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ABSTRACT OF THE DISSERTATION 

HEAT-DRIVEN SELF-COOLING SYSTEM BASED ON THERMOELECTRIC 

GENERATION EFFECT 

by 

Robel Kiflemariam 

Florida International University, 2015 

Miami, Florida 

Professor Cheng-Xian Lin, Major Professor 

This research entails the first comprehensive and systematic study on a heat-

driven, self-cooling application based on the thermoelectric generation effect. 

The system was studied using the first and second laws of thermodynamics to 

provide a solid and basic understanding of the physical principles governing the 

system. Multiphysics equations that relate heat transfer, fluid dynamics and 

thermoelectric generation are derived. The equations are developed with 

increasing complexity, from the basic Carnot heat engine to externally and 

internally irreversible engines. A computational algorithm to systematically use 

the fundamental equations has been presented and computer code is 

implemented based on the algorithm.  

Experiments were conducted to analyze the geometric and system parameters 

affecting the application of thermoelectric based self-cooling in devices. 

Experimental results show that for the highest heat input studied, the 

temperature of the device has been reduced by 20-40% as compared to the 

natural convection case. In addition, it has been found that in the self-cooling 
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cases studied, convection thermal resistance could account for up to 60% of the 

total thermal resistance. 

A general numerical methodology was developed to predict steady as well as 

transient thermal and electrical behavior of a thermoelectric generation-based 

self-cooling system. The methodology is implemented by using equation 

modeling capabilities to capture the thermo-electric coupled interaction in TEG 

elements, enabling the simulation of major heating effects as well as temperature 

and spatial dependent properties. An alternative methodology was also 

presented, which integrates specialized ANSI-C code to integrate thermoelectric 

effects, temperature-dependent properties and transient boundary conditions. It 

has been shown that the computational model is able to predict the experimental 

data with good accuracy (within 5% error). A parametric study has been done 

using the model to study the effect of heat sink geometry on device temperature 

and power produced by TEG arrays.  

In addition, a dynamic model suited for integration in control systems is 

developed. Therefore, the study has shown the potential for a heat driven self-

cooling system and provides a comprehensive set of tools for analysis and 

design of thermoelectric generation.  
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1. INTRODUCTION 

1.1. Background 

 

The rising cost of energy and increasing environmental awareness have given 

prominence to research focusing on the use of thermoelectric generator (TEG) 

modules for various waste heat to electricity applications [1]. These include 

aerospace, automobiles, solar energy systems, wireless sensors and wood 

stoves [2], [3], [4], [5], [6], [7].  

 

Thermoelectric generation is a promising technology that cleanly converts waste 

heat into electricity.  A TEG (thermoelectric generator) module consists of a 

number of semi-conductor pairs connected in series by copper solders and 

contained between thermally conductive and electrically insulated ceramic plates. 

They enable the change of a temperature difference across the hot side and cold 

side to be directly converted to electricity using the Seebeck effect.  

 

TEG modules could also be applied in self-driven cooling loops by using waste 

heat from a hot device.  The heat, which is normally removed from hot surfaces, 

can be converted to an electrical power using TEG modules. The power could 

then be used to self-sustain a cooling system for the hot bodies. This helps save 

power by reducing the need for external power and is also suitable for remote 

area application where autonomous and reliable power supply is essential.  
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A self-cooling system could be thought of as a forced convection cooling system 

without an external power supply. It could potentially be a useful cooling 

mechanism for applications where the system (device) may not be adequately 

cooled by natural convection. Thus, there is a motivation to replace external 

power sources or utilize self-cooling where external power sources are not 

available or feasible. 

 

This chapter discusses the fundamental concepts of thermoelectric generation, 

followed by a review of the uses of thermoelectric generation application in a 

waste heat scavenging focusing on uses that pertain to self-cooling. 

 

1.2. Review on thermoelectrics 

 

Thomas Seebeck, a German physicist, discovered in 1821 that a magnetic field 

is developed between two dissimilar electrical conducting materials when they 

are connected at their legs and a temperature difference is maintained between 

the ends. He did not, however, explain the cause of the phenomenon. It is 

presently known as the Seebeck effect.  

 

A thermoelectric material contains free electrons or holes that carry charge and 

heat. When one end of the material is maintained at a higher temperature, the 

charge carriers move faster and migrate to the cold side. This in turn creates high 

density of charge carriers at the cold side, which forces them to diffuse back to 
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the hot end. The build-up of charge carriers at the cold side creates an electric 

potential difference in what is commonly known as the Seebeck effect. 

 

 A proportionally constant between temperature difference (ΔT) and electric 

potential (V) is known as the Seebeck coefficient (α). If the material builds up 

positive charges (hole charge carriers) at the cold side and has positive potential, 

it is called p-type material. On the other hand, n-type material carries negative 

free charges (electron charge carriers), exhibits build-up negative charges at the 

cold side and has negative potential. In pure semiconductor materials, at higher 

temperature, there will be n-type carries in the conduction band and p-type 

accrues in the valence band. The presence of both p-type and n-type carries 

reduces the resultant Seebeck coefficient, as both effects cancel each other. 

Thus, materials are usually heavily doped to produce more of one of the carriers 

(p-type or n-type). 

  

The Seebeck effect can be expressed by the equation: 

 

 
( )( )cshsnpoc TTV −−= αα

 1.2.1 

 

where Voc is the open circuit voltage produced due to the Seebeck effect, αp and 

αn are the Seebeck coefficients of p-type and n-type legs, respectively, and Ths 

and Tcs are the hot and cold side temperatures of the end of the semiconductor 
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legs. The unit of the Seebeck coefficient is usually given as mV/K. It should be 

noted that the Seebeck coefficient is usually temperature dependent and the 

derivation of a more comprehensive thermoelectric is described in the next 

chapter. 

 

 

Figure 1-1 Figure showing a thermoelectric couple in power generation mode 
 

Thermoelectric couples when connected to a load with electrical resistance of RL,  

as shown in Figure 1-1. It produces power, which is given as: 

 

 LL RIP 2=  1.2.2 
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There is also an opposite effect that is known as a Peltier effect, which was 

discovered by a French physicist Jean-Charles-Athanase in 1834. He noted that 

a current passing through a pair of dissimilar conducting materials creates heat 

flow from one side to another and also observed that the heat flow was more 

than what is expected from Ohmic heating. His observation was later named as 

the Peltier effect.  

 

A figure of merit is a common term that is used to describe the performance of a 

thermoelectric material. The figure of merit, z (unit K-1), of a thermoelectric 

material is defined as: 

 

 
k

z σα 2

=
 

1.2.3 

 

It is also common to find it in a literature defined as dimensionless by multiplying 

with temperature: 

 

 T
k

zT σα 2

=
 

1.2.4 

 

It is a function of three parameters: electrical conductivity σ, Seebeck coefficient 

α and thermal conductivity k. The figure of merit indicates that a material 
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produces more electrical potential between the ends with an increase in the 

Seebeck coefficient. However, z is also indirectly proportional to the conductivity 

of the material. This is due to the need to maintain a larger temperature 

difference between the ends of the thermoelectric material. However, many 

electrical conductive materials also have high thermal conductivity.  

 

Figure 1-2 and Figure 1-3 (adapted from [8]) show the comparison between 

different materials according to cost and performance. The data was compiled for 

the DOE workshop in 2009. As could be observed from Figure 1-2a, Bi2Te3 had 

the highest power output per kg of mass of a material (221 W/kg when 10 W/cm2 

of heat flux is used). For the cost of the materials (Figure 1-2b), Skutterdites had 

the least cost (12 dollars per kg), which comes to 0.2 dollars per watt. Bi2Te3 had 

around the cost of 0.8 dollars per watt of power produced. When it comes to 

material efficiency (Figure 1-3a), Segmented materials had the highest efficiency 

compared to the other materials in the figure. Bi2Te3 has an average efficiency of 

around 7.1 with maximum temperature of around 525 K (252 °C). 

 

In this thesis, the thermoelectric effect is applied mainly in relation to the cooling 

of electronic devices. With the ambient temperature of around 25 °C, the 

temperature range under consideration is in the range of 25 to 200 °C. A most 

common and efficient material for the temperature range under consideration is 

Bismuth Telluride (Bi2Te3)[9]. 
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Figure 1-2 a) Comparison of a) power produced 
b) cost per kg of thermoelectric material. 
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Figure 1-3 Comparison of a) material efficiency b) maximum of 
hot side temperature. 
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For a thermoelectric couple, the expression for figure of merit for a single leg (Eq. 

1.2.4) could be rewritten as: 

 

 T
kk

zT
nnpp

np
2/112/11

2

)()(
)(
−− +

−
=

σσ
αα

 1.2.5 

 

where the properties at the respective legs are denoted by the subscripts of p 

and n. 

 

The efficiency of thermoelectric couple (ηTE) is described by the power produced 

at the load per unit of heat flow rate into the thermoelectric couple. It could be 

written as: 

 

 
in

L
TE Q

P
=η
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where PL is the power input to a load and Qin is the heat flow into the 

thermoelectric couple.   

 

Eq. 1.2.6 could also be rewritten in terms of figure of merit (zT)[10] as: 
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where Tm is the average temperature of the semiconductor legs. The first term in 

the right-hand side of the equation is actually the Carnot efficiency of an 

equivalent heat engine. 

 

Solid state thermoelectric generation (TEG) modules don’t have any moving 

parts or working fluid inside the parts and have high reliability, compact design 

and noiseless operation. As shown in Figure 1-4, a thermoelectric module 

consists of thermoelectric semiconductor pairs connected in series electrically 

and in parallel thermally. The semiconductor pairs are connected at the ends 

using a conductor. A thermally conductive but electrically insulating material is 

placed on the top and bottom of the thermoelectric legs. 

 

The solid state TEG module is highly scalable and modular. It has no vibrations 

and can outperform competition for small-scale applications. Thus, there is a 

potential for utilization of waste heat by system integration or interfacing with the 

industrial process. These may include the single-phase Rankine cycle, mixed- 

fluid cycle, or combined cycles. 

 

1.3. Review on Waste Heat Scavenging  

 

Waste heat recovery had its early uses in space in what are known as 

radioisotope thermoelectric generators (RTGs), where the waste heat from 

nuclear decay of radioactive isotopes was used [11]. 
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Figure 1-4 Figure showing a thermoelectric generator module 
 

 

The applications in space had been in the high temperature range, which is 

usually around 1000 °C. Thus, high temperature thermoelectric materials like 
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Silicon Germanium were typically used. There are also numerous heat sources 

for terrestrial applications, which could be low-level heat sources (< 250 °C), mid-

level heat sources (~250-650 °C) and high-level heat sources ( >650 °C) [12]. 

Applications that are suitable for waste heat recovery include vehicles, industrial 

processes, and renewable energy sources like Photovoltaic cells, human body 

and electronic devices. Thermoelectric application for reducing the environmental 

impact of other power sources has also been demonstrated [13][14]. 

 

 

 

Figure 1-5 Graph showing the worldwide funding for Thermoelectric in 2012[15]  
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A report by Gentherm[15] showed that the worldwide expenditure on research on 

thermoelectric was around 277 million in 2012 and of that, almost half of the 

funding came from the European Union followed by North America (20%). 

 

US Department of Energy (DOE)[16] detailed projects done with the NSF/DOE 

partnership to study the application of thermoelectric devices for vehicle 

applications. The details of projects funded by DOE for the time period of 2010-

13 is shown in Table 1-1. 

 

Hendricks et al[17] demonstrated the TEG system for heat recovery from diesel 

generators’ exhaust. Liu et al. [18] experimentally and numerically analyzed an 

energy-harvesting system for automotive exhaust pipes using TEG modules. Hsu 

et al [19] experimentally and numerically studied waste heat harvesting by TEG 

modules from an automobile exhaust pipe. For an engine boosts of 3500 RPM, it 

was claimed that a maximum power output of 12.41 W was obtained for an 

average temperature difference of 30 K. 

 

Kuroki et al[20] described a TEG system using waste heat from the steel-making 

processes. Their system consisted of 16 TEG modules with each module 

capable of generating 18 W with a hot side temperature of 523 K. Thermoelectric 

generators have also been integrated with photovoltaic cells in a solar-driven 

hybrid generation system  to convert the heat collected by thin-film solar cells to 

electricity [21].  
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Table 1-1 NSF/DOE Partnership on thermoelectric device application for Vehicles 
from 2010-2013[16] 
 
 

 

 

He et al. [22] showed that TEG modules could be directly incorporated with 

evacuated-tube heat-pipe solar collectors to get a higher heat flux into the 

modules. Sodano et al[23] studied a Seebeck heat pump based on TEG module 

to convert the thermal gradient by solar radiation and waste heat. The hot side of 

the module was placed on a greenhouse and the cold side on a highway bridge. 
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The system was used to recharge a battery. Chen[24] investigated the theoretical 

efficiency of solar thermoelectric generators (STEG), which included a model 

with thermal and optical concentration.  

 

Muhtaroglu et al[25] proposed the application of TEG and Photovoltaic (PV )as a 

viable power source for a mobile computing system. The system benefited from 

extended battery life. They mentioned that using energy sources in the vicinity of 

a computing system was a viable method to extend on-board power. However, 

their research mentioned the challenges associated with stepping up the low-

voltage output to enable integration with the system battery. It was, however, 

indicated that the future power management breakthroughs would be related to 

scavenging energy to enhance power of on-board electronics systems. Kim et 

al[26]  studied the  recovery of waste heat from power amplifier transistors in 

telecommunication networks.  

 

Tritt et al[27] described a direct solar thermal conversion method in which  

concentrated solar rays could be separated into different spectrums. According to 

the research, the UV spectrum (~200-800nm) could be used for PV applications 

while the IR spectrum (~800-3000nm) could be utilized in TEG modules. TEG 

modules have also been utilized for remote area applications that include 

weather stations, oil drilling platforms (cathodic corrosion protection) and oil and 

gas pipelines[28]. 
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Thermoelectric generators could also be used in “self-powered” applications in 

which the system drives its power from TEG modules. Carmo et al[29] 

demonstrated the application of a TEG microconverter to scavenge temperature 

difference from body heat and ambient to power electroencephalogram (EEG) 

modules. The power consumption for EEG modules was up to a few milliwatts. 

Wang et al [30] demonstrated miniaturized wearable TEG modules for 

application using the human body. The wearable TEGs were able to produce an 

open-circuit voltage of 12.5 V/(K cm2) and power of 0.026 μW/(K2 cm2). Torfs et 

al[31] manufactured an autonomous wireless EEG powered by TEG modules 

working between the human body and ambient. The whole system consumed 

less than 0.8 mW and TEG modules produced over 2 mW at 23 °C. There has 

also been other research on wearable wireless self-powered devices [32][33]. 

 

Shi et al. [6] experimentally studied the performance of the TEG-based self-

powered wireless temperature sensor, which enables the sensor to function 

without batteries or other power sources. The Seiko theramic wristwatch utilizes 

the heat from human wrist to run a wrist watch using ten TEG modules[34]. 

However, the temperature difference between the human skin and the 

atmosphere was so low that TEG modules needed to cover a large area to 

produce an output voltage of more than 1 V. The typical voltage produced by a 

TEG module working between the human skin and the atmosphere is in the 

range of micro to milliwatts.  
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1.4. Review on Thermoelectric Generator-Based Self-cooling Applications 

  

One ingenious application of thermoelectric technology is to integrate 

thermoelectric generation and electronic device cooling into one system in what it 

known as thermoelectric-based self-cooling application.  Fig. 1-6 illustrates the 

self-cooling concept. The basic idea is to convert the heat, which is normally 

removed from hot surfaces to an electrical power. This could then be used to self-

sustain a cooling system for the hot bodies via a thermoelectric generation 

technology. This helps save power by reducing the need for external power and 

is also suitable for remote area applications where autonomous and reliable 

power supply is essential. 

 

 

 

The self-cooling system could be thought of as forced convection cooling system 

without an external power supply. Thus, the self-cooling system fills the gap 

between natural convection and forced convection from external power sources. 

Fig. 1-6.TEG based Self-Cooling Concept 
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It is generally a useful cooling mechanism for applications, where the system 

(device) may not be adequately cooled by natural convection. In addition, it is 

also useful for replacing external power sources, where external power sources 

are not available or feasible. 

 

Typical application areas: 

 Remote area devices 

 Autonomous data acquisition devices 

 Devices with intermittent heating and cooling, where a dedicated cooling 

system may not be feasible. The self-cooling system allows for the cooling 

system to kick-in only as needed. 

 Systems where an external power source is not feasible or practical. 

 Back-up systems where an external power source fails or the battery runs 

out. 

 

There are two main objectives in the thermoelectric generation-based self-

cooling concept. The first one is to keep the device at an optimum operating 

temperature range (ΔTopt), as prescribed for the proper functioning of the device 

in a certain environment.  The second objective is to generate enough power to 

run a cooling medium inside the cold-side heat sink. These two objectives are not 

necessarily mutually inclusive.. 

For a certain heat input Qj, there is a maximum allowable device temperature 
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(Td,max) and corresponding thermal resistance(Rth,max) that enables the 

temperature to be controlled below Td,max. 

 

Despite the huge significance of energy-saving measures for cooling electronic 

devices and parts, such as microprocessors, there has been very limited 

research on the concept of heat-driven self-cooling of electronic devices. 

Solbrekken et al [35]) modeled and demonstrated the application of forced 

convection cooling of a personal computer microprocessor using power 

generated by TEG. The same authors [36] also discussed the concept of heat-

driven cooling for portable electronics and their results showed that it would be 

possible to convectively cool an electronic chip using a low-voltage fan.  

 

Martinez et al. [37] also performed an experimental demonstration and numerical 

study of  TEG driven self-cooling configuration. In their experiments, an array of 

TEG modules were placed directly on top of the heat source plate, which enables 

the application of a more uniform and maximum temperature at the hot side of 

the TEG modules. The same authors [23] also presented a dynamic model 

based on their experimental model. 

 

Zhou et al. [38] studied the effectiveness of harvesting thermoelectric energy 

from waste heat in Pentium III microprocessors using a commercial TEG module. 

Gould et al. [39] applied micro-power generation in a standard personal computer 

using the thermoelectric module. Kiflemariam et al. [40] [41] [42] simulated and 
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conducted a parametric study of thermoelectric generator-based self-cooling of 

devices.  

 

1.5. Objectives of the Research 

 

The concept of TEG based self-cooling has not been systematically studied 

except for few exploratory studies. Thus, the general objective of the PhD thesis 

work is to develop systematic and comprehensive analytical and numerical 

models of TEG-based self-cooling systems and validate the results with 

experimental work. The general objective is achieved through the specific 

objectives of: 

 Develop a first and second principles-based finite time thermodynamics 

model of self-cooling systems from basic units’ thermoelectric couples to 

an array of TEG modules. 

 Develop a program based on the thermodynamic principles, which aids in 

developing a self-cooling system in a given hot side and cold heat sink 

environment. The program helps set the limits of several parameters of 

the self-cooling application and is useful in the preliminary design and 

analysis stage. 

 Conduct an experimental study to validate numerical models as well as 

study the performance of the self-cooling system. 

 Develop a general numerical methodology to systematically integrate 

three dimensional computational fluid dynamics (CFD) software with one 
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dimensional analysis. This enables detailed design and complex 

geometrical configuration studies. A parametrical study has been 

conducted based on the numerical model. 

 Analyze an application of self-cooling liquid cooling-based systems using 

numerical methods. 

 

 Develop a dynamic model of self-cooling systems suited for analysis in 

control system and circuit analysis software, such as DYMOLA, 

MATLAB/Simulink. The model is implemented in MATLAB/Simulink. 

 

1.6. Thesis Structure 

 

• Chapter 2 outlines finite time thermodynamics model of self-cooling 

system. A program written based on the concepts of chapter 2 is given in 

Appendix A. 

• Chapter 3 demonstrates the experimental procedures and results, which 

are used to validate numerical methods, and describes the performance of 

the system. 

• Chapter 4 describes a numerical methodology, which could be used for 

detailed study of self-cooling systems. The methodology is demonstrated 

by integrating one dimensional models and user-defined functions and 

equations into existing CFD packages. The numerical results have been 

extensively validated using experimental data from chapter 4.  
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• Chapter 5 shows the application of numerical methods to study liquid 

based self-cooling systems. 

• Chapter 6 outlines a dynamic modeling and analysis of self-cooling 

system, which is suited for integration in control systems. The model has 

been validated using experimental data. 

 

1.7. Original contribution 

 

The original contribution from this study has been outlined below, which has 

been included in the thesis and been published in peer-reviewed journal 

publications and conference proceedings.   

 

• A first principles-based theoretical model of a thermoelectric generation- 

based self-cooling system (Chapter 2) 

• A computer program, which analyzes the feasibility of a self-cooling 

system and outputs the values and limits of all pertinent parameters 

(Chapter 2 and Appendix A) 

• Perform an experimental study on different configurations of a TEG-based 

self-cooling system  (Chapter 3) 

• A numerical methodology to analyze a self-cooling system numerically 

(Chapter 4) 

• Demonstrate the application of numerical methods  in popular CFD 

packages (Chapter 4 and Appendix B) 
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• Demonstrate the feasibility of the application of a self-cooling system for a 

liquid based system (Chapter 5) 

• Develop and demonstrate a dynamic model of a self-cooling system suited 

for control system integration (Chapter 6) 
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2. THERMODYNAMIC ANALYSIS OF SELF-COOLING SYSTEM 

2.1. Introduction 

 

In this chapter, TEG based self-cooling system is studied using basic 

thermodynamic principles. The first law of thermodynamic which is based on the 

law of conservation of energy is applied to study the energy exchange of the 

system within the components and outside environment. In addition, second law 

of thermodynamic is applied to investigate the performance limits or bottlenecks 

in the application of TEG based self-cooling systems. 

 

The first and second laws of thermodynamics provide basic tools to study a 

performance of heat engines[43]. Complex thermal systems could be studied by 

simplifying the system into an equivalent heat engine working between a certain 

temperature difference defined by heat source and heat sink. The simplified 

analysis of the system provide crucial information which helps determine the 

range of performance of the system before detailed analysis is made. 

 

In classical thermodynamics, the reversible classical heat engines (Figure 2-1) 

producing a new work of W and having a heat input of Q1 are assumed to have 

an efficiency of: 

 

 
1Q

W
=η  2.1.1 
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Or in terms of Carnot efficiency, ηc 

 

 
1

21
T
T

c −=η  2.1.2 

 where T2 and T1 are the temperature of cold and hot reservoirs. However, the 

idealized form of Carnot heat engine is far from realistic operation of engines. In 

addition, the conditions of infinite time needed for reversible heat exchange with 

the environment makes the system impractical for engines which have to provide 

power. 

 

 

 

Thus, to analyze a system which delivers work at finite time (power), finite time 

thermodynamic principles are used. The principle of finite time thermodynamics 

is based on the fact that there is a need for finite temperature difference between 

Figure 2-1 Carnot heat engine 
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working fluid and substance or source/ heat sink it is in contact with such that 

finite amount of heat is transferred in finite time. One of the earliest and important 

works that deals with finite time thermodynamics is by Curzon and Ahlborn [44]. 

The studies in finite time thermodynamics were mainly on endoreversible heat 

engines which are internally reversible but externally irreversible heat 

engines[45]. The irreversibility is assumed to arise from the heat exchange with 

the surrounding environment. In this analysis, irreversibilities associated with 

friction, heat leaks, turbulence and so on are not considered. The external 

irreversibility due to resistance to the heat flow is considered as shown in Figure 

2-2.  

 

The heat engine has hot side and cold side thermal resistances of Θ1 and Θ2 

respectively. Curzon and Ahlborn[44] mathematically analyzed the efficiency of 

endoreversible heat engine operating to be: 

 

 
n

endoc T
T








−=

1

2
, 1η  2.1.3 

 

Where ηc,endo is Carnot efficiency for endoreversible engine. They also determined 

that maximum power is transferred when n=1/2. Many studies have then been 

conducted applying finite time thermodynamic principles to endoreversible heat 

engines[46][47][48][49][50][51][52]. 
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The overall thermal resistances at the hot side and cold side are given by Θ1 and 

Θ2 respectively. The overall heat transfer coefficients at the hot side (UA)HX  and 

cold side (UA)CX are the reciprocals of Θ1 and Θ2 respectively. In endoreversible 

heat engine, external irreversibilities associated with cold side and hot side heat 

exchangers are considered. There have been different models suggested to 

describe endoreversible heat engines. One of the models was proposed by 

Gordon[53] in which infinite heat capacity heat reservoirs are assumed.  

 

For the hot side: 

 

Figure 2-2 endoreversible heat engine  
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For the cold side: 
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f

n
csCXC TTUAQ −= )(  2.1.5 

 

The model assumes non-linear functions of temperature difference. When n=1, it 

coincides with the relation given by Curzon and Ahlborn[44]. When n approaches 

infinity, the solution represents Carnot formula. De Vos [45] have suggested n 

values for different cases such as radiative heat transfer where n=4.  

 

Lee and Kim[54]  and Wu [55] have modified the endoreversible model 

considering finite capacity heat reservoirs. The derivations for the equations are 

given in the respective papers. The equations for the maximum power conditions 

are given as: 

 

 

The hot side temperature of TEG module is given by: 
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The cold side temperature of TEG module can be written as: 
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However, real engines have both internal and external irreversibilities. There are 

dissipative processes and heat leaks and other irreversibilities in addition to 

irreversibilities of finite heat transfer as assumed by endoreversible heat engines. 

  

As shown in Figure 2-3, the heat engine has heat leaks between the reservoirs 

(QL,ex), internal irreversibilities inside the heat engine and het leak to the cold 

reservoir (QL,in) in addition to the irreversibilities of heat transfer between the heat 

engine and reservoirs. Thermoelectric generator based self-cooling system 

fundamentally consists of TEG module, heat source and cold side heat 

exchanger. TEG modules are direct conversion heat engines with internal as well 

as external irreversibilities. 
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There are internal irreversibilities due to joule heating and thermal conduction in 

addition to heat leak to the cold side reservoirs. In addition, there is heat leak 

between reservoirs and external irreversibilities for heat exchange between TEG 

module and reservoirs. Moreover, there are internal irreversibilities in the 

Figure 2-3 Externally and internally irreversible heat engine 
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reservoir working fluid. Thus, TEG based self-cooling system could be more 

realistically modeled as internally and externally irreversible heat engine. 

 

2.2. Thermoelectric couple governing equations 

 

A thermoelectric couple could be considered as a fundamental unit of TEG 

module. It consists of p and n legs connected by a conductor. 

 

2.2.1. Energy balance equations 

 

The change conservation equation can be written as: 

 0=
∂
∂

+⋅∇
t

J ρ
 2.2.1 

where 𝐽𝐽 is the current density.   

The heat flux conservation equation is written as 

 g
t
TCq v =
∂
∂

+⋅∇ ρ  2.2.2 

 

Where ∇ ∙ q consists of Peltier heat and the heat conducted from hot side to the 

cold side of the leg and �̇�𝑔 represents the internal heat generation due to Joule 

and Thomson heat effects. Eq. 2.2.2 can be rewritten as: 

 JE
t
TCTkJ v ⋅=
∂
∂

+∇−⋅∇ ρπ )(  2.2.3 
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But J is given by: 

 

 )( TEJ ∇−= ασσ  2.2.4 

 Substituting Eq. 2.2.4 in Eq. 2.2.3: 
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And the electrical conductivity of materials (σ(T)) can be expressed as: 

 

 
E
JT =)(σ  2.2.6 

 

And the Seebeck Coefficient α(T): 

 

 
T
TT )()( π

α =  2.2.7 

 

Substituting for Seebeck coefficient: 
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For thermoelectric modules, it can be assumed that a one-dimensional energy 

balance equation could be used to represent the heat flows inside the p and n 

legs: 

 

 ply ≤≤0  2.2.10 

 

 nly ≤≤0  2.2.11 

 

Where lp and ln are the lengths of p and n legs. 
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The general equation could be approximated with several assumptions. 

a) If the temperature difference across the elements is not large, the value of 

T(x,t)𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 could be neglected. 

b) The variation of seebeck coefficient with position 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 can be neglected 

with isotropic property assumption. 
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The boundary conditions at the ends of thermodynamic legs are: 
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Integrating the equation and applying the boundary conditions: 
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Integrating twice results in equations with unknown constant C1 and C2: 
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Applying boundary equations and solving for C2: 
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The value of C1 is given by: 
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The variation of temperature could then be expressed as: 
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2.2.2. Entropy balance equations 

 

The rate of change of internal energy is given as: 
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Using the Gibbs free energy relation between internal energy and entropy flux, s  
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The first terms in indicate entropy terms due to heat conduction and peltier heat 

which is expressed as entropy flux Js 
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The other terms are associated with irreversibility in the thermoelectric modules. 

These include internal heat losses, Joule heat and Thomson heat losses. 
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According to the assumption of one dimensional analysis in the y direction: 

 

For the p-leg 
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For the n-leg 
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2.2.3. Heat transfer for thermoelectric couple 

 

The heat transfer at the hot side of thermoelectric couple is given as: 
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The heat transfer at the cold side of thermoelectric couple is expressed as: 
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+⋅−−=  2.2.41 

 

The Seebeck coefficient for a thermoelectric couple αp,n is defined as: 

 

 )( nppn ααα −−=  2.2.42 
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+⋅=  2.2.43 
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σ

α +
−

+⋅=  2.2.44 

 

For thermoelectric pairs with dissimilar conductivity kp and kn : 
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nphpnh lJ
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α −
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++⋅=  2.2.45 

 

 np
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l
TTkkJTq ,
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)(
σ

α +
−

++⋅=  2.2.46 

 

The power produced Pgen per area is the difference between qh and qc: 

   

 npchnpchgen lJTTJqqP ,

2

, )(
σ

α −−=−=  2.2.47 

 

The efficiency of thermoelectric generator, ηg is given as the ratio Pgen/qh: 
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2.3.  Governing equations for TEG module 

 

A TEG module is formed by connection of number of thermoelectric pairs 

connected in series electrically and in parallel thermally. For a number of 

thermoelectric pairs, np, the thermal conductance can be defined as: 
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 ( )pnpm n αα =  2.3.3 

 

And defining the average temperature of the hot side and cold side of TEG 

module as: Ths and  Tcs : 

 

 ( ) 25.0 IRTTKITq TEGcshshsmh −−+⋅= α  2.3.4 
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 ( ) 25.0 IRTTKITq TEGcshscsmc +−+⋅= α  2.3.5 

 

 ( ) 2IRTTIP TEGcshsmgen −−⋅= α  2.3.6 

 

The maximum generated power could be determined by derivation of Eq.2.3.6 

with respect to I: 

 

 
( ) IRTT

dI
dP

TEGcshsm
gen 2−−= α  2.3.7 

 

By setting the equation to zero, current at maximum power, Ip,max could be 

determined: 

 

 
( )

TEG

cshsm
p R

TTI
2max,

−
=
α

 2.3.8 

 

The open circuit voltage is voltage produced by TEG module when no current is 

flowing (open circuit) and is given by: 

 

 
( )cshsmoc TTV −= α

 2.3.9 
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The voltage at maximum power, Vp,max is: 

 

 2max,
oc

p
VV =

 2.3.10 

 

The current in a TEG module, I is given as: 
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 2.3.11 

 

Defining the ratio between RL and RTEG to be RL/RTEG= ς: 
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The maximum power from TEG module could thus be derived as: 
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max.max,max, pTEGcshspmgen IRTTIP −−⋅= α  2.3.13 
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2.4. TEG module with hot and cold reservoir 

 

The heat transfer inside the TEG modules at the hot side could be described as: 

 

 2

2
)(

I
RTT

TIQ TEG

TEG

cshs
mshh −

−
+=

Θ
α  2.4.1 

 

And at the cold side of the modules: 
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2
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I
RTT

TIQ TEG
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+=

Θ
α  2.4.2 

 

The heat transfer at the hot side can be modeled as: 

 

 )( hsdHXHXHX TTAUQ −=  2.4.3 

 

where UHX is the overall heat transfer coefficient between the hot side of TEG 

module and heat source at temperature of Td. AHX is the area of heat exchanger 

between TEG module and heat source. 

 

Similarly, the heat transfer the cold side also be expressed as: 

 

 )( fcsCXCXCX TTAUQ −=  2.4.4 
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where UCX is the overall heat transfer coefficient between the hot side of TEG 

module and heat sink at temperature of Tf. ACX is the area of heat exchanger 

between TEG module and heat sink. 

 

For a condition where all the heat from device is transferred into the 

thermoelectric generator module, it can be assumed that QHX=qh: 
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Similarly for a condition where all the heat into rejected to the heat sink, it can be 

assumed that 
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2.5. Analysis of performance of TEG based self-cooling system 

 

The performance of the system including determining the maximum amount heat 

that could be transferred between the heat source device at fixed temperature of 

Td and the heat sink temperature of Tf is analyzed. Thus, the simultaneous 

solution of Eq.  2.3.11, Eq. 2.4.6 and Eq. 2.4.8 yields the values of heat transfer, 

temperature at the TEG modules, voltage, current and power from TEG module. 

 

Rewriting the equations on a thermocouple basis:  

 

 ( )( ) ( ) 05.0 2 =−−−++ IRTKTUAITTKUA pncspndHXhspnhspnHX α  2.5.1 

 

 ( )( ) ( ) 05.0 2 =−−−−+ IRTKTUAITTKUA pnhspnfCXcspncspnCX α  2.5.2 

 

Rewriting the equations on a TEG module basis:  

 

 ( )( ) ( ) 05.0 2 =−−−++ IRTKTUAITTKUA TEGcsTEGdHXhsmhsTEGHX α  2.5.3 

 

 ( )( ) ( ) 05.0 2 =−−−−+ IRTKTUAITTKUA TEGhsTEGfCXcsmcsTEGCX α  2.5.4 
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2.5.1. Overall heat transfer coefficient on hot side 

 

The overall heat transfer coefficient the hot side (UA)HX is given by the sum 

resistances between the heat source device and hot side of the thermoelectric 

generator module. 

 

 ( )
HX

HHHX AUUA
Θ

1
==  2.5.5 

 

where ΘHX is the overall thermal resistance on the hot side. The overall thermal 

resistance on the hot side (ΘHX) consists of material thermal resistance inside the 

device and interface thermal resistance between device and TEG module. 

Depending on the relative area of the device to the spreader, constriction or 

spreading thermal resistance heat spreader and material heat spreader may also 

account for the total thermal resistance. If the device and/or the spreader have 

exposed area to the environment, convection resistance could also exist. 

 

In this section, for the sake of brevity in the fundamental thermodynamic analysis 

of self-cooling system, the device is assumed to have same area the TEG 

module. It is also assumed that primary heat path is conduction to the TEG 

module and convection heat transfer to the surrounding is neglected. 

 

The material thermal resistance of the device is expressed as: 
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dd
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d Ak

t
=Θ  2.5.6 

 

2.5.2. Overall heat transfer coefficient on cold side 

 

The overall heat transfer coefficient the cold side (UA)CX is given by the sum 

resistances between the cold side of TEG module and cold reservoir (heat sink). 

 

 ( )
CX

CCCX AUUA
Θ

1
==  2.5.7 

 

where ΘCX is the overall thermal resistance on the cold side. For the fundamental 

thermodynamic analysis, ΘCX consists of spreading thermal resistance from cold 

side of TEG module to the base of heat sink (Θsp), material thermal resistance 

inside the cold side heat exchanger (Θb) and convection heat coefficient from the 

heat exchanger to heat sink (Θconv).  

 

The spreading thermal resistance Θsp from smaller area (A1) to the bigger area 

(A2) could be calculated using the equation [56]: 

 

 aspbspsp ,, ΘΘΘ −=  2.5.8 

where: 
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The material thermal resistance of the base of cold side heat exchanger is 

expressed as: 

 

 
cxbcxb
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cxb Ak

t

,,
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, =Θ  2.5.13 

 

The convection heat transfer from the surfaces of cold side heat exchanger to the 

heat sink can be expressed as: 
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cx

conv hA
1

=Θ  2.5.14 

 

Where h is the convection heat transfer coefficient and Acx is the effective area of 

cold side heat exchanger. 

 

In the present analysis, parallel plate-fin heat exchanger is considered as it is 

commonly used of heat exchanger for air-side heat exchangers. The effective 

area of cold-side heat exchanger is given as: 

 

 fffbasecx ANAA η+=  2.5.15 

 

where Nfin is the number of fins, ηf is the fin efficiency, Abase is the exposed area 

of the heat exchanger and Af is area of a single fin: 

 

 bLNA fbase )1( −=  2.5.16 

 

 LHA ff 2=  2.5.17 

 

 
f

f
f mH

mH
n

)tanh(
=  2.5.18 

where m is expressed as: 
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fbtk

hm 2
=  2.5.19 

 

where kb is the thermal conductivity of the fin material. 

The convection heat transfer coefficient for forced flow, h could be estimated by 

an analytical model for both developing and fully developed laminar flow regimes 

developed by Teertstra et al[57]. 
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The modified Reynolds number, Re is given as: 
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f

µ
ρ

=Re  2.5.21 

 

Where ρf and μf are the density and dynamic viscosity of the fluid and U is the 

velocity of fluid.  

 

The Prandtl number, Pr could be expressed as: 
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=Pr  2.5.22 

 

Where k is the thermal conductivity of the fluid 

 

And convection heat transfer coefficient, hconv is: 

 

 

It is also of interest to investigate the natural convection heat transfer coefficient 

which allows the comparison of self-cooling system with naturally cooled 

systems. Culham et al[58] proposed an analytical model to estimate heat transfer 

coefficient from rectangular heat sinks cooled by natural convection. They 

proposed a Nusselt number (Nuϖ) based on characteristic length, ϖ which is a 

square root of total wetted area of the finned heat sink : 

 

  

where 𝑁𝑁𝑁𝑁𝜛𝜛∞ is diffusive limit of the cuboid which is defined as: 
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In Eq. 2.5.29 gϖ and f(pr)  are the body gravity function, Prandtl number function 

respectively which are given by.  

 

 

 

 

The Rayleigh number is defined as a function of wetted area given as: 

 

 

Thus, the natural convection coefficient is estimated by 
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2.5.3. Thermal interface resistance Θin  

 

In this section, the thermal contact resistance between surfaces is discussed. For 

Self-cooling applications, as TEG module is sandwiched between the hot-side 

and cold-side heat exchangers, it is important to understand the effect of thermal 

resistance between two conforming surfaces. The total thermal interface 

resistance is due to the combined effect of micro-contact thermal resistance (Θc) 

and micro-gap thermal resistance (Θg). Usually thermal interface materials (TIM) 

are used to reduce the micro-gap thermal resistances by filling out the interstitial 

air gaps between the surfaces.  

 

The total micro contact resistance (Θc) between two surfaces is given by [59]: 

 

 

Where for two contacting surfaces represented by subscripts 1 and 2, ο is the 

RMS surface roughness: ο = √ο1 + ο2, m is the absolute surface slope m =

√m1 + m2 and ks is described as ks = 0.5(k1−1 + k2−1). c1 and c2 are the applied 

force on the surfaces, Vickers hardness correlation coefficient of surface 1 and 2 

respectively. Fa is the applied force. The total number of micro contacts nc are 

given by the equation: 
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Where App is the apparent are of contact between the surfaces and the mean 

plane separation of the surfaces Χ is given as:   

 

 

Where ϑ is the micro hardness of softer material and An is the normal surface 

where force is applied.  

 

The surface gap heat transfer is modeled as thermal conduction inside the 

interstitial gas/air [60]. The analysis of thermal conduction in the gas is a complex 

phenomenon heat flow regimes consisting of temperature jump, temperature slip, 

free molecule and transition continuum. Song et al [61] presented a simplified 

kinetic theory model based on Maxwell velocity distribution law. The thermal 

resistance for the interstitial gap is given as: 

 

 

Where Χ is approximated to represent the mean gap height and Λ is given as: 
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where Cg, Tg, Pg are the specific gas constant, temperature and pressure of the 

gas, γ is the ratio of specific gas constants and w1 and w2 are the thermal 

accommodation coefficients for the solid bodies describing their interaction with 

the gas. 

 

The total thermal interface resistance (Θ in) is thus given as the sum of the 

resistances: 

 

 

2.5.4. Pressure drop in cold side heat exchanger 

 

The pressure drop in the cold side heat exchanger is considered for parallel-plate 

fin heat exchanger which is the most fundamental and widely used type of heat 

exchanger. 

 

For a pressure drop at the cold side heat exchanger between points 1 and 2: 
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 1212 PPP −=∆  2.5.37 

 

The pressure drop for fully developed flow inside parallel plates could be 

estimated using the expression from [62] and [63]. 
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Where f is a friction factor and Kc and Ke are pressure losses associated with 

contraction and expansion losses respectively. Dh is the hydraulic diameter. The 

values for Kc and Ke could be substituted in the previous equation and the 

resulting expression is: 
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where f is given by: 
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fH

h
=θ  2.5.41 

 

And  

 
W

tN ffin−= 1ϑ  2.5.42 

 

Power consumed by a flow mover, Pcon to move a fluid from 1 to 2 could be 

expressed by: 

 

 1212 VolPPcon ⋅= ∆  2.5.43 

 

where Vol12 is the volume flow rate inside a heat exchanger. 

 

 

Figure 2-4 Parallel plate-fin heat exchanger 
 



58 
  

2.6. Results and Discussion 

 

To illustrate the application of the method described above, a TEG based self-

cooling system is analyzed using certain defined parameters.  For the sake of 

comparison, the heat engine working as internally and externally reversible 

Carnot engine and endoreversible heat engine are also simulated. 

 

2.6.1. Carnot heat engine 

 

The TEG based self-cooling system could be thought of as internally and 

externally reversible heat engine operating between heat source at Td and heat 

sink at Tf. Due to the assumption of reversibility, the hot side of TEG module is 

equal to the heat source temperature (Ths=Td) and cold side temperature of TEG 

module is equal to heat sink temperature (Tcs=Tf). 

 

Figure 2-5 shows the variation of ηc with the ratio of heat sink to heat source 

temperature. The heat sink temperature is fixed at 298 K and heat source 

temperature is varied from 298 to 596 K. It is evident that as the temperature 

difference between the heat sink and source increases, the efficiency also 

increases. In addition, the heat input needed to produce a unit of work output 

(𝑄𝑄𝐻𝐻′ ) decreases as the efficiency of the Carnot heat engine increases.  
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Figure 2-5 variation of ηc with the ratio of heat sink to heat source temperature 
 

However, as mentioned above, the analysis of Carnot heat engine is only useful 

to indicate the maximum efficiency and heat input required per unit of useful work 

for a system working between two temperatures. It needs an infinite amount of 

time and heat exchanger area to achieve the performance of Carnot heat engine. 

In addition, all internal and external irreversibilities are neglected. 

 

2.6.2. Endoreversible heat engine 

The performance of endoreversible heat engine is also studied to provide 

another bench mark for comparing the performance of real engines with idealized 
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models. The heat sink temperature is fixed at 298 K and heat source temperature 

is varied from 298 to 596 K. 

 

The equations 2.1.6 - 2.1.9 are applied to investigate the efficiency ηc,endo and 

heat input per unit of work produced by the heat engine (𝑄𝑄𝐻𝐻,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
′ ).The values of 

(UA)HX and (UA)CX are fixed at 2.78 W/K and 36 W/K.  The comparison shows 

that the consideration of external irreversibility has decreased the efficiencies by 

as much as 66% as the temperature ratio Tf/Td of 0.5. In addition for the 

temperature ratio of 0.5, Carnot heat engine predicted that 3.5 W of heat is 

needed per 1 W of work produced while endoreversible heat engine model 

suggests that for an engine working between 598 K and 298 K, the maximum 

heat released would be 1398 W and maximum power that could be produced 

would be 410 W.  

 

To put the results in the context of TEG based self-cooling system, it could be 

compared with an equivalent endoreversible heat engine as shown in Figure 2-6. 

In a typical self-cooling operation of thermoelectric generator, we can for instance 

assume the highest temperature at the device to be around 373 K. For the type 

of heat exchangers specified (i.e. using the specified overall heat transfer 

coefficient), it could be inferred that (the heat that could be dissipated at 

maximum power) is around 336.58 W. The maximum power from TEG module is 

37 W.  
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Figure 2-6 Comparison of Carnot heat engine and endoreversible heat engine 
 

 

Endoreversible heat engine analysis does not contain any information about the 

type of process inside the main conversion engine. Moreover, it does not specify 

the size and internal conversion efficiency. It assumes internally reversible 

engine and the performance indicated is based on the interaction of the engine 

with the surrounding environment (reservoirs). Thus, it is obvious that the power 

from real self-cooling system would be much less than predicted by the 

endoreversible assumption. However, the endoreversible heat engine analysis 

provides useful information about the maximum possible power, heat input, and 

efficiency. It could serve as an important guide for comparison of real systems. 
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2.6.3. Externally and internally irreversible system 

 

The analysis of externally and internally reversible TEG based self-cooling 

system contains information about heat transfer which causes internal 

reversibility. These include Joule heating and conduction heat transfer. In 

addition, external irreversibility due to the interaction of TEG module with the hot 

and cold reservoirs has been represented. The following assumptions are also 

made. 

 

a) Heat leakage from heat source (hot reservoir) to heat sink (cold reservoir) 

is not included. This assumption hold true for heat source with good 

insulation and/or high contact surface area of heat source with TEG 

module as compared to the sides. In these assumptions, the heat from 

heat source could be assumed to be completely transferred to the hot side 

of the TEG module. 

 

b) Heat leakage from TEG module is not also considered. This is mostly a 

valid assumption considering that the thickness of TEG module is much 

less than (1/40) compared to the width or length of the modules. 

 

c) Heat leakage from cold side heat sink to the cold reservoir is not included. 

The heat transfer is assumed to be from forced convection via the fin 

plates. 
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d) The values of convection heat transfer coefficients and pressure losses 

are calculated using well documented analytical models. However, 

analytical models of convection heat transfer and pressure losses have 

errors and should be considered in context of providing a general 

guidance values rather than exact values of physical systems. 

 

e) The analysis is based on Steady state assumption with isotopic and 

temperature independent properties. 

 

The assumptions included above help in simplifying the model so that the major 

parameters are considered. The equations described in the previous sections are 

coded into Python and MATLAB programming scripts and the results are 

presented below. The code could be found in Appendix A 

 

2.6.3.1. Effect of varying size of cold side heat exchanger (UA)CX 

 

The system which depicts a TEG based self-cooling system has a heat source 

block with high conductivity. The contact size of heat source is fixed at 0.0016 m2 

with overall heat transfer coefficient between (UA)HX between the heat source to 

the hot side of TEG module being 36 W/K. Therefore, the present system has a 

relatively low thermal resistance (0.027 K/W) for heat transfer from heat source 

to the TEG module. 
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For the cold side heat exchanger, a parallel plate-finned type heat dissipater with 

forced convection in air is considered. In this analysis, the size of the cold side 

heat exchanger is varied. A square profile is assumed for the heat exchanger. 

The base of the heat exchanger is varied from 0.0016 m2 to 0.0256 m2 

corresponding to a side length of 40 mm to 160 mm respectively. Accordingly the 

value of (UA)CX ranges from 0.77 W/K to 2.32 W/K. The cold side heat exchanger 

has a much higher thermal resistance than the hot side thermal resistance.  

 

A TEG module of Kyrotherm TGM-287-1.0-1.5[64] is modeled and the values of 

parameters corresponding to the TEG model are considered. The smaller size of 

the heat exchanger corresponds to the size of TEG module (0.0016 m2). For the 

larger size of heat exchangers, a spreading resistance is considered.  

 

As observed from Figure 2-7a and b, for irreversible model both the hot side 

(Ths) and cold side (Tcs) temperatures of TEG module have decreased with an 

increase with (UA)CX. This is due to a decrease in thermal resistance in the cold 

side heat exchanger allowing more heat to be dissipated to the cold reservoir. 

For Ths, the decrease in temperature is only around 0.16% for a 66% increase in 

(UA)CX. This could be attributed to the high value of the ratio between 

((UA)HX/(UA)CX). The ratio ranges from 15.51 to 46 for (UA)cx value of 2.32 to 

0.77 W/K respectively. On the other hand, Tcs has decreased from close to 340 

K to 318 K.  
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It is also evident from Figure 2-7a that the variation of (UA)cx has also shown little 

effect on Ths for endoreversible model. As both endoreversible and irreversible 

models have same external irreversibilities on the hot side, they exhibit the same 

behavior in terms of variation of Ths. However, the effect of (UA)cx is markedly 

different between the endoreversible and irreversible models.  

 

The endoreversible model has shown little sensitivity for a change in (UA)CX 

which may indicate its limits for evaluating the effect of cold side heat exchanger 

on Tcs. From Figure 2-8, it is evident that endoreversible model has 

overestimated the power production from the heat engine and heat input for 

maximum power. TEG module heat engine is a direct heat to electricity heat 

conversion with finite heat transfer area. The endoreversible model does not 

make restriction on the area of the heat engine and thus indicate maximum 

positive heat transfer within the constraints of external irreversibility and the 

temperatures of the reservoirs. Thus, when the heat transfer area is made finite, 

the maximum heat transfer is also limited. At (UA)CX of 2.32 W/K, only 1/6 of the 

possible heat input is used in the reversible heat engine.  

 

It is also possible to see from Figure 2-9 that irreversible model has a low 

efficiency (η) reaching a maximum of 2.5% for the set of parameters tested. This 

is due to the inherent nature of TEG module which is direct heat to electricity 

conversion engines which has low conversion efficiency. The values depend on 
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the Seebeck coefficients which basically relate temperature difference with 

voltage. 

 

 

 

Figure 2-7 Variation of a)Ths b)Tcs with (UA)cx 
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Figure 2-8 Variation of Qh and Pgen with (UA)CX 
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Presently, for the commercial solid material based TEG modules, the efficiency 

remains low. The endoreversible model and Carnot (internally and externally 

reversible) models have efficiency values of 11% and 21% respectively. The 

efficiency values in those models apply for any type of heat engine working under 

the parameters specified. One observes that the efficiency values are not 

affected much by the variation of (UA)CX. This is because both heat input and 

power change at the similar rates. It is also possible to see that TEG module 

engine has a more room for improvement to achieve performance that closely 

resembles the endoreversible or Carnot engines. 

 

 

Figure 2-9 Variation of η and ΔThc with (UA)CX 
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2.6.3.2. Effect of size of heat engine 

 

The effect of the size of heat engine could be investigated by replacing the heat 

engine by arrays of heat engines connected in series. This is equivalent to using 

array of TEG module connected in series electrically and in parallel thermally. 

Equations 2.4.5 to 2.4.8 are again modified to account for the presence of 

multiple TEG modules. 
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Where Nm is the number of TEG modules connected in series electrically and in 

parallel thermally.  
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Rewriting the equations on a TEG array basis:  
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The results from the analysis based on TEG array connected in series is shown 

in Figure 2-11. It can be observed from Figure 2-11 that increasing the area of 

TEG modules has resulted in an increase in open source voltage (Voc). 

Increasing the number of modules and hence the area of power conversion unit 

by 400% has resulted in more than 145% increase in voltage. This is due to an 

increase in the number of thermoelectric couples. However, the value of Voc has 

not increased by 400 % in line with the increase in the number of thermoelectric 

couples. 
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Figure 2-10 Comparison of Voc and I for single TEG module and array of TEG 

modules (nm=4) 

 

The current from TEG module array, on the other hand, has been halved as 

compared to single module. To investigate the reasons, it would be more helpful 

to look at the heat transfer in an array of modules as compared to a single 

module. 
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Figure 2-11 Comparison of Qh and Pgen for single TEG module and array of TEG 
modules  
 

 

The heat input to the TEG module increases by 250% for the TEG array. This 

could be attributed to the fact that as the area of TEG module reducing the 

thermal resistance to the heat flow.  

 

However, the power rises by only 25 % for (UA)CX equal to 2.6 W/K for the TEG 

array as compared to single TEG module. 

 



73 
  

 

 
( )

arrayTEG

cshsmm
arraygen R

TTNP
,

222

max_, 4
−

=
α

 2.6.8 

 

If a TEG array could maintain the same temperature difference with a single 

module ΔThs,single= ΔThs,array, then the  equation reduces to: 

 

 
( )

mTEG

cshsmm
arraygen NR

TTNP
4

222

max_,
−

=
α

 2.6.9 

 

 
( )

TEG

cshsmm
arraygen R

TTNP
4

22

max_,
−

=
α

 2.6.10 

 

This indicates that we expect the power to be multiple of the number of TEG 

modules in the array. However, ΔThs,array is a function of heat input into the TEG 

modules: 

 

 arrayinarrayTEGarrayhs QT ,,, Θ∆ =  2.6.11 
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Figure 2-12 Comparison of single TEG module and array of modules for a) Ths  
b) Tcs 
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As the TEG modules are connected in series and assuming the same thermal 

resistance for all the modules: 

 
m

TEG
arrayTEG N

Θ
Θ =,  2.6.12 
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Thus, to maintain the same temperature difference, the heat input into the array 

of modules needs to be multiple of number of modules and heat input per 

module. If the heat input is less than that, then the temperature difference would 

also be less than the value for single module.  The hot side temperature (Ths) of 

TEG modules is lower than a single array which allows for more heat to be 

transferred into the TEG module. (Figure 2-12). However, due to low thermal 

resistance as compared to single module, the cold side temperature of the array 

(Tcs) is higher than single module.  

 

2.6.3.3. Self-cooling analysis 

 

The pressure loss and power consumption by the fan is integrated with the heat 

engine model to analyze the self-cooling potential of the whole system. For the 

previous analysis, the volume of air into the heat exchanger has been limited to 

2.77 × 10−3 m3/s.  In the present section for self-cooling, the volume of the air is 
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varied from 0.34 × 10−3 m3/s   to 24.65 × 10−3 m3/s or 1.22 m3/h to 88.7 m3/h. 

The values correspond to (UA)CX ranging from 0.44 to 6.28 W/K. It is to be noted 

that in self-cooling application, the volume of the fluid passing through the cold 

side heat exchanger is by itself a function of the power input into the fluid mover. 

Thus, it is the function of the power produced by TEG module arrays.  

 

However, one could examine an independently varying volume flow rate to study 

the effect of volume flow rate of the fluid on different key parameters. The 

variation of (UA)CX in the present analysis is only the function of the volume flow 

rate. The geometrical parameters of the cold side heat exchanger are kept 

constant at (L=W=80 mm, Hf=10 mm, t_f=1.5 mm, N_f=25, b=5 mm ). 

 

It can be observed from Figure 2-13 that with an increase in volume flow rate, the 

Reynolds number and pressure drop across the cold side heat exchanger 

increases exponentially. As the flow regime transforms from laminar to turbulent 

region, the flow would experience more pressure drop as it is commonly noted. 

However, it is interesting to see from Figure 2-14 that the hot side temperature of 

the TEG module does not change appreciably while the cold side has been 

cooled significantly.  
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Figure 2-14 Variation of Ths and Tcs with (UA)CX 

 

 

Figure 2-13 Variation of Reynolds number(Re) and pressure drop (ΔP) 
with (UA)CX 
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This is due to more flow and high velocity at the cold side heat exchanger 

resulting in high convection heat transfer. The temperature difference across the 

TEG modules also increased by close to 300% resulting in an equivalent 

percentage increases in Voc and I produced by TEG array (Figure 2-15). From 

power generation point of view, this could seem as a favorable aspect. 

 

 

Figure 2-15 Variation of Voltage and Current produced by array of modules with 
(UA)cx 

 

However, the fluid mover has to also consume power to move the fluid. Figure 

2-16 shows that the power generated by TEG array (Pgen) increases with (UA)CX 

as it is expected due to more volume flow resulting in lower Tcs.  But due to a rise 
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in pressure drop in the cold side heat exchanger, the power consumed by the 

fluid mover also grows exponentially at high volume flow rate.  As a result the net 

power from the system also drops and the system consumes more power when 

the volume flow rate reaches critical value. If the figure has been zoomed, it can 

easily be seen that the critical value of (UA)CX which resulted in zero net power is 

around 5.3 W/K or  Volume flow rate (Vol) of 0.014 m3/s for the type of 

configuration used in this study.  

 

From self-cooling point of view, higher power consumption does not necessarily 

result in lower device temperature as could be seen from the variation of Ths. 

Thus it is imperative to stay within the range where net power is positive so that 

the system is able to run autonomously. 

 

The model is very important to define the upper boundaries for parameters for 

fluid flow inside the cold side heat exchanger in terms of volume flow rate. But for 

the lowest boundaries of volume flow rates, it is important to look at factors like 

lowest voltage or power needed by a fluid mover such as fan to start. It is 

normally called a starting voltage or power. Thus, while it is tempting to look for 

the lowest possible power generation which could give net positive power, it 

should be at least higher than the lowest power or voltage requited to move the 

blades of the fluid mover. In addition, the fluid mover also has a unique 

performance curve and operates where the system curve intersects with fan 
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performance curve which is also by itself a function of voltage input to the fluid 

mover.  

 

 

Figure 2-16 Variation of power generated by TEG arrays (Pgen), power 
consumed by fluid mover (Pcon) and net power in the system (Pnet) 
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The fan performance curve is usually given at rated voltage. But it is also 

possible to construct the curves at various voltages. Once the range of volume 

flow rate which produces positive net power is identified, the fan-cold side heat 

sink system operation curve is superimposed on the fan performance curve. The 

combined curve shown in Figure 2-17 helps to identify system operation point. 

The system curve is extracted from manufactures data for SUNON Fan model  

EE92251S1-0000-A99[65]. 

 

 

 

 

Figure 2-17 Self-cooling window 
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It is evident from the figure that for volume flow rate more than 27 m3/h, the 

system operation points lie below the operation point (for a particular input 

voltage). 

 However, a system operation points below 8 V are within the voltage provided 

by the TEG arrays. The lowest operation voltage (starting voltage) for the 

particular fan is 4.5 V. Thus, the minimum volume flow rate is around 10 m3/h.  

 

Therefore we can define what is called “self-cooling window” which describes the 

range of volume flow rate possible for self-cooling for the particular geometrical 

configuration and type of fan used. Following the same procedures, the self-

cooling window can be constructed for different geometrical configurations of the 

system and type of fluid mover (fan).  
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3. EXPERIMENTAL INVESTIGATION ON SELF-COOLING SYSTEM 

3.1. Introduction 

 

There has only been very few experimental studies on TEG based self-cooling 

applications. Martinez et al. [37] performed an experimental demonstration of 

TEG driven self-cooling system. In their experiments, an array of TEG modules 

were placed directly on top of the heat source plate which enables the application 

of a more uniform and maximum temperature at the hot side of the TEG 

modules.  

 

As the arrays are directly attached to the heat source, there is only a single 

thermal path.  Therefore, the location of TEG modules in the primary heat path 

adds thermal resistance to the heat flow limiting the application of the system. In 

addition, in many practical applications a heat sink larger than the area of the 

heat source is utilized to provide more area for convection cooling. A heat 

spreader enables the distribution of the heat from a heat source to base of a 

larger heat sink area. Thus, in the present study a new arrangement of self-

cooling in which an array of TEG module is placed between a heat spreader and 

cold side heat sink is investigated.  Due to the position of TEG modules, the 

system has both primary and secondary heat paths. Moreover a new model is 

proposed where the TEG modules are placed only in the secondary heat paths 

reducing thermal resistance between the heat source and heat sink. 
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The arrangement of the models is depicted in Figure 3-1. The first case is a 

baseline model designated as case A. It consists of six TEG modules situated 

between the heat source device and heat sink. A heat spreader is used between 

the device and number of TEG modules arranged in rectangular array. The TEG 

modules have been labeled from TEG# 1 to TEG# 6. All the TEG modules are 

placed on top of a spreader. 

 

For case A (Figure 3-1b), two TEG modules (TEG# 3 and TEG# 4) are placed 

centrally (primary heat path) while four TEG modules (TEG# 1, TEG# 2, TEG# 5 

and TEG# 6) are placed on the sides (secondary heat path). TEG# 1, TEG# 3 

and TEG# 5 are on the front side with respect to the air flow from the fan while 

the rest are placed on the back side. For case B experiments (Figure 3-1c), 

TEG# 3 and TEG# 4 has been replaced by aluminum block of same size. The 

rest of the TEG modules have the same arrangement as case A.  

 

This arrangement where all the TEG modules are placed on secondary heat path 

enables control of the temperature at a higher heat input by reducing thermal 

resistance. Case C represents a device set up where natural convection is used 

to cool the heat source without TEG modules. It functions as control model and is 

utilized to compare the performance of self-cooling in case A and case B. 
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3.2. Experimental setup 

 

An experimental set up (Figure 3-2) has been built to investigate the 

performance of self-cooling applications in case A, B and C. The heat source 

device is represented in the experiment by an aluminum plate with cartridge 

heater. The plate has a dimension of 80 × 40 ×20 mm3. A hole has been drilled 

in the aluminum plate equivalent to the dimensions of the cartridge heater of 

model Omega CSH-303535 with 12.7 mm diameter and around 76 mm in 

length. The heater has been tightly fitted inside the plate providing a uniform 

volumetric heating to the plate and has a maximum heating capacity and sheath 

temperature of 535 W (21 W/cm2) and 760 °C respectively 

 

Thermal insulation material is wrapped around all exposed surfaces of the 

heated plate to prevent heat loss to the environment. An adjustable DC power 

source of MASTECH Model with variable DC output voltage from 0 V to 250 V 

and current up to 5 A is used to provide heating power to the heater. A digital 

meter of Model GPM-8212 from GW Instek provides a digital display of 

Voltage/Current/Wattage for precise control of the heating power input into the 

heating element. 

 

An aluminum heat spreader of 3.8 mm thickness and an area of 120 × 80 mm2 

is used to conduct heat from the device to the array of TEG modules. 
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Thermoelectric modules are sandwiched between the spreader and cold side 

heat sink.  

 

 

 

 

 

Figure 3-1  Geometrical configurations of cases A-
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An array of six TEG modules of EVERREDTRONICS TEG241-1.0-1.2 model has 

been used. Each module has an equal cold side and hot side area of 40 ×40 

mm2 with 241 Bismuth Telluride thermoelectric couples inside each module. The 

detailed specification from the manufactures data is given in Table 3-1. The TEG 

modules have a maximum working temperature of 210 °C.  

 

Three separate parallel plate fin heat sinks are placed on the cold side of the 

TEG modules. Each dissipater has a base area of 150 × 40 mm2 and consists of 

4 fins with fin height of 20 mm and a fin thickness of 1.5 mm. The fin base is 

around 2 mm thick.  

 

An OMEGATHERM high temperature and high thermal conductivity paste is 

used as an interface between all contacting surfaces to decrease contact 

resistance. A wind tunnel made of plexiglass and cross-sectional area 100 × 120 

mm2 and 500 mm depth is used to direct air flow over the dissipater. A cooling 

fan of SUNON EE92251S1 model with dimensions of 92 × 92 × 25 mm is placed 

inside the wind tunnel at 40 mm upstream of the dissipater.  The detailed 

specification for the fan is given in Table 3-2. 
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Figure 3-2 a) picture of experimental setup and b) schematics of the 
investigation system 
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Table 3-1 Specification of thermoelectric generator module ( model TEG241-1.0-

1.2, China EVERREDTRONICS) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K-type glass-braided insulated thermocouples from OMEGA Engineering are 

used to measure temperatures at different sections of the experimental setup. A 

data acquisition module USB 1008G from MC Computing is utilized to log 

temperature data from the thermocouples and is connected to computer for data 

storage and analysis.  

 

Dimensions 40 𝑚𝑚𝑚𝑚 × 40 𝑚𝑚𝑚𝑚 × 3.8 𝑚𝑚𝑚𝑚 

 

 

 

 

Based on hot side temperature of 160 °C and cold side of 50 

°C 

Open circuit  

Voltage (Voc) 

Matched 

Voltage  

Matched  

Power 

Electrical  

resistance  

Thermal  

Resistance 

(°C/W) 

12.1 V 6 V 3.6 W 10 Ω    1.5 
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An electrical circuit breadboard from JAMECO of JE25 model provides the 

platform for the TEG modules to be connected in a series arrangement 

electrically and at the same time allows for easier access for measurement of 

voltage and current coming from each module. A digital multimeter from 

WAVETEK (30XL model) is used to measure voltage and current from the TEG 

modules.  

 

The air speed and temperature at the wind tunnel outlet is measured by a hot 

wire anemometer/thermometer (Control Company 4330 model). A digital 

manometer (OMEGA) measures the pressure drop in the heat sink. All tests 

were repeated three times to test the accuracy of the test data. The precision of 

the equipment and sample of uncertainty of the measured values are given in 

Table 3-3 and Table 3-4 respectively.   

 

For all measured data, the mean value ( x� ) can be given as: 

 

 

 ∑=
=

m

i ix
m

x
1

1
 

3.2.1 

 

The standard deviation (Sx) and uncertainty of experimental data (σ) could be 

expressed as[66]: 
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3.2.3 

For all measured data, the mean value ( x� ) can be given as: 
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3.2.4 

 

The standard deviation (Sx) and uncertainty of experimental data (σ) could be 

expressed as[66]: 

 

 
2/1

1
2)(

1
1





 −

−
= ∑ =

m

i ix xx
m

S
 

3.2.5 

 

 

 

 100(%) ×=
x
Sxσ

 
3.2.6 

Table 3-2 Specification of DC brushless Fan ( model SUNON EE92251S1-
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0000-A99) 

 

Rated 

Voltage 

Rated 

Current 

Rated 

Power 

Operating 

Voltage 

Range 

Starting Voltage 
Electrical 

Resistance 

12 V 165 mA 2.0 W 
4.5 ~ 13.8 

V 
4.5 V 72  Ω 

Table 3-3. Precision of instruments used in the experiments 

 

Instrument 

 

Parameter 

 

Instrument precision 

GW Instek GPM-8213 Power meter 

Voltage ±0.1% of reading 

Current ±0.1% of reading 

W ±1% of reading 

Wavetek Digital multimeter(DC) 
Voltage ±0.15% of reading 

Current ±0.5% of reading 

Omega K-type thermocouples Temperature ±1% of reading 

 

Control company Hotwire anemometer 

Velocity ±1% of reading 

Temperature ±0.8% of reading 
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Table 3-4 Uncertainty in the experimental measurement 
 
Temperature(°C) 
Td 

       Q(in) (W) 50 60 70 80 90 100 110 
Std.devav 1.8 1.29 2.11 1.16 2.32 1.59 2.19 
Uncertaintyav 2.50% 1.54% 2.60% 1.39% 2.56% 1.72% 2.12% 
 
Voltage (V) 
Case A 

      Qin(W) 70 70 70 70 70 70 
 

 
TEG# 1 TEG# 2 TEG# 3 TEG# 4 TEG# 5 TEG# 6 

 Std.devav 0.010 0.001 0.002 0.006 0.011 0.009 
 Uncertaintyav 1.77 0.10 0.32 0.87 1.00 1.32 
  

 
Current (A) 
Case A 

       Q(in) (W) 50 60 70 80 90 100 110 
Std.devav 3.055 1.527 2.516 3.055 4.163 3.055 2.081 
Uncertaintyav 5.72 2.29 3.05 3.29 4.02 2.71 1.71 

 

 

3.3. Performance evaluation 

3.3.1. Voltage and power 

 

The TEG modules are arranged in rectangular array with series electrical 

interconnections which enables the generation of larger values of voltage and 

hence power. Due to the position of TEG Modules, each experience an unequal 

amount of ΔT which results in different voltage output from each module. The 

total open circuit voltage Voc is expressed as: 
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where Vi is the voltage from the ith module in the series configuration and n is the 

number of TEG modules which is n=6 and 4 for case A and B configuration 

respectively. 

The voltage flowing through the load, VL is given by: 

 

 ccocL VVV −=  3.3.2 

 

where Vcc is the voltage at the array terminals and is measured by a digital 

multimeter. 

 

The current flowing into the load I can be expressed as: 
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3.3.3 

 

where RTEG and RL is the electrical resistance of a TEG module and load (fan) 

respectively. The manufactures reported value of RTEG and RL are given in 

Table 3-1andTable 2 respectively. It is to be noted than the fan has a smaller 

electrical resistance of around 20 Ω when stationary. 
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The power supplied to the load (fan), PL is calculated by: 

 

 LLL IVP =  3.3.4 

The environment temperature, Te is kept constant at 25 °C ± 0.3 °C for all the 

experiment. 

 

3.3.2. Air flow resistance 

 

There are some important characteristics to consider when pressure drop for 

self-cooling applications are considered. The fan operating points are defined at 

the intersection points between the fan performance curves and system 

resistance curves. Fan manufactures usually test and provide performance 

curves at a rated voltage. However, the characteristic of self-cooling applications 

is that the voltage supplied to the fan is variable and could be different from rated 

voltage.  It is, therefore, necessary to construct a pressure drop/ volume flow rate 

performance curve for the fan at different voltages. Moreover, in many 

applications of cooling devices using a fan, the devices are located inside an 

enclosure or compartment with inlet and outlet openings as they need to be 

shielded from the environment or outside interferences. Thus, it is vital to study 

total pressure drops inside an enclosure.  
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 For a constant impeller diameter and assuming constant fan efficiency in the 

frequency range, the following fan law [67] could be used to relate volume flow 

rate, U̇, with the fan rotational speed, ω, at different voltage input.  
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3.3.5 

 

where U̇ xV and ω̇xV are the volume flow rate and fan rotational speed at a 

given voltage while U̇rV  and ω̇rV are volume flow rate and fan rotational speed 

at the rated voltage. Another fan law equation which relates the pressure drop at 

any given voltage (ΔPxV) to the pressure drop at rated voltage (ΔPrV) is given 

by: 
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3.3.6 

 

The ratio of fan supply power at a certain voltage PxV  to the power at rated 

voltage Prv  relates in cubic power to the fan rotational speed by: 
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3.3.7 

 

The fan supply power is also related to the fan supply voltage Vx by the equation: 
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where RL is the internal electrical resistance of the fan 

Combining the above two equations: 
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3.3.9 

 

Equations 3.3.5 and 3.3.6 could be written in terms of input voltage by 

substituting the relation from 3.3.8. 
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3.3.3. Thermal resistance 

 

The performance of self-cooling system could also be described in terms of 

thermal resistance for the heat flow inside the parts making up the whole 
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system. A one dimensional thermal model is used to study the heat transfer 

process in the system by using network of thermal resistances as shown in 

Figure 3-3.  

 

The description of the equations representing the thermal resistance in each 

part is given in Table 3-5. The heat from the device is represented by Qin. It 

passes from the device to the array of TEG modules via a heat spreader after 

crossing the conduction thermal resistance inside the device (Θdc) and contact 

and spreading thermal resistance between device and spreader (Θsp) and 

spreader conduction thermal resistance (Θsc). After the heat enters the 

spreader, it could take three different paths before the heat is rejected to the 

ambient.  

 

The first path is the primary heat path represented by Qh,3 and Qh,4 through 

thermal resistance of ΘTEG,3 and ΘTEG,4 respectively. In case A, ΘTEG,3 and ΘTEG,4 

are the thermal resistance of TEG modules while in case B they are replaced by 

aluminum blocks. The second and third heat paths are secondary or shunt heat 

paths. These are Qh,1 ,Qh,2, Qh,5 and Qh,6. For both cases A and B, ΘTEG,1, 

ΘTEG,2, ΘTEG,5 and ΘTEG,6 are thermal resistances of TEG modules. Finally, the 

heat passes through the heat sinks before it is rejected to the ambient air at 

temperature of Ta. There are three separate heat sinks for the primary heat path 

and two symmetric secondary heat paths. 
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The thermal resistance could also be grouped into three major parts. The first 

part is the thermal resistance network from the device to the hot side of the array 

of TEG modules is: 

 

 
in

avhd
scspdcTEGd Q
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3.3.12 

 

 

 

Figure 3-3 Thermal resistance diagram 
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Table 3-5. Description and expressions for thermal resistances 
Symbol Description  Equation  

Θdc Conduction: Inside the device 
in

cd

Q
TT −

  

Θsp 

Contact: b/n device and heat 

spreader + Spreading: b/n device and 

heat spreader 
in

avsbc

Q
TT .−   

Θsc Conduction: Inside spreader 
in

avhavsb

Q
TT ,, −

 
Th,av =avg (Th,j) 

j=1-6 (case A) 

j=1-4 (case B) 

ΘTEG,j 

Contact: b/n spreader and TEG 

module + Conduction: Inside TEG 

module+ Contact: b/n TEG module 

and heat dissipaters 

jh

jcjh

Q
TT

,

,, −
 j=1-6 (case A) 

j=1-4 (case B) 

Θex,L 

Conduction: Inside LSD + 

Convection: b/n LSD and surrounding 

air 
12,c

aLc

Q
TT −−  Tc-L = avg(Tc,1 and Tc,2) 

Θex,C 

Conduction: Inside CSD +Convection: 

b/n CSD and surrounding air 

 
34,c

aCc

Q
TT −−  Tc-C=avg (Tc,3 and Tc,4) 

Θex,R 

Conduction: Inside RSD + Convection 

b/n RSD and surrounding air 

 
56,c

aRc

Q
TT −−  Tc-R =avg(Tc,5 and Tc,6) 

 

LSD=Left-hand side heat dissipater; CSD=Central heat dissipater; RSD=Right hand side heat 

dissipater 
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The second part is thermal resistance inside the array of TEG modules, ΘTEG-

array which could be described by the analysis of heat transfer in the TEG 

modules. The heat transfer inside the TEG modules at the hot side could be 

described as: 

 

 
2
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TIQ TEG

jTEG

jcjh
mjhjh −
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And at the cold side of the modules: 
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)(
IRTT

TIQ TEG

jTEG
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mjcjc +

−
+=

Θ
α
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where αm is the Seebeck coefficient for a TEG module. The first terms in Eq. 16 

and 17  ITh,jαm and ITc,jαm are the Peltier heat terms at the hot side and cold side 

of TEG module respectively. Second term in both equations is the conduction 

heat terms and the last term represent Joule heating inside the modules.  The 

difference between the heat transfer in hot side and cold side is the power 

generated from a TEG module which is given by the power generated due to 

Peltier effect minus the parasitic power loss in the conductor due to joule 

heating: 

 

 jTEGmjcjhjcjh PIRTTIQQ =−−=− 2
,,,, )( α

 3.3.15 
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The TEG modules are connected in parallel thermally and the overall resistance 

of the TEG modules, ΘTEG-array is given in case A  Eq. 3.3.16 and case B 

Eq.3.3.17 
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where Θcon,j represents the aluminum conductors that replace the TEG modules 

in the primary heat path and m is the number of conductors in the array. 

 

The third part is the thermal resistance in the cold side heat sink. The heat sinks 

dissipate heat from cold side of the array of TEG modules and are connected in 

parallel thermally 
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The total resistance Θth,T is the sum of the thermal resistance between the 

device and ambient air: 

 

 
in

ad
exarrayTEGTEGdTth Q

TT −
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3.4. Results and discussion 

3.4.1. Fan performance in cold-side heat sink 

 

The pressure drop versus volume flow rate relation at a rated voltage of 12 V 

has been extracted from the data provided by the manufacturer[68]. Eq. 3.3.5 

and 3.3.6 are used to construct a pressure drop versus volume flow rate curve 

at different voltage input to the fan. 

 

The minimum voltage for the fan performance curve is constructed at 4.5 V 

which is the minimum voltage at which the fan moves. The maximum pressure 

(pressure at zero volume flow rate) decreases from around 38 Pa at 12 V to 

close to 5 Pa at 4.5 V. Similarly, the maximum volume flowrate (flow rate at zero 

static pressure) decreases by an amount close to 65% as the voltage is reduced 

to 4.5 V from maximum rated voltage (12 V). To put the fan performance in 

context, the pressure drop at different volume flow rate has been simulated for 

the parallel plate-fin heat sink used in the experiment.  The curve is 

superimposed on the fan performance curve to identify the fan operation point 

as shown in Figure 3-4. An experimentally derived equation relating the 
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pressure drop at the heat sink, ΔPhk, with volume flow rate at the heat sink, U̇hk, 

for the parallel plate-fin heat sink in the wind tunnel is: 

 

 4714.00145.00015.0 2 ++= hkhkhk UUP ∆  3.4.1 

 

where xl is the length along the channel and Lch is the total length of the channel. 

 

 

 

Figure 3-4 Fan-heat sink operation curve for case A and B 
 

From Eq. 3.3.8, it could be determined that the fan operates at the minimum 

voltage of around 4.5 V and the minimum power supplied is around 0.4 W. The 

maximum rated supply power to the fan at 12 V is around 1.7 W. The internal 

resistance of the fan is approximately 72 Ω. The data helps in choosing the 
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number and type of TEG modules which would be required to supply the required 

voltage and power to move the fan. For an array of TEG modules connected in 

series, the combined electrical resistance needs to be close to fan (load) internal 

resistance for optimal power transfer [69]. In the experimental set up the 

combined electrical resistance of the six TEG modules is 60 Ω which is close to 

the fan’s internal electrical resistance. Thus, the fan performance curve at 

variable voltage is important tool to analyze how the fan behaves in the self-

cooling mode.  

 

3.4.2. Voltage and power in case A and B 

 

As the voltage produced by TEG modules is directly proportional to the 

temperature difference across the TEG modules, it is worthwhile to examine the 

temperature variations at the hot and cold side of the TEG modules. The 

temperature variation at the hot side and cold side of the TEG module is shown 

in Figure 3-5. It could be observed that for all the heat inputs (70 -100 W), the hot 

side of the TEG at the primary heat path (TC-h,3) is higher that hot side of TEG 

module at the secondary heat path (TC-h,1). Similarly, the cold side of the TEG 

module at the primary heat path (TC-c,3) is also higher than cold side of the TEG 

module at the secondary heat path (TC-c,1). However, the temperature 

difference across the TEG modules in the primary heat path is on average 45-65 

% higher for 70 to 100 W heat input respectively.  Thus, the voltage produced at 
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the TEG modules in secondary heat path would be less than TEG modules at the 

primary heat path in case A.  

 

 

 

Figure 3-6 shows the variation of voltage (V) as a function of heat input Qin at the 

device for case A. The voltage produced by the TEG #1 and #5 is represented by 

V_TEG1/5 while the sum of voltage generated by TEG #2 and #6 is given as 

Figure 3-5 Temperature variations as a function of time for case A and Qin of a) 

70 W b) 80 W c) 90 W and d) 100 W  
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V_TEG2/6. Both indicate the voltage produced temperature difference in the 

secondary heat path. The sum of voltage by TEG #3 and # 4 (V_TEG3/4) 

represents the voltage from TEGs in the primary heat path. The total voltage 

from all the TEGs in the array is depicted V_TEGtotal. 

 

It could be observed that for voltage has increased steadily with heat input both 

in primary and secondary heart paths. As heat input in the device rises, the 

temperature difference across the TEG module surfaces grows. This, in turn, 

results in rise in voltage generation. However, the voltages in V_TEG1/5 and 

V_TEG2/6 are on average 55-65% of V_TEG3/4. This is due to decreases in hot 

side temperature on TEG surfaces on the secondary heat path. The major part of 

the heat transfer occurs in the primary heat path. Thus, the estimation of voltage 

produced by TEG needs to consider the relative area of heat source with the 

TEG array surface area. Although increasing the number of TEGs results in more 

voltage generation, the effectiveness of the method decreases as the area of 

TEG increases relative to the heat source area. The magnitude of  V_TEG1/5 is 

slightly more than V_TEG2/6 as the TEG are located on the front side with respect 

to air flow which increases the temperature difference across the TEG surfaces. 

 

Generally, it is observed from Figure 3-6a that for a given heat input, the 

V_TEGtotal rises until it achieves the fan’s start-up voltage (Vs-up). For the fan 

used in the experiment, Vs-up is experimentally determined to be around 4.5 

±0.05 V. Once the fan starts rotating, the voltage required to sustain the 
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minimum rotating speed decreases. The fan runs as long as its voltage is higher 

than minimum (stall) voltage. In case A, the experimental result indicated that the 

minimum heat input (Qin,cr) to achieve Vs-up is about Qin= 60 W. The time taken to 

attain Vs-up (tmin) is recorded to be 11 minutes. At Qin= 120 W, tmin decreases to 2 

minutes. For Qin less than 60 W, the system could potentially develop voltage 

that sustains minimum speed but falls short of achieving Vs-up. As the heat is 

augmented from 60 W to 130 W, the steady state value of V_TEGtotal increases 

by around 89 %.  As shown in Figure 3-6, the current produced by the TEG array 

rose from 69.50 mA to close to 130 mA for the heat increase from 60 W to 130 W 

while  the power produced per area of TEG array (P/ATEG) also increased by 

almost 300% to close to 10.7 W/cm2.  

 

For case B (Figure 3-7), all the TEGs are placed on secondary heat path and the 

magnitude of V_TEG1/5 is slightly higher (around 7%) than  V_TEG2/6. This is 

again due to placement of V_TEG1/5 at the front side with the air flow which helps 

with temperature difference across the modules. For the same heat input, the 

total voltage produced in Case B is 50-70% of the values in Case A. The 

decreases could be attributed to the fact that, in case B, the voltage is only 

produced by the TEG in the secondary heat path. 

 

As Qin is increased from 60 W to 130 W, V_TEGtotal rise by around 160%. 

However, the percentage increase for V_TEGtotal for a rise in Qin from 90 W to 

130 W is only 20% as compared to 115 % for Qin from 60 W to 90 W.  When self-
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cooling starts at 90 W, forced convection decreases the cold side temperature of 

the TEG. This results in a sudden climb of the value of V. For a rise in Qin after 

the Qin,cr, the system shows a steady increase in V_TEGtotal which results in a 

steady temperature rise in the device. At Qin=130 W, case B produces 33% and 

56% less voltage and power than case A Nevertheless, it is effective in power 

production per area of array of TEG modules. For the same heat input, case B 

generates P/Ateg (9.61 mW/cm2 ) which is only slightly lower than  case A (10.79 

mW/cm2). 

 

3.4.3. Dynamic thermal response case A and B 

 

It could be inferred from Figure 3-8 that at Qin=50 W, the temperature of device 

above room temperature (ΔTde) climbs  rapidly to around 63.29 °C within 60 

minutes. As the fan is not rotating below Qin,cr of 60 W, the heat loss mechanism 

is natural convection via the dissipater. However, once the fan starts rotating at 

60 W, the temperature drops by close to 17 °C from its value at 50 W.  In 

addition, the slope of rise of temperature versus time also decreases enabling 

the system to stay at steady temperature after 12 minutes.  
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Figure 3-6 a) Total array Voltage and b) Power per unit  

area of TEG (P/ATEG) and I as a function of Qin for case A 
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Figure 3-7 a) Total array Voltage and b) Power per unit area of 
TEG (P/ATEG) and Current as a function of Qin for case B 
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Figure 3-8 also shows that at Qin of 80 W, the maximum temperature of Td after 

an hour is 4 °C  less than Qin (50 W). For Qin ranging from 90 -120 W, ΔTde rises 

only by 24 °C.  As self-cooling allows for steady forced air convection cooling, the 

rise of temperature has been steady. 

 

As shown in Figure 3-9, ΔTde  after one hour climbs to 60 °C and 79.8 °C for heat 

input of 60 W and 80 W. In case B, the system achieves Qcr,in at 90 W.  At Qcr,in 

,the fan starts to move in around 16 minutes from rest  and ΔTde decreases to 

around 64 °C. 

 

 For heat input more than Qcr,in, the system functions in self-cooling mode with 

the fan rotating in less than 8 minutes from rest. The steady state temperature Td 

increases only by 11.8 °C for 30 W rises in Qin from 100 W. The rate of increases 

is almost 50% less than case A. This is due to combined effect of self-cooling 

(less convection resistance) and reduced conduction resistance.  

 

In addition, the slope of rise of temperature versus time also decreases enabling 

the system to stay at steady temperature after 12 minutes. Figure 3-8 also shows 

that at Qin of 80 W, the maximum temperature of Td after an hour is 4 °C  less 

than Qin (50 W). For Qin ranging from 90 -120 W, ΔTde rises only by 24 °C.  As 

self-cooling allows for steady forced air convection cooling, the rise of 

temperature has been steady. 
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As shown in Figure 3-9, ΔTde  after one hour climbs to 60 °C and 79.8 °C for heat 

input of 60 W and 80 W. In case B, the system achieves Qcr,in at 90 W.  At Qcr,in 

,the fan starts to move in around 16 minutes from rest  and ΔTde decreases to 

around 64 °C. For heat input more than Qcr,in, the system functions in self-cooling 

mode with the fan rotating in less than 8 minutes from rest.  

 

The steady state temperature Td increases only by 11.8 °C for 30 W rises in Qin 

from 100 W. The rate of increases is almost 50% less than case A. This is due to 

combined effect of self-cooling (less convection resistance) and reduced 

conduction resistance.  

 

3.4.4. Application of varying load in case B 

 

In practical applications, the heat generation in a device could vary as a function 

of time.  Thus varying heat loading scenarios has been tested and their effect on 

the device temperature and voltage produced by array of TEG modules is 

observed as shown in Figure 3-10.  

 

The first scenario (S1) is gradual heating in which heat input is increased by 10 

W every 15 minutes starting from 100 W. In the second scenario (S2), the heat 

input is decreased from 130 W by 10 W every 15 minutes to represent gradually 

decreasing thermal loading.  
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Third scenario (S3) is a case in which the system enters no thermal loading 

cases at varying instants. In this scenario,150 W is applied in the first 10 minutes, 

and a brief no thermal loading for the next 2 minutes followed by another 10 

minutes of heating at 150 W. This is again followed by 5 minutes of no loading, 

10 minutes of 150 W loading and 10 minutes of no thermal load.  

 

In S1, the fan starts to turn approximately around 9 minutes and the system 

achieves a steady temperature increase to 98 °C at the15th minute. When the 

heat input is ramped up by 10 W, Td rose by 9 °C in the next 15 minutes. For the 

heat load increase of 10 W from 110 W to 120 W and 120 W to 130 W, the 

temperature increases was only 7 °C and 6 °C at the third rise to 130 °C.  

 

This indicates that once the system achieves a steady run, a gradual 

intensification of heat input resulted only with slight increases in temperature. 

Similarly with S2, with higher input of 130 W, the temperature starts to rise 

steeply after which, the slope decreases and temperature stabilizes. After that a 

slow fall in temperature is observed with a gradual decrease in heat input.  
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Figure 3-8 Temperature difference (ΔTde) between the device temperature (Td) 
and environment temperature (Te) for case A at varying heat input (Qin)  of  a) 
50 -80 W b) 90-120 W  
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Figure 3-9 Temperature difference (ΔTde) between the device 
temperature (Td) and environment temperature (Te) for case B at 
varying heat input Qin of  a) 60 -90 W b) 100-130 W  
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S3 represents a scenario where there is a sudden steep fall or surge in thermal 

loading. In the first 10 minutes Td reaches a steady state within 10 minutes as 

the fan starts to turn at 3 minutes and temperature stabilizes shortly after. In the 

second stage, the power input has been throttled to zero and the temperature 

decreases due to no thermal loading as well as forced convection from the fan. 

The fan continues to rotate due to the residual temperature difference in the 

system.  

 

A sudden ramp up of heat input to 150 W in the third and fifth stage has been 

handled well with the system achieving a steady temperature in 5 minutes. As 

the load is suddenly augmented, the voltage input to the fan grows resulting in 

increased forced convection.  

3.4.5. Comparison between case a-c 

 

The thermal performance of different cases could be analyzed by analyzing the 

total device to ambient thermal resistance (Θth,T). As Figure 3-11a shows, the 

total thermal resistance changes markedly for all the cases when the heat input 

reaches Qcr. For case A, Θth,T reduces by 40% for Qin reached 60 W due to the 

increase in convection heat transfer coefficient and the temperature of the device 

decreased by 18%.   

 

After 60 W, the total thermal resistance only slightly decreases as the system has 

achieved forced convection and the fan velocity only changed marginally. The 
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temperature of the device only increases by 61% for a rise in heat input from 60 

W to 120 W (Figure 3-11b). In case A, device temperature was 25 °C less than 

case C for Qin=100 W which increases to over 34 °C at 130 W.  

 

For heat input of 130 W, case A has 30% less thermal resistance as compared to 

case C.Similar effect was observed for case B after 90 W. From 80 W to 90 W, 

there is a 15% drop of temperature while there is only a 16% increase in 

temperature as the heat input is increased by 40 W from 90 W. Case B has been 

able to reduce Td by 16 °C and 40 °C for the same heat input of 120 W as 

compared to case A and C respectively. Case B has 40% less thermal resistance 

than case C for heat input of 130 W at the device. 

 

Case C has more or less constant thermal resistance which is mainly due to 

natural convection from surrounding air. For heat input less than Qcr, Case A has 

18% more resistance due to the presence of TEG modules in the heat path while 

case B has comparable thermal resistance with case C even when the fan is not 

moving. Therefore case B has dual advantages as compared to case A by 

reducing the thermal resistance when the system is both in self-cooling and 

natural convection mode.  
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Figure 3-10 Variation of device temperature (Td) for varying heat input load 

(Qin) a) S1 b) S2  c) S3 

       

 



120 
  

Figure 3-12 displays the percentage of magnitude of contribution of thermal 

resistance of parts of the total device set-up as compared to the total resistance 

of the whole system for case A and B. It could be expressed by the equation: 

 

Tth

i

,

%
Θ
Θ

∆Θ =
 

(2) 

 

where Θ i is the thermal resistance of part of the device and Θth,T is the total 

resistance of the model. The figure represents the three major parts Θd-TEG in 

Eq.3.3.12, ΘTEG-array in Eq.3.3.16 , Eq.3.3.17and Θex in Eq. 3.3.18. 

 

It could be inferred from Fig. 12 that the Θd-TEG is responsible on average for one-

quarter of the total thermal resistance for both case A and B. In case A, ΘTEG-array 

amounted to about 30% of the total resistance from 60 W to 120 W. 

 

Its effect is almost equivalent to Θd-TEG in case A which is indicative of the fact 

ΘTEG-array has a significant effect in the thermal resistance of the device set-up. 

While for case B, the ratio of Θd-TEG in Θth,T  has been significantly reduced. 

Replacing the TEG modules by aluminum block in the primary heat path has 

resulted in such important improvement. 
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Figure 3-11 Variation of a) Total thermal resistance, Θth,T  
b) ΔTde 
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ΔΘex% has slightly decreased at Qin,cr (90 W) with the start of the fan and 

increased convection thermal resistance. Nevertheless, it still is responsible for 

almost 60% of the total thermal resistance. As case B has been able to reduce 

ΘTEG-array significantly, further improvement can be achieved by minimizing 

Θex 

 

 

 

 

 

Figure 3-12 Comparison of the percentage ratio, ΔΘ% 
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4. NUMERICAL SIMULATION METHODS ON SELF-COOLING SYSTEM 

4.1. Introduction 

 

Although there have been many studies focusing on the general modeling of 

TEGs coupled with fluid models [70][71][72][73][74][75][76]], there has only been 

very limited research with respect to numerically modeling TEG based self-

cooling application[77]. There are some peculiar factors pertinent to the modeling 

of self-cooling incorporating TEG modules. Firstly, the system has an internal 

loop in power generation. TEG modules provide the power for the fan/pump that 

cools the modules.  

 

Thus, an inlet condition for fluid flow into the cold side heat sink is coupled with 

the voltage and power generated from the modules. Secondly, TEG modules 

provide a variable voltage depending on temperature difference across the 

modules, thus, the fan/pump provide variable speed water/air flow (volume flow 

rate). Thirdly, as the TEG modules are placed between the heat source device 

and heat sink, there is a need for numerical modeling that helps to study the 

minimization of thermal resistance while providing enough temperature difference 

to power the cooling systems.  

 

Thus, in this study, a general numerical methodology has been proposed for the 

study of self-cooling application. The numerical computational strategy could be 

solved in any appropriate software or could be coded in a relevant programming 



124 
  

language. However, the use of dedicated computational fluid dynamics (CFD) 

software with ability to integrate user defined functions ensures various 

complexities of heat sink and device set up could be readily handled in SFF and 

SHT. The modeling strategy has been implemented in Finite Element model 

(FEM) and Finite volume method (FVM) models.  

The numerical model is validated in two steps. In the first step, the numerical 

model is implemented in FEM model and validated against existing experimental 

data. In the second step, a finite volume model is implemented and validated 

with own experimental data from chapter 3.  

 

4.2. Numerical methodology 

4.2.1. Voltage and power 

 

A general numerical methodology is developed which could be utilized to analyze 

TEG based self-cooling systems as shown in Figure 4-1. There are three sub-

models that constitute the general structure of the numerical methodology 

namely submodel: fluid flow (SFF), submodel: conjugate heat transfer (SHT) and 

submodel: electrical circuit (SEC). 

 

Submodel fluid flow (SFF) represents three dimensional fluid flow analyses in the 

fan (pump) - heat sink model. There are some important characteristics to 

consider when pressure drop for self-cooling applications are considered. 

 



125 
  

 

 

 

The fan/pump operating points are defined at the intersection points between the 

fan/pump performance curves and system resistance curves. Fan/pump 

manufactures usually test and provide performance curves at a rated voltage. 

However, the characteristic of self-cooling applications is that the voltage 

Figure 4-1 Numerical Methodology 
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supplied to the fan/pump is variable and could be different from rated voltage. It 

is, therefore, necessary to construct a pressure drop/ volume flow rate 

performance curve for the fan/pump at different voltages. 

 

The pressure drop versus volume flow rate relation at a rated voltage of 12 V 

has been extracted from the data provided by the manufacturer[68]. Eq. 3.3.5 

and 3.3.6 are used to construct a pressure drop versus volume flow rate curve 

at different voltage input to the fan. 

 

Once the fan performance points at different voltage are derived using the 

relations mentioned above, the 3D fluid flow analysis is utilized to construct 

appropriate boundary conditions in two steps. In the first step, pressure drops at 

different flow rates for fan (pump)-heat sink model are simulated to construct the 

system operation curve. The operation curve is then super imposed on the fan 

(pump) performance curve to identify system operation points which are 

intersection points between the performance curves and operation curve. 

 

 It is thus possible to extract the volumetric flow relations as a function of input 

voltage to the fan (pump). In the second step, the volumetric flow conditions 

which represent the operation conditions of the system at variable voltages are 

then used as an input conditions to 3D fluid flow analysis to extract the average 

convection heat transfer coefficient (hav) for the particular fan (pump)-heat sink 

model. The values of hav as a function of input voltage to the fan (pump) are used 
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a convection boundary conditions for the subsequent model. For an input voltage 

or power less than starting voltage (Vcr) or starting power (Pcr) of the fan (pump), 

natural convection conditions apply. 

 

Submodel: conjugate heat transfer (SHT) contains the components of the self-

cooling device except the fluid domain. SHT has surface boundary conditions 

that are obtained from SFF. The heat generation rate the device is also an input 

parameter to the model. In SHT, the governing equations of conservation of 

energy are applied to calculate the temperature distribution in the whole device 

setup. These include heat source device, heat spreaders, TEG modules and 

parts of the heat sink.  

 

There are also planar and volumetric heat generation rates inside the TEG 

module which are given by Peltier, Joule and Thomson heat effects. The heat 

generation values are the function of the current flow inside the TEG modules. 

Thus, it is also necessary to have submodel: electrical circuit (SEC) which 

calculates the current, voltage and power from TEG modules. SEC basically 

contains 1D equations which relate current and voltage as a function of 

temperature difference across the TEG modules. 

 

 Thus, we have a loop by which SHT supplies temperature values to SEC which 

in turn furnishes heating rates back to SHT. SEC also supplies the voltage value 
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at each iteration and time step so that the appropriate boundary condition value 

is applied in SHT. 

 

4.3. Finite element model 

4.3.1. Physical configuration of model 

 

The baseline simulation model is based on the configuration as used by the 

experimental work by Martinez et al[78]. This configuration is a single stage 

series type arrangement. It consists of an aluminum plate which is heated by two 

square heating elements placed inside the plate. TEG modules are wedged 

between the heated plate and cooling system. The cooling system consists of an 

aluminum extender and parallel-plate fin heat sink.  A fan is placed on top of the 

finned heat sink to provide cooling.  

 

4.3.2. Equation based modeling in FEM model 

 

The numerical simulation is carried out using the commercial finite element 

method (FEM) based software package (COMSOL) [79] . Due to symmetry, 2D 

coupled simulation is made on one half part of the model. A weak form 

mathematical equation is used to represent the thermoelectric effect. It is an 

integral form equivalent to the original partial differential equation (PDE) and is 

derived by multiplying the PDE with a test function and integrating over the 

domain. A separate 3D full domain laminar flow simulation on the heat sink and 
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fan is made to extract convection heat transfer coefficient h  values at the fan 

operating conditions. The rest of the outer surface, which has a fixed convection 

heat transfer of h = 8.8 W/m2.K, is also derived from full domain simulation free 

convection between the surfaces and the surrounding air. The data is also 

validated by the experimental data.  

 

Grid independence study was carried out to verify the grid independence of the 

solution obtained to assure the validity and accuracy of the results. A grid system 

9662 element which is termed as normal grid as compared with finer grid of 

11695 elements and coarser grid of 3906 elements. The relative error between 

the different grid sizes for local temperature and electric potential is found to be 

less than 0.01% which shows that the solution is grid size independent. The time 

taken for a single run on Intel® Xeon® CPU @ 2.40 GHz is recorded to be 3 s, 4 

s and 6 s for the fine grid, normal grid and coarse grid respectively. 

 

4.3.3. Validation of numerical model 

 

Figure 4-2 shows the comparison between  present numerical simulation model 

and  the experimental data by Martinez et al[78]. The dashed lines represent 

numerical simulation results while the experimental results are denoted by a 

triangle and square markers. It could be seen that the simulated results are in 

good agreement with an average error of 3% for ΔTg-amb   and around 6% for 

ΔTg-amb. Thus, the 2D model is very effective in simulating the multiphysics 
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problem with good accuracy and faster. The efficiency of the TEG, ηTEG from the 

numerical model is calculated to be 5.17% for the heating power input of 220 W, 

as compared to the manufacturer’s supplied data of the efficiency for Kyrotherm 

TGM-287-1.0-1.5 model of 5.0% [at ΔT=170 °C].  

 

 

 
Figure 4-2 Comparison between numerical simulation model and experimental 
data 
 

This shows that the numerical model is able to represent the efficiency of the 

physical model with almost 97% accuracy. 
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4.3.4. Parametric study using FEM model 

 

The design of the heat sink geometry with respect to self-cooling is one of the 

important parameters that could affect the performance of the entire system. For 

the baseline model (BM), the effects of fin density, i.e. the number of fins per unit 

length of fin (Nfin), and the effects of the height of fins (Hfin), on the maximum 

temperature of the heated plate and power generated by the TEGs are studied.  

 

4.3.4.1. Effect of fin density (Nfin) 

 

Figure 4-3 shows the performance of the fan coupled with TEG system for 

different values of fin densities (The subscripts 1.5, 2.1, 2.6 represent Nfin equal 

to 1.5 fins/cm, 2.1 fins/cm and 2.6 fins/cm respectively. The subscripts 4V, 8V, 

12V represent the fan performance curve when the supplied voltage is equal to 

4V, 8V and 12 V respectively). One unique feature of self-cooling system is the 

variation with temperature of the fan input power and voltage from TEG. Thus, a 

plot of fan performance curve at various voltages is made. This is adapted from 

manufacture data for the fan SUNON KDE1212PTB1 which is only given for 12 

V. The fan was applied to derive the performance data at other voltages. The 

simulated fan operating performance is superimposed on the data to find the fan 

operating conditions. This also enables to derive the power consumption for the 

fan assuming an average fan efficiency of 25%. This graph would be important to 

understand the ranges of geometrical and heating power combination which 
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enables self-cooling to be effective. The fan performance data is also derived for 

different fin density. As Nfin is varied from 1.5 fins/cm to 2.6 fins/cm, the fan 

performance data shifts to the left signifying more pressure loss per unit volume 

flow rate. This is due to the extra resistance to the air flow due to an increased 

number of fins per area. The power consumed by the fan also increases with 

increased fan density to counter the extra pressure losses. The power consumed 

by the fan increases by almost 136% at 12 V and 85% when operated at 8 V.  

 

However, the extra number of fins helps with heat dissipation reducing the 

increases in the maximum temperature of the heated plate, Tg, as shown in  

Figure 4-4. The figure demonstrates that the value of Tg decreases by almost 

4.34% when the Nfin increased from 1.5 fins/cm to 2.6 fins/cm at the heating 

power of 220 W. This is due to a decrease in thermal resistance from 0.53 °C/W 

to close to 0.45 °C/W. The highest increase in Tg is observed at the lower heat 

input of 130 W with an almost 5.8% increase as Nfin is increased to 2.6 fins/cm. 

However, the temperature difference, ΔTh-c and the power generated by the 

TEG Pgen changed only slightly for an increases in fin density at a particular 

heating power. This is an interesting observation that for such type of 

arrangement where the heat sink is coupled with the heat source via the TEG. 
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4.3.4.2. Effect of fin height(Hfin) 

 

The height of the fin is varied from 23 mm to 50 mm for the same fin density of 

32 fins/cm. It can be observed from Figure 4-5  (The subscripts 23,32,50 

represent Hfin equal to 23 mm,32 mm and 50 mm respectively) that the height of 

fin inversely affects the pressure drop per volume flow rate. As the Hfin is 

increased, the fan consumes less power. The power consumed by the fan 

decreased by 50% when the Hfin is doubled at 12 V. The increase in pressure 

drop is less pronounced at the critical voltage of 4 V. This is due to the low 

volume rate and pressure drop at low voltage operation. 

 

 

Figure 4-3 . Cooling fan performance and power consumed by the fan as a 
function of volume rate of air in the fan for different fin densities.  
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Figure 4-4 Maximum temperature of the heated plate, Tg and power produced by 
the TEG, Pgen as a function of heating power supplied to the heater.  
 

Figure 4-6 indicated that the maximum temperature at the heated plate 

decreases when the height of the fin increases for the same heating power due 

to an increase in the heat dissipation area. The temperature decreased from 

almost 65 °C to a little over 50 °C with 27 mm increase in height from 23 mm. At 

the heating power of 220 W, Tg decreases by about 8% and 22% when the Hfin 

is increased from 23 mm to 32 mm and 50 mm respectively. However, the 

temperature difference along the TEG and power produced by TEG showed little 

variation as the Hfin is varied.  However, the additional height has to be 

considered in terms of the space availability for the dissipater 
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Figure 4-5 Cooling fan performance and power consumed by the fan as a 
function of volume rate of air in the fan for different fin densities.  
 

 

Figure 4-6 Maximum temperature of the heated plate and power produced by the 
TEG, Pgen, as a function of heating power supplied to the heater.  
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4.4. Finite volume model 

 

The numerical methodology has been implemented using commercial CFD 

software ANSYS 14 [80] utilizing in-built fluid, heat transfer and electric current 

modules as well as user defined functions.  

 

4.4.1. User defined functions based modeling in FVM model 

 

In this section, a finite volume (FVM) based commercial CFD software (Fluent 

14) [80] is used to implement the computational strategy. In Fluent, inbuilt CFD 

capabilities are integrated with User Defined Functions (UDF) written in ANSI-C. 

Two computational domains namely domain A and B are constructed.  

 

Domain A represents SFF and domain B has both SHT and SEC integrated into 

the domain.  For a comparison with experimental data, domain A is used to 

identify the operational points of the fan-heat sink assembly for a given fan used 

in experiments. It supplies a surface boundary condition to domain B using an 

interpolating user defined function (UDF). Domain A contains the air domain and 

the heat sink only. The inlet velocity (volume flow rate) is varied as an input 

condition. The outlet condition from the domain is zero gage pressure boundary 

conditions. The governing equations for three dimensional, forced, steady state 

and incompressible fluid flow are solved.  
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Domain B is comprised of the heat sink, extender, array of TEG modules, 

spreader, heat source heater and the plate.Fully coupled multiphysics modeling 

technique is used to model fluid flow, heat transfer and electrical subsystems in 

domain A and B. The governing equations for three dimensional, forced, 

transient incompressible fluid flow and heat transfer in the device, heat spreader, 

TEG, cold-side extender, dissipater and air subdomain are solved.  

 

The general equations for continuity, momentum and energy are given as 

follows. 

 

Continuity equation: 
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where u, v and w are the fluid velocity components in x, y and z directions 

respectively. 

Momentum equations in x, y and z coordinate: 
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where P is the pressure field. 

 

Energy equation  
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The computational domains and boundary condition are depicted in Figure 4-7. 

For the numerical simulation, a uniform volumetric heat generation (Q̇in) is 

assumed in a heater. All surfaces of the heated plate except the side in contact 

with the spreader are assumed to be insulated. The ambient temperature is 

taken as 298 K.  Adiabatic boundary conditions were applied to TEG walls 

exposed to the environment. 

 

A thermoelectric module consists of number of TEG modules connected in series 

by copper solder and contained between thermally conductive and electrically 

insulated ceramic plates. The simulation of numerous P-N pairs inside each 

module in an array would result in high computational complexity in terms of grid 
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size as well as computational time [81]. Thus, the TEG module is modeled as 

TEG cuboid consisting of three parts as shown in Figure 4-8. The first part 

represents P and N semiconductor pellets with an air gap. It is modeled as a 

combined pellet-air gap cuboid by aggregating the properties of the P and N legs 

and the air gap in between using the weighted mean method. The thermal 

properties of aluminum, copper and ceramic at an average temperature of 350 K 

is shown in Table 1 [82].  

 

 
Table 4-1 Physical properties of aluminum, copper and ceramic 
 

 

 

The thermal properties of Seebeck coefficient, thermal conductivity and for the p-

n elements are assumed to isotropic and adapted from [69] 
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Physical properties  Symbol Units Aluminum  Copper Ceramic 

Thermal conductivity k W/(m.K) 237 398 25.12 

Electrical resistivity R Ω m 2.82 × 10−8 1.67 × 10−8 5.03 × 1010 
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The second part is the copper conductors on both sides of the pellet-air gap 

cuboid. The copper conductors are also aggregated into a homogenous 

conductor cuboid by similar method used for the semi-conductor pellets. The 

third part is the cold and hot side ceramic plates. At the interface between the 

cold side ceramic plate and the base of the heat sink and hot side of ceramic 

plate and spreader, there exits an interfacial contact thermal resistance. 

 

Thus, the thermal properties of the ceramic plates have been modified to account 

of the extra contact thermal resistance. The value for the contact thermal 

resistance has been estimated from experimental data.  
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Figure 4-7 Computational domain A and B in ANSYS  
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Figure 4-8 a) Schematic diagram of numerical model b) computational 
grid of TEG module 
 



143 
  

For an array of TEG modules connected in series to a load, total voltage at any 

given instant t, VT (t) and the current in the array, I(t) are given as: 
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where m is the number of modules in an array and Th,av_j(t) and Tc,av_j(t) are the 

average hot side and cold side temperature of the jth TEG module at an instant t 

respectively. 

The fan supply power is also related to the fan supply voltage Vx by the equation: 

 

 
ld

x
xV R

V
P

2)(
=

 

4.4.11 

 

For the m number of modules connected in series electrically in an array, the 

average temperature of hot side and cold side of the jth TEG module could be 

calculated as: 
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where [t0, t1] is a time interval, Ω is the spatial derivative for the jth module. Th,av 

and Tc,av are calculated at the hot and cold surface of the TEG module 

respectively.  

 

Peltier heat at the interface of hot side of TEG and copper solder at a jth module 

in an array of TEG modules is given as: 
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where ATEG,h is the hot side area of TEG module  

 

Peltier heat at the interface of cold side of TEG and copper solder is given as: 
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where ATEG,c is the cold side area of TEG module.  
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The Joule and Thomson heat are modeled as volumetric heat generation in the 

P-N pellet region and could be written as: 
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where first and second term in the equation are the Joule and Thomson heat 

respectively, LPN is the height of the P-N pellet region and Rel,PN is the electrical 

resistivity of P and N thermoelectric pairs 

 

From the equation it could be seen that, the heat terms are a function of the 

current flowing inside the module and the current is again dependent on the 

temperature difference between the TEG module surfaces. Thus, it is important 

to employ a numerical methodology which iteratively calculates for the current 

and voltage inside the array. The capability of employing User Defined Functions 

(UDFs) written in ANSI C programming language in ANSYS Fluent (Appendix B) 

is employed to include the electrical and heat terms.  

 

4.4.2. Validation of the numerical model 

 

Figure 4-9 shows the fan performance data at varying voltage. The system 

operation curve for the heat sink geometry used in the experiment is 

superimposed on the fan performance data. The numerically simulated data is 



146 
  

denoted by a full line while the experimental data is represented by dots. The 

system operation derived from CFD analysis has good correspondence with 

experimental data. The intersection between the fan performance data at a 

given voltage and system operation curve indicates the operation point of the 

fan at that voltage. Therefore, the graph is useful to simulate heat sink pressure 

drop for different geometries and analyze how the system operates from the 

lowest starting voltage to the high rated voltage of the fan.  Figure 4-10 

illustrates the relationship between average heat transfer coefficient and voltage 

input to the fan for the fan-heat sink model in Case A and B. It is evident that for 

the voltage less than Vcr, the fan does not rotate, and cooling off the device is 

via natural convection. Once the fan starts rotating, forced convection is the 

dominant means of heat dissipation from heat sink surfaces.  

 

Figure 4-11 (a) and (b) indicate open circuit voltage and power generated by 

TEG modules per area of TEG arrays as a function of heat input into a device 

for case A and B respectively. The circular values indicate the experimental data 

while the lines show the simulated result. It could be observed that for the 

predicted results are in good agreement with experimental data (within 5%). The 

results show that self-cooling starts when the heat input into the device is at 

least 60 W and 90 W for case A and B respectively. 
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Figure 4-9 Fan performance data and system operation curve for case A and B  
 

 

Figure 4-10 Average convection heat transfer coefficient ( hav) as a function of 
voltage 
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At the self-cooling zone, the voltage produced by TEG arrays is at least equal to 

the starting voltage of the fan used in the experiment (Vcr=4.5V). when the fan 

starts to rotate, the internal resistance of the fan suddenly increases from 20 Ω to 

about 72 Ω.  

 

This is marked by the jump in the fan supply voltage and power. Case A 

produces more total array voltage (38%) and power per area of TEG array 

(34%) than case B. This is, due to the presence of more TEGs in the array and 

the position of pair of TEGs in direct heat path in case A. 

 

Figure 4-12a and b show the transient simulation and experimental data of 

voltage produced by array of modules (VT) and temperature difference between 

the device and environment (ΔTde) for Qin=120 W in Case B respectively. The 

numerical simulation has been able to accurately predict both voltage and 

temperature difference within 5 % error margin. In the experiments, the fan 

starts to turn at 5 minutes after the heat input is applied at which instant the 

voltage reaches a value equivalent to Vcr as has been precisely simulated.  

 

After the onset of the forced convection from the fan, the rate of change of 

temperature starts to decrease and the system achieves a steady state after 20 

minutes. The temperature doesn’t show any appreciable change and the self-

cooling has been able to control the temperature effectively. 
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Figure 4-11 a) Total array voltage (V) and Power produced by TEG arrays per 
area of TEG arrays (PTEG/ATEG,a) for a) Case A and b) Case B 
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Figure 4-12 Transient simulation of a) voltage supplied to fan b) temperature 
difference between device and ambient temperature (ΔTde) for Qin=120 W 
in Case A 
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 Figure 4-13 show the transient simulation and experimental data of voltage 

produced by array of modules (VT) and temperature difference between the 

device and environment (ΔTde) for Qin=120 W in Case B respectively. The 

numerical simulation has been able to accurately predict both voltage and 

temperature difference within 5 % error margin. In the experiments, the fan 

starts to turn at 5 minutes after the heat input is applied at which instant the 

voltage reaches a value equivalent to Vcr as has been precisely simulated.  

 

Figure 4-14 present the variation of ΔTde (difference between temperature of 

device and environment) as a function of heat input into the device for case A 

and B. The numerical result has been able to predict the experimental data to 

good accuracy (within 5%).  

 

A sharp drop in temperature is observed at Qin = 60 W and 90 W for case A and 

B respectively due to the onset of self-cooling. In general, although case B 

produces less total array voltage and power per area of TEG, the temperature of 

the device has been able to be reduced as compared to case A.This is due the 

presence of less resistance in direct heat path in case A.  The numerical result 

has been able to capture the phenomenon accurately. 
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Figure 4-13 Temperature distribution Q=120 W a) case A b) case B after 60 
minutes 
 

 

Figure 4-14 Temperature difference between hot and cold side 

of TEG modules (ΔTde) 
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4.4.3. Parametric study using FVM model 

 

 In the following sections, the FVM model is used for parametric study of the 

effects of load resistance, fin height and fin density. 

 

4.4.3.1. Effect of load resistance 

 

The electrical resistance of the fan (RL) affects the amount of power consumed 

by the fan. The effect of RL on PL for case A and B is shown in. Figure 4-15 

.Each TEG module used in the experiments and simulation has an internal 

electrical resistance (RTEG) of 10 Ω. Thus, for case A, the system has maximum 

PL at when RL is equal to 60 Ω which is equivalent to the combined electrical 

resistance of the six TEGs connected in series. This is due to  matched load 

condition which produces maximum power[69]. It can be inferred that PL could 

decrease by as much as 50% when a fan with 10 Ω is used for heat input of 130 

W compared to the maximum point of operation. The fan used in the experiment 

has an internal resistance of 72 Ω producing a power close to the maximum 

possible power. For case B, the four TEGs have a cumulative RTEG of 40 Ω. 

Thus, the system produces 10 % less power when connected to the same fan 

as Case A. It is therefore important to match the electrical resistance of TEG 

arrays with the fan used in self-cooling applications. 
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Figure 4-15 Effect of load electrical resistance (Rel,L) a) case A b) case 
B 
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4.4.3.2. Effect of fin height (Hfin) 

 

Figure 4-16 illustrates the numerical study of the variations of power supplied to 

the fan per area of TEG array (Pfan/ATEG,a), net power generated by TEG array 

(Pnet/ATEG,a) and overall device to environment thermal resistance (Θth,T) as a 

function of height of the fin (Hfin) in the heat sink. As the fin height is increased 

from 20 to 60 mm, the total area of the heat sinks is enlarged by about 167%. 

Thus, the thermal resistance is decreased by almost 50 % due to the availability 

of more area for heat transfer.  

 

 

 

Figure 4-16 Variation of PTEG/ATEG,a and total thermal 
resistance (Θth) as a function of fin height (Hfin) 
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In addition the pumping power decreases slightly due to decreased friction 

losses. The velocity of the air in the channel is decreased resulting in lower 

losses at higher fin heights. Thus, the net power generated by TEG module has 

also slightly risen. 

 

 

 

 

 

 

 

Figure 4-17 Variation of PTEG/ATEG,a and total thermal 
resistance (Θth) as a function of fin density (Hfin) 
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4.4.3.3. Effect of fin density (Nfin) 

 

In Figure 4-17 shows the numerical study of the effect of fin density (nfin) on 

values of pumping power, net power and thermal resistance. As the fin density is 

increased from 0.15 to 0.6, the total area of dissipaters’ increases by around 

240% thereby decreasing the total thermal resistance by 70%.However, as the 

fin density increases, the pressure drops in the dissipater rises requiring more 

power to be supplied to the fan. As a result, the net power produced by TEG 

array also declines as shown in Figure 4-17.  

 

However, the system would still be able to provide self-cooling as long as a 

positive value of Pnet is achieved. Thus, the numerical simulation indicates that a 

more effective dissipater design in terms of increased surface area would make 

self-cooling more applicable for range of heat inputs.   
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5. NUMERICAL SIMULATION OF LIQUID COOLING SYSTEM 

5.1. Introduction 

 

Previous researches on self-cooling systems mainly concentrated on fan based 

self-cooling systems. However, for cooling devices where there is a constraint in 

space or need for strict control of junction temperature, microfluidic system could 

be a better choice than fan based air cooled systems[83]. Micro heat sink based 

on microchannel heat sinks  could remove high heat fluxes as a result of both 

expanded area and higher convection heat transfer coefficient (HTC) [84][85] . 

Nevertheless, fluid flow inside microchannel heat sink systems is associated with 

larger pressure losses and pumping power as compared to macro fluid 

systems[86][87]. Thus, they should be designed to operate at an optimum flow 

rate possible to minimize pumping power while reducing heat transfer resistance 

[88]. Wojitas et al [89] and Rezania et al [19] have demonstrated the design of 

compact and effective microchannel heat sink for TEG applications. The aim of 

their research was to enhance power production from TEG system by using 

microfluidic cooling with an emphasis on power scavenging from micro-devices.  

 

The integrated microchannel-TEG system could also be applied for self-cooling 

of the device from which the energy is being extracted. There are, however, two 

major factors to consider when TEG based self-cooling application system is 

extended from the concept of TEG power enhancement using microfluidic 
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cooling. Firstly, in the experiment [90], the pump power referred to the power 

needed to move the coolant fluid inside the microchannel. Although, this is the 

major power loss in the microchannel heat sink based systems, there are also 

pressure losses in the fluid conduits and secondary heat sink. Therefore, the 

pump power should consider this effects if the system is to be self- sustaining.  

 

Secondly, for self-cooling application, the junction temperature at the heat source 

power device is critical For instance, the power consumption for intel based 

microprocessors follow Moors law [91] and with increasing heat flux the control of 

operating temperature is of paramount importance and usually has to be kept at 

the certain threshold level as specified by industrial standards. However, the 

need for heat management system could be extended to other parts of electronic 

devices such as memory chips, Integrated circuits (ICs), power converters and 

switches. Thus, the requirement for allowable maximum junction temperature (Tj) 

is one of the factors that determine the appropriate ranges of flow rates and heat 

flux at a power device. For this study, the heat management strategy target is set 

at maintaining the maximum junction temperature at or below 85 ºC. 

 

In this section, the use liquid microchannel for self-cooling of electronic devices is 

proposed. A numerical model consisting of an integrated microchannel heat sink 

and TEG module (Figure 5-1) has been made to study the power generated by 

the TEG module and the power requirement for moving coolant fluid for range of 

heat flux input. The model has been validated against existing literature on power 
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generation and coolant pumping power. The feasibility of self-cooling in terms of 

net power and control of the junction temperature of heat source device is 

investigated. 

 

 

 

 

5.2. Governing equations 

 

A TEG module generates electric potential (Vsb) when a temperature difference 

is maintained between the hot and cold sides of the TEG and its magnitude is 

proportional to the difference in Seebeck coefficient (α) of the two pairs of TEG 

elements. The pairs of the TEG elements are designated as p and n elements. 

The power generated from TEG module can be expressed as Eq.5.2.1: 

+ 

Secondary Heat sink 

Microchannel 

             Heat sink 

 TEG - 

      Pump 

   

Spreader 

Figure 5-1. A schematic diagram of a microchannel heat sink 
based self-cooling system 

Heat generating device 



161 
  

 

 pe
mepe

cshsnppn
eqsbgen R

RR
TTn

RVP ,
2

,,

]
))((2

[
+

−−
==

αα
 5.2.1 

 

where Ths and Tcs are the cold and hot side temperature of the TEG module, αP 

and αN are the Seebeck coefficients of the p and n elements respectively and npn 

is the number of p and n elements in a TEG module and Req, Rep, and Re, m are 

the equivalent total electrical resistance, external electric resistance (pump) and 

the internal TEG module electric resistance respectively. The electrical 

resistance model consisting of electrical resistances inside TEG module and the 

load is depicted in Figure 5-2a. 

 

The pumping power required to circulate the cooling medium is given as: 

 

 Tpump PVP ∆=   5.2.2 

 

where �̇�𝑉the volumetric flow rate and ΔPT is the total pressure loss in the system. 

 

The flow inside microchannel heat sink with an inlet and outlet plenum has 

sudden expansion from inlet port to the inlet plenum and sudden contraction from 

outlet plenum to the outlet port. There is pressure loss associated with the flow 

inside the microchannels. The change of cross-section from inlet plenum into the 

microchannels and from the microchannels to the outlet plenum also results in 

pressure losses. In addition, there are pressure losses in fluid conduits, losses 
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associated with internal hydraulic resistance in the pump and air-side secondary 

heat sink. 

 

A single phase flow could be divided into two regions of fluid flow regime. At the 

inlet condition, the fluid has a developing velocity boundary layer up to the region 

where the wall effects are dominating resulting in fully developed velocity profile. 

For laminar flow, the hydrodynamic entrance length, Lent, can be formulated as: 

 

 hDent DL Re05.0=  5.2.3 

 

where Dh is the hydraulic diameter of channel and ReD is Reynolds number 

based on hydraulic diameter. The pressure drop at the developing region ΔPent   

is given by the Blasius solution: 
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where ρf and μf are the density and dynamic viscosity of the fluid and Lmin is the 

minimum of Lent or L (full length of the channel) and Uav is the average velocity. 

For fully developed flow, pressure drop for a flow inside a channel is given by the 

equation: 
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where f is the fanning friction factor. The equivalent hydraulic resistances are 

given in Figure 5-2b and described in Eq.5.2.6. 

 

 xhymfhychyphyThy RRRRR ,,,,, +++=  5.2.6 

 
where ΔPT is the total pressure head. The equivalent total hydraulic resistance 

Rhy,T in Eq.5.2.6) is the sum of the hydraulic resistances inside the pump (Rhy,p), 

the fluid conduits (Rhy,c), inside the microchannel fins (Rhy,mf) and the air-side 

hydraulic resistance (Rhy,x). The net power in the system, Pnet is the difference 

between the power generated by TEG module (Pgen) and the pumping power 

(Ppump) as expressed in Eq.5.2.7: 

 

 pumpgennet PPP −=  5.2.7 

 

For a viable self-cooling application, Pnet must be positive so that no external 

power is necessary to run the cooling system. The performance of self-cooling 

system could also be described in a thermal model using the total junction to 

ambient thermal resistance between the heat source and the ambient, RΘ-a: 

 

 
Q

TT aj
a

−
=,ΘΘ  5.2.8 
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where Tj and Ta are the junction and ambient temperatures. The junction to 

ambient thermal resistance, Θ-ja is the sum of all thermal resistances between 

the junction temperature of the heat source electronic device and the ambient air 

as described in Figure 5-2c and Eq.5.2.9: 

 

 afxMsjcja ΘΘΘΘΘΘΘ +++++=  5.2.9 

 

where Θ jc, Θs, ΘM, Θx, Θf, Θa are the thermal resistance in the electronic device, 

thermal spreader, TEG module, heat sink, fluid and ambient air respectively. 

 

5.3. Numerical parameters and modeling 

 

Figure 5-3 shows the main modeling configurations used in the current numerical 

study. The first configuration in Figure 5-3b which is based on the experiment by 

[90] is used to validate the numerical model and model Figure 5-3c is for later 

analysis of application of self-cooling. 

 

As shown in the schematics of the self-cooling system, Figure 5-1 and numerical 

model (Figure 5-3c and d), a microchannel heat sink is used to cool an electronic 

device. TEG module is assembled between the microchannel heat sink and the 

device and provides the electrical energy to run a pump. A spreader is utilized to 

conduct heat from a heat source to the hot side of the TEG module.  
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The following assumptions were made to simplify the modeling of the system and 

focus on the important system parameters: 

 

(1) Fluid flow is laminar and the fluid is single phase liquid water 

(2) Three dimensional and steady state heat transfer and fluid flow 

Figure 5-2 Equivalent a) Electrical resistance model of TEG and Pump      
b) hydraulic resistance model c) thermal resistance model 
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(3) Temperature independent properties in heat generating device, TEG, 

microchannel heat sink and fluid 

(4) Uniform heat generation in the heat generating device 

(5) All surfaces exposed to the surroundings are insulated 

 

For numerical modeling, the governing equations for three dimensional, forced 

steady state incompressible fluid flow and heat transfer in electronic device, 

thermal spreader, microchannel fins and water subdomain are solved. The 

equations for continuity, momentum and energy equations for the fluid (water) 

can be written as: 

Continuity equation: 
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where u, v and w are the fluid velocity components in x, y and z directions 

respectively. 

 

Momentum equations in x, y and z coordinate: 
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where P is the pressure field 

 

Energy equation  
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The energy equation for solid subdomains (device, thermal spreader, 

microchannel fins) can be written as: 

 

 02 =∇ T  5.3.6 

 

In the experimental work by [90], a microchannel with twenty rectangular cross-

section was fabricated. In their study, a coolant flow rate with Reynolds number 

(Re) between 63 and 1473 is circulated inside a microchannel using an external 

pump. The pressure drop across the microchannel heat sink, and the 

temperature variation of the heat sink and TEG were also recorded.  

 

For the numerical modeling validation with [90] in model Figure 5-3b, a heat flux 

boundary condition is applied at the bottom of the heat sink to represent a heat 

generating device. The heat flux at the base of the microchannel heat sink is 

varied equivalent to ΔTteg (temperature difference between the hot and cold sides 
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of the TEG) of 10 K, 20 K, 40 K, 60 K and 80 K respectively. The coolant flow 

rate is specified using a uniform velocity inlet condition at the inlet port of the 

microchannel and a pressure outlet condition at the outlet port. The inlet velocity 

at the inlet port is varied from 0.059 to 1.27 m/s corresponding to flow rate of 

0.07 to 1.5 l/min. The fluid inlet temperature was also specified at the inlet port. 

Adiabatic boundary conditions were applied to the microchannel outside walls. 

 

To investigate the application of self-cooling to microprocessor and similar 

electronic devices in model (Figure 5-3c and d), the size of the microchip die is 

set at a foot print area of 15 × 15 mm2 and 0.5 mm thickness. A uniform 

volumetric heat generation is assumed in a microchip device and the heat flux 

from the chip to the cold heat sink is varied from 15-35 W/cm2. The coolant flow 

rate has bounds from 0.007 l/min to the maximum of 2 l/min which corresponds 

to Reynolds number from 69 to 1988. Thus, the flow remains in laminar region for 

the whole range of flow rates modeled. As the size of the microchip is less than 

the TEG module/heat sink assembly, a copper spreader is used. The interior 

walls between the heat sink, TEG and the heat generating device are set as 

coupled walls. 
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The major geometrical and simulation parameters are summarized in  

 

c) Self-cooling numerical b) Validation model (Rezania et al, 
7 
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Side view A-A of Computational model  
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d) Side view B-B of self-cooling 

a) Top view of the system set up 

Figure 5-3. Computational model parts and 
configurations  
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The Aluminum heat sink and microchip device have ks=202.4 W/m.K and 137 

W/m.K respectively. Numerical simulations were conducted using the commercial 

Finite volume method (FVM) CFD software ANSYS Fluent ®(Version 14.5)[80]. A 

Table 5-1 Geometrical and modeling input parameter 
 

TEG footprint 56 × 56 mm2 

 
 

TEG thickness, tteg 
4.8 mm 

Microchannel footprint 
76 × 56 mm2 

Fin height, Hfin 1.4 mm 

Fin thickness, tfin 0.7 mm 

Fin base thickness, tfb 1 mm 

Channel width, Wch 1.4 mm 

Fluid density (water) 998 kg/m3 

Inlet  flow rate 0.059-1.5 l/min 

Fluid temperature 300 K 

Numerical model B 
 

Microchip footprint 15 × 15 mm2 

Microchip thickness, tm 0.5 mm 

Spreader foot print 56 × 56 mm2 

Spreader thickness, tsp 1 mm 
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second order upwind scheme was used to convert governing equations of 

momentum and energy to algebraic models by integration of the governing 

equation and discretizing the applicable formulas based on the conservation of 

the quantities on the control volume. The Semi Implicit Method for Pressure 

Linked Equations (SIMPLE) algorithm was used for pressure-velocity coupling. 

The convergence criteria for scaled residuals were 10-4 for continuity and velocity 

balance and 10-6 for energy balance. 

 

 

5.4. Results and discussion 

5.4.1. Grid dependence study 

Computational model of structured hexahedral grids of 93325, 265776, and 

700149 elements designated as grid 1, 2 and 3 respectively were generated for 

grid dependence study (Figure 5-4a). The variation of temperature along the 

length of micro channel and the total energy conservation of the system were 

compared between the different grid sizes.  

A dimensionless channel length ratio (DCL) (Eq.5.4.1) is defined to represent 

temperature distribution along the length of channel #6. The channels have been 

designated from number 1 to 10 for half part of the microchannel heat sink 

starting from left side as shown in Figure 5-4b. 
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ch

l

L
xDCL =  5.4.1 

 

where xl is the length along the channel and Lch is the total length of the channel. 

 

 

The simulation result for the variation of temperature along the length of channel 

for coolant flow rate of 0.076 l/min and ΔTteg=10 K is reveled in Figure 5-5.  

It shows that the maximum variation of temperature between the three grid sizes 

is less than 0.06% for channel # 6 indicating that the solution is grid independent 

for the grid sizes tested. For the total energy balance, the comparison between 

 Symmetry 

Figure 5-4. a) Computational grid b) Channel designation for 
half part of the microchannel heat sink 

 1            2               3              4             5               6              7              8               9          10 
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heat applied at the heat sink and the heat absorbed by the coolant fluid was 

made using Eq.5.4.2. The relative error in energy balance ΔQ% is defined as: 

 100% ×
×′′−

=∆
flow

hshsflow

Q
AqQ

Q  5.4.2 

 

where the heat absorbed by the coolant fluid, Qflow is given by: 

 avchpfflow TcVQ ,∆= ρ  5.4.3 

where ΔTch,av is the average temperature difference between the inlet port and 

outlet port of the microchannel heat sink. As indicated in Table 5-2, the relative 

error is not more than 3.79% for grid 2 and the accuracy changed only by 0.5 % 

for grid 1. Thus grid 2 with element size of 265776 is adopted throughout the 

simulation. 

 

 

Mesh 1 Mesh 2 Mesh3
0.075 4.23 4.13 4.70

0.5 5.37 5.29 9.00
1 1.22 1.34 2.43

1.5 4.21 4.38 10.10
3.77 3.79 6.56Average

[l/min]

100×
×′′−

flow

hshsflow

Q
AqQ

V

Table 5-2 Comparison between heat applied to the heat sink 
and heat absorbed by the fluid for different grid sizes for 
ΔTteg = 40°C 
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Figure 5-5. The variation of temperature as a function of DCL for channel #6 

 

 

5.4.2. Comparison with experimental data 

 

The numerical model has been validated against the experimental data (Rezania 

et al[90]) by comparing pressure and temperature fields. The schematic of the 

validation model is depicted in Figure 5-3b. The pressure drop across the 

microchannel was modeled for coolant flow rates in the range of 0.07 and 1.5 

l/min. The numerical model revealed a variation of pressure drop with channel 

location due to the differing flow field in the channels. For the U-type 
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configuration of inlet/outlet (I/O) ports, more pressure drop on the microchannels 

was also recorded in the experiments in the microchannels close to the heat sink 

than in the middle of the heat sink. On their numerical study of the effect of I/O 

arrangement on heat sink performance, Chein and Chen [92], have also 

observed similar effect. Channel #2 which is close to the heat sink side had the 

on average more pressure drop (close to 1.55 kPa) as compared to channel #10 

(0.77 kPa) for the flow rate between 0.07 and 1.5 l/min.  

 

As Figure 5-6 shows, the average pressure loss has been predicted well by the 

numerical model as compared to the experimental results [90]. At higher volume 

flow rate, the deviation between numerical results and experimental data was 

more (7.6%) as compared to the lower flow rates. This could be due to an 

exponential surge in pressure drop reported for the experimental data for channel 

#2 at high flow rates. 

 

The change of temperature in the coolant flow for different heat fluxes was also 

modeled and compared with experimental data as shown in Figure 5-7. There is 

generally a good correspondence between simulation and experimental results 

for all the flow rates and temperature differences across TEG (ΔTteg). The coolant 

fluid temperature demonstrated little variation with flow rate for lower ΔTteg. This 

is due to a higher impact of thermal resistance of the heat sink on coolant 

temperature at higher ΔTteg  as has been reported by Wojitas et al [89]and 

Rezania et al [90]. 
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Figure 5-6.  Average pressure loss (ΔPav) for the microchannel as a 
function of coolant flow rate 

Figure 5-7. Comparison between numerical modelling and 
experimental data for the coolant temperature difference in channel 
#6 between the inlet and outlet port as a function of cooling flow rate 
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The numerical model has slightly underestimated the change in coolant flow 

temperature for lower flow rates and ΔTteg > 40 K as compared to the 

experimental data. Nevertheless, at lower coolant flow rates and higher heat 

fluxes, the coolant flow temperature rises at higher rates and the trend has been 

well simulated by the numerical model. 

 

The net power of the system which is the difference between power generated by 

the TEG module and the pumping power requirement has been compared 

between numerical and experimental results. The numerical model has predicted 

the net power to a very good accuracy as could be observed from Fig 5-6 to 5-8. 

The raise in coolant flow rate results in lowered temperature at the cold end of 

the TEG module increasing the power generation rate. However, the pumping 

power also rises with increased coolant flow rate. 

 

The net power is negative for higher flow rates and lower heat flux (or lower 

ΔTteg) which means the system produces less power from the TEG module than 

it consumes for pumping the coolant fluid. This is due to the combined effect of 

increased pumping power at higher flow rates and drop in ΔTteg as a result of low 

hot side temperature.  

 

On the other hand, low flow rates at high temperature also tend to decrease the 

net power owing to higher thermal resistance of the heat sink. Interestingly and 

as has been pointed out by [90], there is an optimum flow rate which maximizes 
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the net power for a certain ΔTteg. It can be inferred that a flow rate of 0.5 l/min 

maximizes the net power for the range of flow rate and ΔTteg simulated and 

compared with experimental data. 

 

 

 

 

Figure 5-8. The variation of net power with coolant flow rate 
for different ΔTteg 
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As expected, a higher temperature difference results in increased net power for a 

certain coolant flow rate as the TEG generated power is directly proportional to 

the temperature difference across the TEG, 

 

5.4.3. Self-cooling application 

 

The variation of TEG power, pumping power and net power with coolant flow rate 

has been investigated and the results are shown in Figure. 5-9 for heat flux of 20 

W/cm2. The heat dissipation rate increases with elevated flow rate which could 

potentially result in lower cold side temperature at the TEG and hence higher 

ΔTteg. For a rise in flow rate from 0.07 l/min to 0.05 l/min, a 12% hike in ΔTteg is 

observed. However, from 0.05 l/min to 1 l/min, the rate of increase of ΔTteg was 

down to only 3%. Similarly, TEG power increased by only 7% as the flow rate is 

augmented from 0.5 l/min to 1 l/min which is less than (26% rise) as compared to 

for a change in flow rate from 0.07 l/min to 0.5 l/min. On the other hand, fluid 

pumping power shows an exponential relation with coolant flow rate. The fluid 

pumping power could go up by as much as 200% for 0.5 l/min increase from 1 

l/min. Thus, as indicated by Figure. 5-9, the net power from the system grew to 

the maximum value as the flow rate was raised from 0.07 l/min to 0.5 l/min during 

which the rate of increase of TEG power was more than the pumping power. But 

after reaching a maximum value at 0.5 l/min, the net power fell exponentially and 

even achieving negative value at elevated flow rate of 2 l/min. From self-cooling 

point of view, special consideration must be given to the optimum value of flow 
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rate which results in the maximum net positive power. It is also of interest to 

analyze rate of increase of net power with a rise in heat flux from the heat source 

device.  

 

As indicated in Figure 5-10a, the net power from the system increases with the 

heat flux from the device for a given coolant flow rate. With a constant thermal 

resistance at the heat sink, the hot side temperature of the TEG rises with an 

increased heat flux resulting in higher power generation. 

 

 

Figure. 5-9. Maximum generated power (Pgen), pumping power (Ppump) and net 
power (Pnet) for 𝒒𝒒"=20 W/cm2 
 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

Cooling flow rate [l/min]

P
[W

]

Pnet

Ppump

Pgen



181 
  

Figure 5-10b shows that the junction temperature has not been greatly affected 

by the coolant flow rate. In this study, it is calculated that the heat sink thermal 

resistance is only around 10% of the total thermal resistance and only changes 

by around 15% for an increment of cooling flow rate from 0.5 l/min to 2 l/min 

(Figure. 5-11). 

 

Wojitas et al[89] and Rezania and Rosendhal[93] also noted that the relatively 

low thermal resistance at the microchannel heat sink compared to the total 

thermal resistance could be the reason for the minimal effect of the coolant flow 

rate on the hot side temperature of TEG module.  

 

Nevertheless, an increased flow rate entails a surge in pumping power .It could 

be inferred from Figure 5-10 a and b  that for heat flux 15 W/cm2 and  20 W/cm2, 

the junction temperature has been kept below 85 °C for flow rate between 0.5 

l/min to 2 l/min. But for the lower heat flux of 15 W/cm2, the net power is not 

enough for self-cooling application due to more pumping power requirement than 

the TEG generated power. 
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Figure 5-10. Variation of net power and junction temperature with heat flux 
and cooling flow rates 
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Figure. 5-11. Variation of thermal and hydraulic resistance with cooling flow rate 
 

The system, however, could potentially be self-cooling for heat flux and flow rate 

range of 15 W/cm2 to 20 W/cm2 and 0.075 to 1 l/min respectively. The maximum 

net power for junction temperature of less than 85 °C is achieved at 0.5 l/min. 

The performance of self-cooling system is also modeled by comparing its 

performance with commercially available micro pumps. A Micro centrifugal liquid 

pump ( Model M400S  from TCS Micropumps Ltd )was selected for the 

comparison and the performance data was extracted from the manufacturer 

provided data sheet[94]. As could be inferred from Figure. 5-12, the pressure 

loss for the modeled flow rate is significantly less than the pressure difference 

that could be provided by the pump.  
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Figure. 5-12. Comparison of modeled Pressure flow characteristic and power 
requirement with commercial micropump 
 

 

Thus, the pump could easily furnish the necessary pressure to move the coolant 

through the cold heat sink. For the power requirement by the pump, the TEG 

module can provide enough power up to flow rate of 1.2 l/min for the type of 

pump modeled. Thus, self-cooling has a potential for providing power to cool 

devices at an optimum junction temperature provided that a proper matching of 

cooling flow rate is made to the heat flux from the heat source electronic device. 
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6. DYNAMIC MODELING AND ANALYSIS OF SELF-COOLING SYSTEM  

6.1. Introduction 

 

In this section, a compact one-dimensional dynamic model of self-cooling system 

is developed. The model is constructed by representing the system using thermal 

elements of thermal resistance and capacitance. In the first stage, each body is 

depicted using its equivalent thermal capacitance and temperature. The model is 

then modified by using segmented sub-bodies to represent each body thereby 

improving the accuracy of the model. The model is then implemented in 

MATLAB/Simulink software and the results are compared against experimental 

and three dimensional numerical models. 

 

The main types of modeling thermoelectric generation could be divided into two 

major types. The first type is design model which constitutes a complete or partial 

representation of the geometry of the physical model. The second type is a 

dynamic model which represents the whole system in terms of electrical 

equivalent model. The model for the first type of modeling strategy has already 

been shown in previous chapters. In this chapter, a dynamic model for 

thermoelectric generation based self-cooling system is developed. The model 

has thermal and electrical subparts. The thermal model is represented using 

thermal elements. The two most important passive thermal elements which could 

be used to depict the dynamic behavior of thermal systems are thermal 

 



186 
  

capacitance and thermal resistance. Both thermal elements are normally 

associated with spatially distributed systems but could also be used to describe 

dynamic behavior in thermal systems using the lumped model approach.  

 

6.1.1. Thermal capacitance 

 

For a system which does not exhibit change of phase and within a reasonable 

range of temperature, the net heat flow into a body at time t is given as: 

 

 )()()( tqtqtq outinnet −=  6.1.1 

 

While the net heat supplied to the body from time t0 is: 
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Assuming that the temperature change in a body without a phase change is 

directly proportional to the heat supplied to the body in time range λ, the 

proportionally constant is given by thermal capacitance C  

 

 ∫ −

−
=

1

0

))()((

)()( 0
t

t
outin dqq

tTtT
C

λλλ
 

6.1.3 

where the unit of C is J/K. 
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Rearranging the terms and differentiating Eq. 6.1.3, the rate of temperature 

change (�̇�𝜃 ) is expressed as function of the instantaneous net heat into the body 

by: 

 

 [ ])()(1 tqtq
C outin −=θ  6.1.4 

 

6.1.2. Thermal resistance 

 

For a heat flow from one point to another point in a body, the heat flow q(t) could 

be described by the temperature change between the two point and thermal 

resistance in the path between the points as: 

 

 [ ])()(1)( 21 tTtTtq −=
Θ

 6.1.5 

 

Where R has a unit of (K/W) 

 

6.1.3. Thermal sources 

 

A thermal source could be termed as heat source or sink depending on whether 

the thermal source adds or removes heat from a body respectively. 
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6.2. Electric circuit analogy for lumped body analysis 

 

In a lumped body thermal analysis, the thermal properties of body are assumed 

to be represented by a single value. This type of approximation is more 

applicable when the conduction of heat inside the body (high thermal 

conductivity) is of higher magnitude or faster as compared to heat loss from the 

body. The Biot number (Bi) which is defined as the ratio of conductive heat 

resistance to the convective heat resistance across the body boundaries is 

usually utilized to analyze if the lumped body approximation is valid. Usually a 

body or part of a body with Biot number less than 0.1 can be approximated with 

lumped body analysis. 

 

6.2.1. Heat source device 

 

The three dimensional heat equation inside the heat source device in Cartesian 

coordinate could be given by: 

 

 inzyx q
dz

TddA
dy

TddA
dx

TddAk
dt
dTdmC +








++= 2

2

2

2

2

2

 6.2.1 

 

The equation could be simplified by representing the direction which is in contact 

with the TEG module using conduction resistance and surfaces exposed to the 

atmosphere by convection resistance. 
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For the body represented by Figure. 6-1, the following assumptions could be 

made. 

 

a) The temperature of the device is represented by Td which is the average 

temperature of the device 

 

b) The body is connected to the hot side of TEG one side where conduction 

heat transfer takes place and the equation for conduction in x-direction is 

given by: 

 

 2

2

dx
TdkdAq xx =  6.2.2 

 

 

c) The lateral sides exposed to the ambient air at Tenv and heat is lost 

convectively to the surrounding environment 

            

 )(2

2

envyxy TThA
dy

TdkdAq −==  6.2.3 
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 )(2

2

envzzz TThA
dz

TdkdAq −==  6.2.4 

 

 

 

Based on the assumptions made above, an equivalent thermal circuit diagram 

based on electrical circuit analogy could be made as shown in Figure. 6-2.  

 

Figure. 6-1 heat transfer in heat source 
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Figure. 6-2 Electrical circuit analogy of heated device 
 

The heat input to the device is given as qin. The change of internal energy, dU/dt  

can be represented by using heat capacity Cd which is expressed as 

 
d

net
d

q
C

θ
=  6.2.5 

where  �̇�𝜃𝑒𝑒  is the rate of temperature change and qnet the instantaneous net heat 

inside the device. 

 

The convection thermal resistance on the sides exposed to the ambient air is 

given by: 

 

 
L

conv hA
1

=Θ  6.2.6 
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Where AL is the total area of lateral sides exposed to the atmosphere. 

As the average temperature of the device, Td is considered to act the center of 

the device, the conduction thermal resistance is divided into two equal parts, 

𝛩𝛩𝑒𝑒
1/2 , each representing half part of the device. 

 

The conduction thermal resistance is given as: 

 
dd

d
d Ak

L 2/1
2/1 =Θ  6.2.7 

 

Where 𝐿𝐿𝑒𝑒
1/2 and Ad is the length of half part of the device in the direction and area 

of TEG module respectively and are in the direction where the device conducts 

heat to the TEG module. The heat conducted to the TEG module is given as 

qcond. 

 

6.2.2. Thermoelectric module (lumped model) 

 

A thermoelectric module consists of number of TEG modules connected in 

series by copper solder and contained between thermally conductive and 

electrically insulated ceramic plates. The simulation of numerous P-N pairs inside 

each module in an array would result in high computational complexity in terms 

of grid size as well as computational time [81]. Thus, the TEG module is modeled 

as TEG cuboid consisting of three parts as shown in Figure. 6-3. The first part 
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represents P and N semiconductor pellets with an air gap and copper 

conductors. The second and third parts are the top and bottom ceramic plates. 

 

 

 

 

 

The electrical circuit analogy of the TEG module has also three parts. The first 

part represents the bottom ceramic plate (Figure. 6-4) which is in contact with the 

heat source device. As the average temperature of the bottom ceramic plate, Ths 

is considered to act the center of the ceramic. It also represents the hot side 

temperature of the TEG module. The conduction thermal resistance is divided 

into two equal parts, 𝛩𝛩𝑐𝑐𝑒𝑒𝑐𝑐
1/2 , each representing half part of the ceramic plate. 

 

 

Figure. 6-3 TEG module compact model 
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Figure. 6-4 Electrical circuit analogy of bottom ceramic plate 
 

The conduction thermal resistance is given as: 

 

 
cercer

cer
cer Ak

L 2/1
2/1 =Θ  6.2.8 

 

where 𝐿𝐿𝑐𝑐𝑒𝑒𝑐𝑐
1/2  and Acer is the length of half part of the ceramic plate in the direction 

and area of TEG module respectively and are in the direction where the ceramic 

plate conducts heat to the TEG module containing the P-N pellets and 

conductors. The heat conducted to the TEG module is given as qh. 

 

For a typical TEG module of area 40 𝑚𝑚𝑚𝑚 × 40 𝑚𝑚𝑚𝑚 × 0.77 𝑚𝑚𝑚𝑚 , the lateral area 

is much smaller than the area of the two ends, thus convection heat transfer from 

lateral sides is considered to be negligible. The heat capacity of the ceramic plate 

is given as Ccer. A thermoelectric module consists of number of thermoelectric 

pairs connected in series by copper solder and contained between thermally 
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conductive and electrically insulated ceramic plates. The simulation of hundreds 

of P-N pairs and copper solders inside each module in an array would result in 

very high computational complexity. Thus, the elements are all aggregated into 

TEG cuboid and thermal properties for the aggregated cuboid could be derived. 

Chen and Snyder [81] described a method to extract key parameters from 

manufactures datasheets. They showed that the compact model has good 

accuracy as compared to three dimensional full resolutions.  

 

The heat transfer inside the TEG modules at the hot side could be described as: 
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And at the cold side of the modules: 
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where αm is the Seebeck coefficient for a TEG module. The first terms in Eq.6.2.9    

ITh,jαm and  Eq.  6.2.10 ITc,jαm are the Peltier heat terms at the hot side and cold 

side of TEG module respectively.  They are represented by qph and qpc in Figure 

6-5. 



196 
  

 

 
Figure. 6-5 Electrical circuit analogy of TEG module (P-N pellets and conductor) 
 

 

Second term in both equations is the conduction heat terms and the last term 

represent Joule heating inside the modules which is indicated by qj in Figure 6-5. 

The manufactures data sheet provides the hot side (Ths) and cold side (Tcs) 

temperature of the TEG module for a given qh and the resulting current (IL) when 

TEG module is connected to a load with matching electrical resistance.  

 

The Seebeck coefficient can be determined using the relation: 
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Where the value of open circuit voltage for a given Ths and Tcs is provided in the 

datasheets. Thus, the total conduction thermal resistance of TEG module 

including the ceramic plates could be found using the relation:  
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The total conduction thermal resistance consists of the top and bottom ceramic 

plates in addition to the thermoelectric cuboid containing P-N pellets and copper 

solder which are connected in series thermally. Thus, the thermal resistance of 

thermoelectric cuboid is given by: 

 

 cerTTEGteg ΘΘΘ *2, −=  6.2.13 

 

The equivalent conduction thermal coefficient kteg could also be defined as: 

 

 
tegteg

teg
teg A

L
k

Θ
=  6.2.14 

 

The conduction thermal resistance is given as: 
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Where 𝐿𝐿𝑡𝑡𝑒𝑒𝑡𝑡
1/2  and Ateg is the length of half part of the ceramic plate in the direction 

and area of TEG module respectively and are in the direction where the ceramic 

plate conducts heat to the TEG module containing the P-N pellets and 

conductors. The heat conducted to the TEG module is given as qh. 

 

 

 

 

 

 

 

 

 

 

 

The top ceramic plate (Figure. 6-6) has an average temperature of Tcs and 

conducts the heat to the cold heat sink. The equation and parameters are 

equivalent to the bottom ceramic plate. 

  

6.2.3. Cold side heat sink 

 

Cold side heat sink removes the heat from the cold side of the TEG module into 

the surrounding environment. It consists of number of fins (microchannels) in 

Figure. 6-6  Electrical circuit analogy of top ceramic plate 
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different of arrangement and geometries. It could also be represented by an 

equivalent conduction thermal resistance from base to tip (Θx) and convective 

thermal resistance of Θconv. The average temperature of the heat sink is given by 

Tx. The electrical circuit analogy for cold side heat sink is depicted in Figure. 6-7. 

 

6.2.4. Discretization of model 

 

The dynamic model is developed by discretizing the system in space and time. 

Each body is discretized into Ω parts. The value of Ω for each body could be 

made variable depending on the computational resources and the amount of 

resolution required in each body making the whole system. The volume of each 

discretized part could be calculated by: 

 

 
Ω

∆
ALVx =  6.2.16 

 

Where A is the frontal area on the heat path and L is the total length of the body. 
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6.2.5. Heat source device 

 

The heat source device (Figure. 6-8) is discretized into n equal parts with 

temperatures of T(j)d and thermal capacity C(j)d for 0 ≤ 𝑗𝑗 ≤ 𝑛𝑛 . Each part has a 

pair of conduction thermal resistances, 𝛩𝛩(𝑗𝑗)𝑒𝑒
1/2 interacting with neighboring parts 

of the body. In addition, every part has convection thermal resistance, Θ(j)conv to 

represent heat loss the surrounding atmosphere through lateral sides. For total 

length of Ld, each part has a length of Ld/n and equal area of Ad. The body has 

heat input (qin) and conducts heat (qcond) to the bottom ceramic plate side of TEG 

module. 

 

Figure. 6-7 Electrical circuit analogy of cold side heat sink 
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Figure. 6-8 Discretized form of heat source device 
 

6.2.6. Bottom ceramic plate of TEG module 

Heat is conducted (qcond) to the bottom ceramic plate from the heat source 

device. For the total ceramic length Lcer, the body is divided into Lcer/n parts. Each 

part ( 

Figure. 6-9) has a temperature of T(j)cer  and the temperature of the part 

neighboring the device has a temperature of T(0)cer=Ths.  
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Figure. 6-9 Discretized form of bottom ceramic plate 

 

6.2.7. TEG cuboid (P-N pellets and conductor) 

The bottom side of ceramic plate conducts heat to the side of TEG cuboid 

representing P-N pellets and conductors. On the hot side of TEG cuboid (Figure. 

6-10), a planar heat term of Peltier heat (qph) is applied. Each part of TEG cuboid 

has a temperature of T(j)teg and a volumetric heat generation term of qJ/n 

representing Joule heating. 
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Figure. 6-10 Discretized form of TEG module (P-N pellets and conductor) 
 

 

6.2.8. Top ceramic plate of TEG module 

 

As Figure. 6-11 indicates, the discretization of top insulation plate of TEG module 

is equivalent to bottom plate. The TEG cuboid conducts heat into the top ceramic 

plate which in turn transmits the heat to the bottom side of the cold side heat 

sink. The temperature of the part neighboring the cold side heat sink has a 

temperature of T(n)cer=Tcs. 

 

6.2.9. Cold side heat sink 

 

After the cold side heat sink is represented by equivalent body with conduction 

and convection terms, it could then be divided into n parts to account for 

temperature variation along the length of the heat sink (Figure. 6-12). The cold 

side heat sink convects the heat to the surrounding environment via convection 

heat transfer. The convection resistance term is represented by qconv,x. 
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Figure. 6-11 Discretized form of top ceramic plate 
 

 

 

Figure. 6-12 Discretized form of cold side heat sink 
 

6.3. Modeling electrical system of TEG module 

The basic modeling of TEG module entails determining the hot and cold side 

temperature of TEG module as inputs to the model (Figure. 6-13). Thus the TEG 

electrical model is coupled with the thermal model to derive temperature of the 

TEG module at every time step/iteration. The electrical model has voltage and 
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current as an output. The heat terms   (Peltier, Joule and Thomson) are functions 

of current which calls for the electrical output to be coupled with the thermal 

model.  

 

For an array of TEG modules connected in series to a load, total voltage at any 

given instant t, VT (t) and the current in the array, I(t) are given as: 
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Figure. 6-13Coupling of electrical and thermal model 
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where Nm is the number of modules in an array and α(t) and R(t)e,TEG are the 

Seebeck coefficient and electrical resistance of TEG module at an instant t 

respectively. Different methodologies can be employed to determine the 

properties of TEG module like Seebeck coefficient, thermal and electrical 

resistance.  

 

The first method to determine the properties of the module is by aggregating the 

properties of P-N legs.  

 

The Seebeck coefficient for a module ( αm) could be calculated as: 

 

 )(, npnpm n ααα −=
 6.3.3 

where np,n is the number of thermoelectric pairs in the module and αp and αn are 

the Seebeck coefficient of the P-doped and N-doped legs respectively.  

 

The thermal resistance for thermoelectric P-type leg (Θth,P) and N-type leg(Θth,n) 

is given as: 
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Where Lp, Ln, Ap, An, kp, kn are the lengths, cross-sectional areas and thermal 

conductivity of the P-type and N-type legs respectively. 

 

As a module consists of the legs connected in parallel thermally, the total 

electrical resistance of a module from the legs is given as: 
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As there are also air gaps between the legs, the thermal resistance from air gaps 

can be approximated as: 
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Where La,av and ka are the average length of air gap and thermal conductivity of 

air and the area of the total air gap in a module Aa can be expressed as: 

 

 )(, npnpma AAnAA +−=
 6.3.8 

where Am is the total area of TEG module and 
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As the P-Type and N-type elements and the air gap are connected in parallel 

thermally (Figure. 6-14), the total thermal resistance for a TEG module (Θth,TEG) 

can be calculated as: 
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The electrical resistance for thermoelectric P-type leg (Rel,P) and N-type leg(Rel,n) 

is given as: 
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Figure. 6-14 P and N type legs with air gap 
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where Lp, Ln, Ap, An, σp, σn are the lengths, cross-sectional areas and electrical 

conductivity of the P-type and N-type legs respectively. 

For the copper conductors, the electrical resistance is given as: 

Top conductor: 
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Bottom conductors (pair of bottom legs): 
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As the P and N-type legs and conductor are connected in series electrically, the 

total electrical resistance for a module Rel,TEG is given as: 

 

 )( _,_,,,,, BcuelTcuelnelpelnpTEGel RRRRnR +++=
 6.3.14 

 

Second method is deriving the parameters from manufactures data sheet. TEG 

module manufactures provide some data that described the performance of the 

modules. It basically involves the hot side (Ths) and cold side temperature (Tcs) 
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and open circuit voltage (Voc) for the test conditions. Thus, the Seebeck 

coefficient can be found using: 
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The manufactures also provided the current at matched load (IL) and the heat 

input at the hot side of TEG module (qh). Thus, total thermal resistance for TEG 

module, Rth,TEG can be determined as: 
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The electrical resistance Rel,TEG is provided in the datasheet. 

 

6.4. Dynamic model implementation in MATLAB/Simulink  

 

The dynamic model is constructed with Simscape (incorporated as a toolbox in 

Simulink) which is a physical modeling tool by Mathworks[95]. In Simscape, 

physical components and relationships are constructed using blocks. The 

equations representing the block/system are solved.  
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A Simscape model also constitutes connections between blocks to define the 

relation between the models. The connections are bi-directional allowing the flow 

of signal in both directions. 

 

Heat transfer modes are defined in terms of thermal elements which represent 

conduction, convection and radiation heat modes. The conduction block 

represents a simplification of the differential form of Fourier’s Law of thermal 

conduction which is given as: 

 

 Tkqcond ∇−=


 6.4.1 

 

where �⃗�𝑞 is heat flux density and ∇𝜕𝜕 is the temperature gradient. 

The equation can be integrated over a heat conduction surface to get: 
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In Simscape, the integrated form of Eq. 6.4.2 is used in one dimensional form 

and for a homogenous material between two points with temperature difference 

of ΔT: 
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 where Δx is the distance between the two points. 

The convective block represents convection heat transfer as described by 

Newton’s law of cooling which describes convection heat transfer between two 

bodies: 

 

 )( BAconv TThAQ −=  6.4.4 

 

where h represents the convection heat transfer coefficient. 

 

A  Simscape language is utilized to create bodies (components), define nodes, 

variables, parameters and equations describing the system. The components 

have inlet/outlet ports to send and receive variables or signals. The first kinds of 

ports are termed as physical conserving ports which carry variables. They have a 

bidirectional connection and carry same value if directly connected. The second 

types of ports are physical signal ports and transmit physical signal between the 

components.  

 

The sample workspace for the Simscape modeling a TEG based self-cooling 

system is represented on Figure. 6-15 .The main subsystems are the thermal 

model and electrical model. 
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6.4.1. Thermal model 

 

The thermal system consists of a heat source device, TEG model and cold side 

heat sink model. The device has been segmented in 5 parts (Figure. 6-16a) to 

increase the accuracy of the models. As the number of parts represented by a 

single temperature and heat capacity is increased, the accuracy of the model is 

also augmented. The decision on the number of parts to use depends on the 

analysis of the Biot number.  

 

Each part has an inlet port to receive heat from adjacent part and outlet port to 

conduct heat out of the part. It has also connection to convectively lose heat from 

lateral sides. The detail of each part is again shown in Figure. 6-16b. The TEG 

module is represented in Figure. 6-17. It is segmented in to number of parts. 

Each part has an inlet and outlet port for heat conduction.  
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Figure. 6-15 M
ain w

orkspace for Sim
scape m

odeling 
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Heat transferred by conduction from adjacent part. In addition, volumetric heat 

generation is included in each part. A joule heat function receives current and 

electrical resistance the TEG electrical model and calculates joule heat which 

then fed into each part. Thomson heat also could be similarly defined and 

included in the model. 

 

Peltier heat terms are included on either end of TEG model. Peltier functions 

receive the hot side and cold side temperatures from the thermal model as well 

as the value of current and Seebeck coefficient from the electrical model. 

 

6.4.2. Electrical model 

 

The electrical model in Figure. 6-18 consists of components that represent 

voltage, current and power output from TEG modules. The values of current at 

each time step is coupled with the thermal model to calculate the Joule, Peltier 

and Thomson heat terms. 

 

6.4.3. Coupling of Cold side heat sink with Electrical model 

 

For self-cooling system, it is necessary to couple the cold heat sink with the 

electrical model. This is done by defining a convection heat transfer block with 

receives voltage signal from electrical system. As the relation between fan input 
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voltage and convection heat transfer can be defined as shown in previous 

section, it is possible to enter this relation using Simscape language.  

 

 

 

Figure. 6-16  a) Device subsystem divided in to 5 subsystems (Dev1-Dev 5)  
 b) Details of one of the parts of the device (Dev1) 
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Figure. 6-17 TEG thermal subsystem 
 

 

Figure. 6-18 Electrical model 
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6.5. Result and Discussion 

 

Thus, the Simscape model is implemented in MATLAB R2013a Simscape[95]. A 

personal computer with Intel® Xenon® CPU processor with speed of 2.40GHz is 

used for the simulation. The running time for the most of the simulation has been 

in order of few seconds. The results of the model is validated by comparing it 

using experimental data from [78]. The temperature of the device with respect to 

the surrounding environment (ΔTde) for transient heating for 160 minutes is 

compared against the experimental data in Figure. 6-19. The dynamic model has 

been able represent the data to a good accuracy. The running time was few 

seconds which make the dynamic modeling a fast and accurate method to 

simulate how the system dynamically performs. 

 

 

 

Figure. 6-19 Comparison of Dynamic model result for 
ΔTde (Td-Tenv) with experimental data [3] 
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The dynamic model has also been validated by comparison to our experiments 

results which have been described in detail in previous chapters. It can be 

inferred from Figure. 6-20 that the model has only slightly overestimated the 

temperature in case B for heat input of 120 W. The average error was less than 

3%. Similarly, for case A, the model is compared (Figure. 6-21) against 

experimental data for Qin=80 W and the model has been able to predict the 

transient temperature variation with time with good accuracy (within 3.5% error).  

 

 

Figure. 6-20 Comparison of Dynamic model result for ΔTde (Td-Tenv) with  
experimental data for Case B and Qin=120  
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Figure 6-22 Transient variation of voltage for Case A in Qin=80 W 
  

 

Figure. 6-21 Comparison of Dynamic model result for ΔTde 
(Td-Tenv) with experimental data  for Case A and Qin=80 W 
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The comparison of modeled transient variation of voltage produced by TEG with 

experimental data is shown in Figure 6-22.The model has captured the variation 

of voltage with time within an error of less than 3%. 

 

Thus, it has been shown that the model has the capability to capture the dynamic 

performance of a self-cooling device to a good accuracy with minimal 

computational resources 
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7. CONCLUSION 

 

In section 7.1, summary of the dissertation is discussed which is flowed by 

suggestions for future studies in section 7.2. 

 

7.1. Summary of Dissertation 

 

In this dissertation, a full analysis tool for self-cooling system is developed using 

first principles of thermodynamics. Starting from first law of thermodynamics and 

second law of thermodynamics, energy and entropy equation for the smallest unit 

of thermoelectric generator unit (thermoelectric couples) are developed. The 

analysis is extended to TEG module consisting of multiple thermoelectric 

couples. Multiple TEG modules are also connected in series electrically and in 

parallel thermally to form an array of TEG modules.  

 

The basic models are developed with increasing resolution in terms of the 

general thermodynamic model analysis. The first model assumes a Carnot 

engine, which is followed by endoreversible heat engine. Finally, an irreversible 

real engine model which contains TEG module as a heat engine is studied. The 

three tier study provides an important insight into comparison of TEG module 

based heat engine with theoretical general heat engine models. The irreversible 

heat engine has been coupled with the load (fluid mover) to study power 

consumption at the load and provide insights to self-cooling potential.  The 
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effects of varying cold side heat exchange and size of heat engine are studied. A 

comprehensive tool which helps identify the range of operation points for self-

cooling is also developed.  

  

Important conclusions from the study are: 

 

• Carnot heat engine and endoreversible heat engine models provide a 

general insights into the maximum possible heat transfer and power and 

temperature at the surfaces of heat engine. However, both models have 

poor correlation with an irreversible TEG based heat engine due to the 

inherent low heat to power potential of TEG module and internal 

irreversibility.  

 

• More heat is transferred in the array due to lower thermal resistance 

resulting in lower hot side temperature of TEG module. The average 

temperature difference across the TEG array is however reduced due to 

lower thermal resistance. The open circuit voltage increases due to an 

increase in the total number of thermoelectric couples in the array, 

however the total value is less than the combined effect if each module 

was operated separately. The power output only increases slightly due to 

an increase in open circuit voltage but also there is also a counter effect of 

decreasing current which lessens the magnitude of increase. 
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•  For certain configuration of cold-side heat exchange of self-cooling 

system, there is a maximum value of volume of fluid flow inside the fins of 

the heat exchanger which produces zero net power. If the volume flow 

rate is increased beyond this point, the system produces less power than 

it consumes, thus self-cooling is not possible. 

 

• The other limiting factor is the system operation points at different 

voltages. For self-cooling to be viable, the voltage provided by TEG 

modules to the fluid mover should be able to correspond to the system 

operation points at a particular voltage.  

 

• The voltage provide by the TEG modules should also be more than the 

starting voltage of the fluid mover. Thus, a “self-cooling window” could be 

defined to identify system operation points for a particular configuration of 

self-cooling system which provide a viable autonomous self-cooling 

system. 

 

• The analysis tool could be used as an important early design tool and has 

been coded with Python to facilitate the ease of use. It could be used for 

parametric study and as well as an initial setup for optimization study. 

 

Experiments have also been conducted to study the application of 

thermoelectric generators based self-cooling of devices. It has been shown that 
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a self-sustaining cooling system could be achieved by scavenging the heat from 

the device to run a cooling system via a fan in parallel plate-fin cold heat sink.  

 

Within the investigated operating ranges, it is found that: 

 

• The base line model (case A) has provided forced convection cooling after 

generating electrical power that is a capable of running a fan. It has been 

able to reduce the device temperature by as much as 20%. 

• But Case A performs relatively poorly as compared to natural convection 

(case C) when the fan is not moving due to the presence of TEG modules 

in the primary heat path. 

• By substituting part of TEG modules with a conductor in self-cooling case 

B, a 40% reduction in device temperature has been achieved as 

compared to natural convection. Moreover, the system, unlike case A, has 

similar performance with natural convection case C even when the fan is 

not moving. 

• Thermal resistance analysis has shown convection thermal resistance 

plays the major part in case B and improvement in the design of cold-side 

heat sink is expected to further develop the performance of self-cooling. 

 

In summary, self-cooling has been shown to have a potential to replace the use 

of external power sources to cool heat generating devices. As increased 

temperature difference results in increased cooling up to the maximum capacity 
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of the fan, heat driven self-cooling has a capability to scale up automatically with 

increased heat input. 

 

In this study, a general numerical methodology for the study of TEG based self-

cooling is also developed. The methodology has three major parts. The fluid 

flow domain which is used to the study the effect of a variable speed fan and on 

the heat transfers and derive a relation of convection heat transfer coefficient 

with input voltage.  The temperature and electric field variation is then studied 

using a coupled approach using an input from the fluid domain as boundary 

condition.  

 

Experiments have been conducted on two types of self-cooling arrangements to 

measure the device temperature, voltage and power produced by TEG modules. 

It has been shown that the computational model is able to predict the 

experimental data with good accuracy (within 5% error). A parametric study on 

the effect of electrical resistance of load (RL), height of fin (Hfin) and fin density 

(nfin) has been made. The power for self-cooling could be maximized by proper 

matching of number of TEG modules to the fluid mover (fan or pump) in terms of 

electrical resistance. An increase in Hfin decreases the fan power consumption 

and thermal resistance. It has also been shown that although an increase in nfin 

results in rise in fan power consumption, there is a marked increase in net 

power and decreases in thermal resistance.  

 



227 
  

The ability of a TEG-micro channel heat sink combined system to produce a net 

power and enable self-cooling of device is considered. A numerical model has 

been developed and three-dimensional governing equation for heat transfer and 

fluid flow are solved using finite volume approach. The results are compared with 

published experimental data and the model has been to predict the results with 

good accuracy. Detailed results for pressure drop, temperature and velocity field 

has been obtained.  

 

The net power from the system for different set of combination of heat flux and 

coolant flow rate is considered, it has been found out there is a certain range of 

coolant flow rate and heat flux combination which could result in net positive 

power and optimum junction temperature at the heat generating device. Due to 

the low thermal resistance of microchannel heat sink system, it has been found 

out that self-cooling could be achieved with lower flow rates (less pumping 

power)  for certain heat flux rate. Thus, for certain applications, it could be 

feasible to cool the devices without needing any external power systems if the 

systems are designed in such a way that the minimum flow rate is obtained that 

controls the temperature as well as results in lower pumping power. 

 

A dynamic model has been developed that could be used to study the 

performance of TEG based system. The aim of model is to construct a fast and 

accurate dynamic model which requires less computational resources in terms of 

size and running time. Thus, the model is constructed by systematically 
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representing each part thermal elements and connecting the parts using the 

electrical analogy. To increase the accuracy of the model, test of Biot number 

could be made to determine the number of sub-parts needed to represent a 

physical object. The methodology also employs thermal and electrical model for 

TEG module which are coupled with temperature and current signals. The cold 

side heat sink is also coupled with the electrical model. 

 

The model could be implemented in any appropriate software like 

MATLAB/Simulink, Dymola or SPICE. In this study, Simscape toolbox in 

MATLAB/Simulink is used to demonstrate how the model works. The results from 

the model been compared with experimental data and it observed that the model 

can represent the experimental data to very good accuracy. In addition, the 

model runs in few seconds and requires minimal computational resources.  

 

7.2. Future work 

 

The following are some suggestions for future work in this field: 

1) One of the bottlenecks for self-cooling application is the efficiency of TEG 

modules. If the efficiency of the TEG modules to produce more voltage 

and electric power is improved, self-cooling application could be widely 

applicable. Thus, a study which improves the efficiency of the TEG 

modules especially in terms of new materials would be important. 
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2) The study could also include the application for self-cooling to new 

methods of cooling systems. Liquid cooling in microchannels could be 

extended to cases of two phase liquids, nano-fluid and liquid metals. 

However, this needs to be studied in detail as the effects on an increased 

pumping power, corrosion and other long term effects should be 

considered. 

3) Miniaturization of TEG modules could also aid in better integration of 

modules into smaller heating devices. Therefore, further investigation on 

the application of micro-TEG modules for self-cooling application could be 

done. 

4) It is also crucial to study how self-cooling systems could be designed for 

high heat flux applications. The cooling methods applicable to high heat 

flux would require more power for the fluid mover, thus it is vital to look at 

ways to increase the put from TEG modules that enables the generation of 

adequate power to run the fluid movers. 

5)  The numerical methodology could be expanded for different cooling 

methods to increase its applicability  
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APPENDIX A 

 

A computer code to analyze TEG based heat driven self-cooling system 

The code is based on the algorithm developed using finite time thermodynamics 

principles. The code is written in both Python and MATLAB codes. 

 

Python code: 

__author__ = 'robel kiflemariam' 
 
import numpy as np 
import math 
import scipy.optimize as opt 
import matplotlib.pyplot as plt 
 
#declare global variables 
#TEG geometrical parameters 
global m,N_p,l_p,l_n,l_ins,A_p,A_n,L_ins 
global k_p,k_n,k_ins,elec_p,elec_n 
global t_d,k_d,L_d,W_d 
global alpha_pn 
global Td, Tf, R_L 
global x_1,x_2,x_3 
global a1,a2,a3,a4,a5,b1,b2,b3,b4,b5,c1,c2,c3 
global Th,Tc,I 
Td=400 
Tf=300 
R_L=40 
 
m=4 
N_p=287 
l_p=1.5e-3 
l_n=1.5e-3 
l_ins=0.77e-3 
A_p=1e-6 
A_n=1e-6 
L_ins=40e-3 
#TEG thermal and electrical properties 
k_p=1.5 
k_n=1.5 
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k_ins=35 
elec_p=0.8e5 
elec_n=0.8e5 
alpha_pn=425e-6 
#heat source geometrical parameters 
t_d=10e-3 
k_d=230 
L_d=40e-3 
W_d=40e-3 
 
#Function calculates the hot side heat transfer coeff. 
def coeffHot(t_d,k_d,L_d,W_d): 
    A_d=L_d*W_d 
    R_HX=t_d/(k_d*A_d) 
    UA_HX_l=pow(R_HX,-1) 
    return(UA_HX_l) 
 
#Function calculates the conductance of TEG array 
 
def k_th_array(m,k_p,k_n,k_ins,l_p,l_n,l_ins,A_p,A_n,L_ins,N_p): 
     N_p_a=m*N_p 
     A_ins_a=m*pow(L_ins,2) 
     R_th_p=l_p/(A_p*k_p) 
     R_th_n=l_n/(A_n*k_n) 
     R_th_ins=2*l_ins/(A_ins_a*k_ins) 
     R_th_pn_array=(R_th_p*R_th_n)/(N_p_a*(R_th_p+R_th_n)) 
     R_th_TEG_array=R_th_pn_array+R_th_ins 
     K_th_TEG_array_l=pow(R_th_TEG_array,-1) 
     return(K_th_TEG_array_l) 
 
 
#Function to calculate the electrical resistance of TEG array 
 
def r_el_TEG_array(elec_p,elec_n,l_p,l_n,A_p,A_n,m,N_p): 
    N_p_a=m*N_p 
    R_el_p=l_p/(A_p*elec_p) 
    R_el_n=l_n/(A_n*elec_n) 
    R_el_TEG_array_l=N_p_a*(R_el_p+R_el_n) 
    return(R_el_TEG_array_l) 
 
UA_HX=coeffHot(t_d,k_d,L_d,W_d) 
#print(UA_HX) 
 
K_th_TEG_array=k_th_array(m,k_p,k_n,k_ins,l_p,l_n,l_ins,A_p,A_n,L_ins,N_p) 
#print(K_th_TEG_array) 
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R_el_TEG_array=r_el_TEG_array(elec_p,elec_n,l_p,l_n,A_p,A_n,m,N_p) 
#print (R_el_TEG_array) 
 
def f(variables): 
    Th,Tc,I=variables 
    f1=a1*Th+a2*Tc*I-a3-a4*Tc-a5*I**2 
    f2=b1*Tc-b2*Tc*I-b3-b4*Th-b5*I**2 
    f3=c1*Th-c2*Tc-c3*I 
    return(f1,f2,f3) 
 
 
#Cold side heat sink parameters 
 
global t_b,H_f,t_f,rho_f,mew_f,Cp_f,k_b,k_f,b,W,W_fi,L 
 
t_b=1.5e-3 
H_f=10e-3 
t_f=1.5e-3 
rho_f=1.2 
mew_f=1.983e-5 
Cp_f=1000 
k_b=230 
k_f=0.026 
b=5e-3 
W=160e-3 
W_fi=160e-3 
L=160e-3 
N_f=(W+b)/(t_f+b) 
 
G_1=[100,259.2,396.6,489.3,619.3,785.8,930,1130,1337,1522,1685,1863,2078,
2256,2382 ] 
dP_12=[35.9,32.8,29.7,27.8,25.5,22.7,20.1,17.3,12.8,13.2,11.3,8.8,5.4,1.8,0]    
#pa 
 
G_data=[x*1e-5 for x in G_1] #m^3/s 
#print(len(dP_12)) 
#print(G_data) 
 
N_G=len(G_data) 
#print(N_G) 
 
G=np.linspace(G_data[0],G_data[-1],15) 
#print(G) 
#for i in range(1,N_G): 
listdP=[] 
listThs=[] 
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listTcs=[] 
listI=[] 
listV_oc=[] 
listV=[] 
listqh=[] 
listqc=[] 
listpower=[] 
listEff=[] 
listDT=[] 
 
 
for G in G_data: 
 
    U=G/(N_f*b*H_f) 
 
    #Reynolds number 
    Re=rho_f*G*b/(N_f*H_f*mew_f*L) 
    #print(Re) 
    Pr=(mew_f*Cp_f)/k_f 
    #print(Pr) 
    
Nu=((1/np.power((0.5*Re*Pr),3))+(1/(0.644*np.sqrt(Re)*np.power(Pr,0.33)*np.sqr
t(1+3.65/np.sqrt(Re))))**3)**-0.33 
    #print(Nu) 
    h=Nu*k_f/b 
    #print(h) 
    A_base=(N_f-1)*b*L 
    A_f=2*H_f*L 
    c=2*h/(k_b*t_f) 
    mT=np.sqrt(c) 
    c1=(mT*H_f) 
    n_f=np.tanh(c1)/c1 
    A_cx=A_base+N_f*n_f*A_f 
    #print(n_f) 
    R_conv=1/(h*A_cx) 
    #expansion spreading resistance 
    A_2=L*W 
    A_1=4*L_ins**2 
    gamma=((3.14**1.5)/np.sqrt(A_2)+(np.sqrt(A_1))**-1) 
    omega_1=gamma*k_b*A_2*R_conv*np.tanh(gamma*t_b) 
    omega=omega_1/(1+omega_1) 
    R_sp_b=omega*(1/(2*k_b*np.sqrt(A_1)))*((1-np.sqrt(A_1)/np.sqrt(A_2)))**1.5 
    R_sp_a=((np.sqrt(A_2)-np.sqrt(A_1))*omega)/(k_b*np.sqrt(3.14*A_2*A_1)) 
    R_sp=R_sp_b+R_sp_a 
    R_CX=R_conv+R_sp 
    UA_CX=R_CX**-1 
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    #print(UA_CX) 
 
    k_cons=1-(N_f*t_f/W) 
    k_c=0.42*(1-k_cons**2) 
    k_e=(1-k_cons**2)**2 
    Re_f=(rho_f*G*2)/(N_f*H_f*mew_f) 
    a_r=b/H_f 
    f_p=(24-32.527*a_r+46.521*a_r**2-40.829*a_r**3+22.954*a_r**4-
6.089*a_r**5)/(Re_f) 
    dP=0.5*rho_f*(G/(N_f*b*H_f))**2*(k_c+(4*f_p*L/(2*b))+k_e) 
    listdP.append(dP) 
 
 
 
    alpha_TEG_array=m*N_p*alpha_pn 
    a1=UA_HX+K_th_TEG_array 
    a2=alpha_TEG_array 
    a3=UA_HX*Td 
    a4=K_th_TEG_array 
    a5=0.5*R_el_TEG_array 
    b1=UA_CX+K_th_TEG_array 
    b2=alpha_TEG_array 
    b3=UA_CX*Tf 
    b4=K_th_TEG_array 
    b5=0.5*R_el_TEG_array 
    c1=alpha_TEG_array 
    c2=alpha_TEG_array 
    c3=R_el_TEG_array+R_L 
    #print(G) 
    #print(a1) 
    #print(b1) 
 
 
    def f(variables): 
        Ths,Tcs,I=variables 
        f1=a1*Ths+a2*Ths*I-a3-a4*Tcs-a5*I**2 
        f2=b1*Tcs-b2*Tcs*I-b3-b4*Ths-b5*I**2 
        f3=c1*Ths-c2*Tcs-c3*I 
        return(f1,f2,f3) 
    Ths,Tcs,I=opt.fsolve(f,(300,200,0.6)) 
    listThs.append(Ths) 
    listTcs.append(Tcs) 
    listI.append(I) 
    V_oc=alpha_TEG_array*(Ths-Tcs) 
    V=V_oc/2 
    q_h=UA_HX*(Td-Ths) 
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    q_c=UA_CX*(Tcs-Tf) 
    power=q_h-q_c 
    Eff=(power/q_h)*100 
    listV_oc.append(V_oc) 
    listV.append(V) 
    listqh.append(q_h) 
    listqc.append(q_c) 
    listpower.append(power) 
    listEff.append(Eff) 
 
 
 
#rotational velocity(omega) at different voltage 
omega_max=2900 
omega_min=0 
listomega=[] 
V_max=12 
V=V_max 
for j in range(13): 
    omega=(V/V_max)*omega_max 
    listomega.append(omega) 
    V-=1 
    if V<0: 
        break 
print(listomega) 
print(len(listomega)) 
#print(listomega[10]) 
global omega_10 
omega_10=listomega[2] 
omega_8=listomega[4] 
omega_6=listomega[6] 
print(omega_10) 
list_G_data_10=[] 
list_G_data_8=[] 
list_G_data_6=[] 
list_dP_10=[] 
list_dP_8=[] 
list_dP_6=[] 
for G in G_data: 
    G_data_10=(omega_10/omega_max)*G 
    list_G_data_10.append(G_data_10) 
    G_data_8=(omega_8/omega_max)*G 
    list_G_data_8.append(G_data_8) 
    G_data_6=(omega_6/omega_max)*G 
    list_G_data_6.append(G_data_6) 
# print(list_G_data_10) 
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# #print(len(list_G_data_10)) 
# print(list_G_data_8) 
# print(list_G_data_6) 
 
for dP12 in dP_12: 
    dP_10=(omega_10/omega_max)*dP12 
    list_dP_10.append(dP_10) 
    dP_8=(omega_8/omega_max)*dP12 
    list_dP_8.append(dP_8) 
    dP_6=(omega_6/omega_max)*dP12 
    list_dP_6.append(dP_6) 
 
#fit with a regression line 12 V 
G_data_coeff=np.polyfit(G_data,dP_12,4)  #calculates the coeff. of the 
regression line 
poly_dP_12=np.poly1d(G_data_coeff) 
y_dP_12=poly_dP_12(G_data) 
 
#fit with a regression line 10 V 
G_data_coeff_10=np.polyfit(G_data,list_dP_10,4)  #calculates the coeff. of the 
regression line 
poly_dP_10=np.poly1d(G_data_coeff_10) 
y_dP_10=poly_dP_10(G_data) 
 
#fit with a regression line 8 V 
G_data_coeff_8=np.polyfit(G_data,list_dP_8,4)  #calculates the coeff. of the 
regression line 
poly_dP_8=np.poly1d(G_data_coeff_8) 
y_dP_8=poly_dP_8(G_data) 
 
#fit with a regression line 6 V 
G_data_coeff_6=np.polyfit(G_data,list_dP_6,4)  #calculates the coeff. of the 
regression line 
poly_dP_6=np.poly1d(G_data_coeff_6) 
y_dP_6=poly_dP_6(G_data) 
 
# 
 
coeff_sys=np.polyfit(G_data,listdP,4)  #calculates the coeff. of the regression line 
poly_dP_sys=np.poly1d(coeff_sys) 
y_dP_sys=poly_dP_sys(G_data) 
#plt.plot(G_data,y_dP_sys,'o') 
#print(poly_dP_sys) 
#print(poly_dP_12) 
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# 12 V balance point 
coeff_diff=coeff_sys-G_data_coeff 
balance_point_12=np.roots(coeff_diff) 
for balance in balance_point_12: 
    if balance>0: 
       balance_point_real=balance[np.isreal(balance)] 
 
y_balance_12=np.polyval(coeff_sys,balance_point_real) 
y_balance_12a=np.polyval(G_data_coeff,balance_point_real) 
 
#10 V balance point 
 
coeff_diff_10=coeff_sys-G_data_coeff_10 
balance_point_10=np.roots(coeff_diff_10) 
for balance in balance_point_10: 
    if balance>0: 
       balance_point_real_10=balance[np.isreal(balance)] 
 
y_balance_10=np.polyval(coeff_sys,balance_point_real_10) 
y_balance_10a=np.polyval(G_data_coeff,balance_point_real) 
 
 
#8 V balance point 
 
coeff_diff_8=coeff_sys-G_data_coeff_8 
balance_point_8=np.roots(coeff_diff_8) 
for balance in balance_point_8: 
    if balance>0: 
       balance_point_real_8=balance[np.isreal(balance)] 
 
y_balance_8=np.polyval(coeff_sys,balance_point_real_8) 
y_balance_8a=np.polyval(G_data_coeff,balance_point_real) 
 
#6V balance point 
 
coeff_diff_6=coeff_sys-G_data_coeff_6 
balance_point_6=np.roots(coeff_diff_6) 
for balance in balance_point_6: 
    if balance>0: 
       balance_point_real_6=balance[np.isreal(balance)] 
 
y_balance_6=np.polyval(coeff_sys,balance_point_real_6) 
y_balance_6a=np.polyval(G_data_coeff,balance_point_real_6) 
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print(y_balance_6) 
print(y_balance_8) 
print(y_balance_10) 
print(y_balance_12) 
 
 
 
#fit Gdata vs voltage 
coeff_V=np.polyfit(G_data,listV,4)  #calculates the coeff. of the regression line 
poly_V=np.poly1d(coeff_V) 
y_V=poly_V(G_data) 
plt.plot(G_data,listV,"g^") 
plt.title("voltage vs volume flow rate") 
plt.xlabel("volume flow rate [m^3/s]") 
plt.ylabel("voltage [V]") 
plt.show() 
#check for self-cooling 
#for 12 V 
V_12=np.polyval(coeff_V,balance_point_real) 
V_10=np.polyval(coeff_V,balance_point_real_10) 
V_8=np.polyval(coeff_V,balance_point_real_8) 
V_6=np.polyval(coeff_V,balance_point_real_6) 
print(V_12) 
print(V_10) 
print(V_8) 
print(V_6) 
if V_12>=12: 
   print("self-cooling is posssible at 12 V") 
elif V_10>=10: 
    print("self-cooling is possible at 10 V") 
elif V_8>=8: 
    print("self-cooling is possible at 10 V") 
elif V_6>=6: 
    print("self-cooling is possible at 6 V") 
 
 
#ploting the fan performance curves 
#plt.plot(G_data,dP_12,'.') 
line12,=plt.plot(G_data,y_dP_12,'-',label="12 V") 
plt.legend(handles=[line12],loc=4) 
#plt.plot(G_data,list_dP_10,'.') 
line10,=plt.plot(G_data,y_dP_10,'-',label="10 V") 
plt.legend(handles=[line10]) 
#plt.plot(G_data,list_dP_8,'.') 
plt.plot(G_data,y_dP_8,'-') 
#plt.plot(G_data,list_dP_6,'.') 
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plt.plot(G_data,y_dP_6,'-') 
 
#graph system performance curve 
plt.plot(G_data,listdP,'-') 
plt.title('pressure versus volume flow rate') 
plt.xlabel('volume flow rate [m^3/s]') 
plt.ylabel('pressure drop [Pa]') 
plt.axis([0,0.025,0,60]) 
plt.plot(balance_point_real,y_balance_12,'g^') 
plt.plot(balance_point_real_10,y_balance_10,'g^') 
plt.plot(balance_point_real_8,y_balance_8,'g^') 
plt.plot(balance_point_real_6,y_balance_6,'g^') 
plt.show() 
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APPENDIX B 
 
//C based program for User defined functions (UDF)// 
//implemented inside ANSYS Fluent// 
 
 
#include"udf.h" 
 
real Current; 
real Current_flux_h; 
real Current_flux_c; 
 
 
DEFINE_ADJUST(average_temp, domain) 
{ 
 
real tavg_T; 
real tavg_B; 
real area_tot_h; 
real area_tot_c; 
real tavg; 
real temp; 
real area; 
int ID_T; 
int ID_B; 
real V_OC; 
 
 
/*FILE *fp;*/ 
Thread *t,*t1; 
face_t f; 
Domain *d; 
d=Get_Domain(1); 
ID_T=20;   
ID_B=26; 
 
 
t=Lookup_Thread(d,ID_T); 
t1=Lookup_Thread(d,ID_B); 
 
tavg_T=0; 
tavg_B=0; 
area=0; 
area_tot_h=0; 
area_tot_c=0; 
V_OC=0; 
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begin_f_loop(f,t) 
{ 
/*loop over the faces on a thread*/ 
real NV_VEC(farea); 
 
/*face_t f;*/ 
F_AREA(farea,f,t); 
area=NV_MAG(farea); 
 
    temp=F_T(f,t); 
 
tavg_T+=temp*area; 
area_tot_h+=area; 
} 
end_f_loop(f,t) 
 
tavg_T/=area_tot_h; 
 
Message("\nTavg_topside=%g\n",tavg_T); 
 
/*storing the value of tavg in the cells*/ 
 
begin_f_loop(f,t1) 
{ 
/*loop over the faces on a thread*/ 
/*face_t f;*/ 
real NV_VEC(farea); 
real time=CURRENT_TIME; 
F_AREA(farea,f,t1); 
area=NV_MAG(farea); 
 
temp=F_T(f,t1); 
 
tavg_B+=temp*area; 
area_tot_c+=area; 
} 
end_f_loop(f,t1) 
 
tavg_B/=area_tot_c; 
 
Message("\nTavg_bottomside=%g\n",tavg_B); 
 
/*calculate voltage*/ 
 
V_OC=0.44*(tavg_B-tavg_T); 
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Message("\nVoltage_open=%g\n",V_OC); 
 
/*Calculate current*/ 
 
Current=(V_OC*V_OC)/(4*40); 
Current_flux_h=Current/area_tot_h; 
Current_flux_c=Current/area_tot_c; 
 
Message("Current=%g",Current); 
 
F_UDMI(f,t,0)=tavg_T; 
 
F_UDMI(f,t,1)=tavg_B; 
 
F_UDMI(f,t,2)=V_OC; 
 
F_UDMI(f,t,3)=Current; 
 
fp=fopen("output_temp.txt","T"); 
fprintf(fp,"\n%12.4e\t%12.4e\n",tavg_T,tavg_B); 
fclose; 
} 
 
DEFINE_SOURCE(joule_heat,c,t,dS,eqn) 
   { 
 
 real joule_heat; 
         
  
 joule_heat=pow(Current,2)*10; 
         
         
 dS[eqn]=2*10*Current; 
 return joule_heat; 
        Message("\nJoule heat=%g\n",joule_heat); 
         
  
    } 
 
DEFINE_PROFILE(peltier_hot,t,i) 
    { 
        
        real peltier_hot; 
        real temp_h; 
        face_t f; 
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       begin_f_loop(f,t) 
       { 
          
          
      
         temp_h=F_T(f,t); 
         peltier_hot=0.11*Current_flux_h*temp_h; 
    
 
         F_PROFILE(f,t,i)=peltier_hot; 
       } 
       end_f_loop(f,t) 
       Message("\npeltier hot =%g\n",peltier_hot); 
       F_UDMI(f,t,4)=peltier_hot; 
 
 
     } 
          
 
DEFINE_PROFILE(peltier_cold,t,i) 
    { 
        
        real peltier_cold; 
        real temp_c; 
        face_t f; 
         
       begin_f_loop(f,t) 
       { 
         
         temp_c=F_T(f,t); 
         peltier_cold=0.11*Current_flux_c*temp_c; 
    
         F_PROFILE(f,t,i)=peltier_cold; 
       } 
       end_f_loop(f,t) 
       Message("\npeltier cold =%g\n",peltier_cold); 
       F_UDMI(f,t,5)=peltier_cold; 
 
    } 
 
 
DEFINE_PROFILE(fan_curve,t,i) 
  { 
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    real pressure_head; 
    real vel; 
    face_t f; 
    
   begin_f_loop(f,t) 
    { 
      
        
     vel=F_U(f,t); 
     pressure_head=-0.326*pow(vel,4)+1.646*pow(vel,3)-0.787*pow(vel,2)-
13.747*vel+38.27; 
      
 
     F_PROFILE(f,t,i)=pressure_head; 
    } 
    end_f_loop(f,t) 
    Message("\nPressure head =%g\n",pressure_head); 
    Message("\nVelocity=%g\n",vel); 
} 
 
 
DEFINE_PROPERTIES(k_pn,thread,i) 
{ 
face_t f; 
begin_f_loop(f,t) 
real k_pn 
real temp; 
{ 
temp=C_T(c,thread); 
k_pn=4.23e-5*power(temp,2)-2.77e2*power(temp)+62.6e3; 
F_PROFILE(f,thread,i)=k_pn; 
} 
End_f_loop(f,t) 
 
} 
 
//modified  
#include "udf.h" 
real temp_vap; 
real area; 
real kaz_T; 
real kaz; 
real vol; 
real dist_h; 
//real temp; 
real temp_cell_1; 
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DEFINE_ADJUST(temp_area,domain) 
{ 
real temp_cell; 
int ID_cell; 
//int k_z; 
Thread *t, *t1; 
face_t f; 
cell_t c; 
Domain *d; 
d=Get_Domain(1); 
 
t1=Lookup_Thread(d,ID_cell); 
 
thread_loop_c(t,d) 
{ 
 
begin_c_loop(c,t) 
{ 
real temp; 
C_UDMI(c,t,0)=C_T(c,t); 
} 
end_c_loop(c,t) 
} 
 
thread_loop_c(t,d) 
{ 
 
begin_c_loop(c,t) 
{ 
 
C_UDMI(c,t,1)=C_VOLUME(c,t); 
 
} 
end_c_loop(c,t) 
} 
 
Message("\nvol=%g\n",vol); 
begin_f_loop(f,t1) 
{ 
Thread *c0_thread; 
cell_t c0; 
face_t f; 
real NV_VEC(farea); 
F_AREA(farea,f,t1); 
area=NV_MAG(farea); 
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F_UDMI(f,t1,0)=area; 
 
kaz_T=0; 
kaz=0; 
c0_thread=THREAD_T0(t1); 
c0=F_C0(f,t1); 
temp_cell_1=C_UDMI(c0,c0_thread,0); 
vol=C_UDMI(c0,c0_thread,1); 
 
dist_h=0.5*vol/area; 
F_UDMI(f,t1,1)=dist_h; 
 
 
kaz_T+=230*area*temp_cell_1/dist_h; 
kaz+=230*area/dist_h; 
} 
end_f_loop(f,t1) 
 
temp_vap=kaz_T/kaz; 
 
F_UDMI(f,t1,2)=temp_vap; 
Message("\nTemp_vap=%g\n",temp_vap); 
Message("\nkaz_T=%g\n",kaz_T); 
Message("\nkaz=%g\n",kaz); 
Message("\nvol=%g\n",vol); 
Message("\narea=%g\n",area); 
Message("\ndist_z=%g\n",dist_h); 
} 
 
DEFINE_PROFILE(temp_vap_bottom,t,position) 
{ 
face_t f; 
begin_f_loop(f,t) 
{ 
F_PROFILE(f,t,position)=temp_vap; 
} 
end_f_loop(f,t) 
} 
 
DEFINE_PROFILE(temp_vap_top,t,position) 
{ 
face_t f; 
begin_f_loop(f,t) 
{ 
 
F_PROFILE(f,t,position)=temp_vap; 
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} 
end_f_loop(f,t) 
} 
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