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ABSTRACT OF THE DISSERTATION 

SYNTHESIS AND CHARACTERIZATION OF PHOTOCHROMIC COPOLYMERS 

CONTAINING 3-INDOLYLFULGIDES/INDOLYLFULGIMIDES 

by 

Changjun Fan 

Florida International University, 2015 

Miami, Florida 

Professor Watson J. Lees, Major Professor 

Fulgides and fulgimides are important organic photochromic compounds and can switch 

between the open forms and the closed forms with light. The 3-indolylfulgides and 3-

indolylfulgimides exhibit promising photochromic properties and have great potential in optical 

memory devices, optical switches and biosensors. Copolymers containing 3-

indolylfulgides/indolylfulgimides synthesized via free radical polymerizations increase 

conformation changes and allow the photochromic compounds to be uniformly distributed in the 

polymer matrix. 

A trifluoromethyl 3-indolylfulgide and two trifluoromethyl 3-indolylfulgimides with one or 

two polymerizable N-stryryl group(s) were prepared. Copolymerization with methyl methacrylate 

provided two linear copolymers or a cross-linked copolymer. The properties of the monomeric 

fulgide/fulgimides and copolymers in toluene or as thin films were characterized. In general, the 

photochromic monomers and copolymers revealed similar photochromic properties and exhibited 

good thermal and photochemical stability. All compounds absorb visible light in both open forms 

and closed forms. The closed form copolymers were more stable than the open form copolymers 

and showed little or no degradation after 400 h. The photochemical degradation rate was less than 

0.03% per cycle. In films, conformational restrictions were observed for the open forms 

suggesting that the preparation of films from the closed forms is advantageous. 
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Two novel methyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) 

were prepared. Copolymerization of acrylamide with the methyl indolylfulgimides or the 

trifluoromethyl indolylfulgimides yielded two aqueous soluble linear copolymers and two 

photochromic hydrogels. The closed form copolymers containing trifluoromethyl 

indolylfulgimides were hydrolyzed in aqueous solution by replacing the trifluoromethyl group 

with a carboxylic acid group. The resulting carboxylic copolymers were also photochromic. The 

copolymers containing methyl fulgimides were stable in aqueous solutions and did not hydrolyze. 

Both methyl and carboxylic copolymers exhibited good stability in aqueous solutions. In general, 

the open form copolymers were more stable than the closed form copolymers, and the 

copolymers revealed better stability in acidic solution than neutral solution. The linear 

copolymers displayed better photochemical stability in neutral solution and degraded up to 22% 

after 105 cycles. In contrast, the hydrogels showed enhanced fatigue resistance in acidic condition 

and underwent up to 60 cycles before degrading 24%.  
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1. INTRODUCATION 

1.1 Photochromic compounds 

Photochromic compounds are well known because of their successful application in 

photochromic lenses. The lenses are coated with photochromic compounds, which darken in 

sunlight because of the absorption of UV photons and then become clear in diffused light. The 

phenomenon is called photochromism, which is defined as a reversible transformation of 

chemical species between two forms having different absorption spectra induced by a certain type 

of electromagnetic radiation.1  
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Figure 1. Photochromic reactions and absorption spectra of a photochromic compound 

In the past several decades, many organic photochromic compounds were synthesized, and 

their photochromic properties were thoroughly studied.1 In general, organic photochromic 

compounds have two forms, A and B. Figure 1 shows that the A form is thermally stable and the 

forward reaction (A to B) occurs photochemically. For some photochromic compounds, such as 

spiropyrans and spirooxazines, the B form is thermally unstable, and the reverse reaction occurs 

photochemically and thermally. For other photochromic compounds, such as fulgides, the B form 

is thermally stable, and the reverse reaction occurs only photochemically. For almost all organic 

photochromic compounds, the longest wavelength absorption maximum (λmax) of the B form 
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occurs at a longer wavelength than that of the A form, and the system involves unimolecular 

reaction.1 Normally, the A form is colorless and B form is colored. Therefore, the forward 

reaction (A to B) is referred as a coloration reaction, and the reverse reaction is a decoloration 

reaction, even if both forms are colored.1 

The early organic photochromic compounds were limited by their fast photodegradation. 

From 1980 onwards, researchers focused on the development of organic photochromic 

compounds with good photochemical stability, and many new photochromic compounds were 

synthesized. For example, the most photochemically stable indolylfulgide can be interconverted 

between the open form and the closed form for 10000 photochemical cycles before degrading by 

13% in toluene.2  

Among organic photochromic compounds, there are several important species that have 

attracted more attention than others because of their promising photochromic properties. Scheme 

1 shows the photochromism of azo compounds, photochromic quinones, spirooxazines, 

spiropyrans, diarylethenes with heteroaryl groups, fulgides and fulgimides. There are several 

different chemical reactions involved in photochromism, for example, pericyclic reactions occur 

in spirooxazines, spiropyrans, diarylethenes, fulgides and fulgimides; cis-trans isomerizations 

take placed in azobenzenes; and quinones undergo proton and group transfer reactions. These 

organic photochromic compounds have been extensively studied because of their successful or 

potential applications in photochromic lenses, optical memory devices, dyes, optical switches, 

logic gates, biological imaging, and sensors.1,3-14 However, only diarylethenes, fulgides and 

fulgimides have a thermally stable colored form, which makes them suitable for applications in 

optical memory devices where thermal irreversibility is essential.  
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Scheme 1. Photochromism of photochromic compounds 
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1.2 Fulgide and fulgimides 

Fulgides are derivatives of 1,3-butadiene-2,3-dicarboxylic acid anhydride, which was 

synthesized by Stobbe in 1905.15 As illustrated in scheme 2, if one of the R groups is aromatic or 



4 
 

contains a double bond, the fulgide may be photochromic. Photochromic fulgides have three 

forms, two open forms and one closed form. The two open forms can be interconverted by 

irradiation with UV light and in some cases visible lights. But only one of the open forms, the 

cyclizable form of the fulgide, can be converted to the closed form via a photochemical 6𝜋𝜋-

electrocyclization. For the early fulgides, the closed form was thermally unstable and the reverse 

reaction (ring-opening reaction) occurred thermally.1 In 1981, Heller synthesized the first 

thermally irreversible fulgide, a furylfulgide with a 2,5-dimethyl-3-furyl as the aromatic 

group.16,17 Since 1981, different fulgides with different substituents, such as thienylfulgide, 

pyrrylfulgide, and indolylfulgide were successfully prepared to improve the thermal stability and 

photochromic properties.2  

Scheme 2. Fulgide structure and photochromism 
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Among these different fulgides, indolylfulgides have attracted particular attention because of 

their promising properties, such as increased fatigue resistance, enhanced thermal stability, high 

efficiency of photoreactions, and visible wavelength absorption.2,18 These excellent properties 

allow fulgides to be used as optical switches and optical information storage media.19 However, 

previous reports indicated that fulgides were unstable in protic solvents (hydroxylic media) 

because the succinic anhydride ring can be easily hydrolyzed.20,21 Therefore, fulgimides, as the 
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most important fulgide derivatives, were synthesized to improve the hydrolytic stability by 

replacing the succinic anhydride ring with a succinimide ring (Scheme 3).2,22  

Scheme 3. Photochromism of indolylfulgides and indolylfulgimides 
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In general, fulgimides, which have similar photochromic properties with the corresponding 

fulgides, exhibit hypsochromic shift in UV-Vis absorption spectra relative to the fulgides.1 Beside 

hydrolytic stability, another major advantage of fulgimides is that the succinimide ring allows 

another substituent (such as a polymerizable group) to be attached without any significant change 

in photochromic properties. Recently, the applications of fulgimides in many fields have been 

reported. Moore et al. designed an optoelectronic device on the basis of a fulgimide–porphyrin–

dithienylethene triad that can displays different functions of logic gates with photonic inputs and 

outputs.23 Also, fulgimides can be used as molecular switches to photocontrol a variety of 

photochemical processes. Moore et al. reported a porphyrin covalently linked fulgimide moiety 

that efficiently switch the porphyrin excited states “on” and “off”.24 In addition, fulgimides have 

been used to control biological activities. Willner et al. synthesized a thiophenefulgimide that 

controlled the binding of 4-nitrophenyl α-D-mannopyranoside to the protein Concanavalin A 

photochemically.25 Furthermore, polymerizable groups on the succinimide ring allow the 

fulgimide incorporation into polymers. The resulting copolymers were photoresponsive and had 

similar absorption spectra with the monomeric fulgimides. For example, Rentzepis et al. 

synthesized a thermally stable 2-indolyfulgimide-MMA cross-linked copolymer, and Lees et al. 
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prepared a linear and a cross-linked copolymer containing 3-indolyfulgimide-MMA copolymer. 

The cross-linked copolymers exhibited excellent thermal stability and fatigue resistance.26,27  

1.3 Synthesis 

1.3.1 Synthesis of fulgides 

Scheme 4.General synthetic pathway of fulgides via Stobbe condensation1 
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Scheme 5. Mechanism of Stobbe condensation1 
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The main reaction to synthesize a fulgide is Stobbe condensation, where a ketone or an aryl 

aldehyde reacts with a succinate derivative to form a half ester. Then the fulgide can be prepared 

after ester hydrolysis and an dehydration process (Scheme 4). The synthesis of fulgide is usually 

low yielding and difficult to scale up in the chemical industry.28,29 The mechanism of the Stobbe 

condensation which is the key step in fulgide synthesis is shown in Scheme 5.1 The first step is 

deprotonation of the diethyl succinate at the α-carbon to form an ester enolate. Then the enolate 

undergoes aldol reaction with the carbonyl compound (ketone or aryl aldehyde) to form a β-

alkoxy ester intermediate. The following intramolecular acyl substitution gives a lactone 
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intermediate. Then, the lactone is opened via an elimination reaction to an ester at basic condition. 

Finally, the ester is hydrolyzed to a diacid and dehydrated to obtain the fulgide. Therefore, to 

improve the overall yield of fulgide, an efficient method to prepare the lactone needs to be 

developed. 

In 1996, Yokoyama et al. reported the first synthesis of trifluoromethyl indolylfulgide 

(Scheme 6). The synthesis started with the reaction of 1,2-dimethyl indole with trifluoroacetyl 

trifluoromethanesulfonate to form 1,2-dimethyl-3-trifluoroacetylindole in 42% yield. Then the 

Stobbe condensation was performed by treating the 1,2-dimethyl-3-trifluoroacetylindole with 

dimethyl isopropylidene succinate. The hydrolysis reaction was performed in KOH/MeOH/H2O 

solution followed by dehydration in the presence of imidazole-trifluoroacetate to afford the 

indolylfulgide in a yield of 3%. The overall reaction yield is only 1%. Although the 

trifluoromethyl indolylfulgide showed remarkable photochemical and thermal stability, the low 

yielding synthesis hampered further research and potential applications.  

Scheme 6. Synthetic pathway of indolylfulgide by Yokoyama et al.28 
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An improved synthetic route to prepare the trifluoromethyl indolylfulgide was introduced by 

Lees et al. in 2001 (Scheme 7).18 The synthesis of indolylfulgide employed two Stobbe 

condensations. The first condensation involved the reaction of diethyl succinate with acetone to 

afford diethyl isopropylidene succinate in 75% yield. Another starting material, 1,2-dimethyl-3-

trifluoroacetylindole, was prepared in 96% yield by treating 1,2-dimethylindole with 

trifluoroacetic anhydride in 1,2-dichloroethane. The second Stobbe condensation combined 

diethyl isopropylidene succinate and 1,2-dimethylindole in the presence of LDA in toluene at -

78 °C. The resulting cis/trans lactones were isolated in 38% yield. In the hydrolysis step, 
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cis/trans lactones was treated with NaH and followed by addition of water in DMF to form the 

dicarboxylic acid intermediate. Then dehydration of the dicarboxylic acid intermediate in acetic 

anhydride provided the trifluoromethyl indolylfulgide in 83% yield from the lactones. The new 

methodology improved the overall yield of trifluoromethyl indolylfulgide from 1% to 29%. Lees 

et al. demonstrated that the new method improved the yield of not only fluorinated but also non-

fluorinated indolylfulgide derivatives and the method is expected to be applicable to most cis 

lactone derivatives. By using the method, a trifluoromethyl indolylfulgide was prepared on a 

large scale (10 g) with an overall yield of 18%. The new methodology allows enough preparation 

of significant amounts of numerous indolylfulgides, which permits investigation of photochromic 

properties and the potential applications. 

Scheme 7. Synthetic pathway of CF3 indolylfulgide by Lees et al.18 
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1.3.2 Synthesis of fulgimides 

Fulgimides are the most important fulgide derivatives and are synthesized by replacing the 

succinate anhydride ring of the fulgides with a succinimide ring. Synthesis of fulgimides is low 

yielding in most cases. Numerous studies have been undertaken to explore preparation of 

fulgimides. In general, fulgimides can be prepared using the following three different methods 

(Scheme 8).  In synthetic pathway I, fulgimide is prepared by treating fulgide with a primary 

amine to form a succinamic acid intermediate then followed by dehydration. The succinamic acid 
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intermediate also could be synthesized by the reaction of a succinic half-ester with the Grignard 

salt of the amine as shown in pathway II. In the third method, a non-N-substituted fulgimide is 

prepared from a fulgide and then the substituent is added by treating the fulgimide with 

brominated compounds. According to previous reports, synthetic pathway I is the most common 

way and numerous fulgimides were prepared on the basis of the first method.1,2,27,29-34 

Scheme 8. General synthetic pathway of fulgimides from fulgides1 
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The key step in synthetic pathway I is the formation of a succinamic acid intermediate. 

Generally, the reaction is conducted by using a base to deprotonate a primary amine and then the 

substantial amine with a negative charge attacks the carbonyl carbon on the succinate anhydride 

ring to undergo a ring opening reaction (Scheme 9). Finally, the resulting succinamic acid 

intermediate was dehydrated to yield a fulgimide.   

Several studies demonstrated that fulgimides can be synthesized in high yield following 

pathway I. A series of fluorinated indolylfulgimides were synthesized by Lees et al. from the 

precursor fulgide.35 As shown in Scheme 10, the fulgide was reacted with substituted anilines in 

the presence of a base, such as of NaH or LDA, to obtain succinamic acid intermediates. Then the 

succinamic acid intermediates underwent dehydration in acetic anhydride to form the 

corresponding fulgimides in the overall yield of up to 64%.  
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Scheme 9. Mechanism of formation of succinamic acid intermediate in basic conditions 
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Scheme 10. Synthetic pathway of CF3 indolylfulgimides by Lees et al.35 
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Rentzepis et al. synthesized a series of 2-indolylfulgimides using a similar method. The 

fulgimides were prepared in excellent yield (over 80%) from a Lewis acid and 

hexamethyldisilazane (HMDS)-promoted one-pot reaction (Scheme 11). The method was first 

introduced by Toru et al. who indicated that the anhydride first reacted with amine to form an 

succinamic acid intermediate then followed by dehydration with Lewis acid and HMDS.36   The 

proposed cyclization mechanism involved the Lewis acid and HMDS-promoted silylation of the 

succinamic acid intermediate to form a labile trimethylsilyl ester and followed by thermal 

deoxysilylation to yield an imide. The reaction can be conducted under mild conditions and 

without forming undesired isoimides.  

Scheme 11. Synthetic pathway of fulgimides by Rentzepis et al.32 
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Moreover, Lee et al. reported a microwave-assisted synthesis method to prepared 

thienylfulgimide.37 First, the succinamic acid intermediates were formed by subjecting the 

mixture of precursor thienylfulgides and bromo-amines to microwave radiation by using a 
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conventional microwave oven. Then the succinamic acid intermediates underwent dehydration in 

acetic anhydride to obtain the corresponding fulgimides in up to 85% yield (Scheme 12). The 

microwave-assisted synthesis provides an efficient way to make fulgimides in a shorter time and 

less solvent than the traditional mothed. 

Scheme 12. Microwave-assisted synthesis of fulgimides by Lee et al.37 
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Smets et al. demonstrated that furylfulgimides can be prepared via the synthetic pathway 

III.38 As shown in Scheme 13, a non-N-substituted furyfulgimide was synthesized in 58% yield 

from a reaction of a corresponding furylfulgide with ammonia in acetone. Then the non-N-

substituted furyfulgimide was treated with 4-vinylbenzyl bromide in the presence of Cu-powder 

to obtain the N-p-methylstyryl furyfulgimide in a yield of 68%. 

Scheme 13. Synthetic pathway of fulgimides by Smets et al38 
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1.3.3 Synthesis of copolymers containing fulgides or fulgimides 

Generally, photochromic molecules for applications in optical devices must be uniformly 

dispersed at relatively high concentration in a condensed phase.26,39 For example, 3D optical 

memory devices on the basis of two photon absorption usually need photochromic molecules in 

concentrations of 0.1 M and higher to perform at the required writing and reading efficiencies.9 

Photochromic fulgides and fulgimides have been incorporated into synthetic polymers to meet the 

demands of technological devices.  
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Scheme 14. Linear PMMA copolymers containing 2-indolylfulgides or  

2-indolylfulgimides39  
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Scheme 15. Cross-linked PMMA copolymers containing 2-indolylfulgimides26 
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Rentzepis et al. synthesized a series of photochromic copolymers containing 2-

indolylfulgides or 2-indolylfulgimides.26,39 The fulgide or fulgimides with one or two 

polymerizable styrene group copolymerized with methyl methacrylate (MMA) via a free radical 

reaction with azobisisobutyronitrile (AIBN) to form linear or cross-linked copolymers (Scheme 

14 and 15). The linear copolymers can be dissolved in organic solvent but cross-linked 

copolymers were insoluble in any solvents. Both kinds of copolymers are stable at room 

temperature and displayed similar photochromic properties as their monomeric fulgides or 

fulgimides. Another polymer containing triazole-linked 2-indolylfulgimide was synthesized using 

a similar method (Scheme 16).40 The monomeric fulgimide with triazole ring prepared via “click 

chemistry” increased the thermal stability of the polymer. 

Scheme 16. Pendant triazole-linked indolylfulgimide polymer40 
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1.4 Photochromic properties of indolylfulgides and indolylfulgimides 

Understanding of photochromic properties is essential to explore the potential applications of 

photochromic compounds. Photochromic properties include UV-Vis absorption spectra, quantum 

yield, photostationary state (PSS), photochemical stability (fatigue resistance), thermal stability, 

and hydrolytic stability. Indolylfulgides and indolylfulgimides are among the most promising 

photochromic compounds and their photochromic properties need to be thoroughly studied. In 

general, indolylfulgides, indolylfulgimides and their copolymers exhibit similar photochromic 
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properties. However, fulgimides are more promising than fulgides because of enhanced 

hydrolytic stability, which is an important characteristic for biological applications. 

1.4.1 UV-Vis Spectroscopy 

Scheme 17. Absorption maxima of open form indolylfulgides and indolylfulgimides 
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Usually, indolylfulgides and indolylfulgimides have one closed form with an absorption 

maximum in the visible region and two open forms that absorb in the visible region or near UV 

region. The absorption maxima can be affected by the substituent on the bridging position. The 

electron withdrawing group will shift the absorption spectra of the open form towards a longer 

wavelength than that of fulgimides with a electron donating group.41 For example, the absorption 

maxima of the open E-form of CH3 fulgide is at 385 nm in toluene (Scheme 17). The absorption 

maximum of the CF3 indolylfulgide red shifts 42 nm to the visible region by replacing a CH3 

group with a CF3 group on the bridging position. A similar observation was made for 

indolylfulgimides. The CH3 indolylfulgimide absorbs at 367 nm and the absorbance of the CF3 

indolylfulgimides red shifts to 405 nm.  However, compared to indolylfulgides, indolylfulgimides 

shift the absorption spectra of the open form towards shorter wavelength. In biological 

applications, visible light is preferred to be used to control the conformation of photochromic 

compounds because UV light can be damaging to living organism and materials.42 

1.4.2 Photostationary state  

Photostationary state (PSS) is the equilibrium composition of a photochemical reaction under 

a specific wavelength of electromagnetic irradiation. The PSS is important because it describes 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Irradiation
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the extent of the photochemical reaction. The ideal photochromic material in practical 

applications needs to contain a high percentage of the desired product at PSS. The composition of 

PSS is affected by wavelength of light used, the extinction coefficient of the chemical species at 

that wavelength, and the quantum yields of the reactions.  

Scheme 18. PSS365 nm of a carboxylic acid fulgimide in buffer and toluene 
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Generally, percentage of the desired product at PSS for the indolylfulgides and 

indolylfulgimide is relatively high, especially for CF3 indolylfulgides and indolylfulgimides.27,33 

Photochemical reaction from the closed form to the open form can yield 100% of open form and 

the reversed reaction can reach up to 90% of the closed form. Solvents also play an important role 

in photochemical reactions. For example, the ring closing reaction of a carboxylic acid fulgimide 

produced 87% of C-form in aqueous solution, however, there was only 58% of C-form found at 

PSS after switching the solvent to toluene (Scheme 18).34 The reason is that the ratio of quantum 

yields (ΦE-C/ΦC-E) is relative higher in polar solvent to provide more C-form fulgimides.31,43   

1.4.3 Thermal stability 

Thermal stability is essential in the application of photochromic compounds in storage 

devices which requires the materials to endure 50 °C for prolonged periods.18 Indolylfulgides and 

indolylfulgimides are regarded as promising candidates to be used in optical data storage devices 

because they usually display great thermal stability in solvents and polymer films.18,27,28,34 A 

previous study found that the fluorinated indolylfulgides had outstanding resistance to thermal 
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stress in the closed form, however, the open form was less stable and degraded rapidly at 80°C.41 

A mechanism for the thermal degradation of the open form in toluene was proposed (Scheme 19). 

The initial step involves a 1,5-hydrogen shift from the isopropylidene group to the bridging 

position to break the conjugation of the anhydride ring with the indole group. The final stable 

products are formed via a formal 1,5-indolyl migration and a final 1,5-hydrogen shift. The first 

1,5-hydrogen shift was demonstrated to be the rate determining step of the thermolysis 

processes.44  

Scheme 19. Proposed thermal degradation mechanism of a CF3 Indolylfulgide18 
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On the basis of the mechanism, a series of cycloalkylidene indolylfulgides were synthesized 

to improve the photochromic properties by replacing the isopropylidene group with a 

cycloalkylidene group.45  

1.4.4 Photochemical stability 

Photochemical stability, which is also know as fatigue resistance, can be measured by 

comparing initial absorption with remaining absorption of a photochromic compound after a 

certain number of photochromic cycles.46 Indolylfulgides and indolylfulgimides can endure 

hundreds to thousands of photochemical cycles (back and forth conversion between the two key 

forms) before degrading by 20%.2,27-29,41 A mechanism of photochemical degradation for a methyl 

indolylfulgide was proposed by Yokoyama (Scheme 20).28 The major degradation pathway 
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involves a 1,5-hydrogen migration from a methyl group to the carbonyl oxygen on the anhydride 

ring. The research demonstrated that an indolylfulgide with a CF3 group instead of a CH3 group 

on the bridging position exhibited enhanced photochemical stability.  

Scheme 20. Proposed mechanism of photochemical degradation for  

a methyl indolylfulgide  

 

Scheme 21. Mechanism for the Hydrolysis of CF3 fulgimide33 
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1.4.5 Hydrolytic stability of indolylfulgimides 

Hydrolytic stability, which is defined as the ability of photochromic compounds to resist 

solvolysis in aqueous solutions, is important for applications in biological systems and humid 

conditions.34 Contrary to the high thermal stability in aprotic solvents, fulgides show rapid 

degradation in aqueous solution because the succinate anhydride ring can be easily hydrolyzed to 

a half-ester.20,21 By replacing the succinate anhydride ring with a succinimide ring, fulgimides 

exhibit enhanced hydrolytic stability.20,34 However, a previous study found that C-form 
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fulgimides with a CF3 group on the bridging position can be rapidly hydrolyzed to a COOH 

fulgimides via a proposed mechanism shown in Scheme 21.33 The CH3 fulgimides with a methyl 

group instead of a CF3 group on the bridging position showed increased hydrolytic stability. In 50 

mM sodium phosphate buffer (pH 7.4) at 37 °C, there was no obvious degradation observed for 

the open form fulgimide, and the C-form fulgimide degraded only 22% after 500 h.34 

1.5 Potential applications of polymer containing fulgimides 

Fulgides, fulgimides, and their copolymers are promising materials for optical informational 

storage media, photochromic dyes, logic gates, photoswitches, and biosensors.10-13,19,25,43,47-52 

Fulgimides with enhanced hydrolytic stability are suitable for applications in biological system, 

such as enzyme immobilization and controlled drug release.14,53-63 

1.5.1 Enzyme immobilization  

Enzymes, which are ubiquitous in living organisms, are naturally biocompatible and 

biodegradable catalysts that accelerate many biochemical and chemical reactions.58 Enzymatic 

processes usually occur with high rates and selectivities, and can be operated in aqueous solutions 

under mild conditions (close to room temperature, atmospheric pressure and physiological pH).61 

In addition, enzymes are sustainable, environmentally friendly and cost-effective, and can meet 

the increasing demand for green manufacturing, particularly in food processing, pharmaceuticals, 

textiles, and waste treatment.59,64-69 

Enzymes have been used in food processing throughout human history, when no concept of 

an enzyme even existed. People found that spoiled food could have some surprising flavors. The 

process of ‘spoilage’ (or fermentation) could give beneficial results. Dating back thousands of 

years, Chinese produced soy sauce by enzymatic fermentations of soybean.70 In the past two 

decades, the application of enzymes in different industries has been continuously increasing 

thanks to developments in biotechnology and protein engineering. However, there are some 

drawbacks of conventional operations of enzymes. First, enzymes in aqueous solutions are 
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difficult to recover and reuse. Second, most enzymes are very sensitive to temperature and pH, 

and lack long-term operational stability.58,71-73 One successful method to overcome these 

drawbacks is to use an enzyme immobilization strategy. The insoluble immoblized enzymes are 

more stable and less sensitive toward environmental changes than the soluble form of enzymes. 

In addition, immobilized enzymes can be easily recycled.57,58,60  

Enzyme immobilization methods include binding to a support (carrier), cross-linking, and 

entrapment (Figure 2).61 Binding to a support can be because of physical (hydrophobic and van 

der Waals forces), ionic, or covalent interactions. Physical binding is usually too weak to keep the 

enzyme fixed to the carrier. On the other hand, ionic and covalent bonds are too strong and may 

alter the conformational structure and active site of the enzyme. Cross-linking of enzymes 

provides a carrier-free immobilization by using biofunctional reagents. In addition, entrapment 

involves the synthesis of a polymeric network in the presence of an enzyme.57,61   

 

 

Figure 2. Different methods for immobilizing enzymes61 

Copolymers containing photochromic compounds can be used in enzyme immobilization via 

the entrapment method. For example, immobilization of α-chymotrypsin was studied in a cross-

linked copolymer containing azobenzene.74 The azobenzene can be interconverted between the 

cis form and the trans form with lights.74  Switching the conformation of the azobenzene led to 

changes of the permeability of the copolymer matrix towards the substrate. Therefore, the α-

chymotrypsin immobilized in a photochromic copolymer can be photo-regulated. It is beneficial 
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to photo-control an enzymatic reaction, because light can be imposed instantly and precisely in 

the desired intensity. I expect that cross-linked copolymers containing fulgimides as cross-linkers 

will be more effective to photo-regulate an immobilized enzyme because of the enhanced 

conformation changes. As shown in Figure 3, the copolymer can switch between the rigid form 

and the flexible form as the fulgimide is interconverted between the closed form and open form 

with light. The enzymatic activity will be affected because the conformation of the enzyme or the 

substrate accessibility to the active site will be altered. So the activity of the enzyme can be 

photocontrolled “on” and “off”. 

Enzyme Enzyme
Open 

form
Fulgimide

Polymer
hν1

hν2 Closed
 
form

Fulgimide

Flexible
 
form copolymer

"on" state
Rigid

 
form copolymer
"off"

 state

Polymer

 

Figure 3. Enzyme immobilization by using polymer containing fulgimide 

1.5.2 Controlled drug delivery 

Besides enzyme immobilization, hydrogels containing fulgimide can be used in controlled 

drug delivery systems, which are designed to release drugs at predetermined rates for predefined 

periods of time controlled by external stimuli, such as temperature, pH, and light. 53-56 Compared 

to other stimuli, light stimulus can be imposed instantly and precisely to deliver drugs in specific 

amounts.54 The photoresponsive hydrogels have great potential in encapsulation or release of drug 

molecules because of light-induced volume changes. Many studies about controlled drug release 

using photoresponsive systems have been reported.14,53-56  For example, Ohya et al. synthesized a 

photochromic lipid, SP-16A, having a spiropyran group on the terminal.75 They found that SP-

16A molecule can form liposomes with dipalmitoyl phosphatidylcholine, and the resulting 

photochromic liposomes were able to release the previously entrapped carboxyfluorescein after 

irradiation with UV light.75  In another study, Peng et al. demonstrated that in a light-responsive 
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hemicellulose-based hydrogel containing photochromic azobenzene, the cumulative release rate 

of vitamin B12 was higher under UV irradiation than that without UV irradiation.56  

Hydrogels with fulgimides as cross-linkers have many advantages in biological systems, such 

as water compatible, good photochemical stability, and enhanced conformation changes. I expect 

that the polymer matrices will be changed significantly as the fulgimides switch between the 

closed form and the open form. Herein, it is necessary to synthesize copolymers containing 

fulgimides, and their stability and photochromic properties, such as UV-Vis absorption and 

fatigue resistance, need to be carefully characterized.  
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2. OBJECTIVES 

The overall aim of my research is to synthesize a series of photochromic copolymers with 

advanced properties by using polymerizable fulgides and fulgimides.  

I. Synthesis of linear fulgimide-co-PMMA copolymers 

A 3-indolylfulgide and a 3-indolylfulgimide with a polymerizable styrene attached to the 

indole nitrogen atom were synthesized. Copolymerization with methyl methacrylate (MMA) 

provided linear copolymers.  

N
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O O
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CH3

CH3

Ph

Ph

1 1-co-PMMA

2 2-co-PMMA  

II. Synthesis of cross-linked fulgimide-co-PMMA copolymers 

A 3-indolylfulgimide with two polymerizable styrene groups attached on the two nitrogen 

atoms was synthesized. Copolymerization with MMA provided cross-linked copolymers.  
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III. Synthesis of aqueous soluble linear fulgimide-co-PAA copolymers 

Two 3-indolylfulgimides with a polymerizable styrene attached on the succinimide nitrogen 

atom were synthesized. Copolymerization with acrylamide provided water soluble linear 

copolymers.  
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4 4-co-PAA  

IV. Synthesis of cross-linked fulgimide-co-PAA hydrogels  

A 3-indolylfulgimide with two polymerizable styrene groups attached on the two nitrogen 

atoms was synthesized. Copolymerization with acrylamide provided cross-linked hydrogels.  
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All fulgimides and their copolymers were characterized by measuring UV-Vis spectra, 

thermal stability, and photochemical stability.  
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 3. SYNTHESIS OF 3-INDOLYLFULGIDE/INDOLYLFULGIMIDE-CO-PMMA 

LINEAR COPOLYMERS  

3.1 Abstract 

Photochromic polymers containing indolylfulgides or indolylfulgimides have many beneficial 

properties for application in optical switches. A fluorinated indolylfulgide and a fluorinated 

indolylfulgimide with a polymerizable N-stryryl group attached on the succinimide ring were 

synthesized. The new compounds were copolymerized with methyl methacrylate (MMA) to 

provide two linear copolymers. The photochromic properties of monomeric fulgide and fulgimide 

in toluene and the corresponding copolymers in both toluene and films were measured. All 

compounds were photochromic and exhibited strong absorption in the visible region of the 

spectrum for both closed forms and open forms. All copolymer films were found to be very stable 

at room temperature and showed no loss of absorbance after 5 weeks. At 80 °C, in either toluene 

or as films, the copolymers exhibited similar thermal stability pattern with their monomeric 

fulgide or fulgimide. The closed forms displayed excellent stability and there was no obvious 

thermolysis observed after 400 h. However, the open forms were less stable and may undergo 

1,5-hydrogen shift from the isopropylidene group to form an non-photochromic product. 

Moreover, all new compounds displayed good photochemical stability and underwent thousand(s) 

of photochromic cycles (ring-opening/ring-closing) in toluene or as films before degrading 20% 

of absorbance. 

3.2 Introduction 

Fulgides and fulgimides are important species in the organic photochromic compound family 

because of their advanced properties and potential applications. The first fulgide was synthesized 

by Stobbe in 1905, and the first thermally irreversible fulgide, a furylfulgide with a 2,5-dimethyl-

3-furyl as the aromatic group, was synthesized by Heller In 1981.15-17 Thermally irreversible 

fulgides exhibit good thermal stability and high photochemical stability.19,26  Fulgimides as the 
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most important fulgide derivatives not only exceed the photochromic properties of parent fulgides 

but also improved the hydrolytic stability in aqueous solutions. Fluorinated 3-indolylfulgides and 

indolylfulgimides are the most promising because of their high thermal and photochemical 

stability, large quantum yields, large molar absorption coefficients, and absorption maxima in the 

visible region.2,28,41 As shown in Scheme 22, the fulgide/fulgimide has two open forms and one 

closed form. The two open forms can be interconverted with light. But only one of the open 

forms, the cyclizable-form can be converted to the closed form via a photochemical 6𝜋𝜋-

electrocyclization. The reversible changes between two thermally stable states with different 

conformation and UV-Vis absorption spectra allow fulgides and fulgimides to be used in optical 

information storage devices and biological sensors.19 

Scheme 22. The Photochromism of fluorinated 3-indolylfulgides and indolylfulgimides  
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Usually, the photochromic compounds are attached to polymer to meet the requirements for 

various applications because of their good photoresponsive behavior in the solid state.76 Covalent 

attachment to synthetic polymers can minimize aggregation and diffusion of the photochromic 

molecules compared to dispersion in a polymer matrix.26,39,77,78 Previously, many polymers 

containing photochromic fulgimides have been synthesized and photochromic properties have 

been studied. Rentzepis et al. reported a series of linear and cross-linked photochromic 

copolymers prepared from methyl methacrylate (MMA) and 2-indolylfulgimides with a 

polymerizable styrene group on the succinimide ring.26,39 These copolymers exhibited similar 

photochromic properties as the corresponding monomeric 2-indolylfulgimide and displayed good 
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thermal stability at room temperature and lost less than 10% of absorption after 100 

photochemical cycles. Kannan et al. synthesized a linear MMA copolymer containing two 

different photochromic units: thermally reversible azobenzenes and thermally irreversible 2-

indolylfulgimide.79 The conformation of the copolymer can be controlled with light and 

temperature. Ramamurthy et al. prepared a 2-indolylfulgimide with a pendant MMA via click 

chemistry, and then a linear polymer was prepared. The resulting polymer was photochromic and 

exhibited enhanced thermal resistance. In practical applications, thermal stability, efficiency, and 

photochemical stability are all important. However, there was no study reported about thermal 

stability of the fulgimide in the open form and the closed form at elevated temperature. In 

addition, the photochemical stability of the copolymers needs to be improved. 

Herein, a fluorinated 3-indolylfulgide and a fluorinated 3-indolylfulgimide with a pendant 

styrene group on the succinimide ring were synthesized. The new compounds were polymerized 

with MMA to obtain linear copolymers in both closed forms and open forms. Optical properties, 

thermal stability, and photochemical stability of monomers and copolymer were measured in 

toluene and as films. 

3.3 Experimental section 

3.3.1 General procedures and materials 

All commercially available materials were used without purification. The NMR spectra were 

recorded on a Brücker 400 MHz NMR spectrometer. The 1H and 
13C NMR samples were 

internally referenced to TMS. The UV-vis spectra were recorded with a Cary 300 

spectrophotometer. The HRMS were obtained at the University of Florida. Flash chromatography 

was performed with 230-400 mesh silica gel. Illumination was provided by a 1000 W Hg (Xe) arc 

lamp with a water filter went through a hot mirror (a  dichroic filter reflecting infrared light back 

into the light source and allowing visible light to pass), and then through either a band pass filter 

(436 nm (for fulgide)/405 nm (for fulgimides)) or a cutoff filters (>570 nm (for fulgide)/515 nm 

https://en.wikipedia.org/wiki/Dichroic_filter
https://en.wikipedia.org/wiki/Infrared_light
https://en.wikipedia.org/wiki/Visible_light
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(for fulgimides)). The molecular weights of copolymers were determined by gel permeation 

chromatography. 

3.3.2 Synthesis of trifluoromethyl N-stryryl indolylfulgide (1) 

3.3.2.1 Synthesis of dimethyl isopropylidene succinate (6)80 

O
O

O

O

6 
(67%)

O
O

O

O NO2

DBU, Acetonitrile

5  

2-nitropropane (5) (76.60 g, 0.860 mol) was dissolved in 3.6 L of acetonitrile followed by 

addition of dimethyl maleate (135.70 g, 0.942 mol). The mixture was stirred for 10 min and of 

DBU (201.56 g, 1.320 mol) was added. The reaction mixture was stirred overnight and then 

concentrated in vacuo. The residue was quenched with 1 L of 1 M HCl and the extracted with of 

diethyl ether (3 × 1.5 L). The combined organic layers were washed with water (2 × 500 mL), 

dried over MgSO4, filtered, and concentrated in vacuo. The crude product was purified by 

vacuum distillation to provide 107.50 g (67%) of dimethyl isopropylidenesuccinate. 

3.3.2.2 Synthesis of 2-methyl-1-(4-vinylbenzyl)indole (8)39  

N
H

N

Cl

KOH, DMSO

8 
(62%)7  

2-Methylindole (7) (20.96 g, 160 mmol) was added to a suspension of potassium hydroxide 

(40.80 g, 728 mmol) in 320 mL of DMSO. The mixture was stirred at room temperature for 45 

min and then cooled to 0 ºC. 4-vinylbenzyl chloride (26.25 g, 172 mmol) was added and the 

reaction mixture was stirred at room temperature. After 1.5 h, the mixture was poured onto 100 g 

of crushed ice in an Erlenmeyer flask and left to stand for 24 h at room temperature. The mixture 

then was diluted with 2.5 L of water, and the aqueous layer was extracted with methylene 
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chloride (3 × 500 mL). The combined organic layers were washed with 1 L of water, dried over 

MgSO4, filtered, and concentrated in vacuo. The crude product was purified by column 

chromatography (hexane as a solvent) to afford a white solid (24.44 g, 62%). 1H NMR (CDCl3, 

400 MHz) δ 7.58-7.53 (m, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.21-7.16 (m, 1H), 7.12-7.04 (m, 2H), 

6.92 (d, J = 8.2 Hz, 2H), 6.65 (dd, J = 17.6, 10.9 Hz, 1H), 6.32 (s, 1H), 5.68 (dd, J = 17.5, 0.5 Hz, 

1H), 5.28 (s, 2H), 5.20 (dd, J = 10.9, 0.4 Hz, 1H), 2.36 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 

137.5, 137.2, 136.73, 136.65, 136.3, 128.2, 126.6, 126.2, 120.8, 119.7, 119.5, 113.9, 109.2, 100.5, 

46.3, 12.7. C18H17N HRMS (ESI) m/z: 248.1436 [obtained M + H]+, 248.1434 [calculated M + 

H]+. 

3.3.2.3 Synthesis of 2-methyl-1-(4-vinylbenzyl)-3-trifluoroacetylindole (9) 

N
F3C O CF3

O O
DCE+

N

F3C
O

9
 
(89%)8  

Trifluoroacetic anhydride (TFAA) (31.10 g, 148.3 mmol) was dissolved in 170 mL of 1,2-

dichloroethane (DCE). The mixture was cooled to 0 °C and followed by addition of 2-Methyl-1-

(4-vinylbenzyl)indole (6) (24.44 g, 98.9 mmol) dissolved in 100 mL of DCE dropwise via an 

addition funnel. Then the reaction mixture was allowed to warm to room temperature and stirred 

for 1 h under argon. The mixture was quenched with a saturated NaHCO3 solution (300 mL) and 

then extracted with methylene chloride (2 × 150 mL). The organic layers were combined, dried 

over MgSO4, filtered, and concentrated in vacuo. A white solid was afforded (30.09 g, 89%). 1H 

NMR (CDCl3, 400 MHz) δ 8.09 (d, J = 8.2 Hz, 1H), 7.40 -7.20 (m, 5H), 6.97 (d, J = 8.2 Hz, 2H), 

6.66 (dd, J = 17.6, 10.9 Hz, 1H), 5.71 (d, J = 17.6 Hz, 1H), 5.40 (s, 2H), 5.25 (d, J = 11.0 Hz, 1H), 

2.76 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 175.7 (q, J = 36 Hz), 150.0, 137.6, 136.7, 136.0, 

134.5, 127.0, 126.2, 125.3, 123.5, 123.4, 121.1 (q, J = 4 Hz), 117.2 (q, J = 290 Hz), 114.6, 110.2, 
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108.5, 46.7, 13.3. C20H16F3NO HRMS (ESI) m/z: 344.1262 [obtained M + H]+, 344.1257 

[calculated M + H]+. 

3.3.2.4 Synthesis of trifluoromethyl isopropylidene indolelactone (10) 

N

F3C
O

O
O

O

O

+

N

O

F3C CO2Me
H

O

+ N

O

F3C CO2Me
H

O

trans cis

LDA

Toluene

10
 
(83

 
%)9 6  

Dimethyl isopropylidenesuccinate (6) (13.6 g, 73 mmol) was dissolved in 400 mL of toluene 

in a 1 L round-bottom flask, and then the solution was concentrated to 300 mL to remove water 

via a rotavapor. To the stirred solution under argon, lithium diisopropylamide (LDA) (29.2 mL of 

a 2 M solution in THF, 58.4 mmol) was added dropwise via an addition funnel. A cannula was 

used to transfer LDA into the addition funnel to avoid moisture. To the succinate/LDA/toluene 

solution, 2-methyl-1-(4-vinylbenzyl)-3-trifluoroacetylindole (9) (5.0 g, 14.6 mmol) dissolved in 

toluene (50 mL) was added dropwise via an addition funnel, and the reaction mixture was stirred 

under argon. After 1.5 h, the mixture was quenched with 200 mL of 5% H2SO4, and the acidic 

layer was extracted with diethyl ether (3 × 300 mL). The organic layers were combined, extracted 

with water (2 × 300 mL), dried over MgSO4, filtered, and concentrated in vacuo. The crude 

product was purified by column chromatography (3:1 methylene chloride/hexane as eluent) and 

then recrystallized from ethanol to provide 5.9 g (83%) of a cis/trans mixture of indolelactones 

(10). 
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3.3.2.5 Synthesis of trifluoromethyl N-stryryl indolylfulgide (1) 
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The cis/trans mixture of indolelactones (10) (2.0 g) was dissolved in 100 mL of and cooled to 

0 ºC in an ice bath. Sodium hydride (60% dispersion in oil, 0.64 g, 16.08 mmol) was added to the 

mixture and stirred for 1.5 h at room temperature. Then water (300 μL) was added, and the 

reaction mixture was left to react for 12 h. The mixture was concentrated in vacuo until only solid 

remained, and the solid was partitioned between 0.1 M NaOH (100 mL) and EtOAc (100 mL). 

The aqueous layer was acidified with 5% H2SO4 and extracted with EtOAc (3 × 150 mL). The 

organic layers were combined, dried over MgSO4, filtered, and concentrated in vacuo to afford 

2.20 g of the crude diacid (11). Then the diacid was suspended in 50 mL of toluene. Acetic 

anhydride (20 mL, 210 mmol) was added, and the mixture was left to react at 35 ºC for 1 h and 

then concentrated in vacuo. The resulting crude fulgide was purified by column chromatography 

with toluene as the eluent to provide a Z/E mixture. To prepare pure Z-form, the Z/E mixture in 

toluene was illuminated with 436 nm light until photostationary state (PSS) was reached. The 

PSS solution in toluene was then illuminated with 570 nm light to obtain the crude Z-form 

solution. Toluene was removed in vacuo and recrystallization from CH2Cl2/hexane provided 0.68 
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g of the Z-form fulgide (30%). Z-form: 1H NMR (CDCl3, 400 MHz) δ 7.36 -7.25 (m, 4H), 7.25 -

7.16 (m, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.66 (dd, J = 17.6, 10.9 Hz, 1H), 5.71 (d, J = 17.6 Hz, 1H), 

5.36 (d, J = 16.8 Hz, 1H), 5.26 (d, J = 10.9 Hz, 1H), 5.25 (d, J = 16.8 Hz, 1H), 2.19 (s, 3H), 2.09 

(s, 3H), 1.00 (s, 3H); 13C NMR (CDCl3, 400 MHz) δ 161.7, 160.6, 159.5, 137.5, 137.3, 136.8, 

135.9, 135.8, 132.8 (q, J = 35 Hz), 128.6, 126.8, 126.5, 124.9, 122.8, 122.0 (q, J = 278 Hz), 121.6, 

120.4, 119.6, 114.6, 109.8, 107.8, 47.0, 26.9, 23.1, 12.2. C27H22F3NO3 HRMS (ESI) m/z: 

466.1646 [obtained M + H]+, 466.1625 [calculated M + H]+. Pure C-form was prepared from the 

PSS solution, toluene was removed in vacuo, and the C-form was purified by column 

chromatography (toluene as an eluent) followed by the recrystallization from CH2Cl2/hexane to 

provide 0.48 g of the C-form fulgide (16%). C-form: 1H NMR (CDCl3, 400 MHz) δ 7.82 (d, J = 

8.1 Hz, 1H), 7.44 (d, J = 8.1 Hz, 2H), 7.34 (td, J = 7.3, 1.1 Hz, 1H), 7.26 (d, J = 7.1 Hz, 2H), 6.89 

(t, J = 7.6 Hz, 1H), 6.73 (dd, J = 17.6, 10.9 Hz, 1H), 6.52 (d, J = 8.3 Hz, 1H), 5.77 (d, J = 17.6 Hz, 

1H), 5.32 (d, J = 11.0 Hz, 1H), 4.60 (d, J = 17.6 Hz, 1H), 4.19 (d, J = 17.5 Hz, 1H), 1.58 (s, 3H), 

1.46 (s, 3H), 1.25 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 162.8, 162.5 (q, J = 3.6 Hz), 160.9, 

159.7, 141.8, 138.1 (q, J = 1.5 Hz), 137.0, 136.32, 136.24, 136.16, 128.7 (q, J = 7 Hz), 126.9, 

126.6, 122.2 (q, J = 273 Hz), 120.4, 119.3, 114.3, 110.9, 105.6 (q, J = 38 Hz), 76.7, 50.8, 39.1, 

19.5, 18.2, 16.4. C27H22F3NO3 HRMS (ESI) m/z: 466.1641 [obtained M + H]+, 466.1625 

[calculated M + H]+. 

3.3.3 Synthesis of trifluoromethyl N-stryryl indolylfulgimide 2 

3.3.3.1 Synthesis of 1,2-dimethylindole 12 

N
H

N

NaH, CH3I

DMF

12
 
(75%)7  

2-Methylindole 7 (0.117 mmol, 15.40 g) was added in 200 ml of DMF and stirred for 30 min. 

The mixture was cooled to 0 °C followed by addition of NaH (6.01 g of 60 % dispersion in oil, 
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0.150 mmol). After stirring for 10 min, methyl iodide (8.0 ml, 0.129 mmol) was added. The 

reaction mixture was warmed to room temperature and left to react under argon gas for 5 h. The 

mixture was then concentrated in vacuo. The residue was dissolved in 500 ml of EtOAc and 

extracted with H2O (2 x 200 ml) and brine (200 ml). The organic layer was dried over MgSO4, 

filtered, and concentrated in vacuo. Further purification via column chromatography (1:1 

hexane/EtOAc) provided 12.74 g (75%) of 1,2-dimethylindole. 

3.3.3.2 Synthesis of 3-acetyl-1,2-dimethylindole 13 

N F3C O CF3

O O
DCE+

N

F3C
O

13 
(99%)12  

Trifluoroacetic anhydride (54.01 g, 0.48 mol) was disslived in 300 mL of 1,2-dichloroethane 

at 0 °C followed by addition of a solution of 1,2-dimethylindole (24.52 g, 0.34 mol) dissolved in 

150 mL of 1,2-dichloroethane dropwise. The mixture was stirred for 2 h at room temperature and 

then concentrated in vacuo. The purple residue was quenched with 250 mL of saturated aqueous 

NaHCO3and extracted with CH2Cl2 (3 × 300 mL). The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo to provide 45.65 g of 1,2-dimethyl-3-

trifluoroacetylindole 13 (99%). 

3.3.3.2 Synthesis of trifluoromethyl isopropylidene indolelactone 7 

N
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O
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trans cis
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14 
(41%)13 6  

Lithium diisopropylamide (LDA) (60 mL of a 2 M solution, 120 mmol) was added dropwise 

from an addition funnel to a stirred solution of dimethyl isopropylidene succinate 15 (22.82 g, 

123 mmol) in 200 mL of dried toluene. To avoid moisture, the LDA was filled the addition funnel 
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via a cannula under argon gas. The mixture was stirred for 20 min and 1,2-dimethyl-3-

trifluoroacetylindole 16 (12.20 g, 51 mmol) dissolved in 50 ml of dried toluene was added 

dropwise. After 2 h, the reaction was quenched with 100 mL of 5% H2SO4 solution and extracted 

with EtOAc (3 × 150 mL). The combined organic layers were dried over MgSO4, filtered and 

concentrated in vacuo. The residue was purified by silica gel chromatography (4:1 

hexanes/EtOAc followed by 3:1 hexanes/EtOAc) and recrystallized from ethanol to provide 8.12 

g (41%) of cis/trans isopropylidene indolelactone 14.  

3.3.3.3 Synthesis of diacid 15 
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 The cis/trans indolelactone 14 (6.90 g, 17.5 mmol) was dissolved in 200 mL of DMF at 

0 °C followed by addition of NaH (60% dispersion in oil, 3.02 g, 75 mmol). The mixture was 

stirred for 1 h at 0 °C and 4 mL of water was added. The mixture was allowed to warm to room 

temperature and stirred overnight. Then the mixture was concentrated in vacuo and the residue 

was then partitioned between in 200 mL of water and extracted with 200 mL of EtOAc. The 

aqueous layer was acidified with 5% H2SO4 and extracted with EtOAc (3 × 150 mL). The 

combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to afford 

4.50 g (61%) of the crude diacid 15 as a white solid. 

3.3.3.4 Synthesis of trifluoromethyl indolylfulgide 16  

N
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OHOH
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O
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OO
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16
 
(74%)15  



35 
 

The resulting diacid intermediate 15 (4.50 g, 12 mmol) was suspended in 50 mL of toluene. 

Acetic anhydride (46.75 mL, 500 mmol) was added to the mixture and stirred for 2 d under argon 

gas. The solution was then concentrated in vacuo. The residue was quenched with 200 mL of 

water and extracted with CH2Cl2 (3 × 100 mL). The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo. Recrystallization from CH2Cl2/hexane provided 3.18 

g of trifluoromethyl indolylfulgide 16 (74%). 

3.3.3.5 Synthesis of trifluoromethyl N-stryryl indolylfulgimide 2 
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4-Vinylaniline (0.70 g, 5.9 mmol) was added to the open form solution of trifluoromethyl 

indolylfulgide (4) (1.50 g, 4.13 mmol) in 250 mL of toluene at room temperature. The reaction 

mixture was heated to 50 °C and stirred for 2 h. The solution was then concentrated in vacuo. The 

residue was quenched with 100 mL of 1 M HCl and extracted with EtOAc (3 × 100 mL). The 

combined organic layers were washed with H2O (100 mL). The organic layer was dried over 

MgSO4, filtered, and concentrated in vacuo to provide the crude acid intermediate. Acetic 

anhydride (100 mL) was added to the crude acid intermediate in 125 mL of toluene. The reaction 

mixture was allowed to stir at room temperature for 10 min and 4-dimethylaminopyridine 
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(DMAP) (10 mg) was added. The reaction mixture was concentrated in vacuo after 40 min. The 

residue was dissolved in 250 mL of EtOAc and extracted with saturated NaHCO3 (2 × 100 mL) 

and H2O (100 mL). The organic layer was dried over MgSO4, filtered, and concentrated in vacuo. 

The orange residue was purified by column chromatography with toluene. The resulting E/Z 

mixture was dissolved in 100 mL of toluene and illuminated with 405 nm light until PSS was 

reached, and then illuminated with visible light >515 nm to obtain crude Z-form solution. 

Toluene was removed in vacuo, and recrystallization from CH2Cl2/hexanes provided 0.54 g (28% 

from fulgide) of the Z-form vinyl trifluoromethyl indolylfulgimide 2. Z-form: 1H NMR (CDCl3, 

400 MHz) δ 7.53 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 7.9 Hz, 1H), 7.30 (d, J 

= 8.2 Hz, 1H), 7.23 (td, J = 7.1, 1.2 Hz, 1H), 7.16 (td, J = 7.5, 1.0 Hz, 1H), 6.75 (dd, J = 17.6, 

10.8 Hz, 1H), 5.80 (d, J = 17.6 Hz, 1H), 5.31 (d, J = 11.0 Hz, 1H), 3.72 (s, 3H), 2.28 (s, 3H), 2.16 

(s, 3H), 1.00 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 166.3, 164.1, 154.4, 137.7, 137.0, 136.9, 

136.1, 132.6 (d, J = 2 Hz), 130.9, 129.3 (q, J = 35 Hz), 126.8, 126.6, 125.4, 122.6, 122.5 (q, J = 

278 Hz), 122.0, 121.0, 119.6, 115.0, 109.2, 107.6 (d, J = 2 Hz), 30.0, 26.7, 22.4, 12.0. 

C27H23F3N2O2 HRMS (ESI) m/z: 465.1796 [obtained M + H]+, 465.1784 [calculated M + H]+. 

The C-form was obtained by irradiating pure Z-form solutions of 2 (0.13 g) with 405 nm light 

followed by purification via flash column chromatography with toluene and recrystallization from 

CH2Cl2/hexanes (0.04 g, 30% yield). C-form: 1H NMR (CDCl3, 400 MHz) δ 7.76 (d, J = 8.0 Hz, 

1H), 7.49 (d, J = 8.5 Hz, 2H), 7.40 -7.36 (m, 3H), 6.80 (t, J = 7.6 Hz, 1H), 6.73 (dd, J = 17.6, 

10.9 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 5.77 (d, J = 17.6 Hz, 1H), 5.29 (d, J = 10.8 Hz, 1H), 2.95 

(s, 3H), 1.83 (s, 3H), 1.39 (s, 3H), 1.30 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 168.2, 165.0, 

160.0, 159.9, 139.3, 136.8, 136.1, 135.8 (q, J = 1 Hz), 135.1, 131.1, 128.6 (q, J = 7 Hz), 126.7, 

126.1, 122.6 (q, J = 273 Hz), 119.6, 119.0, 114.7, 109.5, 106.2 (q, J = 37 Hz), 75.9, 39.3, 32.6, 

19.7, 19.1, 14.8. C27H23F3N2O2 HRMS (ESI) m/z: 465.1799 [obtained M + H]+, 465.1784 

[calculated M + H]+. 
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3.3.4 Synthesis of linear copolymers 1-co-PMMA and 2-co-PMMA 

Free-radical solution addition polymerization technique was used. The monomer, fulgide 1 or 

fulgimide 2 (Z- or C-form), (4.6 mg, 0.01 mmol)) was dissolved in 2 mL of THF. Methyl 

methacrylate (0.40 g, 4 mmol) was added to the solution followed by the addition of initiator 

AIBN (1 wt% of MMA). The glass ampoule was sealed under vacuum and kept at 50 ºC for 48 h. 

The ampoule was cooled to room temperature and 2 mL of hexane was added. The copolymer 

was precipitated and filtered. Molecular weights (g/mol): 1Z-co-PMMA Mn = 6.4 × 104, 1C-co-

PMMA Mn = 6.0 × 104; 2Z-co-PMMA Mn = 5.9 × 104, 2C-co-PMMA Mn = 6.6 × 104. 

3.3.5 Preparation of copolymer films 
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The copolymer (1Z/C-co-PMMA or 2Z/C-co-PMMA) (30-50 mg) was dissolved in CH2Cl2 

(1 mL), and the solution was deposited via a pipet onto a circular glass slide (Escoproducts) and 

allowed to spread over the surface of the slide. The sample was allowed to dry overnight inside a 

glass Petri dish at room temperature. The resulting films were used to study the photochromic 

properties. 
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3.3.6 Spectra determination in toluene 

1Z, 2Z (general procedure): A concentrated stock solution was prepared from 10 mg of Z-

form compounds followed by dilution into 5 solutions with concentrations between 0.05 to 0.20 

mM. UV-Vis spectra of these solutions were acquired. Concentration versus absorbance was 

plotted, and absorption coefficient at λmax was determined.  

1C, 2C: A concentrated stock solution was diluted to 5 solutions of different unknown 

concentrations, and their UV-Vis spectra were obtained. Each of the five C-form solutions was 

then quantitatively converted to a Z-form solution by illumination with 515 nm light and the UV-

Vis spectrum was measured. Using the predetermined Z-form extinction coefficient, 

concentrations of the Z-form solutions, which are equivalent to the initial C-form solutions, were 

obtained and plotted versus the C-form absorbencies at λmax thus allowing the determination of 

the extinction coefficient for the C-form. 

3.3.7 PSS measurements 

The photostationary state (PSS) was measured using NMR spectroscopy. An NMR tube 

containing Z-form of fulgide (or fulgimide) in toluene-d8 was illuminated with 436 nm light (or 

405 nm for fulgimides) until PSS was reached. A 1H NMR spectrum was then acquired and 

integrated.  

3.3.8 Photochemical stability 

For each compound, Z-form sample (solutions or films) was prepared with an initial 

absorbance of 0.6-0.8 at the absorption maxima. Sample was irradiated to PSS after prolonged 

irradiation at 436 nm for fulgide (PSS436nm) or 405 nm for fulgimides (PSS405nm). Then the UV-

Vis spectrum of PSS was acquired and another sample of pure Z-form was irradiated to 90% of 

the PSS. The reaction time was obtained. The 90% PSS mixture was then back irradiated with 

light >570 nm (for fulgide) or >515 nm (for fulgimides) and again the reaction time was obtained. 

Once the duration of irradiation reactions was established, the system was automated through the 
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use of a filter switch. After a designated number of irradiation cycles, the sample was fully 

converted to PSS and UV-Vis spectrum scanned. The photochemical fatigue was determined by 

comparison with the initial PSS absorption spectrum. The cycling times in toluene were: 40 s (Z -

C) and 30 s (C -Z) for 1, 70 s (Z -C) and 60 s (C -Z) for 1-co-PMMA; 60 s (Z -C) and 40 s (C -Z) 

for 2 and 2-co-PMMA; as films: 300 s (Z -C) and 180 s (C -Z) for 1-co-PMMA, 150 s (Z -C) and 

60 s (C -Z) for 2-co-PMMA. 

3.3.9 Thermal stability 

Polymer-based study: Thin films of 1-co-PMMA and 2-co-PMMA (Z- and C-forms) were 

wrapped in aluminum foil and placed in an oven maintained at 80 °C. The films were removed at 

prescribed intervals and their UV-Vis spectra measured. 

Solution-based study: The thermal stability of fulgide 1, fulgimides 2, copolymers 1-co-

PMMA, and 2-co-PMMA (Z- and C-forms) in toluene was measured using UV-Vis spectroscopy. 

Thermal stability of monomers 1 and 2 was also followed by 1H NMR spectroscopy. The 

solutions were prepared in toluene or its deuterated analog and transferred into several ampoules 

or NMR tubes, respectively. UV-Vis and 1H NMR spectra of these initial samples were then 

acquired. Ampoules and NMR tubes were sealed and submersed in a water bath maintained at 

80 °C. At predetermined times, ampoules and NMR tubes were removed, and their contents 

analyzed by UV-Vis or 1H NMR spectroscopy. All the photochemical and thermal measurements 

were performed by Dr. Islamova in Dr. Lees’ group. 

3.4 Results and discussion 

3.4.1 Synthesis 

Two new photochromic compounds 3-indolylfulgide 1 and 3-indolylfulgimide 2 with a 

polymerizable styrene group were synthesized. Fulgide 1 was prepared via a Stobbe condensation 

of 3-trifluoroacetylindole 9 with a substituted methylene succinate 6, followed by hydrolysis and 

dehydration (Scheme 23).  
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Scheme 23. Synthesis of fulgides 1 and 16 
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Fulgimide 2 was synthesized from the corresponding fulgide 16 which was prepared via a 

similar method to make fulgide 1. By treatment of fulgide 16 with 4-vinylaniline, an amide acid 

intermediate was obtained. Then the amide acid intermediate was dehydrated in acetic anhydride 

to provide fulgimide 2 (Scheme 24). 

Scheme 24 Synthesis of fulgimide 2 
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Two linear copolymer 1-co-PMMA and 2-co-PMMA were synthesized form free radical 

polymerization of methyl methacrylate with polymerizable fulgide 1 or fulgimide 2 in the 

presence of AIBN as an initiator (Scheme 24). The ratios of monomers (photochromic molecule 

to MMA) were selected to ensure that the copolymers were suitable for UV-vis measurements 

(absorbance approx. 1). Copolymer films 1-co-PMMA and 2-co-PMMA were prepared using 

drop casting. The fulgide, fulgimide, and their copolymers were found to be photochromic and 

stable at room temperature. 

Scheme 25. Synthesis of copolymers 1-co-PMMA and 2-co-PMMA 
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3.4.2 UV-Vis absorption spectra 

The UV-Vis absorption spectra of fulgide 1 and fulgimide 2 were measured in toluene 

(Figure 4). The absorption maxima (λmax) of both open forms and closed forms were observed in 

the visible region. In practical applications, visible lights have many advantages over UV lights to 

control the conformation of the compounds, such as low cost and no damage to the living 

materials. As shown in Table 1. Fulgide 1 displayed a similar λmax as fulgide 16 for the open form 
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but blue shifted approx. 20 nm for the closed form. The fulgimide 2 exhibited a hypsochromic 

shift of approx. 20 nm relatively to the fulgide 16 for open form by replacing the succinate 

anhydride ring with a succinimide ring. After polymerization with MMA, the resulting linear 

copolymers displayed a similar UV-Vis absorption pattern in toluene and films. Moreover, 

fulgides and fulgimide exhibited similar extinction coefficients and ratios of C/Z/E-forms in PSS. 

The high percentage of closed form in PSS makes the photochromic compounds promising in 

practical applications.  
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Figure 4. UV-Vis absorption spectra of fulgide 1 and fulgimides 2 

Table 1. Extinction coefficients at λmax of fulgide 1, 16, fulgimide 2 and λmax of copolymers  

Compound (Medium) 
λmax/nm (εmax/mol-1 L cm-1) PSS436 nm (405 nm)

a 

Z-form C-form C:Z:E 

1 (Toluene) 424 (5.5 × 103) 549 (7.3 × 103) 94:5:1 

2 (Toluene) 405 (6.4 × 103) 554 (7.4 × 103) 93:4:3 

16 (Toluene) b 427 (5.8 × 103) 571 (7.0 × 103) 95:3:2 

1-co-PMMA (Toluene) 424 550 - 

2-co-PMMA (Toluene) 405 554 - 

1-co-PMMA (Film) 425 554 - 

2-co-PMMA (Film) 405 557 - 
aPhotostationary state. bThe data taken from ref. 7.  

3.4.3 Thermal stability 

The thermal stability of monomers fulgide 1 and fulgimide 2 was measured in Toluene at 80 

ºC via UV-Vis spectroscopy and 1H NMR spectroscopy. The closed form compounds exhibited 
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excellent thermal stability, and there is no obvious degradation observed after 400 h (Figure 5a). 

However, the open form compounds were less stable which is consistent with previous study for 

fluorinated indolylfulgides and indolylfulgimides.2 According to the 1H NMR data, there was no 

polymerization of 1 and 2 occurred during thermolysis.  The 1H NMR data were fit for a single 

exponential decay for both closed form and open form compounds which is analogous to the UV-

Vis spectroscopy results. 
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Figure 5. Thermal decomposition of fuligmides and coplymers: (a) fulgimides in toluene at 80 ºC 
measured by NMR: 1Z (□), 2Z (■), 1C (○), and 2C (●); (b) copolymers in films at 80 ºC 
measured by UV-Vis spectroscopy: 1Z-co-PMMA (□), 2Z-co-PMMA (■), 1C-co-PMMA (○), 
and 2C-co-PMMA (●) 

 
The UV-Vis spectroscopy results showed that 2Z degraded by an initial drop at the λmax then 

followed by a bathochromic shift and subsequent increase in absorbance (Figure 6a). The absence 

of the isosbestic point indicated the presence of an intermediate. The pattern was similar to the 

pervious results of fulgide 16Z which degraded via a 1,5-hydrogen shift from the isopropylidene 

group to form an intermediate and then rearranges to a mixture of two products (Scheme 19 in 

Chapter 1).18 The electron withdrawing CF3 group, on the bridging position can accelerate 1,5-

hydrogen shift processes, which makes the open form fulgimides relatively unstable. Therefore, 

the thermal stability of fulgimides can be improved by replacing the CF3 group with an electron 

donating group, such as a CH3 group. 

All copolymers are very stable at room temperature in toluene and films (no loss of 

absorption within experimental error after 5 weeks). The thermal stability of copolymers in 
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toluene and films at 80 °C is similar with their monomers. The closed form copolymers were 

more stable than open form copolymers. Compare to the degradation pattern of open from 

monomers, the open form copolymers exhibited decreased absorbance of the red shifted peak 

after longer time (>100-200 h) in toluene at 80 ºC (Figure 6b). It potentially indicated 

decomposition of thermolysis product(s). Thus, the data were only fitted for the first 200 h (Table 

2). 
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Figure 6. Thermal decomposition of fulgimide 2Z and copolymer 2Z-co-PMMA: (a) 2Z in 
toluene; (b) 2Z-co-PMMA in toluene by UV-Vis at 80 °C 

 
Table 2. Thermal decomposition rrate constants (×103, h-1) for 1, 2, and their copolymers   

at 80 ºC 

Compound (Medium) 
UV-Vis 1H NMR 

Z-forma C-formb Z-formc C-formb 

1 (Toluene) 53d < 0.05 20 < 0.05 

2(Toluene) 18c < 0.05 14 < 0.05 

1-co-PMMA(Toluene) 105d 0.19 

- 
2-co-PMMA(Toluene) 88d 0.21 

1-co-PMMA(Film) 543d 0.15 

2-co-PMMA(Film) 32c 0.16 
aThe first 200 h data were fit only. b Fit to a single exponential excluding 0 h data point. cFit to a 
single exponential. dFit to a sequential decay. 
 
3.4.4 Photochemical stability 

Photochemical stability is also referred as fatigue resistance and can be defined as the 

percentage loss in absorbance per photochemical cycle (ring-opening/ring-closing) during the 
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first approx. 20% of degradation. Photochromic fulgide 1 displayed excellent fatigue resistance 

and degraded only 0.005 % per cycle in toluene, which is comparable with fulgide 16 (3000 times 

before degrading by 21%, 0.007% per cycle).41 After polymerization, the photochemical stability 

was affected by the substitution pattern around the indole ring (Figure 7). Copolymer 1-co-

PMMA degraded 0.012% per cycle in toluene, and 0.017% per cycle in film (Table 3). One 

possible reason is because of the longer cycling times in the polymer state. The fulgimide 2 

showed slightly less photochemical stability compared to fulgides 1 and 16, however, the 

polymerization state in toluene or film did not affect the fatigue resistance. 
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Figure 7. Photochemical decomposition of 1, 2, 1-co-PMMA and 2-co-PMMA: 1 (■) and 2 (□) 
in toluene, 1-co-PMMA (●) and 2-co-PMMA (○) in toluene, and 1-co-PMMA (▲) and 2-co-
PMMA (∆) in films  

 

Table 3. Photochemical fatigue resistance of 1, 2, 3 and their copolymers 

Compound (Medium) 

Cycling time 

(s) 
Photochemical decomposition 

Z-C 
C-

Z 

Number of 

cycles 
A/A0 % per cycle 

1 (Toluene) 40  30 2760 0.809 0.0050 

2 (Toluene) 60 40 1660 0.738 0.016 

1-co-PMMA 

(Toluene) 
70 60 1898 0.791 0.012 

2-co-PMMA 

(Toluene) 
60 40 1674 0.738 0.014 
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1-co-PMMA (Film) 300 180 760 0.794 0.030 

2-co-PMMA (Film) 150 60 1014 0.794 0.017 

 
3.5 Conclusion 

I have synthesized two new photochromic compounds with a polymerizable pendant styrene 

group, 3-indolylfulgide 1 and 3-indolylfulgimide 2. The compounds were copolymerized with 

MMA to obtain two linear copolymers, 1-co-PMMA and 2-co-PMMA. The resulting 

copolymers were found to be photochromic in toluene and films and showed good stability at 

room temperature. All monomeric photochromic compounds and copolymers absorb in the 

visiable region of the spectrum for both closed forms and open forms. The closed form monomers 

and copolymers exhibited similar thermal degradation pattern at 80 °C. The closed form 

compounds exhibited excellent thermal stability and the open form compounds were less stable. 

All compounds can cycle between open forms and closed forms for thousand(s) time before 

degrading 20% in toluene. The cycling times were longer in films than in toluene for the 

copolymers. Ultimately, copolymers in solution and films maintained all the promising 

photochromic properties as their monomers but are still limited by their less stable open forms. 
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4. SYNTHESIS OF INDOLYLFULGIMIDE-CO-PMMA CROSS-LINKED 

COPOLYMERS 

4.1 Abstract 

Fulgimides are the most important fulgide derivatives and have great potential to be used as 

optical switches in information storage devices and biological sensors.19 A new 3-

indolylfulgimide with two pendant styrene groups was synthesized, and the fulgimide was used as 

a cross-linker in the polymerization reaction with MMA to obtain a cross-linked copolymer. The 

photochromic properties of fulgimide and copolymer including UV-Vis spectra, thermal stability 

at 80 °C, and photochemical stability were characterized. I found that the compounds absorbed 

the light in the visible region for both closed forms and open forms which is beneficial in the 

practical applications. At 80 °C, the closed forms were more stable than the open forms, and the 

open forms degraded via an intermediate. The new compounds exhibited excellent photochemical 

stability during repeated photochemical cycles (ring-opening/ring-closing). The degradation rates 

were only 0.005% per cycle for both fulgimide and copolymer.  

4.2 Introduction 

Fulgides and fulgimides are important organic photochromic compounds because of their 

potential applications in optical information storage devices and biological sensors.19 Fulgides are 

derivative of 1,3-butadiene-2,3-dicarboxylic acid anhydride first synthesized by Stobbe in 1905 

and the first thermally stable fulgide, a furylfulgide with a 2,5-dimethyl-3-furyl group, was 

synthesized by Heller In 1981. 15-17 As shown in Scheme, if one of the substituent R groups is 

aromatic or contains a double bond, the fulgide may be photochromic. The indolylfulgides, with 

an aromatic indole as the R group, are the most promising photochromic fulgides. Previous 

studies demonstrated that indolylfulgides have many advantages, such as enhanced thermal 

stability, increased photochemical stability, high efficiency of photoreactions, and large molar 

absorption coefficients.22,27,35,39,81 For example, the most photochemically stable indolylfulgide 
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can be interconverted between the open form and the closed form for 10000 times before 

degrading by 13% in toluene.2 However, previous studies indicated that fulgides were unstable in 

protic solvents because the succinic anhydride ring can be rapidly hydrolyzed.20,21 To meet the 

demands of applications in humid environment and biological systems, hydrolytic stability is 

required. Therefore, fulgimides were synthesized by replacing the succinic anhydride ring with a 

more hydrolytically stable succinimide ring (Scheme 26).  

Scheme 26. General structure of fulgides and the photochromism of indolylfulgides and 

indolylfulgimides 
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Generally, photochromic compounds for applications in optical devices must be uniformly 

dispersed at relatively high concentration in a condensed phase.26,39 Photochromic fulgimides 

have been incorporated into synthetic polymers to meet technological devices demands. 

Rentzepis et al. synthesized a series of photochromic copolymer containing 2-indolylfulgides or 

2-indolylfulgimides.26,39 The fulgide or fulgimides with one or two polymerizable styrene group 

copolymerized with MMA via a free radical reaction with azobisisobutyronitrile (AIBN) to form 

linear or cross-linked copolymers. Thermal stability, efficiency, and photochemical stability are 

all important for practical applications. However, there is no report of thermal stability of the 

fulgimide copolymers at elevated temperatures or a comparison of polymers prepared in the open 
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and closed forms. In addition, the photochemical stability of the copolymers to cycle back and 

forth could be improved. 

Herein, a 3-indolylfulgimide with two pendant styrene groups on the nitrogen atoms was 

synthesized. The new fulgimide was polymerized with MMA to obtain a cross-linked copolymer 

film in both the closed form and the open form. Optical properties, thermal stability, and 

photochemical stability of the fulgimide and the copolymer were measured. 

4.3 Experimental section 

4.3.1 General procedures and materials 

All commercially available materials were used without purification. The NMR spectra were 

recorded on a Brücker 400 MHz NMR spectrometer. The 1H and 
13C NMR samples were 

internally referenced to TMS. The UV-vis spectra were recorded with a Cary 300 

spectrophotometer. The HRMS were obtained at the University of Florida. Flash chromatography 

was performed with 230-400 mesh silica gel. Illumination was provided by a 1000 W Hg (Xe) arc 

lamp with a water filter passed through a hot mirror followed by either a 405 nm band pass filter 

or a 515 nm cutoff filter.  

Scheme 27. Synthesis of CF3 fulgide 1 
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4.3.2 Synthesis of CF3 fulgide 1 

Trifluoromethyl 3-indolylfulgide 1 was prepared as a precursor to trifluoromethyl 3-

indolylfulgimide 3 in five steps from 2-methyl indole followed the procedure described in 

Chapter 3 (Scheme 27).  

4.3.3 Synthesis of CF3 fulgimide 3 
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4-Vinylaniline (0.10 g, 0.84 mmol) was added to a solution of trifluoromethyl indolylfulgide 

1Z (0.30 g, 0.65 mmol) in 60 mL of toluene at room temperature. The reaction mixture was 

heated to 50 °C and stirred for 2 h. The solution was then concentrated in vacuo. The residue was 

quenched with 100 mL of 1 M HCl and extracted with EtOAc (3 × 75 mL). The combined 

organic layers were washed with 50 mL H2O. The organic layer was dried over MgSO4, filtered, 

and concentrated in vacuo to provide the crude acid intermediate. Acetic anhydride (75 mL) was 

added to the crude acid intermediate in 100 mL of toluene. The reaction mixture was allowed to 

stir at room temperature for 10 min and DMAP (4 mg) was added. After 30 min, the reaction 
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mixture was concentrated in vacuo. The residue was dissolved in 150 mL of EtOAc and extracted 

with saturated NaHCO3 (3 × 50 mL) and H2O (75 mL). The organic layer was dried over MgSO4, 

filtered, and concentrated in vacuo. The orange residue was dissolved in 125 mL of toluene and 

illuminated with 405 nm light until the PSS was reached, and then the C-form was purified by 

column chromatography with toluene. Recrystallization from CH2Cl2/hexanes provided 0.11 g 

(30% from fulgide) of the C-form divinyl trifluoromethyl indolylfulgimide (3). C-form: 1H NMR 

(CDCl3, 400 MHz) δ 7.82 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 

7.34 (d, J = 8.5 Hz, 2H), 7.32 -7.27 (m, 3H), 6.88 (td, J = 7.6, 0.9 Hz, 1H), 6.74 (dd, J = 17.8, 

10.8 Hz, 1H), 6.73 (dd, J = 17.7, 10.9 Hz, 1H),  6.48 (d, J = 8.3 Hz, 1H), 5.77 (d, J = 17.5 Hz, 

1H), 5.76 (d, J = 17.8 Hz, 1H), 5.29 (d, J = 10.8 Hz, 1H), 5.27 (d, J = 10.9 Hz, 1H), 4.63 (d, J = 

17.5 Hz, 1H), 4.15 (d, J = 17.6 Hz, 1H), 1.64 (s, 3H), 1.49 (s, 3H), 1.32 (s, 3H); 13C NMR 

(CDCl3, 100 MHz) δ 167.9, 165.0, 160.4, 159.6 (q, J = 4 Hz), 140.5, 136.9, 136.8, 136.7, 136.3, 

136.0, 135.6 (q, J = 1 Hz), 135.1, 130.1, 128.5 (q, J = 7 Hz), 126.8, 126.7, 126.6, 126.1, 122.6 (q, 

J = 273 Hz), 119.9, 114.7, 114.0, 110.6, 106.8 (q, J = 37 Hz), 77.04, 51.1, 39.3, 20.1, 18.6, 15.8. 

C35H29F3N2O2 HRMS (ESI) m/z: 589.2094 [obtained M + Na]+, 589.2073 [calculated M + Na]+. 

The Z-form was prepared by illuminating the C-form in CDCl3 with visible light >515 nm to 

quantitatively convert it to the Z-form. Z-form: 1H NMR (CDCl3, 400 MHz) δ 7.52 (d, J = 8.6 Hz, 

2H), 7.46 -7.38 (m, 3H), 7.36 -7.28 (m, 3H), 7.24 -7.15 (m, J = 6.4, 1.4 Hz, 2H), 6.98 (d, J = 8.1 

Hz, 2H),  6.75 (dd, J = 17.6, 11.0 Hz, 1H), 6.67 (dd, J = 17.5, 10.9 Hz, 1H),  5.79 (d, J = 17.6 Hz, 

1H), 5.71 (d, J = 17.6 Hz, 1H), 5.37 (d, J = 16.9 Hz, 1H), 5.31 (d, J = 10.8 Hz, 1H), 5.26 (d, J = 

16.6 Hz, 1H), 5.25 (d, J = 11.0 Hz, 1H), 2.20 (s, 3H), 2.09 (s, 3H), 1.03 (s, 3H); 13C NMR 

(CDCl3, 100 MHz) δ 166.2, 163.9, 154.5, 137.7, 137.3, 136.7, 136.6, 136.2, 136.1, 136.0, 133.1 

(q, J = 2 Hz), 130.9, 129.3 (q, J = 35 Hz), 126.8, 126.7, 126.6, 126.4, 125.7, 122.6, 122.5 (q, J = 

278 Hz), 122.4, 121.2, 119.8, 115.0, 114.5, 109.6, 108.4 (q, J = 2 Hz), 46.9, 26.9, 22.3, 12.1.  

C35H29F3N2O2 HRMS (ESI) m/z: 589.2097 [obtained M + Na]+, 589.2073 [calculated M + Na]+. 
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4.3.4 Synthesis of cross-linked copolymers film 3-co-PMMA 
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To the solution of monomer 3 (Z- or C-form) (1.0 mg, 0.002 mmol) in methyl methacrylate 

(1.0 g, 10 mmol), AIBN (1 wt% of MMA) was added. The polymerization was performed 

between two 1 inch diameter circular glass slides with a 2 mm plastic spacer at 50 ºC for 12 h. 

The resulting rigid thin films containing cross-linked copolymers were cooled to room 

temperature and directly utilized to investigate their stability. 

4.3.5 Spectra determination in toluene 

A concentrated stock solution of the C-form was prepared using 10 mg of solid sample 

followed by the preparation of 5 dilute solutions with concentrations between 0.05 to 0.20 mM. 

UV-Vis spectra of these solutions were obtained, and concentration versus absorbance was 

plotted to determine the extinction coefficient. The diluted C-form solutions were irradiated with 

515 nm light to quantitatively convert to Z-form solutions. UV-Vis spectrum of each freshly 

converted Z-form solution was measured and then the extinction coefficient was determined. 

4.3.6 PSS measurements 

The photostationary state (PSS) was measured using NMR spectroscopy. An NMR tube 

containing Z-form fulgimide in toluene-d8 was illuminated with 405 nm light until PSS was 

reached. A 1H NMR spectrum was then acquired and integrated. 
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4.3.7 Photochemical stability 

The Z-form sample (solution or film) was prepared with an initial absorbance of 0.6 -0.8 at 

the absorption maxima. Sample was irradiated to PSS and an UV-Vis spectrum was acquired 

after prolonged irradiation at 405 nm. Another sample of pure Z-form was irradiated to 90% of 

the PSS, and the reaction time (coloration) was obtained. The 90% PSS mixture was then back 

irradiated to the yellow form, and again the reaction time (decolorization) was obtained. Once the 

duration of irradiation reactions (coloration-decolorization) was established, the system was 

automated through the use of a filter switch. After a designated number of photochemical cycles, 

the sample was converted to PSS and UV-Vis spectrum scanned. The photochemical stability was 

determined by comparison with the initial PSS absorption spectrum. The cycling times in toluene 

were: 60 s (Z - C) and 40 s (C - Z) for 3; 80 s (Z - C) and 90 s (C - Z) for 3-co-PMMA. 

4.3.8 Thermal stability 

The thermal stability of fulgimide 3 (Z- and C-forms) in toluene was measured using both 

UV-Vis spectroscopy and 1H NMR spectroscopy. The solutions were prepared in toluene or its 

deuterated analog and transferred into several ampoules or NMR tubes, respectively. UV-Vis and 

1H NMR spectra of these initial samples were measured. Ampoules and NMR tubes were sealed 

and submersed in a water bath maintained at 80 °C. At predetermined times, ampoules and NMR 

tubes were removed, and their contents analyzed by UV-Vis or 1H NMR spectroscopy. For the 

copolymer 3-co-PMMA, the thin films (Z- and C-forms) were wrapped in aluminum foil and 

placed in an oven maintained at 80 °C. The films were removed at prescribed intervals and their 

UV-Vis spectra measured. All the photochemical properties measurements were performed by Dr. 

Islamova in Dr. Lees’ group. 
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4.4 Results and discussion 

4.4.1 Synthesis 

A new 3-indoleylfulgimide 3 with two pendant styrene groups on nitrogen atoms was 

synthesized in two steps form the precursor fulgide 1. The first step involved an anhydride ring 

opening reaction via addition of 4-vinylaniline to generate an amide acid intermediate. In the 

following step, subsequent dehydration of the succinamic acid intermediate was taken place with 

acetic anhydride to yield the fulgimide 3. The fulgimide was then copolymerized with MMA to 

provide a cross-linked polymer 3-co-PMMA via a free radical polymerization between two glass 

slides. The ratio of monomers (fulgimide to MMA) was selected to ensure that the copolymers 

were suitable for UV-Vis measurements (absorbance approx. 1). The resulting 3-co-PMMA was 

found to be insoluble in THF, CH2Cl2, DCE, or toluene and very rigid, optically clear, and 

difficult to break. The photochromic properties of monomeric fulgimide and copolymer were 

studied in toluene and as film, respectively. Both monomer and copolymer are photochromic and 

stable (in both forms) at room temperature. 

4.4.2 UV-Vis absorption spectra 

The UV-Vis absorption spectrum of fulgimide 3 was measured in toluene and the extinction 

coefficient was calculated (Figure 8, Table 4). Both Z-form and C-form absorbed the light in the 

visible region. The C-from fulgimide 3C showed larger extinction coefficient and blue shifted 17 

nm of the absorbance maximum relative to the C-from fulgimide 2C, however, the substitution of 

a styrene group does not significantly change the absorbance maximum or extinction coefficient 

of the Z-form. As expected, the absorbance maxima of the Z-form fulgimide 3Z exhibited a 

hypsochromic shift of 23 nm relative to the precursor fulgide 1Z.1,39 The photostationary state 

(PSS) achieved upon irradiation with 405 nm light contained 95% C-form. After polymerization 

with MMA, 3-co-PMMA displayed a similar UV-Vis absorption pattern with the fulgimide 3. 

The advantageous properties include the absorption maxima in the visible region of the spectrum 
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and high conversion in both directions that makes the compounds promising for practical 

applications. 

300 400 500 600 700 800
0
2
4
6
8

10

  
Wavelength / nm

3Z
3C

10
3  ε 

/ m
ol

-1
 L

 c
m

-1
 

Figure 8. UV-Vis absorption spectra fulgimide 3C and 3Z in toluene 

Table 4. Extinction coefficients at λmax for 3 in toluene and λmax for copolymer 3-co-PMMA 

in thin film. 

Compound (Medium) 
λmax/nm (εmax/mol-1 L cm-1) PSS405 nm

a 

Z-form C-form C:Z:E 

1 (Toluene)b 424 (5.5 × 103) 549 (7.3 × 103) 94:5:1 

2 (Toluene)b 405 (6.4 × 103) 554 (7.4 × 103) 93:4:3 

3 (Toluene) 401 (6.3 × 103) 537 (8.1 × 103) 95:4:1 

3-co-PMMA (Film) 402 540 - 
aPhotostationary state. bThe data taken from Chapter 2. 

4.4.3 Thermal Stability 

Thermal stability is essential for fulgimides in the application of optical memory devices or 

optical switches.2,20,28 To make the data comparable, the thermal stability of fulgimide 3 was 

tested in toluene at 80 °C, which is the same condition used in the previous research.2,33,34,82 Both 

1H NMR and UV-Vis spectroscopy were used to measure the thermal decomposing of fulgimide 

3. The cross-linked polymer 3-co-PMMA was studied as film at 80 °C and followed by UV-Vis 

spectroscopy.  

In toluene, the closed form 3C was more stable than the open form 3Z which is consistent 

with previous results for fluorinated indolylfulgimides (Figure 9).2 All the data were fit to a single 



56 
 

exponential decay for both forms excluding the first data point for the C-form as there is an initial 

1-2% loss in the absorbance followed by a slow decomposition. The Z-form degraded 0.018 h-1 

and 0.011 h-1 by UV-Vis and 1H NMR spectroscopy, respectively. The values are comparable to 

that previously found for the parent fulgide 1 and the analogous fulgimide 2 (Table Table 5).  
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Figure 9. Thermal decomposition of fuligmides 3 and coplymers 3-co-PMMA: (a) fulgimides in 
toluene at 80 ºC measured by NMR: 3C (●) and 3Z (■); (b) copolymers as films at 80 ºC 
measured by UV-Vis spectroscopy: 3C-co-PMMA (○) and 3Z-co-PMMA (□) at 80 ºC 

 
Table 5. Thermal decomposition rate constants (×103, h-1) for 3 and 3-co-PMMA at 80 ºC 

Compound (Medium) 
UV-Vis 1H NMR 

Z-forma C-formb Z-forma C-formb 

1 (Toluene) c 53d < 0.05 20 < 0.05 

2 (Toluene) c 18c < 0.05 14 < 0.05 

3 (Toluene) 18 < 0.05 11 < 0.05 

3-co-PMMA (Film) 16 0.37 - - 
 

aFit to a single exponential decay. bFit to a single exponential excluding 0 h data point. cThe data 

taken from Chapter 3. 

 

The UV-Vis spectrum of 3Z in toluene displayed an initial drop in absorbance followed by a 

red shift and subsequent increase in absorbance and the absence of the isosbestic points indicated 

the presence of an intermediate (Figure 10a). The pattern is similar to the pervious results of 

fulgimide 2Z in chapter 3 which degraded possibly via a 1,5-hydrogen shift from the 

isopropylidene group to form an intermediate and then rearranges to a mixture of two products.18 

However, in the case of the open form copolymer 3Z-co-PMMA, the UV-Vis spectrum exhibited 
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decreased absorbance of the red shifted peak after 70 h in toluene at 80 ºC (Figure 10b). It 

potentially indicated decomposition of a thermolysis product(s). Similar to its monomeric 

fulgimide, the copolymer was much more stable in closed form at 80 ºC, and there is no 

decomposition occurred at room temperature for both closed form and open form. 
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Figure 10. Thermal decomposition of fulgimide 3Z and copolymer 3Z-co-PMMA: (a) 3Z in 
toluene and (b) 3Z-co-PMMA in film at 80 °C by UV-Vis 

 
4.4.4 Photochemical stability 
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Figure 11. Photochemical decomposition of fulgimide 3 and copolymer 3-co-PMMA: 3 (■) in 

toluene and 3-co-PMMA (□) in film 

Table 6. Photochemical fatigue resistance of 3 and 3-co-PMMA 

Compound (Medium) 

Cycling time (s) Photochemical decomposition 

Z-C C-Z Number of cycles A/A0 
% per 

cycle 

3 (Toluene) 60 40 2990 0.848 0.0050 

3-co-PMMA (Film) 80 90 2378 0.793 
0.0050

a 
aFrom 500 cycles onwards. 
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Photochemical stability was measure by determining the percentage loss in absorbance per 

photochemical cycle (ring-opening/ring-closing) during approx. the first 20% of degradation. The 

fulgimide was tested in toluene and its copolymer was measured as film. Fulgimide 3 showed 

excellent photochemical stability in toluene, degrading only 0.005% pre photochemical cycle 

(Figure 11). After polymerization, the copolymer film degraded at the same rate as its monomeric 

fulgimide (Table 6). The initial drop in absorbance followed by a linear decomposition as shown 

in Figure 11, possibly results from polymer reorganization at the beginning. 

4.4.5 Conformational restrictions 

I found that when the copolymer films 1-co-PAA, 2-co-PAA (in Chapter 3), and 3-co-PAA 

initially prepared in the open form were converted to PSS436/405 nm, the absorbance at λmax 

decreased. However, when copolymer films prepared in the closed form were converted to the 

open form and then converted back to PSS436/405 nm, the absorbance at λmax changed slightly. This 

behaviour just like diarylethenes which was reported previously.83 Diarylethenes in open forms 

have two conformations, antiparallel conformation and parallel conformation. The two 

conformations can be interconverted in solution. But in films, the interconversion is limited and 

only the antiparallel conformation can be converted to closed form. Similar with  diarylethenes, 

the copolymers films initially prepared in the open form contains two conformations, a reactive 

conformation and a unreactive conformation. Only the reactive conformation can convert to the 

closed form, so the conversion of the open form to the closed form is lower. However, the 

copolymer films prepared in the closed form and then converted to the open form only contains 

reactive conformation. The conversion between the open form and the closed form was more 

complete. As a result, it is recommended that polymer films better to be prepared in the closed 

forms. 
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4.5 Conclusion 

I have synthesized a 3-indolylfulgimide 3 with two pendant styrene groups and 

copolymerized it with MMA to obtain cross-linked copolymer films (in the Z- and C-forms). The 

fulgimide and copolymer were found to be photochromic and very stable at room temperature. 

For both fulgimide and copolymer, the C-forms exhibited excellent thermal stability at 80 °C, 

however, the Z-forms were less stable decomposing through intermediates. Fulgimide and 

copolymer exhibited similar photochemical stability only degrading 0.005% per cycle. In films, 

the open Z-form fulgimide was conformationally restricted, so preparation of photochromic films 

in the closed C-forms is preferred. 
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 5. SYNTHESIS OF AQUEOUS SOLUBLE 3-INDOLYLFULGIMIDE-CO-PAA 

LINEAR COPOLYMERS 

5.1 Abstract 

Aqueous soluble polymers containing photochromic indolylfulgimides are promising 

materials for optical molecular switches and biological sensors. A new CH3 indolylfulgimide 4 

with an N-stryryl on the succinimide ring was synthesized. Copolymerization of the CH3 

indolylfulgimide 4 or CF3 indolylfulgimide 2 with acrylamide provided linear copolymers 4-co-

PAA or 2-co-PAA, respectively. The resulting linear copolymers were aqueous soluble and 

photochromic. The CH3 fulgimide was characterized in toluene. The open form CH3 fulgimide 

4E exhibited excellent thermal stability and no degradation was observed after 400 h at 80 °C. 

The C-form fulgimide 4C was less stable and degraded about 30% after 220 h at 80 °C. 

Photochemical stability was measured by repeatedly interconverting the fulgimide between the 

open form and the closed form. The CH3 fulgimide 4 decomposed 0.018% per cycle in toluene. 

The copolymers were studied in three different aqueous solutions: a sodium acetate buffer (pH 

5.0), water, and a sodium phosphate buffer (pH 7.4). The closed form 2C-co-PAA was rapidly 

hydrolyzed probably by replacing the CF3 group on the bridging position of the fulgimide to 

COOH group in aqueous solutions. The resulting hydrolyzed-2-co-PAA was also photochromic. 

In general, both 4-co-PAA and hydrolyzed-2-co-PAA exhibited enhanced stability in acidic 

solution. The open form copolymers were more stable than the closed form copolymers. All 

copolymers were able to undergo at least 16 cycles before degrading 20% in aqueous solutions. 

5.2 Introduction  

Photochromic compounds are known for their ability to interconvert between two isomers 

upon irradiation. Within organic photochromic compounds, photochromic fulgides and 

fulgimides have been extensively studied.1,2,19,27,33,34 Indolylfulgides have many advantages, such 

as enhanced thermal stability, increased photochemical stability, highly efficient photoreactions, 
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and large molar absorption coefficients (Scheme 1).22,27,35,39,81 These promising characteristics 

make indolylfulgides useful in optical information storage devices and as optical molecular 

switches.19,25,43,47,48 The most photochemically stable indolylfulgide can be interconverted between 

the open form and the closed form 10000 times before degrading by 13% in toluene.2 However, 

fulgides are unstable in protic solvents.20,21 Hydrolytic stability is essential for the applications in 

humid environment and biological systems. Thus, fulgimides were synthesized to improve the 

hydrolytic stability by replacing the succinic anhydride ring with a succinimide ring (Scheme 28). 

Scheme 28. Photochromism of indolylfulgides and indolylfulgimides 
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Manipulation of the functional groups on fulgimides which control their photochemical 

properties is essential to the development of functional materials. For example, the absorption 

maximum of a indolylfulgimide will be in the visible region in both the open form and the closed 

form with a trifluoromethyl group at the bridging position (R in Scheme 28).27 Using visible 

lights instead of UV lights in biological systems is preferred, because the UV lights can be 

damaging to the living organisms. Replacing the trifluoromethyl group with a methyl group shifts 

the absorption maxima of the open form to the UV region. However, the resulting 

indolylfulgimides will have enhanced hydrolytic stability.33,34 The other functional group, R’ on 

the succinimide ring, can also be modified for specific purposes. A series of fulgimides with an 

acetic acid as R’ group were synthesized. These fulgimides with a pendant hydrophilic group can 

be dissolved not only in organic solutions but also in aqueous solutions.33,34 The ability to be 
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aqueous soluble will make the fulgimides more practical for applications in biological systems. 

The R’ group can also be a polymerizable group, for example, a fulgimide with a pendant N-

stryryl on the succinimide ring was synthesized.27 The fulgimide was then copolymerized with 

the methyl methacrylate (MMA) to obtain a photochromic linear copolymer. The resulting 

copolymer retained the photochromic properties as the monomeric fulgimide and exhibited good 

thermal and photochemical stabilities in toluene. Covalent incorporation instead of embedding 

into copolymers allowed the fulgimide distributed uniformly in the polymer matrix to minimize 

aggregation and diffusion.26,39,78 For the applications in biological systems, such as bioimaging 

and biosensors, aqueous solubility is preferred. Therefore, aqueous soluble copolymers 

containing a photochromic fulgimide will be promising. However, to the best of my knowledge, 

no example of such a photochromic copolymer was reported. 

Herein, I synthesized a CF3 indolylfulgimide and a CH3 indolylfulgimide with an N-stryryl 

on the succinimide ring were synthesized and incorporated into water soluble polymers. The 

linear copolymers were aqueous soluble and photochromic. The photochromic properties of the 

fulgimides were measured in toluene and the copolymers were studied in three aqueous solutions: 

water, a 50 mM sodium phosphate buffer (pH 7.4), and a 50 mM sodium acetate buffer (pH 5.0). 

5.3 Experimental section 

5.3.1 General procedures and materials 

All commercially available materials were used without purification. The NMR spectra were 

recorded on a Brücker 400 MHz NMR spectrometer. The 1H and 
13C NMR samples were 

internally referenced to TMS. The UV-Vis spectra were recorded with a Cary 300 

spectrophotometer. The HRMS were obtained at the University of Florida. Flash chromatography 

was performed with 230-400 mesh silica gel. Illumination was provided by a 1000 W Hg (Xe) arc 

lamp. The light first went through a water filter, then through a hot mirror, and finally through 
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either a band pass filter (365 nm (for CH3 fulgimide)/405 nm (for CF3 fulgimides)) or a cutoff 

filters (> 515 nm). Trifluoromethyl indolylfulgimide 2 was synthesized as reported previously.27  

5.3.2 Synthesis of methyl fulgimides  

5.3.2.1 Synthesis of dimethyl isopropylidenesuccinate 6 80 
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(67%)5  

2-Nitropropane 5 (76.60 g, 0.860 mol) was dissolved in 2.4 L of acetonitrile, then followed 

by addition of dimethyl maleate (135.70 g, 0.942 mol) and 1,8-Diazabicyclo[5.4.0]undec-7-ene 

(DBU) (201.56 g, 1.32 mol). The reaction mixture was stirred at room temperature. After 16 h, 

the mixture was concentrated in vacuo. The residue was poured into a 4 L separatory funnel and 

quenched with 600 mL of HCl. The mixture was extracted with 1.5 L of diethyl ether and washed 

with water (2 x 600 mL). The organic layer was dried over MgSO4, filtered, and concentrated in 

vacuo. The crude product was then purified by vacuum distillation to yield 107.50 g (67%) of 

dimethyl isopropylidenesuccinate 6. 

5.3.2.2 Synthesis of 1,2-dimethylindole 12 

N
H

N

CH3I

NaH
DMF

7 12
 
(81%)  

2-Methylindole 7 (0.117 mmol, 15.40 g) was added in 200 mL of DMF and stirred for 30 min. 

The mixture was cooled to 0 °C followed by addition of NaH (6.01 g of 60 % dispersion in oil, 

0.150 mmol). After stirring for 10 min, methyl iodide (8.0 mL, 0.129 mmol) was added. The 

reaction mixture was warmed to room temperature and left to react under argon gas for 5 h. The 

mixture was then concentrated in vacuo. The residue was dissolved in 500 mL of EtOAc and 

extracted with water (2 x 200 mL) and brine (200 mL). The organic layer was dried over MgSO4, 
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filtered, and concentrated in vacuo. Further purification via column chromatography (1:1 

hexane/EtOAc) provided 13.76 g (81%) of 1,2-dimethylindole 12. 

5.3.2.3 Synthesis of 3-acetyl-1,2-dimethylindole 1918  

N

H3C
O

N

Ac2O

reflux

12 19
 
(64%)  

1,2-dimethylindole 12 (9.50 g, 65.4 mmol) was dissolved in 160 mL of acetic anhydride 

(172.8 g, 1.692 mol). The mixture was heated to reflux under argon gas for 36 h. After 

concentrating in vacuo, the brown residue was purified by recrystallization from hexane/CH2Cl2 

to yield 7.86 g (64%) of 3-acetyl-1,2-dimethylindole 19. 

5.3.2.4 Synthesis of cis/trans indolelactones 2018 
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Dimethyl isopropylidenesuccinate 6 (23.86 g, 69 mol) was dissolved in 60 mL of dry THF 

and cooled to -78 °C under argon gas. Lithium diisopropylamide (LDA) (40 mL of a 1.5 M 

solution in THF, 60 mmol) was added dropwise via an addition funnel to the solution and stirred 

for 30 min at -78 °C under argon gas. To the mixture, a solution of 3-acetyl-1,2-dimethylindole 

19 (5.75 g, 30.8 mmol) in dry THF was added dropwise via an addition funnel. To avoid moisture 

in the reaction mixture, a cannula was used to fill the addition funnel. The mixture was warmed to 

room temperature and allowed to react for 48 h. The solution was then concentrated in vacuo. The 

residue was quenched with 200 mL of water and acidified with 5% H2SO4 solution. The aqueous 

layer was extracted with diethyl ether (3 x 100 mL). The combined organic layers were washed 
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with brine (2 x 100 mL), dried over MgSO4, filtered, and concentrated in vacuo. The crude 

product was purified by column chromatography (2:1 hexanes/ether) and then recrystallized from 

ethanol to provide 5.20 g (49%) of cis/trans mixture of indolelactones 20. 

5.3.2.5 Synthesis of methyl indolylfulgide 2218,84 

N

O

H3C CO2Me
H

O

+

N

O

H3C CO2Me
H

O

Ac2O

N

H3C

OO
O

N

H3C

OHOH
O

Toluene

1. NaH
2. H2O

DMF

O

21 22
 
(30%

 
from 20)20

Cis Trans

 

Sodium hydride (60% dispersion in oil, 0.84 g, 21 mmol) was added to a solution of cis/trans 

indolelactones 20 (2.90 g, 8.50 mmol) in 250 mL of DMF at 0 °C. The mixture was warmed to 

room temperature and stirred for 1 h. Then, the mixture was cooled back again to 0 °C, and water 

(2.5 mL, 139 mmol) was added. After stirring overnight, the mixture was then concentrated in 

vacuo. The residue was dissolved in 150 mL of water and washed with EtOAc (3 x 100 mL). The 

aqueous layer was then acidified with 10% HCl to pH 2 and extracted with EtOAc (3 x 100 mL). 

The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to 

provide crude diacid intermediate 21. The resulting diacid was suspended in 100 mL of toluene. 

Acetic anhydride (50 mL, 0.53 mol) was added, and the reaction mixture was heated to reflux for 

2 h under argon gas. The mixture was then concentrated in vacuo. The residue was partitioned 

between water (200 mL) and CH2Cl2 (100 mL). The aqueous layer was then extracted with 

CH2Cl2 (2 x 100 mL). The combined organic layers were dried over MgSO4, filtered, and 

concentrated in vacuo. The crude product was purified by column chromatography with CH2Cl2 

and recrystallized from CH2Cl2/hexanes to provide 0.78 g (30%) of methyl indolylfulgide 22. 



66 
 

5.3.2.6 Synthesis of methyl styrene indolylfulgimide 4 
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To a stirred solution of 4-vinylaniline (0.316 g, 2.65 mmol) in 50 mL of dry THF, lithium 

diisopropylamide (LDA) (3.0 mL of a 1.5 M solution in THF, 4.5 mmol) was added dropwise via 

a syringe. The mixture was left to react for 5 min, and methyl indolylfulgide 20 (0.316 g, 1.08 

mmol) was added. The reaction mixture was then stirred overnight. The mixture was quenched 

with 10% H2SO4 (100 mL) and extracted with EtOAc (3 x 100 mL). The combined organic 

layers were washed with brine (100 mL) and water (100 mL). Then, the solution was dried over 

MgSO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography 

to provide the crude amide acid intermediate 23. Acetic anhydride (50 mL) was added to the 

solution of 23 in 60 mL of toluene. The mixture was stirred for 10 min and followed by addition 

of 10 mg of 4-dimethylaminopyridine (DMAP). The reaction mixture was allowed to react 

overnight at 50 °C. Then, the mixture was concentrated in vacuo. The residue was dissolved in 

EtOAc (100 mL) and extracted with NaHCO3 (2 x 50 mL) and water (50 mL). The combined 

organic layers were dried over MgSO4, filtered, and concentrated in vacuo. The residue was 

purified by silica gel chromatography (1:1 EtOAc/hexanes). The resulting open form of methyl 
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styrene indolylfulgimide 4E was illuminated with 365 nm light in toluene until the 

photostationary state (PSS) was reached, and then the C-form was purified by silica gel 

chromatography (1:1 CH2Cl2/hexanes). Recrystallization from CH2Cl2/hexanes yielded 92 mg 

(20%) of C-form methyl styrene indolylfulgimide 4C. The E-form was prepared by illuminating 

the C-form in toluene with visible light > 515 nm and recrystallized from CH2Cl2/hexanes. C-

form 1H NMR (CDCl3, 400 MHz) δ 7.60 (d, J = 7.5 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.34 (d, J 

= 8.5 Hz, 2H), 7.23 (t, J = 7.7 Hz, 1H), 6.77-6.70 (m, 2H), 6.57 (d, J = 8.1 Hz, 1H), 5.77 (dd, J = 

17.3, 0.5 Hz, 1H), 5.28 (d, J = 10.9 Hz, 1H), 2.92 (s, 3H), 2.47 (s, 3H), 1.81 (s, 3H), 1.33 (s, 3H), 

1.23 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ 169.0, 168.3, 157.3, 150.9, 138.2, 136.6, 136.2, 

136.0, 131.7, 131.3, 126.6, 126.2, 126.0, 124.6, 118.0, 115.1, 114.5, 108.1, 72.6, 40.3, 31.8, 20.0, 

19.0, 15.7, 13.7. C27H26N2O2 HRMS (ESI) m/z: 411.2072 [obtained M + H]+, 411.2067 

[calculated M + H]+. E-form: 1H NMR (CDCl3, 400 MHz) δ 7.52 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 

7.9 Hz, 1H), 7.41 (d, J = 8.5 Hz, 2H), 7.31-7.24 (m, 2H), 7.14 (td, J = 7.3, 1.1 Hz, 1H), 6.75 (dd, 

J = 17.5, 10.8 Hz, 1H), 5.78 (dd, J = 17.6, 0.6 Hz, 1H), 5.29 (dd, J = 10.9, 0.6 Hz, 1H), 3.69 (s, 

3H), 2.82 (s, 3H), 2.22 (s, 3H), 2.20 (s, 3H), 0.97 (s, 3H). 13C NMR (CDCl3, 100 MHz) δ 168.1, 

167.7, 148.5, 144.8, 137.2, 137,1, 136.3,134.3, 131.7,127.1, 126.6, 125.5, 123.8, 122.7, 121.7, 

120.4, 119.7, 118.3, 114.6, 109.0, 29.8, 26.4, 23.1, 22.2, 12.1. C27H26N2O2 HRMS (ESI) m/z: 

411.2076 [obtained M + H]+, 411.2067 [calculated M + H]+, 433.1894 [obtained M + Na]+, 

433.1886 [calculated M + Na]+. 

5.3.2.7 Synthesis of trifluoromethyl styrene indolylfulgimide 2 

Trifluoromethyl styrene indolylfulgimide 2 was synthesized following the procedure 

described in Chapter 3 (Scheme 29). Trifluoromethyl 3-indolylfulgide 16 was prepared in five 

steps from 2-methyl indole.22 Then, fulgimide 2 was obtained by addition of 4-vinylaniline to the 

succinate ring of fulgide 16 followed by dehydration in acetic anhydride. 
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Scheme 29. Synthesis of trifluoromethyl styrene indolylfulgimide 2 
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5.3.3 Synthesis of linear copolymers 2-co-PAA and 4-co-PAA 
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The C-form indolylfulgimide 2C or 4C (4.5 mg, 0.01 mmol) were dissolved in 2 mL of 

DMSO. Acrylamide (0.35 g, 4.9 mmol) was added to the solution followed by the addition of 

initiator azobisisobutyronitrile, AIBN (1 wt% of PAA). The solution was stirred until all solids 

dissolved. The solution was transferred to a resealable glass ampule. The ampule was sealed 

under vacuum and kept at 50 °C. After 48 h, a blue polymeric gel was formed. The polymeric gel 
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was dissolved in 30 mL water and transferred to a dialysis bag (M.W. cutoff: 6000-8000). 

Dialysis was performed four times against 3.5 L of water each time. The copolymer solution was 

lyophilized to provide the C-form copolymers 2C-co-PAA and 4C-co-PAA. 

5.3.4 Stability of fulgimides in toluene at 80 °C and Stability of copolymers in aqueous 

solutions at 37 °C 

The thermal stability of fulgimides and copolymers were measured in both the open and 

closed forms. Solutions of fulgimides in toluene and copolymers in aqueous solutions (50 mM 

sodium phosphate buffer (pH 7.4), 50 mM sodium acetate buffer (pH 5.0), and water) were 

prepared and each solution was transferred into several ampoules. The ampoules were then sealed 

and incubated in a water bath maintained at 80°C and 37 °C for fulgimides and copolymers, 

respectively. At predetermined times, ampoule were removed and the solution was analyzed by 

UV-Vis spectroscopy. 

5.3.5 Photostationary state (PSS) measurements 

The Fulgimide 4C in toluene-d8 was converted to 4E with >515 nm light and then the 3E 

was illuminated with 365 nm light until a constant Z/E/C ratio was obtained. The reaction was 

monitored via 1H NMR spectroscopy. 

5.3.6 Photochemical stability 

Solution of closed form fulgimides in toluene and copolymers in aqueous solutions (50 mM 

sodium phosphate buffer (pH 7.4), 50 mM sodium acetate buffer (pH 5.0), and water) were 

quantitatively converted to solutions of open form by irradiating with visible light >515 nm. The 

open form solutions were converted to the photostationary state (PSS) with prolonged irradiation 

of 365 nm light for 4 and 4-co-PAA and 405 nm light for 2 and hydrolyzed 2-co-PAA. A UV-

Vis spectrum was acquired and the absorbance at λmax in the visible region was determined. The 

time taken to achieve 90% of the absorbance at λmax of PSS365 nm (405 nm) was then recorded. Then, 

the solutions of PSS365 nm (405 nm) were irradiated with visible light >515 nm again until the C-form 
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solutions were < 1% in absorbance at λmax of the C-form, and the reaction time was measured. 

Once the duration of the irradiation reactions was established, the solutions were converted back 

and forth with an automated filter switch. After a designated number of irradiation cycles, the 

sample was fully converted to PSS365 nm (405 nm) with prolonged irradiation and the UV-Vis 

spectrum was scanned. The photochemical stability was determined by comparison with the 

absorbance at the λmax of the C-form obtained from the initial PSS365 nm(405 nm) absorption spectrum.  

5.4. Results and discussion 

5.4.1 Synthesis 

Scheme 30.Synthesis of methyl styrene 3-indolylfulgide 4 
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A new 3-indolylfulgimide 4 with an N-stryryl on the succinimide ring was synthesized from 

the precursor indolylfulgide 22. Preparation of fulgide started from commercial available 2-

methylindole. After methylation and acetylation, 1,2-dimethyl-3-acetylindole was obtained. Then 
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the resulting indole was reacted with a dimethyl isopropylidene succinate to yield cis/trans 

indolelactones via a Stobbe condensation. The indolelactones were then hydrolyzed to a 

dicarboxylic acid by using NaH as a base and followed with water in DMF. The methyl 

indolylfulgide 22 was afforded in 30% yield from the indolelactones after dehydration of the 

dicarboxylic acid in refluxing acetic anhydride (Scheme 30). Fulgide 22 was then used as a 

starting material for synthesis of CH3 fulgimide 4. The anhydride ring of 22 was opened via 

addition of 4-vinyl aniline. The resulting succinamic acid, one of the two possible regioisomers, 

was then dehydrated in acetic anhydride to yield open form CH3 fulgimide 4E. The closed form 

fulgimide 4C was prepared by illuminated 4E with UV light. The CF3 fulgimide 2 was 

synthesized by using the method described in Chapter 3 (Scheme 29). Two linear copolymers (2-

co-PAA and 4-co-PAA) were prepared from the corresponding fulgimides and acrylamide via 

free-radical polymerization with AIBN as the initiator. The ratio of monomers (fulgimide to 

acrylamide) was selected to ensure that the copolymers were suitable for UV-Vis measurements 

(absorbance approx. 1). All linear copolymers were soluble in aqueous solutions and 

photochromic. The copolymer 2-co-PAA was studied by 19F NMR spectroscopy in D2O (Figure 

12).  For the 2Z-co-PAA, , which contains the open form CF3 fulgimide, only one resonance at -

56 ppm in the spectrum was observed and the resonance is consistent with the fluorines of a CF3 

group. However, after converting to the closed form 2C-co-PAA, the resonance at -56 ppm 

disappeared, and a new signal appeared at -146 ppm, which corresponds to the chemical shift of a 

fluoride anion. As expected, after irradiating back to the open form, the signal at -146 ppm 

persisted. The result suggests that 2C-co-PAA was not stable in aqueous solutions and rapidly 

hydrolyzed to lose the fluorines. A similar conclusion was found in a previous model study, in 

which a C-form water soluble CF3 fulgimide was rapidly hydrolyzed in buffer by replacing the 

CF3 group on the bridging position with a carboxylic acid group.33 
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Figure 12. 19F NMR spectra of copolymer (a) original 2Z-co-PAA, (b) hydrolyzed-2C-co-PAA, 
and (c) hydrolyzed-2Z-co-PAA in D2O 

 
I also found that the resulting hydrolyzed-2C-co-PAA was also photochromic and can be 

converted to open form hydrolyzed-2Z-co-PAA with light. However, the open form copolymer 

prepared from open form fulgimide 2Z was stable in aqueous solutions and can not be degraded 

to hydrolyzed-2Z-co-PAA directly. This result is also consistent with the model study.33 The 

thermal and photochemical stabilities of 2-co-PAA were studied in their hydrolyzed forms. By 

replacing the CF3 group with a CH3 group on the bridging position, the copolymer 4-co-PAA 

containing CH3 fulgimide 4 was relatively stable in aqueous solutions for both closed form and 

open form (Scheme 31). 

Scheme 31.Synthesis of linear copolymers 2-co-PAA and 4-co-PAA 
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5.4.2 UV-Vis absorption spectra 
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Figure 13. UV-Vis absorption spectra of fulgimide 2 and copolymers 2-co-PAA and 4-co-PAA: 
(a) fulgimide 2 in toluene (solid) and copolymer hydrolyzed 2-co-PAA in 50 mM sodium acetate 
buffer (pH 5.0) (dashed); (b) fulgimide 4 in toluene (solid) and copolymer 4-co-PAA in 50 mM 
sodium acetate buffer (pH 5.0) (dashed); (c) copolymers in initial closed forms and in PSS in 50 
mM sodium acetate buffer (pH 5.0); (d) original 2Z-co-PAA and hydrolyzed 2Z-co-PAA in 
water. 

 
 The UV-Vis absorption spectra of fulgimides and copolymers in C-form, E-form and PSS365nm 

(405 nm) were measured (Figure. 13(a), Table 7 Table 8). The longest wavelength absorption maxima 

(λmax) of CF3 fulgimide 2 is in the visible region for both the open and closed forms. After replacing 

the CF3 group with a CH3 group at the bridging position, a hypsochromic shift of 38 nm for E-form 

and a bathochromic shift of 20 nm for C-form were observed for CH3 fulgimide 4 in toluene. The 

extinction coefficients were similar in both forms for fulgimides 2 and 4. After polymerization, the 

resulting polymers displayed similar UV-Vis absorption patterns as their corresponding monomeric 

fulgimides. The λmax of the copolymers in the aqueous solutions exhibited bathochromic shift 

relative to fulgimides in toluene (Table 8, Figure 13a, and 13b).  

 A relatively low percentage of C-form in PSS365 nm of 4 was observed in toluene (66%, Table 7). 

However, after polymerization, the copolymer in aqueous solution provided higher C-form 
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percentage (96%, Figure 13c). The conversion of open form to the closed form could be improved 

by increasing solvent polarity.34 In contrast, the hydrolyzed 2-co-PAA only has 58% of C-form at 

PSS. The enhanced PSS will make the copolymer 4-co-PAA more promising for practical 

applications.  

Table 7. Extinction coefficients at λmax for fulgimides in toluene 

Compound (Medium) 
λmax/nm (εmax/mol-1 L cm-1) PSS365 nm (405 nm) a 

Z/E-form C-form C:Z:E 

CF3 fulgimide 2 (Toluene) b 405 (6.4 × 103) 554 (7.4 × 103) 93:4:3 

CH3 fulgimide 4 (Toluene) 367 (6.6 × 103) 574 (6.0 × 103) 66:12:22 
aPhotostationary state. bThe data taken from ref.27.  

Figure 13d shows UV-Vis absorbance spectrum of original 2Z-co-PAA (made directly from 

Z-from fulgimide 2) was different from that of hydrolyzed-2Z-co-PAA (initially prepared from 

C-from fulgimide 2 followed by irradiation of 2C-co-PAA with light). The hydrolyzed-2Z-co-

PAA was hypsochromic shift of approx. 15 nm relative to the original 2Z-co-PAA which is 

consistent with the water soluble fulgimides in previous report.33 As expected, replacing the CF3 

group on the bridging position of fulgimide with CH3 group increased stability of 4-co-PAA in 

aqueous solutions, and there was no corresponding hydrolyzed form observed. 

Table 8. λmax for copolymers hydrolyzed-2-co-PAA and 4-co-PAA in aqueous solutions 

Copolymer (Medium) 
λmax/nm  

Z/E-form (Original Z-from) C-form 

Hydrolyzed-2-co-PAA (Water) 398 (413)  596 

Hydrolyzed-2-co-PAA (Phosphate buffer) 397 (412) 595 

Hydrolyzed-2-co-PAA (Acetate buffer) 400 (414)  592 

4-co-PAA (Water) 376 596 

4-co-PAA (Phosphate buffer) 379 590 

4-co-PAA (Acetate buffer) 377 596 
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5.4.3 Stability of fulgimides in toluene at 80 °C and Stability of copolymers in aqueous 

solutions at 37 °C 

To be used as optical information storage media, biological sensors, or optical molecular 

switches, the stability of fulgimides and their copolymers is important. In this research, the 

stability of fulgimides and copolymers was studied in toluene at 80 °C and in the aqueous 

solutions at 37 °C, respectively. Decomposition rate constants of fulgimides and their copolymers 

are summarized in Table 9. For all compounds, the UV-Vis data were fit to a single exponential 

decay except hydrolyzed 2-co-PAA in acetate buffer which degraded in a sequential 

decomposition pathway. Double exponential fit was applied since a relatively rapid 

decomposition of <20% was observed followed by a slow decomposition. The reason of the 

initial drop in absorbance may be polymer reorganization. The rate constant for the slow 

decomposition was reported. 

Table 9. Decomposition rate constants (×103, h-1) of fulgimides at 80 °C and their 

copolymers at 37 °C. 

Compound (Medium) 
Decomposition rate (× 103, h-1) 

Open forms a Closed forms a  

2 (Toluene) b 18  < 0.05 

4 (Toluene) 0 9.1 

Hydrolyzed-2-co-PAA (Water) 1.8 15  

Hydrolyzed-2-co-PAA (Acetate buffer) 2.0c 3.0 

Hydrolyzed-2-co-PAA (Phosphate Buffer) 3.8 71 

Original Z-from 2-co-PAA (Acetate buffer) 5.6 - 

Original Z-from 2-co-PAA (Phosphate Buffer) 28 - 

4-co-PAA (Water) 4.2 12 

4-co-PAA (Acetate buffer) 1.1 3.0 

4-co-PAA (Phosphate Buffer) 4.1 97  
aFit to a single exponential. bData taken from ref. 27. cFit to a sequential decay. 
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Figure 14. Thermal decomposition of fulgimide 4: 4C (■) and 4E (●) in toluene at 80 ºC 
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Figure 15. Decomposition of hydrolyzed-2-co-PAA: (a) Z-form in 50 mM phosphate buffer (pH 
7.4) (□), in 50 mM sodium acetate buffer (pH 5.0) (∆), and in water (○) at 37 °C; (b) C-form in 
water at 37 °C (●) and at 25 °C (♦), in 50 mM phosphate buffer (pH 7.4) (■), and in 50 mM 
sodium acetate buffer (pH 5.0) (▲) at 37 °C 

 
In toluene at 80 °C, the E-form CH3 fulgimide 4 was very stable and there was no 

degradation observed after about 391 h. The C-forms were less stable and degraded about 30% 

after 220 h (Figure 14). The UV-Vis data of C-form copolymers were fit to a single exponential 

decay, the decomposition products were assumed not to have absorbance at the λmax of the C-

forms. On the other hand, studies in Chapter 3 indicated that C-form CF3 fulgimide 2 was more 

stable than the Z-form (open form) in toluene at 80 °C.  
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Figure 16. Decomposition of 4-co-PAA: (a) E-form in 50 mM phosphate buffer (pH 7.4) (□), in 
50 mM sodium acetate buffer (pH 5.0) (∆), and in water (○) at 37 °C; (b) C-form in 50 mM 
phosphate buffer (pH 7.4) at 37 °C (■) and at 25 °C (♦), in 50 mM sodium acetate buffer (pH 5.0) 
(▲), and in water (●) at 37 °C 
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Figure 17. Decomposition of Z-form original 2-co-PAA: in water at 25 °C (○), in 50 mM 
phosphate buffer (pH 7.4) (□), and in 50 mM sodium acetate buffer (pH 5.0) (∆) at 37 °C 
 

The stability of both forms of copolymers was measured in three different aqueous solutions, 

50 mM sodium acetate buffer (pH 7.4), water, and 50 mM sodium acetate buffer (pH 5.0) 

(Figures 15 and 16). Stability of copolymers with fulgimide in closed form was affected by the 

pH of the aqueous solutions. Hydrolyzed-2C-co-PAA and 4C-co-PAA exhibited enhanced 

stability in sodium acetate buffer (pH 5.0), however, a rapid degradation was observed in 

phosphate buffer (pH 7.4) (Figure 15b and 16b). For the open forms, 4E-co-PAA exhibited better 

stability than hydrolyzed-2-co-PAA. Both hydrolyzed-2Z-co-PAA and 4E-co-PAA displayed 

similar degradation patterns in the three different aqueous solutions, and the overall stability was 

better than that of their closed forms (Figure 15a and 16a). Moreover, the stability of the original 

2Z-co-PAA was also studied, and a better thermolysis resistance was observed in acid solution 
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than in neutral solution (Figure 17). In general, the copolymers in open forms were more stable 

than in closed forms. The copolymers were more stable in acidic solution than in neutral solution 

for both forms, possibly because the N-stryryl succinimide ring of the fulgimides hydrolyzed to 

the succinamic acid at lower rate in a lower pH solution.85 

5.4.4 Photochemical stability 
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Figure 18. Photochemical decomposition of fulgimides and linear copolymers: (a) fulgimides 2 
(●) and 4 (■) in toluene; (b) hydrolyzed-2-co-PAA in 50 mM phosphate buffer (pH 7.4) (■), in 
50 mM sodium acetate buffer (pH 5) (▲), and in water (●); 4-co-PAA in 50 mM phosphate 
buffer (pH 7.4) (□), in 50 mM sodium acetate buffer (pH 5) (∆), and in water (○) 

 
The photochemical stability of fulgimides and their copolymers were studied in toluene and 

aqueous solutions, respectively. The copolymer 2-co-PAA was studied in its hydrolyzed form. In 

toluene, the CH3 fulgimide 4 underwent 871 photochemical cycles before degrading by 20% 

(Figure 18a). The decomposition rate is 0.022% per cycle which is comparable with that of CF3 

fulgimide 2 (0.016% per cycle). Compared to their monomeric fulgimides in toluene, the 

copolymers exhibited faster decomposition rate in aqueous solutions, potentially because of 

longer cycling time (Table 10). The observation is consistent with previous studies which pointed 

out that fulgimides have relatively lower quantum yields (longer cycling times) in aqueous 

solutions.31,33,34 The copolymers degraded at least twice as fast in the acid solution (acetate buffer) 

as in neutral solutions (phosphate buffer) (Figure 18b). Among the three aqueous solutions tested, 

the best solution for hydrolyzed-2-co-PAA was water and for 4-co-PAA was phosphate buffer. 
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Both copolymers underwent close to 100 photochemical cycles before degrading 20%. One 

possible reason is that the photochromic reaction requires relatively shorter irradiation time. 

Table 10. Photochemical fatigue resistance of fulgimides and their copolymers at room 

temperature 

Compound (Medium) 

Cycling time 

(s)  

Photochemical 

decomposition 

C-Z/E Z/E-C Cycles A/A0 % Per cycle 

2 (Toluene) a 40 60 1660 0.74   0.016 

4 (Toluene) 20 100 871 0.81   0.022 

Hydrolyzed-2-co-PAA (Water) 720 120 200 0.70   0.15 

Hydrolyzed-2-co-PAA (Acetate 

buffer) 
1080 600 16 0.79   1.3 

Hydrolyzed-2-co-PAA (Phosphate 

buffer) 
1500 600 35 0.79   0.60 

4-co-PAA (Water) 840 840 82 0.80   0.24 

4-co-PAA (Acetate buffer) 720 720 40 0.80   0.51 

4-co-PAA (Phosphate Buffer) 120 300 105 0.78   0.21 
aThe data taken from ref. 27. 

5.5 Conclusion 

I have successfully synthesized a new CH3 fulgimide 4 with a pendant styrene group and two 

linear copolymers 2-co-PAA and 4-co-PAA containing CF3 fulgimide 2 and CH3 fulgimide 4, 

respectively. All fulgimides and copolymers were found to be photochromic. In toluene at 80 °C, 

the E-form fulgimide 4E showed very good stability with no decomposition after 392 h, but the 

C-form fulgimide 4C was less stable and degraded 28% after 237 h. The linear copolymers 2-co-

PAA and 4-co-PAA can be dissolved in aqueous solutions. The closed form 2C-co-PAA was 

converted to the hydrolyzed-2C-co-PAA in aqueous solutions, and the resulting hydrolyzed-2-

co-PAA was also photochromic. In general, both hydrolyzed-2-co-PAA and 4-co-PAA were 

more stable in acidic solution. In the open form copolymers, 4E-co-PAA exhibited better stability 
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than hydrolyzed-2Z-co-PAA. Both copolymers showed better stability in the open forms than in 

closed form. For the photochemical stability, fulgimide 4 degraded 0.022% per cycle in toluene 

and the copolymers underwent up to 100 photochemical cycles in aqueous solutions before 

degrading 20%. Ultimately, the linear copolymers showed better photochemical stability in 

neutral solution than in acidic solution but their stability was limited. In the acidic solution, the 

stability of copolymers was enhanced and their photochemical stability could be improved. 

Replacing the CF3 group on the bridging position of fulgimide with CH3 group increased the 

stability of copolymer 4-co-PAA in aqueous solutions. 
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6. SYNTHESIS AND CHARACTERIZATION OF 

INDOLYLFULGIMIDE CO-PAA HYDROGELS 

6.1 Abstract 

Hydrogels using photochromic indolylfulgimides as cross-linkers have great potential for 

applications in the modulation of biological systems. A new CH3 indolylfulgimide 5 with two 

polymerizable styrene groups on the nitrogen atoms was synthesized. Copolymerization of the 

CH3 indolylfulgimide 5 and CF3 indolylfulgimide 3 with acrylamide provided cross-linked 

copolymers 5-co-PAA and 3-co-PAA, respectively. The resulting 5-co-PAA and 3-co-PAA were 

found to be photochromic hydrogels, which were compatible with water. The CH3 

indolylfulgimide 5 was characterized in toluene. The open form CH3 fulgimide 5E exhibited 

excellent thermal stability, and there was no degradation after 350 h at 80 °C. The C-form was 

less stable, which degraded 30% after 220 h. Also, the fulgimide 5 displayed good photochemical 

stability in toluene, only decomposing 0.018% per cycle. The copolymers were studied in three 

different aqueous solutions: a sodium acetate buffer (pH 5.0), water, and a sodium phosphate 

buffer (pH 7.4). Copolymer 3-co-PAA in the closed form was rapidly hydrolyzed in aqueous 

solution to provide photochromic hydrolyzed 3C-co-PAA. Replacing the CF3 group on the 

bridging position of fulgimide with CH3 group increased the stability of 5-co-PAA in aqueous 

solutions. In general, both hydrolyzed 3-co-PAA and 5-co-PAA exhibited enhanced stability at 

37 °C in acidic solution than in neutral solution. And 5-co-PAA was more stable than 

hydrolyzed 3-co-PAA. All copolymers displayed enhanced photochemical stability in acidic 

conditions and underwent 60 cycles of photochromic reactions before degrading 24%. 

6.2 Introduction 

Hydrogels are highly-hydrated three dimensional cross-linked polymer networks. Stimuli-

responsive ‘‘smart’’ hydrogels able to respond to external stimuli, such as light-irradiation or 

changes in pH value, temperature, ionic strength, etc. are promising materials suitable for 
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numerous applications.55,86 Compare to other stimuli, the light stimulus can be imposed instantly 

and precisely. The light-responsive hydrogels containing photochromic compounds with 

photoinduced conformational change have great potential for applications in biological systems, 

such as enzyme immobilization and controlled drug release.54  

Many studies on synthesis of novel light-responsive hydrogel systems have been reported. 

For example, Willner et al. synthesized a series of hydrogels by radical copolymerization of 

acrylamide, N,N’-methylenebis(acrylamide) (as a cross-linker), and a photochromic compound, 

such as azobenzene, spiropyran, or triphenylmethane leucohydroxide derived monomer.74,87 The 

cross-linked copolymers were tested for immobilization of α-chymotrypsin by embedding the 

enzyme into the polymer matrix. The activity of the enzyme can be photo-control because the 

permeability of the copolymers to the substrate was altered as the structures of the photochromic 

compounds changed with light. Peng et al. synthesized a hemicellulose-based light-responsive 

hydrogel containing photochromic azobenzene and the hydrogel under UV irradiation showed 

higher cumulative release rate of vitamin B12 than that without UV irradiation.56 

Scheme 32. Photochromism of 3-indolylfulgimides 
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Among photochromic compounds, 3-indolylfulgimides are promising because of their 

enhanced photochromic properties, such as enhanced thermal stability, increased photochemical 

stability (fatigue resistance), highly efficient photoreactions, large molar absorption coefficients 

and hydrolytic stability.22,27,35,39,81 The photochromism of methyl and trifluoromethyl-3-
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indolylfulgimides was shown in Scheme 32, where the fulgimides can be converted between the 

open forms and the closed form reversibly by light. 

Compared to the hydrogels containing a photochromic compound as a pendant, I expect that 

the hydrogels with photochromic fulgimides as cross-linkers will be more efficient because of the 

enhanced conformation changes. UV-Vis absorption, stability in aqueous solutions, and fatigue 

resistance are essential to the development of advanced materials for applications in biological 

systems. Therefore, the properties of the light-responsive hydrogels also need to be characterized. 

Herein, a CF3 indolylfulgimide and CH3 indolylfulgimide with doubly substituent styrene 

groups were synthesized. The fulgimides were then copolymerized with acrylamide to prepare 

two photochromic hydrogels. The photochromic properties of fulgimides were measured in 

toluene, and their copolymers were studied in three different aqueous solutions: water, 50 mM 

sodium phosphate buffer (pH 7.4), and 50 mM sodium acetate buffer (pH 5.0).  

6.3 Experimental section 

6.3.1 General procedures and materials 

All commercially available materials were used without purification. The NMR spectra were 

recorded on a Brücker 400 MHz NMR spectrometer. The 1H and 
13C NMR samples were 

internally referenced to TMS. The UV-Vis spectra were recorded with a Cary 300 

spectrophotometer. The HRMS were obtained at the University of Florida. Flash chromatography 

was performed with 230-400 mesh silica gel.  Illumination was provided by a 1000 W Hg (Xe) 

arc lamp and first pass through a water filter, then a hot mirror, and lastly, either a band pass filter 

(365 nm (for CH3 fulgimide)/405 nm (for CF3 fulgimides)) or a cutoff filter (> 515 nm).  
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6.3.2 Synthesis of methyl distyrene fulgimide 

6.3.2.1 Synthesis of 2-Methyl-1-(4-vinylbenzyl)-3-acetylindole 
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2-Methyl-1-(4-vinylbenzyl)indole 8 (8.00 g, 32.3 mmol) was synthesized as described in 

chapter 4. The indole 8 was then dissolved in acetic anhydride (120 mL, 1.27 mol). Anhydrous 

aluminium chloride  (0.60 g, 4.5 mmol) was added to the solution, and then the reaction mixture 

was heated to 80 °C and stirred for 3 d. The mixture was concentrated in vacuo, and the residue 

was quenched with a saturated NaHCO3 solution (200 mL) and then extracted with methylene 

chloride (3 × 100 mL). The combined organic layers were then dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by column chromatography (1:2 

hexanes/EtOAc) and followed by recrystallization from hexanes/EtOAc to provide 5.93 g of  2-

methyl-1-(4-vinylbenzyl)-3-acetylindole 24 (63%). 1H NMR (CDCl3, 400 MHz) δ 8.02 (d, J = 

8.3 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.29-7.27 (m, 2H), 7.23-7.19 (m, 1H), 6.94 (d, J = 8.2 Hz, 

2H), 6.66 (dd, J = 17.4, 10.7 Hz, 1H), 5.70 (dd, J = 17.5, 0.8 Hz, 1H), 5.37 (s, 2H), 5.23 (dd, J = 

10.8, 0.6 Hz, 1H), 2.74 (s, 3H), 2.72 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 194.8, 144.8, 137.3, 

136.5, 136.1, 135.6, 126.8, 126.5, 126.2, 122.3, 122.1, 120.8, 114.8, 114.4, 110.0, 46.2, 31.8, 12.7. 

C20H19NO HRMS (ESI) m/z: 290.1553 [obtained M + H]+, 290.1539 [calculated M + H]+, 

312.1370 [obtained M + Na]+, 312.1359 [calculated M + Na]+. 
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6.3.2.2 Synthesis of styrene methyl fulgide 12  
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Dimethyl isopropylidenesuccinate 6 (16.0 g, 74.1 mmol) was dissolved in 150 mL of dry 

toluene under argon. The solution was cooled to -78 °C and lithium diisopropylamide (LDA) (50 

mL of 1.5 M solution in cyclohexane, 75 mmol) was added dropwise via an addition funnel. Then 

the mixture was stirred for 30 min and warmed to 0 °C. A solution of 2-methyl-1-(4-

vinylbenzyl)-3-acetylindole 24 (5.0 g 17.3 mmol) in 50 mL of toluene was added into the mixture 

of dimethyl isopropylidenesuccinate/LDA/toluene dropwise via an addition funnel. The reaction 

mixture was warmed to room temperature and stirred under argon for 3 d. Then the mixture was 

quenched with 300 mL of 5% H2SO4, and the aqueous layer was extracted with diethyl ether (3 × 

200 mL). The combined organic layers were washed with water (3 × 100 mL). Then the organic 

phase was dried over MgSO4 and concentrated in vacuo. The crude lactone was purified by 

column chromatography (1:2 diethyl ether/hexanes) and recrystallized from diethyl ether/hexanes 

to provide a mixture of cis/trans indolelactones 25 (2.6 g) in 34% yield. 
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The mixture of cis/trans indolelactones 25 (2.0 g) was dissolved in 150 mL of DMF, and then 

sodium hydride (60% dispersion in oil, 0.51 g, 12.8 mmol) was added and the reaction was 
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cooled to -78 °C. The reaction mixture was allowed to warm to room temperature and then stirred 

for 1.5 h. To the mixture, water (2.0 mL, 110 mmol) was added. The mixture was stirred for 12 h 

and then concentrated in vacuo. The residue was quenched with 0.1 M NaOH (100 mL) and 

extracted with EtOAc (100 mL). The aqueous layer was acidified with conc. H2SO4 to pH 2. 

Then the aqueous phase was extracted with EtOAc (3 × 100 mL). The organic phase was dried 

over MgSO4 and concentrated in vacuo to provide crude diacid intermediate 26. The crude diacid 

was then dissolved in 50 mL of acetic anhydride. The mixture was heated to reflux and stirred for 

2 h. After concentrating in vacuo, the residue was mixed with 50 mL of water and extracted with 

methylene chloride (3 × 50 mL). The combined organic layers were dried over MgSO4 and 

concentrated in vacuo to provide crude fulgide. The crude fulgide was purified by column 

chromatography (1:1 methylene chloride/hexanes) and recrystallized from methylene chloride 

/hexanes to afford yellow crystals 27 (0.66 g, 12% from 24). E-form fulgide: 1H NMR (CDCl3, 

400 MHz) δ 7.44 (d, J = 7.8 Hz, 1H), 7.34-7.30 (m, 3H), 7.22 (td, J = 7.7, 1.3 Hz, 1H), 7.17 (td, J 

= 7.8, 1.2 Hz, 1H), 6.98 (d, J = 8.1 Hz, 2H), 6.67 (dd, J = 17.5, 10.9 Hz, 1H), 5.71 (d, J = 17.5 Hz, 

1H), 5.34 (d, J = 16.8 Hz, 1H), 5.25 (d, J = 11.3 Hz, 1H), 5.24 (d, J = 16.0 Hz, 1H), 2.82 (s, 3H), 

2.13 (s, 3H), 2.11 (s, 3H), 0.95 (s, 3H); 13C NMR (CDCl3, 100 MHz) 164.0, 163.7, 153.3, 149.3, 

137.4, 137.0, 136.1, 136.0, 134.8, 126.7, 126.5, 125.1, 122.4, 121.5, 121.0, 119.7, 119.6, 117.3, 

114.5, 109.7, 46.8, 26.4, 23.6, 22.5, 12.4. C27H25NO3 HRMS (ESI) m/z: 412.1916 [obtained M + 

H]+, 412.1907 [calculated M + H]+, 434.1732 [obtained M + Na]+, 434.1727 [calculated M + Na]+.  

6.3.2.3 Synthesis of methyl distyrene fulgimide 5 

To a solution of 4-vinylaniline (0.47 g, 3.9 mmol) in 50 mL of dry toluene, LDA (5.0 mL of 

1.5 M solution in cyclohexane, 7.5 mmol) was added dropwise. The mixture was stirred for 5 min, 

and then methyl styrene fulgide 27 (0.23 g, 0.56 mmol) was added. The mixture was stirred under 

argon at room temperature. After 12 h, the solution was concentrated, and the residue was treated 

with 50 mL of 10% H2SO4. The aqueous layer was extracted with EtOAc (3 × 50 mL). The 
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combined organic layers were washed with brine (100 mL), dried over MgSO4, and concentrated 

in vacuo to provide crude amide acid intermediate 28. 4-Dimethylaminopyridine (DMAP 2 

mg) was added to the solution of amide acid, which was dissolved in 50 mL of acetic anhydride. 

The mixture was heated to 50 °C and stirred for 12 h. The solution was then concentrated in 

vacuo. The residue was extracted with a saturated aqueous solution of NaHCO3 (50 mL) and 

methylene chloride (3 × 50 mL). The combined organic layers were washed with brine (100 mL), 

dried over MgSO4, and concentrated in vacuo. The organic residue was then dissolved in 100 mL 

of toluene and illuminated with 365 nm light to reach the photostationary state (PSS). The C-form 

was purified by column chromatography (1:1 methylene chloride /hexanes) and recrystallized 

from methylene chloride/hexanes to provide 0.072 g of C-form fulgimide 5 (25% from fulgide). 

C-form: 1H NMR (CDCl3, 400 MHz) δ 7.67 (d, J = 7.5 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.41 (d, 

J = 8.3 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.17 (td, J = 7.8, 1.1 Hz, 1H), 

6.83 (td, J = 7.6, 0.9 Hz, 1H), 6.73 (dd, J = 17.5, 11.0 Hz, 2H), 6.42 (d, J = 8.2 Hz, 1H), 5.76 (d, J 

= 17.6 Hz, 2H), 5.28 (d, J = 11.1 Hz, 1H), 5.25 (d, J = 11.1 Hz, 1H), 4.65 (d, 17.6 Hz, 1H), 4.19 

(d, J = 17.6 Hz, 1H), 2.51 (s, 3H), 1.62 (s, 3H), 1.44 (s, 3H), 1.23 (s, 3H). 13C NMR (CDCl3, 100 

MHz) δ 168.8, 168.2, 158.0, 150.6, 138.1, 137.6, 137.2, 136.6, 136.5, 136.4, 136.1, 131.7, 131.3, 

126.9, 126.6, 126.1, 126.2, 125.9, 124.9, 119.0, 115.5, 114.5, 113.8, 109.6, 73.8, 50.7, 40.5, 20.5, 

18.4, 16.7, 13.8. C35H32N2O2 HRMS (ESI) m/z: 513.2525 [obtained M + H]+, 513.2537 

[calculated M + H]+, 535.2346 [obtained M + Na]+, 535.2356 [calculated M + Na]+. The E-form 

was prepared quantitatively by illuminating the C-form in toluene with visible light>515 nm. E-

form: 1H NMR (CDCl3, 400 MHz) δ 7.53 – 7.50 (m, 3H), 7.39 (d, J = 8.4 Hz, 2H), 7.34-7.30 (m, 

3H), 7.22-7.15 (m, 2H), 6.99 (d, J = 8.1 Hz, 2H), 6.75 (dd, J = 17.6, 10.9 Hz, 1H), 6.69 (dd, J = 

17.6, 10.9 Hz, 1H), 5.78 (d, J = 17.6 Hz, 1H), 5.71 (d, J = 17.6 Hz, 1H), 5.34 (d, J = 16.8 Hz, 1H), 

5.29 (d, J = 11.1 Hz, 1H), 5.25 (d, J = 16.4 Hz, 1H), 5.24 (d, J = 11.2 Hz, 1H), 2.84 (s, 3H), 2.15 

(s, 3H), 2.12 (s, 3H), 1.00 (s,3H). 13C NMR (CDCl3, 100 MHz) δ 168.0, 167.6, 148.6, 144.6, 
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137.2, 137.2, 137.0, 136.5, 136.2, 136.1, 133.9, 131.6, 127.0, 126.7, 126.6, 126.5, 125.6, 123.7, 

123.0, 122.0, 120.6, 119.8, 117.8, 114.7, 114.4, 109.4, 46.7, 26.6, 22.9, 22.0, 12.3. C35H32N2O2 

HRMS (ESI) m/z: 513.2525 [obtained M + H]+, 513.2537 [calculated M + H]+. 535.2339 

[obtained M + Na]+, 535.2346 [calculated M + Na]+. 
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6.3.2.4 Synthesis of trifluoromethyl distyrene fulgimide 3 

Trifluoromethyl styrene indolylfulgimide 3 was synthesized followin the procedure described 

in Chapter 4 (Scheme 33). First, the trifluoromethyl 3-indolylfulgide 1Z was prepared as a 

precursor in five steps from 2-methyl indole. Then fulgimide 3Z was obtained by adding 4-

vinylaniline to the succinate anhydride ring of fulgide 1Z, followed by dehydration in acetic 

anhydride. 
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Scheme 33. Synthesis of trifluoromethyl distyrene fulgimide 5 
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6.3.3 Synthesis of cross-linked PAA copolymer gel 
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The monomer, fulgimides 3C or 5C (2.26 mg, 0.004 mmol), was dissolved in 2 mL of 

DMSO. Acrylamide (284 mg, 3.99 mmol) and azobisisobutyronitrile, AIBN (1 wt% of PAA) 

were added to the solution. The mixture was stirred until all solids were dissolved. The solution 

was transferred to a resealable glass ampule. The ampule was sealed under vacuum and kept at 

50 °C. After 48 h, a blue polymeric gel was formed. The polymeric gel was suspended in water 

and transferred to a dialysis bag (M.W. cutoff: 6000-8000). Dialysis was performed four times 

against 3.5 L of H2O each time. The copolymer solution was dried under vacuo to provide the C-

form cross-linked polymers.  

6.3.4 Spectra determination for fulgimide 5 in toluene 

From a concentrated stock solution of CH3 fulgimides 5C in toluene, five solutions with 

concentrations between 0.05 and 0.20 mM were obtained by dilution with toluene. The UV-Vis 

spectra of these diluted solutions with different known concentrations of fulgimide were obtained. 

After λmax was determined, the concentration vs. absorbance at λmax was plotted, and the 

extinction coefficient was calculated. Each C-form solution was then quantitatively converted to 

the E-form with >515 nm light. The UV-Vis spectra of the E-form solutions were measured, and 

the extinction coefficients and λmax of 5E were determined. 

6.3.5 Photostationary state (PSS) measurements 

The fulgimide 5C in toluene-d8 was illuminated with >515 nm light to form 5E, and then the 

5E was converted back with prolonged illumination of 365 nm light until  a constant Z/E/C ratio 

was obtained. The reaction was monitored via 1H NMR spectroscopy. 

6.3.6 Stability of fulgimide in toluene at 80 °C and stability of copolymers in aqueous 

solutions at 37 °C 

The thermal stability of C/E forms of CH3 fulgimides 5, and copolymers 3-co-PAA and 5-

co-PAA were measured using UV-Vis spectroscopy. A solution of fulgimides 5 in toluene were 

transferred into several ampoules. The ampoules were then sealed and incubated in a water bath 
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maintained at 80 °C. At predetermined times, ampoules were removed, and their contents 

analyzed by UV-Vis spectroscopy. The swollen cross-linked hydrogels 3-co-PAA and 5-co-PAA, 

which absorbed the aqueous solutions, were placed between two 2.54 cm diameter circular glass 

slides with a 2 mm plastic spacer. The glass slides were fixed in an optical mount and wrapped in 

aluminum foil. Then the hydrogels were maintained at 37 °C and analyzed by UV-Vis 

spectroscopy at predetermined times. 

6.3.7 Photochemical stability 

Solution of closed form fulgimide in toluene and copolymers in aqueous solutions (50 mM 

sodium phosphate buffer (pH 7.4), 50 mM sodium acetate buffer (pH 5.0), and water) were 

quantitatively converted to solutions of open form by irradiating with visible light >515 nm. The 

open form solutions were converted to the photostationary state (PSS) with prolonged irradiation 

of 365 nm light for 5 and 5-co-PAA and 405 nm light for 3 and hydrolyzed 3-co-PAA. A UV-

Vis spectrum was acquired and the absorbance at λmax in the visible region was determined. The 

time taken to achieve 90% of the absorbance at λmax of PSS365 nm (405 nm) was then recorded. Then, 

the solutions of PSS365 nm (405 nm) were irradiated with visible light >515 nm again until the C-form 

solutions were < 1% in absorbance at λmax of the C-form, and the reaction time was measured. 

Once the duration of the irradiation reactions was established, the solutions were converted back 

and forth with an automated filter switch. After a designated number of irradiation cycles, the 

sample was fully converted to PSS365 nm (405 nm) with prolonged irradiation and the UV-Vis 

spectrum was scanned. The photochemical stability was determined by comparison with the 

absorbance at the λmax of the C-form obtained from the initial PSS365 nm(405 nm) absorption spectrum.  

6.4 Results and discussion 

6.4.1 Synthesis 

A new CH3 indolylfulgimide 5 with a double polymerizable styrene groups on both nitrogens 

was synthesized. The fulgimide was prepared by reacting the corresponding fulgide with 4-
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vinylaniline and followed by dehydration in acetic anhydride (Scheme 34). The preparation of the 

fulgide involved a series of precursors. The most important intermediates are the indolelactones, 

which were synthesized by a Stobbe condensation of the corresponding indole-3-carboxaldehydes 

and dimethyl isopropylidenesuccinate.  

Scheme 34. Synthesis of trifluoromethyl distyrene fulgimide 5 
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Two cross-linked copolymers (3-co-PAA and 5-co-PAA) were prepared from the 

corresponding fulgimides and acrylamide via free-radical polymerization with AIBN as the 

initiator. The ratio of monomers (fulgimide to acrylamide) was selected to ensure that the 

copolymers were suitable for UV-Vis measurements (absorbance approx. 1). The copolymers 

were found to be photochromic hydrogels. The dried hydrogels were rigid and glassy and became 

swollen and soft after absorbing aqueous solutions. The closed form copolymers were prepared 
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from closed form fulgimides, and the open form copolymers were made by irradiation of the 

corresponding closed form copolymers with light. Similar with linear copolymer 2C-co-PAA in 

Chapter 5, the closed form copolymer 3C-co-PAA hydrolyzed in aqueous solution, probably 

because the CF3 fulgimide were rapidly converted to a carboxylic acid fulgimide in aqueous 

solutions as described in a previous report.33 The resulting hydrolyzed copolymers were also 

photochromic. The thermal and photochemical stabilities of hydrolyzed 3-co-PAA were studied 

(Error! Not a valid bookmark self-reference.). 

Scheme 35.Synthesis of cross-linked copolymers 3-co-PAA and 5-co-PAA  
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6.4.2 UV-Vis absorption spectra 

 The UV-Vis absorption spectra of fulgimides in tolunene and their copolymer in aqueous 

solutions were measured (Figure. 19, Table 11 and Table 12). The wavelengths of the absorbance 

maxima (λmax) and the extinction coefficients at λmax of fulgimides are shown in Table 11. 

Compared to CF3 fulgimide, the CH3 fulgimide 5 exhibited a hypsochromic shift of 35 nm for the 

E-form and a bathochromic shift of 24 nm for the C-form at λmax by replacing the CF3 group with a 

CH3 group on the bridging position. The extinction coefficients were same for in both fulgimides in 

the open forms. For the closed forms, the CH3 fulgimide 5C showed decreased extinction 

coefficient relavtive to the CF3 fulgimide 3C. After polymerzation, the copolymer retained the 



94 
 

photochromic properties of the monomer and displayed similar UV-Vis spectra (Figure 19a and 

19b). The λmaxs of the copolymers in aqueous solutions were shifted to longer wavelengths. The 

PSS of the CH3 fulgimide 5 at 365 nm contained a low percentage of C-form (66%) (Table 11). 

However, after polymerization, the copolymer 5-co-PAA in aqueous solution provided higher C-

form percentage (92%) at PSS (Figure 19c). The conversion of the open form to the closed form 

could be improved by increasing the solvent polarity because of enhanced ratio of quantum yields 

(ΦE-C/ΦC-E). The result is consistent with previous reports.31,34,43 The enhanced PSS will make the 

copolymer more promising for practical applications.  

Table 11. Extinction coefficients at λmax for fulgimides in toluene 

Compound (Medium) 
λmax/nm (εmax/mol-1 L cm-1) PSS365 nm (405 nm) a 

Z/E-form C-form C:Z:E 

Fulgimide 3 (Toluene) b 401 (6.3 × 103) 537 (8.1 × 103) 95:4:1 

Fulgimide 5 (Toluene) 366 (6.3 × 103) 561 (5.0 × 103) 64:16:20 
aPhotostationary state. bThe data taken from ref.27 

The copolymer prepared from C-from CF3 fulgimide 3 followed by irradiation to Z-form 

exhibited different absorption maximum with the 3Z-co-PAA made from Z-from CF3 fulgimide 3 

directly (Figure 19d). The reason is that the copolymer 3-co-PAA in closed form, 3C-co-PAA, 

was rapidly hydrolyzed in aqueous solution to provide hydrolyzed 3C-co-PAA. The resulting 

hydrolyzed 3C-co-PAA was also photochromic and can be converted to hydrolyzed 3Z-co-PAA 

with light. However, the original 3Z-co-PAA was relatively stable and was not directly converted 

to hydrolyzed 3Z-co-PAA in aqueous solutions.  Hydrolyzed 3Z-co-PAA can be obtained by 

illuminating the original 3Z-co-PAA to the closed form followed by irradiation back to the open 

form.  The hydrolyzed 3Z-co-PAA exhibited a hypsochromic shift of 8 nm relative to the 

original 3Z-co-PAA, which is less compared to the water soluble fulgimides in a previous 

report.33 As expected, replacing the CF3 group on the bridging position of fulgimide with a CH3 
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group increased stability of 5-co-PAA in aqueous solutions, and there was no corresponding 

hydrolyzed form observed. 
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Figure 19. UV-Vis absorption spectra of fulgimide 3 and 5 and cross-linked copolymers: (a) 
fulgimide 3 in toluene (solid) and copolymer hydrolyzed-3-co-PAA in 50 mM sodium acetate 
buffer (pH 5.0) (dashed); (b) fulgimide 5 in toluene (solid) and copolymer 5-co-PAA in 50 mM 
sodium acetate buffer (pH 5.0) (dashed); (c) copolymers in initial closed forms and in PSS in 50 
mM sodium acetate buffer (pH 5.0); (d) original 3Z-co-PAA and hydrolyzed 3Z-co-PAA in 50 
mM sodium acetate buffer (pH 5.0) 

 
Table 12. λmax for copolymers in aqueous solutions 

Copolymer (Medium) 
λmax/nm 

Z/E-form (Original Z-from) C-form 

Hydrolyzed 3-co-paa (Water) 403(411) 559 

Hydrolyzed 3-co-paa (Phosphate buffer) 403 (411) 559 

Hydrolyzed 3-co-paa (Acetate buffer) 405 (412) 560 

5-co-paa (Water) 379 584 

5-co-paa (Phosphate buffer) 379 586 

5-co-paa (Acetate buffer) 374 585 
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6.4.3 Stability of fulgimides in toluene at 80 °C and Stability of copolymers in aqueous 

solutions at 37 °C 

The stability of fulgimides and their copolymers is important for their practical application as 

optical information storage media, biological sensors, or optical molecular switches in biological 

system. The stability of fulgimides and copolymers was studied in toluene at 80 °C and in 

aqueous solutions at 37 °C, respectively. Decomposition rate constants of fulgimides and their 

copolymers are summarized in Table 13. For all compounds, the UV-Vis data were fit to a single 

exponential decay or a sequential decomposition pathway. Double exponential fit was applied for 

hydrolyzed 3-co-PAA in water and acetate buffer, because of a relatively rapid decomposition of 

<30% was observed followed by a slow decomposition. The possible reason of the initial drop in 

absorbance is polymer reorganization. The rate constant for the slow decomposition was reported. 

For the CH3 fulgimide 5, the E-form copolymers were very stable, and there was no 

degradation after 350 h in toluene. The C-forms were less stable and degraded 30% after 220 h 

(Figure. 20). The UV-Vis data of C-form copolymers were fitted to a single exponential decay. 

The decomposition products were assumed not to have absorbance at the λmax of the C-forms. On 

the other hand, CF3 fulgimide 3 has opposite characteristics where the Z/E-forms were less stable 

than the C-form on the basis of previous report.27  
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Figure 20. Thermal decomposition of CH3 fulgimide 5: 5C (■) and 5E (●) in toluene at 80 ºC 
 

The stability of both forms of copolymers was measured in three different aqueous solutions, 

50 mM sodium acetate buffer (pH 7.4), water, and 50 mM sodium acetate buffer (pH 5.0). The 
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pH of aqueous solutions affected the stability of copolymers at 37 °C.  The copolymers in acidic 

solution (pH 5.0) exhibited enhanced stability than in neutral solution (Figure. 21). Probably 

because the hydrolysis rate of N-stryryl succinimide ring of the fulgimides to a succinamic acid is 

decreased in a lower pH solution.85 In general, copolymers in open forms were more stable than 

in closed forms, and copolymer 5-co-PAA displayed better stability than the hydrolyzed 3-co-

PAA. The enhanced stability makes the 5-co-PAA more promising for applications in acidic 

conditions. 
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Figure 21. Decomposition of cross-linked copolymers: (a) closed form hydrolyzed-3-co-PAA in 
50 mM phosphate buffer (pH 7.4) (■), in 50 mM sodium acetate buffer (pH 5.0) (▲), and in 
water (●) at 37 °C; and open form hydrolyzed-3-co-PAA in 50 mM phosphate buffer (pH 7.4) 
(□), in 50 mM sodium acetate buffer (pH 5) (∆), and in water (○) at 37 °C; (b) closed form 5-co-
PAA previously immersed in 50 mM phosphate buffer (pH 7.4) at 37 °C (■) and at 25 °C (♦), in 
50 mM sodium acetate buffer (pH 5.0) (▲), and in water (●) at 37 °C; and open form 5-co-PAA 
previously immersed in 50 mM phosphate buffer (pH 7.4) (□), in 50 mM sodium acetate buffer 
(pH 5.0) (∆), and in water (○) at 37 °C 
 

Table 13. Decomposition rate constants (×103, h-1) of fulgimides at 80 °C and their 

copolymers at 37 °C. 

Compound (Medium) 
Decomposition rate (× 103, h-1) 

Open-form a Closed form a  

Fulgimide 3 (Toluene) b 18 < 0.05 

Fulgimide 5 (Toluene) 0 1.4 

Hydrolyzed 3-co-PAA (Water) 38 15c 

Hydrolyzed 3-co-PAA (Acetate buffer) 0 6.7 c 

Hydrolyzed 3-co-PAA (Phosphate 30 91 
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Buffer) 

5-co-PAA (Water) 0 3.8 

5-co-PAA (Acetate buffer) 0 1.1 

5-co-PAA (Phosphate Buffer) < 0.05 32 
aFit to a single exponential. bThe data taken from ref.27. c Fit to a sequential decay. 

 

6.4.4 Photochemical stability 
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Figure 22. Photochemical decomposition of fulgmides (3 and 5) and crosslinked copolymers 
(hydrolyzed 3-co-PAA and 5-co-PAA): (a) fulgimide 3 (●) and 5 (■) in toluene; (b) hydrolyzed 
3-co-PAA previously immersed in 50 mM phosphate buffer (pH 7.4) (■), in 50 mM sodium 
acetate buffer (pH 5) (▲), and in water (●); 5-co-PAA previously immersed in 50 mM phosphate 
buffer (pH 7.4) (□), in 50 mM sodium acetate buffer (pH 5) (∆), and in water (○) 
 
Table 14. Photochemical fatigue resistance of fulgimides and their copolymers at room 

temperature 

Compound (Medium) 
Cycling time  Photochemical decomposition 

C-Z/E Z/E- C Cycles A/A0 % Per cycle 

Fulgimide 3 (Toluene) a 40 60 2990 0.85 0.005 

Fulgimide 5 (Toluene) 20 200 1100 0.80 0.018 

Hydrolyzed 3-co-paa (Water) 900 420 22 0.81 0.86 

Hydrolyzed 3-co-paa (Acetate buffer) 
108

0 
600 35 0.81 0.55 

Hydrolyzed 3-co-paa (Phosphate 

Buffer) 
540 360 25 0.78 0.88 

5-co-paa (Water) 900 1140 50 0.78 0.45 

5-co-paa (Acetate buffer) 480 780 60 0.76 0.41 

5-co-paa (Phosphate Buffer) 900 1140 30 0.75 0.83 
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The photochemical stability, also known as fatigue resistance, of fulgimides and copolymers 

was studied in toluene and aqueous solutions, respectively. The photochromic cycles were 

measured during the first approx. 20% loss in absorbance at λmax. The CH3 fulgimide 5 displayed 

a good photochemical stability in toluene, only decomposing 0.018% per cycle (Table 14). My 

previous study indicated that the CF3 fulgimide 3 has better fatigue resistance than 5.27 For the 

copolymers in aqueous solutions, the cycle numbers were lower and the cycling times were 

longer than their monomers in toluene, probably because the fulgimides have lower quantum 

yields in more polar solution.31 Copolymer 5-co-PAA displayed better photochemical stability 

than the hydrolyzed 3-co-PAA. In my current study, hydrolyzed 3-co-PAA and 5-co-PAA 

exhibited the greater photochemical stability in sodium acetate buffer, where the copolymers 

underwent up to 60 photochromic cycles before degrading 24% (Figure. 22), possibly because of 

relatively shorter irradiation times required during the photochromic reaction. 

6.5 Conclusion 

In summary, a new CH3 fulgimide 5 with two pendant styrene groups was successfully 

synthesized from a CH3 vinylbenzyl fulgide. In toluene, the open form fulgimide 5E exhibited 

excellent stability at 80 °C with no degradation after 350 h. The C-form was less stable and 

degraded 30% after 220 h. Also, the fulgimide displayed good photochemical stability and 

underwent 1100 photochemical cycles before degrading by 20%. Two cross-linked copolymers 3-

co-PAA and 5-co-PAA containing the CF3 fulgimide 3 and CH3 fulgimide 5 were synthesized, 

respectively. The copolymers were water compatible photochromic hydrogels. The copolymer 

containing CF3 fulgimide in the closed form, 3C-co-PAA, was converted to hydrolyzed 3C-co-

PAA in aqueous solutions. The resulting hydrolyzed 3-co-PAA was also photochromic. In 

general, the 5-co-PAA was more stable than hydrolyzed 3-co-PAA in aqueous solutions. The 

copolymers exhibited enhanced stability in acid solution than in neutral solution at 37 °C. Also, 
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similar with fulgimide 5, the copolymers in the open forms were more stable than in the closed 

forms. All copolymers can undergo dozens of cycles before degrading 20%. The copolymers 

exhibited better fatigue resistance in acidic solution than in neutral solution and underwent up to 

60 photochromic reactions before degrading 24%. Moreover, copolymer 5-co-PAA displayed 

better photochemical stability than the hydrolyzed 3-co-PAA. Because of the enhanced 

photochromic properties in acidic solution, the hydrogels will be better at modulating biological 

systems in acidic condition compared to neutral condition. 
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7. CONCLUSION  

The overall goal of the project was to develop thermally and hydrolytically stable 

photochromic copolymers containing 3-indolylfulgides/indolylfulgimides to meet the demands 

for applications in optical information storage devices or molecular switch in biological systems.  

Scheme 36. 3-Indolylfulgides/indolylfulgimides synthesized in this project. 
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I have successfully synthesized several indolylfulgides and indolylfulgimides with enhanced 

thermal and photochemical stabilities (Scheme 36). The fulgides were generally prepared via 

Stobbe condensation of the corresponding indoles with a dimethyl succinate derivative followed 

by hydrolysis and dehydration. Fulgide 1 and 27 with a pendant styrene group were synthesized 

for the first time. The new fulgimides 2, 3, 4, and 5 with one or two pendant styrene group(s) 

were synthesized by reacting their precursor fulgides with 4-vinylaniline followed by dehydration.  

A series of copolymers were prepared via a free radical polymerization of polymerizable 

trifluoromethylfulgides/fulgimides with MMA (Scheme 37). The photochromic properties of 
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linear copolymers 1-co-PMMA and 2-co-PMMA were characterized in toluene and as films. 

Cross-linked copolymer 3-co-PMMA was studied as a film. The copolymers, especially the C-

forms exhibited excellent thermal stability at 80 °C. The degradation rate because of repeated 

photochemical cycles (ring-closing/ring opening) was less than 3% per 100 cycles. The 

advantageous properties make the copolymer promising in applications as optical information 

storage devices.  

Scheme 37. 3-Indolylfulgide/indolylfulgimides co-PMMA copolymers synthesized  

in this project. 
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Polymerizing the fulgimides with acrylamide provided two linear copolymers, 2-co-PAA and 

4-co-PAA, and two cross-linked copolymers, 3-co-PAA and 5-co-PAA (Scheme 38). The linear 

copolymers were found to be water soluble and photochromic, and the cross-linked copolymers 

are photochromic hydrogels. The copolymers were characterized in water, sodium phosphate 

buffer (pH 7.4), and sodium acetate buffer (pH 5.0). I found that the C-form copolymers, 2-co-

PAA and 3-co-PAA, containing trifluoromethylfulgimides were hydrolyzed in aqueous solution 

by replacing the trifluoromethyl group with a carboxylic acid group on the bridging position. The 

resulting hydrolyzed 2-co-PAA and 3-co-PAA were also photochromic and exhibited better 

stability in acid solutions than in neutral solutions. The copolymers 4-co-PAA and 5-co-PAA 

containing methyl fulgimides with a methyl group at the bridging position of the fulgimide 
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significantly increased the hydrolytic stability and overcame the rapid hydrolysis of the 

trifluoromethyl group. Similar to the hydrolyzed 2-co-PAA and hydrolyzed 3-co-PAA, 4-co-

PAA and 5-co-PAA displayed enhanced thermal stability in acidic conditions which makes the 

copolymer suitable for application in biological system, such as enzyme immobilization and 

controlled drug release. 

Scheme 38. 3-Indolylfulgimides-co-PAA copolymers synthesized in this project. 
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8. FUTURE RESEARCH 

 The future work includes two objectives. First, applications of the copolymers 

synthesized in Chapter 6 in biological systems need to be investigated. For example, experiments 

can be performed to study enzyme immobilization using the copolymer 5-co-PAA to photo-

control enzymatic reactions. Second, the stability of 5-co-PAA in basic condition needs to be 

improved to meet the demands of wider variety of applications. One solution could be to replace 

the styrene group on the succinimide ring of the fulgimide with a vinylbenzyl group. 

8.1 Regulation of enzymatic reactions using copolymer 5-co-PAA 

 The cross-linked copolymer 5-co-PAA is a photochromic hydrogel and can change its 

conformation between the rigid form and the flexible form as the fulgimide is interconverted 

between the closed form and open form with light. An enzyme can be embedded into the 

hydrogel in the polymerization process. And the immobilized enzyme will be photo-regulated in 

the hydrogel because the conformation of the enzyme or the substrate accessibility to the active 

site will be altered by light (Figure 23).  

Enzyme Enzyme
Open 

form
Fulgimide

Polymer
hν1

hν2 Closed
 
form

Fulgimide

Flexible
 
form copolymer

"on" state
Rigid

 
form copolymer
"off"

 state

Polymer

 

Figure 23. Enzyme immobilization by using polymer containing fulgimide 

An experiment could be performed using lactase as the enzyme, because the optimum pH of 

lactase is 6.0, a PH where the hydrogel displays good stability.88 The substrate used in the lactase 

assay will be o-nitrophenyl-D galactoside (ONPG), which can be hydrolyzed into galactose 

and  o-nitrophenol (ONP) ( λmax = 420 nm, εmax = 4.9 × 103 mol-1 L cm-1).89 The lactase will be 

embedded into the hydrogel in the polymerization process. Then, the mixture will be suspended 

in buffer (pH 6.0) and incubated for 10 min at 37 °C. The substrate, ONPG, will be added and the 
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formation rate of ONP will be monitored by UV-Vis spectrometer. The assay of lactase will be 

conducted in both flexible form and rigid form hydrogel, and the activities of lactase will be 

compared. A control test will be performed under the same conditions but without the hydrogel. 

Finally, the loading degree of the fulgimide will be optimized by comparing the photo-regulation 

effects in hydrogels prepared with different ratios of the fulgimide and acrylamide.  

In practical use, there are many advantages to use a photochromic hydrogel as a carrier to 

immobilize an enzyme. First, the enzymatic reaction can be photo-controlled, that is beneficial 

because light can be imposed instantly and precisely in the desired intensity. Second, hydrogel 

can be removed immediately when the reaction is complete because the hydrogel is a cross-linked 

polymer and insoluble in water. Third, the system can be used repeatedly because the hydrogel 

has good thermal stability and photochemical stability. Moreover, the enzyme embedded in the 

polymer matrix can be protected from contamination and easily stored.  

8.2 Controlled drug release behavior of hydrogel 5-co-PAA  

Hydrogels with hydrophilic polymer chains have the ability to swell and absorb aqueous 

solutions. So drugs can be loaded into the hydrogels during the swelling process. The rate of drug 

release depends on the permeability of the polymer matrix towards the drug. Photochromic 

hydrogel 5-co-PAA has great potential to be used as a “smart” drug delivery carrier because of 

polymer matrix permeability can be modulated by interconversion of the fulgimide between the 

open form and the closed form with light. So I expect that the rate of drug release will be affected 

when the hydrogel switches conformations (Figure 24). The photo-induced system will be 

promising because light stimulus can be controlled precisely and has no or little harmful effect on 

the activity of most proteins.   
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Figure 24. Photo-controlled drug release behavior of hydrogel 5-co-PAA 

Vitamin B12 (VB12) (λmax = 361 nm, εmax = 2.75 × 104 mol-1 L cm-1) can be used as a model 

drug to study the release behavior of the hydrogel 5-co-PAA in vitro. The pre-weighed dried 

hydrogel will be put into a solution with sufficient VB12 and freeze-dried after swelling. Then the 

dried hydrogel loaded with VB12 will be immersed into a buffer and the release rate of VB12 will 

be monitored by UV-Vis spectrometer. The tests will be conducted using both forms of hydrogel, 

and VB12 release rates will be compared.56  

8.3 Synthesis of methyl fulgimide with doubly substituted vinylbenzyl groups 

My results showed that copolymer 5-co-PAA is more stable in acidic solution than in neutral 

solution. A possible reason is that the fulgimide with a styrene group on the succinimide ring can 

be easily hydrolyzed in the presence of hydroxide ions. As shown in Scheme 39, in basic 

solutions, hydroxide ions can attack the carbonyl carbon on the succinimide ring. The excess 

electrons will force the ring open and form a negative charge on the nitrogen. Then the negative 

charge can be delocalized by the styrene group on the nitrogen. As a result, the ring opening 

reaction can be accelerated by the resonance structures.  
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Scheme 39.Proposed mechanism for hydrolysis of fulgimide in basic condition 
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Scheme 40. Proposed synthetic pathways of methyl fulgimide 2938,90 
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To enhance the stability of fulgimide in basic solution, the styrene group needs to be replaced. 

A previous study pointed out that the half-life time of N-ethylmaleimide is 20 times that of N- 

phenylmaleimide at pH 7.0.85 I expect that the fulgimide with an aliphatic substituent group on 

the nitrogen will be more stable. Therefore, two synthetic pathways are proposed to prepare the 

fulgimide with a vinylbenzyl group on the succinimide ring 29 (Scheme 40). Both pathways 

employ the corresponding fulgide 27 as the starting material. Pathway I involves the reaction of 

fulgide 27 with 4-(aminomethyl)styrene 28 to form an succinamic acid intermediate, then the 
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fulgimide 29 will be obtained following dehydration. In pathway II, the precursor fulgide 27 is 

treated with ammonia to prepare a non-N-substituted fulgimide 30, and then the fulgimide will be 

reacted with 4-vinylbenzyl bromide in the presence of Cu-powder to obtain the desired fulgimide 

29. Copolymers containing fulgimide 29 are expected to be stable in both acidic solution and 

basic solution.  
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