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ABSTRACT OF THE DISSERTATION 

THE EFFECT OF VITAMIN D SUPPLEMENTATION ON CARDIOVASCULAR 

RISK FACTORS AMONG MINORITIES WITH TYPE 2 DIABETES 

by 

Joel Exebio 

Florida International University, 2015 

Miami, Florida 

Professor Fatma Huffman, Major Professor 

The aim of the present study was to determine the effect of vitamin D supplementation 

(4000 IU or 6000 IU of cholecalciferol daily for 6 months) on fasting plasma glucose, 

fasting insulin, glycated hemoglobin, and lipid profile in a sample of African-Americans 

and Hispanics with T2D and vitamin D insufficiency. Seventy five participants were 

recruited by community outreach. Plasma glucose concentration was measured by 

hexokinase enzymatic method. Glycated hemoglobin was measured by the DCA2000+ 

system. Insulin in fasting blood was determined by radioimmunoassay. Plasma total 

cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein 

cholesterol were assayed by enzymatic methods. Serum vitamin D concentrations were 

measured with an enzyme-immunoassay kit. Mixed model was used to compare 

treatment effects and Bonferroni multiple comparison tests was used to detect significant 

changes from baseline, 3 months, and 6 months on the outcome variables. Significant 

improvements in serum 25(OH)D levels were seen from baseline to 3 month and 6 

months respectively in both treatments (from 22.25 ± 7.19 to 37.34 ± 12.31 and 37.99 ± 

13.22, P<0.05 in the 4000 IU group; from 23.74 ± 5.09 to 43.20 ± 15.94 and 40.62 ± 
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19.39, P<0.05 in the 6000 IU group). No significant changes were observed for fasting 

plasma glucose, insulin or A1C between groups and within groups. A significant decrease 

in total cholesterol for the 6000 IU group at 6 months (from 193.88 ± 41.03 to 183.48 ± 

47.53 mg/dl, P=0.040) was observed. Similarly, a significant change in serum 

triglycerides was observed at 6 months in the 6000 IU group (from 201.44 ± 91.35 to 

172.92 ± 76.87 mg/dl, P=0.037). However, when the model was adjusted for 

confounders, significance was lost. Vitamin D supplementation did not improve glucose 

homeostasis in this sample. The positive effect of vitamin D supplementation on lipid 

profile may be mediated by other cofactors related to vitamin D metabolism. 
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CHAPTER I: INTRODUCTION 

 

Type 2 Diabetes in the US Population and Mechanism of Action 

Type 2 diabetes (T2D), the most common form of diabetes (90-95% of all cases) 

has increased dramatically in the United States (US) among adults 20 years of age and 

older from 9% in 1988 to 12.3% in 2012. Minorities, particularly African Americans and 

Hispanics, are disproportionately afflicted by T2D compared to non-Hispanics Whites. 

For instance, while the age-adjusted incidence of T2D in non-Hispanics Whites was 7.6% 

in 2012, it was 13.2% for non-Hispanic blacks and 12.8% for Hispanics (1).  

The food that we eat is digested and absorbed in the gastrointestinal tract. Glucose 

is one of the main byproducts of the digestive process. Glucose is transported in the blood 

to different organs where it is used as the main fuel source for cell functioning. Insulin 

produced by the beta cells of the pancreas is needed to activate the transporters and 

receptors that let glucose enter the cells. Type 2 diabetes is characterized by the 

diminished capacity of the beta cells to produce sufficient insulin and by the reduction in 

number of beta cells (2).  

Many genetic and life style factors are associated with the onset of T2D. For 

instance, some individuals may have a decreased number of beta cells early in life 

predisposing them to the development of T2D. Smoking, obesity, lack of physical 

activity, a high calorie diet, stress, and other genetic and environmental factors lead to 

dyslipidemia, increased circulating leptin and cytokine levels which have a negative 

effect on beta cell function (2). 
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Monitoring diabetes outcomes (fasting blood glucose, insulin and glycated 

hemoglobin (A1C) and cardiovascular disease risk factors (dyslipidaemia, obesity, and 

inflammation) is important for persons with diabetes. Poor diabetes outcomes can lead to 

complication such as heart disease, stroke, high blood pressure, blindness, kidney disease 

and nervous system disorders. 

 

Vitamin D in the US and Mechanism of Action 

Low levels of vitamin D are prevalent in the US. According to data from the 

National Health and Nutrition Examination Surveys (NHANES) in 2001-2006, 33% of 

the general US population had serum 25(OH)D below 50 nmol/L. In addition, low 

vitamin D levels are common among minorities. For instance, 41% of African Americans 

and 33% of Mexican Americans had serum 25(OH)D below 50 nmol/L compared to 18% 

of non-Hispanic Whites (3).    

Humans produce vitamin D in the skin by the action of ultraviolet light. Vitamin 

D can also be obtained from the diet from plant and animal sources. The plant form is 

vitamin D2 (ergocalciferol) and the animal form is vitamin D3 (cholecalciferol). Vitamin 

D3 needs to be activated by hydroxylation in the liver and kidney to form its 

metabolically active form: 1,25(OH)2D3. This metabolite produces some of its effects by 

activating the vitamin D receptor (VDR) in the cells (4).  

With respect to diabetes, the VDRs have been found in pancreatic tissue 

(exclusively in the insulin-producing beta cells). Activated Vitamin D (1,25(OH)2D3) 

binds to the VDR in the beta cells and modulates the transcription of genes signaling the 

production of insulin and other proteins important for beta cell function. Different VDR 
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gene variances are present in different ethnicities and may predispose to the development 

of type 2 diabetes (5). These variances may explain, in part, the high incidence of type 2 

diabetes among African Americans and Hispanic.  

 

Type 2 Diabetes and Vitamin D 

Cross Sectional Studies 

Several associations between low vitamin D levels and incidence of metabolic 

disorders have been reported in recent years. For instance, poor vitamin D status has been 

found in persons at risk or with T2D, however, the nature of this relationship is not clear 

(6, 7). Similarly, a negative association between vitamin D levels and insulin resistance 

has been reported in a large sample representative of the US adult population and in 

participants at risk for T2D (7, 8). According to these results vitamin D levels are 

associated with insulin sensitivity and insulin resistance. The mechanism of action of 

vitamin D is not clear because most studies to date have been conducted in patients 

without diabetes. 

 

Intervention Studies 

Vitamin D supplementation in participants without diabetes had a positive effect 

on insulin secretion and insulin resistance (9). Similar results have been found in vitamin 

D deficient animals (10). Since patients with T2D not only have a high prevalence of 

vitamin D deficiency, but also, other cardiovascular risk factors that may interact with 

vitamin D homeostasis, it is difficult to extrapolate results from patients without diabetes. 
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This scenario has increased the interest in the role that vitamin D may play in 

glucose homeostasis among patients with T2D, which includes insulin resistance and 

glycemic control. In fact, several interventional studies providing vitamin D to 

participants at risk or with T2D have been conducted that have found inconsistent results 

(11-15). Borissova et al (11) examined the effect of vitamin D3 supplementation on 

insulin resistance and insulin secretion in 10 patients with T2D. Seventeen age and 

gender-matched individuals without T2D served as controls.  The intervention group 

received 1332 IU of cholecalciferol daily for 1 month. Fasting plasma insulin secretion 

increased significantly by 34.3%, however, the decrease in insulin resistance was not 

significant. A small sample size and short duration of treatment are the major limitations 

of this study. In another study, however, vitamin D supplementation in men with T2D 

improved insulin secretion (12, 13).  Inomata et al. (12) provided 2ug/d (80 IU/day) of 

alphacalcidiol versus placebo to 14 Japanese males with T2D, mean age 54.3 years for 3 

weeks. The area under the oral glucose tolerance test curve was used as a measure of 

insulin secretion. Results showed improved insulin secretion. Limitations of this study 

are the lack of measure of plasma vitamin D concentrations and the small sample size. 

Similarly, Orwoll et al. (13) provided 1ug/d (40 IU/d) of 1,25(OH)2 D versus placebo to 

35 adults with recently diagnosed T2D (within 3 years) for 14 days, with mean age of 61 

years. Insulin secretion was determined from the area under the glucose tolerance test 

after a meal challenge. A tendency for better insulin secretion was observed. Main 

limitations of this study were the short duration of the intervention and the lack of 

assessment of serum vitamin D post-intervention. Persons with T2D and low serum 

25(OH)D had improvements in glycemic control with 3000 IU of vitamin D3 for 6 and 9 
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months (14). In contrast, Jorde et al. (15) provided 40000 IU per week versus placebo to 

32 participants with T2D for 6 months. No significant change on insulin, fasting plasma 

glucose or A1C was noted. Participants in this study were not vitamin D deficient, 

suggesting that vitamin D supplementation may have no effect on people who are not 

vitamin D deficient. Conflicting reports may be a consequence of different characteristics 

of the populations, inadequate dosages, different forms of vitamin D supplements used, 

short duration of the studies, different outcome variables, and lack of control of serum 

vitamin D levels pre and post intervention. 

The vast majority of these studies have been conducted in non-Hispanic White 

populations. Prevalence of hypovitaminosis D however, is found to be higher in Blacks 

and Hispanics as compared to Whites (16-18). According to data from the Center for 

Disease Control and Prevention, 20% of Mexican Americans and 46% of African 

Americans had blood vitamin D levels lower than non-Hispanic Whites across age 

categories (19).  Vitamin D levels decrease with increasing age. While vitamin D levels 

fall 1.6% from 60 nmol/L to 59 nmol/L for ages 6-59 years for non-Hispanic Whites, it 

falls 34.7% from 46 nmol/L to 30 nmol/L for African Americans and 20% from 56 

nmol/L to 45 nmol/L for Mexican Americans in the same age range (19). While T2D is a 

multifactorial disease, evidence from observational studies and small clinical trials 

indicate possible improvements of T2D symptoms with vitamin D supplementation. 

Since minorities such as African Americans and Hispanics have higher risk of both T2D 

and vitamin D deficiency as compared to Caucasians (20), it is important to determine the 

effect of vitamin D supplementation in these high risk populations.  
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Type 2 Diabetes, Cardiovascular Disease and Vitamin D 

The literature indicates that patients with T2D and insulin resistance (IR) are more 

likely to develop arteriosclerosis and all of the complications related to this condition, 

such as myocardial infarction and stroke (21). In fact, vitamin D receptors are present in 

many cardio vascular target organs regulating cell differentiation, proliferation and 

function (22). Although patients with T2D usually have other risk factors for 

arteriosclerosis, associations among vitamin D levels and several risk factors for 

cardiovascular disease (CVD) have been documented. Martins et al. (23) demonstrated a 

strong association between hypovitaminosis D and cardio-vascular outcomes in a sample 

of 13,000 US adults using data from the Third National Health and Nutrition 

Examination Survey. After controlling for confounders, the prevalence of hypertension 

(OR=1.30), T2D (OR=1.98), obesity (OR=2.29), and high triglyceride levels (OR=1.47) 

was significantly higher in the first quartile compared to the fourth quartile of serum 

25(OH)D levels (P<0.001 for all) demonstrating a high likelihood of association between 

vitamin D levels and several cardio vascular risk factors.  

Similarly, Skaaby et al. (24), conducted a large prospective evaluation of serum 

vitamin D levels and blood lipids. They found a strong association between lower 

25(OH)D level and elevated total cholesterol. The changes in lipid profile associated with 

a variation in vitamin D status, however, were small and without clinical significance. In 

addition, since obesity and ethnicity are risk factors for both vitamin D insufficiency and 

dyslipidemia, other confounding variables that may affect this relationship should not be 

excluded.   
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Randomized clinical trials evaluating the effects of vitamin D repletion on lipid 

profile have reported conflicting results (25-27).  Ponda et al. (25), assigned 151 vitamin 

D deficient adults at high risk of CVD to either 50,000 IU/week of vitamin D3 or placebo 

for 8 weeks. No improvements on lipid profile were noted. On the contrary, a significant 

increase in LDL cholesterol was reported. The authors remarked that vitamin D 

supplementation may be dangerous for participants at risk of CVD. In contrast, Alkharfy 

et al. (26), examined the effect of 2000 IU/day vitamin D3 supplementation on 499 Saudi 

participants with type 2 diabetes on diet, insulin or oral hypoglycemic agents and 

compared them with a non-diabetic control group. Significant reductions in total 

cholesterol, triglycerides, and systolic blood pressure were found in the treatment groups 

receiving insulin and oral hypoglycemic agents. Similarly, Al-Daghri et al. (27), 

evaluated the effect of 2000 IU/day vitamin D3 supplementation on participants with type 

2 diabetes over a 12 month period. Significant decreases in total cholesterol and LDL 

were shown mainly in women. 

Since finding new strategies to decrease diabetes complications and 

cardiovascular risk among patients with T2D is a major public health goal, testing the 

direct benefit of vitamin D repletion on cardio vascular risk factors is warranted.  

 

Vitamin D Repletion in Participants with Type 2 Diabetes 

Protocols for correction of vitamin D insufficiency in patients with cystic fibrosis, 

chronic kidney disease, hyperparathyroidism, osteoporosis and pregnancy have been 

published (28-32). There is no standard method that has been developed for the repletion 

of vitamin D insufficiency in subjects with T2D yet.  
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Recently, the Endocrine Society announced new clinical practice guidelines of 

standard of care vitamin D supplementation for insufficient populations (1500-2000 IU 

daily for ages 19-70) to achieve sufficiency (25(OH)D >75 nmol/L) and recommended an 

upper limit of 4000 IU as the threshold for safety in healthy individuals. In addition, all 

adults who are vitamin D deficient (25(OH)D < 50 nmol/L) are recommended to 

supplement with 6000 IU/d of vitamin D3 until sufficiency is reached, followed by a 

maintenance therapy of 2000 IU/d. In obese patients, and patients taking medications that 

interfere with vitamin D metabolism, the suggested therapy is to supplement with 6000-

10000 IU/d of vitamin D3 until sufficiency is reached, followed by a maintenance therapy 

of 3000-6000 IU/d (33). The optimal vitamin D supplementation that is required to 

improve insulin resistance and glycemic control for special populations, including those 

with elevated insulin resistance, type 2 diabetes, and individuals with dark skin color with 

vitamin D insufficiency has not been determined. Therefore, it is important to test if the 

new standard of care has an impact on the glucose control of African Americans and 

Hispanics, or if higher dosages are needed. There is concern that vitamin D repletion 

regimens, however, may produce toxicity. Serum 25(OH)D levels > 150 ng/ml have been 

used as the threshold for toxicity (34). 

 

Factors that Affect Vitamin D Insufficiency 

Other factors that may contribute to the high prevalence of vitamin D 

insufficiency in persons with T2D are high melanin levels, lack of sun exposure, 

inadequate diet, obesity, and genetic predisposition to vitamin D insufficiency (35).  
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Sun Exposure 

In a tropical area such as South Florida, it is taken for granted that everybody will 

have enough sun exposure. Sun exposure, although, may vary depending on the 

profession/job performed, the presence of a disability condition that may keep individuals 

inside their homes, exercise habits, etc.  

The sun is the main source of vitamin D. Ultraviolet B (UVB) radiation emitted 

by the sun is converted to vitamin D in the skin. The avoidance of sun exposure may 

explain in part the current vitamin D deficiency epidemic (36). 

Research is still in progress to quantify vitamin D status in specific populations 

and its relation with several diseases. Therefore, the assessment of vitamin D status must 

take into consideration sun exposure behaviors through the use of validated tools. 

Sun exposure questionnaires are commonly used to assess UVB exposure because 

they are easy to use and inexpensive. Observed sun exposure and dosimetry, an objective 

measure of UVB radiation, have been used for comparison (37-40), however, neither of 

them is considered a gold standard (41). The correlations among sun exposure 

questionnaires and observed exposure or dosimetry have been significant but relatively 

low, leaving a big percentage in the variation in UVB unexplained by sun exposure alone 

(37-40). 

Similarly, when sun exposure questionnaires have been used in models to predict 

25(OH)D (the universally accepted biomarker to determine vitamin D status) a large 

percentage of the variation was not explained by sun exposure, leading to a 

misclassification of vitamin D status if based on sun exposure alone (42-44). 
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On the other hand, objective and reliable measures of change in skin color using 

scanners which allow in vivo quantification, have shown significantly high correlations 

with laboratory induced UVB exposure (rs = 0.99) (45). In addition, these devices offer 

high inter/intra rater reliability (46). They may be used as gold standard to validate sun 

exposure questionnaires.  Therefore, it is necessary to validate sun exposure tools in order 

to accurately assess vitamin D status in minorities with T2D. 

 

Skin Color 

Even with similar levels of sun exposure, the skin color is a key determinant in 

vitamin D production. Each ethnic group has a different skin color:  African Americans 

having the greatest amount of melanin compared to the majority of Whites who have the 

least amount of melanin and the fairest skin tone. African Americans are particularly at 

high risk for vitamin D deficiency because their darker skin color limits the amount of 

ultraviolet light that penetrates, thereby reducing cutaneous synthesis of vitamin D3 (47). 

Skin pigmentation can reduce the UVB from penetrating the skin by as much as 99% 

which has the same effect as applying sunscreen of factor 15 (48).  Blood vitamin D 

levels in Blacks are lower than in Whites when exposed to the same levels of sun; and, 

Blacks are found to have lower serum 25(OH)D concentrations both in winter and in 

summer compared to their White counterparts (49, 50).  Weaver et al. (51) estimated that 

Blacks need 1840–2480 IU/d of vitamin D3 supplementation, although, this assumption 

was based on a single study performed in White adults (52).  It may not be a coincidence 

that darker-skinned Asian immigrants (who have a greater amount of melanin) have a 

four to five times higher prevalence of T2D than their British Caucasian counterparts; 
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indicating that increased melanin may cause lower vitamin D status and potential to 

contribute to the development of diabetes (53, 54). Therefore, it is important to control 

for sun exposure when assessing serum vitamin D levels, not only through surveys, but 

also with objective measures of change in skin color. 

 

Vitamin D Intake 

Vitamin D level depends on several modifiable and non-modifiable factors. Skin 

color is the major non-modifiable factor and modifiable factors include sun exposure and 

vitamin D intake (55), however, there are no validated tools to assess vitamin D intake in 

participants with type 2 diabetes. 

Nutrient intake can be estimated by multiple methods, each of them presenting 

their own advantages and disadvantages. Food records are usually considered the gold 

standard. They are administered over several days in order to represent usual intake, 

although, due to the burden of writing down every food and portion size, the period is 

limited (56). If the subject change his/her usual diet during this period, the data may be 

misleading. In addition, a tendency to underreport food intake by obese and overweight 

individuals have been reported (57). In contrast, food frequency questionnaires (FFQ) can 

assess food intake over a longer period of time (usually over a 1 year), can be 

administered by dietitians in situ or self-administered in a short period of time putting 

less burden on participants and may expose habits not evident on food records (58). 

Furthermore, FFQ should include ethnic specific foods and being validated in the specific 

population under study (58). 
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Several vitamin D FFQs have been validated in different populations, however, to 

our knowledge; none have been validated in Hispanic and African American participants 

with T2D. Marshall et al. (56) validated the Iowa Study Targeted Nutrient Semi-

Quantitative Questionnaire and the Block Kids Food Questionnaire for estimating 

calcium and vitamin D intake among children using a 3-day food diary as reference. 

Correlations between the questionnaires and food diary for vitamin D were modest 

(r=0.487 and r=0.512, respectively). Pritchard et al. (59) validated a calcium, vitamin D, 

and vitamin K FFQ that also included assessment of supplement intake in overweight and 

obese post-menopausal women against a 5-day diet record. A strong correlation between 

the FFQ and the diet record for vitamin D was reported (r=0.89). Taylor et al. (58) 

validated a FFQ for assessing calcium and vitamin D intake in adolescent girls with 

anorexia nervosa against a 4-day food record. Strong correlations among the two diet 

collection methods for vitamin D was observed (r=0.78). The analysis was adjusted for 

energy intake. 

Nucci et al. (55) evaluated the effectiveness of a short FFQ in determining 

vitamin D intake against a previously validated long FFQ in a population of 6 to 14 year 

old children. Correlations among the questionnaires was modest at baseline and follow up 

(r=0.35 and r=0.37, respectively). The study took into consideration the sun exposure 

habits of the population. Blalock et al. (60) assessed the validity of a short calcium and 

vitamin D FFQ among 27 university employees against a 7 day food diary and a 

previously validated long FFQ. Vitamin D intakes from the food diary and short FFQ 

were significantly correlated (r=0.72). The positive predictive value for identifying 

participants with low vitamin D intake using a cutoff point of 200 IU/day was 100%. 
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It has been suggested that validation of nutrient intake should be conducted 

against a previously validated diet record but also against a biomarker of nutrient status 

(61). Vitamin D status is determined by serum 25(OH)D levels, however, since UVB 

light is the major contributor of vitamin D, validation studies should be conducted during 

winter where 25(OH)D will be mainly affected by intake and no sun exposure. 

Otherwise, sun exposure should be taken into consideration in the analysis of vitamin D 

intake and 25(OH)D. 

In this regard, Wu et al. (61) validated a 37-item vitamin D FFQ among a 

multiethnic sample of Canadian adults during late winter against a 7-day food diary and 

25(OH)D levels. Intakes were modestly correlated among dietary collection methods and 

25(OH)D (r=0.529 and  r=0.481, respectively). After redefining the serving sizes and 

excluding fortified orange juice from the FFQ, the correlations improved (r=0.602 and 

r=0.520, respectively). 

Since studies suggested that vitamin D deficiency may have a role on insulin 

resistance and T2D progression, it is imperative to validate diet collection tools in this 

particular population. 

 

Specific Aims and Hypotheses 

Specific Aim 1 

The aim of the present study was to determine the effect of supplemental vitamin 

D intake (4000 IU or 6000 IU of Cholecalciferol daily for 6 months) on fasting plasma 

glucose, fasting insulin, A1C, and blood lipids in a sample of African-Americans and 
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Hispanics with T2D and vitamin D insufficiency (25(OH)D<30 ng/ml), 30-70 years of 

age, and living in South Florida.  

Hypothesis 1 

Vitamin D supplementation (4000 IU or 6000 IU of Cholecalciferol daily for 6 

months) will improve fasting plasma glucose, fasting insulin, A1C, and blood lipids in a 

sample of African-Americans and Hispanics with T2D and vitamin D insufficiency 

(25(OH)D < 30 ng/ml), 30-70 years of age, living in South Florida. 

Specific Aim 2 

 To evaluate the efficacy and safety of two vitamin D repletion regimens: 4000 IU 

and 6000 IU of Cholecalciferol daily for 6 months in a sample of African Americans and 

Hispanics with T2D and vitamin D insufficiency (25(OH)D<30 ng/ml), 30-70 years of 

age, and living in South Florida. 

Hypothesis 2 

 Serum vitamin D will reach sufficient levels (25(OH)D≥30 ng/ml) in a sample of 

African Americans and Hispanics with T2D and vitamin D insufficiency, 30-70 years of 

age, living in South Florida; after 6 months of daily supplementation with 4000 IU and 

6000 IU of Cholecalciferol with no reported adverse events .  

Specific Aim 3 

 To validate a sun exposure questionnaire against objective measures of change in 

skin color and to assess its validity in predicting 25(OH)D status in a sample of African 

Americans and Hispanics with T2D. 
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Hypothesis 3 

The sun exposure questionnaire scores will correlate with the change in skin color 

scores due to sun exposure and will predict 25(OH)D status in a sample of African 

Americans and Hispanics with T2D. 

Specific Aim 4 

 To expand the short FFQ developed by Blalock et al. (60) to include specific 

ethnic foods consumed by Hispanics and African Americans in South Florida and to 

examine the criterion validity of the short FFQ by comparing intakes with a previously 

validated long FFQ and serum 25(OH)D levels. 

Hypothesis 4 

The short FFQ questionnaire scores will correlate with a previously validated long 

FFQ scores and serum 25(OH)D levels. 
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CHAPTER II: THE EFFECT OF VITAMIN D SUPPLEMENTATION ON 
BLOOD LIPIDS IN MINORITIES WITH TYPE 2 DIABETES 

 
 

Introduction 

Low levels of vitamin D are prevalent in the US. According to data from the 

National Health and Nutrition Examination Surveys (NHANES) in 2001-2006, 33% of 

the general US population had serum 25(OH)D below 50 nmol/L. In addition, low 

vitamin D levels are common among minorities. For instance, 41% of African Americans 

and 33% of Mexican Americans had serum 25(OH)D below 50 nmol/L compared to 18% 

of non-Hispanic Whites (1).    

Vitamin D is produced in the skin by the action of ultraviolet light. Vitamin D can 

also be obtained from the diet with consumption of vegetable and animal products. 

Vitamin D needs to be activated by hydroxylation in the liver and kidney to form its 

metabolically active form: 1,25(OH)2D3. This metabolite produces its effects by 

activating the vitamin D receptor (VDR) in the cells (2).  

The VDR is present in vascular and myocardial cells which suggest an 

involvement of vitamin D mediated effects in the development of cardiovascular disease 

(CVD) (3). Cardiovascular risk factors such as type 2 diabetes and dyslipidemia are the 

major causes of death in the US, especially among minorities (4). Therefore, it is of 

crucial importance to determine the role of vitamin D supplementation on the prevention 

of CVD. 

Associations among vitamin D insufficiency and lower high density lipoprotein 

(HDL), higher triglycerides, and hypercholesterolemia have been reported (5-7). Skaaby 

et al. (7), conducted a large prospective evaluation of serum vitamin D level and blood 
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lipids. They found a strong association between lower serum 25(OH)D level and elevated 

total cholesterol. The changes in lipid profile associated with a variation in vitamin D 

status, however, were small and without clinical significance. In addition, since obesity 

and ethnicity are risk factors for both vitamin D insufficiency and dyslipidemia, 

confounding for these variables should not be excluded.   

Randomized clinical trials evaluating the effects of vitamin D repletion on lipid 

panel have reported conflicting results (8-10).  Ponda et al. (8), assigned 151 vitamin D 

deficient adults at high risk of CVD to either 50,000 IU/week of vitamin D3 or placebo 

for 8 weeks. No improvements on lipid panel were noted. On the contrary, a significant 

increase in low density lipoprotein (LDL) cholesterol was reported. The authors remarked 

that vitamin D supplementation may be dangerous for participants at risk of CVD. In 

contrast, Alkharfy et al. (9), examined the effect of 2000 IU/day vitamin D3 

supplementation on 499 Saudi participants with type 2 diabetes on diet, insulin or oral 

hypoglycemic agents and compared them with a non-diabetic control group. Significant 

reductions in total cholesterol, triglycerides, and systolic blood pressure were found in the 

insulin and oral hypoglycemic groups. Similarly, Al-Daghri et al. (10), evaluated the 

effect of 2000 IU/day vitamin D3 supplementation on participants with type 2 diabetes 

over a 12 month period. Significant decreases in total cholesterol and LDL were shown 

mainly in women. 

Patients with type 2 diabetes are more likely to develop hypertension, 

dyslipidemia, arteriosclerosis and all of the complications related to myocardial infarction 

and stroke (11). Since finding new strategies to decrease diabetes complications and 

cardiovascular risk among patients with type 2 diabetes is a major public health goal, 



24 
 

testing the direct benefit of vitamin D repletion on blood lipids is warranted. In addition, 

most of the current studies have been conducted in Caucasian populations. Since African 

Americans and Hispanics are more prone to both vitamin D insufficiency and type 2 

diabetes compared to Caucasians, it is important to test the effect of vitamin D repletion 

on these high risk populations.    

The aim of the present study was to determine the effect of supplemental vitamin 

D intake (4000 IU/day or 6000 IU/day of vitamin D3 over a 6 month period) on blood 

lipids in a sample of African Americans and Hispanics with type 2 diabetes and vitamin 

D insufficiency (25(OH)D<30 ng/ml) living in South Florida. 

 

Methods 

Subject Recruitment 

An intervention study to assess the effects of vitamin D supplementation (4000 

IU/day and 6000 IU/day) over six months on cardiovascular disease markers among a 

sample of African Americans and Hispanics with T2D was conducted. The present study 

analyzed the data collected at screening (serum 25(OH)D), baseline (blood lipids), 3 

months (serum 25(OH)D and blood lipids), and 6 months (serum 25(OH)D and blood 

lipids). 

The study consisted of two phases: phase one included the screening of 

individuals, phase two included the recruitment of individuals who met inclusion criteria 

and beginning of the vitamin D intervention trial. Inclusion criteria were vitamin D 

insufficiency (25(OH)D< 30 ng/ml), 30-70 years of age, African American or Hispanic 

with confirmed T2D. Exclusion criteria were taking vitamin D supplements other than 
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standard daily multivitamin formula, being pregnant or lactating, having thyroid, hepatic, 

renal dysfunction, cancer, HIV, or major psychiatric disorders.  

Flyers explaining the purpose of the study, inclusion/exclusion criteria and the 

investigators’ emails and phone numbers were distributed in highly visited community 

areas such as churches, supermarkets, and clinics. Two clinics were visited every week 

for recruitment purposes: Borinquen Health Care Center and Clinical Care Medical 

Center. When volunteer participants called the investigators back, purposes of the study 

were explained and specific questions were asked to assure compliance with inclusion 

criteria. All qualified participants were invited to take part in a morning session at the 

Human Nutrition Laboratory at Florida International University (FIU) for fasting blood 

sampling to screen for vitamin D insufficiency. The study was approved by IRB at FIU. 

All participants were asked to sign an informed consent form previous to screening data 

collection. Only participants with confirmed T2D diagnosis by a physician were eligible 

for the study. All participants were screened for vitamin D insufficiency in phase one. 

They were contacted either to continue in the study or to inform them that they were 

disqualified based on their vitamin D levels. 

Participants in both groups were required to take either 4000 IU or 6000 IU of 

vitamin D (Cholecalciferol) per day given in the form of a pill in a single daily dose. 

Compliance was determined by returned pill count at follow ups. When less than 80% of 

the pills were taken, the subject was classified as non-compliant. Adverse events were 

recorded at each visit. Each participant was seen 4 times; at screening, baseline, 3 

months, and 6 months. Serum 25(OH)D was measured at screening, 3 months, and 6 
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months. Blood lipids were measured at baseline, 3 months, and 6 months. The time spam 

between screening and baseline was one week. 

Total study lasted for 25 weeks for each participant from screening to final 

assessment. The study started in June 2011 and was completed on September 2013.  

Ninety two participants were screened. Seventy five qualified for the intervention (n=50 

for 4000 IU/day treatment and n=25 for 6000 IU/day treatment). Three participants 

qualified for the study based on their vitamin D status but did not attend the 3 month and 

6 month follow ups (all in the 4000 IU group). Eight participants attended the 3 month 

but not the 6 month follow up (5 in the 4000 IU and 3 in the 6000 IU group, 

respectively). Five participants completed the study but were non-compliant (3 in the 

4000 IU and 2 in the 6000 IU treatment, respectively). Since an intent to treat approach 

was followed, all 75 participants were included in the present study. 

 

Blood Collection 

Venous blood (15 ml) was collected from each subject by a certified phlebotomist 

using standard laboratory methods at each study point. After coagulation, blood was 

centrifuged at 2500 RPM for 30 minutes. Plasma total cholesterol, triglycerides, LDL, 

and HDL cholesterol were assayed by enzymatic methods (Cobas Mira, Roche 

Diagnostics, Indianapolis, IN). Serum vitamin D concentrations were measured with an 

enzyme-immunoassay kit by absorbance (Immunodiagnostic Systems Scottsdale, AZ). 

Vitamin D values were tested at screening, 3 month and 6 month visits. Total cholesterol, 

triglycerides, LDL, and HDL cholesterol were tested at baseline, 3 month, and 6 month 

visits. 
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Socio-demographic Questionnaire 

Participants were asked to complete the standard questionnaire on site. Trained 

bilingual interviewers (English and Spanish) administered the questionnaires in the 

language of preference of the participant. Data were collected using a socio-demographic 

questionnaire which included questions related to gender, age, education level, years with 

diabetes, smoking, and medication use. 

 

Anthropometric Measurements 

Height and weight were measured using a SECA clinical balance scale (Seca 

Corp, Columbia, MD). Body mass index (BMI) was calculated as weight in kg/height in 

m2. BMI was calculated at baseline, 3 month, and at 6 month visits. Only baseline values 

were used for the analysis due to the lack of significant changes in BMI at 3 months and 

6 months. 

 

Sun Exposure Questionnaire  

The sun exposure questionnaire developed by Hanwell et al. (12) was applied 

following the original rubric. Time spent outdoors during the previous week (0≤5 

minutes, 1=5-30 minutes and 2≥30 min) was self-reported. Four options for skin exposed 

while outdoors were offered (1=face and hands, 2=face, hands and arms, 3=face, hands 

and legs and 4=bathing suit). The daily sun exposure score for each day was calculated 

by multiplying the time spent outdoors score times the skin exposed while outdoors 

score.  The scale for each day ranged from 0 to 8. The weekly sun exposure was 

calculated by adding the daily scores (min =0, max=56). The questionnaire was 
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administered at baseline, 3 months, and 6 months, but because it did not change 

significantly, only baseline values were used in the analysis. Since the sun is the main 

source of vitamin D, baseline sun exposure may have an effect on our final outcomes. 

Therefore, analysis was adjusted for sun exposure. 

 

Skin Color 

In order to have an objective measure of sun exposure, skin color was determined 

by reflectance colorimetry using the SmartProbe 400 (IMS Inc. USA). This instrument 

uses the International Commission on Illumination Scale which ranges from 0 (black) to 

100 (white) for skin color. Two readings at each measurement site for each participant 

were taken: two on the dorsal aspect of the wrist of the right hand (area most exposed to 

sun), two on the inside of the right upper arm (area less exposed to the sun). The mean 

values of the two readings at each measurement site were used for analysis. Data were 

collected at baseline, 3 months, and 6 months, but because it did not change significantly, 

only baseline values were used in the present analysis. Since participants with darker skin 

color tend to have lower levels of serum 25(OH)D, skin color may have an effect on lipid 

profile. Therefore, analysis of the effect of vitamin D supplementation on lipid panel was 

adjusted for skin color. 

 

Assessment of Dietary Intake  

Dietary intake was determined using the long food frequency questionnaire (FFQ) 

developed by Walter Willett (13). This FFQ has been validated in different ethnic groups 

and, also, specifically in Cuban-Americans in South Florida (14). Participants self-
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reported the average consumption of specific amount of foods over the past 12 months. 

Frequencies ranged from “never” to “six or more servings per day”. The FFQ also 

assessed the frequency use of multivitamin/mineral supplements, salt, sugar, alcohol and 

vitamin D intake. The questionnaire was administered at baseline. 

 

Statistical analysis 

Descriptive statistics were used for baseline characteristics. Numerical normally 

distributed data and categorical data were compared using independent t-test and Chi-

Squared test, respectively. Intent to treat analysis was used to analyze the effect of 

vitamin D on the outcome variables.  

Main variables of the study were: plasma total cholesterol, triglycerides, LDL, 

and HDL cholesterol. All variables were input as continuous in the analysis. Control 

variables included: BMI, gender, age, smoking, years with diabetes, sun exposure score, 

vitamin D intake, fasting plasma glucose, lipid lowering medication use, and skin color. 

Mixed model was used to compare treatment effects (4000 IU vs. 6000 IU) on the 

outcome variables. Bonferroni multiple comparison test was used to detect significant 

changes from baseline, 3 months, and 6 months on the outcome variables with and 

without adjustment for age, gender, years with diabetes, smoking, BMI, vitamin D intake, 

sun exposure score, upper arm skin color, forearm skin color, fasting plasma glucose, and 

lipid lowering medication use. Significance was set at p<0.05 and all analyses were two 

sided. Statistical analysis was conducted using SPSS 18.0 (Chicago).  
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Results 

Groups were different at baseline on BMI (34.72 ± 6.98 kg/m2 vs. 30.74 ± 4.93 

kg/m2, P=0.013 for 4000 IU and 6000 IU; respectively) and HDL cholesterol (50.64 ± 

12.20 mg/dl vs. 42.44 ± 10.40 mg/dl, P=0.004 for 4000 IU and 6000 IU; respectively) 

(Table 1). 

There was no significant difference between groups regarding serum 25(OH)D 

(P=0.225). However, significant improvements in serum 25(OH)D levels were seen from 

baseline to 3 month and 6 months, respectively in both treatments (from 22.25 ± 7.19 to 

37.34 ± 12.31 and 37.99 ± 13.22, P<0.05 in the 4000 IU group; from 23.74 ± 5.09 to 

43.20 ± 15.94 and 40.62 ± 19.39, P<0.05 in the 6000 IU group) (Table 2). 

Differences between 3 months and 6 months levels for serum 25(OH)D were not 

significant in both treatments (P>0.05). In the 6000 IU group, the value showed a non-

significant decline at 6 months compared to the 3 months follow up. 

In the unadjusted model, the difference between and within groups was significant 

for total cholesterol (P=0.027 and P=0.044, respectively). However, the interaction 

between time and treatment was not significant (P=0.653) (Table 2). The multiple 

comparisons analysis showed a borderline not significant decrease in total cholesterol for 

the 4000 IU group at 6 months (from 213.08 ± 42.30 to 199.84 ± 32.79 mg/dl, P=0.052) 

and a significant decrease for the 6000 IU group at 6 months (from 193.88 ± 41.03 to 

180.48 ± 27.53 mg/dl, P=0.040). However, when the model was adjusted for 

confounders, significance was lost (Table 3). 
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Similarly, in the unadjusted model (Table 2), a significant change for triglycerides 

was observed at 6 months in the 6000 IU group (from 201.44 ± 91.35 to 172.92 ± 76.87 

mg/dl, P=0.037). The significance was lost after adjusting for confounders (Table 3). 

In the adjusted model, only serum 25(OH)D changed significantly over time 

(Table 3). Adherence defined as consumption of more than 80% of supplied vitamin D 

pills was 94% for the 4000 IU group and 92% for the 6000 IU group without any 

differences between groups. No adverse events were reported during the course of the 

study. 

Three participants stopped taking lipid lowering medication during the course of 

the study due to lack of money to buy the refills (2 in the 4000 IU group and 1 in the 

6000 IU group). 

 

Discussion 

In the current study, vitamin D3 supplementation at 6000 IU/day significantly 

reduced total cholesterol, and triglycerides in a sample of Hispanics and African 

Americans with type 2 diabetes and vitamin D insufficiency. However, the significance 

was lost after adjusting for confounders.  

In fact, vitamin D insufficiency is related to other cardiovascular risk factors such 

as obesity, smoking, and unhealthy diet (15, 16). Regarding the strong association 

between obesity and vitamin D insufficiency, it has been hypothesized that vitamin D is 

stored in the fat tissue and is not bioavailable in obese participants resulting in low levels 

of serum vitamin D despite sufficient intake (15). In this context, if obesity is corrected 

we may see improvements in both serum vitamin D levels and lipid profile.  
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Our results support this hypothesis. The participants were obese based on BMI 

classification. The positive effect of vitamin D supplementation on total cholesterol and 

triglycerides observed in the 6000 IU/day group disappeared when the model was 

adjusted for covariates such as smoking, age, gender, skin color, sun exposure, lipid 

lowering medication, years with diabetes, and BMI. Therefore, our results suggest that 

the association between vitamin D insufficiency and dyslipidemia may be mediated by 

other cardiovascular risk factors. 

Recent clinical trials examining the effect of vitamin D supplementation on lipid 

profile among individuals with and without type 2 diabetes and vitamin D insufficiency 

have been inconsistent (8,9,17). Some studies have found significant improvements in 

lipid profile after vitamin D supplementation. However, none of them adjusted for 

covariates in the analysis. Alkharfy et al. (9), randomly assigned 499 participants with 

type 2 diabetes to 8 groups: control (n=151), rosiglitazone alone (n=49), diet (n=15), 

insulin alone (n=55), insulin + orals (n=12), metformin alone (n=121), oral agents 

combination (n=37), and sulphonylurea alone (n=59). Participants received 2000 IU/day 

of vitamin D3 for 12 months. In the insulin alone group, total cholesterol decreased 

significantly in women. In the insulin + orals group, triglycerides and total cholesterol 

decreased significantly after 12 month. This study provides a view of how vitamin D 

supplementation can interact with certain drugs commonly used in patients with type 2 

diabetes regarding lipid lowering benefits. In contrast, Ponda et al. (8), randomly 

assigned 151 vitamin D deficient participants at high risk for CVD to either 50 000 IU of 

vitamin D3 weekly or placebo. Vitamin D failed to improve lipid profile. In addition, a 

significant increase in LDL was noted which significantly correlated with a decrease in 



33 
 

parathyroid hormone (PTH) levels. Similarly, Salehpour et al. (17), randomly distributed 

77 healthy premenopausal overweight and obese women to either 25µg/day of vitamin 

D3 or placebo for 12 weeks. Significant increases in total cholesterol, LDL and HDL 

were reported. This study excluded participants taking any antihypertensive and lipid 

lowering medication. Since it is difficult to evaluate the effect of vitamin D 

supplementation on lipid profile when participants are already taking lipid lowering 

medication, this study provided a new insight into the raw metabolic effects of vitamin D. 

Authors from the last two studies warned that vitamin D may have both positive and 

negative effects on different cholesterol particles. Therefore, it should be monitored and 

used with caution among participants at risk of CVD. Conflicting results may be a 

consequence of different dosages used, different populations, different duration of 

treatment, and lack of control for obesity, physical activity, sun exposure, vitamin D 

intake, and medication usage.  

Regarding lipid metabolism, studies have shown that vitamin D can reduce 

hepatic triglyceride synthesis and increase uptake by peripheral tissues due to increased 

intestinal calcium absorption (18, 19). Similarly, vitamin D promotes the formation of 

large HDL particles due to an increase in apolipoprotein A1, which increases reverse 

cholesterol transport (20). Vitamin D also increases the lipolytic activity of heparin and 

reduces VLDL-cholesterol synthesis (18). 

In our study, the positive effect of vitamin D supplementation on total cholesterol 

and triglycerides was observed only in the 6000 IU group despite both groups reaching 

similar serum vitamin D levels. It may be that sufficient vitamin D status was achieved 

sooner in the 6000 IU/group. Therefore, participants were exposed to sufficient vitamin D 
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for a longer period of time. The half-life of vitamin D3 is about 2 months. Therefore, 

maintaining a plateau of sufficient 25(OH)D levels for more than 20 weeks is needed in 

order to see improvements on tissues not related to calcium metabolism (21). 

Our study has several strengths. First, to our knowledge this is the first study that 

analysed vitamin D supplementation effects on Hispanics and African Americans with 

T2D. Second, the dosages used were large enough to raise serum vitamin D to normal 

levels in a population that was insufficient at baseline. Third, analysis was adjusted for a 

wide range of covariates related to vitamin D metabolism. Lastly, compliance in our 

study was high with 94% for the 4000 IU group and 92% for the 6000 IU group without 

any differences between groups. No adverse events were reported during the course of 

the study. 

Limitations of our study included. First, participants were not randomly 

distributed among groups. Second, there was an imbalance in baseline characteristics for 

BMI and HDL-cholesterol. Third, there was a difference in sample size between groups 

which may have decreased the statistical power. Fourth, a longer duration of treatment 

may be needed to see more drastic effects on lipid profile. Fifth, the number of African 

American participants was not large enough to analyze data by ethnicity. Lastly, 64% and 

68% of participants were taking lipid lowering medication in the 4000 IU and 6000 IU 

groups, respectively. Medication use may mask the effect of vitamin D supplementation. 

We tried to control for it by advising participants to keep their medication use constant 

during the study. However, this panorama reflects common clinical practice among 

patients with type 2 diabetes. 
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Finally, our results suggest that the positive effect of vitamin D supplementation 

on lipid profile may be mediated by other cofactors related to vitamin D metabolism 

among Hispanic and African American participants with type 2 diabetes. Longer, well 

designed randomized clinical trials are needed to confirm these results.  

 

 
Table 1. Baseline characteristics of participants prior to vitamin D repletion treatments 

 
Characteristic Treatment  
 4000 IU (n=50) 6000 IU (n=25) P-value 
    
25(OH)D (ng/ml)     22.25 ± 7.19     23.74 ± 5.09 0.302 
FGP (mg/dl) 188.76 ± 87.19   168.16 ± 55.94 0.220 
Age (years)     54.76 ± 8.56   54.17 ± 10.99 0.999 
Gender (Female %)     48%      52% 0.809 
Years with T2D        6.48 ± 5.18       5.48 ± 5.93 0.478 
Smoking (yes %)      10%      28%     0.091 
BMI (kg/m2)     34.72 ± 6.98     30.74 ± 4.93 0.013 
Total Cholesterol (mg/dl)   213.08 ± 42.30   193.88 ± 41.03 0.065 
Triglycerides (mg/dl)   182.98 ± 110.11   201.44 ± 91.35 0.445 
LDL cholesterol (mg/dl)   128.34 ± 40.54   115.56 ± 34.53 0.160 
HDL cholesterol (mg/dl)     50.64 ± 12.20     42.44 ± 10.40 0.004 
Vitamin D intake (IU/day)   316.82 ± 251.70   301.97 ± 225.49 0.797 
Sun exposure score     20.06 ± 14.92     18.68 ± 15.52 0.715 
Upper arm skin color      58.67 ± 9.54     62.09 ± 5.65 0.056 
Forearm skin color      54.82 ± 8.51     54.37 ± 4.37 0.099 
Lipid lowering meds              64%              68% 0.215 
Continues variables are presented as mean ± SD and categorical variables as %.  
25(OH)D: serum vitamin D, FPG: fasting plasma glucose, T2D: type 2 diabetes, BMI: 
body mass index, LDL: low density lipoprotein, HDL: high density lipoprotein. 
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Table 2. Group comparisons of metabolic parameters at different time points without 
adjusting for covariates 

 
 4000 IU (n=50) 6000 IU (n=25) 

25(OH)D (ng/ml)   
Baseline 
3 months 
6 months 

P-value groups = 0.225  

           22.25 ± 7.19 
  37.34 ± 12.31* 

  37.99 ± 13.22* 

P-value time = 0.006 

           23.74 ± 5.09 
43.20 ± 15.94* 

40.62 ± 19.39* 

P-value interaction = 0.238 
    Total Cholesterol (mg/dl) 

Baseline 
3 months 
6 months 

P-value groups = 0.027 
Triglycerides (mg/dl)  

 
 213.08 ± 42.30 
209.26 ± 43.62 
 199.84 ± 32.79 

P-value time = 0.044 
 

 
          193.88 ± 41.03 

184.68 ± 50.89 
  180.48 ± 27.53* 

P-value interaction = 0.653 
 

Baseline 182.98 ± 110.11 201.44 ± 91.35 
3 months 174.62 ± 109.83 192.20 ± 94.49 
6 months 187.08 ± 151.26  172.92 ± 76.87* 

P-value groups = 0.221 P-value time = 0.117 P-value interaction = 0.227 
LDL Cholesterol   

Baseline 128.34 ± 40.54 115.56 ± 34.53 
3 months 125.88 ± 40.90 120.00 ± 35.37 
6 months 120.76 ± 30.35 121.96 ± 40.60 

P-value groups = 0.542 P-value time = 0.685 P-value interaction = 0.354 
HDL Cholesterol   

Baseline 50.64 ± 12.20 42.44 ± 10.40 
3 months 48.92 ± 11.12 42.12 ± 12.35 
6 months 46.98 ± 10.37 42.12 ± 12.76 

P-value groups = 0.072 P-value time = 0.214 P-value interaction = 0.351 
Data represented by mean ± standard error. * Represents significant differences from 
baseline. Level of significance is at P<0.05. 25(OH)D: serum vitamin D, LDL: low 
density lipoprotein, HDL: high density lipoprotein.  
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Table 3. Group comparisons of metabolic parameters at different time points adjusting 

for covariates 
 

 4000 IU (n=50) 6000 IU (n=25) 
25(OH)D (ng/ml)   

Baseline 
3 months 
6 months 

P-value groups = 0.232  

           22.25 ± 7.19 
  37.34 ± 12.31* 

  37.99 ± 13.22* 

P-value time = 0.019 

           23.74 ± 5.09 
43.20 ± 15.94* 

40.62 ± 19.39* 

P-value interaction = 0.352 
    Total Cholesterol (mg/dl) 

Baseline 
3 months 
6 months 

P-value groups = 0.204 
Triglycerides (mg/dl)  

 
 213.08 ± 42.30 
209.26 ± 43.62 
 199.84 ± 32.79 

P-value time = 0.954 
 

 
          193.88 ± 41.03 

184.68 ± 50.89 
 180.48 ± 27.53 

P-value interaction = 0.605 
 

Baseline 182.98 ± 110.11 201.44 ± 91.35 
3 months 174.62 ± 109.83 192.20 ± 94.49 
6 months 187.08 ± 151.26  172.92 ± 76.87 

P-value groups = 0.962 P-value time = 0.250 P-value interaction = 0.167 
LDL Cholesterol   

Baseline 128.34 ± 40.54 115.56 ± 34.53 
3 months 125.88 ± 40.90 120.00 ± 35.37 
6 months 120.76 ± 30.35 121.96 ± 40.60 

P-value groups = 0.969 P-value time = 0.872 P-value interaction = 0.423 
HDL Cholesterol   

Baseline 50.64 ± 12.20 42.44 ± 10.40 
3 months 48.92 ± 11.12 42.12 ± 12.35 
6 months 46.98 ± 10.37 42.12 ± 12.76 

P-value groups = 0.088 P-value time = 0.188 P-value interaction = 0.118 
Data represented by mean ± standard error. * Represents significant differences from 
baseline. Level of significance is at P<0.05. 25(OH)D: serum vitamin D, LDL: low 
density lipoprotein, HDL: high density lipoprotein. Analysis was adjusted for age, 
gender, years with diabetes, smoking, BMI, vitamin D intake, sun exposure score, fasting 
plasma glucose, upper arm skin color, forearm skin color, and lipid lowering medication 
use. 
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CHAPTER III: THE EFFECT OF VITAMIN D SUPPLEMENTATION ON 
GLUCOSE HOMEOSTASIS IN MINORITIES WITH TYPE 2 DIABETES 

 

Introduction 

Low levels of vitamin D are prevalent in the US. According to data from the 

National Health and Nutrition Examination Surveys (NHANES) in 2001-2006, 33% of 

the general US population had serum 25(OH)D below 50 nmol/L. In addition, low 

vitamin D levels are common among minorities. For instance, 41% of African Americans 

and 33% of Mexican Americans had serum 25(OH)D below 50 nmol/L compared to 18% 

of non-Hispanic Whites (1).    

Vitamin D is produced in the skin by the action of ultraviolet light. Vitamin D can 

also be obtained from the diet with consumption of vegetable and animal products. 

Vitamin D3 needs to be activated by hydroxylation in the liver and kidney to form its 

metabolically active form: 1,25(OH)2D3. This metabolite produces its effects by 

activating the vitamin D receptor (VDR) in the cells (2).  

With respect to diabetes, the VDRs are found in genes encoding proteins 

important for beta cell function which may have some effect on glucose homeostasis. For 

instance, vitamin D increases the calcium concentration in the cell which may translate 

into better glucose uptake. Similarly, vitamin D has anti-inflammatory properties that 

may reduce the chronic inflammation seen in T2D (3). Therefore, providing vitamin D to 

individuals with T2D may have an effect on glucose homeostasis.  
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In fact, several interventional studies providing vitamin D to participants at risk or 

with T2D have been conducted with inconsistent results. Borissova et al (4) examined the 

effect of vitamin D3 supplementation on insulin resistance and insulin secretion in 10 

patients with T2D. Seventeen age and gender-matched individuals without T2D served as 

controls.  The intervention group received 1332 IU of cholecalciferol daily for 1 month. 

Fasting plasma insulin secretion increased significantly by 34.3%, however, the decrease 

in insulin resistance was not significant. The small sample size and short duration of 

treatment were the major limitations of this study. In similar studies, vitamin D 

supplementation in men with T2D improved insulin secretion (5, 6).  Inomata et al. (5) 

provided 2ug/d (80 IU/day) of alphacalcidiol versus placebo to 14 Japanese males with 

T2D, with mean age of 54.3±6.4 years for 3 weeks. The area under the oral glucose 

tolerance test curve was used as a measure of insulin secretion. Results showed improved 

insulin secretion. Limitations of this study were lack of measure of plasma vitamin D 

concentrations and the small sample size. Similarly, Orwoll et al. (6) provided 1ug/d (40 

IU/d) of 1,25(OH)2 D versus placebo to 35 adults recently diagnosed with T2D (within 3 

years) for 14 days, with mean age of 61±4.3  years. Insulin secretion was determined 

from the area under the curve for the glucose tolerance test after a meal challenge. A 

tendency for better insulin secretion was observed. The main limitations of this study 

were the short duration of the intervention and the lack of assessment of serum vitamin D 

post-intervention.  

In contrast, Jorde et al. (7) provided 40,000 IU per week versus placebo to 32 

participants with T2D for 6 months. No significant change on insulin, fasting plasma 

glucose or A1C was noted. Participants in this study were not vitamin D insufficient, 
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suggesting that vitamin D supplementation may have no effect on participants that are not 

vitamin D insufficient. Conflicting reports may be a consequence of different 

characteristics of the populations, inadequate dosages, different forms of vitamin D 

supplements used, short duration of the studies, different outcome variables, and lack of 

control of serum vitamin D levels pre and post intervention. 

The vast majority of these studies have been conducted in non-Hispanic White 

populations. Prevalence of hypovitaminosis D however, is found to be higher in Blacks 

and Hispanics as compared to Whites (8-10). Since minorities such as African Americans 

and Hispanics have higher risk of both T2D and vitamin D deficiency as compared to 

Caucasians (11), it is important to determine the effect of vitamin D supplementation in 

this high risk population.  

The aim of the present study was to determine the effect of supplemental vitamin 

D intake (4000 IU or 6000 IU of Cholecalciferol daily for 6 months) on fasting plasma 

glucose, fasting insulin, and A1C in a sample of African-Americans and Hispanics with 

T2D and vitamin D insufficiency (25(OH)D<30 ng/ml), 30-70 years of age, and living in 

South Florida. 

 

Methods 

Subject Recruitment 

An intervention study to assess the effects of vitamin D supplementation (4000 

IU/day and 6000 IU/day) over six months on cardiovascular disease markers among a 

sample of African Americans and Hispanics with T2D was conducted. The present study 

analyzed the data collected at screening (serum 25(OH)D), baseline (fasting plasma 
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glucose, fasting insulin, and A1C), 3 months (serum 25(OH)D, fasting plasma glucose, 

fasting insulin, and A1C), and 6 months (serum 25(OH)D, fasting plasma glucose, fasting 

insulin, and A1C). 

The study consisted of two phases: phase one included the screening of 

individuals, phase two included the recruitment of individuals who met inclusion criteria 

and beginning of the vitamin D intervention trial. Inclusion criteria were vitamin D 

insufficiency (25(OH)D< 30 ng/ml), 30-70 years of age, African American or Hispanic 

with confirmed T2D. Exclusion criteria were taking vitamin D supplements other than 

standard daily multivitamin formula, being pregnant or lactating, having thyroid, hepatic, 

renal dysfunction, cancer, HIV, or major psychiatric disorders.  

Flyers explaining the purpose of the study, inclusion/exclusion criteria and the 

investigators’ emails and phone numbers were distributed in highly visited community 

areas such as churches, supermarkets, and clinics. Two clinics were visited every week 

for recruitment purposes: Borinquen Health Care Center and Clinical Care Medical 

Center. When volunteer participants called the investigators back, purposes of the study 

were explained and specific questions were asked to assure compliance with inclusion 

criteria. All qualified participants were invited to take part in a morning session at the 

Human Nutrition Laboratory at Florida International University (FIU) for fasting blood 

sampling to screen for vitamin D insufficiency. The study was approved by IRB at FIU. 

All participants were asked to sign an informed consent form previous to screening data 

collection. Only participants with confirmed T2D diagnosis by a physician were eligible 

for the study. All participants were screened for vitamin D insufficiency in phase one. 
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They were contacted either to continue in the study or to inform them that they were 

disqualified based on their vitamin D levels. 

Participants in both groups were required to take either 4000 IU or 6000 IU of 

vitamin D (Cholecalciferol) per day given in the form of a pill in a single daily dose. 

Compliance was determined by returned pill count at follow ups. When less than 80% of 

the pills were taken, the subject was classified as non-compliant. Adverse events were 

recorded at each visit. Each participant was seen 4 times; at screening, baseline, 3 

months, and 6 months. Serum 25(OH)D was measured at screening, 3 months, and 6 

months. Fasting plasma glucose, fasting insulin, and A1C were measured at baseline, 3 

months, and 6 months visits. The time spam between screening and baseline was one 

week. 

Total study lasted for 25 weeks for each participant from screening to final 

assessment. The study started in June 2011 and was completed on September 2013.  

Ninety two participants were screened. Seventy five qualified for the intervention (n=50 

for 4000 IU/day treatment and n=25 for 6000 IU/day treatment). Three participants 

qualified for the study based on their vitamin D status but did not attend the 3 month and 

6 month follow ups (all in the 4000 IU group). Eight participants attended the 3 month 

but not the 6 month follow up (5 in the 4000 IU and 3 in the 6000 IU group, 

respectively). Five participants completed the study but were non-compliant (3 in the 

4000 IU and 2 in the 6000 IU treatment, respectively). Since an intent to treat approach 

was followed, all 75 participants were included in the present study. 

 

Blood Collection 
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Venous blood (15 ml) was collected from each subject by a certified phlebotomist 

using standard laboratory methods at each study point. After coagulation, blood was 

centrifuged at 2500 RPM for 30 minutes. The plasma glucose concentration was 

measured by hexokinase enzymatic method. A1C was measured by the DCA2000+ 

system (Bayer Corporation, Diagnostics Division, N.Y.) using the monoclonal antibody 

method. Insulin in fasting blood was determined by radioimmunoassay using an insulin-

specific kit (Linco Research Inc., St. Charles, MO). Serum vitamin D concentrations 

were measured with an enzyme-immunoassay kit by absorbance (Immunodiagnostic 

Systems Scottsdale, AZ). Vitamin D values were tested at screening, 3 month and 6 

month visits. Fasting plasma glucose, fasting insulin, and A1C were tested at baseline, 3 

month, and 6 month visits. 

 

Socio-demographic Questionnaire 

Participants were asked to fill out standard questionnaires on site. Trained 

interviewers bilingual in English and Spanish administered the questionnaires in the 

language of preference of the participants. Data were collected using a socio-

demographic questionnaire which includes questions related to gender, age, education, 

years with diabetes, smoking, and medications at baseline. 

 

Anthropometric Measurements 

Height and weight were measured using a SECA clinical balance scale (Seca 

Corp, Columbia, MD). Body mass index (BMI) was calculated as weight in kg/height in 

m2. BMI was calculated for baseline, 3 month, and 6 month visits. Only baseline values 
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were used for the analysis due to the lack of significant changes in BMI at 3 months and 

6 months. 

 

 

Sun Exposure Questionnaire 

The sun exposure questionnaire developed by Hanwell et al. (12) was applied 

following the original rubric. Time spent outdoors during the previous week (0≤5 

minutes, 1=5-30 minutes and 2= >30 min) was self-reported. Four options for skin 

exposed while outdoors were offered (1=face and hands, 2=face, hands and arms, 3=face, 

hands and legs and 4=bathing suit). The daily sun exposure score for each day was 

calculated by multiplying the time spent outdoors score times the skin exposed while 

outdoors score.  The scale for each day ranged from 0 to 8. The weekly sun exposure was 

calculated by adding the daily scores (min =0, max=56). The questionnaire was 

administered at baseline, 3 months, and 6 months, but because it did not change 

significantly, only baseline values were used in the analysis. Since the sun is the main 

source of vitamin D, baseline sun exposure may have an effect on our final outcomes. 

Therefore, analysis was adjusted for sun exposure. 

 

Skin Color 

In order to have an objective measure of sun exposure, skin color was determined 

by reflectance colorimetry using the SmartProbe 400 (IMS Inc. USA). This instrument 

uses the International Commission on Illumination Scale which ranges from 0 (black) to 

100 (white) for skin color. Two readings at each measurement site for each participant 



47 
 

were taken: two on the dorsal aspect of the wrist of the right hand (area most exposed to 

sun), two on the inside of the right upper arm (area less exposed to the sun). The mean 

values of the two readings at each measurement site were used for analysis. Data were 

collected at baseline, 3 months, and 6 months, but because it did not change significantly, 

only baseline values were used in the present analysis. Since participants with darker skin 

color tend to have lower levels of serum 25(OH)D, skin color may have an effect on 

glucose homeostasis. Therefore, analysis of the effect of vitamin D supplementation on 

lipid panel was adjusted for skin color. 

 

Assessment of Dietary Intake  

Dietary intake was determined using the long food frequency questionnaire (FFQ) 

developed by Walter Willett (13). This FFQ has been validated in different ethnic groups 

and, also, specifically in Cuban-Americans in South Florida (14). Participants self-

reported the average consumption of specific amount of foods over the past 12 months. 

Frequencies ranged from “never” to “six or more servings per day”. The FFQ also 

assessed the frequency use of multivitamin/mineral supplements, salt, sugar, alcohol and 

vitamin D intake. The questionnaire was administered at baseline. 

 

Statistical analysis 

Descriptive statistics were used for baseline characteristics. Numerical normally 

distributed data and categorical data were compared using independent t-test and Chi-

Squared test, respectively. Intent to treat analyses was used to analyze the effect of 

vitamin D on the outcome variables.  
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Main variables of the study were: fasting plasma glucose, A1C, and fasting 

insulin. All the variables were input as continuous in the analysis. Control variables 

included: BMI, gender, age, smoking, years with diabetes, sun exposure score, vitamin D 

intake, and skin color. 

Mixed model was used to compare treatment effects (4000 IU vs. 6000 IU) on the 

outcome variables. Bonferroni multiple comparison tests was used to detect significant 

changes from baseline, 3 months, and 6 months on the outcome variables with and 

without adjusting for age, gender, years with diabetes, smoking, BMI, vitamin D intake, 

sun exposure score, upper arm skin color, and forearm skin color. Significance was set at 

p<0.05 and all analyses were two sided. Statistical analysis was conducted using SPSS 

18.0 (Chicago).  

 

Results 

Groups were similar in all baseline characteristics except for BMI (34.72 ± 6.98 

kg/m2 vs. 30.74 ± 4.93 kg/m2, P=0.013 for 4000 IU and 6000 IU; respectively) (Table 1). 

There was no significant difference between groups regarding serum 25(OH)D 

(P=0.225). However, significant improvements in serum 25(OH)D levels were seen from 

baseline to 3 month and 6 months, respectively in both treatments (from 22.25 ± 7.19 to 

37.34 ± 12.31 and 37.99 ± 13.22, P<0.05 in the 4000 IU group; from 23.74 ± 5.09 to 

43.20 ± 15.94 and 40.62 ± 19.39, P<0.05 in the 6000 IU group) (Table 2). 

Differences between 3 months and 6 months levels for serum 25(OH)D were not 

significant in both treatments (P>0.05). In the 6000 IU group, the value showed a non-

significant decline at 6 months compare to the 3 months follow up. 
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A decreasing trend was observed for fasting plasma glucose in the 4000 IU group 

and for A1C in the 6000 IU group. However, no significant changes were observed for 

fasting plasma glucose, insulin or A1C between groups and within groups both in the 

unadjusted and adjusted models (Table 2 and Table 3). Similarly, interaction values were 

not-significant (Table 2 and Table 3). 

Adherence defined as consumption of more than 80% of supplied vitamin D pills 

was 94% for the 4000 IU group and 92% for the 6000 IU group without any differences 

between groups. No adverse events were reported during the course of the study. 

 

Discussion 

Low serum vitamin D levels are common among participants with type 2 

diabetes. However, it is still uncertain if there is a cause and effect association between 

these two conditions or if low vitamin D levels are just a marker of worse health status.  

Impaired β cell function and insulin resistance are the two factors that lead to 

development of type 2 diabetes. Vitamin D deficiency decreased the ability of β cells to 

secrete insulin, while vitamin D repletion restored insulin secretion in vitro studies (15). 

The direct effect of vitamin D in β cells may be caused by the binding of the active 

metabolite 1,25 dihydroxyvitamin D to the vitamin D receptor site on these cells (16). 

The indirect effect of vitamin D in insulin secretion may be due the regulation of calcium, 

since insulin secretion is a calcium-dependent process (17). Insulin sensitivity may also 

be improved in peripheral cells by increasing the expression of insulin receptors and by 

increasing the calcium concentration (3). In order to prevent type 2 diabetes, 

interventions that preserve β cell function are desired. 
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Studies regarding the effect of vitamin D supplementation for participants at risk 

or with type 2 diabetes had provided conflicting results. Some intervention studies 

conducted in small samples and for short duration have shown improvements in insulin 

secretion, but not insulin sensitivity (3,18). Studies with positive results were conducted 

in participants with a recent diagnosis of type 2 diabetes (< 3 years) or at risk of type 2 

diabetes. Pittas et al. (18), found that 700 IU/day of vitamin D3 combined with calcium 

improved insulin resistance in participants with impaired glucose tolerance. Mitri et al. 

(3), found that 2000 IU/day of vitamin D3 for 16 weeks improved the disposition index 

and insulin secretion in participants at risk of type 2 diabetes. In addition, even though, 

no significant change was seen in A1C levels, there was a trend toward and attenuation 

on the rise of this marker, which occurs over time in the natural history of pre-diabetes.   

Intervention studies conducted with participants with established type 2 diabetes 

(> 3 years) had found negative results. Jorde et al (7) provided 40,000 IU per week versus 

placebo to 32 participants with T2D for 6 months. No significant change in insulin, 

fasting plasma glucose or A1C was noted. A meta-analysis of 15 randomized clinical 

trials reported that a reduction in fasting plasma glucose and insulin resistance was 

observed only in participants with impaired glucose tolerance, but no effect was observed 

in participants with type 2 diabetes after vitamin D supplementation (19). 

Our results did not support the hypothesis that vitamin D supplementation may 

improve glucose homeostasis in patients with established type 2 diabetes. Our 

participants had 6.48 ± 5.18 and 5.48 ± 5.93 years with type 2 diabetes for the 4000 IU 

and 6000 IU groups, respectively. This may indicate that vitamin D supplementation have 
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no effect on glucose homeostasis once beta cell function have passed a certain point of 

deterioration. 

In fact, Alkharfy et al. (20), conducted a study to determine the effect of 2000 

IU/day of Cholecalciferol supplementation for 12 months among participants on diet, 

insulin, or oral hypoglycemic agents compared with a healthy control group. No 

improvements on glucose homeostasis were found in any of the groups. However, 

significant reduction in triglycerides and total cholesterol were observed in the insulin + 

vitamin D and oral hypoglycemic agents + vitamin D groups. According to a similar 

study, vitamin D seems to have a better effect on lipid panel and not on markers of 

glycemic control in patients with type 2 diabetes (21). 

Our study had sufficient power to find changes in fasting plasma glucose, fasting 

insulin, and A1C. The vitamin D supplement dosages provided were high enough to 

achieve serum 25(OH)D>30 ng/ml which is the level recommended for optimum health 

(22). However, this recommendation (serum 25(OH)D>30 ng/ml) was based on 

observational studies and evidence from intervention studies about the optimum vitamin 

D level for adequate glucose homeostasis is lacking. Another strong point of our study 

was that individuals did not change medication, vitamin D intake, BMI, smoking or sun 

exposure habits during the course of the study and analysis was adjusted for those 

variables. In addition, compliance in our study was high with 94% for the 4000 IU group 

and 92% for the 6000 IU group without any differences between groups. No adverse 

events were reported during the course of the study. 

In contrast, a factor that may explain the negative results in our study may be that 

our sample was categorized as obese according to their BMI. Since vitamin D is 
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sequestered in the fat tissue and not metabolically active in obese patients (23), it may be 

possible that a higher dosage or a longer duration of treatment is needed to see changes in 

glucose homeostasis markers in obese participants with type 2 diabetes. 

Similarly, all our participants were vitamin D deficient at baseline. Therefore, it 

may be possible that after vitamin D repletion, other functions related to vitamin D are 

improved first and β cell restoration was not the priority. Since our sample did not have 

enough variability regarding baseline vitamin D levels, a post hoc analysis adjusting for 

baseline vitamin D levels to see if the ones who started with higher serum vitamin D 

levels improved the most did not find any significant results either. 

A trend for a decline in fasting plasma glucose was observed in the 4000 IU 

group. However, since no improvement was observed in A1C, a marker of long term 

glycemic control, changes in fasting plasma glucose are of limited significance in this 

population with established type 2 diabetes. 

Limitations of our study include the use of a convenience sample without 

randomization, thus our results are not generalizable, the small number of African 

American participants which did not allow us to analyze the data by ethnicity, and the 

inclusion of only participants with vitamin D deficiency which decreased the external 

validity of the study. 

In conclusion, improvements in glucose homeostasis were not observed after 6 

months of vitamin D3 supplementation among Hispanics and African American 

participants with type 2 diabetes. The main objective of glycemic control in patients with 

type 2 diabetes is to prevent microvascular and macrovascular complications. The use of 

surrogate measures like fasting plasma glucose, insulin resistance, and A1C are of 
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practical clinical significance but not ideal for research purposes. Longer and larger 

studies supplementing vitamin D to participants with type 2 diabetes that focus on 

microvascular and macrovascular complications, instead of surrogate measures, are 

needed to confirm our results. 

 

Table 1. Baseline characteristics of participants prior to vitamin D repletion treatments 
 

Characteristic Treatment  
 4000 IU (n=50) 6000 IU (n=25) P-value 
    
25(OH)D (ng/ml)     22.25 ± 7.19      23.74 ± 5.09 0.302 
FGP (mg/dl) 188.76 ± 87.19    168.16 ± 55.94 0.220 
Age (years)     54.76 ± 8.56   54.17 ± 10.99 0.999 
Gender (Female %)      48%     52% 0.809 
Years with T2D        6.48 ± 5.18       5.48 ± 5.93 0.478 
Smoking (yes %)      10%     28%     0.091 
BMI (kg/m2)     34.72 ± 6.98     30.74 ± 4.93 0.013 
A1C (%)       8.25 ± 2.40       8.26 ± 1.92 0.981 
Insulin (µU/ml)     12.86 ± 12.82     12.13±7.08 0.753 
Vitamin D intake (IU/day)   316.82 ± 251.70   301.97 ± 225.49 0.797 
Sun exposure score     20.06 ± 14.92     18.68 ± 15.52 0.715 
Upper arm skin color      58.67 ± 9.54     62.09 ± 5.65 0.056 
Forearm skin color      54.82 ± 8.51     54.37 ± 4.37 0.099 
Continues variables are presented as mean ± SD and categorical variables as %.  
25(OH)D: serum vitamin D, FPG: fasting plasma glucose, T2D: type 2 diabetes, BMI: 
body mass index, A1C: glycated hemoglobin. 
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Table 2. Group comparisons of metabolic parameters at different time points without 
adjusting for covariates 

 
 4000 IU (n=50) 6000 IU (n=25) 

25(OH)D (ng/ml)   
Baseline 
3 months 
6 months 

P-value groups = 0.225  

           22.25 ± 7.19 
  37.34 ± 12.31* 

  37.99 ± 13.22* 

P-value time = 0.006 

           23.74 ± 5.09 
43.20 ± 15.94* 

40.62 ± 19.39* 

P-value interaction = 0.238 
FPG (mg/dl)   

Baseline 188.76 ± 87.19 168.16 ± 55.94 
3 months 182.14 ± 73.34 176.56 ± 59.68 
6 months 

P-value groups = 0.321 
173.16 ± 73.54 

P-value time = 0.265 
160.96 ± 63.64 

P-value interaction = 0.814 
Insulin (µU/ml) 

Baseline 
3 months 
6 months 

P-value groups = 0.748 
A1C (%) 
Baseline 
3 months 
6 months 

P-value groups = 0.198 
 

 
  12.86 ± 12.82 

            11.08 ± 7.47 
11.53 ± 7.84 

P-value time = 0.390 
 

8.25 ± 2.40 
8.32 ± 2.17 
8.25 ± 2.14 

P-value time = 0.402 
 

 
12.13 ± 7.08 
13.08 ± 7.25 
12.20 ± 7.33 

P-value interaction = 0.412 
 

8.26 ± 1.92 
8.08 ± 1.63 
8.05 ± 1.80 

P-value interaction = 0.306 
 

Data represented by mean ± standard error. * Represents significant differences from 
baseline. Level of significance is at P<0.05. 25(OH)D: serum vitamin D, FPG: fasting 
plasma glucose, A1C: glycated hemoglobin.  
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Table 3. Group comparisons of metabolic parameters at different time points adjusting 
for covariates 

 
 4000 IU (n=50) 6000 IU (n=25) 

25(OH)D (ng/ml)   
Baseline 
3 months 
6 months 

P-value groups = 0.232  

           22.25 ± 7.19 
  37.34 ± 12.31* 

  37.99 ± 13.22* 

P-value time = 0.019 

           23.74 ± 5.09 
43.20 ± 15.94* 

40.62 ± 19.39* 

P-value interaction = 0.352 
FPG (mg/dl)   

Baseline 188.76 ± 87.19 168.16 ± 55.94 
3 months 182.14 ± 73.34 176.56 ± 59.68 
6 months 

P-value groups = 0.439 
173.16 ± 73.54 

P-value time = 0.311 
160.96 ± 63.64 

P-value interaction = 0.949 
Insulin (µU/ml) 

Baseline 
3 months 
6 months 

P-value groups = 0.859 
A1C (%) 
Baseline 
3 months 
6 months 

P-value groups = 0.213 
 

 
  12.86 ± 12.82 

            11.08 ± 7.47 
11.53 ± 7.84 

P-value time = 0.475 
 

8.25 ± 2.40 
8.32 ± 2.17 
8.25 ± 2.14 

P-value time = 0.417 
 

 
12.13 ± 7.08 
13.08 ± 7.25 
12.20 ± 7.33 

P-value interaction = 0.490 
 

8.26 ± 1.92 
8.08 ± 1.63 
8.05 ± 1.80 

P-value interaction = 0.329 
 

Data represented by mean ± standard error. * Represents significant differences from 
baseline. Level of significance is at P<0.05. 25(OH)D: serum vitamin D, FPG: fasting 
plasma glucose, A1C: glycated hemoglobin. Analysis was adjusted for age, gender, years 
with diabetes, smoking, BMI, vitamin D intake, sun exposure score, upper arm skin 
color, forearm skin color. 
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CHAPTER IV: VITAMIN D REPLETION IN MINORITIES WITH TYPE 2 
DIABETES AND COEXISTENT VITAMIN D INSUFFICIENCY 

 
 

Introduction 

Low levels of vitamin D are prevalent in the US (1). According to data from the 

National Health and Nutrition Examination Surveys (NHANES) in 2001-2006, 33% of 

the general US population had serum 25(OH)D below 50 nmol/L. In addition, low 

vitamin D levels are especially common among minorities. For instance, 41% of African 

Americans and 33% of Mexican Americans had serum 25(OH)D below 50 nmol/L 

compared to 18% of non-Hispanic Whites (1).    

Poor vitamin D status has been found in participants at risk or with type 2 

diabetes (T2D), however, the nature of this relationship is not clear (2, 3). Similarly, a 

negative association between vitamin D levels and insulin resistance has been reported in 

a large sample representative of the US adult population and in participants at risk for 

T2D (3, 4). According to these results, vitamin D levels are positively associated with 

insulin sensitivity and negatively associated with insulin resistance. The findings further 

suggest that vitamin D repletion would be of benefit to those with or at risk for diabetes. 

Protocols for correction of vitamin D insufficiency in patients with cystic fibrosis, 

chronic kidney disease, hyperparathyroidism, osteoporosis and pregnancy have been 

published (5-9). However, there is no standard method developed for the repletion of 

vitamin D insufficiency in participants with T2D.  

Some regimens to improve the vitamin D status in participants with T2D have 

been reported. For instance, Borissova et al (10) examined the effect of vitamin D3 
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supplementation on insulin resistance and insulin secretion in 10 patients with T2D. The 

intervention group received 1332 IU of cholecalciferol daily for 1 month. Inomata et al. 

(11) provided 2ug/d (80 IU/day) of alphacalcidiol versus placebo to 14 Japanese males 

with T2D for 3 weeks and evaluated improvements in insulin secretion. However, this 

study did not measure plasma vitamin D concentrations. Similarly, Orwoll et al. (12) 

provided 1ug/d (40 IU/d) of 1,25(OH)2 D versus placebo to 35 adults (mean age of 61 

years old) with recently diagnosed T2D (within 3 years) for 14 days. A tendency for 

better insulin secretion was observed. Main limitations of this study were the short 

duration of the intervention and the lack of assessment of serum vitamin D post-

intervention. Persons with T2D and low serum 25(OH)D had improvements in glycemic 

control with 3000 IU of vitamin D3 for 6 and 9 months (13). None of these studies have 

specifically evaluated the effectiveness of vitamin D supplementation regimens on 

vitamin D repletion. 

Recently, the Endocrine Society announced new clinical practice guidelines of 

standard care for vitamin D supplementation for vitamin D insufficient populations 

(1500-2000 IU daily for ages 19-70) to achieve sufficiency (25(OH)D >30 ng/ml) and 

recommended an upper limit of 4000 IU/day as the threshold for safety in healthy 

individuals. In addition, all adults who are vitamin D deficient (25(OH)D < 20 ng/ml) are 

recommended to supplement with 6000 IU/d of vitamin D3 until sufficiency is reached, 

followed by a maintenance therapy of 2000 IU/d. In obese patients, and patients taking 

medications that interfere with vitamin D metabolism, the suggested therapy is to 

supplement with 6000-10000 IU/d of vitamin D3 until sufficiency is reached, followed by 

a maintenance therapy of 3000-6000 IU/d (14). Optimal vitamin D supplementation 
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required for participants with T2D, and individuals with dark skin color who are also 

insufficient in vitamin D has not been determined. Therefore, it is important to test the 

efficacy of the new standard of care in African Americans and Hispanics with T2D or if 

higher dosages are needed. However, there is concern that vitamin D repletion regimens 

may produce toxicity. Serum 25(OH)D levels > 150 ng/ml have been used as the 

threshold for toxicity (15). 

The objective of the present study was to evaluate the efficacy and safety of two 

vitamin D repletion regimens: 4000 IU and 6000 IU of Cholecalciferol daily for 6 months 

in African Americans and Hispanics with T2D while monitoring serum vitamin D levels 

for toxicity. 

 

Methods 

Participants 

An intervention study to assess the effects of vitamin D supplementation (4000 

IU/day and 6000 IU/day) over six months on cardiovascular disease markers among a 

sample of African Americans and Hispanics with T2D was conducted. The present study 

analyzed the data collected at screening, 3 months, and 6 months.  

 The study consisted of two phases: phase one included the screening of 

individuals, phase two included the recruitment of individuals who met inclusion criteria 

and beginning of the vitamin D intervention trial. The inclusion criteria were vitamin D 

insufficiency (25(OH)D < 30 ng/ml), 30-70 years of age, African American or Hispanic 

with confirmed T2D. Exclusion criteria were taking vitamin D supplements other than 
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standard daily multivitamin formula, pregnant or lactating, having thyroid, hepatic, renal 

dysfunction, cancer, HIV, and major psychiatric disorders. 

Flyers explaining the purpose of the study, inclusion/exclusion criteria and 

containing investigators’ emails and phone numbers were distributed in highly visited 

community areas such as churches, supermarkets, and clinics. Two clinics were visited 

every week for recruitment purposes: Borinquen Health Care Center and Clinical Care 

Medical Center. When participants called the investigators, purposes of the study were 

explained and specific questions were asked to assure compliance with inclusion criteria. 

All qualified participants were invited to participate in a morning session at Human 

Nutrition Laboratory at Florida International University (FIU) for fasting blood sampling 

to screen for vitamin D insufficiency. All participants were asked to sign an informed 

consent form previous to screening data collection and to provide contact number and 

address of their physician, as well as their own contact information. Only participants 

with T2D diagnosis confirmed by a physician were eligible to participate in the study. 

The study was approved by IRB at FIU. 

Participants in both groups were required to take either 4000 IU or 6000 IU of 

vitamin D (Cholecalciferol) per day given in the form of a pill in a single daily dose. 

Compliance was determined by pill count. When less than 80% of the pills were taken, 

the subject was classified as non-compliant. Adverse events were recorded at each visit. 

Each participant was seen 4 times; at screening, baseline, 3 months, and 6 months. 

Parathyroid hormone (PTH) and serum 25(OH)D were measured at screening, 3 months, 

and 6 months. Total study lasted for 25 weeks for each participant from screening to final 

assessment. The study started in June 2011 and was completed on September 2013.  
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Ninety two participants were screened. Seventy five qualified for the intervention (n=50 

for 4000 IU/day treatment and n=25 for 6000 IU/day treatment). Three participants 

qualified for the study based on their vitamin D status but did not attend the 3 month and 

6 month follow ups (all in the 4000 IU group). Eight participants attended the 3 month 

but not the 6 month follow up (5 in the 4000 IU and 3 in the 6000 IU group, 

respectively). Five participants completed the study but were non-compliant (3 in the 

4000 IU and 2 in the 6000 IU treatment, respectively). Since an intent to treat approach 

was followed, all 75 participants were included in the present study.    

      

Blood Collection 

Venous blood (15 ml) was collected from each subject by a certified phlebotomist 

using standard laboratory methods at each study point. After coagulation, blood was 

centrifuged at 2500 RPM for 30 minutes. Glycated hemoglobin (A1C) was measured by 

the DCA2000+ system (Bayer Corporation, Diagnostics Division, N.Y., U.S.) using the 

monoclonal antibody method. Serum vitamin D concentrations were measured with an 

enzyme-immunoassay kit by absorbance (Immunodiagnostic Systems Scottsdale, A.Z., 

U.S.). Color intensity developed was inversely proportional to the concentration of 

25(OH)D. Parathyroid hormone was determined by an electrochemiluminescence 

immunoassay (E170, Roche, Basel, Switzerland). 

 

Socio-demographic Questionnaire 

Participants were asked to fill out standard questionnaires on site. Trained 

interviewers bilingual in English and Spanish administered the questionnaires in the 
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language of preference of the participants. Data were collected using a socio-

demographic questionnaire which included questions related to gender, age, years with 

diabetes, and smoking. 

 

Anthropometric Measurements 

Height and weight were measured using a SECA clinical balance scale (Seca 

Corp, Columbia, MD). Body mass index (BMI) was calculated as weight in kg/height in 

m2.  

 

Statistical Analysis 

The descriptive statistics for continuous variables are presented as mean ± SD and 

proportions for categorical variables. Baseline continues variables and categorical 

variables among participants in the 4000 IU and 6000 IU treatments were compared 

using independent samples t test and Chi Square test, respectively. The Student’s t test for 

paired samples was used to test changes in serum 25(OH)D and PTH over 3 and 6 

months. Results were confirmed running a standard mixed-models approach to repeated 

measures. A multiple linear regression model was run to test the association among 

serum 25(OH)D changes and PTH changes at 3 and 6 months for each treatment. 

Significant models were adjusted for age, gender, BMI, years with T2D, smoking, and 

A1C. The association between achieving sufficient vitamin D status and treatment was 

tested with a logistic regression model. Vitamin D status (sufficient/insufficient) was 

input as the dependent variable and treatment (4000 IU and 6000 IU) as the independent 
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variables. All analyses were performed using SPSS version 19 (Chicago, IL, US). A p-

value of <.05 was considered significant. 

 

Results 

Both treatment groups were similar at baseline in serum 25(OH)D, PTH, age, 

gender distribution, years with T2D, smoking, and A1C levels. However, participants in 

the 4000 IU group showed a higher BMI compared to participants in the 6000 IU group 

at baseline (34.72 ± 6.98 vs. 30.74 ± 4.93 kg/m2, P=0.013) (Table 1). 

Serum 25(OH)D increased significantly at 3 months in both treatments, from 

22.25 ± 7.19 to 37.34 ± 12.31 ng/ml and from 23.74 ± 5.09 to 43.20 ± 15.94 ng/ml in the 

4000 IU (P=0.001) and 6000 IU (P=0.001) groups, respectively (Table 2). The mean 

increase between treatments was not significantly different at 3 months.  

Similarly, serum 25(OH)D increased significantly at 6 months in both treatments, 

from 22.25 ± 7.19 to 37.99 ± 13.22 ng/ml and from 23.74 ± 5.09 to 40.62 ± 19.39 ng/ml 

in the 4000 IU (P=0.001) and 6000 IU (P=0.001) groups, respectively (Table 2). The 

mean increase between treatments at 6 months was not significant. 

In addition, serum 25(OH)D levels at 3 months and at 6 months were not 

significantly different for both treatments, meaning that there was no additional benefit to 

extending the treatment for 6 months at any dosage in terms of increasing serum 

25(OH)D levels. 

Parathyroid hormone levels decreased at 3 months and 6 months compared to 

baseline. However, the change was not significant for any time period (Table 2). In 

addition, there was a non significant increase in PTH at 6 months compared to 3 months. 
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The association between serum 25(OH)D change and PTH change was only significant at 

3  and 6 months for the 4000 IU treatment (β=-0.223, P=0.012 and β=-0.235, P=0.016; 

respectively). This association held its significance even when the model was adjusted for 

covariates at 3 months and 6 months (β=-0.176, P=0.045 and β=-0.209, P=0.039; 

respectively). Keeping other covariates constant, an increase of 1 unit in serum 25(OH)D 

decreased PTH by 0.176 units at 3 months (Table 3). Similarly, keeping other covariates 

constant, an increase of 1 unit in serum 25(OH)D decreased PTH by 0.209 units at 6 

months (Table 4). The fully adjusted model explained 29.3% of the change in PTH at 3 

months and 26.4% at 6 months.  

The association between vitamin D status (insufficient/sufficient) and treatment 

(4000 IU and 6000 IU) was not significant. None of the participants with either dose had 

showed serum 25(OH)D > 150 ng/ml and no adverse events were reported during the 

study. Re-analysis of the data after excluding the participants that dropped out of the 

study after screening and at 3 months, did not alter the results. 

 

Discussion 

Treatments with 4000 IU/day and 6000 IU/day increased serum 25(OH)D levels 

significantly at 3 months and 6 months compared to baseline values. The proportion of 

participants achieving sufficient serum 25(OH)D levels was 68% at 3 months and 70% at 

6 months for 4000 IU; and 72% at 3 months and 68% at 6 months for 6000 IU.  

These results support the notion that 4000 IU/day for 3 months is an adequate 

dosage to replenish vitamin D in Hispanics and African Americans with T2D. Additional 

treatment for 3 extra months or a higher dosage of 6000 IU/day did not change serum 
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25(OH)D levels significantly. According to these data, a physiological plateau is reached 

at 3 months with the use of the 4000 IU/day regimen. However, the sample size for the 

6000 IU group was small (n=25). In addition, the inclusion of the non-compliant 

participants (n=2) and the dropouts (n=3) in the intent to treat analysis for the 6000 IU 

group may have pulled the p-value to the non-significant side. According to Pepper et al. 

(15), a much higher serum 25(OH) needs to be achieved to see changes in metabolic 

markers not related to bone turn over or calcium metabolism. Therefore, it remains to be 

seen if this serum 25(OH)D may have an effect on cardiovascular risk in this particular 

sample of Hispanics and African Americans with T2D. 

The Endocrine Society recommends that vitamin D insufficient adults consume 

1500-2000 IU/day with an upper limit of 4000 IU/day as the limit for safety (14). 

However, this recommendation is for healthy individuals. Since participants with T2D, 

African Americans, and Hispanics tend to have a higher incidence of vitamin D 

deficiency due to darker skin color and higher metabolic demands, it is assumed that a 

higher dosage is needed to achieve sufficiency in this particular population (1-3). 

However, no standard vitamin D repletion treatment has been developed for participants 

with T2D and darker skin color. 

Our results support the regimens followed for other metabolic disorders. 

Malabanan et al. (16) showed that 50000 IU once a week per 8 weeks of ergocalciferol 

improved vitamin D status in participants with osteoporosis. Sixty percent of participants 

achieved sufficient status at the end of the study. This proportion achieving sufficiency is 

similar to the one achieved with the 4000 IU/day in the present study. Similarly, the 

National Kidney Foundation has released guidelines for the repletion of vitamin D in 
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participants with chronic kidney disease based on the level of insufficiency (<5 ng/ml, 5 

to 15 ng/ml, 16 to 30 ng/ml). Participants in the category with the highest insufficiency 

should have supplements with 50000 IU weekly of ergocalciferol for 12 weeks followed 

by a monthly similar maintenance dose, 50000 IU weekly for 4 weeks and then monthly 

for participants in the middle category, and 50000 IU monthly for participants in the 

category with the lowest insufficiency (6).  

These guidelines are based on ergocalciferol. However, in our study 

cholecalciferol was provided. Studies have shown that cholecalciferol may be more 

bioavailable than ergocalciferol (17-19). Therefore, plateau levels may be achieved faster 

and maintained for longer time.  In a study providing equal molar quantities of 

cholecalciferol and ergocalciferol (4000 IU) for 14 days, participants in the 

cholecalciferol group achieved 1.7 times higher serum 25(OH)D compared to the 

ergocalciferol group (18). Similarly, Armas et al. (19), reported higher serum 25(OH)D 

levels in patients taking cholecalciferol compared to ergocalciferol. Variation in the 

binding of cholecalciferol and ergocalciferol to the vitamin D binding protein may 

explain these results (17).   

Regarding the relationship between serum 25(OH)D and dosage provided, Pepper 

et al. (15) found a direct association. Participants receiving a total dose < 300000 IU of 

ergocalciferol were 7 times more likely to remain vitamin D insufficient compared to 

participants taking > 600000 IU. Following the same trend, participants receiving 

between 300001 and 599999 IU of ergocalciferol were 3 times more likely to remain 

vitamin D insufficient compared to participants taking > 600000 IU. In our study, the 

relationship between dosage and insufficient status was not significant. This relation held 
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even when participants who dropped out of the study were excluded from the analysis. 

Therefore, there is no advantage in increasing the dosage to 6000 IU/day. It may be 

possible that the use of cholecalciferol saturated the vitamin D receptors faster compared 

to studies providing ergocalciferol. 

Studies conducted in participants with T2D have assessed changes in metabolic 

outcomes (insulin resistance, and insulin production) after vitamin D supplementations. 

Comparing our results to those in the literature, however, is difficult because previous 

studies did not enroll vitamin D insufficient participants or assess serum 25(OH)D values 

before and after treatment (10-13).  

Even though, changes in PTH were not significant, the relationship between 

change in serum 25(OH)D and change in PTH was correlated for the 4000 IU group. The 

fully adjusted model explained 29.3% of the change in PTH at 3 months and 26.4% at 6 

months. Still a large proportion of the change in PTH was not explained by the model. 

This finding suggests that to reduce bone turn over in this population other factors may 

be more important than vitamin D alone. In fact, age was a significant factor that affected 

PTH levels. These results support the notion that once vitamin D sufficiency is achieved, 

PTH levels do not continue decreasing (15).  Studies have demonstrated that PTH levels 

achieve a plateau when serum 25(OH)D reaches a level of 30 to 32 ng/ml (20,21). 

Regarding safety, studies have shown that dosages of 10000 IU/day of 

Cholecalciferol did not produce toxicity when provided to insufficient participants (22). 

In fact, none of the participants in our study reported any adverse events or achieved a 

serum 25(OH)D > 150 ng/ml. Therefore, it seems that both treatments are safe to use 
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among this particular population of Hispanics and African Americans with T2D for six 

months.  

Limitations of our study include the small sample size in the 6000 IU group and 

the use of fixed time intervals. Therefore, the peak levels of serum 25(OH)D may have 

been missed. In addition, since participants with T2D are prone to developing renal 

disease, it may be possible that the conversion of Cholecalfierol to serum 25(OH)D may 

have been impaired in participants at early stages of renal disease. Further studies in 

participants that did not reach vitamin D sufficiency over the 6 months treatments are 

needed in order to explain the possible causes. 

In conclusion, repletion of vitamin D among Hispanics and African Americans 

with T2D was successfully and safely achieved with a 4000 IU/day dose of 

cholecalciferol for 3 months in most participants. The increase in treatment time or 

dosage did not produce any significant difference in terms of achieving vitamin D 

sufficient status. The effect of the change in vitamin D status on metabolic markers 

should be evaluated in future studies to determine the optimal time of treatment for 

patients with T2D. 
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Table 1. Baseline characteristics of participants prior to vitamin D repletion treatments 
 

Characteristic Treatment  
 4000 IU (n=50) 6000 IU (n=25) P-value 
    
25(OH)D (ng/ml)       22.25 ± 7.19       23.74 ± 5.09 0.302 
PTH (pg/ml)   38.60 ± 18.14 41.42 ± 17.77 0.523 
Age (years)       54.76 ± 8.56 54.17 ± 10.99 0.999 
Gender (Female %) 48% 52% 0.809 
Years with T2D          6.48 ± 5.18           5.48 ± 5.93 0.478 
Smoking (yes %)  10%   28%      0.091 
BMI (kg/m2)       34.72 ± 6.98         30.74 ± 4.93 0.013 
A1C (%)         8.25 ± 2.40           8.26 ± 1.92 0.981 
Continues variables are presented as mean ± SD and categorical variables as %.  
25(OH)D: serum vitamin D, PTH: parathyroid hormone, T2D: type 2 diabetes, BMI: 
body mass index, A1C: glycated hemoglobin. 
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Table 2. Effect of vitamin D repletion treatments on serum vitamin D and parathyroid 
hormone 

 
Characteristic Treatment 
 4000 IU 

(n=50) 
6000 IU 
(n=25) 

   
25(OH)D (ng/ml)   
    Baseline 22.25 ± 7.19   23.74 ± 5.09 
    3 months 37.34 ± 12.31 43.20 ± 15.94 
    P-value (baseline vs. 3 months)        0.001        0.001 

    6 months 37.99 ± 13.22 40.62 ± 19.39 
    P-value (baseline vs. 6 months) 0.001 0.001 

 Repletion of vitamin D  
 insufficiency ≥30ng/ml (%) at 3  months 
 

68% 72% 

 Repletion of vitamin D  
 insufficiency ≥30ng/ml (%) at 6 months 

70% 68% 

Parathyroid hormone (pg/ml)   
    Baseline 38.60 ± 18.14 41.42 ± 17.77 
    3 months 32.21 ± 20.59 36.05 ± 14.48 
    P-value (baseline vs. 3 months)         0.103 0.247 

    6 months 36.66 ± 17.84 36.11 ± 18.78 
    P-value (baseline vs. 6 months) 0.592 0.309 

           Continues variables are presented as mean ± SD and categorical variables as %.  
           25(OH)D: serum vitamin D 
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Table 3. Relationship between change in parathyroid hormone, change in 
serum 25(OH)D and covariates at 3 months for the 4000 IU treatment 

Parameter* Β SE T P-value† 

25(OH)D (ng/ml) -0.176 0.085 -2.062 0.045 
Age (years) -0.428 0.209 -2.048 0.047 

     

*Other covariates in the multiple linear regression were gender, BMI, 
years with type 2 diabetes, smoking and A1C. † P < 0.05 is considered 
significant. 

 
 
 
 
 
 
 
 
 
 

 

Table 4. Relationship between change in parathyroid hormone, change in 
serum 25(OH)D and covariates at 6 months for the 4000 IU treatment 

Parameter* Β SE T P-value† 

25(OH)D (ng/ml) -0.209 0.098 -2.134 0.039 
Age (years) -0.449 0.206 -2.180 0.035 

     

*Other covariates in the multiple linear regression were gender, BMI, 
years with type 2 diabetes, smoking and A1C. † P < 0.05 is considered 
significant. 
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CHAPTER V: VALIDATION OF A SUN EXPOSURE QUESTIONNAIRE IN 
PARTICIPANTS WITH TYPE 2 DIABETES RESIDING IN SOUTH FLORIDA 

 
 

Introduction 

Low levels of vitamin D are prevalent in the US (1). According to data from the 

National Health and Nutrition Examination Surveys (NHANES) in 2001-2006, 33% of 

the general US population had serum 25(OH)D below 50 nmol/L. In addition, low 

vitamin D levels are especially common among minorities. For instance, 41% of African 

Americans and 33% of Mexican Americans had serum 25(OH)D below 50 nmol/L 

compared to 18% of non-Hispanic Whites (1).    

The sun is the main source of vitamin D. Ultraviolet B (UVB) radiation emitted 

by the sun converts cholesterol into vitamin D in the skin. The avoidance of sun exposure 

due to perceived skin cancer risk and the lack of outdoor physical activity due to a more 

sedentary life may explain in part the current vitamin D deficiency epidemic (2). 

Research is still in progress to quantify vitamin D status in specific populations 

and its relation with several diseases. Therefore, the assessment of vitamin D status must 

take into consideration sun exposure behaviors through the use of validated tools. 

Sun exposure questionnaires are commonly used to assess UVB exposure because 

they are easy to use and inexpensive. Observed sun exposure and dosimetry, an objective 

measure of UVB radiation, have been used for comparison (3-6), however, neither of 

them is considered a gold standard (7). The correlations among sun exposure 

questionnaires and observed exposure or dosimetry have been significant but relatively 

low, leaving a big percentage in the variation in UVB unexplained by sun exposure alone 

(3-6). 
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Similarly, when sun exposure questionnaires have been used in models to predict 

25(OH)D (the universally accepted biomarker to determine vitamin D status) a large 

percentage of the variation was not explained by sun exposure, which may lead to a 

misclassification of vitamin D status if based on sun exposure alone (8-10). 

On the other hand, objective and reliable measures of change in skin color using 

scanners allow in vivo quantification and have shown significantly high correlations with 

laboratory induced UVB exposure (rs = 0.99) (11). In addition, these devices offer high 

inter/intra rater reliability (12). Therefore, they may be used as gold standard to validate 

sun exposure questionnaires. 

Type 2 diabetes (T2D) has increased dramatically in the United States (US) 

among adults 20 years of age and older from 9% in 1988 to 11% in 2010. The increase 

has been even more dramatic among African Americans from 16% in 1988 to 20% in 

2010. In Mexican Americans the incidence has increased from 15% to 17% in the same 

time period. Minorities, particularly African Americans and Hispanics, are 

disproportionately afflicted by T2D compared to non-Hispanics Whites (13).  

In addition, poor vitamin D status has been found in participants at risk (with 

metabolic syndrome) and those with T2D. The nature of this relationship, however, is not 

clear (14, 15). Similarly, an inverse association between vitamin D levels and insulin 

resistance has been reported in a large sample representative of the US adult population 

and in participants at risk for T2D (15, 16). According to these results vitamin D levels 

are associated with insulin sensitivity and insulin resistance. Therefore, it is necessary to 

validate sun exposure tools in order to accurately assess vitamin D status in minorities 

with T2D. 
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The objective of the present study was to validate a sun exposure questionnaire 

against objective measures of change in skin color and to assess its validity in predicting 

25(OH)D status in a sample of African Americans and Hispanics with T2D. 

 

Methods 

Participants 

An intervention study to assess the effects of vitamin D supplementation (4000 

IU/day and 6000 IU/day) over six months on cardiovascular markers among a sample of 

African Americans and Hispanics with T2D was conducted. The present study analyzed 

the data collected at screening.  

The study consisted of two phases: phase one included the screening of 

individuals, phase two included the recruitment of individuals who met inclusion criteria 

and beginning of the vitamin D intervention trial. The inclusion criteria were vitamin D 

insufficiency (25(OH)D < 30 ng/ml), 30-70 years of age, African American or Hispanic 

with confirmed T2D. Exclusion criteria were taking vitamin D supplements other than 

standard daily multivitamin formula, pregnant or lactating, having thyroid, hepatic, renal 

dysfunction, cancer, HIV, and major psychiatric disorders.  

Flyers explaining the purpose of the study, inclusion/exclusion criteria and 

containing investigators’ emails and phone numbers were distributed in highly visited 

community areas such as churches, supermarkets, and clinics. Two clinics were visited 

every week for recruitment purposes: Borinquen Health Care Center and Clinical Care 

Medical Center. When participants called the investigators, purposes of the study were 

explained and specific questions were asked to assure compliance with inclusion criteria. 
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All qualified participants were invited to participate in a morning session at Human 

Nutrition Laboratory, AHC-1, room 430, Florida International University for fasting 

blood sampling to screen for vitamin D insufficiency. All participants were asked to sign 

an informed consent form previous to screening data collection and to provide contact 

number and address of their physician, as well as their own contact information. Only 

participants with T2D diagnosis confirmed by a physician were eligible to participate in 

the study. The study was approved by IRB at FIU. 

Participants in both groups were required to take either 4000 IU or 6000 IU of 

vitamin D (Cholecalciferol) per day given in the form of a pill in a single daily dose. 

Each participant was seen 4 times; at screening, baseline, 3 months, and 6 months. The 

study lasted for 25 weeks for each participant from screening to final assessment. The 

study started in June 2011 and completed on September 2013.  Ninety two participants 

were screened. Two subjects were excluded due to missing values for sun exposure 

scores. The present study analyzed the data collected only at screening. Total sample size 

was 90 participants.          

  

Blood Collection 

Venous blood (15 ml) was collected from each subject by a certified phlebotomist 

using standard laboratory methods at each study point. After coagulation, blood was 

centrifuged at 2500 RPM for 30 minutes. The plasma glucose concentration was 

measured by hexokinase enzymatic method. Glycated hemoglobin (A1c) was measured 

by the DCA2000+ system (Bayer Corporation, Diagnostics Division, N.Y.) using the 

monoclonal antibody method. Serum vitamin D concentrations were measured with an 
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enzyme-immunoassay kit by absorbance (Immunodiagnostic Systems Scottsdale, AZ). 

Color intensity developed was inversely proportional to the concentration of serum 

25(OH)D.  

 

Socio-demographic Questionnaire 

Participants were asked to fill out a standard questionnaire on site. Trained 

interviewers bilingual in English and Spanish administered the questionnaires in the 

language of preference of the participants. Data were collected using a socio-

demographic questionnaire which includes questions related to gender, age, years living 

in the US, years with diabetes, smoking, and alcohol intake. 

 

Anthropometric Measurements 

Height and weight were measured using a SECA clinical balance scale (Seca 

Corp, Columbia, MD). Body mass index (BMI) was calculated as weight in kg/height in 

m2.  

 

Sun Exposure Questionnaire  

The sun exposure questionnaire developed by Hanwell et al. (17) was used 

following the original rubric. Time spent outdoors during the previous week (0≤5 

minutes, 1=5-30 minutes and 2= >30 min) was self-reported. Four options for skin 

exposed while outdoors were offered (1=face and hands, 2=face, hands and arms, 3=face, 

hands and legs and 4=bathing suit). The daily sun exposure score for each day was 

calculated by multiplying the time spent outdoors score times the skin exposed while 
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outdoors score.  The scale for each day ranged from 0 to 8. The weekly sun exposure was 

calculated by adding the daily scores (min =0, max=56).  

 

Skin Color 

In order to have an objective measure of sun exposure, skin color was determined 

by reflectance colorimetry using the SmartProbe 400 (IMS Inc. USA). This instrument 

uses the International Commission on Illumination Scale which ranges from 0 (black) to 

100 (white) for skin color. Two readings at each measurement site (6 readings total) for 

each participant were taken: two on the dorsal aspect of the wrist of the right hand (area 

most exposed to sun), two on the inside of the right upper arm and the stomach (areas less 

exposed to the sun). The mean values of the two readings at each measurement site were 

used for analysis. The change in skin color due to sun exposure was calculated by finding 

the difference between the less exposed area (natural color) and the most exposed area. 

 

Statistical analysis 

Descriptive statistics for continuous variables were presented as mean ± SD and 

proportions for categorical variables. Spearman’s correlation among weekly sun exposure 

scores and delta of skin color, sun exposure scores, skin exposure score, forearm skin 

color, stomach skin color, and change in skin color with 25(OH)D were run. The 

relationship between serum 25(OH)D, skin exposure score and stomach skin color was 

evaluated by a multiple linear regression model. Serum 25(OH)D was the dependent 

variable. Skin exposure score and stomach skin color were independent variables. All of 

the three variables were continuous. A  simple model was run using skin exposure score 
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and stomach skin color as predictors of serum 25(OH)D. Confounding factors including 

age, gender, BMI, years living in US, years with type 2 diabetes, ethnicity, tobacco use 

and alcohol consumption were added to the adjusted model. Two-way and three-way 

interactions were tested between total skin exposure score, stomach skin color, and 

gender. All of the analyses were conducted using SPSS version 19 (Chicago, IL, US).  

 

Results 

Analysis for sun exposure questionnaire validation included 92 participants. 

Eighty four percent were vitamin D deficient. Two participants were excluded for 

missing sun exposure scores. Final sample considered for the analysis included 90 

participants, males (n=44, 49%), females (n=46, 51%). Descriptive characteristics are 

provided in table I. The mean age was 54.8±9.7 years. The mean BMI was 33.7±6.6 

kg/m2. The mean serum 25(OH)D (22.6±6.6 ng/ml), forearm skin color (55.7±7.5), 

stomach skin color (59.2±9.8), change in skin color (3.5±5.4), total sun exposure score 

(19.6±15.0), time outdoors score (6.5±4.6), skin exposure score (20.4±3.2), and A1C 

(8.3±2.2%) are presented in table 1. The minimum and maximum scores for weekly sun 

exposure, time outdoors, and skin exposure scores were 0 and 52, 0 and 14, 8 and 28, 

respectively. About fourteen percent of the participants were African Americans and 

eighty six percent Hispanics.  

Correlations between weekly sun exposure and change in skin color or serum 

25(OH)D were not significant (P=0.487, rs=0.081 and  P=0.864, rs=0.020; respectively). 

Correlations between skin exposure score, stomach skin color, and change in skin color 
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with serum 25(OH)D were significant (P=0.047, rs=0.230; P=0.024, rs=0.260; and 

P=0.015, rs=0.280; respectively) (Table 2). 

The unadjusted model showed that skin exposure score (P= 0.037), and stomach 

skin color (P= 0.021) were good predictors of serum 25(OH)D. In this model, 22 percent 

of the variation in serum 25(OH)D was explained by skin exposure score and stomach 

skin color. This relationship remained significant for stomach skin color (P= 0.020), but 

not for skin exposure score (P=0.149) after controlling for covariates, including age, 

gender, BMI, years living in US, years with T2D, ethnicity, tobacco use and alcohol 

consumption. The fully adjusted model explained 38.1 percent of the variation in serum 

25(OH)D. A1C was also significantly associated with serum 25(OH)D. For every unit 

increase in stomach skin color, there was a 0.33 unit increase in serum 25(OH)D. In 

contrast, for every unit increase in A1C, there was a 1.274 unit decrease in serum 

25(OH)D,  keeping the other variables constant (Table 3). Two and three-way 

interactions between skin exposure scores, stomach skin color, and gender were not 

significant. 

 

Discussion 

Sun exposure questionnaires are commonly validated against observed records of 

sun exposure or dosimetry (3-6). However, none of them is considered a gold standard 

(7). Serum 25(OH)D levels are indicators of sun exposure in the last two months (18-20). 

Therefore, it has been used as gold standard in other studies. Similarly, colorimeters used 

to determine skin color have significantly correlated with induced UV exposure (r=0.99) 
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providing a more accurate gold standard tool to validate sun exposure questionnaires 

(11,12).  

The total weekly sun exposure score was not correlated with neither change in 

skin color nor serum 25(OH)D in our study. These results are explained by the very short 

time spent outdoors in this population of participants with T2D. In fact, 18 participants 

spent less than 5 minutes outdoors every day, making the whole sun exposure score equal 

to zero. When the skin exposure score alone is taken into consideration, it was 

significantly correlated with serum 25(OH)D. Therefore, the tool developed by Hanwell 

et al. (17) was not a good indicator of sun exposure in this population of participants with 

T2D due to the limited time they spent outdoors. The population used by Hanweel et al. 

(17) was active Caucasian hospital workers in Italy. However, the correlations between 

sun exposure scores and serum 25(OH)D were only significant for summer but not for 

winter, meaning that in times of limited sun exposure other tools should be used for 

screening. In addition, the strongest component of the total sun exposure score was the 

time spent outdoors. Time spent outdoors was significantly correlated with serum 

25(OH)D despite the amount of skin exposed during summer (17). Therefore, the amount 

of skin exposed is not important during summer. The main determinant of UV exposure 

is the time spent outdoors.  

Other studies have found significant but low correlations between self-reported 

sun exposure and dosimetry (21,22). A study conducted in Australia compared sun 

exposure behaviors from diaries to personal dosimetry in mothers (r=0.32) and children 

(r=0.34) (21). Another study conducted in the US found different correlation between 

self-reported sun exposure and dosimetry per body part (r=0.12 for the arm and r=0.49 
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for the leg) (22). According to these data, the precision of UV exposure based on sun 

exposure questionnaires is poor. Therefore, measurement errors should be included in the 

models. To our knowledge, none of these instruments have been validated in older 

participants with T2D. In addition, self-reported questionnaires are prone to recall bias. In 

an older population, the bias may be even greater.  

Regarding the use of sun exposure questionnaires to predict serum 25(OH)D, a 

case-control study of multiple sclerosis found significant but low correlations for outdoor 

activities in the past 3 years and serum 25(OH)D levels (r=0.39) (8). This means that 

about 85% of the variation in serum 25(OH)D is not explained by sun exposure 

behaviors. Another study found that the contribution of outdoor activities to serum 

25(OH)D is important only in summer (10). According to these results, other variables 

such as age and skin color should be included in models to screen for vitamin D status. 

The original tool was validated in white individuals (17). Since natural skin color 

have a profound impact on vitamin D synthesis and our population was Hispanics and 

African Americans, it may be possible that the color of the skin is a better predictor of 

serum 25(OH)D in this particular population than sun exposure behaviors. 

In fact, unexposed skin color (stomach) and the difference between unexposed 

and exposed areas (stomach and forearm) were significantly correlated with serum 

25(OH)D. This is in contrasts with Nessvi et al. (23) who suggested that both unexposed 

and exposed areas are good predictors of serum 25(OH)D. In our population, unexposed 

skin color was the biggest determinant of serum 25(OH)D, meaning that the natural skin 

color of the individual can predict vitamin D status. However, correlation was low 

(rs=0.26) leaving a large proportion of the variation in serum 25(OH)D unexplained by 
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unexposed skin color alone. Other factors like vitamin D intake from food and 

supplements, type of clothing worn, and the months away from Florida may have been 

important in the assessment of vitamin D status.  

The unadjusted model using skin exposure score and stomach skin color as 

independent variables was significant for both, but the model only explained 22% of the 

variation in serum 25(OH)D. When the model was adjusted for covariates, only stomach 

skin color remained significantly associated with serum 25(OH)D. The adjusted model 

explained 38.1% of the variation in serum 25(OH)D, still leaving a big proportion 

unexplained. It is unlikely that tanning behaviors or sunscreen use may have played a role 

in serum 25(OH)D levels in this particular population. 

Interestingly, A1C, a marker of the blood glucose control over the last 3 months, 

was strongly associated with serum 25(OH)D. This may imply that in participants with 

T2D with limited sun exposure, A1C levels may be an important marker to determine 

vitamin D status.   

Even though, the correlation between change in skin color (unexposed minus 

exposed area) and serum 25(OH)D was significant, it was mainly driven by the 

unexposed area. In fact, since outdoors activities were limited, the differences in skin 

color between unexposed and exposed areas were minimal in many participants. 

It is important to note that eighty four percent of our sample was vitamin D 

deficient at screening. It is paradoxical that in a tropical area like South Florida the 

incidence of vitamin D deficiency is still high among participants with T2D. Mean 

weekly sun exposure score was 19.6 out of a total of 56, reflecting very limited sun 

exposure. Alcohol intake and smoking can interfere with vitamin D absorption (7). 
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However, the incidence for both of them (16% and 28%, respectively) was low. It seems 

that the limited outdoor activity may explain in part the high incidence of deficiency in 

our sample. 

Limitations of our study include the small sample size, the high incidence of 

vitamin D deficiency, the lack of data regarding vitamin D intake from foods and 

supplements, and the limited outdoor activity of this particular sample. 

The sun exposure questionnaire developed by Hanwell et al.(17) was not a valid 

tool to estimate change in skin color due to sun exposure or serum 25(OH)D levels in this 

sample of African Americans and Hispanics with T2D. Unexposed skin color and A1C 

levels were significantly associated with serum 25(OH)D. Unexposed skin color may be 

used as proxy measure to screen for vitamin D deficiency in this sample of participants 

with T2D. 
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Table 1. Characteristics of the study participants at screening (n = 90) 
 

Variable Mean ± SD 
Age (years) 

 
 

 

54.8 ± 9.7 
 

  
  

BMI (kg/m2) 33.7 ± 6.6 
Living in US (years) 10.4 ± 9.3 
Serum 25(OH)D (ng/ml) 22.6 ± 6.6 
Forearm skin color 55.7 ± 7.5 
Stomach skin color        59.2 ± 9.8 
Delta of skin color  3.5 ± 5.4 
Sun exposure score  19.6 ± 15.0 
Time outdoors score  6.5 ± 4.6 
Skin exposure score        20.4 ± 3.2 
A1C (%)          8.3 ± 2.2 
FPG (mg/dl)      181.9 ± 78.3 
Years with T2D        6.15 ± 5.4 
Tobacco use  
   No 84.0 % 
   Yes 16.0 % 
Alcohol consumption  
   No 72.0 % 
   Yes 28.0 % 
Gender  
  females 51.1% 
  males 48.9% 
Data are mean ± standard deviation (SD) or %. 
BMI = Body mass index, A1C= glycated 
haemoglobin, FPG= fasting plasma glucose, 
T2D= type 2 diabetes  
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Table 2.  Correlation analysis (n = 90) 

 
Variables compared rs P-value 
Sun exposure score vs. change in skin color 0.081 0.487 
Sun exposure score vs. 25(OH)D 0.020 0.864 
Skin exposure score vs. 25(OH)D 0.230 0.047 
Forearm skin color vs. 25(OH)D 0.197 0.090 
Stomach skin color vs. 25(OH)D 0.260 0.024 
Change in skin color vs. 25(OH)D 0.280 0.015 
 

 
 
 
 
 
 
 
 
 
 
 

Table 3. Relationship of serum 25(OH)D and covariates 

Parameter* Β SE T P-value† 

Stomach skin color 0.330 0.139 2.378 0.020 
Skin exposure score 0.356 0.244 1.462 0.149 

A1C (glycated hemoglobin) -1.274 0.321 -3.967 0.001 

*Other covariates in the multiple linear regression  were  age, gender, 
BMI, years living in US, years with type 2 diabetes, ethnicity, tobacco use 
and alcohol consumption. † P < 0.05 is considered significant. 
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CHAPTER VI: VALIDATION OF A SHORT FOOD FREQUENCY 
QUESTIONNAIRE FOR THE ASSESSMENT OF VITAMIN D INTAKE IN 

MINORITIES WITH TYPE 2 DIABETES 
 

Introduction 

Low levels of vitamin D are prevalent in the US (1). According to data from the 

National Health and Nutrition Examination Surveys (NHANES) in 2001-2006, 33% of 

the general US population had serum 25(OH)D below 50 nmol/L. In addition, studies 

have shown that persons with darker skin color have lower vitamin D levels (2, 3). In 

fact, low vitamin D levels are especially common among minorities. For instance, 41% of 

African Americans and 33% of Mexican Americans had serum 25(OH)D below 50 

nmol/L compared to 18% of non-Hispanic Whites (1).    

Poor vitamin D status has been found in participants at risk or with type 2 

diabetes (T2D), however, the nature of this relationship is not clear (4, 5). Similarly, a 

negative association between vitamin D levels and insulin resistance has been reported in 

a large sample representative of the US adult population and in participants at risk for 

T2D (5, 6). According to these results, vitamin D levels are positively associated with 

insulin sensitivity and negatively associated with insulin resistance. 

Vitamin D level depends on several modifiable and non-modifiable factors. Skin 

color is the major non-modifiable factor and modifiable factors include sun exposure and 

vitamin D intake (7). However, there are no validated tools to assess vitamin D intake in 

participants with type 2 diabetes. 

Nutrient intake can be estimated by multiple methods, each of them presenting 

their own advantages and disadvantages. Food records are usually considered the gold 
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standard. They are administered over several days in order to represent usual intake. 

However, due to the burden of writing down every food and portion size, the period is 

limited (8). If the subject change his/her usual diet during this period, the data may be 

misleading. In addition, a tendency to underreport food intake by obese and overweight 

individuals have been reported (9). In contrast, food frequency questionnaires (FFQ) can 

assess food intake over a longer period of time (usually over a 1 year), can be 

administered by dietitians in situ or self-administered in a short period of time putting 

less burden on participants and may expose habits not evident on food records (10). 

However, FFQ should include ethnic specific foods and validated in the specific 

population under study (10). 

Several vitamin D FFQs have been validated in different populations, however, to 

our knowledge; none have been validated in Hispanic and African American participants 

with type 2 diabetes. Marshall et al. (8) validated the Iowa Study Targeted Nutrient Semi-

Quantitative Questionnaire and the Block Kids Food Questionnaire for estimating 

calcium and vitamin D intake among children using a 3-day food diary as reference. 

Correlations between the questionnaires and food diary for vitamin D were modest 

(r=0.487 and r=0.512, respectively). Pritchard et al. (11) validated a calcium, vitamin D, 

and vitamin K FFQ that also included assessment of supplement intake in overweight and 

obese post-menopausal women against a 5-day diet record. A strong correlation between 

the FFQ and the diet record for vitamin D was reported (r=0.89). Taylor et al. (10) 

validated a FFQ for assessing calcium and vitamin D intake in adolescent girls with 

anorexia nervosa against a 4-day food record. Strong correlations among the two diet 
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collection methods for vitamin D was observed (r=0.78). The analysis was adjusted for 

energy intake. 

Nucci et al. (7) evaluated the effectiveness of a short FFQ in determining vitamin 

D intake against a previously validated long FFQ in a population of 6 to 14 year old 

children. Correlations among the questionnaires was modest at baseline and follow up 

(r=0.35 and r=0.37, respectively). The study took into consideration the sun exposure 

habits of the population. Blalock et al. (12) assessed the validity of a short calcium and 

vitamin D FFQ among 27 university employees against a 7 day food diary and a 

previously validated long FFQ. Vitamin D intakes from the food diary and short FFQ 

were significantly correlated (r=0.72). The positive predictive value for identifying 

participants with low vitamin D intake using a cutoff point of 200 IU/day was 100%. 

It has been suggested that validation of nutrient intake should be conducted 

against a previously validated diet record but also against a biomarker of nutrient status 

(13). Vitamin D status is determined by serum 25(OH)D levels. However, since UVB 

light is the major contributor of vitamin D, validation studies should be conducted during 

winter where 25(OH)D will be mainly affected by intake and not sun exposure. 

Otherwise, sun exposure should be taken into consideration in the analysis of vitamin D 

intake and 25(OH)D. 

In this regard, Wu et al. (13) validated a 37-item vitamin D FFQ among a 

multiethnic sample of Canadian adults during late winter against a 7-day food diary and 

25(OH)D levels. Intakes were modestly correlated among dietary collection methods and 

25(OH)D (r=0.529 and  r=0.481, respectively). After redefining the serving sizes and 
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excluding fortified orange juice from the FFQ, the correlations improved (r=0.602 and 

r=0.520, respectively). 

Since studies suggested that vitamin D deficiency may have a role on insulin 

resistance and type 2 diabetes progression, it is imperative to validate diet collection tools 

in this particular population. The objective of the present study was to expand the short 

FFQ developed by Blalock et al (12). to include specific ethnic foods consumed by 

Hispanics and African Americans in South Florida and to examine the criterion validity 

of the short FFQ by comparing intakes with a previously validated long FFQ and serum 

25 (OH) levels. 

 

Methods 

Participants 

An intervention study to assess the effects of vitamin D supplementation (4000 

IU/day and 6000 IU/day) over six months on cardiovascular disease markers among a 

sample of African Americans and Hispanics with T2D was conducted. The present study 

analyzed the data collected at screening (short FFQ, 25(OH)D, sun exposure, and skin 

color) and baseline (long FFQ).  

The study consisted of two phases: phase one included the screening of 

individuals, phase two included the recruitment of individuals who met inclusion criteria 

and beginning of the vitamin D intervention trial. The inclusion criteria were vitamin D 

insufficiency (25(OH)D< 30 ng/ml), 30-70 years of age, African American or Hispanic 

with confirmed T2D. Exclusion criteria were taking vitamin D supplements other than 
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standard daily multivitamin formula, pregnant or lactating, having thyroid, hepatic, renal 

dysfunction, cancer, HIV, and major psychiatric disorders. 

Flyers explaining the purpose of the study, inclusion/exclusion criteria and 

containing investigators’ emails and phone numbers were distributed in highly visited 

community areas such as churches, supermarkets, and clinics. Two clinics were visited 

every week for recruitment purposes: Borinquen Health Care Center and Clinical Care 

Medical Center. When participants called the investigators, purposes of the study were 

explained and specific questions were asked to assure compliance with inclusion criteria. 

All qualified participants were invited to participate in a morning session at Human 

Nutrition Laboratory at FIU for fasting blood sampling to screen for vitamin D 

insufficiency. All participants were asked to sign an informed consent form previous to 

screening data collection and to provide contact number and address of their physician, as 

well as their own contact information. Only participants with T2D diagnosis confirmed 

by a physician were eligible to participate in the study. The study was approved by IRB 

at FIU. 

Participants in both groups were required to take either 4000 IU or 6000 IU of 

vitamin D (Cholecalciferol) per day given in the form of a pill in a single daily dose. 

Each participant was seen 4 times; at screening, baseline, 3 months, and 6 months. Serum 

25(OH)D were measured at screening, 3 months, and 6 months. The study lasted for 25 

weeks for each participant from screening to final assessment. The study started in June 

2011 and was completed on September 2013.  Ninety two participants were screened. 

Seventy five qualified for the intervention (n=50 for 4000 IU/day treatment and n=25 for 

6000 IU/day treatment). The time frame between dietary data collection was one week 
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(short FFQ at screening and long FFQ at baseline). Serum 25(OH)D, skin color and sun 

exposure data collected at screening (before any treatment took place) was used for this 

analysis. Even though data from the short FFQ, skin color, sun exposure, and serum 

25(OH)D was available for the ninety two initial participants at screening, only the data 

from the seventy five who qualified for the study and also completed the long FFQ at 

baseline were included in the analysis. 

 

Blood Collection 

Venous blood (15 ml) was collected from each subject by a certified phlebotomist 

using standard laboratory methods at each study point. After coagulation, blood was 

centrifuged at 2500 RPM for 30 minutes. The plasma glucose concentration was 

measured by hexokinase enzymatic method. Glycated hemoglobin (A1C) was measured 

by the DCA2000+ system (Bayer Corporation, Diagnostics Division, N.Y., U.S.) using 

the monoclonal antibody method. Serum vitamin D concentrations were measured with 

an enzyme-immunoassay kit by absorbance (Immunodiagnostic Systems Scottsdale, 

A.Z., U.S.). Color intensity developed was inversely proportional to the concentration of 

serum 25(OH)D.  

 

Socio-demographic Questionnaire 

Participants were asked to complete a standard questionnaire on site. Trained 

interviewers bilingual in English and Spanish administered the questionnaires in the 

language of preference of the participant. Data were collected using a socio-demographic 
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questionnaire which included questions related to gender, age, years with T2D, smoking, 

alcohol intake, and years living in the US. 

 

Anthropometric Measurements 

Height (m) and weight (kg) were measured using a SECA clinical balance scale 

(Seca Corp, Columbia, MD). Body mass index (BMI) was calculated as weight in 

kg/height in m2.  

 

Sun Exposure Questionnaire  

The sun exposure questionnaire developed by Hanwell et al. (14) was used 

following the original rubric. Time spent outdoors during the previous week (0≤5 

minutes, 1=5-30 minutes and 2= >30 min) was self-reported. Four options for skin 

exposed while outdoors were offered (1=face and hands, 2=face, hands and arms, 3=face, 

hands and legs and 4=bathing suit). The daily sun exposure score for each day was 

calculated by multiplying the time spent outdoors score times the skin exposed while 

outdoors score.  The scale for each day ranged from 0 to 8. The weekly sun exposure was 

calculated by adding the daily scores (min =0, max=56).  

 

Skin Color 

In order to have an objective measure of sun exposure, skin color was determined 

by reflectance colorimetry using the SmartProbe 400 (IMS Inc. USA). This instrument 

uses the International Commission on Illumination Scale which ranges from 0 (black) to 

100 (white) for skin color. Two readings at each measurement site (6 readings total) for 
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each participant were taken: two on the dorsal aspect of the wrist of the right hand (area 

most exposed to sun), two on the inside of the right upper arm and two on the stomach 

(areas less exposed to the sun). The mean values of the two readings at each measurement 

sites were used for analysis. The change in skin color due to sun exposure was calculated 

by finding the difference between the less exposed area (natural color) and the most 

exposed area. 

 

Assessment of Dietary Intake  

Dietary intake was determined using the long FFQ developed by Walter Willett 

(15). This FFQ has been validated in different ethnical groups and, also, specifically in 

Cuban-Americans in South Florida (16). Participants self-reported the average 

consumption of specific amount of foods over the past 12 months. Frequencies ranged 

from “never” to “six or more servings per day”. The FFQ also assessed the frequency use 

of multivitamin/mineral supplements, salt, sugar, alcohol and vitamin D intake. A short 

FFQ containing 24 foods and beverages designed to assess vitamin D and calcium intake 

was administered during the screening phase. The original questionnaire contained only 

22 foods (12). Pizza and sardines were added as common foods consumed by this 

population based on our previous studies (16, 17). The questionnaire asked participants 

how frequently they consume each food and the serving size. Total vitamin D intake was 

calculated following the original rubric (12).  
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Statistical Analysis 

The descriptive statistics for continuous variables were presented as mean±SD 

and proportions for categorical variables. The Student’s t test for paired samples was used 

to compare the vitamin D intake between both questionnaires. Pearson correlations 

among the long FFQ and short FFQ and the short FFQ and serum 25(OH)D was 

conducted to test the validity of the questionnaire. A cross classification analysis was run 

to determine the agreement between the questionnaires or if they misclassify participants 

into categories based on vitamin D intake levels. For this purpose vitamin D intakes were 

divided into quartiles. The proportion of participants who were classified into the same 

quartile, same ± 1 quartile, or who were entirely misclassified when comparing both tools 

was calculated. The positive predictive value of the short FFQ to identify participants 

with vitamin D intake below the RDA (600 IU for people 1 to 70 years old) (18) was 

determined comparing the number of individuals below the cutoff for each dietary 

collection method. A multiple linear regression model was run to determine the 

association between serum 25(OH)D, vitamin D intake from the short FFQ, and sun 

exposure score. Serum 25(OH)D was the dependent variable. Later the model was 

adjusted for age, gender, BMI, forearm skin color, A1C, years with T2D, years living in 

the US, ethnicity, alcohol intake, and smoking status. All analyses were performed using 

SPSS version 19 (Chicago, IL, US).A p-value of <.05 was considered significant. 

 

Results 

Participants (n=75) had a mean ± SD for age of 54.8 ± 9.7 years, BMI of 33.7 ± 

6.6 kg/m2, serum 25(OH)D of 22.6 ± 6.6 ng/ml, forearm skin color of 55.7 ± 7.5, sun 
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exposure score of 19.6 ± 15, A1C of 8.3 ± 2.2%, and fasting plasma glucose of 181.9 ± 

78.3 mg/dl. They had been living in the US for 10.4 ± 9.3 years and have been diagnosed 

with T2D for 6.1 ± 5.4 years (Table 1). Sixteen percent were smokers, 28% consumed 

alcohol, 48.9% were males, and 86.7% were Hispanics. Dietary vitamin D intake 

according to the long FFQ and short FFQ were 311.8 ± 241.8 and 323.7 ± 290.9 IU/day, 

respectively (Table 1). 

There were no significant differences between dietary vitamin D intake derived 

from the long FFQ and the short FFQ (P=0.637). The mean difference between intakes 

was 11.9 IU/day. The correlation between dietary methods was 0.683 (P<0.001). The 

correlation between vitamin D intake according to the short FFQ and serum 25(OH)D 

was not significant (r=0.010, P=0.934). The long FFQ was not correlated to serum 

25(OH)D either (r=0.164, P=0.161) (Table 2). 

The cross-classification analysis showed that 79% of the participants were 

classified into the same quartile by both collection methods and a 100% were classified 

into the same ± 1 quartile. None of the participants was misclassified (Table 3). 

The positive predictive value of the short FFQ to identify participants with 

vitamin D intake below the RDA (600 IU/day) as compared to the long FFQ was 95.2%. 

The unadjusted multilinear regression showed that short FFQ was not associated 

with serum  25(OH)D (P=0.065). In contrast, sun exposure score was significantly 

associated with serum 25(OH)D (P=0.020). The unadjusted model explained 9.7% of the 

variation in serum 25(OH)D. When the model was adjusted for covariates, only A1C and 

years with T2D were significantly associated with serum 25(OH)D (P<0.001 and 
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P=0.028, respectively). The adjusted model explained 41% of the variation in serum 

25(OH)D (Table 4). 

 

Discussion 

Food frequency questionnaires are used in clinical settings to record dietary 

patterns over a long period of time. They can show patterns that are not detected with 

food records and put less burden on the subject. 

The FFQ developed by Willet et al. (15) has been commonly used in research 

settings and validated in several populations. This questionnaire has 126 food items and 

takes 45 minutes to be completed which is not practical in clinical settings. In contrast, 

the short FFQ used in the present study has only 24 food items and takes 5 minutes to be 

completed (12). 

In fact, the short FFQ was valid when compared to the long FFQ. The correlation 

obtained between questionnaires (r=0.683) was higher than the one obtained by Nucci et 

al. (r=0.35) (7) when validating a 21-item short FFQ against a 152-item long FFQ among 

14 year old children. The reason for this low correlation may be that the information was 

provided by the parents and that supplement intake was assumed to be 400 IU when it 

was not specified (7). Studies that used food records as the gold standard to validate short 

FFQ have obtained higher correlations. Pritchard et al. (11) validated a calcium, vitamin 

D, and vitamin K FFQ in overweight and obese post-menopausal women against a 5-day 

diet record. A strong correlation between the FFQ and the diet record for vitamin D was 

reported (r=0.89). Taylor et al. (10) validated a FFQ for assessing calcium and vitamin D 

intake in adolescent girls with anorexia nervosa against a 4-day food record. Strong 
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correlations among the two diet collection methods for vitamin D was observed (r=0.78). 

Blalock et al. (12), who developed the questionnaire that was used in the current study, 

validated the tool against a 7 day food diary. Vitamin D intakes from the food dairy and 

short FFQ were significantly correlated (r=0.72). 

It may be possible that the use of a gold standard collection method like food 

records increased the correlation with the short FFQ in the previous studies compared to 

this study due to less variability. However, the food records are only collected during a 

short period of time and it is assumed that they represent real intake. Therefore, all errors 

in intake are assigned to the short FFQ when compared to food records. If some unusual 

foods are consumed during these days, then the food records no longer represent a real 

intake and a systemic bias is added to the analysis which does not happen when a short 

FFQ is validated against a long FFQ. 

In addition, none of the participants was grossly misclassified when the sample 

was divided in quartiles for both questionnaires. Therefore, the short FFQ can accurately 

classify participants according to their vitamin D intake. 

Even though the mean difference in vitamin D intake reported by both tools was 

not significant, the short FFQ over reported vitamin D by 12 IU/day compared to the long 

FFQ. This was expected since the short FFQ only focuses on foods containing vitamin D 

while the long FFQ assesses all foods eaten over one year. 

Blalock et al. (12), reported a positive predictive value of 100% when using a 

cutoff point of 200 IU/day. In our study the positive predictive value to detect 

participants with intakes below 600 IU/day was 95.2% which was expected because the 

cut off was higher than the one used in the previous study. In addition, only 12% of our 
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sample had intakes above 600 IU/day. This was also expected because our study only 

enrolled participants with vitamin D insufficiency which makes our results not 

generalizable to the entire population of patients with T2D. However, since vitamin D 

insufficiency is prevalent among patients with T2D (5), this tool may be applicable to a 

vast majority of this population. 

The mean BMI of our sample was 33.7 ± 6.6 kg/m2, which may have affected our 

results. It has been shown that obese participants underreport food intake despite the 

collection method used (9). The majority of participants in our sample were overweight 

and obese. Therefore, it is possible that actual vitamin D intake is higher and a correction 

factor may be needed to approximate this value. Regarding ethnicity, only 10 African 

Americans were enrolled in the study. Therefore, it was not possible to detect ethnic 

differences due to the small sample size. 

Diffey et al. (19), proposed a model to estimate serum 25(OH)D based on vitamin 

D intake and sun exposure scores in Caucasian British adults. Even though, the model 

was significant, it has been criticized for not including other important factors that affects 

serum vitamin D levels. In fact, as we age vitamin D synthesis decreases and vitamin D is 

sequestered in fat tissue (7). Therefore, age and BMI should be added to the model in 

order to better represent the relationship with serum 25(OH)D.   

In this regard, the correlation between the short FFQ vitamin D intake and serum 

25(OH)D was not significant in our sample. We hypothesised that adding the sun 

exposure questionnaire was going to improve the relationship. A more careful view of the 

sun exposure scores revealed that a considerable proportion of the participants in our 

sample spend no time at all outdoors. Therefore, this was not a sample with enough 
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variability in sun exposure habits. When age and BMI were added to the model, they did 

not contribute significantly to the association either. Interestingly, time with T2D and 

A1C were strongly associated with serum 25(OH)D. To our knowledge, there was no 

study validating a short vitamin D food frequency questionnaire in participants with T2D 

in the literature, thus, we were unable to compare our results. It may be possible that in 

participants with T2D, vitamin D levels are related to insulin sensitivity and to blood 

glucose. Therefore, supplementing vitamin D to participants with T2D may have a 

profound impact on glycemic control, despite sun exposure habits or intake. 

We were not able to adjust for kcal intake because the short FFQ does not provide 

energy intake data. However, there was no correlation between energy intake and vitamin 

D intake in the long FFQ, which makes us think that energy intake is not a confounder in 

this particular sample. 

Our study has additional limitations. The short FFQ did not include fortified foods 

like orange juice, meats, and soy milk. In addition, supplement intake was not recorded in 

the short FFQ. This short FFQ should be administered several times a year to track the 

vitamin D intake change between seasons. 

Finally, this is the first short FFQ designed to asses vitamin D intake validated in 

a population of participants with T2D. This tool is easy to use in clinical settings due to 

its brevity and simplicity. In addition, it can help screen participants at high risk of 

vitamin D deficiency that can be confirmed later with biochemical analysis. Since 

glycemic control may be related to vitamin D status, screening for vitamin D deficiency 

using this short FFQ may help prevent diabetes complications in Hispanics and African 

Americans. 
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Table 1. Characteristics of the study participants (n = 75) 
 
Variable Mean± SD 
Age (years) 

 
 

 

54.8 ± 9.7 
 

  
  

BMI (kg/m2) 33.7 ± 6.6 
Living in US (years) 10.4 ± 9.3 
Serum 25(OH)D (ng/ml) 22.6 ± 6.6 
Forearm skin color 55.7 ± 7.5 
Stomach skin color        59.2 ± 9.8 
Delta of skin color  3.5 ± 5.4 
Sun exposure score  19.6 ± 15.0 
Time outdoors score  6.5 ± 4.6 
Skin exposure score        20.4 ± 3.2 
A1C (%)          8.3 ± 2.2 
FPG (mg/dl)      181.9 ± 78.3 
Years with T2D          6.1 ± 5.4 

 
 

Dietary Vit D intake (long FFQ)(IU/day)      311.8 ± 241.8 
Dietary Vit D intake (short FFQ)(IU/day)      323.7 ± 290.9 
Tobacco use  
No 84.0 % 
Yes 16.0 % 
Alcohol consumption  
   No 72.0 % 
   Yes 28.0 % 
Gender  
  Females 51.1% 
  Males 48.9% 

 Ethnicity  
  African Americans 13.3% 
   Hispanics 86.7% 
Data are mean ± standard deviation (SD) or %. BMI = Body 
mass index, A1C= glycated haemoglobin, FPG= fasting 
plasma glucose, T2D= type 2 diabetes, FFQ = food frequency 
questionnaire 

 
 
 
 
 
 
 
 
 
 



107 
 

Table 2. Dietary vitamin D intake derived from the long FFQ and short FFQ, and 
correlation between methods 

 
 Long FFQ 

(Mean ±SD) 
Short FFQ 
(Mean ± SD) 

 P-value Pearson r 

Dietary Vitamin D 
intake (IU/day) 

311.8 ± 241.8 323.7 ± 290.9  0.637 0.683* 

Significant differences between dietary sources determined by paired samples t-
test. *Indicates significant correlation between long FFQ and short FFQ, P<0.05 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Cross-classification analysis to determine proportion of participants classified 
into the same, or same ± 1 quartile based on short FFQ and long FFQ intakes. 

 
 % classified into 

same quartile 
% classified into 
same ± 1 quartile 

% misclassified 

Vitamin D intake 79 100 0 
Quartiles 1 to 4 for short FFQ were <140, 140-212, 212-486, >486 IU/day; quartiles 1 to 
4 for long FFQ were <133.4, 133.4-245.3, 245.3-443.7, >443.7 IU/day. FFQ=short food 
frequency questionnaire. 
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Table 4. Relationship of serum 25(OH)D, dietary vitamin D intake, and 
covariates 

 
Parameter* β SE T P-value† 

Vitamin D intake (short FFQ) 0.004 0.003 1.48 0.144 
Sun exposure score 0.370 0.224 1.65 0.104 

*Other covariates in the multiple linear regression  were  age, gender, 
BMI, forearm skin color, A1C, years living in US, years with type 2 
diabetes, ethnicity, tobacco use and alcohol consumption. † P< 0.05 is 
considered significant. 
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CHAPTER VII: SUMMARY AND CONCLUSIONS 
 
 

Effect of vitamin D supplementation on blood lipids 

In the current study, vitamin D3 supplementation at 6000 IU/day significantly 

reduced total cholesterol, and triglycerides in a sample of Hispanics and African 

Americans with type 2 diabetes and vitamin D insufficiency. The significance was lost, 

however, after adjusting for confounders. Therefore, our results suggest that the 

association between vitamin D insufficiency and dyslipidemia may be mediated by other 

cardiovascular risk factors such as obesity. 

In addition, the positive effect of vitamin D supplementation on total cholesterol 

and triglycerides was observed only in the 6000 IU group despite both groups reaching 

similar serum vitamin D levels. It might be that sufficient vitamin D status was achieved 

sooner in the 6000 IU/group and participants were exposed to sufficient vitamin D levels 

for a longer period of time.  

 

Effect of vitamin D supplementation on glucose homeostasis 

Our results did not support the hypothesis that vitamin D supplementation may 

improve glucose homeostasis in participants with established type 2 diabetes. Our 

participants had 6.48 ± 5.18 and 5.48 ± 5.93 years with type 2 diabetes for the 4000 IU 

and 6000 IU groups, respectively. This may indicate that vitamin D supplementation has 

no effect on glucose homeostasis once beta cell function has passed a certain point of 

deterioration. 
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A trend for a decline in fasting plasma glucose was observed in the 4000 IU 

group. Since no improvement was observed in A1C, a marker of long term glycemic 

control, changes in fasting plasma glucose may be of limited significance in this 

population with established type 2 diabetes. 

 

Vitamin D repletion 

Treatments with 4000 IU/day and 6000 IU/day increased serum 25(OH)D levels 

significantly at 3 months and 6 months compared to baseline values.  These results 

support the notion that 4000 IU/day for 3 months is an adequate dosage to replenish 

vitamin D in Hispanics and African Americans with T2D. Additional treatment for 3 

extra months or a higher dosage of 6000 IU/day did not change serum 25(OH)D levels 

significantly. According to these data, a physiological plateau is reached at 3 months with 

the use of the 4000 IU/day regimen. 

Regarding safety, none of the participants in our study reported any adverse 

events or achieved a serum 25(OH)D > 150 ng/ml. Therefore, it seems that both 

treatments are safe to use among this particular population of Hispanics and African 

Americans with T2D for six months.  

 

Validation of sun exposure questionnaire 

The total weekly sun exposure score was not correlated with either change in skin 

color or serum 25(OH)D in our study. These results are explained by the very short time 

spent outdoors in this population of participants with T2D. The sun exposure 

questionnaire was not a valid tool to estimate change in skin color due to sun exposure or 
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serum 25(OH)D levels in this sample of African Americans and Hispanics with T2D. 

Unexposed skin color and A1C levels were significantly associated with serum 25(OH)D. 

Unexposed skin color may be used as proxy measure to screen for vitamin D deficiency 

in this sample of participants with T2D. 

 

Validation of a short food frequency questionnaire 

The short FFQ demonstrated to be valid when compared to the long FFQ. In 

addition, none of the participants was grossly misclassified when the sample was divided 

in quartiles for both questionnaires. Therefore, the short FFQ can accurately classify 

participants according to their vitamin D intake. The positive predictive value of the short 

FFQ to detect participants with intakes below 600 IU/day was 95.2%. 
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CHAPTER VIII: STRENGTHS AND LIMITATIONS 
 
 

Our study had several strengths. First, to our knowledge this was the first study 

that analyzed vitamin D supplementation effects on cardiovascular risk factors in 

Hispanics and African Americans with T2D. Second, the dosages used were large enough 

to raise serum vitamin D to sufficient levels in a population that was insufficient at 

baseline. Third, analysis was adjusted for a wide range of covariates related to vitamin D 

metabolism. Fourth, our study had sufficient power to find changes in fasting plasma 

glucose, fasting insulin, A1C and lipid panel. Fifth, individuals did not change 

medication, vitamin D intake, BMI, smoking or sun exposure habits during the course of 

the study.  Sixth, the short FFQ is the first validated tool to assess vitamin D intake in a 

population of participants with T2D. This tool is easy to use in clinical settings due to its 

brevity and simplicity. In addition, it can help screen participants at high risk of vitamin 

D deficiency that can be confirmed later with biochemical analysis. Lastly, compliance in 

our study was high with 94% for the 4000 IU group and 92% for the 6000 IU group 

without any differences between groups. No adverse events were reported during the 

course of the study. 

Limitations of our study included: first, the sample was not representative of the 

general population of people with T2D in the US and participants were not randomly 

distributed among groups. Thus, our results are not generalizable. Second, our sample 

was categorized as obese according to their BMI which may diminish the effect of 

vitamin D supplementation. In addition, obese participants are prone to underreport food 

intake. Third, the number of African American participants was not large enough to 
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analyze data by ethnicity. Fourth, the use of fixed time intervals. Therefore, the peak 

levels of serum 25(OH)D may have been missed. Fifth, the limited outdoor activity of 

this particular sample. Sixth, the short FFQ did not include vitamin D fortified foods. 

Lastly, 64% and 68% of participants were taking lipid lowering medication in the 4000 

IU and 6000 IU groups, respectively. Medication use may mask the effect of vitamin D 

supplementation. We tried to control for it by advising participants to keep their 

medication use constant during the study, however, this panorama reflects common 

clinical practice among patients with type 2 diabetes. 
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CHAPTER IX: FUTURE RESEARCH 
 
 

Our results suggest that the positive effect of vitamin D supplementation on lipid 

profile may be mediated by other cofactors related to vitamin D metabolism among 

Hispanic and African American participants with type 2 diabetes. The inclusion of 

obese/non obese participants is needed in order to assess the confounding effect of this 

variable. Longer, well designed randomized clinical trials are warranted.  

The main objective of glycemic control in patients with type 2 diabetes is to 

prevent microvascular and macrovascular complications. The use of surrogate measures 

like fasting plasma glucose, insulin resistance, and A1C are of practical clinical 

significance but not ideal for research purposes. Longer and larger studies supplementing 

vitamin D to participants with type 2 diabetes that focus on microvascular and 

macrovascular complications, instead of surrogate measures, are needed to confirm our 

results. 

It may be possible that maintenance of sufficient serum 25(OH) levels for a 

longer period of time are needed to see significant changes in metabolic markers not 

related to bone turn over or calcium metabolism. Therefore, it remains to be seen if 

supplementation periods longer than 6 months may have an effect on cardiovascular risk 

factors in this particular sample of Hispanics and African Americans with T2D. 

Finally, the short FFQ is easy to use in clinical settings due to its brevity and 

simplicity. In addition, it can help screen participants at high risk of vitamin D deficiency 

that can be confirmed later with biochemical analysis. Therefore, studies testing the short 

FFQ in community and clinical settings are warranted. 
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Appendix 1: Consent Forms 
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Appendix 2: Sun Exposure Questionnaire 
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Sun Exposure Questionnaire.        Visit:_________Date:_____________ID#:__________ 

 

Please check the boxes that best describes your behavior 
 

 Time Outdoors Amount of Skin Exposed 
                               

< 5min 
 
5-30 min 

 
>30 min 

Hands 
and face 

Hands, 
face, 
and 
arms 

Hands 
face, and 
legs 

Bathing 
Suit 

Monday        
Tuesday        
Wednesday        
Thursday        
Friday        
Saturday        
Sunday        
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Appendix 3: Short Food Frequency Questionnaire 
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Appendix 4: Skin Color and Anthropometrics Control Form 
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Appendix 5: Demographic Questionnaire 
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Appendix 6: Compliance and Adverse Events Form 
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