider’s infrastructure in order to breach the system and 

compromise the users’ privacy and private information. On the other hand, the service 

provider needs to invest in security and protect users’ privacy and personal data and also 

provider’s private information. Users need to feel that their private information are not or 

will not be compromised by an insecure provider infrastructure in order to do business. A 

prisoner’s dilemma game (PDG) is implemented and equilibrium strategies are drawn. In 

Chapter 6, the mobility that causes the topology changes provides to selfish nodes the 

ability to move around and not being too participative to the overall network objectives. 

In order to incentivize nodes in packet forwarding, a selected arbitrator is tasked to 

negotiate with nodes in need of data transfer. Because of the collusion of selfish nodes 

may cause the drainage of energy power for any node bargaining against a colluder. The 

arbitrator has the difficult task based on historic data, to avoid node that has the pattern of 

rejecting offers. The negotiation game is also applied with one-way offer by the arbitrator 

and the players either accept or reject the offer. There are no alternating offers between 

players, only the arbitrator makes offers. Chapter 7 deals with resource allocation in 

cyberspace by using the Markov decision process (MDP) approach. The goal is to defend 

a system against cyber-attack using several independent methods. A two-way division is 

agility and recovery. Cyber agility pursues attack avoidance techniques such that cyber-

attacks are rendered as ineffective; whereas cyber recovery seeks to fight-through 

successful attacks. Recovery should be an essential point during implementation because 

the frequency of attacks will degrade the system and a quick and fast recovery is 

necessary. However, there is not yet an optimum mechanism to allocate limited cyber 

security resources into the different layers. 
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Finally, in Chapter 8, we discuss our achievements, the limitations of the current 

outcomes including the simulation constraints, identify future research directions and 

conclude this dissertation. 
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A wireless ad hoc network is a self-organized network formed by peer nodes for common 

purpose without a pre-existing infrastructure as the backbone of such a network. 

Henceforth, data is exchanged between nodes by the sole effort of communicating nodes 

deployed with transmission capabilities. Nodes serve as routers to relay data in case the 

source and the destination are out of transmission range. The nature of no infrastructure 

communication in ad hoc networks requires nodes in the network to cooperate for the 

network to remain operational. However, some nodes may refrain from forwarding data 

packets of other nodes to preserve their limited energy resources. In addition to 

selfishness, other factors can degrade quality of cooperation. These factors include 

mobility and environmental obstructions. In this Chapter, we provide a brief survey of 

related research in the area. We review the research work on encouraging cooperation in 

mobile ad hoc networks (MANETs). We focus on research that aimed to overcome 

selfishness of autonomous nodes by providing incentives to participants for cooperating. 

We review the different cooperation approaches that have been proposed in the literature 

and focus on game theory as the domain of our contribution in this dissertation. Each 

approach is summarized and we identify their problems and limitations. 

CHAPTER 2: 

RELATED WORK  
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Figure 2.1: A Mobile Ad hoc Network (MANET). 

 

2.1 MANETS COOPERATION SCHEMES 

Most of the literature review on encouraging, stimulating or enforcing cooperation in 

MANETs can be divided into two main categories: credit-based (a.k.a. price-based or 

virtual currency) [10] [11] [19] and reputation-based [3] [4] [12] [13]. The credit 

exchange in virtual currency systems, the distribution of reputation information and the 

reliability on promiscuous listening among neighboring nodes in reputation-based 

systems raise some issues regarding the scalability of the above approaches. 

2.1.1 Credit-Based Schemes 

In credit-based schemes, nodes use virtual currency to pay for packet forwarding 

services. Intermediate nodes charge for the relay service they are providing as a form of 

incentive for cooperation. The two most popular approaches using the virtual currency 

schemes as incentive are the Nuglet and Sprite. The authors in [10] proposed the Nuglets, 

a virtual currency to stimulate cooperation in self-organized MANETs. Two models are 
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proposed to stimulate cooperation: the packet purse model and the packet trade model. 

For the packet trade model, the destination node pays for the packet-forwarding expenses. 

Moreover, each intermediate node along the path to destination buys and sells packets to 

be forwarded all the way to the destination. When a packet reaches its final destination, 

the destination node buys and owns the packet. Hence, there is an incentive to cooperate 

by intermediate nodes with a return on investment while spending their resources in 

packet forwarding. The limitations and issues of this approach are: the sender may not 

filter the type of message to send out and overloads the network, which may cause 

congestion. To solve the issue, the packet purse approach is modeled. In this model, the 

source node pays to send a packet to a destination node by loading some Nuglets in the 

“packet’s purse”. Each intermediate node along the path acquires some Nuglets from the 

packet before forwarding to the next hop or intermediary node. The packet is dropped 

from the network if there are not enough Nuglets for the service rendered. Tamper 

resistant software and hardware are required for both models to store the correct amount 

of Nuglets. Another issue includes the fact that at the moment of forwarding, a packet an 

intermediary (autonomous) node can decide to charge more, which will cause the packet 

not to have enough Nuglets to reach its destination. 

The authors in [20] proposed Sprite. Sprite relies on a central authority: the Credit 

Clearance Service (CCS). Nodes keep a log (receipt) of all transactions they participate 

in. The logs are submitted to the CCS for clearance and to claim payment. The CCS 

determines the credit of each intermediate node and the cost to the sender. Sprite 

cautiously computes payment to prevent cheating and collusion among nodes. Unlike 
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Nuglets, Sprite does not require tamper proof hardware. However, the CCS as a central 

authority violates the premise of MANETs and may become a target for security threats. 

 

2.1.2 Reputation Based Schemes 

In reputation-based schemes, a node’s decision to cooperate with other nodes with packet 

forwarding impacts its own reputation. This decision is made by maintaining reputation 

information about other nodes in the network by tracking their behavior towards others. 

Reputation information is usually shared in the network using periodically exchanged 

messages. Unlike the credit-based scheme, which provides direct incentives to 

cooperating nodes, reputation-based instead punishes non-cooperating nodes. A non-

cooperative node will have a bad reputation and nodes with good reputation will punish 

them by not forwarding their packets. Reputation information is collected at two levels: 

first-hand and second-hand. In the latter, second-hand reputation schemes [12] [13], 

nodes use direct and indirect observations to compute their reputation information bases. 

For indirect observations, information is conveyed to a node via its neighbors, it’s not 

collected by its own effort. We have promiscuous listening to neighbors' behavior, which 

is used to collect indirect reputation information, like in [3]. However, relying on 

information conveyed by others may not be completely accurate because of multiple 

factors, such as imperfect monitoring or hidden terminal issue. Although second-hand 

schemes incur an overhead in exchange of the reputation information collected, 

misbehavior report can be detected faster than first-hand systems. In first-hand schemes 
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[13], a node relies only on its own observations to evaluate the cooperation of other nodes 

and compute the reputation information.  

Different systems have used the reputation model, in particular, the Beta reputation 

system [12] with a strong statistical background. A watchdog mechanism implemented 

on each node is used to monitor the behavior of its neighbors. After a packet is sent, the 

node equipped with an omnidirectional antenna listens and observes. If the packet has 

been forwarded by its neighbor or not, the result is recorded in a reputation table. 

Depending on the model implemented, models can share reputation information or not by 

applying the second hand information. Nevertheless, second-hand information improves 

the algorithm by accelerating its convergence time. However, second hand information 

overhead creates traffic load on the network. For different models implemented, there are 

also different weights assigned for new and old information. Assigning more weight to 

new information, cooperating nodes may lose their reputation in low network activity. 

Meanwhile, assigning more weight to old information, a malicious node may decide to 

accumulate a good reputation first, then start dropping packets without any punishment. 

Noted also, all packet loss is due to a node misbehavior. Thus, packet losses due to 

congestion in the network or noise in signal received are not taken into consideration. 

Michiardi and Molva in [4] developed CORE (COllaborative REputation). It’s a 

reputation mechanism for mobile ad hoc networks. Three types of reputation mechanism 

are used: we have a subjective reputation from first-hand information, then the indirect 

reputation from second-hand information, and third a functional reputation calculated in 

conjunction with different functions like forwarding and routing. The combination of 

reputation information is an issue in itself; reputation composite does not allow the 
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mechanism to trust a node for one of its specific functions. The assigned weight to each 

function can be problematic. Moreover, to avoid a denial of service, only positive 

reputation information is propagated. However, a coalition of malicious nodes may 

propagate positive reputation of each other and gain longer access in the network. CORE 

is simulated using the Dynamic Source Routing (DSR) protocol and shows prominent 

performance results. Marti et al [22] proposed a combination system of a watchdog 

system and a pathrather that selects the best route to avoid malicious nodes. The system 

achieves an acceptable throughput in the presence of misbehaving nodes. However, this 

system does not get rid of misbehaving nodes. Malicious nodes can send their own 

packets in the network, even though they do not forward packets of other nodes. 

Buchegger et al [2] proposed Cooperation Of Nodes-Fairness In Dynamic Ad hoc 

NeTworks (CONFIDANT). CONFIDANT detects and quarantines misbehaving nodes. 

The CONFIDANT protocol is made of four components: the monitoring, the reputation, 

the path manager, and the trust manager. The monitoring is similar to the watchdog 

defined above, the reputation structure rates nodes, the trust manager issues Alarm 

messages on node behavior, and the path manager makes decisions when conflict occurs. 

CONFIDANT propagates only negative information. The authors’ argument is that the 

malicious behavior is not the norm, but an exception. However, the protocol can allow 

misbehaving nodes to mount erroneous accusation attacks and cause the dismissal of 

cooperating nodes from the network.  

The Reputation-based Framework for Sensor Networks (RFSN) is introduced in [13]. 

First and second-hand information are used for reputation. Only the first-hand 
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information is propagated in the network as shared reputation. Moreover, to prevent 

misbehaving nodes to propagate false information (bad-mouthing attacks), only positive 

information is propagated. A combination of first-hand and second-hand information is 

used to obtain a new reputation value, Dempster-Shafer belief theory is used [13]. This 

takes into account the fact that reputation information from the most trusted nodes must 

have more weight. Nodes with low reputation are considered malicious and quarantined 

from the networks. Aging is used to give more weight to fresh information. Thus, 

cooperating nodes can lose their reputation in a network with low activity. 

2.1.3 Other Schemes 

To avoid the disadvantage of both credit-based and reputation-based system, researchers 

have exploited the fact that nodes in the network are autonomous and the device has 

limited resources. By combining both features in a node, there will always be a situation 

of conflict in interests. Some nodes in the network will always want to take advantage of 

the situation which is a rational behavior whenever there is no central authority in a 

group. The use of game theoretic modeling is convenient to analyze cooperation with 

incentives among nodes in the networks. In [1], the authors use game theory to analyze 

cooperation incentives provided by the type of cooperation schemes, and propose a 

hybrid system that offers strong incentives to encourage cooperation while ensuring 

quick and effective detection of selfish nodes. 

Researchers in other work focus on horizontal improvements by enhancing features that 

are shared by most of the schemes in the literature. In [23], the proposed scheme avoids 

the need to maintain traces of past interactions. It permits to avoid tracking available 
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credit and reputation information in credit-based and reputation-based systems, 

respectively. 

The model aims to tag cooperative nodes in the network. Since cooperation between 

nodes will gain higher payoffs than selfish ones, the others will tend to join the 

cooperative group, with the assumption that nodes are rational. Subsequently, cooperative 

nodes will take over the population. In the next sections, we provide an introduction to 

basic concepts in game theory and their application to encourage cooperation in wireless 

networks. We, then, shed more light on bargaining game theory, and review the research 

work in the area of cooperation modeling in MANETs. 

2.2 GAME THEORY 

Game theory (GT) is a branch of applied mathematics that studies strategic interactions 

among rational players who look for best strategies to maximize their personal gain in 

response to others' strategies [1] [29] [30]. GT cannot be utilized to model irrational 

misbehavior of faulty components. Nonetheless, it is an adequate tool to analyze and 

mitigate selfish and malicious behaviors. Studying cooperation in MANETs using game 

theory provides a more comprehensive understanding of the process. In MANETs, the 

players are the nodes. Each node wants to maximize its own utility (payoff). In a game, a 

player decides whether to cooperate or not based on its evaluation of the prospective 

benefits and costs of cooperation and the expected strategies of other players in the 

network. Which means, send the most possible number of packets and forward the least 

number of packets while saving energy and bandwidth. A node's preferences are 

expressed in the form of a utility function that includes all factors that contribute to its 
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satisfaction. The utility function reflects the node's objectives as it selects an action in 

response to the actions selected by other players. The main objective in a network is the 

convergence to a Pareto efficient Nash equilibrium. However, the challenge is that the 

allocations in the Nash equilibrium are not always Pareto efficient [31]. Here are some 

approaches that use game theory. 

2.2.1 Cooperative Models 

In cooperative games, players within the game cooperate to achieve common benefits. 

The most commonly used forms of cooperative games are coalitional games, in which 

nodes form coalitions that share benefits and follow common strategies. These coalitions 

compete with each others as opposed to individuals in non-cooperative games. Since 

coalition members follow agreed-on strategies to obtain shared benefits, there is an 

interest in the value of a coalition as an entity, which is the total amount of utility it can 

obtain as a whole, as compared to the payoff every member obtains by affiliating with a 

coalition [6]. The way the coalition value is divided among coalition members 

distinguishes transferable utility games (TU) from non-transferable utility games (NTU). 

In TU games, there is no restriction on the way utility can be divided among coalitional 

members. The clearest and simplest example of a unit of transfer for utility is money. 

Resource allocation in wireless networks is modeled as transferable utility game in [53], 

and grand coalition is shown to be stable in many cases. On the other hand, the payoff an 

individual player obtains in an NTU game depends on some factors, and among them is 

the coalition structure and formation sequence. In [31], the authors model cooperative 

spectrum sensing in cognitive radio networks as a non-transferable coalitional game, and 
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use a simple merge and split algorithm to optimize coalition formation. We provide a 

more detailed discussion of features and solution concepts of coalitional game problems 

in the next section. 

2.2.2 Non-Cooperative Models 

In non-cooperative games, nodes strategically react individually to others' interactions 

based on the assessment of their own benefit. Jade et al. [32] combined credit-based 

and Stochastic Game Theory to formulate an optimal policy to forward packets towards 

route in peer-to-peer mobile networks. A source node requests data from the destination, 

each intermediate node that relays a packet is remunerated with a currency token. Their 

optimal policy is achieved based on cost, free bandwidth, and service capacity. The 

incentive-based routing protocol implemented shows a better performance when 

compared to the DSR protocol. Srinivasan et al. [21] motivated cooperation in a network 

by using Generous Tit For Tat (GTFT). The authors showed that GTFT is a Nash 

equilibrium (NE) of the forwarding game. However, each node must know all nodes in 

the network in order to compute the equilibrium of the game. For a MANET, the notion 

of each node to know all nodes available is a strong requirement for distributed networks.  

Yan et al. [18] [19] proposed models for cooperation in wireless multi-hop networks by 

using the prisoners’ dilemma game (PDG) as the base of their model. The assumption is 

that, any two neighbors have a uniform network traffic demand that is not always the case 

in real network. The authors in [13] used game theory and graph theory to investigate and 

prove the conditions under which, cooperation among nodes can evolve in the network. 

The authors concluded that the probability to have all nodes in the network cooperating is 
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very small. Nevertheless, local subsets of cooperating nodes may exist. The model relies 

on a dependency loop. Even though, each node is only aware of its neighbors as opposed 

to the full network topology. Obviously, dependency loop will not be common 

knowledge among nodes. To reach a Nash equilibrium point in a non-cooperative game 

could be desirable because it guarantees stability among rational players [30]. A non-

cooperative game is said to be in a NE state if no single player can be better off by 

changing its own strategy while other players remain unchanged. However, if at least two 

players colluded, they might be better off by changing their strategies, but this is outside 

the scope of non-cooperative games. In [6], the authors investigated equilibrium 

conditions for packet forwarding strategies in wireless ad hoc networks, but they restrict 

their study to static configurations, i.e., no mobility is applied on the nodes. 

Yu et al [17] proposed a game theoretic approach to a secure cooperation in ad hoc 

network. Comparably, a mechanism design has been used to enforce node cooperation 

and develop optimal and truthful routing mechanism. By definition, a mechanism design 

is a field of game theory that investigates how privately known preference of several 

strategic players can be aggregated toward a desirable outcome. The desirable outcome is 

sometimes the maximization of some utility function or to have strategic players 

truthfully reveal their private information. 

2.3 BARGAINING GAME THEORY 

Cooperative game theory abstracts from the procedures and details of reaching an 

outcome and focuses on the possibility of reaching an agreement. It studies the 

frictionless negotiations among rational players who can make binding agreements with 
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or without the need to enforce by means of punishment on the rule of the game. 

Commitments are fully binding and enforceable. 

The bargaining formal theory was introduced by John Nash in his research papers [33]. 

The final outcome is the main interest and it is often convenient to analyze the domain of 

all outcomes in order to uncover an efficient outcome. The desirable solution is 

expressible in terms of axioms, which ideally should incorporate some fairness and 

efficient features to the solution. A bargaining problem is represented as a pair (S, d) in 

the utility space. The point of disagreement represents the minimum utility level that 

players will obtain if negotiations fail. The set S must include points that dominate the 

disagreement point. However, there is a positive surplus to be divided among the players 

once their minimum requirements are reached. The main question to be asked usually is 

“How the surplus should be divided?”. The strategic bargaining describes what the 

outcome will be and the axiomatic bargaining emphasizes on how negotiations can 

evolve to reach an outcome. 

In [29], strategic bargaining studies the exact specification of the negotiation procedure 

such as the periodicity of each exchange, the duration of communication between the 

players, the discount or threat each time an agreement is not reached. It helps identify the 

behavior of the players. As a strategic bargaining procedure, we have the Rubinstein-

Ståhl’s model of alternating offers [1] [29]. The negotiation is modeled very closely to a 

real-time game. Suppose there are two players bargaining over the division of a surplus 

of 1. In the period 1, Player 1 will make an offer on the division (x, 1-x). Player 2 can 

either reject or accept the offer. If the offer is accepted, the bargaining game ends. If the 
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offer is rejected, then Player 2 will make a proposal on the next period. Therefore, Player 

1 will respond. The negotiation continues until an outcome is reached or the threat or 

discount factor brings the game to an end. 

The axiomatic bargaining [30] assumes some desirable properties about the outcome of 

the negotiation process and then identifies process rules that will guarantee the outcome. 

The bargaining process is ignored completely. The Nash bargaining solution specifies 

four axioms [33], to be should satisfy: 

i. Symmetry: Two players bargaining for a better payoff with symmetric utilities get 

the same payoff. It ensures that the solution yields a fair outcome for any player. 

ii. Pareto Optimality: The solution is on the Pareto boundary. The axiom reflects the 

rationality of the players. Therefore, If players work together during the 

negotiations, they would not accept the disagreement point as the outcome when 

they can do better and reach an agreement. 

iii. Invariance with respect to affine transformation: In case the defined payoff 

functions are rescaled, the obtained solution should be rescaled the same way. For 

example, a change in valuation for the players’ utility implies a change in the 

valuation of the outcome of the game.  

iv. Independence of Irrelevant Alternatives (IIA): Let’s suppose the solution for the 

bargaining problem (S, d) is s*. By considering a new bargaining (S’, d), where 

𝑆𝑆′ ⊆ 𝑆𝑆. Therefore, the solution of the new negotiation problem is also s*. The 

solution obtained is independent of the “alternatives” that are deemed irrelevant 

because they were not chosen in S, so their absence should not alter the outcome. 
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Brahma et al [16] modeled the problem of dynamic spectrum access by a network of N 

nodes as a perfect information infinite horizon bargaining game. Players negotiate among 

themselves to agree upon a sharing rule of the channels. The authors investigated the 

subgame perfect equilibrium strategies of the bargaining game, each player can maximize 

its own throughput against other players. The impact of the discount factor is also taken 

into consideration. However, the authors do not consider the possibility of players 

bargaining with the intent of malice, a player does not willing to share equitably the 

resource. Hassan et al [34] showed that users can apply a brinkmanship technique to 

present credible threats to their provider by using an ultimatum bargaining game and 

therefore, constraint the provider to allocate more resources to users’s services. 

2.4 NETWORK SECURITY GAME 

The use of game theory to address network security challenges has increased in recent 

years. Generally, the main objective of a rational attacker is to intelligently choose its 

strategy to maximize the damage to the network while the network administrator 

strategies are to minimize the damage to the network. The attacker’s and the defender’s 

objectives are diametrically opposed. Applying the zero-sum game to model network 

security [38], where by definition, the winning of a player generates the loss of its 

opponent. The game reaches the well known Nash equilibrium (NE) when, each player 

applies the best response to its opponent strategy. Neither the attacker nor the network 

administrator can unilaterally make a gainful deviation from the Nash equilibrium.  

In the game presented in [8], strategies and payoffs are assumed to be common 

knowledge to all players. The network security game is known as a game of complete 
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information. Otherwise, the game is an incomplete information which can be formulated 

as a Bayesian game as in [19]. The network security game can also be modeled as a static 

game [30], a repeated game or generally as a stochastic game [8]. A stochastic game is a 

generalization of a repeated game. In a repeated game, the game is played multiple times, 

players play the same stage game in all periods, whereas in a stochastic game, the stage 

game can randomly change from one period to the next. Game theory also provides a 

solid framework to model intrusion detection in a network [41]. A survey of game theory 

as applied to network security is provided in [42].  
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In this chapter, we address the problem of dynamic packet forwarding with a set of 

wireless autonomous ad hoc network nodes, where each node acting in a selfish manner 

tries to use the resource of other nodes. We model the dynamic packet forwarding 

problem as a modified Rubinstein-Ståhl bargaining game. In our model, a mobile node 

(player) negotiates with the other mobile node to obtain an agreeable and respectable 

sharing rule of packet forwarding based on its own available resource, such that a node 

should not agree to forward packets without the energy or storage capacity to do so. We 

investigate and solve this bargaining process by finding the Subgame Perfect Nash 

Equilibrium (SPNE) strategies of the game. We consider finite horizon of the bargaining 

game and examine its SPNE. The solution obtained from bargaining ensures that a 

mobile device always finds a peer to help forward packets in order to keep the network at 

flow. Extensive simulations using OMNET++ simulation frameworks are conducted to 

evaluate how the level of participation of each mobile node may impact the overall 

network performance. Simulation results show that our proposed bargaining game 

scheme performs better than other resource shared algorithms, namely the technique for 

order preference by similarity to ideal solution (TOPSIS) and the bargaining game based 

access network selection for heterogeneous network. 

CHAPTER 3  

DYNAMICS OF DATA DELIVERY IN MOBILE AD-HOC NETWORKS: A 

BARGAINING GAME APPROACH 
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3.1 INTRODUCTION 

In mobile wireless heterogeneous networks such as mobile ad hoc networks (MANETs), 

the main focus is on cooperation among mobile nodes. Whereas, mobile nodes are mainly 

constrained by the limits of their energy power, computational and transmission range, 

and also selfish node that may not be willing to fully cooperate with the overall network. 

Specifically, the limited energy and transmission range of a node encourage not to forward 

another node’s data packet given that the packet forwarding task consumes lots of energy. 

Unless, there is an incentive for greedy nodes to be participative in another node’s packet 

forwarding. Therefore, it may be in the node’s best interest to participate in order to 

extend the network lifetime. However, refusal to be part of another node packet 

forwarding will severely hinder overall network reliability and degrade the node’s own 

performance. Hence, it is essential to implement a mechanism that will motivate packet 

forwarding among nodes. 

The novel mechanism proposed in this chapter is a bargaining theoretical game 

between a mobile source node and its intermediary to provide resource in reaching an 

access point (AP). Whenever a mobile node generates packets to be forwarded to the 

nearest AP, the selected intermediary mobile node bargains and the transfer of data-packet 

occurs only if the splitting rule is agreed upon between players. Until the nodes agree upon 

the splitting rule, none of the mobile devices can start data transfer. Thus, this “delay” of 

the bargaining transaction also costs the node in terms of energy. Consideration of this 

cost is conducted by discounting future payoff of the node. The discount factor represents 

the perseverance of the node in waiting for the bargaining result to its favor. 
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The bargaining game is analyzed using backward induction and we investigated the 

SPNE strategies with the player in the game. The subgame perfect equilibrium (SPE) 

comprises a set of strategies such that, no player in a subgame can deviate from these 

strategies and gain a better payoff. The main contributions of this chapter are as follows: 

• We model the splitting rule which is agreed upon by each player before any data 

communication starts and this is performed without the need of an arbitrator or central 

manager. 

• We model the problem of dynamic data delivery, where mobile nodes need to agree on 

the splitting rule of data packet among themselves using the Rubinstein-Ståhl bargaining 

game while in movement with the optimism not to lose wireless communication. 

Prior work in the area by researchers are summarized and limitations are also 

introduced. Rasheed et al [43] proposed a 3-tier security framework for authentication 

between mobile sinks and sensor nodes based on a polynomial pool-based key pre-

distribution scheme. Improvements are also made in security performance against a 

stationary access node replication attack. Munir et al. [44] proposed a multi-tier 

architecture for mobile wireless sensor network (WSN) as a key element of the future 

ubiquitous computing paradigm. The mobile WSN is also discussed with integration into 

a pervasive network and an analysis of the impact of mobility on performance related 

issues. Ren et al. [xx] explored the impact of multiple mobile sinks on end-to-end packet 

delay and energy depletion. Tradeoffs are considered to optimize both packet delay and 

energy consumption. Purposely, deploying multiple sinks that are moving randomly, they 

investigated the impact of sink number, speed, sink transmission radius, and data routing 
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on performance. Basagni et al [28] effectively improved the lifetime of a WSN. A 

mathematical model is defined to take into account realistic parameters. 

Niyato et al. [45] proposed an evolutionary game theoretic approach to solve the 

access network selection problem in heterogeneous networks (HetNets). The handoff to 

another network is dynamically handled by the users. The mobility-based method 

presented in [6] can be categorized as mobile-sink and mobile-relay methods, depending 

on the type of the mobile entity. Mobile entities can gather the data from the nodes by 

using sensor short radio transmission range, which is an efficient way of communication 

with respect to energy. 

The authors in[6] evaluated the use of Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS) for ranking candidate access networks in heterogeneous 

networks. Liou et al. [24] proposed a bargaining game based access network selection 

scheme for call requests in HetNet. The bargaining game considered some parameters 

such as the preference of the candidate access network to the call request. 

This chapter is organized as follows: Section 3.2 presents the system models. Section 3.3 

presents the game formulation. Section 3.4 analyzes the bargaining for resource allocation. 

Section 3.5 presents the bargaining with N players. Performance evaluation results are 

presented in section 3.6, while conclusions and future works are drawn in Section 3.7. 

3.2 SYSTEM MODELS 

In this section, we present the system models including the problem description, the 

network model, and the mobility model. 



32 

3.2.1 Problem Description 

We assume a MANET of N nodes indexed from 1 to N deployed in a wide area. A 

Node is mounted on a vehicle moving in a specific pattern. Each node can be a mobile 

router or a mobile broadcast access point. Since we have an infrastructureless network, 

communication between two distant nodes or an access point becomes a challenge. Nodes 

can be geographically isolated from other nodes, but they are within transmission range 

from one another. The packet-forwarding problem of selfish nodes is problematic. 

Incentive and reward are a motivation for greedy nodes to use their energy to relay the 

data of other nodes. Also, a gain maximization is obtained by always relaying data from 

many nodes and to allocate the limited resources (storage) to a maximum number of 

mobile nodes at the same time.  

3.2.2 Network Model 

As shown in Figure 3.1, the MANET consists of multiple wireless local area networks 

(WLANs) based on IEEE 802.11 standards and multiple access points (APs). A 

Transmission device mounted on a vehicle (bicycle, taxicab, car, police cruiser, fire 

truck, helicopter, etc.) is considered a mobile unit. APs are deployed all over the WLAN 

as a data repository for all data collected. 

3.2.3 Mobility Model 

The movement of mobile devices is seen as random on a 3-dimensional plane. To 

model the mobility, the commonly used random waypoint (RWP) [66] model is similar 

and close to reality. The mobile node moves randomly and freely without restrictions. The 

waypoints are random vectors uniformly distributed in the service area. 
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A mobile node maintains the same speed when moving between two random 

waypoints. In each time intervals the speeds are independently and identically distributed 

(IID). When a mobile device arrives at a waypoint, it may stop or change its velocity but, 

any change of speed is broadcasted to its neighbors. 

3.3  GAME FORMULATION 

We present in this section, the method and constraint used to select the best candidate 

among the neighbors for the bargaining game. The source node which is in need of data 

forwarding service broadcasts its request to all of its neighbors. Before any eventual 

candidate reply to the request, there are prerequisites such as the direction of the 

movement of the mobile device, the speed, and the available storage needed for packet 

forwarding. 

3.3.1 Energy and Signal Strength Constraint 

An intermediary node can volunteer its service only if it has the minimal resource 

requirements to carry out the work. Let us assume the source node s transmits its 

information to the destination node d with power Pd. and a minimum energy spent Es. The 

intermediary node should guarantee at least the threshold needed in term of energy Ei (Es 

≤ Ei) and a power Pi to transmit (Pd ≤ Pi) data with a signal to noise ratio (SNR) held to a 

minimum. 

3.3.2 Communication Traveling Time Constraint 

Consider two mobile devices within a distance d that are in radio transmission range 

TR, (d ≤ TR). 
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Figure 3.1: Example of mobile ad hoc network, nodes are mounted on vehicles. Source 

and access point (AP) need intermediary node to be reachable. 
 
Let Teta denotes the elapsed time of both mobile devices from their first communication 

to them before running out of transmission range. Let u be the vector that represents the 

trajectory of the mobile source device. Let v be the vector of point of origin for the source 

device and directed toward the destination device point represented by the intermediary 

mobile device. The inner product of two vectors denotes by < u, v >. Denote the norm of 

vector u by ||u|| and norm of vector v by ||v||. Let θ be the angle between vectors u and v. 

Following the base of linear algebra,  

||||*||||
,)cos(

vu
vu ><

=θ and )(cos1)sin( 2 θθ −=                                    (3.1) 

Define the handoff point to be the points in which both mobile devices are distant from 

each other of D (D > TR).  
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(a) V1 ≠ V2, θ={0, π}, same 

direction 
(b) θ≠{0, π}, perpendicular 

direction 
 

Figure 3.2: The total travel distance of MDs before being out of range. 
 
During the communication traveling time (Teta), if a mobile device changes its speed, 

the overall time will be an arithmetic summation based on each segment of distance with 

constant and uniform speed, then Fig. 2 shows that Teta, is calculated as  
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Firstly, in traditional direct transmission, the sender transmits its information to the 

destination with power Pd. To achieve the minimal link quality γ, transmitted power has to 

be sufficiently large for the SNR that the destination received satisfies  

γ
σ

≥= dsd
d

GP
SNR ,                                                           (3.3) 

where σ is the noise level and Gs,d is the path loss from source to destination, and γ is the 

SNR threshold of the destination.  
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Secondly, we consider the transmission case of a receiver on the move. While a source 

receives information from neighbors, the selection of the best candidate is based on all 

information received such as the location, speed/velocity, direction, and signal strength.  

If the mobile device choice is always based on the mobile node moving to same 

direction and closest speed, then the large dwelling time implies more packets will be 

forwarded through the same mobile node. Thus, the network will experience higher 

throughput and the node will experience less delay in packet forwarding. 

3.4 BARGAINING FOR RESOURCE ALLOCATION 

A cooperative game in which players improve their payoffs through negotiation is also 

known as bargaining game [1]. We model the resource allocation problem as an infinite 

horizon Rubinstein- Ståhl bargaining game [29]. Both players must agree on the splitting 

rule before the data communication starts. In our model, player 1 has data packets to be 

forwarded to the AP. The requester prefers to obtain as much resources as possible in 

order to improve its QoS level; player 2 has the resource storage to forward the data 

packet but prefers to keep as much resource as possible in order to accept more requests 

from other mobile devices in need for data forwarding in the near future. 

 

Periods Offerer (Source Node) Receiver (Mobile node) 

1 K-1 1 

2 K-Kδ+δ Kδ-δ 

3 K-Kδ+Kδ2-δ2 Kδ-Kδ2+δ2 

4 K-Kδ+Kδ2-Kδ3+δ3 Kδ-Kδ2+Kδ3-δ3 
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… … … 

p K-Kδ+Kδ2-Kδ3-…+δp-1  Kδ-Kδ2+Kδ3-…+δp-1 

   

 
Table 3.1: Subgame Perfect Equilibria: Horizontal lines represent the period of each session, then 

the splitting of player 1 and 3rd column is the part of the receiver (player 2). 
 

The bargaining game proceeds in “time-periods” in which one player proposes a 

splitting rule to the other player who can “accept” or “reject” the offer. Let x be the 

amount of resources player 1 could obtain during the request of the bargaining game. Let y 

be the amount of resources available that player 2 could keep or spare by not offering 

them to the requester and available in near future to other requester. Denote K as the total 

amount of resource available to player 2, K-x = y. In periods 0, 2, 4, …, 2k (where p =0, 1, 

2, …) player 1 proposes a splitting rule (x, K-x) to player 2 whom can accept or reject. The 

game ends if an offer is accepted. In periods 2p+1, player 2 makes an offer to player 1. 

We have an infinite horizon game of perfect information. 

3.4.1 Payoffs 

Let consider that if (x, K-x) is accepted by both players at period t, then the payoffs of 

player 1 and 2 are δtx and δt(K-x) respectively. δ ϵ [0, 1] represents the discount factor of 

the players. The discount factor is also a representation of the delay cost for achieving a 

bargaining outcome for the players. There will be no data communication between 

players, unless there is an agreement on the splitting rule. The cost of not reaching an 

agreement is high for both players, because of the mobility of the players. There is a 

possibility for a mobile device to be out of transmission range and start the bargaining all 
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over again with another mobile device. A player values a resource more now than it values 

the same resource in a future period. The decrease in value of the resource represents the 

disappointment of the players for being unable to start forwarding data right away. As the 

δ increases, the players become more anxious because of the volatility of the medium, and 

time delay between two bargaining periods decreases.  

The payoff of player 2 is also based on the ratio of the resources allocated to the 

requester over the resource available to the receiver before the bargaining started, and the 

energy lost during long bargaining sessions. 

3.4.2 Nash Equilibrium 

There are many Nash equilibrium (NE) in this game. Any strategy profile in which 

player 1 splits its data load is a Nash equilibrium. Generally, splits of the overall K loads 

of player 1 between both players correspond to a NE strategy profile. However, not all 

profiles are a subgame perfect equilibrium (SPE). For example, if player 2 rejects first 

offer of player 1 during period p=0 and offers player 1 a share x > δ(K-1) in the following 

period, then that player should accept, because any share bigger than a previous rejected 

share based on the worthiness of the share at the period. 

3.4.3 Solutions of the Bargaining Games 

Table I shows the SPE of games in different periods [3]. The unique SPE in the last 

period or the period before the device goes out of range is for the player who makes the 

offer. From the table, the SPE shares demanded by the players in an increasingly larger 

period form a pattern. Depending on period p (odd or even), the SPE share demanded by 

player i:   
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 p is even: the SPE split offered by player i is: 

112

1
)1()...1( −− +

+
−

=−−+− p
p

p KK δ
δ
δδδδ    (3.4) 

Also, player i accepts any split equal to or less than: 
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 p is odd: the SPE split demanded by player i is: 
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Also, player i accepts any split equal to or less than: 
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Thus, the unique SPE solution of p periods (odd/even) is “Player i always offers a share 

of (3.4) respectively (3.6) for odd values of p, and he accepts any share greater than to 

(3.5) respectively (3.7) and rejects any smaller split.”  

Let consider the case in which two mobile devices are in range for a longer period of time 

which mean period p tends to infinity. 
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Player i will not reject any split greater than: 

δ
δδ

δ
δδ

+
≈








−+

+
−− −

−

∞→ 1
)(

1
])(1[lim 1

1 KK p
p

p

    (3.9) 

3.4.4 Unicity of the SPE Solutions 

According to the bargaining game theory [29], the safety payoff value of a player in a 

game is the guaranteed amount the player can get in the bargaining game. Let m1 and M1 

be player 1’s lowest and highest payoff values in any SPE where player 1 makes an offer. 

Denote n1 and N1 be the lowest and highest payoff values for player 1 game in which 
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player 2 makes the offer. 

Player 1 makes an offer to player 2, player 2 will accept x such that his share of K-x 

exceeds δN2, knowing that player 2 cannot expect more than M2 in the continuation game 

following his refusal. Thus, we have,  

m1 ≥ K- δM2      (3.10) 
Player 1will not reject a split of more than δM1.  

M2 ≥ K- δM1      (3.11) 
Player 2 will never offer a share greater than δM1. Thus, player 1’s continued payoff 

when player 2 makes an offer is  

N1 ≥ δM1       (3.12) 
Since player 1 can obtain at least m1 in the continuation game by rejecting player 2’s 

offer, player 1 will reject any x such that x < δm1. Thus, we have n1 ≥ δm1  

From [3], we can say that: 

δ+
==

122
KMm     (3.13) 

And similarly, we also have  

δ
δ
+

==
122
KNn     (3.14) 

Thus, the subgame perfect equilibrium payoffs between player 1 and player 2 in the 

bargaining game are unique. 

3.5 BARGAINING WITH N PLAYERS 

 With the intermediary device not willing to make available all of its resource to only 

one source device, we will investigate the game with N players. We have N players 

(mobile devices) which need to forward packets to the nearest AP. The intermediary node 
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which carries the data acts like another player to have its share of the resources. Let Pi 

denote the player making an offer and let P-i = {R1, R2, …, RN-1} be the players receiving 

offers. 

To avoid data lost by collision, a token is implemented. Players communicate only when 

they are in possession of the token. A player Pi makes an offer by proposing a splitting 

rule (x1, x2,…, xN-1, xN), where xi is the resource needs by player Pi and xN = K-Σxi, 

i=1..N-1. PN represents the intermediary mobile device. For example, the P1 splitting rule 

is rejected by any P-1 players, then player P2 is next to propose a splitting rule. In case all 

players P-i accept their respective offers, the bargaining ends and the data transfer starts 

[16] [6] 

 

Require: # player, N=2; Time period before out of range, T; Payload, Q; 
time transferring a packet, t; Cost factor, δ; 
Initialization: Commitment level value for player 1 and 2 is c1 and c2 
respectively; 

1: c1 ← value; c2 ← value; 

2: While T > 0 do 

3:   Player 1 proposes z1 and z2 = Q – z1; (z1, z2) with  z1 ≥ c1 

4:   Player 2, accept ← (z2 ≥ c2; True, False) 

5:   If !accept then 

6:     T ← T – t; z1 ← z2δ; z2 ← Q – z1; 

7:     player 2 proposes z2; (z1, z2) with z2 ≤ c2 

8:     player 1, accept ← (Q - z2 ≥ c1; True, False) 

9:     If !accept then T←T–t; goto 4; Else Transfer Q; Break; End if 

10:   Else  Transfer Q; Break; End if 
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11:    4:   z1 ← z2δ; z2 ← Q - z1 

12: End While 

 
Table 3.2: Algorithm for Bargaining 

 

Let define the payoff of the players. For an offer xi to be accepted in period t, the payoff 

of Pi is δtxi , δϵ[0, 1] is known as the discount factor (delay cost in achieving the 

bargaining outcome).  

3.5.1 Subgame Perfect Equilibrium (SPE) 

Consider Pi, the player who makes the offer to players P-i. The token is distributed 

following the round robin between all players. The SPE of the bargaining game; Pi 

demands of a split 

∑ =

N

j
j

K

1
δ

      (15) 

The receivers of the offers P-i to share,  

∑ =

N

j
j

pK

1
δ

δ       (16) 

Equations (15) and (16) show that the SPE shares of a player is K/N as δ tends to 1. 

Since we are in a volatile environment with nodes moving randomly, there are chances for 

nodes to be out of range. There is no patience for all players; there is no need to be 

comfortable rejecting offers with hope for better. It may end up being a waste of precious 

energy. It is insightful to think that player PN (carrier) gets a lesser fraction of the 

resource. In our game, all players are anxious to find themselves out of range, combine 

with the waste of energy. Therefore, players will aim for an equal distribution of the 
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resources.  

3.5.2 Resource Allocation Algorithm  

The minimal acceptable share for a player is the only private information. Sharing 

information that may cause others to not offer anything better during the bargaining 

session. The algorithm in table II shows the resource allocation procedure players 1 and 2 

will invoke when making an offer during bargaining. 

3.6 SIMULATION RESULTS 

We developed an OMNET++ [46] based simulation model for our proposed scheme. 

The OMNET++ is a discrete-event network simulation framework. The goal of this 

framework project is to develop a preferred and an open simulation environment for 

networking research. As shown in Fig. 3.1, the simulation environment is a grid where 

mobile nodes move following the north, south, east and west direction. The system 

parameters for this MANET are provided in table 3.3. The mobile device’s speed is a 

random variable which is uniformly distributed. The device mobility is randomly and 

independently set from each other. The slot duration is set to be larger than packet 

duration in order to keep the nodes in the network time-synchronized. These guard bands 

are needed to compensate the arbitrary delays incurred by transmitted packets due to 

signal propagation delays or clock drifts. 

The proposed bargaining game scheme in this chapter is compared quantitatively with 

the scheme of bargaining game based access network selection (BGANS) [24], and also 

with the TOPSIS scheme [16] [26]. With the TOPSIS scheme, only mobile devices with 

speeds lower than 2 m/s will see LANs as candidate access networks. In the BGANS 
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approach, if the dwelling factors are larger, without taking into account the residual 

energy; then there is a high possibility of handoff because of lower energy for 

transmission. 

 
Figure 3.3. Handoff Occurrence Ratio 

 
Figure 3.3 represents the handoff occurrence ratio. By definition, the handoff occurrence 

ratio is the average number of handoffs that a mobile device tried each time to connect. 

The proposed scheme has a better handoffs ratio compared to the TOPSIS and BGANS. 

The improvement is about 60% lower than the BGANS and the BGANS is about 40% 

lower than TOPSIS for an arrival rate of 0.1. The ratio improvement is due to that the 

bargaining game takes into consideration the devices’ mobility, the time to remain 

connected and mainly the availability of the resource to be allocated. The receiver of a 

mobile device tends to allocate a portion of its resources based on section VI. A portion 
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of a requested resource is always better than no resource at all. Meanwhile, the BGANS 

tends to allocate more resource to requests with larger dwelling factors. 

 

Figure 3.4: Handoff Request Blocking Ratio 
 

Figure 3.4 shows the handoff request blocking probability, defined as the probability that a 

mobile device request for data communication fails to handoff to the intended mobile 

node. The performance improvement for handoff request blocking is lower compared the 

TOPSIS and BGANS schemes for about 25% for the BGANS scheme. Our proposed 

scheme uses the fact that a mobile device is not isolated or clustered. A receiver mobile 

device of the request has resources to allocate reason of the bargaining. Multiple requests 

from different mobile nodes may cause channel interference and block a request to the 

destination. The handoff request blocking ratio increases when the arrival rate goes over 

the value of “1”. Hence, the mobility and the bargaining game scheme lower the handoff 

blocking probability.  
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Figure 3.5: New Request Blocking Ratio 
 

The above figure 3.5 shows the new request blocking ratio/probability versus the arrival 

request rate for mobile nodes connectivity. The proposed scheme shows an increase of the 

new request blocking probability when the arrival rate is about 1.1, and this improvement 

is based on the availability of a shared bargaining resource to be allocated. The nodes 

solicited for data communication are not the same which reduces the probability of new 

blocking request. The TOPSIS and the BGANS new request blocking probability tend to 

the same result with different arrival request rate.  

3.7 CONCLUSION 

In this chapter, a bargaining-game algorithm has been proposed for the resource allocation 

of mobile nodes in wireless mobile ad hoc networks. The algorithm is based on the 

Rubinstein-Ståhl bargaining game model with the objective of maximizing the resources 
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to be allocated to a mobile device in need. The bargaining game algorithm takes into 

consideration multiple factors such as the general connection duration among mobile 

devices, the mobility pattern, and the payload to transfer. Based on the experimental 

results from the OMNET++ simulation framework, we found that the scheme proposed 

may perform better than the TOPSIS and BGANS schemes in terms of the handoff 

occurrence and request dropping probability per connection. 

For future work, we plan to investigate this model further with a continuous-time which is 

a more realistic model. We will explore the possibility of combining the bargaining game 

with another game theoretic model to refine the payoffs of players. 

  



48 

 

One of the major design issues in dynamic networks is the availability of resources 

when in need. Because of the volatility of wireless connections in mobile ad-hoc 

networks (MANETs), resource seems scarce when mobile devices need to forward 

information on a dynamic network. A connection through a mobile node may not be 

available because of the greediness of a selfish node. In this chapter, we address the issue 

of dynamic packet forwarding by a set of wireless autonomous ad hoc network nodes. 

Wireless nodes acting in a selfish manner try to use the resource of other nodes without 

being participative. We model the dynamic packet forwarding problem as a negotiation 

model game with an arbitrator. In our model, a group of mobile nodes (players) negotiate 

with a mobile arbitrator to obtain an agreeable resource allocation based on a simple 

majority rule to forward packets. The mobile arbitrator submits offers to each mobile 

device in the group, whereas mobile nodes decide to agree or disagree on the offer. The 

ultimate decision is made by simple majority. We investigate and solve the negotiation by 

finding the optimal Nash Equilibrium (NE) strategies of the game. We consider a 

Dirichlet distribution offers on a finite volatile and a sporadic time limitation set of 

mobile devices for the negotiation game. The solution obtained from negotiation ensures 

that a mobile device always finds a peer or arbitrator to help forwarding packets in order 

to keep the network flowing. Mathematical proofs and MATLAB simulations support our 

model. 

CHAPTER 4  

GAME THEORETIC ANALYSIS FOR RESOURCE ALLOCATION IN DYNAMIC 

MULTI-HOPS NETWORKS WITH ARBITRATION 
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4.1 INTRODUCTION 

In recent years, there has been tremendous active research in deploying and supporting 

terminal mobility in dynamic networks. One of the design issues is the resource allocation 

and availability in ephemeral networks such as MANETs [49]. A MANET is a group of 

autonomous mobile devices deployed without fixed infrastructures. In such a network 

with a sporadic connectivity, the device mobility can be exploited for data dissemination, 

and low link reliability is allowed for delay-tolerant applications. Although nodes may be 

static or mobile, they rely on other nodes for data transfer. Furthermore, an autonomous 

behavior and resource limitations such as in energy power may cause a node to be selfish. 

Cooperation or participation to keep the network flowing is crucial among nodes in the 

community or group [1]. Unless there is an incentive for greedy nodes to participate in 

another node’s data transfer, it may not be in the node’s best interest to deplete its own 

energy power. However, refusal to be part of packet forwarding will severely hinder 

network reliability and degrade the node’s own performance. Thus, it is essential to 

implement a mechanism that will motivate data transfer among nodes. 

From the existing literature, researchers have proposed ways to stimulate a node’s 

participation to strengthen network vitality. Many have discussed reward programs and 

incentive mechanisms to ensure that a selfish behavior is not inhibiting [82].  However, 

the need for an optimal solution is apparent in a volatile network which is a characteristic 

of MANETs.  The novel mechanism proposed in this chapter enforces a game-theoretic 

model of communication among nodes.  The model introduces a bargaining game with 

arbitration between mobile source nodes (players) and the intermediary mobile node (the 
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arbitrator). The arbitrator en route to the nearest access point (AP) invokes the negotiation 

game with players whenever requests to forward packets are made. The arbitrator submits 

a share of its resource availability to each player, and the players decide to agree or 

disagree on their offers. The shared value is a random number generated from Dirichlet’s 

distribution, which provides equitable outcomes for players. We investigate the NE 

strategies and how optimal solutions are derived to allocate the shared resource to players. 

The ultimate decision is based on a simple majority of players agreeing on their offers 

[31]. If a simple majority is reached, mobile devices may transfer data. Otherwise, new 

offers may be submitted again, and the cost of not reaching the majority vote is discounted 

from the overall resource by a factor δ (δ < 1). Discounting successive payoffs represent 

the perseverance of the players waiting for a better offer. If simple majority is not 

ascertained by the final cycle, and at least one player is out of transmission range to end 

the game. 

The mobility and wider transmission range of the arbitrator make it ideal for data 

transmission. Its mobility covers broader locations, while its wide transmission range 

reduces the number of hops between a source node and its destination. As a result, the 

arbitrator’s routing table is also up-to-date with the latest routes to destinations. 

Furthermore, introducing the bargaining game with arbitration ensures there is an 

incentive for nodes to cooperate in packet forwarding and expedite network reliability. 

Some early research works exist in this area, and we summarize them here. In [50], 

Buttyan and Hubaux introduced virtual currency as an incentive for nodes to cooperate 

with each other. Intermediate nodes, for example, charge the source a ‘nuglet’ to transfer 
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packet. Through the estimated route, the source allocates a set amount of ‘nuglets’ for a 

packet to be delivered at destination. When an intermediate node routes packet to the next 

node, it decrements the ‘nuglet’ count by one. This approach does not consider the 

possibility of nodes charging more than a unit of currency, as well as packets dropping 

when there are no more tokens available for payment. 

Liou et al. [24] proposed a bargaining game based on a network selection access 

scheme for call requests in heterogeneous networks. The bargaining game considers some 

parameters, including a candidate’s preferred method of network access, such as wireless 

metropolitan area networks, 3G/CDMA networks, and wireless local area networks, and 

the mobility pattern of the mobile device. This approach requires the network 

infrastructure to be static. The base stations are static while only the mobile devices are 

moving. 

Marti et al. [22] studied techniques for improving the throughput in MANET in the 

presence of nodes that agree to forward packets but fail to deliver them. The authors 

categorize nodes as watchdog nodes that identify misbehaving nodes and pathrater 

nodes, which help routing protocols to avoid these nodes. The watchdog feature has the 

ability to detect misbehaving nodes in a static neighborhood. However, it might not be 

able to detect a compromised node in the presence of ambiguous collusion and false 

behavior. 

Niyato et al. [45] introduced an evolutionary game theoretic approach in resolving the 

issue of network access selection in heterogeneous networks. The handoff to another 

network is dynamically handled by the users. The mobility-based method presented in [6] 
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can be categorized as mobile-sink and mobile-relay methods, depending on the type of 

the mobile entity. Mobile entities can gather data from the nodes by using their short 

radio transmission range, which is an efficient way of communication with respect to 

energy.  

Riordan and Grigoras [52] proposed a data mule service for mobile ad-hoc networks. 

The work is based on a service-driven MANET. The client is a requester of a service, and 

the provider of the service may no longer be on the same network due to mobility. The 

mule is highly mobile, and it joins a large network to have the best chance of delivering 

results to the requester. This approach involves the storage of multiple network 

memberships and requires the mule to be the data transporter itself, which is good for 

delay tolerant applications. 

In this chapter, we are interested in resource allocation and optimization in 

heterogeneous MANETs with devices in full mobility. This is obtained through the 

proposition of bargaining games with an arbitrator applying the Dirichlet distribution. 

The remainder of this chapter is organized as follows. Section 4.2 presents the system 

models and motivations. In Section 4.3, we propose the game theoretic analysis. Section 

4.4 presents the negotiation with n players. Section 4.5 presents the simulation results 

while conclusions and future works are drawn in Section 4.6. 

4.2 SYSTEM MODELS AND MOTIVATIONS 

In this section, we first present our system models under the problem description, our 

motivations towards this work and the network model. 
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4.2.1. Problem Description 

We consider a scenario in MANET with N nodes indexed from 1 to N deployed in an 

area. Nodes are fixed or mounted on a vehicle moving through various routes. Each node 

can be a mobile router or a mobile broadcast access point. Each node also has the ability to 

store, process and relay packets to other nodes if there is a need to do so. Due to the 

limited resource of a node, relaying packets is not always in the node’s best interest, but 

it’s in the best interest of the overall health of the network. Since we have a system 

without a fixed infrastructure, communication between two distant nodes or an access 

point becomes a challenge. Nodes can be geographically isolated from other nodes, and in 

order to remain in communication with others, a negotiation with intermediary nodes is 

necessary to have their packets relayed. The packet-forwarding dilemma of selfish nodes 

is an issue. Incentives and rewards are motivations for greedy nodes to use their energy to 

relay data of other nodes. 

4.2.2 Motivations 

Mobile devices in MANETs are selfish due to the limited resources available to them. 

Due to the greediness of these nodes, it might be difficult for distant nodes to 

communicate. In order for a source node to communicate with a distant destination node, 

the source needs to run the routing algorithm and find the shortest path (multi-hop 

network). It must then negotiate incentives and rewards with nodes along the path to 

forward packets. Providing arbitrators as data carriers (mules) [52] and mobile devices 

with wider transmission is beneficial in a multi-hop network because they can reduce the 

number of hops as a result of their extended radio ranges. An arbitrator’s mobility can also 
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provide the latest location that a node previously encountered in its pathway through a 

routing table. Therefore, when an arbitrator offers to be the data carrier for a source node, 

there is a better chance of having fewer hops to reach the destination. 

The arbitrator’s role in the MANET introduces some implementation constraints which 

needs to be considered. First, multiple nodes can solicit the same arbitrator at the same 

time. To avoid collision packets due to the hidden node problem on the arbitrator’s 

channel [53], the mobile nodes do not have to transmit at the same time. The hidden 

terminal problem occurs when a node is in transmission range of a wireless access point 

(AP), but not from the transmission range of other nodes communicating with the 

determined AP. This leads to difficulties in media access control. To solve the problem, 

the arbitrator implements a round robin algorithm [6] [53] coupled with the handshaking 

procedure of the carrier sense multiple access with collision avoidance (CSMA/CA). 

Apart from accommodating selfish nodes in the MANET, the arbitrator may also have to 

deal with malicious nodes. These malicious nodes may collude with each other to drain an 

arbitrator’s resource. Malicious nodes can extend the duration of the bargaining, which is 

achieved by generating multiple bargain requests [54]. Meanwhile, normal nodes wait to 

strike a bargain deal with the arbitrator before going out of radio range. Therefore, the 

main objective of the malicious nodes is to waste energy resources of the arbitrator and 

cause delays. The proposed solution to such collusion is for the arbitrator to limit the 

number of bargaining requests and time spent with each node. 
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4.2.3 Network Model 

The MANET consists of wireless local area networks (WLANs) based on IEEE 802.11 

standards and multiple access point (APs). Transmission devices mounted on vehicles 

(light poles, bicycles, taxi cabs, cars, police cruisers, fire trucks, helicopters, etc.) are 

considered mobile units. APs are deployed all over the WLAN as data repositories for all 

collected data. 

The movement of mobile devices is seen as random on a 3-dimensional plane. The 

mobile node moves randomly and freely without restrictions, but the mobility coverage 

area of two different types of vehicles may be different. For example, a city police cruiser 

may cover city limits while a sheriff’s cruiser may cover both city and county limits. The 

waypoints are random vectors uniformly distributed in the service area. A mobile node 

keeps its neighbors informed by broadcasting any change that occurs, such as changes in 

speed, direction, location, etc. During each time interval, the speeds are independently and 

identically distributed (IID). When a mobile device arrives at a waypoint, it can stop or 

change its parameters. We also present the method and constraint used to recognize the 

arbitrator among the neighbors for the negotiation game. Nodes in need of data forwarding 

services broadcast their request to all of their neighbors. The eventual arbitrator broadcasts 

its availability to collect data from neighboring nodes. The arbitrator in the vicinity replies 

to the group request only if it has the energy power and resource available to deliver data 

to the destination. 
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4.3 PROPOSED GAME THEORETIC ANALYSIS 

In this section, we provide an analysis of strategic interactions with the arbitrator and the 

general equilibrium property of the negotiation game that uses simple majority rule with 

finite horizon of negotiations. A node may be a radar unit, a wireless application, or sensor 

involved in any monitoring activity or data supplying activity. We may have multiple 

nodes to monitor the same environment or event. Given the limited mobility and 

selfishness of nodes, a single node cannot sense and deliver data on its own [49]. Rather, a 

node with high mobility is used as a mule (the arbitrator) for data transfer. An arbitrator in 

an area collects data to be transferred to the AP and also governs the resource to be 

allocated to each node. The shared resource is randomly assigned. Nodes receive their 

offers and decide to either accept or reject them. A simple majority vote carries out the 

ultimate decision. It is necessary to calculate the number p of negotiators yielding to their 

offers, such that p ≥ int(n/2)+1, where n is the number of negotiators, and int represents 

the integer division function. If the condition holds true, the majority of offers is accepted. 

Otherwise, it is rejected, the players proceed to the next round, and the resource is 

discounted by δ<1.  

4.3.1 Negotiation Model 

The players are the nodes. The set of players is N = {1,2,…, n}. An arbitrator is 

introduced as an independent participant that owns the data-carrier unit to be shared 

among players. The arbitrator submits offers to players and computes the decision. Players 

provide location coordinates, speed, and direction of their movement. Let’s assume that 

the arbitrator represents a random generator. Consider k, a given time interval that 
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negotiations run on. At each shot, the arbitrator makes random offers. Also consider K the 

number of interval cycles before the game is over due to node(s) being out of range. If 

negotiations result in no decision between players, the game ends. 

Based on the current location each player yields, the arbitrator estimates the residual 

travel time before the group is dismantled. In order not to lose the negotiation session 

completely, the arbitrator offers an equal allocation on the last time interval. Each player 

can estimate its residual travel time with the arbitrator. The arbitrator applies the random 

generator described in the following subsection. 

4.3.2 Dirichlet Distribution 

The Dirichlet distribution by definition, captures a sequence of observations of the n 

possible outcomes with n positive real parameters xi, i=1,…,n, each corresponding to one 

of the possible outcomes. The probability density function (pmf) of the Dirichlet 

distribution (Dir) for variable vector xi = (x1, x2,…, xn) with parameter vector (k1, …, kn) 

is given as  
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depends on a set of parameters (k1, …, kn). They serve for adjusting the weights of the 

distribution and if k is not a constant vector, the density is not symmetric [31]. The 

operation Γ represents the Gamma function.  
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4.3.3 Negotiation Game with Three Players 

For simplicity, we start by presenting a three player negotiation game with an arbitrator. 

The n players’ case study will be the subject of section V. In this section, we assume that 

at least two players agree on their offers, the game ends. We also assume that the arbitrator 

is the data-carrier. The arbitrator possesses a data storage unit available for packet 

forwarding. For example, a 500 Megabytes of memory space available will be shared 

among players if they agree on the offers. A share is presented as a fraction of a unit. 

Let us examine the case of three players, and consider that the negotiations cover the 

horizon of K shots. Thereafter, the game ends by count down if after K shots, there is no 

agreement and any one player is out of transmission range. Let us suppose that k shots 

remain. The arbitrator makes offers to players in a form vector (x1k, x2k, x3k). During each 

cycle, offers represent random variables distributed according to the Dirichlet law. The 

joint density function has the form, 
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where x1+x2+x3 = 1 and k1=k2=k3 = 1, so that all players have the same weight. 

For any given offer vector (x1, x2, x3), each of the three players has two alternatives:  

(i) accepts the current offer or  

(ii) rejects the current offer with the hope of a better offer at the next period.  

The delay caused by the non-agreement during each shot is discounted by δ (where δ ≤ 

1). The lost in energy for each player in terms of communication while rejecting an offer 

should be worth the wait. At the last shot k = 0 with all previous negotiations failed, all 
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three players always receive the ultimate offers. The ultimate offer is the vector (⅓, ⅓, ⅓) 

in terms of storage allocation. Since the arbitrator follows majority rule, we must analyze 

the scenario of two out of three players’ agreements to offers from the arbitrator. 

4.3.4 Optimal Strategies for Majority Rule 

An offer from the arbitrator is accepted if at least two of the three players consent. The 

horizon of negotiations is finite with K shots before players are out of radio transmission. 

Therefore, counting down to shot k, random offers from vector (x1k, x2k, x3k) are generated 

using the Dirichlet distribution. Let Uk denote the value of the negotiation game when k 

shots remain until the end. Let’s consider (x1, x2, x3) the offers for player 1, player 2 and 

player 3, respectively. Let’s introduce the vector o(xi), i = 1, 2, 3, where o defines the 

probability that player i accepts the current offer xi. Set ō(x) = 1 - o(x). Let’s look for an 

equilibrium among identical strategies. 

Theorem 4.1: The optimal strategies of the players in the negotiation at period k possess 

the form 
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The utility value of this negotiation game for player P1 meets the formula: 
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 Proof: The player P1 utility payoff at period k is given by the formula: 

𝑈𝑈𝑘𝑘 = sup
𝜇𝜇1

2� 𝑑𝑑𝑥𝑥1 � 𝑑𝑑𝑑𝑑2{(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝑈𝑈𝑘𝑘−1},𝑘𝑘 = 1,2, …
1−𝑥𝑥1

0

1

0
    (4.5) 

From (4.5), we have  𝐴𝐴 =  𝜇𝜇1𝜇𝜇2𝜇𝜇3 + 𝜇̅𝜇1𝜇𝜇2𝜇𝜇3 + 𝜇𝜇1𝜇̅𝜇2𝜇𝜇3 + 𝜇̅𝜇3𝜇𝜇2𝜇𝜇1 

And   𝐵𝐵 =  𝜇̅𝜇1𝜇̅𝜇2𝜇̅𝜇3 + 𝜇𝜇1𝜇̅𝜇2𝜇̅𝜇3 + 𝜇̅𝜇1𝜇𝜇2𝜇̅𝜇3 + 𝜇̅𝜇1𝜇̅𝜇2𝜇𝜇3 
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Where U0 = b; μ1 = μ1(x1); μ2 = μ2(x2); μ3 = μ3(1-x1-x2); 

𝑈𝑈𝑘𝑘 = sup
𝜇𝜇1

2 ∫ 𝜇𝜇1(𝑥𝑥1)𝑑𝑑𝑥𝑥1𝐺𝐺𝑘𝑘(𝑥𝑥1) + 2∫ 𝑑𝑑𝑑𝑑1 ∫ 𝑊𝑊𝑘𝑘(𝑥𝑥1)𝑑𝑑𝑥𝑥2
1−𝑥𝑥1
0

1
0

1
0     (4.6) 

Where 𝐺𝐺𝑘𝑘(𝑥𝑥1) = ∫ {(𝑥𝑥1 − 𝛿𝛿𝑈𝑈𝑘𝑘−1)(𝜇𝜇1 + 𝜇𝜇2 − 𝜇𝜇2𝜇𝜇3)}𝑑𝑑𝑑𝑑2
1−𝑥𝑥1
0  

And 𝑊𝑊𝑘𝑘 = (𝑥𝑥1 − 𝛿𝛿𝑈𝑈𝑘𝑘−1)𝜇𝜇2𝜇𝜇3 + 𝑈𝑈𝑘𝑘−1 

The optimal strategy for P1 is 𝜇𝜇1(𝑥𝑥1) = 𝐼𝐼{𝐺𝐺𝑘𝑘(𝑥𝑥1)≥0} 

Due to problem’s symmetry, the optimal strategy for P2 and P3 is idem μ2 = μ3. With 

Gk(0) ≤ 0 and Gk(1) ≥ 0 there exist a such that Gk(a) = 0. For and equilibrium among 

threshold strategies, Gk(x1) has a different shape on the intervals:  

Gk(x1)=(x1-δUk-1)(2 aI {x1 ≤1-2a } +       
2(1-a-x1)I{1-2a < x1 ≤ 1-a} +     (4.7) 

 0I{1-a < x1<1})      
With Gk(a) = 0 and a = δUk-1 , we can express  

Gk(x1)= (x1-δUk-1)(2 δUk-1 I {x1 ≤ 1-2a } 
+ 2(1- δUk-1 -x1)I{1-2 δUk-1  < x1 ≤ 1- δUk-1 }        (4.8) 

+ 0I{1- δUk-1  < x1<1}) 

If P2 and P3 choose the threshold strategies 𝜇𝜇2 = 𝐼𝐼{𝑥𝑥2≥𝛿𝛿𝑈𝑈𝑘𝑘−1} and 𝜇𝜇3 = 𝐼𝐼{𝑥𝑥3≥𝛿𝛿𝑈𝑈𝑘𝑘−1} then 

the best response for P1 must also be 𝜇𝜇1 = 𝐼𝐼{𝑥𝑥1≥𝛿𝛿𝑈𝑈𝑘𝑘−1} and by substitution  

𝑈𝑈𝑘𝑘 = 2�𝜇𝜇1(𝑥𝑥1)𝐺𝐺𝑘𝑘(𝑥𝑥1)𝑑𝑑𝑑𝑑1

1

0

+ 2� � {(𝑥𝑥1 − 𝛿𝛿𝑈𝑈𝑘𝑘−1)𝜇𝜇2𝜇𝜇3 + 𝛿𝛿𝑈𝑈𝑘𝑘−1}𝑑𝑑𝑑𝑑1𝑑𝑑𝑑𝑑2
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= 4𝛿𝛿𝑈𝑈𝑘𝑘−1 � (𝑥𝑥1 − 𝛿𝛿𝑈𝑈𝑘𝑘−1)𝑑𝑑𝑑𝑑1

1−2𝛿𝛿𝛿𝛿𝑘𝑘−1

𝑈𝑈𝑘𝑘−1

+ 4 � (𝑥𝑥1 − 𝛿𝛿𝛿𝛿𝑘𝑘−1)(1 − 𝛿𝛿𝛿𝛿𝑘𝑘−1 − 𝑥𝑥1)𝑑𝑑𝑑𝑑1

1−𝛿𝛿𝛿𝛿𝑘𝑘−1

1−2𝛿𝛿𝛿𝛿𝑘𝑘−1

+ 2 � (𝑥𝑥1 − 𝛿𝛿𝛿𝛿𝑘𝑘−1)(1 − 2𝛿𝛿𝛿𝛿𝑘𝑘−1 − 𝑥𝑥1)𝑑𝑑𝑑𝑑1 + 𝛿𝛿𝛿𝛿𝑘𝑘−1

1−2𝛿𝛿𝛿𝛿𝑘𝑘−1

0

 

The recurrent formula brings to the result and proof that: 

𝑈𝑈𝑘𝑘 = 𝛿𝛿𝛿𝛿𝑘𝑘−1 + 1
3

(1 − 3𝛿𝛿𝛿𝛿𝑘𝑘−1)(1 − 6𝛿𝛿2𝑈𝑈𝑘𝑘−12 ) ends of the proof ■ 

In the case of no discounting, δ = 1, and the horizon of negotiations is infinite, we have 

limk→∞ Uk = ⅓. Players should always take the offers when the arbitrator suggests. 

4.3.5 Equilibrium Analysis 

The strategy profile in period t is represented as {(xit, x-it), g-it } where (xit, x-it) is the 

splitting rule as offered by the arbitrator and g-it is the function with arguments as players 

except Pi “accept”, then we have a majority which is ruled and each player gets its share 

[13]. Otherwise, all players get nothing or “reject”. In the last period T-1, the strategy 

profile {(xiT-1, x-iT-1), g-iT-1 } is a NE if gjT-1 (|xjT-1|) = “accept” for j ≠ i and there is no 

value |xjT-1| > |zjT-1| such that gjT-1(|zjT-1|) = “accept” for j ≠ i that leads to the existence of a 

value |xjT-1| < |zjT-1|. 

Per NE, there is no incentive for Pi to unilaterally increase its demand because any 

increase request would cause a rejection by another Pj ϵ P-i which will cause the game not 

to reach the simple majority. As part of the number of players forming the simple majority 
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rule, no players would want to reject a share offered by the arbitrator, since any rejection 

of a share by the players will cause the game not to reach its simple majority quorum. 

Finite Horizon Bargaining game: The finite horizon bargaining is the applicable game 

for the MANET with arbitration for the reason that all players are dynamics, the mobility 

of the players makes the bargaining finite because players will run out of transmission 

range and furthermore cause possibly the end of the game. The finite horizon bargaining is 

easily solved by backward induction. 

Let’s consider n players, i =1, 2, 3,… the set of offers X=[ x1, x2, x3], let ui(x) the utility 

player i derives at period t. We assume ui(.)  is continuous, we normalize to 0 the payoff 

to players when there is no agreement. Let X0 denote the set of offers from the arbitrator 

that are individually rational for all players. X0 = {x ϵ X, ui(x) > 0 for all i}, X0 is non-

empty and the payoff is assumed to be discounted by a common factor δ as δt-1ui(x). The 

restriction is made to the stationary equilibrium where each player adopts the same 

acceptance rule in each period. Given any stationary acceptance rule σ-i tracked by other 

players, the largest expected payoff 𝑣̅𝑣𝑖𝑖(𝜎𝜎−𝑖𝑖) that player i may derive given σ-i. An optimal 

acceptance rule for player i is thus to accept the proposal x if and only if ui(x) ≥ δ𝑣̅𝑣𝑖𝑖(𝜎𝜎−𝑖𝑖) 

which is stationary. Denotes A = {x ϵ X, ∃N0 ⊂ {1,2,3}, |N0|= n0, ui(x) ≥ δvi ∀i ϵ N0}, 

and the equilibrium satisfies vi = P E[ui(x) | x ϵ A] + (1 − P)δvi where P = Pr(x ϵ A)  

 Proposition 4.1: Whatever is the majority requirement (n0), a stationary equilibrium 

exists. [13] 
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Proof: Define the function v → φ(v), where φi(v) corresponds to the right hand side 

(RHS) of vi and let ū = maxi,x ui(x). The function φ is continuous from [0, ū]n to itself, 

thus, it has a fixed point. 

4.3.6 Communication Overhead Analysis 

The analysis of communication overhead in MANETs is an issue because it affects the 

energy consumption of an already limited battery lifetime of the mobile node. The 

communication overhead is related to different parameters such as the network size, 

node’s mobility, node radio range, and network density [54]. The nodes requesting the 

arbitrator’s service are considered a spontaneous cluster with the arbitrator as the cluster 

head (CH) for the bargaining process. The CH knows the identities of the nodes in need 

of service based on their primary request message. The reply message from the CH is to 

inform about the availability of an arbitrator. Nodes are in 1-hop distance from the CH 

[54] [51]. The negotiation between mobile nodes and the arbitrator follows an efficient 

cluster-based exchange of messages and data. The spontaneous cluster is dismantled once 

the bargaining is completed or one of the mobile nodes is out transmission range. 

4.4 NEGOTIATION WITH N PLAYERS 

In this section, we show how to deal with the game engaging n players. The arbitrator 

evaluates the majority m = int(n/2)+1, such that the majority is reached if at least m 

players accept their offers during negotiations. The arbitrator randomly generates offers in 

the form of vector (x1k, x2k,…, xnk) at shot k. The joint density function of the Dirichlet 

distribution is described by:  
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Let Uk indicates the value of the game at shot k and K denote the number of negotiation 

cycles before the game ends. In a negotiation game with majority rule, the arbitrator needs 

to have the consent of the majority players (m players) in order to transfer the data 

collected to the AP. With n players on the line, the arbitrator aims for a complete consent 

from players. The arbitrator then counts the number of players that agree on their offers. 

The game ends when the counting is greater or equal to m. For the vector (x1k, x2k,…, xnk) 

generated at shot k, the optimality equation is defined by: 
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According to [4], the function Gkn(x) is in the form 
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By substitution into (4.10), (4.11) and also apply certain simplifications we have: 
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Theorem 4.2: Consider the resource sharing problem with n players and the agreement 

by the players of their shared resources. The optimal strategies of players at shot k are 

determined by: [4] 

.,...,1,)( }{ 1
nix

ki Uxii =Ι=
−≥δο  



65 

The utility value of this negotiation game for a player meets the recurrent formula 

defined as follows: 
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Proof: Consider the resource sharing problem with n players, the offer’s acceptance 

requires complete consent: p = n 

The joint density function to the Dirichlet distribution is as follows: f(x1,x2,…,xn)=(n-1)!, 

Denote Unk the utility value of players of the game at shot k,  

μ0 = 1-μ and μ1 = μ, also the annotation μσ where σ = {0, 1} 

𝑈𝑈𝑘𝑘𝑛𝑛 = (𝑛𝑛 − 1)! sup
𝜇𝜇1

�� � …� 𝜗𝜗
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Where 𝜗𝜗 represents 
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𝑖𝑖=1  
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The optimal strategy is defined by: 



66 
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Where the function Gnk-1 (x1) is defined as: 

𝐺𝐺𝑘𝑘𝑛𝑛(𝑥𝑥1) = (𝑥𝑥1 − 𝛿𝛿𝛿𝛿𝑘𝑘−1𝑛𝑛 )� …� 𝑑𝑑𝑑𝑑2 …𝑑𝑑𝑑𝑑𝑛𝑛−1                     (4.17)
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, 𝑥𝑥1 ≤ 1 − (𝑛𝑛 − 1)𝛿𝛿𝛿𝛿𝑘𝑘−1𝑛𝑛
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By replacing the expression into (4.18), we have: 

𝑈𝑈𝑘𝑘𝑛𝑛 = 𝛿𝛿𝛿𝛿𝑘𝑘−1𝑛𝑛 +
(1 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘−1𝑛𝑛 )𝑛𝑛

𝑛𝑛
 

This concludes the proof. ■ 
 

Require: # players, N≥3; Time period before out of range, T; storage, 
Q; time transferring a packet, t; Cost factor, δ; 
Initialization: ; 

1: c ← minvalue of player payload 

2: While T > 0 do 
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3:   Arbitrator makes offers to players 

4:   For each Player receiving offer do 

5:      If accept (Playeri) then increment count End If 

6:      If count reach Majority Then Data-Transfer 

7:      Else  No Data-Transfer   

8:               Q ← Q(1 – δ) ; 

9:      End If 

10:   Decrement T; 

11:   End While   

12: End  

Table 4.2: Algorithm for arbitration 
 

The complete consent of the players is the target of the arbitrator when offers are made. 

Players have the same weight when the time comes to transfer data. The randomly 

generated offers made by the arbitrator are the size of the resources to transfer to 

destination. In case, players participating in the game have the same weights, the 

distribution guarantees the same opportunities for all players. However, if a player has a 

higher weight, its parameter will be increase during the Dirichlet distribution. Moreover, 

the final solution of utility depends on the length of the negotiations horizon. The 

algorithm in table 1 shows how resources are allocated among the players.  
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4.5 SIMULATION RESULTS 

S1 D1A1

 

Figure 4.1: Snapshot of MANET, source S1, destination D1 and arbitrator A1 with 
different routes to destination 

In this section, we provide MATLAB simulations for better insight into analysis of the 

negotiations with or without arbitrators. The arbitrators use Dirichlet’s distribution to 

make offers to players. This research work has proposed a high-level, game theoretic 

modeling for decisions of data transfer in MANET based on a simple majority 

mechanism. In the simulation, we quantitatively compare our proposed mechanism with 

the Service Negotiation model for Selfish nodes in the MANETs (SNSM) [53]. 

Parameter Parameter values 

Simulation Time 500 sec 

rotocol AODV 

Number of Nodes 20, 30, 40 

Arbitrator Nodes 5, 10 

Transmission Range 20m, 35m 

Node Initial Position Randomly distributed 

Mobility Model Random Waypoint 

Simulation Area  100m x 100m 

Channel Type Wireless Channel 
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Node Speed interval 0.2 m/sec – 15m/sec 

Traffic Type Constant Bite Rate 

Time Step 0.1 sec 

Table 4.2: Simulation Environment 
 
The SNSM is also compared with the mechanisms of TIT-FOR-TAT (TFT) and Time-

Dependent of Bourware tactics (TBD) [45] [53]. The SNSM designs a negotiation model 

for service bidding of selfish nodes in MANET. The use of virtual currency enables selfish 

nodes to participate in the network lifetime achievement.  

The simulation setup parameters are provided in Table 4.2. We considered a MANET 

with 20 to 40 mobile nodes, including arbitrators randomly distributed initially in an area 

of 100m x 100m. Each node is free to move with a speed range of 0.2-15m/s, and also a 

20m radio range. Arbitrators have a 35m radio range. The heterogeneity of the mobile 

nodes in the network creates an asymmetric communication between a normal node and 

an arbitrator. Regular nodes can only communicate with an arbitrator if they agree on the 

offers from the arbitrator. Meanwhile, an arbitrator can directly communicate with any 

regular node provided that, a deal is made to find the shortest route to destination. 

 

Figure 4.2. MATLAB Simulation Screen of 20 Mobile Nodes (15 normal Nodes and 5 
Arbitrators) 
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Figure 4.3: (a) Complete Consent  (b) Simple Majority     
 

Figure 4.3 represents the advantage of using arbitrators for data transfer in a network 

with selfish nodes. We have a 75% connectivity failure due to mobility and selfish nodes 

ignoring communication requests. When injecting the network with 5 arbitrators, we have 

almost a 15% decrease in connectivity failure. By increasing the number of arbitrators to 

10 in a 20 node network, the connectivity failure ratio drops by 35%. It’s noticeable in the 

network that the arbitrators with wider radio ranges reduce the number of hops to the 

destination. 

The offers made by the arbitrator result in acceptance or rejection by the players. Data 

transfer only happens if a majority of players consent. The average utility is defined as 

such in [53]. In our proposed scheme, the mean is half the offers made to player i and its 

minimum acceptable payload. The arbitrator’s resources available to players are 

empirically shared between the subset of players for the duration of the negotiation. 
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Normalizing the shareable resource to “1” unit gives 1/n, the shared value allotted to each 

of the n players. Most successful negotiation sequences occur when the minimum required 

load per player is lower than 1/n. 

 
Figure 4.4: Average Utility Obtained during Negotiation Sequence for both SNSM and 

Arbitration 
 

Figure 4.4 shows the average degree of utility for the SNSM with a maximum value of 

0.1. Unsuccessful rounds of bargaining are represented by the value 1. The proposed 

solution with the arbitrators making offers to mobile nodes has a very low average utility. 

Mobile nodes also have low minimum payloads. The average utility between the offer and 

the minimum acceptable payload by a mobile node is almost equal to zero. The proposed 

solution has a better performance compared to the SNSM. 
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Figure 4.5: Negotiation Game with Three Players (c) 

 
The negotiation game implemented through simulation shows in figure 4 5 (a) that 

player’s payoff when using the complete consent for different value of the discount factor 

δ = {.95, .90, .85, 75} decreases. Around the period T = 6, it tends to stabilize and remain 

constant. For the simple majority in figure 4.5 (b), the player’s payoff decreases and 

stabilizes by the period T = 3. Of course, the majority player’s payoff is higher than the 

complete consent because, only the simple majority of players’ needs to agree and for the 

game to successfully end compared to an agreement of all the players. 
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Figure 4.6: Average minimum Payoff a player received during negotiation 
 
The figure 4.5 (c) shows the advantage of a simple majority in terms of player’s payoff 

compared to complete consent. The network is also beneficial with the fact there is an 

agreement for the arbitrator to carry the task of data transfer over. A better player’s payoff 

for the complete consent will be to reach an agreement by the third period (T = 3). The 

figure 4.6 shows an estimate of the average minimum player’s utility based on the number 

of nodes composing the spontaneous cluster. A cluster of two nodes will have almost the 

same minimum payoff for each node. 

4.6 CONCLUSION AND FUTURE WORK 

This chapter models the problem of dynamic resource allocation in a multi-hop MANET 

of N heterogeneous nodes (including arbitrators) as a perfect information bargaining game 

where arbitrators make offers using Dirichlet’s distribution. The proposed algorithm based 

on simple majority works to the advantage of the overall network through involvement of 
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arbitrators in data transfer. The arbitrator’s offers of 1/n to all requests enable the players 

to accept based on there being no frustrations with other nodes receiving preferential 

treatment. We have performed through simulation, which clearly showed that, if the 

arbitrators are rational, they can dynamically adapt their decisions to achieve the best 

benefit and optimize the network performance. The case of malicious arbitrators or 

malicious nodes and malicious arbitrators colluding will be the subject of future 

investigation.  
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Today, online network services have evolved as the highest-emergent medium, 

enabling various online activities to be lucrative. However, these lucrative activities also 

bring new forms of privacy threats to the community. In a reliable e-business service, 

users should be able to trust the providers of the service to protect their customers’ 

privacy. The service providers should not risk the personal and private information about 

their customers in cyberspace. There is an economic gain for a business provider when 

users trust the service provider. Despite those benefits, cyber security concern is the main 

reason some large organization may go bankrupted. Unfortunately, attackers may attempt 

to breach a provider’s database and expose customers’ private information. Therefore, in 

this paper, we propose a game theoretic framework for security and trust relationship in 

cyberspace for users, service providers and attackers. Mathematical proofs and 

evaluations support our model. Service providers may use the model to see how 

important and dissuasive against attackers is when investing in cybersecurity.  

5.1  INTRODUCTION 

In an ever-growing telecommunication industry, E-business gradually becomes of an 

importance to the social economy. While Online Social Network (OSN) has quickly 

grown into a wide network, for convenience, users see these OSNs not just as a platform 

to establish contacts, but also as a source of business, advertisement and entertainment. 

Although OSN users receive a variety of advantages and benefits from these services, the 

CHAPTER 5 

GAME THEORETIC MODELING OF SECURITY AND TRUST RELATIONSHIP IN 

CYBERSPACE 
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OSN providers are seeking financial gain. The applications developed for these OSNs 

generate enormous interest in how people use cyberspace like Internets, Facebook, 

Instagram, and Twitter. This win-win solution also comes with new threats and privacy 

concerns to the community [58]. Considering the exponential increase of requests in 

cyberspace on a daily basis, this is a critical challenge for users and providers. For 

instance, malicious websites and fake URL addresses that look like the real deal. The 

attack is led to make the user believe he is on the right website and trick him to provide 

personal information. This deception can come through web-forms in an email received 

from an acquaintance containing a link to click; but in fact the link is embedded with a 

malware to collect private information from the user and his computer interactions [39]. 

5.1.1 Motivation 

OSN providers should strive to protect their users’ privacy and information. User 

privacy and private information in the wrong hands will definitely hurt the monetary 

benefits of the provider. Risk and trust are two behavioral factors that sway decision 

making in an uncertain environment like cyberspace. While OSN providers face cyber 

attack on a daily basis, it is their responsibility to educate the users about all potential 

breaches of security and the methods to mitigate the risk [40]. 

Mass media are on the front line of creating awareness information that leads people to 

develop a bias and trust cyberspace differently. Whenever there is a security breach the 

media may induce emotional outbursts about risks and their potential consequences; for 

example, the identity theft of Target Store credit card users and the massive hack of Home 

Depot customers’ information. [58]. We proposed in this chapter a game theoretic 
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approach to establishing a relationship between trust, defined as a kind of risk assessment 

and various factors that could affect the assessments (risk). The media can tilt the balance 

of information in most trust systems that considers risk as a psychological cost. Moreover, 

breach of security on a providers’ infrastructure by attackers will have less impact if users 

are informed by the providers than a television broadcast or newspaper. Therefore, 

distrusting a providers’ capability to secure users’ privacy and private information will 

hamper any plausible positive results. It is consistent with intuition: a user who hears a 

security breach of private information on the news foresees a lack of investment in 

security infrastructure and intent to cover up compared to providers reaching out to users 

and inform them of the security breach and a promise to upgrade security infrastructure. 

5.1.2 Contribution 

This chapter centers around the proposed concept to mitigate cyber attack behavior 

with security implementation. The preponderance of successful attack launch by an 

attacker or a group of attackers may be because of the vulnerability of the security 

infrastructure due to a lack of adequate investment. System administrators defend the 

system ‘s infrastructure against intelligent misbehaving users (attackers),  while users 

tempt not to trust an online service in case of a compromised of their data privacy. The 

specific contributions in this work are summarized below: 

• We propose a mechanism design to mitigate cyber attack behavior in security 

implementation using a game-theoretic approach. 

• We formulate an original three-player game to model conflicting and rational 

confrontation between players. 
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• We analyze the different solutions obtained from the Nash equilibrium (NE) 

• We interpret the different outcomes on how they may benefits system administrator 

or decision-maker. 

The provider’s objective is to secure the users private data against an attacker whose 

objective is to breach the system and expose users’ private information. The user’s main 

concern is to safely use his private information in cyberspace. 

Some research work exist in this area which we summarize here. In [39], Kim et al. 

examined the relationship between trust and risk as determinants of trusting behavior in 

e-commerce. The risk of cyberspace manners can be classified as high, low and 

inexistent. Cyberspace behaviors include activities such as online purchase of an article 

or providing private information to an e-vendor.  

Kamhoua et al. [61] proposed a game theoretic model to help the online social network 

users determine the optimal policy in terms of data sharing using a zero-sum Markov 

game model. While the authors make the assumption that the probability transition 

function, the reward and the discount factor are common knowledge among players. 

There is a possibility that some of the information is made private or not available to the 

opponent. Huber et al. [35], presented the Friends-in-the-middle Attacks by exploiting 

social networking sites for spam. The impact of spam is simulated on the online social 

site Facebook. Raya et al. [36] proposed and analyzed a game theoretic model of the 

trust-privacy tradeoff using incentives that allow building trust and at the same time 

keeping the privacy loss at a minimum. The game model shows that individual players do 

not contribute to trust establishment unless they received an appropriate incentive. As an 
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example, the process of revoking of access rights for misbehaving nodes is not done 

unless there are incentives for voting players.  

Seigneur et al. [37] introduced an approach to achieve the tradeoff between trust and 

privacy in online transactions. The privacy is preserved with the use of pseudonyms for 

different transactions. Thus, the linkability of the transactions is prevented and a level of 

reputation is assigned to each of the pseudonyms. In order to increase the level of trust of 

an entity, a combination of several reputation levels is required and the number of 

pseudonyms to link depends on the reputation trust level. Lilien et al. [38] discuss the 

difference between privacy preservation and trust establishment for online transactions. 

Assumptions are made about users having a set of private attributes that they want to 

conceal and a set of corresponding credentials that are helpful in establishing trust for 

these users. The tradeoff problem is formulated as the choice of the minimum number of 

credentials to be revealed for satisfying trust requirements, such that the users’ privacy 

loss is minimized.   

Douss et al. [60] discussed a game-base trust establishment for mobile ad hoc networks 

(MANET). The authors introduce an evaluation model for trust value. Then, a 

computational evaluation of the methods is applied and finally, a framework is proposed 

for trust establishment. Han et al. [78] proposed a method of infiltration exploitable 

through cloud and not the traditional computing process: the side channels. It gives a rise 

to new risks as hardware to create a virtual machine (VM) is shared between users, which 

attackers can exploit. By starting and having the VM in the same server as a user data, an 

attacker can siphon private information such as web traffic and encryption keys. Given 
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the danger of cross-side channel attacks, some user may require while using the cloud 

service to be physically isolated from the resource of the cloud service provider. Zhang et 

al. [79] proposed HomeAlone which is a defensive tool that helps a user determining if 

its VM resource allocation has an exclusive use of the physical machine. The tool can 

detect the activity of an attacker’s co-resident VM by analyzing a portion of the L2 

memory cache set aside by his VMs.  

Basar et al. [80] explained the devastating cost of failure to properly secure a network 

from an attack. The authors showed how an attacker can infiltrate a network at one node, 

and from the compromised node, the attacker can breach easily and access other nodes of 

the network infrastructure. Wang et al. [81] analyzed the nodes’ decision in a cluster 

environment. The cluster environment is composed of n clusters of m nodes, which is n x 

m individual nodes. The attacker to launch an attack chooses the number of clusters to 

attack, while the defender chooses how many nodes can participate in the decision in 

each cluster. A zero-sum game is formulated during which the defender maximizes the 

expected number of clusters that decide  correctly and in the same time the attacker 

minimizes the say number. A general framework is proposed to find the Nash 

equilibrium. However, the assumption made is that the structure of the cluster is fixed, 

which give a better optimization strategy to the defender by just changing the cluster 

structure. 

In short, the previous researches on privacy are mostly focused on the current interests 

of the different players, and previous works on defense against an attacker or an intruder 

are mostly concentrated in the interests of both players. But most of the game players 
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would like to take the long-term strategy in face of interest for all three players in the 

game. In the existing literature, when using game theory frameworks, there is no three-

player game. We have a two-player game: the defender against the attacker or the 

provider strategizing on how to improve trust with the users. None of the game 

approaches involve the defender, the user and the attacker at the same time. In this 

chapter, even though, the media viewpoints create awareness that influences users to be 

more bias in trust of various OSNs differently. We are interested in the relationship 

established between trust and risk in cyberspace using game theoretic modeling.  

The remainder of this chapter is organized as follows. The section 5.2 presents the 

system and the threat models. In Section 5.3, we propose the game theoretic model. 

Section 5.4 presents the numerical results. Finally, the conclusion and future works are 

drawn in Section 5.5. 

5.2 SYSTEM AND THREAT MODELS 

5.2.1 Objectives 

With the development and popularization of online network service (ONS), the safety 

of ONS’s users’ privacy becomes a crucial and critical issue. The service provided gains 

in popularity because it facilitates the living conditions of the people. Any proven 

amelioration of living conditions will always attract more and more customers or users. 

To better serve its customer, a service provider has to deploy and make the service 

available anywhere and at anytime it is needed. As any lucrative business, the service 

provider in order to remain in business has to secure and protect its own confidential data 

and for the incentive of doing the business, secure and protect customers confidential and 
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data privacy. Whenever there are financial and private information flowing around, there 

will always be misbehaving actors trying to take advantage of the situation. 

5.2.2 System Model 

The figure 5.1 illustrates our system model: An online service provider with lots of 

customers that use the services through their electronic devices with connections to the 

Internet. The users are known as regular customers with their electronic apparel (i.e. 

Computer, laptop, tablet, smartphone, etc.) using cyberspace (i.e. Web-apps, mobile-

apps, phone-apps) to buy goods or services. Technically, the user may run different 

number and version of applications provided by the business service without any negative 

impact on this illustrated model. The applications, even though use on different devices 

to access the online services require an operating system to function and the operating 

system is managed by a service provider. In practice, a user in order to acquire goods or 

services online has to provide personal information, but not limited to: full name, address, 

DOB, social security #, credit card #, PIN#, bank account#, etc... These information in 

the wrong hands may cause lots of damages to the owner of the information. The 

damages can range from financial ruins, bankruptcy, loss of identity, debts, and more. 

The attacker or group of attackers represented on figure 1 illustration as “Attacker” is an 

intelligent user with unorthodox behavior. The attacker's main intention is to launch an 

attack or even coordinated attacks to gain access to critical or confidential information of 

the service provider and users’ private information. Instead of the attacker launching 

attack against “easy” target like a user because of the minimal security an user can afford, 

the attacker prefers to launch attack against the service provider. In case of a successful 
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attack, the payoff will be colossal. Therefore, there are three major players defined in our 

system model, the users, the providers, and the attackers. The users are known as regular 

customers with their electronic apparel using cyberspace (i.e. online applications) to buy 

goods or services. The providers are businesses developed on the cyberspace that provide 

goods and services that are financially profitable. The attackers are entities with 

malicious intent. Their agenda is to attack providers’ infrastructures and collect users’ 

privacy, private information and companies’ secrets. The attackers possess the electronic 

gears to launch an attack on the provider’s infrastructure. A direct attack on one user is 

not that beneficial for the attacker. Therefore, an attack on the data repository of a 

provider may lead to a gain in multiple users’ private information. 

 

Database Database

User Data Center

Attacker

Provider Infrastructure System

Servers

Firewall Firewall

Servers

 

Figure 5.1: Overview of Component Interactions between User/Attacker/Provider 
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 We assume a user needs his personal and private data available in order to conduct an e-

business. We also assume that there are risks involved when information is used online. 

Users are aware of the potential risks; therefore the user needs to have a level of trust and 

confidence before providing personal information. The user takes all necessary 

precaution to keep his private information hidden from the public. The service providers 

need to invest in security for two major reasons:  

1. To protect their infrastructure against daily attack perpetrates by attackers.  

2. To secure transaction information made by the users.  

For example, any interactions with the user that involve exchange of users’ private data 

over the internet should be secured using secure sockets layer (SSL). The implementation 

of credential verification will make sure that the user using the information is the user 

owning the information. We assume the attacker’s main objective is to breach the 

providers’ infrastructure security system and gets the users’ and company’s private 

information. Going after a user’s private data directly may not be beneficial to an 

attacker. Moreover, the user’s data like credit card information can be cancelled and 

rendered useless to the attacker. The attacker monitors the providers’ system for security 

vulnerabilities. For example, an operating system may have bugs exploitable to gain 

administrator credentials to the system, or strong passwords were not implemented  and 

are easily guessed or tricked. 

The goal is to make it difficult for attackers to breach the system and gain access to 

useful business and users’ private information. Providers’ data that can be breached are 

divided in two groups: futile and vital. Providers’ strategies to be safe include investing 
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in system upgrades, vulnerability correctness, architectural scalability of data, and 

network security. If a security breach occurs, this would limit the breach to futile data as 

much as possible, while making the system available and user friendly. Users have the 

tendency to either trust or are suspicious of online-sites because of the available 

information at risk.  

In our model, we do not address the leakage of business and users’ private information 

by mechanisms other than the attacker breaching the provider’s security system. For 

example, a business may sell users’ information to another company for financial profit. 

Although this constitutes a user privacy breach, it is outside the scope of our research 

work. 

5.2.3 Trust-Risk Game Model 

In spite of the risks reported about threats in cyberspace, for example, the spread of 

malicious worms on computing systems, cybercrime such as identity theft that may lead to 

financial ruin, money laundering by the drug cartel on the internet [39] [40], people still 

show a high level of dependency on cyberspace. Given that private information is traded 

for the user’s trust, privacy preserving entities (cyber system providers) have to participate 

at a satisfactory level of trust without gratuitously revealing too much private information. 

Users have the tendency to trust or distrust a cyber-site because of the risk perception on 

sharing their private information. Hence, a user perception of low trust for a cyber-site 

may be associated with his perception of a high risk and its consequences on his privacy 

and private data. Similarly, the perception of high trust can be associated with the 

perception of low risk which implies negligible consequences for privacy and private data 
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shared. Therefore, trust and risk are reverse mechanism concepts which mostly 

conceptually reflect how a user makes a choice to use cyberspace for business, social or 

private transactions. It becomes paramount to find and implement a mechanism of fairness 

protection between the user’s private data and the provider’s ability to secure. It is even 

questionable whether both entities would be efficient in data protection. 

The use of game theory is called to solve the above related issues. We have the Attacker-

Defender game (ADG) between the attacker and the provider and the User-Provider game 

(UPG) between the user and the provider. ADG captures the competitive interactions 

between the attacker who is trying to circumvent the provider’s system and gain access to 

users’ private data and the provider who needs to invest in securing its customers/users’ 

private data. UPG models the combination of factors that helps the user assigning a level 

of risk (high or low) on an e-business or OSN if their privacy and private information is 

shared. Moreover, if data breaches occur, how efficient is the corrective approach to 

mitigate the damages.  

We combine both games ADG: non-cooperative game between 2 players; the provider 

and the attacker, UPG: cooperative game between two players; the user and the provider 

into one game theoretic with three players: user, provider, and attacker. 

5.3 GAME-THEORETIC MODEL 

This section considers a game with three players: An attacker, a provider and a user. Our 

assumption is that the three players are rational. Therefore, they understand the system in 

place and can perform the necessary calculation to only take the actions that improve their 

expected payoff. The attacker has two defined strategies: launch an attack (A) on the 
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provider’s infrastructure or Not launch an attack (NA). Only one of the two strategies can 

be used at a time by an attacker. The attacker strategy to launch an attack on the provider’s 

infrastructure may consist of a multi-stage process involving steps such as a brute force 

attack, scanning for known vulnerabilities, SQL injection, buffer overflow, exploit attack, 

bypass firewall rules with spoof attack, Trojan horse or backdoor attack. The provider of 

the system has two choices in terms of strategies, to either Invest in security (IS) or Not to 

Invest (NIS). The provider’s strategy to invest may consist of a multi-stage process and 

actions such as system-wide monitoring, software updates, patching of vulnerabilities, 

installing intrusion detection system (ids), clustering and duplicating data servers, and/or 

IP-hopping and firewalling. Therefore, the financial component tends to influence the 

provider to not invest in security. The user has also two strategies applicable: trust the 

provider’s cyber-site (T) with their personal information henceforth, uses it to make a 

transaction or distrust (D) the provider’s system and does not use it.  

A 3-tuple represents a strategy profile for this game which indicates the action taken by 

each player. For example, the strategy profile (T, IS, A) shows that the user trusts the 

provider’s system to make a transaction, the provider invests in security for his 

infrastructure, and the attacker launches an attack to breach the provider’s system. 

Let us examine the utility structure of the game. Given the profile of action, the 

payoff/utility is the player satisfaction. We normalize the payoffs to the players following 

the strategy profile. Following are the parameters used in the game:  

• The parameter α represents the probability of an attacker getting detected or caught 

on the provider’s system, given that he has invested in security.  
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• The parameter b represents the benefit of the attacker from attacking and not 

getting detected or caught by the provider. 

• The parameter λ represents the loss to the provider if an attacker launches an attack 

on the provider’s system and the attacker is not detected or caught. 

• The parameter p represents the loss to the attacker from getting detected while 

launching an attack on the provider’s system. 

• The parameter σ represents the probability that critical data in the provider’s 

system are compromised given a successful attack. We consider that any 

successful attack on the provider’s system will give up critical data, which means σ 

> 0. Moreover, not all successful attacks can compromise the provider’s critical 

data (σ < 1). Therefore, we have 0 < σ <1.  

The correctness of our game model depends on the correct estimation of the loss λ and 

the probability α. The guidance issued [6] by the United States Securities Exchange 

commission (SEC) requiring companies to disclose all cyber incidents with detail 

description of costs and relevant information such as insurance coverage. Therefore, the 

data provided from previous cyber incidents can be used to estimate the different 

probabilities values and cost to be used with our defined game model. There is a sense of 

assurance when a provider invests in security which has its reward. 

• The parameter R represents the reward that can be calculated as a function of 

revenue generated by the users’ transactions because the users see the provider’s 

system a low risk in terms of divulging their private information. 



89 

• The parameter e represents the total expenses. Investing in security by the provider 

requires a total expense.  

• The parameter G represents the gain defined as what the user gains by using the 

cyberspace for any transactions. For example, user shops online from the comfort 

of your home or office compared to spending time, driving to the store, spending 

money on gas, etc.  

• The parameter d represents the cost of a user that worried about his private 

information being compromised or when the user is informed that there was a 

security breach on one of its service providers and the steps taken to monitor and 

mitigate the situation. 

Table 5.1 shows the game model in normal form. Table 5.1 is a combination of two 

tables. The left-table shows the game model when the user trust (T) the provider’s cyber 

system. The right-table shows the game model when the user distrusts (D) the provider’s 

cyber system. The payoffs of the three players are represented in each block in three lines. 

The first line in the block is the user payoff. The second line is the provider payoff, and 

the third line represents the attacker payoff. 
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The payoffs are calculated as follows: If the player chooses the strategy profile (T, IS, 

A), which means, the user trusts (play action T) the provider’s system and uses it for cyber 

transactions, while the provider invests in security (play action IS) and the attacker 

launches an attack (play action A) targeting users’ private information (cf. Left-table, 4th 

line, 3rd column). 

The provider gets a reward R for investing in security and also incurs a cost e for the 

security expenses. Amid the attacker launches an attack with a probability α (because the 

provider has invested), it will incur a loss λ(1 - α) if successful. This will result in an 

expected loss of λ(1 - α) for the provider. The attacker payoff is the benefit b of launching 

without getting caught or detected less the probability α of getting detected if the provider 

invests in security: 

User trust (T)  User distrust (D) 

 Attacker  Attacker 

A NA  A NA 
Pr

ov
id

er
 

IS 

{G – λ + αλ; 

R – e – λ (1 – α); 

b - pα} 

{G; 

R - e; 

0} 

 {G – λ + αλ - d; 

R – e – λ (1 – α); 

b - pα} 

{G - d; 

R - e; 

0} 

NIS 

{G – λ + αλ; 

R - λ; 

b} 

{G; 

R; 

0} 

 {G – λ + αλ - d; 

R - λ; 

b} 

{G - d; 

R; 

0} 

(a ) User plays action (T)  (b) User plays action (D) 

Table 5.1: Stage Game in Normal Form 
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Uatt(T, IS, A) = b - pα 

The user payoff 

Uuser(T, IS, A) = G – λ + αλ 

is the difference between the gain of the user’s trust in using the system and the expected 

loss from the system if compromised. The user’s partial loss λ(1 - α) is the result of the 

attacker breaches into the provider’s system and gains critical information which are 

users’ private data. The player’s payoffs in the other strategies profile are calculated the 

same way.  

5.3.1 Game and Equilibrium Analysis 

This section analyzes the game, derives all possible Nash equilibria from the game in 

Table 1, and understands its impact on the players. Per definition of Nash equilibrium 

profile: no player can increase his payoff by a unilateral deviation. Moreover, players are 

rational; each of them is playing his best strategic response to other two players’ best 

strategies. Thus, the Nash equilibrium can help predict the behavior of the player wanting 

to maximize their payoff in the game. 

R – e – λ(1 – α) > R – λ 

  e < λ α      (5.1) 

It means that investing in security is the best option for the provider in order to lower the 

risk of users’ private information being breached. Moreover, the attacker can only target 

the provider’s system knowing that the provider has invested in security when we have: 

b – pα > 0         (5.2) 



92 

The penalty is huge for the attacker to get detected while launching an attack on the 

provider’s system. The reward of launching an attack should be worth the risk of getting 

caught.  

As a matter of fact, any game in strategic form has a Nash equilibrium (NE). Let find the 

conditions applicable to the parameters for all possible pure Nash equilibria. 

Theorem 5.1: If α < α0 = e/λ, then the game in Table 1 admits a pure strategy NE profile 

(T, NIS, A). 

Proof: An examination of the eight different pure strategies in Table 1 shows that the 

only possible pure NE is when the provider does not invest in security, the user trusts the 

cyber system and the attacker launches an attack on the provider’s infrastructure. For the 

other strategy profiles, there is at least one player able to increase its payoff by a unilateral 

deviation.  

When the attacker targets the system and the provider does not invest in security, we 

have:  

Uatt(T, IS, A)-Uatt(T, NIS, A)      

     R – e – λ(1 – α) = R – λ      (5.3) 

λα – e = f(α).       

The function f(α). is a linear function with slope λα and its lower bound value is the cost 

e. Thus, f(α) is increasing.  

The initial value f(α0) = λα0 – e = 0. 
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Case 1: if e > λ α,  

then Uatt(T, NIS, A)–Uatt(T, NIS, NA) > 0.  

This condition is not the choice to fulfill to the best for the provider’s system by not 

securing its infrastructure. The provider prefers not to invest than to invest. The attacker 

prefers to attack with a positive payoff the provider’s system than not to attack. The 

strategy profile (T, NIS, A) is a pure Nash equilibrium because the players of the game 

cannot increase their payoff by a unilateral deviation.  

Case 2: if e/λ < α < b/p,  

then we have the difference in the payoff Uatt(T, IS, A) - Uatt(T, IS, NA) > 0.  

Thus, the attacker prefers to launch an attack on the provider’s system than not to attack.  

The payoff Uprov(T, IS, A) – Uprov(T, NIS, A) > 0.  

Thus, the provider prefers to invest than not to invest into the security of his system. The 

strategy profile (T, IS, A) is a pure Nash equilibrium of the game because neither the 

provider nor the attacker can increase their payoff by a unilateral deviation. 

Case 3: if e < λα and α > b/p  

There are no pure strategy profiles for a Nash equilibrium in the game. The strategy 

profile (T, IS, A) is not a NE because the attacker can increase his payoff by simply 

changing his strategy from A to NA. The strategy profile (T, NIS, A) is not a NE because 

the provider can increase his payoff by simply changing his strategy from NIS to IS. With 

this back and forth reasoning, it conveys to us that we do not have a pure strategy NE. 
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However, a mixed strategy Nash equilibrium is highly plausible, and it’s defined and set 

as follows: denote the variables 0 ≤ x, y, z ≤ 1. 

Let θ = xT + (1 - x)D be the probability mixed strategy NE of the user. From the basic 

game theory principles, the user optimal strategy is to randomly choose between strategies 

T and D such that the provider’s system is at the lowest chance of security breaches.  

We must have for the user: Uuser(T) = Uuser(D) 

Let μ = yIS + (1 - y)NIS be the probability mixed strategy NE of the provider. From 

basic principles of game theory, the attacker optimal strategy is to randomly choose y such 

that the provider is indifferent when deciding between strategies IS and NIS.  

We must have for the provider: Uprov(IS) = Uprov(NIS) 

xz(R-e-λ+λα)+x(1-z)(R–e)+(1-x)z(R-e-λ+λα)+(1-x)(1-z)(R–e)=    

xz(R-λ)+x(1-z)R+(1-x)z(R-λ)+(1-x)(1-z)R 

 ⟹ z = z0 = e/(λα)          (5.4) 

We know that 0 ≤ z ≤ 1 and thus,  

Uprov(IS) < Uprov(NIS) 

 ⟹ 0 ≤ z < z0 ≤ 1                   (5.5) 

And also  

Uprov(IS) > Uprov(NIS) 

 ⟹ 0 ≤ z0 < z ≤ 1              (5.6) 
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Similarly, consider σ = zA + (1-z)NA to be the probability mixed strategy of the attacker. 

The attacker randomizes between IS and NIS in such a way that the attacker is indifferent 

when choosing strategies IS and NIS. This is translated by:  

Uatt(A) = Uatt(NA) 

⟹ xy(b-pα)+x(1-y)b+(1-x)y(b-pα)+(1-x)(1-y)b=0 

⟹b-ypα=0 

 ⟹ y = y0=b/pα             (5.7) 

We know that 0 ≤ y ≤ 1 and thus,  

Uatt(A) < Uatt(NA) 

 ⟹ 0 ≤ y < y0 ≤ 1                  (5.8) 

and  

Uatt(A) > Uatt(NA) 

 ⟹ 0 ≤ y0 < y ≤ 1                  (5.9) 

Given the condition in (3) and (5) are verified and the probabilities y and z hold. 

Therefore, the strategy profile {T, y0IS + (1-y0)NIS, z0A + (1-z0)NA} is a mixed strategy 

Nash equilibrium. However, if the conditions are not met, then we can verify that there is 

no possible mixed strategy. 

In summary, it is important to the provider to invest in security. The cost or expense e 

should be worth the equivalent value of loss. In other word, the effort from the provider in 

term of securing the users private information is very important in measured to the impact 
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of losing customers because the trust level is low which means the provider’s business is 

high risk and untrustworthy. The provider invests commensurably to the worth of its 

business may have dual impacts: 1) Users are confident to use the system for business 

transactions because of the investment in security and low risk of having their private 

information rendered public. 2) The higher the security, the better is the dissuasion to 

attacker to breach the system because of the penalty up to prison incarceration if they are 

detected and caught. 

5.4 NUMERICAL RESULTS 

Our game equilibria had provided a detailed exposition of the game model and its 

properties. In this section, we derive from the game analysis our numerical results. The 

MATLAB simulations support the game-theoretic techniques analyzed in this chapter. 

The values we have used in this MATLAB simulation is just to illustrate and provide 

concrete examples. The variables used in the calculation of mixed and pure strategy 

equilibrium were R, e, p, λ, b, and α. We will assign values to some variables and they 

will remain fixed during the entire simulations while others variables increase or 

decrease. 

For the first scenario, we will set the value of all needed parameters to R = 1, e = 0.2, λ 

= 0.6, b = 0.5, p = 0.68 and α is variable. We chose these values as an illustration of a 

non-intuitive suggestion of our game model. Figure 5 2 shows that the provider’s payoff 

is constant when α< α0 = 0.33 which is case 1 of the pure strategy Nash equilibrium. 

When the payoff of the provider is constant while the probability α is increasing, the 

rational player will be better looking to increase its payoff. However, the case 2 defines 
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as another pure strategy Nash equilibrium with α < 0.73. At α ≥ 0.73, there is a change of 

strategy from pure to mixed strategy Nash equilibrium. There is an attenuation on the 

provider’s payoff, which means the frequency of the attack causes the provider to slowly 

increase its payoff. 

 

 

Figure 5.2: Variation in Provider’s Payoff with Probability Alpha 

 

By setting α = 0.51 and R = 0.95, Figure 5.3 shows the strategy change for the pure 

Nash equilibrium to the mixed strategy Nash equilibrium. The loss to the provider λ is the 

variable in this case. We also can see the three cases of strategic change, the first one 

when λ < λ0 = e/α = 0.39, the second pure strategy is the case where (0.39 ≤ λ ≤ 0.84) 

and the major shift occurs at the λ=0.84 when the provider’s payoff reaches 0.34. 
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Moreover, the shift is to the mixed strategy Nash equilibrium. The decrease in value is 

for the provider’s payoff its way of showing that it’s not rewarded by the game when the 

loss increases.  

 

Figure 5.3: Variations in Provider’s Payoff with the Loss due to Security Breach 

 

The expense e translates as the cost to improve the security of the provider’s 

infrastructure against an attack. From the values selected, we have the provider’s payoff 

constant until it reaches e = e0 = 0.3 in expense and it follows with a decrease in payoff 

for provider because the investment in security is paying off. There is a drop in payoff for 

the provider when he invests e > 0.73; the provider’s payoff is negative. If the provider 

can invest in security up to e ≥ 0.7 the loss due to attack will be minimal with less impact 

to the users’ privacy or manageable loss of private information. The mixed strategy NE 
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indicates that the attacker may willing to target the provider’s system with a high risk of 

getting caught and low risk of getting breach.  

 

Figure 5.4: Variations in Provider’s payoff  

The game clearly admits multiple Nash equilibrium strategies and the expense e will 

provide guidance to players’ choice. 

Figure 5.5 shows that the attacker’s payoff drastically dropped when there is any 

investment made by the service provider to improve the security of its infrastructure. If 

the parameter α that represents the probability of an attacker getting detected or caught on 

the provider’s system is over 0.5 (alpha ≥ 0.5) the expected probability of the attacker of 

not getting detected or caught is under 0.1. In case the attacker relies on its probability 

gain from figure 5.5, it will be to the best interest of the service provider to invest in the 

security component by increasing the expense e, which will also increase the probability 

α and it will be good to have α ≥ 0.5. 
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5.5 CONCLUSION AND FUTURE WORK 

In this chapter, we optimize the trust between the users and the provider by the use of 

the game theoretic approach. The three player game in this case provides a quantitative 

approach to perform a cost analysis of the security investment. The provider does not have 

the luxury to not invest in security. Any online service network where customers provide 

their private information should show concern with protecting consumers’ data. 

This research takes into account the action of all the players. The game has multiple 

possible Nash equilibria that can be converted into pure strategy or mixed strategy under 

specific conditions. Our research finds that an increase in the frequency of attack and the 

provider able to mitigate the loss might cause the attacker to be detected and caught. Thus, 

 

Figure 5.5: Variations in Attacker’s payoff 
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the limited benefit generated by the attack may force the attacker to not attack because of 

the risk and penalties. 

For future work, we plan to investigate and apply a game to come up with an optimal 

function for mapping the gain when the provider invests in security and the loss when the 

attacker succeeds in targeting the provider’s infrastructure and the users’ private data are 

compromised, this will clearly refine the payoff of each player. 
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Prevalent concerns with dynamic networks typically involve security. Especially with 

resource constraints in dynamic networks such as mobile ad-hoc networks (MANETs), 

security needs to be of particular consideration. In this chapter, we first analyze the 

solution concept involved in optimizing resource allocation and data packet forwarding. 

In a MANET, the availability of having data packets forwarded may be insubstantial due 

to the presence of selfish nodes. Nodes may not want to participate in the network to 

preserve their own resources. We propose a packet-forwarding problem with a 

negotiation game, where an arbitrator acts as a cluster head and initiates a bargaining 

game. Thereafter, we consider the possibility of having some group of nodes exhibit 

malicious behavior and collude to subvert the MANET. We investigate the problem by 

finding the optimal Nash Equilibrium (NE) strategies of the negotiation game. Then, we 

simulate the effect of the coalition of malicious nodes in a mobile environment. 

Simulation results support our model. 

6.1 INTRODUCTION 

There has been significant growth in research involving terminal mobility in dynamic 

networks.  One category of such networks is a MANET.  In a MANET, autonomous 

mobile devices are deployed across the area of a network.  The device mobility, the 

absence of infrastructure, and wireless communication render the topology unstable.  

CHAPTER 6 

A GAME THEORETIC APPROACH ON RESOURCE ALLOCATION WITH 

COLLUDING NODES IN MANETS  
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Because of these characteristics, as well as resource limitations in energy such as battery 

life, mobile devices may face issues with connectivity and link reliability.  This limited 

nature of resources in a MANET encourages some nodes to behave selfishly by 

attempting to preserve their own resources.  As a result, the only way for data packets to 

move throughout the network is if these mobile devices rely on one another to transfer 

data.  The reliability of the network depends on this level of cooperation.  In order for 

data packets to be delivered from one node to another, nodes must have an incentive to be 

participative [49]. 

Existing literature provides methods on incentive mechanisms as ways to alleviate the 

effect of having selfish nodes in a MANET.  We consider the novel implementation of an 

arbitrator in a MANET to initiate a bargaining game with players.  The arbitrator will 

offer shares of its data storage as a way to optimize resource allocation in the network.  

These shares are fractions of the arbitrator’s data storage and are randomly distributed to 

players.  Players involved in the game will be allowed to accept or reject these offers 

from the arbitrator.  A vote by simple majority will decide if data transfer will complete a 

negotiation session [31].  By the time a player is out of transmission range if the majority 

of players have not agreed on their resource allocation, the negotiation game ends.  This 

implementation into the model will help maximize network reliability and increase the 

throughput in the MANETs. Researchers have also considered the presence of malicious 

behavior in dynamic networks [10] [22].  The lack of robust security measures can be 

considered a result of a MANET’s limitation.  Although many types of attacks exist, 

many of them focus on deteriorating the resources and services of the network.  We 

consider a particular kind of malicious behavior in the model proposed in this chapter.  In 
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this model, a group of mobile devices can collude among itself to exploit the 

functionality of the arbitrator.  Constant exposure to collusion will eventually degrade 

network reliability.  This chapter investigates the bargaining game and how the proposed 

solution can be used to analyze the behavior of colluding nodes. There are researches in 

the field of mobile ad-hoc networks and some security concerns are perceivable.  To 

improve the network reliability, Buttyan and Hubaux [50] proposed virtual currency as a 

way to stimulate participation in data packet forwarding.  The authors proposed, each 

node earns certain amounts of “nuglets” that is used to transfer data.  When a node 

requests to have data packets forwarded, the “nuglet” count decrements by one, and 

when a node forwards a data packet, the “nuglet” count increments by one.  However, 

The solution concept, does not consider the scenario of not having enough currency to 

proceed with forwarding requests. 

In [24], Liou et al. considered a bargaining game as a way of handling the access 

network selection.  Possible access networks include wireless metropolitan access 

networks (WMANs), third generation/code division multiple access (3G/CDMA), and 

wireless local area networks (WLANs).  The authors introduced a bargaining game 

between the participating device and the access network, such that the resource allocation 

of the network is negotiated between the two players after a call request is made.  

Although the game attempts to optimize resource allocations of the network, it requires 

that nodes are constituents of a network where devices may be mobile but the base station 

must remain static. Marti et al. [22] introduced a technique to improve throughput in ad 

hoc networks. The proposed technique is built on top of the Dynamic Source Routing 

(DSR) protocol.  To alleviate routing misbehavior in particular, the technique involves 
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categorizing nodes as either watchdog nodes or pathrater nodes.  The watchdog node 

seeks to identify misbehaving nodes, while the pathrater node uses its information of 

misbehaving nodes to decide a better, more reliable route to take to proceed with data 

transfer.  However, Implementing the technique, can lead to collision problems, false 

reports in behaviors, and collusion. 

In [45], Niyato et al. addressed the problematic and dynamic issues of network access 

selection in heterogeneous networks by studying the application of evolutionary game 

theory.  Users in the network compete for shares of bandwidth availability, where the 

following competition is modeled as an evolutionary game solvable by finding its 

evolutionary equilibrium. Two featured algorithms for network selection are scrutinized.  

The influence of the users competing for shares is noted in this study. 

The mobility functionalities described in [41] are categorized as a mobile sink or 

mobile relay, which define methods either in collecting data or passing them on to the 

next mobile entity.  These mobile nodes use their short radio transmission ranges to 

accumulate data efficiently.  Furthermore, using parameters of a service-driven MANET 

as a foundation, Riordan and Grigoras [52] proposed the implementation of a data mule 

service appropriate for network needs.  This data mule is typically highly mobile and is 

deployed in the area where it can be used to transmit data packets between the requester 

and the client. Boudec and Buchegger [64] proposed an extension of the routing protocol 

as the method for detecting and isolating misbehaving nodes.  The proposed work 

essentially builds on the idea that nodes will learn from behavior by participating in 

“neighborhood watch” and sharing experiences concerning malicious behavior.  After 
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receiving warning information on some particular malicious nodes, a path manager will 

reconfigure which safe paths to take for data exchange.  The method calls for 

improvements in the data link layer and employs the Dynamic Source Routing protocol. 

In [41], Rossi et al. presented an intrusion detection system where collusion is 

considered in improving path reliability.  In the intrusion detection system, the pathrater 

algorithm categorizes nodes into several different classes.  Essentially, full participation 

in the network depends on the rating associated with class membership.  Simulated 

results show that the system has improved tolerance for collusion among malicious 

nodes.  However, The system, does not support statistical analysis based on optimal 

threshold values.  

The remainder of this chapter is organized as follows. System models and motivations 

are surveyed in the Section 6.2, game-theoretic analysis is provided in Section 6.3, 

simulation environment and results are presented in Section 6.4, and conclusion and 

future works are articulated in Section 6.5.  

6.2 MODELS AND MOTIVATIONS 

This section introduces the system model under Problem Description and Network 

Model.  Motivations behind this study are briefly provided in the final part. 

6.2.1 Problem Description 

Let the MANET have any number of nodes, N, from 1 to N, positioned throughout an 

area, such that the nodes can be rigidly placed or mounted onto some mobile object.  By 

means of a MANET, nodes share characteristics of both a router and a broadcast access 

point.  Meaning, a node can store and collect data packets, as well as connect to some 
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other routing device [5].  As nodes of a MANET are usually limited in resources such as 

battery life and computational power, it is not favorable for nodes to forward data under 

requests other than their own.  However, it is required for nodes to forward data packets 

in order to benefit the overall network.  Establishing connections among nodes is 

therefore an expected challenge by the mobile and infrastructureless nature of a MANET 

[1].  To mitigate the adverse effects of having selfish nodes in the network, our proposed 

model requires an arbitrator to serve as a cluster head and negotiate shares of its own 

data-storing resource to allocate to those in need of data packet forwarding.  This 

functionality of the arbitrator gives nodes incentive to participate in the network.  The 

main concern with the current model is that it assumes that nodes will act independently 

when bargaining with the arbitrator.  As a result, the possibility of malicious nodes 

colluding to deteriorate network reliability is considered here, which comes from the 

postulation that a group of nodes can coordinate together to bargain with the arbitrator. 

6.2.2 Network Model 

The MANET is considered as an area of locally deployed wireless devices (access 

points) based on IEEE 802.11 standards [24] [6].  The key features of the current model 

remain consistent in this model.  Mobile objects are deployed throughout the area where 

they can represent cruisers, fire trucks, planes, etc.  The access points distributed across 

the local area network will serve as data repositories for the accumulated data. 

Furthermore, the mobility of the nodes in a MANET is arbitrary, with the location of 

each node contained in three-dimensional space.  Each node covers a dynamically sized 

area of the network over some random and freely determined speed and direction.  
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Variable-sized areas of coverage represent realistic expectations in a MANET.  For 

example, suppose that devices are mounted on a helicopter and a police cruiser.  

Although both vehicles are free to move any which way, the helicopter may cover a 

broader area in comparison to the cruiser. 

The waypoint model supports the mobility of these nodes.  Waypoints are random 

vectors uniformly distributed across the specified area.  The nodes move accordingly 

over time until they reach their waypoint.  When a node reaches its waypoint, it may 

pause and reconfigure its waypoint parameters.  Furthermore, we consider interactions 

between regular nodes and any one arbitrator.  A regular node will normally request its 

need for data packets to be forwarded across the network, and the request will then be 

broadcasted to the node’s neighbors for help.  With enough requests from a group of 

regular nodes, an arbitrator will offer its service and resources, provided it has enough 

resources of its own to sustain its service [66] [62] [65].   

6.2.3 Motivations 

Current research on the topic of MANETs may only consider the event of rational and 

selfish nodes existing in the network.  In which case, the resource allocation problem is 

directly addressed.  This is easily supported since nodes in a MANET are 

characteristically constrained and limited by battery life, computational power, etc.  

However, it is for these same reasons that MANETs are also not secure.  For example, 

limited computational power can limit a mobile device by making cryptographic 

procedures impossible or simply impractical if by having these security features drains 

the battery of the device as well [49].   
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We first consider the case when a regular node requests packets to be transferred.  The 

node runs the routing algorithm to find the shortest path required to transfer data, then 

follows typical procedures of incentive or reward programs in order for other nodes to 

cooperate with the request.  Setting arbitrators as data mules [52] and having them with a 

wider transmission range allow such nodes to be beneficiaries of the arbitrator’s services.  

The arbitrator’s data-carrying capability and broader range should reduce the number of 

hops required to pass data packets from a source to a destination.  As requests to have 

data packets transferred accumulate, the arbitrator will have to consider more allocations 

of its resources.  It will implement the round robin algorithm and the handshaking 

procedure of the carrier sense multiple access with collision avoidance (CSMA/CA) to 

relieve communication density and to address the hidden node problem. We also consider 

the opportunity a node has to collude and bring malicious intent to the network.  

Malicious nodes will try to use all the resources, of the participating nodes in a network 

such as battery life, that its reliability is eventually compromised.  As mentioned before, 

many security threats exist in a MANET due to the very nature of its design as a network.  

Such threats include, but are not limited to blackhole attacks, denial-of-service attacks, 

routing loop attacks, and Sybil attacks [28]. 

In this framework, malicious nodes may cooperate to compromise the functionality of 

the arbitrator.  Since the model requires that the arbitrator initiate a bargaining game with 

players making requests to have packets forwarded to the destination, and the success of 

the game depends on the majority vote of all players, a particular group of players may 

collude to upset the vote.  Subverting the voting mechanism across all games in the 

MANET causes the deterioration of network reliability.  In addition to this, prolonging 
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any given bargaining game by evasion of a successful vote wastes the power and battery 

life of the arbitrator, thus exhausting its purpose. 

6.3 GAME THEORETIC ANALYSIS 

The following summarizes the method for optimizing resource allocations between an 

arbitrator and a regular node [49]. 

6.3.1 Negotiation Model  

Let there be a set of nodes in the network such that N = {1,2,…,n} represents the set of 

players eligible for negotiation.  Note that the arbitrator is independent of this defined set 

of players.  The unique feature of the arbitrator lies in its data storage capability and its 

wider transmission range.  The arbitrator’s data storage capability also characterizes it as 

a data mule [52].  When nodes make requests to have data packets forwarded, the 

arbitrator will receive the requests and initiate a bargaining session.  The length of time of 

the bargaining session will depend on the positions of the nodes involved and how long it 

will take for the first player to move out of range of the arbitrator.  As soon as any player 

leaves the arbitrator’s transmission range, negotiation will cease to continue. 

After requests are made, the full length of time before the first player exits the 

arbitrator’s transmission range is calculated, and the number of cycles, or shots, of 

negotiations are estimated.  In each cycle, the arbitrator will offer shares of its resources 

to each player, so that the size of each share are randomly determined.  This arbitrary 

manner of allocation eliminates the possibility of any kind of bias or partiality in 

forwarding data.   
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After the arbitrator offers resource shares in the first shot, each player in the game will 

have the opportunity to accept or reject the offer.  If the simple majority, defined as being 

more than half of players in the current shot accepts their offered shares of resources, data 

transfer will occur.  Otherwise, if the majority rejects the offer, the session will proceed 

to the next shot or cycle.  At the very last shot, equal shares of the resource will be 

offered, and if the majority decides to reject the offers at the final shot, data transfer will 

not occur during the session. 

6.3.2 Random Distribution and Optimal Strategies 

The random assignment of share sizes is represented by the Dirichlet distribution, 

which is essentially the set of probability distributions specified by some vector k.  The 

sum of all outcomes of the distribution is equal to 1, such that the sum is proportional to 

the entire size of the arbitrator’s data storage.   

The distribution takes observations of n possible outcomes with positive real 

parameters xi, i=1,…,n, and the probability density function (pmf) of the Dirichlet 

distribution (Dir) for variable vector xi = (x1, x2,…, xn) with the parameter vector (k1, …, 

kn) is given as 
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is dependent on parameters (k1, …, kn), where they serve for modifying the weights of the 

distribution.  The density is asymmetric if k is not a constant vector. The operation Γ 

represents the Gamma function.  

 Consider the negotiation game between the simple case of three players, and in a given 

negotiation cycle, random offers from vector (x1k, x2k, x3k) are generated using the 

Dirichlet distribution.  Suppose Uk denotes the value of the negotiation game with k shots 

remaining and o(xi), i = 1, 2, 3, represent the probability that player i accepts the offer xi.  

Finally, let ō(x) = 1 - o(x).  We analyze the following. 

Theorem 1: The optimal strategies of players at shot k possess the form 
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The utility value of the game for player i satisfies the formula 
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 Proof: The proof of this theorem derives the proof theorem 5.2 in chapter 5 

When δ = 1, which represents the case of no discounting, and the horizon of 

negotiations is infinite, we come to the conclusion that limk→∞ Uk = ⅓, and players should 

accept the resource shares that the arbitrator offers. 

6.3.3 Threat Model 

Malicious nodes colluding to subvert the network are typically characterized by any 

instance of intentionally wasting the resources and reliability of the network.  In this 

model with arbitration, colluding nodes are considered as those that request significantly 
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larger shares of resource allocation.  By consistently requesting significantly larger 

shares, the colluding nodes are seeking to exploit the arbitrator’s data carrying capability.  

As a result, and as previously mentioned, since data transfers are administered by simple 

majority votes, colluding nodes may also manipulate any given negotiation session by 

consistently rejecting their offers over the specified number of cycles.   

 

 

 

 

Figure 6.1:  A simplification of colluding nodes interacting with both an arbitrator and a 
regular node in a bargaining session 

 

In Figure 1, let A represent the arbitrator holding a bargaining session with nodes B, C, 

and D.  Node B is a regular node that is selfish and behaves rationally.  Nodes C and D 

are colluding to deteriorate the services of the network.  Let node B bear a minimum 

payload of ¼ the storage of the arbitrator, A, and let nodes B and C bear minimum 

payloads of ½ each.  If for example the calculated number of cycles in a bargaining 

session is 3, then for each cycle, the majority vote to accept offers will never pass 

throughout the session, even at the final shot when equal allocations are offered.  

6.3.4 System Modifications and Nash Equilibria 

The negotiation model investigated in this chapter will maintain its key components, 

such as requests to forward data, responses to such requests, randomly generated offers, 

D 
B 
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and majority-vote decisions.  However, in this proposed investigation, instead of having 

equal allocations offered at the final shot of the negotiation session, we will consider 

offering equal allocations at the initial shot of the session.   

We consider this conjecture as we acknowledge the simulation results in [49], which 

shows that successful negotiation sessions typically follow from having minimum 

payloads per player below 1/n, where n is the set of all players involved in a given 

session.  Also note that any involved strategy profile in which an arbitrator randomly 

generates offers is a Nash equilibrium.  Resource allocations are optimized and rational 

players are anticipated to accept the offer.   

6.4 SIMULATION ENVIRONMENT 

6.4.1 Design Description 

Although a MANET realistically exists in the third dimension, the proposed system 

model will be analyzed in two-dimension.  Furthermore, the total area of coverage is 

simulated in a 100m x 100m region and there are sub-areas defined for arbitrators.  A 

selected arbitrator has an assigned sub-area of coverage.  A single arbitrator is randomly 

situated in a sub-area and continues its movement within the perimeter of the sub-area 

throughout simulation time.  The arbitrator also serves as the cluster head of mobile 

nodes contained in the same sub-area, when the node requests arbitrator’s service. 

The model also includes a predetermined amount of nodes colluding to subvert the 

network, with the minimum number of colluding nodes being 2.  Colluding nodes are 

placed at one hop distance away from each other.  Regular nodes are then distributed 

randomly to all sub-areas.  For purposes of illustration and analyzing the effects of 



115 

collusion, the exemplary design will have 4 arbitrators, 3 colluding members, and 7 

regular nodes deployed across the area.  Arbitrators will primarily have a transmission 

range of 71m, while regular nodes will primarily have the transmission range of 40m. 

 

 

Figure 6.2:  A screenshot of 10 mobile nodes, comprised of two colluding nodes and one 
arbitrator and one regular node in each subarea 

Figure 6.2 illustrates a simplest scenario of the network model.  Note that the Random 

Waypoint model dictates the mobility of each node [66].  The endpoint of any single 

node’s path is uniformly distributed across the area, and the node travels on the path by 

some random velocity.  Reaching an endpoint, the node may pause before continuing on 

to another waypoint.  Table 6.1 summarizes the critical features of the simulated model. 
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Parameter Parameter Values 

Simulation Time 500 sec 

Routing Protocol AODV 

Total Number of Nodes 15, 20, 30 

Number of Arbitrators 4 

Initial Node Position Randomly Distributed 

Mobility Model Random Waypoint 

Simulation Area 100m x 100m 

Channel Type Wireless 

Node Speed Interval 0.2m/s – 2.6m/s 

Traffic Type Constant Bitrate 

Time Step 0.1 sec 

Table 6.1: Simulation Details 

The resource sharing functionality of the arbitrator is randomly assigned via a random 

generator distribution.  An arbitrator will carry a unit of data storage that can be allocated 

to each node requesting to have a data-packet forwarded.  A node, for example, may 

request at least 1/3 of the storage, and this share is also the node’s minimum payload.  In 
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this model design, the arbitrator’s data storage is determined to contain 10,000 units (i.e. 

10,000 bytes), and any negotiated share will be a portion of that total value.  

When nodes request to have their data forwarded, the arbitrator initiates a bargaining 

session.  Note that requests from various source nodes to forward data packets will be 

made to the same destination node.  In order for a node situated in one subarea to forward 

data packets to another node situated in a different subarea, it is expected that requests 

will be made through two arbitrators.  With this in mind, the assumption is made that if 

an arbitrator requests to have data packets forwarded to another arbitrator, the first 

arbitrator will not participate in the bargaining session prescribed by the second 

arbitrator. 

6.4.2 Simulation Results 

In order to analyze the effect of the bargaining game on collusion, a selection of 

values must from table 6.1 are assigned to the parameters. 

We first investigate various ranges of minimum payloads.  Figure 6.3 and Figure 6.4 

provide the percentages of successful negotiation sessions over simulation time.  

Following Figure 6.3, regular, non-colluding nodes are randomly set to have minimum 

payloads between 1667-3334 bytes, while colluding nodes will have minimum payloads 

between 4000-5000 bytes.  These values are fractions of the total assigned storage space 

of 10000 bytes.  Since colluding nodes are requesting significantly larger shares of 

storage, we expect nearly all voting procedures to upset occurring bargaining games.  

Figure 6.3 exhibits relatively consistent percentages of successful votes over simulation 
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time.  By the end of the 500s, negotiation games are about 76% successful without 

collusion, while negotiation games are 37.1% successful with collusion. 

Figure 6.4 illustrates a similar conclusion with the exception of colluding nodes 

having payloads within 3500-4000 bytes.  In the first 100s of negotiations, we exhibit 

sporadic instances of successful votes, as well as network performance reaching its peak 

with collusion in the network, showing that negotiation games may still be notably 

successful even with the presence of colluding nodes. 

 

Figure 6.3:  Percentage of successful negotiation sessions with minimum payload 
between 1667-3334 bytes 
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Figure 6.4:  Percentage of successful negotiation sessions with minimum payload 
between 3500-4000 bytes 

 

We then investigate the impact of having various ranges of velocities the nodes will 

have to adopt and how they relate to percentages of successful votes.  Test cases of speed 

are the following: 0.2-1.0 m/s, 2.0-3.2 m/s, 5.0-6.2 m/s, 8.1-10.2 m/s, 12.1-13.2 m/s, and 

14.1-15.2 m/s.  Although values are sporadic and inconsistent depending on the range of 

speeds, negotiation games are generally more successful when either regular nodes and 

colluding nodes have relatively lower mobility (low speed).  Evaluating the plots in 

figure 5, we notice that when the minimum payloads of colluding nodes are within 4000-

5000 units, the percentage of successful games more consistently deteriorates as speed 

ranges increase.  This confirms the expectation that network reliability is compromised 

with higher minimum payloads and increased of speeds.  Aside from this observation, we 

also note that different speeds have drastically affected the performance and outcomes of 

negotiation sessions. Moreover, nodes may want to reach a bargaining success, but the 
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high mobility of each node may cause the communication to break because the 

transmission is out of range. 

 

  

 

Figure 6.5: Successful negotiation over speed variations 
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Figure 6.6. Successful negotiation over discount factors 
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In Figure 6.6, the relationship between successful negotiation sessions and various 

discount factors is investigated.  Test cases of the respective delta values are the 

following: 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, and 0.50.  Discount factors affect 

the size of resource allocations made in a successful negotiation session.  Because big 

discounts take away a fraction of the resources over a horizon of negotiation cycles, 

network reliability and success rate of negotiations should deteriorate. Figure 6.6 also 

illustrates the case when colluding nodes have minimum payloads within 3500-4000 

units.  The study shows that further discounting on top of collusion present in the network 

significantly worsens network performance.  Results also show that when delta is set at 

0.05, the lowest delta value applied and tested, the network still performs 

uncharacteristically and relatively well even with collusion.  The network performance is 

better when the network contains colluding nodes than when the network does not 

contain colluding nodes.  For that matter, the network can tolerate having colluded nodes, 

but it is obvious that successful negotiation decreases rapidly. 

6.5 CONCLUSION AND FUTURE WORK 

This chapter models the problem of colluding mobile nodes in a heterogeneous mobile 

ad-hoc network of N nodes using bargaining game theoretic concept as an incentive to 

share resources on-the-fly and where the nodes negotiate with an arbitrator on the sharing 

rule of consent. We investigate the perfect equilibrium strategies of this bargaining game, 

by observing how each player maximized his throughput against the colluded nodes. 

Simulated results show that the bargaining game and its effect of optimizing resource 

allocations can be utilized to reveal the presence of malicious nodes colluding to subvert 
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the network.  Since such colluding nodes will tend to request larger shares of the 

arbitrator’s resource and data carrying capability, they will consequently reject offers 

involved in playing optimal Nash equilibrium strategies.  Simulated results also show that 

the loss of network reliability is a direct result of the malicious behavior of colluding 

nodes.  Furthermore, through simulation, we investigate the impact of discount factor (δ) 

on mobility, fairness and patient during a bargaining session, and we can argue that δ→1 

is a negligible value in our problem. Broadcasting the identity of colluding nodes by the 

arbitrator and their constant rejection of any offers may expose their presence in the 

network and dismantle the collusion. Therefore, improving security and the quality of the 

network. 
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An effective defense-in-depth in cyber security applies multiple layers of defense 

throughout a system. The goal is to defend a system against cyber-attack using several 

independent methods. Therefore, a cyber-attack that is able to penetrate one layer of 

defense may be unsuccessful in other layers. Common layers of cyber defense include: 

attack avoidance, prevention, detection, survivability and recovery. It follows that in 

security-conscious organizations, the cyber security investment portfolio is divided into 

different layers of defense. For instance, a two-way division is agility and recovery. 

Cyber agility pursues attack avoidance techniques such that cyber-attacks are rendered as 

ineffective; whereas, cyber recovery seeks to fight-through successful attacks. We show 

that even when the primary focus is on the agility of a system, recovery should be an 

essential point during implementation because the frequency of attacks will degrade the 

system and a quick and fast recovery is necessary. However, there is not yet an optimal 

mechanism to allocate limited cyber security resources into the different layers. We 

propose an approach using the Markov Decision Process (MDP) framework for resource 

allocation between the two end layers: agility and recovery. 

7.1 INTRODUCTION 

The goal of cyber agility is to reduce attacks by making it harder for a determined 

adversary to succeed. This is achieved by preventing adversaries from planning their 

CHAPTER 7 

CYBER SECURITY RESOURCE ALLOCATION: A MARKOV DECISION 

PROCESS APPROACH 
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attacks over time by relying on the static nature of the networks, and launching their 

attacks at the times and places of their choosing. Cyber agility employs proactive and 

adaptive defense techniques that include randomization, diversity and obfuscation, to 

increase the levels of complexity and uncertainty in a system and disrupt adversary attack 

planning and execution. 

However, if a system administrator fully invests his cyber security resources to develop 

the most robust and agile systems against cyber-attack, there is no guarantee that the 

system will be able to avoid all attacks.  In fact, it is not always possible for a system 

administrator to anticipate all component failures or intelligent attacks perpetrated against 

its modules. Attempts to predict and protect against every conceivable failure and attack 

become cumbersome and costly. Additionally, novel, well-orchestrated, malicious attacks 

can cause damages that are far beyond the abilities of most system developers to 

anticipate.  

Regardless of how well a system is designed and secured or how well they can 

circumvent vulnerabilities and attacks, it will eventually show some unseen 

vulnerabilities, which are exploitable by attackers. Therefore, a mission-critical system 

implemented and placed in cyberspace should have the resources to recover from a 

degraded state and still carry out at least the mission essential functions (MEFs). 

Cyber resilience comprises the ability to withstand, minimize, survive, and recover from 

the negative effects of adversity, whether man-made or natural, under all circumstances of 

use. Resilient systems must not only provide the continuation of Mission Essential 

Functions in the face of disruption by a sophisticated adversary or a non-malicious fault, 
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but also fight through successful attacks to regain or even exceed their initial operational 

capability. Cyber resilience invests in recovery solutions that increase the probability of 

assuring MEFs during and after a successful cyber-attack. 

Resource allocation in a network system between avoidance and recovery is most 

pressing for mission-critical systems. One of the challenges faced by any system 

administrator is to provide equal and adequate systems security preparedness for both 

threat avoidance and recovery from threats. This work proposes a mechanism to optimally 

allocate limited cyber security resources into different layers of cyber defense. The main 

contribution of this research work is to find the optimal allocations of cyber security 

resources during the development and deployment of mission critical system using the 

Markov Decision Process (MDP). 

In the literature, there are some studies related to optimal resource allocations. The use 

of the MDP to address network security challenges has increased. The reason is that the 

MDP modeling supports a broad understanding of attacks and interactions in cyberspace.  

Arshad et al. [83] presented a semi-Markov decision based fair buffer allocation policy 

for sensor nodes and vehicular network. The proposed model gives nodes a fair chance to 

transmit its data. There is a tradeoff between energy efficiency and fairness at the relay 

node. Also, there is an increase in the number of nodes competing for buffer also results in 

an increased fair buffer allocation, but the authors did not mention or discuss the 

proportion of resources needed. 

Game theory is proposed in [73] as a modeling tool and computing for the probabilities 

of the expected behavior of the attackers in a quantitative stochastic model of security. 
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The stochastic model presented by the author analyzes a security breach as a series of 

intentional state changes. Assumptions are made for the possible rewards of a player in the 

game, allowing the calculation of the Mean Time to First Security Breach (MTFSB) for 

the system. The benefit of using the game theoretic approach is twofold: first, provide a 

more accurate model of the attackers’ behavior, which can be used to assign more realistic 

transition probabilities in the models, and second, help the defender of the system to find 

optimal defense strategies and facilitate the calculation of the expected loss associated 

with different strategies. 

In [25], the problem of sharing a resource with a time-varying capacityis presented. The 

objective of minimizing the mean-delay was investigated. The resource allocation is 

formulated as a MDP. Even though, the problem is not solvable analytically in its 

generality, an approximation of the solution is obtained. The authors in [63] proposed an 

On-line Social Network (OSN) service, an approach for helping OSN users determine 

their optimum levels of information sharing based on the Markov decision process while 

taking into consideration the payoffs (potential Reward or Cost). In [63], a decision 

algorithm was proposed for vertical handoff in heterogeneous wireless networks. The 

algorithm is based on an MDP formulation with objectives to maximize the expected 

reward of a connection. A stationary deterministic policy is obtained when the connection 

termination time is geometrically distributed. 

The authors in [69] addressed some issues to initiate path optimization for a two-phase 

handoff protocol. The use of link cost function is to reflect the network resources utilized 

by a connection. The optimal policy performance has been compared with four heuristics. 
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The proposed model captured the tradeoff between network resources used and the 

handoff processing and signaling load incurred in the network. There is a drawback in the 

formulation when it comes to traffic distribution between voice and multimedia 

applications. 

Ayesta et al. [68] investigated the problem of sharing resources of a single server with 

time-varying capacity. The main objective of the investigation is to minimize the mean 

delay. Nevertheless, the problem does not have an analytical solution. The motivation in 

this case is to seek an approximate solution. Two examples are provided for illustration: 

the extension of multi-armed bandits to develop a heuristic solution of index type and the 

Gittins index rule known to be optimal under the assumption of constant capacity. 

Chunlei et al. in [75] proposed a network of threat evolution model based on network 

threat evolutionary behaviors, network threat propagations and also investigated the 

influence of network threats over network survivability. By abstracting network 

survivability as a dynamic game process among attacker, defender and normal users, the 

proposed network survivability analysis is experimented in a typical network environment. 

7.1.1 Background 

Computer network systems are always targets of cyber attackers. Network systems 

deployed online should be capable of sustaining the adversity of cyber-attacks coupled 

with component deterioration by integrating agility and recovery component.  

Agility: In cybersecurity, agility is a system that has the property to remain operational 

and deliver desired and acceptable results by auto-circumventing or bypassing some 

vulnerability or issue that surged. For example, the implementation by the system 
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administrator of an IP-Hopping, (a moving target defense system), will use available 

network data and hopping algorithms to allow a constant IP addresses to randomly change 

on both source and destination IP addresses [84]. The use of "hopping" IP addresses will 

severely diminish an attacker's ability to breach a target within a network because of the 

increased uncertainty of identifying the IP address of a port. Each time the attacker scans 

the network, he gets a different IP address. Therefore, it is difficult to locate an access 

point [70]. 

Recovery: The recovery component of a system is the ability for a system that has 

suffered from an attack to regain its initial operating capability as soon as possible [62]. 

The implementation of recovery components and procedures in a system facilitates the 

switch back to a running state in a timely manner [72]. Survivability is the aptitude for a 

system to fulfill its mission, in a timely manner, in the presence of attacks, failures, or 

accidents. As example, the database system of a financial institution may suffer 

unrecoverable loss from cyber-attacks. With the implementation of a disaster recovery 

mechanism, there is less data lost and quick turnaround. The database (data and logs) can 

be fragmented and installed on multiple hard drives with backups equipped in each hard 

drive. The backup is done in two steps; there can be a daily full backup and an hourly 

differential-backup. On a system’s breach from attack, one of the production node’s 

servers and database are down. When the server node is brought back on, the data 

recovery procedure is fast by doing a data rebuild from the backups. The database system 

is prepared for restoration, so that it may be ready to move on the production environment. 

Resource allocation is one of the important challenges in cyber security, especially when 

the systems have some Service Level Agreements (SLAs). In the cyber world, the main 
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functionalities of the system need to be active and running. However, mission-critical 

systems are usually constrained during design and implementation to have agility 

properties integrated. Specifically, the administrator mostly allocates the investment on the 

agility design and implementation. Therefore, it may not be to the system lifetime’s best 

interest to have investment focus only on agility. However, refusal to allocate the 

investment’s portion on recovery will severely hinder the mission-critical system’s 

lifetime and impair the system’s own performance. Hence, it is necessary to highly 

consider investment on recovery for any system deployed in the cyber world and where 

different interactions from different players change the states of the system. 

The rest of the chapter is organized as follows. The next section describes the model 

formulation. In section 7.2, we describe the problem. We formulate the problem as a 

Markov chain in section 7.3. The Markov decision process is analyzed in section 7.4. 

Numerical results are in section 7.5, and the conclusion of the chapter sums up the main 

contributions, as well as future work. 

7.2 MODEL FORMULATION 

We consider that a system can be in one of the two states: state 1, when it’s up and 

running and state 0, which is off, degraded or non-functional. Actions based on malicious 

or normal behavior can cause the system to switch from state 1 to state 0 with a certain 

probability. The system in state 1 integrates defense layers, such as agility, avoidance and 

prevention to stay in state 1. A successful attack or a component failure can change the 

state of the system from state 1 to state 0. The system in state 0 needs a good recovery 

mechanism to come back to state 1, otherwise it stays and remains in state 0. 
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The two-state system is represented as a Markov chain, as illustrated in Figure 7.1. 

 

Figure 7.1: Two-state Markov chain 

 

Figure 7.1 shows a state diagram with transition probabilities, as defined: 

P00 = 1 – p: is the probability that the system stays in state 0. 

P01 = p: is the probability that the system switches from state 0 to state 1. 

P11 = q: the probability that the system remains in state 1. 

P10 = 1 - q: the probability that the system switches from state 1 to state 0  

We have a state transition matrix defined as follows: 

𝑃𝑃 = �𝑃𝑃00 𝑃𝑃01
𝑃𝑃10 𝑃𝑃11

� = �1 − 𝑝𝑝 𝑝𝑝
1 − 𝑞𝑞 𝑞𝑞�                                                         (7.1) 

We can observe that an increased investment in cyber agility will increase the 

probability q, whereas an increased investment in cyber recovery will increase the 

probability p. 
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7.2.1 Operational Scenario with a Two-state Markov Chain 

We have a state transition matrix defined in equation (7.1) [63]. In order to explain our 

approach, we assume that an attacker tries to compromise the system by changing it to a 

degraded state (state 0) [83]. Meanwhile, the defense team (system administrator) has two 

objectives: 

1. Make a successful attack difficult to reach its objective (increase q) and the system 

to remain in state 1 i.e., cyber agility. 

2. Provide a solution to recover from potential failure (state 0) and quickly switch the 

system to state 1 which is the functional state, i.e., cyber recovery. 

We consider that a defender, who allocates security resources between agility and 

recovery, maximizes the long-term fraction of time during which the system is in state 1. 

Using the transition probability q (respectively p), the steady-state probabilities indicate 

the long-term fraction of time during which the system is in state 1 (respectively, switches 

from state 0 to state 1). Given that the system is in state 1 at time 0, there is a need to 

know the probability that the system remains UP (state 1) at the time when n is very large. 

The eigenvalues of matrix P are λ1 = 1 and λ2 = q - p. Since p and q are probability 

values, |λ2| ≤ 1. P can be expressed in a diagonal form. 

𝑃𝑃 = 𝑆𝑆−1𝐷𝐷𝐷𝐷

= �
1

−𝑝𝑝
1 + 𝑝𝑝 − 𝑞𝑞

1
𝑞𝑞

1 + 𝑝𝑝 − 𝑞𝑞

� �λ1 0
0 λ2

� �
1 − 𝑞𝑞

1 + 𝑝𝑝 − 𝑞𝑞
𝑝𝑝

1 + 𝑝𝑝 − 𝑞𝑞
−1 1

�                                              (7.2) 

where D is a diagonal matrix, S is the matrix of eigenvectors and S-1 is its inverted. 
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The value si, the ith row S, is the left eigenvector of matrix of transition P corresponding 

to λi meaning 𝑆𝑆𝑖𝑖𝑃𝑃 = 𝜆𝜆𝑖𝑖𝑆𝑆𝑖𝑖 a verified 2-step transition matrix is 

𝑃𝑃𝑛𝑛 = �𝑃𝑃00(𝑛𝑛) 𝑃𝑃01(𝑛𝑛)
𝑃𝑃10(𝑛𝑛) 𝑃𝑃11(𝑛𝑛)� = 𝑆𝑆−1𝐷𝐷𝑛𝑛𝑆𝑆

= �
1

−𝑝𝑝
1 + 𝑝𝑝 − 𝑞𝑞

1
𝑞𝑞

1 + 𝑝𝑝 − 𝑞𝑞

� �
𝜆𝜆1𝑛𝑛 0
0 𝜆𝜆2𝑛𝑛

� �
1 − 𝑞𝑞

1 + 𝑝𝑝 − 𝑞𝑞
𝑝𝑝

1 + 𝑝𝑝 − 𝑞𝑞
−1 1

�        (7.3) 

While extracting the common factor, we have 

𝑃𝑃𝑛𝑛 =
𝜆𝜆1𝑛𝑛

1 + 𝑝𝑝 − 𝑞𝑞
�1 − 𝑞𝑞 𝑝𝑝
1 − 𝑞𝑞 𝑝𝑝� +

𝜆𝜆2𝑛𝑛

1 + 𝑝𝑝 − 𝑞𝑞
�

𝑝𝑝 −𝑝𝑝
−1 + 𝑞𝑞 1 − 𝑞𝑞�                                  (7.4) 

with λ1 = 1; λ2 = q - p. 

Let us examine the state probability vector p(n) as n becomes very large. 

The vector 𝜋𝜋 = [ 𝜋𝜋0  𝜋𝜋1]′ =  lim
𝑛𝑛→∞

𝑝𝑝(𝑛𝑛) 

The initial state is state 1, the state probability at time n  

lim
𝑛𝑛→∞

𝜋𝜋1 =  
𝑝𝑝

1 + 𝑝𝑝 − 𝑞𝑞
+ 𝜆𝜆2𝑛𝑛  

−𝑝𝑝0𝑝𝑝 + 𝑝𝑝1(1 − 𝑞𝑞)
1 + 𝑝𝑝 − 𝑞𝑞

=  
𝑝𝑝

1 + 𝑝𝑝 − 𝑞𝑞
                             (7.5) 

With λ2 = q – p < 1. 

This chain converges to the stationary distribution regardless of where it begins. 

The vector π = [π0 π1] is called the equilibrium distribution of the chain. 

7.2.2 Tradeoff: Agility vs Recovery 

We assume that P10 > 0 or 0<q<1. The system administrator cannot guarantee at 100% 

that the system will not change from state 1 to state 0. The limiting state probability is a 
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function with two variables p and q. Since both variables are probabilities, we need to 

understand the behavior of both variables along their axes. The partial derivative of π1 

(7.6) according to p-axis shows an increase with p: 

𝜕𝜕𝜋𝜋1
𝜕𝜕𝜕𝜕

=
1(1 + 𝑝𝑝 − 𝑞𝑞) − 𝑝𝑝(1)

(1 + 𝑝𝑝 − 𝑞𝑞)2
=  

1 − 𝑞𝑞
(1 + 𝑝𝑝 − 𝑞𝑞)2

> 0                                   (7.6) 

The partial derivative of π1 according to variable q shows the increase on the q-axis. We 

need to find out which of the two variable p or q will make π1 increase faster. 

𝜕𝜕𝜋𝜋1
𝜕𝜕𝜕𝜕

=
−𝑝𝑝(−1)

(1 + 𝑝𝑝 − 𝑞𝑞)2
=  

𝑝𝑝
(1 + 𝑝𝑝 − 𝑞𝑞)2

> 0                                     (7.7) 

And 

𝜕𝜕𝜋𝜋1
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜋𝜋1
𝜕𝜕𝜕𝜕

=  
1 − 𝑞𝑞 − 𝑝𝑝

(1 + 𝑝𝑝 − 𝑞𝑞)2                                                    (7.8) 

The differential of equations (7.7) and both probabilities p, q produces equation (7.8) 

which shows that the variable that increase faster depend on the sign of 1 - q - p. If the 

goal of the system administrator is to maximize the long-term fraction of time during 

which the system is UP (in state 1), then security investments need to be made in order to 

increase the variable p or q that makes 𝜋𝜋1increase faster. Equation (7.8) shows that: 

�

𝐼𝐼𝐼𝐼 𝑞𝑞 < 1 − 𝑝𝑝 ⟹
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝 

𝐼𝐼𝐼𝐼 𝑞𝑞 ≥ 1 − 𝑝𝑝 ⟹
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞 

                                    (7.9) 



134 

7.2.3 Security Functions 

Let us consider that q = 0 (respectively p = 0) if no investment is made in agility 

(respectively in recovery). We also consider that q < 1 (respectively p < 1) in case a huge 

investment is made in agility (respectively in recovery). We consider two security 

functions: the agility function and the recovery function. The agility function (respectively 

recovery function) take as input the amount of dollar x invested in agility (respectively 

recovery) and return as output the probability q (p respectively). We make two reasonable 

assumptions: 1) every dollar spent on agility (respectively recovery) increases probability 

q (respectively p) and 2) As the total amount spent on agility (respectively recovery) 

increases, the marginal rate of increase in probability q (respectively p) decreases [83] 

[84]. With these considerations, the probabilities q and p can be represented by: 𝑞𝑞 = 1 −

𝑒𝑒−𝛽𝛽𝛽𝛽 and 𝑝𝑝 = 1 −   𝑒𝑒−𝛼𝛼𝛼𝛼. The parameters α and β represent scaling factors for the 

function p and q, respectively. 

7.2.4 Resource Allocation Scheme and Illustration 

Equation (7.9) shows that the optimum investment in agility or recovery is governed 

by the relative value of q and (1 – p). Figure 7.2 shows the probability q and (1 - p) as a 

function of investment. For this illustration, we have chosen β = 0.75 and three different 

values for α, α = 0.5, 0.75, 1.5. the probability q is an increasing function of the 

investment. The probability p also increases with the investment. However, the function 

(1 - p) decreases with the investment. Each function (1 - p) crosses the function q in a 

single point of coordinate (x*, q*). We can see from Figure 7.2 and Equation (7.9) that:  

1) If x < x* → q < 1 - p, then all investment must be in recovery 
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2) If x ≥ x* → q ≥ 1 - p, then x* must be invested in agility and the remainder of (x – 

x*) invested in recovery. 

For instance, with α = 0.5 and β = 0.75, the graph of the probability q and (1 - p) 

intersects at x* = 1.12, which means, in a mission-critical system, if the available 

investment is less than 1.12, it will be best to invest in recovery. In cases where resources 

to be allocated are greater than 1.12 then the difference is to be allocated to agility. When 

α = 1.5 and β = 0.75, then x* = 0.66. In fact, x* decreases with α while it increases with 

β. 

 

 

Figure 7.2: Probability q and (1-p) as a function of Investment. 
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probability 1-p = exp(-0.75*x)
probability q = 1-exp(-0.75*x)
probability 1-p = exp(-0.5*x)
probability 1-p = exp(-1.5*x)
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7.3 THE MDP MODEL FOR RESOURCE ALLOCATION 

Resource allocation is important in cyber security, especially when the need of SLAs 

will help assist any system to remain functional in cyberspace. The previous sections did 

allow us to use the security investment functions in the presence of a two-state Markov 

chain to modify the values of probabilities p and q. Moreover, with a transition 

probability attaches to every state transition, there is an intervention or interaction to 

trigger the change of states. The system administrator main objective is to keep the 

system in active state which means there is a reward when the system is up and a cost 

attached due to attack when the system is down. 

According to the above, we are in the presence of a two-state system. The system 

changes state because of an attack perpetrated, the attack may be man-made or natural. A 

critical system implemented to run with most of the agility’s component in a cyber 

environment should explore the possibility of making a decision when the system in a 

degraded state is given. Decision-making is only related to the system’s current state; it is 

irrelevant to the previous actions and state. The MDP model can be described as follows: 

7.3.1 State Space 

The state space S is a finite set of states, S = {S0, S1} as in Figure 7.1. |S| denotes the 

total number of states in the system. 

7.3.2 Action Space 

A finite and non-empty set of available actions A(Si) ={ak}k=1,…,|A(Si)| associated to each 

state si ϵ S. Actions associated to a state either move the system to a different state or 

remain on the same state (loop). For example, A0 = {a00, a01} are the actions available in 
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state S0; action a00 makes the system remains on state S0, and action a01 takes the system 

from state S0 to state S1. 

7.3.3 Transition Probability 

Given the time t, an action a ϵ A(s) selected in state S can transfer the system into a new 

state S’ following a transition probability Pa(s, s’). The transition matrix probability is 

defined as in equation (7.1). 

7.3.4 Reward 

Given the decision-making epoch t, the selection of an action a ϵ A(s) in state S can 

generate a real-valued one-step reward function. Ra(s, s’) is the immediate reward 

incurred by the system as it is in state s, the action a is chosen and s’ is the next time 

state. 

7.3.5 Discount Factor 

The discount factor δ ∈ [0, 1] describes the value of the future payoff as compared to 

the current payoff. Through the MDP-based approach, the main goal of a decision maker 

is to find an optimal policy, π*(s). The optimal policy prescribes the best possible action 

at any time t that the decision maker is in state s. The optimal policy π*(s) maximizes the 

δ-discounted average reward: 

(1 − 𝛿𝛿)�𝛿𝛿𝑡𝑡𝑅𝑅𝑎𝑎𝑡𝑡(𝑆𝑆𝑡𝑡, 𝑆𝑆𝑡𝑡+1)
∞

𝑡𝑡=0

                                           (7.10) 
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7.3.6 Optimal Algorithm 

In this section, we introduce the optimality equations and implementation through the 

value iteration method to find the solutions. The solutions of the equation correspond to 

the optimal value functions, which also provide the basis for determining optimal 

policies. Under the policy π, the state-value function is used to evaluate the set of 

possible policies which, if executed will solve the problem presented in this chapter. The 

state-value function 𝑉𝑉𝑅𝑅𝜋𝜋of a state s is the expected return in reward point when starting in 

s and policy π is applied. The bellman equation is: 

𝑉𝑉𝑅𝑅𝜋𝜋(𝑠𝑠) =  � 𝜋𝜋(𝑠𝑠,𝑎𝑎) �𝑃𝑃𝑎𝑎(𝑠𝑠, 𝑠𝑠′)[𝑅𝑅𝑎𝑎(𝑠𝑠, 𝑠𝑠′) + 𝛿𝛿𝑉𝑉𝑅𝑅𝜋𝜋(𝑠𝑠′)]
𝑠𝑠′∈ 𝑆𝑆𝑎𝑎∈𝐴𝐴(𝑠𝑠)

                   (7.11) 

The optimal value function is defined as follows: 

𝑉𝑉∗(𝑠𝑠) =  max
𝜋𝜋

𝑉𝑉𝑅𝑅𝜋𝜋(𝑠𝑠),∀𝑠𝑠 ∈ 𝑆𝑆                                          (7.12) 

The value iteration method [31] is used to find the optimum policy. The value iteration 

algorithm is presented in Table 7.2. The algorithm converges to the optimal state-value 

function V*, thus, to the optimal deterministic policy. The optimal action for each state is 

derived from the iteration algorithm. The transition matrix and the reward value 

determine the action. The value iteration algorithm is as defined in table 7.2. 
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1.    V0(s) = 0  

2.            For each state s 

3. For each action a 

4.      Compute Qk(s,a) = R(s,a) + ∑j δ P(s,a)V(s’)  

5. Until ∀s, |Vi+1(s) – Vi(s)| < ε 

6. Compute and store π*(s) = arg maxa Qk(s,a)  

7. Compute and store Vi(s)= Q(s, π*(s)) 

8. Return < π*(s), V(s) > 

  
Table 7.2: Value Iteration Algorithm 

 

7.4 SIMULATION RESULTS 

7.4.1 Model Illustration 

In real life situations, probability q derives from the amount of resource allocated in 

terms of manpower and investments [76] to keep a mission-critical system in state S1. 

The probability p is derived from the resources allocated to the system after a breach 

occurred from attack to switch the system back to state S1. In a broad sense, if probability 

p = 0, meaning there is no resource allocated for recovery in case of an attack, then the 

long term confrontation between attacker and defender will end with the system in state 

S0 and no way to switch to state S1. With the probability p > 0, there is a recovery 

module or process implemented. The proportion of resources allocated to system’s 

recovery depends on how long the system will remain offline and how costly is the loss 

due to the system being offline and not operational.  
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The measurement parameters such as, the mean time to recovery (MTTR), the mean 

time to failure (MTTF) are known for: calculating the average time that a system will 

take to recover from failure (MTTR) and the MTTF is the length of time expected for the 

system to remain operational before any failure occurred [67]. These metrics and more 

sustain the necessity to have the correct amount of resources allocated to recovery. 

An illustrative example is to assign one unit of reward per time period for any action 

taken on the system, R01 = +1; R11 = +1; R00 = -1; R10= -1.  Here, reward R01 gains one 

unit which means, the system recovers from a failure attack. R11 gains one unit for the 

system to remain active after an attack was launched. R00 costs one unit for the system to 

remain off after an attempt to recover, and also it will cost one unit in R10 for the system to 

fail. Let’s consider a unit is gained when the system remains in S1 after an attack is 

perpetrated or switches from S0 to S1 after a recovery action. A unit is lost when an attack 

succeeded or a recovery action failed. Each time a mission-critical system is down, the 

next action or optimal action may be to bring the system back up in a running state in case 

the costs are lower than the loss to leave the system in a degraded state. When the system 

is in state S1, there are implemented resources to circumvent and avoid failure or switch to 

state 0 or down. 

7.4.2 Interpretation 

This section provides a more detailed analysis of our MDP model illustration. The 

MATLAB simulations are to support the analyzed techniques presented. Notice that this 

work has proposed a high level MDP modeling of decision of resources allocation for a 

system in cyberspace. In fact, the result of any specific experiment will depend on the 
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value attributed to the eight parameters p, q, R00, R01, R11, R10, δ and ε, where ε 

represents the error margin and it’s a smaller positive number.  

 

Figure 7.3: Resources variation between p and R10 

 

The specific values we have used in MATLAB simulations are just to illustrate a few 
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agility to keep the system “ON”, loss R10 will be reduced to a minimum. Hence, the 

optimal action will be to recover the system each time it fails or switches into state S0. 

The MTTR decreases when resources are allocated to recovery process. 

The graph also reveals that, an increase of investment on agility when is already q = 0.7 

does not seems efficient. Therefore, a 15% increase in investment on agility for q = 0.85 

does not reduce the loss in to the system to fail. 

 

 

Figure 7.4: Behavior of Probabilities p and q 
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Figure 7.5: Frontier of Optimal Actions Between p and R01 
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Figure 7.5 captures the frontier variations between the probability p and the reward R01. 

Below the frontier, both the probability to recover p and the reward to recover R01 are 

low and thus the optimum policy is to invest in agility. Above the frontier, both the 

probability to recover p and the reward to recover R01 are high and thus the optimum 

policy is to invest in recovery. 

Figure 7.6 shows the reward R11 and the cost R10 of our system in state S1. The minimal 

cost R10=-2.74 is obtained with probability q set to 0.9. The cost of failure R10 is too high 

below the frontier and thus the optimal policy is to invest in agility to avoid any costly 

failure. Above the frontier the optimal policy is to invest in recovery. We can see that the 

optimal policy is very sensitive to the variation of R11. 

 

Figure 7.6: Frontier Actions Between Reward R10 and R11 
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7.5 CONCLUSION AND FUTURE WORK 

We investigate in this chapter, the issue of resource allocation in cybersecurity in terms 

of proportion sharing between agility and recovery, while approaching it by using the 

Markov decision process. First, the chapter explores the resource allocation proportion 

between agility and recovery using the Markov chain and presents the findings through 

limiting states probability, such that requirements from security investment should be 

available for the recovery component and then agility component. Second, the chapter 

extends the results from a Markov chain to a Markov decision process. The optimal 

allocation solutions should consider the gains from investing in the recovery component. 

The switch from a degraded state 0 to active state 1 after a period of time for any system 

means that the system has a recovery model implemented. Using simulations and the 

metrics MTTR and MTTF, this work also shows a repartition of resources that affects a 

mission-critical system’s performance in cybersecurity. 

In the future, we will consider the case of breaking down agility and recovery into 

multiple states with non-symmetrical interactions between states. We will also investigate 

the use of game theoretic models for resource optimization. 
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In this dissertation, we have explored the problem of incentivizing cooperation in 

mobile ad hoc networks (MANETs). In a MANET as we have mentioned, there is no 

infrastructure to support information exchange like dedicated routers or access points. 

Rather, nodes have to play the crucial role of relays to help transfer data-packets across 

the network. With this responsibility, autonomous nodes with selfish behavior may arise 

to preserve nodes' energy. Cooperation among entities of such networks is important and 

indispensable to keep them operational in the face of selfish behavior. Adding to the fact 

that the autonomous node is also moving, the mobility of a device can deter or make it 

difficult for a selfish node to participate in overall network objectives.  

This chapter reflects the contributions, discusses the limitations and proposes the future 

direction of our research. 

8.1 DISCUSSIONS  

8.1.1 Data Delivery in Mobile Environment with Incentives 

We designed an incentive dynamic data delivery for a mobile environment, where mobile 

a node can move randomly and still participate in data-packet forwarding. We defined the 

bargaining model, which took into consideration the mobility factor and parameters like 

speed, direction and available resources of a node. Based on the routing protocol for node 

discovery in the mobile network, we presented the mechanism for selecting the most 

CHAPTER 8 

CONCLUSION  
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appropriate candidate as an intermediary node. Also, the splitting rule is followed by each 

negotiator during the bargaining sequence. We defined the proper evaluation metrics to 

evaluate the nodes participating in the overall performance of the MANET compared to 

other methods. The effectiveness was presented with OMNET++ as our simulation 

environment, where node mobility is captured as close as possible to reality. The 

simulation results are presented. 

Limitations in the design and implementation are the overhead messages and extra power 

consumption for a longer bargaining time. Because of the message exchange during 

negotiation and the density of the network, when two nodes are in bargaining mode, their 

speed should be limited. A stopping procedure for the bargaining process has to be 

implemented in order to shorten the energy depletion.  

8.1.2 Arbitration in Mobile Environment to Allocate Resources 

In a mobile heterogenous environment where nodes are not homogenous, we designed an 

arbitration solution for heterogeneous MANETs in the presence of selfish nodes. We 

integrated into our solution an incentive mechanism to stimulate and enforce non-

participative nodes to be part of the overall network objectives. We have simulated the 

arbitration solution and shown the effectiveness of applying arbitrators in a completely 

mobile environment to ease and secure the data transfer. By deploying arbitrators with 

better radio transmission range, number of hops are reduced, which also reduced the 

amount of energy consumption for a packet to travel from source to destination. By 

reducing the number of hops for a packet to travel from a source node to its destination 
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node, it also increases the security of the network because we have less packets traveling 

on airwaves. 

So far, we have only considered selfish nodes acting alone. The detection of malicious 

nodes or  a coalition of malicious nodes during negotiation will improve the performance 

of the arbitrators in the network. Another improvement is to relax the responsibility of the 

arbitrator in detecting misbehaving nodes and have all nodes neighbors look after each 

other. 

8.1.3 Network Security Game: Modeling Security and Trust Relationship in MANETs 

We applied the User-Defender-Attacker game theoretic model to design the interactions 

between users, defenders, and attackers of the system in cyberspace. We formulated the 

characteristics of each interactive entity, including selfishness and non-cooperativeness. 

We also evaluated the level of security of the network and the trustworthiness of the 

network against attacks. The equilibrium strategies of the three-player game are derived. 

The simulation results are presented. 

Users trust in terms of loss when the attacker breaches the system and compromises 

users’ private data. The exact quantification of the user’s loss has not been analyzed. For 

example, when a provider system is breached because of less investment in security and 

the users are informed through mass media, the trust between the provider and the users 

should be reevaluated and the provider penalized.  

8.2 FUTURE DIRECTIONS 

The first part of this research mainly involves enforcing and stimulating cooperation to 

forward packets in a completely mobile environment. Regardless of the above-mentioned 
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improvements, there are other potential directions to enhance the current work, and 

develop a more comprehensive security and cooperation in MANETs using the game 

theory frameworks. A comprehensive model for an autonomous network can then be 

developed. Clearly, cross layer optimization techniques will improve the security and the 

cooperation using the framework of the game  

 

8.2.1 Stochastic Pricing and Resource Allocation Games 

The dynamic programming techniques used in Chapters 3 and 4 addressed the problem 

for a single decision maker acting in a mobile environment. In the asymmetric bargaining 

model introduced in Chapter 4, players’ bargaining powers depend on their bids, which 

can be determined using the admission price for an optimal pricing policy or an auction. 

Like the authors in resource allocation [25], we have assumed that network users do not 

anticipate their effect on the resource allocated. However, when the users recognize that 

they are not merely accepting the offers, the problem becomes a game in which the 

setting of willingness-to-pay, demand and bids becomes strategic for the network users. 

Users make self-serving decisions and economists are well aware that these selfish 

behaviors can lead to inefficiency. Johari et al. [7] showed that the price of anarchy in 

networks with elastic supply amounts to up to 25% in efficiency loss. The measurement 

is obtained by computing the ratio of the NE utility function to the socially optimal utility 

function and showing that it is ¾ at worst [7]. Stochastic games are natural extensions of 

Markov decision processes to include multiple decision makers.  
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There are some similarities between the node degree of distribution on the real and 

simulated MANET, while links are much more unstable and asymmetric in real life than 

in a simulated MANETs environment. To alleviate this discrepancy, the link status can be 

modeled in a MANET using a state Markov chain model. However, the lack of available 

data generated from real MANET experiments could not statistically confirm these 

claims. Moreover, with some analytical works, we think that this future work can produce 

promising models to better simulate link status in MANETs. 

 

8.2.2 Non-cooperative Implementation of the Cooperative Bargaining Solutions in Self-

organizing and Self-healing Networks  

In Chapter 4, we have derived a class of bargaining solutions using the bargaining 

concepts from cooperative game theory. The payoffs, indicated by the amount of 

resources allocated to the players, are sustained by a binding agreement guaranteed by 

each node in the network and the arbitrator. However, the enforcement of such payoffs 

falls outside of the domain of cooperative game theory. In MANETs, the decision-

making process has to be decentralized, as in a non-cooperative game. A MANET is a 

collection of nodes that forms a network without fixed-infrastructure. As opposed to 

networks which use routers to support network functions, such as packet routing and 

forwarding, these functions are provided by the nodes (or hosts) themselves. Such a 

network can operate in a standalone fashion or may be connected to the Internet. The 

interconnections among nodes often change continually and arbitrarily. These networks 

were initially designed for military operations and play an increasingly important role in 
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many environments, such as ad hoc networking for collaborative and distributed disaster 

recovery, search-and-rescue and crowd control. More recently, they have been envisaged 

as able to provide Internet connectivity for nodes that are not in transmission range of a 

wireless access point. The IEEE 802.11 wireless protocol incorporates an ad hoc 

networking system when no access points are present.  

In wireless mobile networks (WMNs), all routers are capable of organizing and auto-

reconfiguring themselves wirelessly, which means that no cabling is needed to connect 

them. These nodes form a rich radio mesh connectivity among themselves that is difficult 

to provide in wired networks. The principle is similar to the wired Internet; data will hop 

from one node to another until it reaches its given destination. While wireless node 

connectivity significantly reduces the upfront deployment and subsequent maintenance 

costs, the rich mesh connectivity helps to deliver high levels of reliability and robustness. 

Mesh networks are self-healing and extremely reliable because each node is connected to 

several others and if one drops out, due to hardware failure or man-made attacks, its 

neighbors simply find another route. Because of these attractive features, WMN is being 

considered for a wide variety of applications, such as backhaul connectivity for cellular 

radio access networks, combat systems and citywide surveillance systems. It can 

effectively extend a network by sharing access to a higher cost network infrastructure. 

Due to the complexity of the mobility and traffic models as well as the infrastructureless, 

dynamic topology of these networks, non-cooperative game theory is the primary tool for 

studying players, which are independent decision makers whose actions potentially result 

in efficiency loss. A vast number of works on the application of non-cooperative game 
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theory in MANETs are surveyed in [42]. Another approach is to study the 

implementation of the Pareto-optimal bargaining solutions in a non-cooperative manner. 

8.2.3 Route Calculation Based on Routing protocol and Coalition Information 

The way the non-cooperation model is currently integrated with the routing protocol 

(AODV) in chapter 3 helps fight selfish behavior through the bargaining agreement: Do 

not drop packets sent from or destined to members after agreement. However, this can be 

more effective if AODV proactively uses the nodes that are inclined to accept offers 

available to build its routing table. For example, AODV could be modified to give 

priority in choosing multi point relays (MPRs) to alliance companions such that resulting 

routes involve more nodes with less bargaining power, hence achieving more reliable 

routes. This could greatly enhance the packet delivery ratio of the network under the 

integrated system. We highly believe that this could be a promising future of the current 

work. 

8.3 SUMMARY 

In this dissertation, we have explored the problem of stimulating cooperation in mobile 

ad hoc networks (MANETs) by investigating nodes cooperation in improving the 

network throughput using the bargaining game theoretic model. We investigated the data 

forwarding task between nodes in a highly dynamic network using an arbitrator for 

resource allocation. Also, the investigation led us to consider the possibility of having 

colluded nodes in our mobile ad-hoc network interfering with the arbitrator negotiation 

process. In order to prevent complacent offers to players, the arbitrator uses a random 

generator to assign offer without memory of previous offers. Finally, we investigated the 
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interactions between users, providers and attackers in cyberspace using a three-player 

game theoretic approach to strengthen the security by providing to decision-makers the 

optimized investment in defending users’ privacy and private data against security 

breaches. 
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