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ABSTRACT OF THE DISSERTATION 

COMPREHENSIVE ANALYSIS OF EMERIGING NEW PSYCHOACTIVE 

SUBSTANCES BY ION MOBILITY SPECTROMETRY AND MASS 

SPECTROMETRY 

by 

Seongshin Gwak 

Florida International University, 2015 

Miami, Florida 

Professor José R. Almirall, Major Professor 

In the new era of drug abuse, the proliferation of new psychoactive substances 

(NPS), commonly referred to as designer drugs or legal highs, has been a global concern.  

These substances are produced to circumvent current legislation for controlled substances 

with minor modifications in their chemical structure.  Although many efforts have been 

made previously, the characterization of such substances are still challenging because of 

(1) the continual emergence of newly identified substances, (2) the lack of a universal 

screening test for NPS that are structurally similar to each other, and (3) the complex and 

time-consuming chromatographic techniques currently used.  Therefore, it is necessary to 

develop novel analytical methods that can be readily adapted by forensic laboratories to 

overcome these challenges. 

In this dissertation, various analytical techniques have been evaluated for qualitative 

analysis of these emerging NPS.  For rapid screening purposes, a commercial ion 
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mobility spectrometry with a 63Ni ion source (63Ni-IMS) and also direct analysis in real 

time coupled to a quadrupole time-of-flight mass spectrometer (DART-QTOF-MS) were 

investigated first.  The results showed that rapid detection by 63Ni-IMS and identification 

by DART-QTOF-MS can be achieved with sub-nanogram detection capability and high 

speed total analysis time less than two minutes.  In recent developments of gas 

chromatography mass spectrometry (GC-MS), gas chromatography (GC) has been 

coupled to state-of-the-art mass spectrometers, including triple quadrupole (MS/MS) and 

quadrupole time-of-flight (QTOF).  It was revealed that the application of GC-MS/MS 

and GC-QTOF facilitates the unambiguous identification of emerging NPS with a 

chemical ionization (CI) source.  In addition, constitutional isomers of NPS were 

differentiated with the capabilities of product ion scan and multiple reaction monitoring 

(MRM) modes.  Finally, the coupling of IMS with a mass spectrometer (IMS-MS) was 

investigated as an alternative confirmatory technique.  With the development of an 

optimal solvent system in the electrospray ionization (ESI) process, the rapid analysis and 

identification of synthetic cathinone was successfully achieved less than five minutes.  As 

a proof-of-concept, seized drugs samples provided by a local forensic laboratory were 

analyzed using these developed methods by various analytical techniques.  The results 

from these seized samples are also presented in this evaluation. 
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CHAPTER 1. INTRODUCTION 

New psychoactive substances (NPS) have been a global concern in the new era of 

drug abuse with the continual emergence of newly identified substances.  The European 

Community coined the term ‘NPS’ in 2005 [1].  As a broad term, it refers to substances 

of abuse that are not regulated under the 1961 United Nations Single Convention on 

Narcotic Drugs or the 1971 United Nations Convention on Psychotropic Substances, but 

are considered to pose a risk to public health [2].  The NPS are also commonly referred to 

as ‘designer drugs’, ‘legal highs’, ‘research chemicals’, ‘herbal incenses’, or ‘bath salts’ 

[3].  The United Nations Office on Drugs and Crime (UNODC) classifies NPS into nine 

sub-groups as follows: synthetic cannabinoids, synthetic cathinones, phenethylamines, 

piperazines, aminoindanes, ketamine and phencyclidine-type substances, plant-based 

psychoactive substances and other substances for those compounds that do not fall into 

these eight categories [3].   

Although many such substances were first synthesized and patented many years 

ago, the exceptional increase in availability and abuse of NPS has been proliferated 

recently with advertisement and sale mainly through the Internet [2, 4].  Some early 

examples of substances that could today be considered ‘designer drugs’ are 3,4-

methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine 

(MDMA), which were first synthesized in the 1910s, and have been widely abused since 

the beginning of 1970s [5].  Most of the phenethylamines and tryptamines that are found 

on the illicit substance markets were first synthesized by Alexander Shulgin and Ann 

Shulgin, with their published work influencing the proliferation of these substances [6-7].  
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Phenethylamines also include a large number of psychedelic substances, including 

paramethoxymethamphetamine (PMMA), 2, 3-dimethoxy-4-iodophenethylamine (2C-I), 

and 2, 5-dimethoxy-4-iodoamphetamine (DOI).  One of the most problematic NPS 

groups is synthetic cathinones, also called bath salts. In some other classification of NPS, 

synthetic cathinones are classified in the group of phenethylamines with the ketone 

functional group substituted at the beta carbon.  As the most widely abused NPS, 

synthetic cannabinoids are often found in a mixture with herbal products under the brand 

name, “Spice” or “K2”.  These three groups of NPS are the most frequently reported to 

the UNODC while other groups are also well explained in the World Drug Report 2013 

and 2014 by the UNODC [3, 8].  More background on these emerging NPS are described 

in section 12.1. 

1.1 Research Motivation 

By the end of 2014, a total number of NPS reported to the UNODC early warning 

advisory by Member States were 541, which is more than three times compared to the 

report of 166 NPS in 2009 [8-9].  Of 541 NPS, 450 NPS were reported in 2014 while 69 

NPS out of 450 were reported for the first time in 2014 as shown in Figure 1 [9].  In the 

United States, 4,261 calls were reported to the American Association of Poison Control 

Centers (AAPCC) for exposure to synthetic marijuana (e.g., synthetic cannabinoids) and 

bath salts (e.g., synthetic cathinones) in 2014 [10-11].  As a result of recent federal and 

state regulations, reported exposures to these substances have significantly decreased 

compared to the 13,105 exposures reported in 2011 [10-11].  However, the emergence of 

newly identified psychoactive substances still continues to cause serious concern 
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worldwide [12-13].  The prevalence of NPS primarily affects young adults as these 

substances are assumed safer than other controlled substances and easily obtained 

through the Internet, convenience stores, and gas stations [14-16].   

 

 

Figure 1. A number of NPS reported to the UNODC by 

Member States from 2009 to 2014; adapted from [9]. 

 

In the forensic analysis of drugs, color tests and immunoassay are commonly used 

for presumptive tests, and hyphenated chromatography-mass spectrometry is widely used 

for confirmatory tests [17].  Many efforts have been made to characterize and identify 

these emerging substances using gas chromatography-mass spectrometry (GC-MS) [18-

23] and liquid chromatography-mass spectrometry (LC-MS) [21, 24-27].  In addition, 

cross-reactivity of designer drugs in commercial immunoassay reagents has been studied 

comprehensively [28].  However, the rapid detection and unambiguous identification of 

such substances are still challenging because of (1) the continuous emergence of NPS, (2) 

the lack of a universal screening test for NPS that are structurally similar to each other, 
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and (3) the complex and time-consuming chromatographic techniques currently used.  To 

address these challenges, the current research aims to investigate the use of alternative 

state-of-the-art analytical techniques for the qualitative analysis of NPS at the level of 

seized drug analysis.  The use of ion mobility spectrometry (IMS), direct analysis in real 

time quadrupole time-of-flight mass spectrometry (DART-QTOF-MS), gas 

chromatography tandem mass spectrometry (GC-MS/MS), electrospray ionization ion 

mobility spectrometry mass spectrometry (ESI-IMS-MS), and gas chromatography 

quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) were applied to the 

detection, characterization, and/or identification of NPS.  The utilization of IMS, a 

system currently deployed in many security checkpoints with portability capabilities, and 

DART-QTOF-MS will be used as a screening tool and provide resolution for rapid 

detection and identification of these emerging NPS.  The use of GC-MS/MS, GC-QTOF-

MS, and ESI-IMS-MS is also evaluated as a confirmatory technique to provide 

unambiguous identification and characterization of NPS. 

1.2 Research Hypothesis 

Westphal et al. and Zaitsu et al. have shown the differentiation capability of 

phenethylamine and synthetic cathinone positional isomers by GC-MS/MS with the use 

of product ion scan mode [20, 22, 29].  On the basis of these findings, it is hypothesized 

that GC-MS/MS will facilitate the discrimination of other isomers that have not been 

reported in the literature as this instrument allows the elucidation of structure and 

determination of fragmentation with the product ion scan capability.  
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Furthermore, product ion scan mass spectra generated from DART-QTOF will also 

allow the differentiation of isomers of interest.  Musah et al. have shown the employment 

of collision-induced dissociation (CID) for the characterization of various cannabinoid 

analogs to provide confirmatory structural information [30].  Lesiak et al. investigated to 

differentiate between five structural isomers of synthetic cathinones with the 

implementation of in-source CID using DART-TOF [31].  Therefore, it is hypothesized 

that the differentiation of other structural isomers will be possible with the acquisition of 

product ion mass spectra using DART-QTOF-MS.  In addition, the comparison of 

resulted product ion mass spectra between different ionization sources will be 

investigated with the assumption that the same protonated species will be produced from 

both the DART and electrospray ionization (ESI) sources.  

Finally, previous studies have shown that ESI-IMS-MS allows for fast separation 

and detection of controlled substances, such as opiates and amphetamines [32-34].  In 

addition, an appropriate solvent system has been extensively investigated for the 

efficiency of ESI ionization by Holness et al. [35].  Hence, it is expected that 

comprehensive analysis will be possible for these emerging NPS by ESI-IMS-MS with 

the use of an optimal solvent system and the introduction of a secondary modifier. 

1.3 Significance of Research 

The current dissertation involves the investigation of a variety of NPS, mainly 

including synthetic cannabinoids, synthetic cathinones, phenethylamines, ketamine and 

phencyclidine-type substances, tryptamines, and piperazines, to aid rapid characterization 

and unambiguous identification. A commercial bench-top IMS with a radioactive nickel-



6 

63 (63Ni) ion source and DART-QTOF are attractive alternatives to the current screening 

methods with the rapid characterization capability of the emerging NPS.  Gas 

chromatography interfaced with a triple quadrupole tandem mass spectrometer (GC-

MS/MS) and a quadrupole time-of-flight (GC-QTOF) as well as a commercial high 

resolution IMS coupled to a quadrupole mass spectrometer (IMS-MS) will be used for 

the unambiguous identification of these emerging substances. 

Unambiguous fragmentation of isomers and the chemical structures of these 

emerging designer drugs are elucidated using multiple reaction monitoring (MRM) mode 

in GC-MS/MS as well as product ion scan mode in GC-MS/MS, GC-QTOF-MS and 

DART-QTOF-MS.  Ultimately, the construction of a database for NPS by these state-of-

the-art analytical techniques will be useful for the identification of unknown analytes 

commonly encountered in forensic laboratories.  In addition, the developed method for 

emerging NPS of interest in ESI-IMS-MS with the use of a soft ESI source will enable a 

fast and selective analysis, direct introduction of liquid samples, and the preservation of 

molecular ions for definitive identification. 
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CHAPTER 2. BACKGROUND 

2.1 Introduction to NPS 

2.1.1 Synthetic Cannabinoids 

The street names for synthetic marijuana or herbal marijuana alternatives are ‘K2’ 

and ‘Spice’, which are the legal form of marijuana that are sold via the Internet, local 

head shops, and convenience stores [36-37].  Synthetic marijuana is produced by 

spraying a solution of synthetic cannabinoids onto plant materials including, but not 

limited to Damiana shrub (Turnera diffusa), Ocimum basilicum, Mentha spicata, and 

Coriandrum sativum, in order to have a natural appearance similar to authentic herbal 

products [36, 38].  In marijuana, delta-9-tetrahydrocannabinol (THC) is the main active 

component that produces the psychoactive effects [37].  There are different types of 

synthetic cannabinoids that mimic the effects of THC.  For therapeutic purposes, John W. 

Huffman first synthesized a number of novel cannabinoids, called JWH series, which are 

abbreviated from the name of inventor [39].  Other common types of synthetic 

cannabinoids include HU-210 synthesized by Raphael Mechoulam, cyclohexylphenol 

(CP) cannabinoids synthesized by Pfizer, and AM series synthesized by Alexandros 

Markriyannis [37].  The chemical structures of these synthetic cannabinoids are given in 

Figure 2. 
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Figure 2. Chemical structures of THC, CP 47,497, HU-210, JWH-018, and AM1220. 

Although the pharmacology of synthetic cannabinoids in humans is not fully understood, 

various studies have shown that these synthetic cannabinoids act as cannabimimetic 

substances which bind the cannabinoid receptors 1 and 2 (CB1 and CB2) [40]. 

2.1.2 Synthetic Cathinones 

Synthetic cathinones are known as amphetamine-like stimulants producing 

psychoactive effects on the central nervous system [41].  As shown in Figure 3, the 

synthetic cathinone class of NPS has a similar backbone structure to cathinone, a natural 

compound present in the khat (Catha edulis) plant, for example, 3-fluoromethcathinone 

(3-FMC), 3,4-methylenedioxy-N-methylcathinone (methylone), 4-

methoxymethcathinone (methedrone), 4-methylethcathinone (4-MEC), and 3,4-

methylenedioxypyrovalerone (MDPV).  The individual or mixtures of different synthetic 
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cathinones are often called ‘bath salts’ and sold as white powder through the Internet, 

local head shops, and convenience stores [42].  Bath salts can be administered in various 

ways including inhalation, oral ingestion, injection, smoking, and snorting [42].  

Although few studies have been conducted on the pharmacology of synthetic cathinones, 

it has been reported that the effects of these drugs are similar to cocaine, amphetamine, 

and MDMA [43].  The stimulating effect of synthetic cathinones is caused by the 

inhibition of norepinephrine and dopamine re-uptake [43].  The toxicity of these type of 

substances deposited onto both dopamine and serotonin neurons may result in 

unfortunate deaths [44].  Previous studies have shown that alpha-

pyrrolidinopentiophenone (α-PVP) is a potent dopamine and norepinephrine transporter 

inhibitor, but has relatively little affinity for the serotonin transporter [45].  In addition, it 

has also been revealed that 4-MEC inhibits the reuptake of dopamine transporter, 

norepinephrine transporter, and serotonin transporter but also acts as a 5-

hydroxytrypamine releaser [45]. 

 

Figure 3. Chemical structures of cathinone, 3-FMC, methylone, methedrone, 4-MEC, and 

MDPV. 
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2.1.3 Phenethylamines 

As with other subgroups of NPS, many of the phenethylamines were introduced by 

Alexander and Ann Shulgin in their book, ‘PiHKAL: A Chemical Love Story’.  The book 

detailed a variety of psychedelic substances, including two carbon phenethylamine 

homologues (2C series), dimethoxy phenylisopropylamine (DO series), and 2C 

substances with a 2-methoxybenzyl group on the nitrogen (NBOMe series) as shown in 

Figure 4 [46-49].  These substances are in the same class as mescaline (peyote), which is 

a naturally occurring drug that produces hallucinogenic effects similar to lysergic acid 

diethylamide (LSD) [50].  A common route of phenethylamine administration is oral 

ingestion, while other routes of ingestion, including intravenous and intramuscular 

injections, insufflation, smoking, and rectal use have been also reported [51].  Although 

there is a limited amount of published scientific literature, most phenethylamines are 

known as serotonergic agonists acting on serotonin receptors (5-HT2) with hallucinogenic 

effects [46-47].  Recent studies have revealed that the NBOMe series and 2C series are 

potent to serotonergic 5-hydroxytryptamine-2A (5-HT2A), 5-HT2B, 5-HT2C receptors and 

trace amine-association receptor 1 (TAAR1) [52]. 
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Figure 4. Chemical structures of mescaline, DOI, 2C-I, and 25I-NBOMe. 

2.1.4 Ketamine and Phencyclidine-type Substances 

Ketamine is also considered a popular drug of abuse in the category of NPS by 

UNODC [3].  Street names for ketamine include ‘K’, ‘special K’, ‘kit kat’, and ‘super K’, 

and it was initially synthesized as a derivative of phencyclidine (PCP).  The primary use 

of ketamine was for the generation of anesthesia in both veterinary and human medicines 

[53].  It is also often misused as a club drug as a result of hallucinogenic effects it imparts 

on the user.  However, in recent years, methoxetamine (MXE) has gained popularity due 

to the higher intensity of effects and the longer duration of action [53].  Hondebrink et al. 

reported that MXE was one of the most commonly submitted NPS in the Netherlands in 

2013 along with 4-bromo- 2,5-dimethoxyphenethylamine (2C-B), 4-fluoroamphetamine 

(4-FA), and 6-(2- aminopropyl)benzofuran (6-APB) [54].  As a structural analogue of 

ketamine, MXE is often called ‘Mexxy’, ‘M-ket’, ‘special M’, or ‘Kmax’ and sold on the 
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streets as a free base and hydrochloride salt in powder on the streets.  The chemical 

structures of PCP, ketamine, and MXE are present in Figure 5. 

 

Figure 5. Chemical structures of phencyclidine, ketamine, and methoxetamine. 

The frequent routes of administration for MXE are nasal insufflation and oral 

consumption, but other routes have also been reported including intramuscular and 

intravenous injections, sublingual, and rectal administration [55].  Although MXE is 

known as a ‘legal’ and ‘bladder-friendly’ alternative to ketamine, recent research 

revealed that significant bladder inflammation with subsequent fibrosis and renal toxicity 

is a potential risk [53].  Similar to ketamine, MXE is known as a glutamate N-methyl-D-

aspartate (NMDA) receptor antagonist and inhibits dopamine reuptake with a sub-micro 

molar affinity for the NMDA receptor and serotonin transporter, respectively [53, 56].  

Because of the resemblance of MXE to ketamine and PCP in their chemical structures 

and perceived effects on the user, the prevalence of MXE may affect public health 

significantly. 

2.1.5 Tryptamines 

Tryptamines are synthetic hallucinogenic indolealkylamines that are structurally 

similar to psilocybin, psilocin, and bufotenine [51].  Some examples of tryptamines 

include N,N-alpha-methyltryptamine (AMT), 5-methoxy-N,N-alpha-methyltryptamine (5-

MeO-AMT), N,N-dipropyltryptamine (DPT), N,N-dimethyltryptamine (DMT), 5-
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methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), and 5-methoxy- N,N -

dimethyltryptamine (5-MeO-DMT) as some them are presented in Figure 6 [51]. 

 

Figure 6. Chemical structures of 5-HT, AMT, and 5-MeO-DMT. 

Listed as Schedule I drugs under the Controlled Substances Act, psilocybin (4-

phosphoryloxy-N,N-dimethyltryptamine) and its metabolite psilocin (4-OH N,N-

dimethyltryptamine) are found in Psilocybe mushrooms [57].  Psilocybe mushrooms are 

also called ‘magic mushrooms’ because of their hallucinogenic properties [51].  

Bufotenine (5-OH dimethyltryptamine) is also a naturally occurring tryptamine that is 

found in certain toads and Anadenanthera plants [51].  Among many others, psilocybin, 

DMT, 5-MeO-DMT, and 5-methodxy-N,N-diallyltryptamines (5-MeO-DALT) are the 

most commonly found tryptamines that represent a classical psychedelic profile by acting 

as agonists at the 5-HT2A and 5-HT1A receptor subsequently inducing an increase in 

serotonin [51, 58].  Depending on the routes of administration, tryptamines may show 

different activity; for instance, 5-MeO-DIPT, AMT and DPT are active when ingested 

whereas DMT and 5-MeO-DMT are effective when smoked or insufflated [51]. 

2.1.6 Piperazines 

The final group of NPS covered in this research are piperazines.  The original use of 

these compounds was to treat helminthic diseases [51].  There are two types of piperazine 
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derivatives that are commonly abused, the benzylpiperazines and phenylpiperazines [51].  

These include 1-benzylpiperazine (BZP), 1-methyl-4-benzylpiperazine (MBZP), N-(3-

methylbenzyl)piperazine (MEBP), 1-(3-chlorophenyl)piperazine (mCPP), 1-(2-methoxy-

phenyl)piperazine, 1-(3-trifluoromethylphenyl)piperazine (TFMPP), and 1-methyl-3-

phenylpiperzaine (MeP) [59].  Figure 7 shows the chemical structures of BZP and 

TFMPP, which are among the most popular piperazine derivatives, known as ‘party pills’ 

or ‘legal Ecstasy’.  1-Benzylpiperazine is listed as a Schedule I controlled substance 

under the Controlled Substance Act [57].  These derivatives are sold as pills or powders 

in a mixture of two to four compounds, for example, piperazines with MDMA or BZP 

and TFMPP with a ratio of 2 to 1 [51]. 

 

Figure 7. Chemical structures of BZP and TFMPP. 

The mechanisms of action for BZP and TFMPP are known to be similar to MDMA, 

increasing both dopamine and serotonin levels [51].  1-(3-Trifluoromethylphenyl) 

piperazine acts as a partial agonist/antagonist at 5-HT2A receptors and a full agonist at 

other 5-HT receptors, resulting in the increase of serotonin release.  On the other hand, 

levels of dopamine are primarily increased by BZP.  It is also known that BZP with 

TFMPP produces a synergistic effect together in a manner similar to MDMA. 
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2.2 Forensic Analysis of Controlled Substances 

The scientific working group for the analysis of seized drugs (SWGDRUG) 

provides a guideline for the forensic identification of seized drugs and requires the 

utilization of multiple uncorrelated techniques for the identification of controlled 

substances [60].  Table 1 shows different analytical techniques that can be used for the 

analysis of drug samples classifying into three categories on the basis of the 

discriminatory power of the technique.  According to the SWGDRUG guidelines, the use 

of Category A technique requires at least one other technique from any category [60].  

However, in the absence of a technique in Category A, at least three different techniques, 

two uncorrelated, are required for the identification of a controlled substance. 

Table 1. Categories of analytical techniques suggested by SWGDRUG for the 

identification of controlled substances; adapted from [60]. 

Category A Category B Category C 

Infrared Spectroscopy Capillary Electrophoresis Color Tests 

Mass Spectrometry Gas Chromatography Fluorescence Spectroscopy 

Nuclear Magnetic Resonance 

Spectroscopy 
Ion Mobility Spectrometry Immunoassay 

Raman Spectroscopy Liquid Chromatography Melting Point 

X-ray Diffractometry Microcrystalline Tests Ultraviolet Spectroscopy 

 Pharmaceutical Identifiers  

 Thin Layer Chromatography  

 

Cannabis only: 

Macroscopic Examination 

Microscopic Examination 
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In forensic laboratories, the analysis of controlled substances is performed 

depending on the physical appearance of seized samples after the basic measurement of 

weight, volume, and/or count are taken [61-62].  For example, presumptive tests for 

general unknowns, substances in powder form, and illicit tablets are assessed by color 

tests, thin layer chromatography (TLC), microcrystalline tests, and/or gas 

chromatography (GC).  Recently, DART-MS has been utilized as a screening tool for the 

analysis of controlled substance in the standard operation procedure of the Virginia 

Department of Forensic Science [63].  Confirmative tests to identify the presence of 

suspected compounds are then conducted using ultraviolet (UV) spectroscopy, Fourier 

transform infrared (FTIR) spectroscopy, and/or GC-MS depending on the availability of 

instrumentation and the standardized procedure from each laboratory.  For plant material, 

such as marijuana products, examination under the microscope for morphological 

characteristics is conducted as part of the presumptive tests prior to TLC or color testing 

(Duquenois Levine test) [62]. 

2.3 Principles of Instrumentation 

2.3.1 Gas Chromatography 

As a universal and versatile separation technique, chromatography is applicable in 

various areas of chemistry and biochemistry, biology, quality control, research, and 

analysis [64].  The mechanism of separation is dependent on the distribution of the 

analytes between two phases, a stationary and a mobile phase. The relative affinity of 

analytes, which is determined by molecular structures and intermolecular forces, affect 

the distribution or partition of compounds between the stationary and mobile phases. 
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Chromatography can be divided into three sub-groups depending on the type of mobile 

phase, including gas, liquid, and supercritical fluid [64]. 

Since the introduction of gas chromatography (GC) by James and Martin in 1952, it 

has been widely used for the separation of components in a mixture [65].  Gas 

chromatography is mainly composed of an injection port, column oven where the column 

stationary phase sits, carrier gas, and detector as illustrated Figure 8. 

 

Figure 8. Schematic of gas chromatography. 

 

A sample introduced into the injection port is volatilized and travels through a column 

(stationary phase) with a flow of a carrier gas (mobile phase) [64].  It is important that 

samples introduced into the GC are thermally stable and will not decompose during 

vaporization or separation in the high temperature column.  The carrier gas has to be inert 

to prevent adsorption onto the column stationary phase during the transportation of gas-

phase analytes.  In general, helium is commonly used as a carrier gas other than hydrogen 

in a capillary column because of a higher flow capability and safety considerations [66].  

As a stationary phase, different types of columns can be utilized including coated and 

packed columns.  A coated column, also called a capillary column, has a thin layer of a 



18 

nonvolatile chemical coated onto the walls of the column, whereas a packed column is 

filled with an inert solid coated with the thin layer of the chemical [64].  Analytes carried 

into the column will be differentially retained depending on their affinity to the stationary 

phase and the component that is strongly retarded will be eluted later with the increased 

temperature of the column oven.  Retention time refers to the time that an analyte spends 

in the column and is defined as: 

𝑡𝑟
′  =  𝑡𝑟 − 𝑡𝑚                                                          (1) 

where actual retention time (tr
') is the difference between the total time of a compound 

required to move through the column to the detector (tr), and the void volume, the time 

needed to replace the space by mobile phase to the analyte (tm) [64].  Different types of 

detectors that are available for GC include, but are not limited to, the flame ionization 

detector (FID), thermal conductivity detector (TCD), thermionic specific detector (TSD), 

flame photometric detector (FPD), and electron capture detector (ECD) [65].  Gas 

chromatography is commonly coupled to a mass spectrometer as a powerful analytical 

technique providing both the separation capability by GC and the structural identification 

by the mass spectrometer (MS) [64].  As a hyphenated instrumentation, GC-MS is a 

widely used analytical technique because it is powerful, reliable and user friendly [5]. 

2.3.2 Ion Mobility Spectrometry 

Ion mobility spectrometry (IMS) is an analytical technique that characterizes 

chemical compounds depending on the velocity of gas-phase ions under the influence of 

electrical field and a drift gas [67].  An ion swarm is produced by the ionization of 

transferred gaseous analytes into the ion source as shown in Figure 9.  The ion swarm is 
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then introduced into the drift region by a pulsed ion shutter and subsequently travels the 

drift region at different velocities.  The velocity of the swarm is obtained through the 

electric field (E) and varies depending on the size and shape of the ion.  Therefore, 

smaller ions will move faster than larger ones through the electric field because of their 

collisional cross-section.  Collision of ions with a faraday plate will generate a current 

flow of 10 to 1000 pA, which is amplified and transformed into a voltage signal.  As a 

result, an ion mobility spectrum is plotted in the basis of the time taken by an ion swarm 

to move the distance (d) in the drift region, called drift time (td), and the response from 

detector (Figure 9). 

 

Figure 9. Schematic of a commercial IMS instrument with a 63Ni radioactive ionization 

source and an example of ion mobility spectrum; Adapted and reproduced from [68]. 

 

The obtained velocity of the ion swarm under the electric field (E) is called the drift 

velocity (vd, cm/s), which is proportional to the electric field strength (E, V/cm).  The 

proportional constant between vd and E is called the mobility coefficient (K, cm2/Vs) as 

shown in Equation 2. 

𝐾 =
𝑣𝑑

𝐸
=

𝑑/𝑡𝑑

𝐸
                                                          (2) 
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In order to standardize the mobility coefficient among various instruments and 

conditions, the mobility of ions is reported as reduced mobility (K0), which normalizes 

both temperature in Kelvin (T) and pressure in torr (P), as shown in Equation 3.[69] 

 𝐾0 =
𝑑

𝑡𝑑𝐸
(

273

𝑇
) (

𝑃

760
)                                                   (3) 

However, the accurate measurement of ion mobilities are often challenged by 

uncertainties derived from the accurate distance between the ion shutter and detector, the 

pressure and temperature inside of the drift tube, and the drift gas composition [70].  In 

order to compensate uncertainties that may arise from variations in different instruments, 

the reduced mobility of an unknown compound (K0 ukn) can be determined by the ratio of 

the drift time of reference standard (td ref) and the drift time of unknown compound (td ukn) 

as shown in Equation 4, where K0 ref  is the reduced mobility of reference standard.[70]. 

𝐾0𝑢𝑘𝑛
= 𝐾0𝑟𝑒𝑓

×
𝑡𝑑 𝑟𝑒𝑓

𝑡𝑑 𝑢𝑘𝑛

                                                    (4) 

In IMS, the number of collisions between ions and drift gas molecules significantly affect 

the drift time of ions [69].  Therefore, pressure inside the drift tube considerably 

influences the mobility of ions because of the proportionality between numbers of 

collisions and the gas density (pressure).  In addition, the drift of the ion swarm is 

affected by the energy from the electric field, the kind and temperature of the drift gas, 

the masses of the ions, and collision cross sections of the ions.  The relationship of ion 

mobility with these parameters is presented as follows: 

𝐾 = (
3𝑞

16𝑁
) (

2𝜋

𝜇𝑘𝑇
)

1

2
(

1+𝛼

Ω𝐷
)                                                   (5) 
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where q is the charge of the ion and N is the density of drift gas molecules, µ is the 

reduced mass of the ion (m) and drift gas molecules (M) expressed as (m * M)/(m + M), k 

is the Boltzmann constant, T is the temperature of the drift gas in Kelvin, α is the 

correction factor (α < 0.02 for m > M), and ΩD is the average ionic collision cross section 

which includes the electronic factors and structural parameters (size and shape) of the ion 

[69]. 

Ion mobility spectrometry has been widely used as a screening device in thousands 

of airports nationwide, offering several advantages over other analytical techniques 

including a relatively small size and light weight, in addition to an ambient pressure 

operation that allows for on-site use [67].  Furthermore, IMS provides fast response, high 

sensitivity, and ease of operation for high throughput analysis. Since the introduction of 

IMS in the analytical field for drug analysis by Karasek et al.[71-72], the popularity of 

IMS has increased over the years resulting in it being considered one of the fundamental 

techniques for the detection of illicit drugs.  Successful detection of conventional 

designer drugs, such as MDMA and MDEA, extracted from human hair, as well as the 

detection of cocaine, MDMA, and marijuana by solid phase microextraction (SPME) 

were reported using a commercial IMS using 63Ni as an ion source [73-74].  However, 

the limitation of IMS is the depletion of reactant ions along with an increased 

concentration of analyte molecules during the ionization process [67].  The ionization in 

positive mode involves the reaction between the analyte molecules and limited amount of 

reactant ions. The depletion of reactant ions results in a non-linear response of IMS with 

increasing concentration of the analyte.  It may also result in the ambiguous analysis of 
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complex seized drug samples because of the ionization competition between compounds 

in the sample. 

2.3.2.1 Radioactive 63Ni ionization source 

As the most commonly found ion source in commercial IMS, the radioactive 63Ni 

ionization source provides stable production of reactant ions, portability with low weight 

and power requirements, simplicity of use, and no maintenance or replacement of parts 

[69].  In this ion source, high energy electrons are emitted from the radioactive foils of 10 

milliCurrie 63Ni with a mean energy of 17 KeV.  Emitted electrons then collide with the 

surrounding air or nitrogen producing the positive reactant ions.  Produced by reactant 

ions, water clusters of a gas phase proton (H+(H2O)n), will react with molecules (M) from 

a sample and produce an adduct ion (MH+(H2O)n), which may be stabilized by the loss of 

water and terminates in the formation of product ions as follows [69]: 

𝑀 + 𝐻+(𝐻2𝑂)𝑛 →  𝑀𝐻+(𝐻2𝑂)𝑛−x +  𝒳𝐻2𝑂                                 (6) 

When the proton affinity of the analyte molecule in gas-phase is greater than that of water 

(691 kJ/mol), this reaction will become favorable.  In the analysis of compounds using 

IMS, the reliable measurement of samples is required without the distortion of chemical 

information [67].  The consistent measurement can be achieved by adapting online 

calibration of the analyzer and utilizing reagent gases, which may reduce chemical 

interference from the sample matrix and improve the response resulted from more 

specific reactions between compounds with different proton affinity.  For drug detection 

in the positive mode, nicotinamide (NA) is commonly used as both a calibrant and a 

reagent gas [75].  The drift gas containing trace amounts of nicotinamide (NA) flows 
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constantly into the drift tube and ionization/reaction chamber and the dominant ionized 

species, (NA)H+, are then produced in the stand-by mode.  When a sample is introduced, 

it is ionized by proton transfer from protonated NA to the sample molecule (M) in the 

analyze mode as shown in Equation 7 [75]. 

𝑀 + (𝑁𝐴)𝐻+ →  𝑀𝐻+ +  𝑁𝐴                                           (7) 

The ionization process in this IMS is preferred only when the proton affinity of M is 

greater than that of NA.  Therefore, compounds that are favorable in this ionization 

process can be detected as protonated ions (MH+) under this IMS conditions [75].  

Although the 63Ni ion source is widely used in many commercial IMS, there are some 

disadvantages including special permit requirements for handling, the formation of nickel 

oxides or salts that may be released, and cost of proper disposal [69]. 

2.3.2.2 Coupling of Electrospray Ionization and Mass Spectrometry with Ion Mobility 

Spectrometry 

Traditional IMS operates with a radioactive ionization source (63Ni) and has been 

utilized for more than 30 years as a method for the detection of vapor-phase explosives, 

illicit drugs, and chemical warfare agents [73-74, 76-77].  However, there are several 

limitations associated with this conventional IMS which includes the inability to analyze 

nonvolatile compounds and high false positive rates because of low resolving power [76].  

The interface of IMS with an ESI source enables the introduction and detection of non-

volatile compounds and the direct analysis of aqueous samples [34, 78].  In addition, the 

implementation of ESI source expands the application of IMS to other fields including 
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biomolecule analysis [79] and it also eliminates handling limitations resulting from the 

cumbersome restrictions of the radioactive source [32]. 

The coupling of IMS with a mass spectrometer (MS) was first developed back in 

the early 1960s allowing for the investigation of analytes in a two-dimensional approach, 

the mobility and mass-to-charge ratio (m/z) of ions in the gas-phase [80].  When IMS is 

in coupled to MS, it significantly reduces the possibility of false positive results with the 

complementary spectral data obtained from a MS on the basis of the size and mass of 

ions [76, 81].  While the coupling of atmospheric pressure IMS and mass spectrometers is 

well described in a report by the Sandia National Laboratories, a proposed schematic of 

the interface between two instruments is shown in Figure 10 [82].  The interface of IMS 

and MS can be challenging because both instruments are destructive techniques, meaning 

that the ions are destroyed at the moment of measurement.  A solution to this issue has 

been proposed that a portion of ions is introduced to the MS passing through a small hole 

created on the Faraday plate in the IMS [82]. 

 

Figure 10. Proposed schematic of the interface close-up between an ion 

mobility spectrometer and a mass spectrometer; adapted from [82]. 

Skimmer (MS) 

Faraday plate (IMS) 
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There are many different types of mass spectrometers that can be coupled to IMS, 

including time-of-flight (TOF), linear quadrupoles, trapping devices, Fourier transform 

ion cyclotron resonance (FTICR), and magnetic sector spectrometers [80].  It is also 

possible to interface these mass analyzers with IMS in two configurations; positioning the 

mass analyzer before the drift tube or the other way around [80].  In the following 

section, different types of mass spectrometers that have been utilized in this dissertation 

will be explained in detail. 

2.3.3 Mass Spectrometry 

Mass spectrometry (MS) is by far the most applicable analytical technique that can 

provide information such as (1) the elemental composition of a sample, (2) the structure 

of organic, inorganic, and biological molecules, (3) the qualitative and quantitative 

composition of samples in complex mixtures, (4) the structure and composition of a solid 

surface, and (5) the isotopic ratios of atoms in samples [83].  Generally, a mass 

spectrometer is composed of an inlet, ion source, mass analyzer, and detector, which are 

housed under vacuum. A micro amount of sample is introduced into the mass 

spectrometer through the inlet system where it is ionized by applying thermal or electrical 

energy in the ion source. A stream of positive or negative ions in gas-phase are then 

accelerated and separated according to the mass-to-charge ratio (m/z) in the mass 

analyzer under a high vacuum. A detector converts the stream of ions to an electrical 

signal that can be displayed on a computer [84]. 
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2.3.3.1 Ion Sources 

Ion sources play an important role for the formation of gaseous analyte ions as well 

as the scope and the utility of a mass spectrometer [83].  Ionization techniques can be 

categorized into two groups, gas-phase and desorption sources. In gas-phase sources, 

such as electron ionization (EI), chemical ionization (CI), and field ionization (FI), the 

compounds are first vaporized and then ionized; therefore, these sources are limited to 

analytes that are volatile and thermally stable [83].  On the other hand, desorption sources 

convert solid or liquid sample into gaseous ions directly, facilitating the ionization of 

nonvolatile and thermally labile compounds. Desorption sources include field desorption 

(FD), electrospray ionization (ESI), matrix-assisted laser desorption ionization (MALDI), 

plasma desorption (PD), fast atom bombardment (FAB), secondary-ion mass 

spectrometry (SIMS), and thermospray ionization (TS) [83]. Advance ionization 

techniques have also been introduced in the last few years allowing for the ionization of 

samples at atmospheric pressure and at ground potential.  These ambient ionization 

techniques include, but are not limited to, desorption electrospray ionization (DESI) 

developed by Cooks and his co-workers and direct analysis in real time (DART) 

developed by Cody et al. [85].  The recent development of ambient ionization techniques, 

DESI and DART, facilitated the direct MS analysis of samples in both qualitative and 

quantitative investigations with minimal to no sample preparation in most cases [85].  

The detailed description of ionization techniques that are implemented in this research 

will be discussed in the following section and the DART ion source is described in 

section 2.3.4. 
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Electron Ionization 

As one of the most common ion sources in organic mass spectrometry, the EI 

source serves well to produce gaseous ions from many organic molecules [84]. The 

ionization occurs when the gaseous compounds are collided with the accelerated 

electrons that are emitted from a heated filament as shown in Figure 11. The ionization 

process in the EI source is favorable when an energy transfer that leads to various 

electronic excitations may occur in the filament or when samples containing a high vapor 

pressure are introduced directly into the source [84]. 

 

Figure 11. Diagram of an electron ionization source; adapted and 

reproduced from [84]. 

 

Although most organic molecules are ionized well at electron energies between 10 and 20 

eV, the EI source is generally operated at 70 eV to minimize the variation in the observed 

number of ions produced; a parameter that may affect the pattern of the produced 

spectrum.  However, the excessive energy from the EI source often results in the 

extensive fragmentation of compounds [84].  Consequently, the molecular ions are not 
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always present in a spectrum. Nevertheless, this extensive fragmentation can be useful in 

providing structural information for the analysis of unknown samples. 

Chemical Ionization 

The chemical ionization (CI) source has the advantage of producing a spectrum 

with less fragmentations than that observed for EI and is therefore referred to as a soft 

ionization technique [83-84].  One main difference between the EI and CI sources is the 

use of a reagent gas for the CI source as illustrated in Figure 12.  Electrons given off from 

the filament will preferentially ionize reagent gas molecules and the produced ions will 

collide with other excess reagent gas molecules establishing an ionization plasma [84].  

Methane (CH4) is one of the most commonly used reagent gases although other reagent 

gases, such as isobutane and ammonia, are readily utilized in the CI source.  

 

Figure 12. Diagram of a chemical ionization source. 

As a reagent gas, methane, is reacted with the electrons ejected from the filament yielding 

the methane ions (Equation 8) [84].  The majority of methane ions will collide with other 
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methane molecules producing the methanium ion, CH5
+ (Equation 9).  These methanium 

ions will then subsequently ionize the analyte by proton transfer (Equation 10).  

CH4  +  e−  →   CH4
+• +  2e−                                         (8) 

CH4
+•  +  CH4  →  CH5

+ + CH3
•                                        (9) 

M + CH5
+   →  [M + H]+ +  CH4                                      (10) 

However, a small number of methane ions will be dissociated into the methyl cation and 

collide with other methane molecules yielding ethenium, C2H5
+ (Equation 11 and 12) 

[84].  This positive ion will produce the ethyl adduct by reacting with the analyte 

(Equation 13). 

CH4
+•   →  CH3

+ +  H•                                                   (11) 

CH3
+  +  CH4  →  C2H5

+  +  H2                                             (12) 

M + C2H5
+   →  [M + C2H5]+                                           (13) 

Other reactions also occur from the CH4
+ fragment, CH2

+• (Equation 14), resulting in the 

formation of an adduct, [M+C3H5]+, through the reaction from Equation 15 to 17.[84] 

CH4
+•  →  CH2

+•  +  H2                                                  (14) 

CH2
+•  +  CH4  →  C2H3

+  +  H2  +  H•                                      (15) 

C2H3
+  +  CH4  →  C3H5

+  +  H2                                           (16) 

M + C3H5
+   →  [M + C3H5]+                                        (17) 
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Electrospray Ionization 

The electrospray ionization (ESI) source was originally developed to aid the 

ionization of large organic molecules, such as proteins, that are not easily converted to 

the gas-phase by the traditional ion sources [86].  Recently, ESI has been widely used not 

only for large biomolecules analysis, but also for small polar molecules, utilizing the soft 

ionization capability of the ESI [84].  In the ionization process of ESI source, a liquid 

sample passes through a capillary tube at a low flow rate, generally between 1 to 10 

µL/min [84].  The applied potential difference (3-6 kV) produces a strong electric field 

between the capillary tip and the counter-electrode in the distance of 0.3-2 cm as shown 

in Figure 13.  A charge accumulated under this strong electric field in atmospheric 

pressure will overcome the surface tension from the liquid to form highly charged small 

droplets at the end of the capillary [84]. 

 

Figure 13. Formation of a Taylor cone in the process of positive ion 

production in the electrospray ionization; reproduced and modified from [84]. 

 

As illustrated in Figure 13, a drop at the capillary tip elongates under the strong electric 

field producing a Taylor cone [84].  The elongation of the droplet results from the 
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evaporation of solvent in the droplet [86].  As a result, the charge density on the surface 

of the droplet increases reaching the Rayleigh limit at which the surface tension and 

Coulomb repulsion become the same order [86].  A series of smaller droplets are also 

produced from this Taylor cone and undergo a similar process of solvent evaporation and 

charge accumulation. While the extent of ionization is limited compared to EI and CI, the 

ESI source is advantageous as it can produce multiply charged ions from large molecules 

while preserving molecular ions. 

2.3.3.2 Mass Analyzers 

Gas-phase ions that are produced by different ionization sources are separated 

according to their mass-to-charge ratio (m/z) in a mass analyzer [84].  Although all mass 

analyzers utilize static or dynamic electric and magnetic fields, in isolation or 

combination, different principles are applied for the separation of ions.  For example, 

separation of ions in a quadrupole occurs on the basis of m/z which determines the 

velocity of ions influenced by the trajectory stability and time-of-flight of ions.  Mass 

analyzers can be categorized into two groups, pulsed and continuous, in terms of ion 

sampling.  In continuous sampling mass analyzers, such as magnetic sector and 

quadrupole analyzers, ions of different masses are transmitted along a time scale.  These 

are also known as space-based analyzers, which only allow the specific ion to pass 

through a flight tube at a measured time. On the other hand, in pulsed sampling analyzers, 

such as ion trap (IT), time-of-flight (TOF), ion cyclotron resonance (ICR), and orbitrap 

(OT), ions are simultaneously transmitted into the space where the separation occurs.  

Pulsed sampling analyzers are, therefore, often referred to as time-based analyzers.  The 
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detailed mechanism of separation for quadrupole, TOF, and tandem mass spectrometers 

will be covered in the following sections. 

Quadrupole 

Quadrupole mass analyzers are the most common space-based mass analyzer, 

composed of four rods aligned perfectly parallel to one another, thus providing a 

hyperbolic internal space (Figure 14) [84].  The quadrupole analyzer separates introduced 

ions on the basis of their m/z utilizing the stability of the trajectories in oscillating electric 

fields. An opposite potential is applied to the parallel rods in the x- and y-axis, resulting 

in oscillation of the ions as they move towards the detector. The potential applied to the 

rods is represented as Φ0; U is the applied direct current (DC) voltage, V is the applied 

radio frequency (RF) voltage, and ω is the angular frequency, as shown in Equation 18. 

On the basis of this relationship, ions with specific m/z can be selectively permitted to 

pass through the rods and reach to the detector by controlling U and V [84]. 

 

Figure 14. Diagram of a quadrupole mass analyzer with 

hyperbolic rods and applied potentials; reproduced and 

modified from [84]. 

 

Φ0 =  𝑈 − 𝑉 cos 𝜔𝑡                                                   (18) 
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Generally, the operation of the quadrupole analyzer is at single mass unit resolution; 

therefore, it is possible to separate two peaks that are only one mass unit apart. However, 

the highest mass range is limited to around m/z 3000 with this analyzer.  Regardless, the 

unique characteristics of quadrupole mass analyzers, such as their compact size and 

relatively easy operation and maintenance, has led to the widespread use of quadrupole 

analyzer coupled to gas chromatography [87]. 

Time-of-Flight 

In the TOF mass analyzer, ions are accelerated into a flight tube by an electric field.  

They are then separated according to their velocities as they drift through the flight tube, 

also called a free-drift region [84]. An electric potential energy of ions from the 

accelerating potential is converted into the kinetic energy of ions which determines the 

ions velocity. These accelerated ions then move straight through a free-drift region at a 

constant velocity. As shown in Equation 19, the time that ions take to travel through the 

flight tube is related to the m/z of ions where L is the distance and Vs is the accelerating 

potential [84]. 

𝑡2 =  
𝑚

𝑧
(

𝐿2

2𝑒𝑉𝑠
)                                                       (19) 

Since the distance and potential are constant for a given spectrometer, the m/z can be 

determined by measuring the time taken to travel this flight tube. The advantages of TOF 

analyzers include a broad mass range, high sensitivity resulting from high transmission 

efficiency, and a fast analysis time [84].  However, peak broadening is a concern in TOF 

analyzers; a phenomenon that arises when ions with the same m/z, but different kinetic 
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energies reach the detector at slightly different times. In order to reduce the kinetic 

energy dispersion of ions, a reflectron, also known as ion mirrors, is utilized in modern 

TOF mass analyzers [84].  Ions with more kinetic energy will move faster and penetrate a 

reflectron deeper than ions with less kinetic energy. As a result, the ions with slower 

velocity will reach to the detector at the same time as the faster ions with the same m/z, as 

faster ions will spend more time in the reflectron. The energy spread among ions can also 

be corrected by introducing a time delay between ion formation and extraction, which is 

known as a delayed pulsed extraction. 

Tandem Mass Spectrometry 

Tandem mass spectrometry (MS/MS) interfaces two stages of the mass analyzer 

thus providing high sensitivity for the selectively ionized target compound [87].  In 

general, a first analyzer serves as a mass filter that isolates a precursor ion (previously 

described as a parent ion) and a second analyzer separates the product ions (previously 

described as a daughter ion) [84].  It is also possible to have multiple steps in terms of the 

isolation and fragmentation of a precursor ion in some tandem mass spectrometers, 

labelled as MSn, such as IT and ICR [84].  There are four main scan modes available in 

tandem mass spectrometry, including product ion scan, precursor ion scan, neutral loss 

scan, and selected reaction monitoring (SRM) as illustrated in Figure 15 [84].  In the 

product ion scan mode, a precursor ion of interest is chosen and the product ions, also 

called fragment ions, are subsequently determined from collision-induced dissociation 

(CID).  In contrast, in precursor ion scan mode, a product ion is selected and all the 

precursor ions that produce the targeted product ion are detected.  The neutral scan mode 
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is composed of the selection of a neutral fragment and the determination of all the 

fragmentation resulting from the loss of that neutral fragment.  It is important to note that 

precursor ion scan and neutral loss scan modes are not available with time-based mass 

analyzers because these two scan modes require the second spectrometer to focus on a 

selected ion, or the simultaneous operation of both spectrometers.  In the SRM mode, 

both analyzers are targeted on user-defined specific ions and selecting a fragmentation 

reaction rather than a fragment. The SRM mode provides high sensitivity and selectivity 

as the analyzer spend longer times focused on the precursor and fragmentation ions. 

 

Figure 15. Symbolism for the representation of four different scan modes as 

proposed by Cooks et al.; adapted and modified from [84]. 

 

To facilitate the fragmentation of a selected precursor ion, a process called ‘CID’ occurs 

in a collision cell that is normally placed between the two mass analyzers [84].  During 

CID, collisions between the low- or high-energy accelerated ions and a static target (the 

collision gas) occur resulting in the transfer of the kinetic energy into internal energy. 

Hence, tandem mass spectrometry provides broad applications, including structural 

elucidation, determination of fragmentation mechanism and elementary compositions, 

and high selective and high sensitive analysis [84]. 
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A triple quadrupole mass spectrometer (QqQ) is one common type of tandem mass 

spectrometer, which utilizes three stages of quadrupoles as shown in Figure 16. The first 

and third quadrupole, Q1 and Q3, work as mass analyzers and a middle quadrupole (or 

hexapole) operates as a collision cell in RF-only mode [84].  As mentioned, the precursor 

ion is selected and introduced into the collision cell where the collision of the selected ion 

(precursor ion) occurs in order to provide the product ions for mass analysis in Q3. 

 

Figure 16. Diagram of a triple quadrupole mass analyzer. 

A number of studies have been reported using a triple quadrupole mass spectrometer 

coupled to chromatographic techniques for the differentiation of drug isomers [20, 22], 

high sensitive analysis of drugs in hair [88-89], and analysis of emerging NPS [24, 27, 

90]. 

A combination of quadrupole and time-of-flight mass analyzers is the most 

successful type of hybrid instruments as it shows powerful and robust performance 

providing high sensitivity and mass accuracy [84].  The quadrupole time-of-flight 

(QTOF) tandem mass spectrometer is normally described as a triple quadrupole with the 

replacement of an orthogonal accelerator TOF analyzer instead of the third quadrupole 

(Q3) as illustrated in Figure 17.  In the general configuration of QTOF, there is an extra 
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quadrupole (Q0) that provides collisional damping; therefore, the system is composed of 

three quadrupoles, Q0, Q1, and Q2, followed by a TOF analyzer [91].  Although the Q0 

and Q2 are equipped with hexapoles in commercial instruments, the basic principles 

remain similar to operating in RF-only mode.  

 

Figure 17. Schematic of a commercial high resolution quadrupole time-of-flight 

mass spectrometer; reproduced and modified from [92]. 

 

MS mode and MS/MS mode are both possible in a QTOF instrument [84].  In MS 

mode (full scan), the two quadrupoles, Q1 and Q2, act as ion guides in RF-only mode.  In 

MS/MS mode (product ion scan), the Q1 works as the mass filter that transmits and 

selects only the precursor ion of interest.  The selected ion is then accelerated to an 

energy of between 20 and 200 eV before it is introduced into the collision cell (Q2) 

where CID occurs in the presence of neutral gas molecules (generally nitrogen or argon). 

The remaining precursor ions and resulting product ions from the collision cell are 
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subsequently accelerated again to the required energy, normally several tens of 

electronvolts (eV) per unit charge, and focused by ion optics (ion beam compressor) for 

introduction into the ion modulator (ion pulser) [91].  The process of ion selection in Q2 

controls the kinetic energy of ions as well as focuses the ions by collision cooling for 

better sensitivity and resolution [84].  TOF mass separation occurs when a pulsed electric 

field is applied at the ion pulser, pushing ions into the flight tube, and finally the detector. 

The QTOF mass spectrometer (QTOF-MS) is a highly versatile instrument, and, 

when coupled to liquid chromatography (LC) has been widely used for a range of 

applications.  For example, QTOF-MS has been implemented in the analysis of 

pharmaceuticals and their metabolites in water samples for environmental chemistry 

applications [93-94].  It has also been used for the characterization of synthetic 

cathinones in forensic chemistry application [95-96]. 

2.3.4 Direct Analysis in Real Time Mass Spectrometry  

Technically, direct analysis in real time (DART) is a relatively new ionization 

source for the rapid non-contact analysis of samples at ambient pressure and ground 

potential, which was first developed by Cody et al. [97].  Initially, the development of 

DART was motivated by the desire to replace the radioactive sources (nickel-63 and 

americium-241) that are required in chemical agent monitors and toxic industrial 

chemical sensors.  The commercial DART ion source, IonSense DART®-SVP (Saugus, 

MA, USA), is composed of a chamber with multiple stages of tubes, where a gas flows at 

atmospheric pressure.  A schematic of the DART source is shown in Figure 18 [98].  A 

kilovolt potential applied between a needle electrode and a grounded counter electrode 
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initiates a glow discharge at ambient pressure [99].  As the gas passes through these 

multiple tubes with an intermediate electrode, gas heater, and grid electrode at the exit of 

the DART source, the gas undergoes conversion to the metastable state.  The ionization 

process takes place when these metastable species react with a gaseous, liquid, or solid 

sample in the open space between the DART source outlet and the mass spectrometer 

inlet [99]. 

 

Figure 18. Schematic of the DART ionization source; reproduced and modified 

from [98]. 

 

The formation of positive ions in DART is governed by Penning ionization and 

proton transfer [99].  In Penning ionization, energy is transferred from a metastable atom 

or molecule (N*) to an analyte molecule (M), producing the molecular ion of the analyte 

(M+●) and an electron (e-) as shown in Equation 20. The transfer of energy is possible 

when the ionization energy of an analyte is lower than that of a metastable atom or 

molecule. It is known that the energy of helium atoms (He) in its excited electronic state 

(23S) is 19.8 eV [99].  The energy of excited state He is greater than the energy of other 

long-lived noble gas atoms (Helium*>Neon*>Argon*>Krypton*) as well as any 

potential organic molecules [100].  The higher ionization energy of metastable helium 

atoms (He*) makes helium the most effective gas to use for DART.   
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N∗  +  M →  M+•  +  e−                                            (20) 

In order for the formation of positive ions by proton transfer, atmospheric moisture is 

first ionized by He* with extremely favored efficiency compared to other species present 

in atmosphere (Equation 21) [99].  The protonated molecule, [M+H]+, is then produced 

when the analyte has a higher proton affinity than the water cluster ions, [(H2O)n+H]+ 

(Equation 22) [99]. 

He(23S)  +  nH2O →  [(H2O)n−1 + H]+  +  OH•  +  He (11S)                     (21) 

[(H2O)n + H]+  +  M →  [M + H]+  +  nH2O                                   (22) 

Compounds with carbonyl functional groups, including acids, esters, ketones, and 

peroxides may also produce ammonium adducts [M+NH4]+ in the presence of an 

ammonium source in surrounding environment [99]. 

In negative mode, thermal electrons are produced by Penning ionization of nitrogen 

(N2) in which the energy is transferred from He* to N2 (Equation 23) [100].  The thermal 

electrons are captured by atmospheric oxygen; consequently, the produced negatively 

charged oxygen (O2
−•) then serve as reagent ions that can form adducts with the analyte, 

M (Equation 24 and 25). 

He∗  +  N2  →  He +  N2
+•  +  e−                                       (23) 

O2  +  e−  →  O2
−•                                                     (24) 

O2
−•  +  M →  [M + O2]−•                                              (25) 

However, the exact ionization process in DART is still not well understood and other 

ionization mechanisms are also feasible [99].  Alternative ionization processes may  
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include direct electron capture (Equation 26), dissociative electron capture (Equation 

27), deprotonation by dissociation or reaction with a base (Equation 28), and anion 

attachment (Equation 29) [100]. 

M + e−  →  M−•                                                    (26) 

MX + e−  →  M− + X•                                                (27) 

MH →  [M − H]− + H+                                              (28) 

M + X−  →  [M + X]−                                               (29) 

Since the introduction of DART in the early 2000s, the DART source coupled with 

a time-of-flight (TOF) mass spectrometer (often JEOL AccuTOF) has been widely used 

for many applications, including food quality and safety [101-102], pharmaceutical and 

clinical applications [103-104], environmental applications [105-108], and many forensic 

applications [109-111].  Howlett and Steiner have shown the potential use of DART-MS 

with thin layer chromatography (TLC) for the identification of drug compounds as an 

alternative to GC-MS with the separation capability [112].  The DART-MS approach has 

also been utilized for the rapid identification of some synthetic cannabinoids and 

cathinones by Dunham et al. [36], Musah et al. [30, 38], and Lesiak et al. [31, 113].  

With regard to the detection capability of controlled substances, DART-MS has recently 

been adopted as a screening technique in a number of forensic laboratories across the 

country [62]. 
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CHAPTER 3. MATERIALS AND METHODS 

All reference standards of NPS listed in Appendix 1 were provided by Cayman 

Chemical (Ann Arbor, MI, USA), in powder or solution form.  For those reference 

standards in powder form, standard stock solutions were prepared in different organic 

solvents to the following concentrations, 1000, 2000, and 2500 µg/mL, according to the 

solubility of each compound.  Methanol was primarily used to dissolve those standards, 

except some NPS standards that are prepared in dimethyl sulfoxide (DMSO) and ethanol 

(EtOH) as presented in Table 2. 

Table 2. List of NPS standards that are prepared in dimethyl sulfoxide and ethanol. 

NPS 
Molecular 

Formula 

Concentration 

(µg/mL) 
Solvent 

AM2201 2'-naphthyl isomer C24H22FNO 1000 DMSO 

JWH 018 2'-naphthyl isomer C24H23NO 1000 DMSO 

JWH 073 2'-naphthyl-N-(1,1-dimethylethyl) isomer C23H21NO 1000 DMSO 

JWH 200 2'-naphthyl isomer C25H24N2O2 1000 DMSO 

(±)WIN 55212 (mesylate) C27H26N2O3 1000 DMSO 

AM1235 C24H21FN2O3 1000 DMSO 

JWH 018 N-(5-bromopentyl) analog C24H22BrNO 1000 DMSO 

JWH 072 C22H19NO 1000 DMSO 

JWH 073 4-methylnaphthyl analog C24H23NO 1000 DMSO 

URB754 C16H14N2O2 1000 DMSO 

WIN 54461 C23H25BrN2O3 1000 DMSO 

Cannabipiperidiethanone C24H28N2O2 2500 EtOH 

 

Solution based standards were made using different organic solvents, including 

acetonitrile (ACN), ethanol (EtOH), methanol (MeOH), and methyl acetate (MeOAc), at 

different concentrations as shown in Table 3.  Each stock solution was further diluted to 

10 µg/mL in methanol to be used as a working standard solution.  Methanol and formic 
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acid were both Optima® LC/MS grade and purchased from Fisher Scientific (Fair Lawn, 

NJ, USA).  Proadifen was purchased from Sigma-Aldrich (St Louis, MO, USA) and 

prepared in methanol to a concentration of 10 μg/mL.  Proadifen was used in order to 

lock the retention time in the GC system. 

Table 3. List of solution based NPS standards with different solvents. 

NPS 
Molecular 

Formula 

Concentration 

(µg/mL) 
Solvent 

(±)5-epi CP 55,940 C24H40O3 10000 MeOAc 

(±)-epi CP 47, 497 C21H34O2 1000 MeOH 

AM2201 N-(2-fluoropentyl) isomer C24H22FNO 1000 ACN 

AM2201 N-(3-fluoropentyl) isomer C24H22FNO 1000 MeOH 

AM2201 N-(4-fluoropentyl) isomer C24H22FNO 1000 MeOH 

AM2232 C24H20N2O 10000 ACN 

AM694 4-iodo isomer C20H19FINO 10000 MeOH 

HU-308 C27H42O3 10000 MeOAc 

JWH 007 C25H25NO 10000 MeOH 

JWH 011 C27H29NO 10000 MeOH 

JWH 016 C24H23NO 10000 MeOH 

JWH 018 C24H23NO 10000 MeOH 

JWH 018 2'-naphthyl-N-(1-methylbutyl) isomer C24H23NO 10000 MeOH 

JWH 018 2'-naphthyl-N-(2-methylbutyl) isomer C24H23NO 10000 MeOH 

JWH 018 2'-naphthyl-N-(3-methylbutyl) isomer C24H23NO 10000 MeOH 

JWH 018 6-methoxyindole analog C25H25NO2 10000 MeOH 

JWH 018 N-(1-methylbutyl) isomer C24H23NO 10000 MeOH 

JWH 018 N-(2-methylbutyl) isomer C24H23NO 10000 MeOH 

JWH 018 N-(3-methylbutyl) isomer C24H23NO 5000 MeOH 

JWH 018 N-(4,5-epoxypentyl) analog C24H21NO2 10000 MeOH 

JWH 022 C24H21NO2 10000 MeOH 

JWH 030 C20H21NO 10000 MeOH 

JWH 031 C21H23NO 10000 MeOH 

JWH 073 2-methylnaphthyl analog C24H23NO 10000 MeOH 

JWH 073 2'-naphthyl-N-(1-methylpropyl) isomer C23H21NO 10000 MeOH 
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NPS 
Molecular 

Formula 

Concentration 

(µg/mL) 
Solvent 

JWH 081 3-methoxynaphthyl isomer C25H25NO2 10000 MeOH 

JWH 081 6-methoxynaphthyl isomer C25H25NO2 10000 MeOH 

JWH 081 7-methoxynaphthyl isomer C25H25NO2 10000 MeOH 

JWH 081 8-methoxynaphthyl isomer C25H25NO2 10000 MeOH 

JWH 122 2-methylnaphthyl isomer C25H25NO 10000 MeOH 

JWH 122 3-methylnaphthyl isomer C25H25NO 10000 MeOH 

JWH 122 6-methylnaphthyl isomer C25H25NO 10000 MeOH 

JWH 122 8-methylnaphthyl isomer C25H25NO 10000 MeOH 

JWH 145  C26H25NO 10000 MeOH 

JWH 175 C24H25N 10000 ACN 

JWH 201 C22H25NO2 10000 MeOAc 

JWH 203 3-chlorophenyl isomer C21H22ClNO 10000 MeOH 

JWH 210 2-ethylnaphthyl isomer C26H27NO 1000 MeOH 

JWH 210 3-ethylnaphthyl isomer C26H27NO 10000 MeOH 

JWH 210 5-ethylnaphthyl isomer C26H27NO 1000 MeOH 

JWH 210 6-ethylnaphthyl isomer C26H27NO 10000 MeOH 

JWH 210 8-ethylnaphthyl isomer C26H27NO 10000 MeOH 

JWH 251 C22H25NO 10000 MeOAc 

JWH 251 3-methylphenyl isomer C22H25NO 10000 MeOH 

JWH 251 4-methylphenyl isomer C22H25NO 10000 MeOH 

JWH 302 C22H25NO2 10000 MeOAc 

JWH 309 C30H27NO 10000 MeOAc 

JWH 369 C26H24ClNO 10000 MeOH 

JWH 370 C27H27NO 10000 MeOH 

JWH 398 C24H22ClNO 10000 MeOH 

JWH 398 2-chloronaphthyl isomer C24H22ClNO 1000 MeOH 

JWH 398 8-chloronaphthyl isomer C24H22ClNO 10000 MeOH 

JWH 424 C24H22BrNO 10000 MeOH 

Norsufentanil C16H24N2O2 10000 MeOH 

Pyrovalerone  C16H23NO 10000 MeOH 

RCS-4 2-methoxy isomer C21H23NO2 10000 MeOH 

RCS-4 3-methoxy isomer C21H23NO2 10000 MeOH 

TMA-2 C12H19NO3 10000 EtOH 
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3.1 Ion Mobility Spectrometry 

A commercial IMS instrument, Barringer IONSCAN 400B (currently, Smiths 

Detection IONSCAN 400B, Mississauga, ON, Cananda), was used under factory default 

operating conditions as shown in Table 4.  A pre-conditioned Teflon membrane substrate 

(Filter stock No. 11510, Barringer) was used to introduce each analyte into the thermal 

desorption chamber.  Sample delivery was achieved by spiking 10 ng (1 μL of 10 μg/mL 

standard solution) of a standard onto the membrane and drying it for 30 sec. The 

experimental drift time and the calculated reduced mobility (K0) values from each 

standard were determined and programed into a detection menu for the substances of 

interest using the software Instrument Manager 5.052 (Smiths Detection). The detailed 

detection alarm parameters are as follows: full-width at the half maximum height 

(FWHM) of 380, peak amplitude of 50, and threshold of 2.5.  With the exception of 8 

NPS (30 for MDPV, pentylone, bk-EBDB, 4’-MePHP, XLR-11, and 25I-NBOMe; 25 for 

2,3-pentylone, bk-DMBDB), the variability for most of the NPS investigated was 50. 

Table 4. Operating condition for the Barringer IONSCAN 400B. 

Operating mode Narcotic mode (positive) 

Desorber temperature 300 °C 

Inlet temperature 250 °C 

Drift tube temperature 235 °C 

Drift flow 300 mL/min 

Shutter grid width 0.200 ms 

Scan period 20 ms 

Dopant Nicotinamide 
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3.2 Direct Analysis in Real Time Quadrupole Time-of-Flight 

An IonSense DART®-SVP (Saugus, MA, USA) ionization source was coupled to a 

high resolution Agilent 6530 Accurate-Mass QTOF mass analyzer (Santa Clara, CA, 

USA).  The DART source was operated under the following conditions: positive mode, 

helium as a reagent gas at 350 °C with a flow rate of 3 L/min and a sample speed of 

1.5mm/sec.  Accurate mass spectral data was collected in positive mode with the mass 

range of m/z 50 to 600.  The fragmentor voltage was 250 V and different collision 

energies (10, 20, and 40 eV) were applied in the auto MS/MS mode.  A linear rail system 

with the 1D transmission mode was utilized to ensure the consistent delivery of samples.  

The distance between the DART source and the inlet of mass analyzer was set at 3 cm. 

3.3 Gas Chromatography Tandem Mass Spectrometry 

An Agilent 7890A GC system (Santa Clara, CA, USA) with a DB-5MS column 

(30m× 250 μm× 0.25 μm, J&W, Agilent) was coupled to an Agilent 7000 GC-MS Triple 

Quad mass spectrometer.  In the gas chromatography tandem mass spectrometry (GC-

MS/MS) system, the retention-time locking (RTL) with proadifen (20.765 min) was used 

to provide a consistent retention time for the analytes over time.  The GC parameters for 

full scan mode were as follows: injection volume of 5 μL, split ratio of 10:1, injection 

temperature of 280 °C, transfer line temperature of 300 °C, and helium as a carrier gas at 

different flow rates depending on the pressure required for the RTL.  The oven 

temperature program was initiated at 60 °C, held for 1 minute and then ramped at the rate 

of 10 °C/min to a maximum of 325 °C, where the temperature was held for 8 minutes. 

The operating parameters for MS in full scan mode were as follows: gain factor of 1, 
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source temperature at 300 °C, quadrupole temperature at 150 °C, solvent delay of 3.75 

min, ionization energy of 70 eV, and acquisition mass range of m/z 45–570. In CI mode, 

methane was used as a reagent gas with a flow of 20%.  In the product ion scan and 

multiple reaction monitoring (MRM) mode, the flow rate of nitrogen as the collision gas 

and helium as the quench gas was 1.0 mL/min. The acquisition mass range was varied in 

product ion scan mode during MRM optimization starting from m/z 35 up to the mass of 

the selected precursor ion. Other MS operating conditions remained the same. 

3.4 Gas Chromatography Quadrupole Time-of-Flight 

A high-resolution 7200 Accurate-Mass Q-TOF mass spectrometer (Santa Clara, 

CA, USA) was coupled to an Agilent 7890B GC system with a DB-5MS column (30m× 

250 μm× 0.25 μm, J&W, Agilent).  With the exception of an injection volume of 1 μL 

with splitless mode in CI source and transfer line temperature of 325 °C, the operating 

parameters for the GC system remained consistent with those used for GC-MS/MS.  The 

operating parameters for MS in the full scan mode were as follows: source temperature at 

300 °C, quadrupole temperature at 150 °C, solvent delay of 4 min, acquisition mass range 

of m/z 50 to 500, and acquisition time of 200 ms/spectrum.  Methane was used as a 

reagent gas for CI mode (90 eV).  In targeted MS/MS mode, different collision energies 

(10, 20, and 40 eV) were applied for pre-programed target masses of analytes using an 

acquisition time of 500 ms/spectrum.  Other MS operating conditions remained the same 

as the full scan mode.  The daily mass calibration was performed using mass 

spectrometric grade perfluorotributylamine (PFTBA) in order to achieve high mass 

accuracy. 
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3.5 Electrospray Ionization Ion Mobility Spectrometry Mass Spectrometry 

A commercial Excellims RA4100 ESI-IMS-MS (Acton, MA, USA) was equipped 

with an Extrel QC-150 quadrupole mass spectrometer (Pittsburgh, PA, USA).  The 

instrument was operated in positive ion mode under the following conditions: 3.2 kV 

above the drift tube potential for an ESI source voltage, drift tube voltage of 8 kV at a 

temperature of 150 °C, ultra high purity air as a drift gas at a flow rate of 2 L/min, and a 

mass range of m/z 50 to 500.  The sample was infused using a Harvard Apparatus Model 

22 syringe pump (Holliston, MA, USA) fitted with a 250 μL Hamilton Gas tight syringe 

(Reno, NV, USA) at a flow rate of 3 μL/min. 
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CHAPTER 4. DEVELOPMENT OF RAPID SCREENING METHODS FOR NPS 

4.1 Qualitative Analysis of NPS by Ion Mobility Spectrometry 

A commercial Barringer IMS equipped with a 63Ni radioactive ion source (Figure 

19) was utilized for the qualitative analysis of NPS.  As previously mentioned, this 

instrument provides a number of advantages including ease of operation and 

maintenance, high sensitivity, fast response, and high throughput analysis.  With these 

benefits, the instrument was evaluated for the rapid detection and characterization of 

emerging NPS.  Since this IMS analyzes compounds in gas phase, samples are heated 

first to increase the volume of vapors during the sample introduction at the desorber 

[114].  The inlet and drift tube are also kept in the high temperature to prevent the 

condensation of vaporized analytes from the desorber [114].  In the current investigation, 

the factory setting for the narcotic mode (positive) was kept because previous studies 

showed that some of these emerging NPS were not temperature dependent in the range 

from 190 to 280 °C for the desorber and from 200 to 290 °C for the inlet [115]. 

 

 

Figure 19. Picture of Barringer IONSCAN 400B. 
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4.1.1 Programing of Parameters and Detection of NPS 

Table 5 shows the list of 35 NPS that were successfully detected and characterized 

in our laboratory using the Barringer IMS.  The experimental drift time for each 

substance were determined ranging from 11.741 to 19.092 ms, which correspond to the 

K0 values ranging from 1.5373 to 0.9466 cm2/Vs.  The detection menu for each 

compound was then programmed into the acquisition method following the results 

obtained in Table 5.  The comparison between our results and previously reported K0 

values from other research groups (Armenta et al. and Joshi et al.) showed good 

agreement for MDPV, methylone, α-PVP, 3-FMC, 4-FMC, 4-MEC, 4-MMC, 

buphedrone, 4'-MePPP, butylone, naphyrone, and UR-144 with differences less than ± 

0.006 cm2/Vs [115-116].  The K0 value for methylone were identical, while 4-MMC and 

UR-144 showed the negligible difference (0.006) between research groups.  The good 

consistency is mainly because the same type of instrument was used in the detection and 

characterization of these NPS although the instrument settings were slightly different. 

That being said, there were some discrepancies of the K0 value for methylone, 4-

MEC, 4-MMC, buphedrone, 4'-MePPP, and butylone between our results from the 63Ni-

IMS and the previously reported K0 values from the different ionization sources, ESI and 

APCI IMS-MS as shown in Table 5 [117-118].  The discrepancies might be because the 

reference standard was not considered to determine the K0 values when they reported 

these values from other ionization sources as described in Equation 4. Different ionized 

species may have been produced during the ionization process by the ESI and APCI 

source.  It is understood that protonated molecular ions are produced in the Barringer 
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IMS as a result of the ionization process governed by the reactions between reactant ions, 

a reagent gas, and analytes.  Unfortunately, the ionized species from the Barringer IMS 

cannot be identified because of the lack of identification capabilities in this instrument. 

 

Table 5. List of 35 NPS analyzed by the Barringer IMS and the results from the study 

[119]. 

NPS 
Molecular 

Formula 

Drift 

time (ms) 

K0       

(cm2/Vsec) 
Reference K0 (cm2/Vsec) 

Synthetic cathinones  

2,3-MDPV C16H21NO3 14.897 1.2150  

MDPV C16H21NO3 15.005 1.2026 1.199[115], 1.201[116], 1.18[117] 

2,3-MDMC C11H13NO3 12.554 1.4411 
 

Methylone C11H13NO3 12.570 1.4354 1.435[115], 1.435[116], 1.28*[117] 

2,3-Pentylone C13H17NO3 13.511 1.3379  

Pentylone C13H17NO3 13.677 1.3217  

bk-DMBDB C13H17NO3 13.553 1.3345  

bk-EBDB C13H17NO3 13.627 1.3274  

2-MePBP C15H21NO 13.726 1.3170  

3-MePBP C15H21NO 13.979 1.2928  

4-MePBP C15H21NO 13.879 1.3024  

α-PVP C15H21NO 13.802 1.3094 1.306[115] 

3-FMC C10H12FNO 11.742 1.5271 1.530[115] 

4-FMC C10H12FNO 11.741 1.5373 1.539[116] 

4-MEC C12H17NO 12.520 1.4418 1.447[115], 1.30†[117], 1.41[118] 

Pentedrone C12H17NO 12.463 1.4504  

4-MMC C11H15NO 12.008 1.5050 1.499[116] 

Buphedrone C11H15NO 11.893 1.5199 1.520[116] 

4'-MeOPPP C14H19NO2 13.677 1.3194  

4'-MePHP C17H25NO 15.068 1.1977  

4'-MePPP C14H19NO 13.342 1.3547 1.350[115], 1.33[118] 

bk-MDDMA C12H15NO3 13.010 1.3903  

bk-MDEA C12H15NO3 13.116 1.3790  
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NPS 
Molecular 

Formula 

Drift 

time (ms) 

K0       

(cm2/Vsec) 
Reference K0 (cm2/Vsec) 

Butylone C12H15NO3 13.005 1.3808 1.382[115], 1.380[116], 1.34[118] 

Naphyrone C19H23NO 15.671 1.1532 1.152[116] 

α-Naphyrone C19H23NO 15.433 1.1710  

Synthetic cannabinoids  

AM1220 C26H26N2O 18.282 0.9885  

AM2233 C22H23IN2O 17.786 1.0161  

CPE C24H28N2O2 18.149 0.9959  

JWH-018 C24H23NO 17.575 1.0283  

APICA C24H32N2O 19.092 0.9466  

MAM2201 C25H24FNO 18.352 0.9847  

UR-144 C21H29NO 17.239 1.0484 1.042[115] 

XLR-11 C21H28FNO 17.397 1.0388 
 

Phenethylamines  

25I-NBOMe C18H22INO3 17.372 1.0404 
 

*: 1.28 for m/z 208.10 in APCI and ESI and 1.35 for m/z 206.08 in APCI 

†: 1.30 for m/z 192.14 in APCI and ESI and 1.41 for m/z 190.12 in APCI 

 

Overlaid ion mobility spectra of representative compounds are present in Figure 20. 

Each substance was clearly determined with a peak at different drift times along with the 

presence of consistent reactant ion peak (RIP) at 9.675 ms.  This RIP plays an important 

role in proving the consistent performance of instrument as well as to standardize the K0 

value from the experiments [75].  In the experiment, nicotinamide (NA) was used as a 

reagent gas producing a reactant ion and the K0 values were automatically calculated in 

the software.  As mentioned previously, the rapid detection of analytes (within 20 ms) is 

the biggest advantage of this commercial IMS and it is clearly shown during this 

investigation with the total analysis time less than one minute.  However, the false 

positive alarm may sound during the analysis of compounds that possess a similar 
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reduced mobility. For example, butylone (K0: 1.3808) and bk-MDEA (K0: 1.3790) as well 

as XLR-11 (K0: 1.0388) and 25I-NBOMe (K0: 1.0404) will most likely result in false 

positive alarms with each other.  It was observed that the false positive alarm occurs 

when the difference of K0 is less than 0.008. 

 

 

Figure 20. Overlaid ion mobility spectra of the representative NPS by the Barringer 

IMS [119].  Each substance was distinctly detected with a different drift time and a 

consistent reactant ion peak (RIP). 
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To investigate the separation capability of this Barringer IMS, each mixture was 

prepared with three different compounds at the concentration of 3.3 µg/mL.  Two 

mixtures, which contain 3-FMC, methylone, and MDPV as well as 4-MMC, butylone, 

and MDPV, were analyzed by the Barringer IMS as shown in Figure 21.  Although the 

baseline separation was only possible when analytes have significantly different K0 

values, the separation of multiple compounds is still promising.  Therefore, this Barringer 

IMS can be utilized for the rapid screening of mixtures as a presumptive test. 

 

 

Figure 21. Ion mobility spectra of the two mixtures (a) 3-FMC, methylone, and MDPV, 

and (b) 4- MMC, butylone, and MDPV at the concentration of 3.3 µg/mL each [119].  

The baseline separation was observed when analytes have significantly different K0 

values only. 

 

4.1.2 Determination of Detection Limits 

The sensitivity of the instrument is often evaluated by the limits of detection 

(LODs), which may describe an instrumental signal that is significantly different from the 

blank or background signal at given concentration [120].  In the investigation of 

sensitivity, LODs were determined by constructing calibration curves for three NPS 
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including bk-EBDB, bk-MDDMA, and APICA as illustrated in Figure 22.  Calibration 

standard solutions were prepared in methanol by serial dilution at the concentration of 

0.1, 0.25, 0.50, 1.0, 1.5, and 3.0 μg/mL.  The measurement for each calibrator was 

performed 5 times (n=5) per day after delivering 1 μL of each dilution during three 

consecutive days.  The calculation for LODs was determined as three times the standard 

deviation of the intercept divided by the slope of the linear regression.  The detection 

limits were determined for these substances from 40 to 80 pg in the linear range of 100 to 

500 pg with a good linearity, R2 between 0.9831 and 0.9999. 

 

Figure 22. Calibration curves for bk-EBDB (top), bk-MDDMA (middle), and APICA 

(bottom) in three different days by 63Ni-IMS.  Each curve showed a good linearity in the 

linear range of 100 to 500 pg. 
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As shown in the calibration curve, the Barringer IMS is often challenged by narrow 

dynamic linear response because of the depletion of reactant ions along with an increased 

concentration of analyte molecule [67].  Thus, the application of this Barringer IMS is 

limited to the qualitative analysis of compounds.  In addition, saturation of the drift tube 

may results in inaccurate measurements and the instrument disability for an extended 

time because of sample overloading [67].  Moreover, separation capabilities of the 

Barringer IMS may be limited for some compounds with a resolving power of 36-40 

[121].  Nevertheless, IMS is an attractive alternative for the qualitative analysis of these 

substances of abuse with sub-nanogram detection capability. 

4.1.3 Analysis of Seized Samples 

The applicability of the IMS instrument in actual case scenarios was investigated 

analyzing seized drug samples provided by a local forensic laboratory.  A total number of 

four seized samples were obtained as solutions after each sample was extracted with 

methanol.  These seized samples were then further diluted with methanol in 1:1000 (v/v) 

to prevent overloading of analyte in the system.  Figure 23 shows overlaid ion mobility 

spectra of four seized samples analyzed by the Barringer IMS.  The corresponding alarms 

for the identity of samples were obtained as a part of blind test and summarized in Table 

6 along with the analysis results from the forensic laboratory.  It was informed that the 

identification of seized samples was confirmed by GC-MS and/or Fourier transform 

infrared spectroscopy (FTIR).  Of the four seized drugs samples, it was found that blind 

sample 3 contains multiple compounds while the other three samples were discovered to 

be a single compound.  Surprisingly, four positive alarms were obtained for blind sample 
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3, which were 4-MePBP, α-PVP, bk-MDEA, and butylone.  Considering the presence of 

only two peaks other than the RIP peak in the ion mobility spectrum, it was thought that 

false positive alarms were attained for the blind sample 3.  False positive alarms were 

mainly because the K0 values are similar between 4- MePBP and α-PVP as well as bk-

MDEA and butylone.  Likewise, false positive alarms were observed for blind sample 4, 

in this case two positive alarms (bk-MDMA and butylone) for only one peak present in 

the spectrum.  Although false positive alarms were obtained for some seized samples, the 

rapid screening of seized samples was successfully achieved by the Barringer IMS with 

its simple and ease operation. 

 

 

 

Figure 23. Overlaid ion mobility spectra of four seized drug samples provided 

by a local forensic laboratory [119].  It was found that blind sample 3 contains 

multiple compounds. 
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Table 6. Results of seized drug sample analysis by the Barringer IMS [119]. 

Sample 
Blind 

sample 1 

Blind 

sample  2 

Blind 

sample 3 

Blind 

sample 4 

Results from local 

forensic laboratory 

(GC-MS and/or FTIR) 

α-PVP α-PVP 
bk-MDEA 

α-PVP 
butylone 

63Ni-IMS α-PVP α-PVP 

4-MePBP 

α-PVP 

bk-MDEA 

butylone 

bk-MDEA 

butylone 

 

4.1.4 Conclusions 

The capability of rapid detection and characterization of emerging NPS were 

investigated in the section, 4.1.  It is observed that emerging NPS were successfully 

detected with their characteristic reduced mobilities in the default positive mode by the 

Barringer IMS.  The separation of these substances has been also simulated by analyzing 

mixtures prepared with an equivalent amount of three-analytes.  The evaluation of 

mixture analysis has shown that the baseline separation can be achieved for those 

compounds that have substantially different drift times.  The ability to separate the 

mixture was also observed for the seized drug sample contained multiple compounds.  

However, the limitations of the Barringer IMS are the potential false positive results 

because of the similar reduced mobilities for certain substances, small dynamic range, 

and lack of identification capability.  Nevertheless, successful detection of seized drug 

samples proved that IMS can be readily used as an alternative rapid screening method for 

these emerging NPS.  As previously demonstrated, the Barringer IMS instrument is 
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beneficial in the analysis of these substances with ease of operation and maintenance, 

relatively inexpensive analysis, and high sensitivity with sub-nanogram detection 

capabilities.  These findings using the Barringer IMS instrument have been reported and 

published in peer-reviewed literature [119]. 

4.2 Direct Analysis in Real Time Quadrupole Time-of-Flight  

This section evaluates the potential for rapid identification of emerging NPS using a 

direct analysis in real time (DART) ion source coupled to a high-resolution quadrupole 

time-of-flight mass spectrometer.  Although the DART was originally designed for the 

JEOL AccuTOF time-of-flight mass spectrometer, it is readily coupled to any other mass 

spectrometers using an atmospheric pressure flange, called Vapur® atmospheric pressure 

interface by IonSense [85].  As described in Figure 24, the Vapur® interface consists of a 

gas-transfer tube and vacuum pump, which provides flexibility to fit the DART source 

onto different mass spectrometers as well as reproducibility and peak shape for extracted 

ion profiles.   

 

Figure 24. The DART source coupled to a QTOF mass 

spectrometer with a linear rail system for the sample introduction. 
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In DART analysis, samples are introduced by thermal desorption with heated gas in open 

air [99].  Therefore, it is important to control atmospheric conditions and optimize the 

instrumental parameters properly.  As a relatively new addition to mass spectrometry, 

DART provides a number of advantages including minimum sample preparation, rapid 

analysis capability, versatile applications employing different configurations, and the 

ionization capability for analytes of low to medium molecular mass [100].  However, the 

acquisition of good spectra is highly dependent on the DART source temperature because 

analytes are desorbed via a heated gas from the source.  In addition, loss of analytes is 

possible before analysis because of the evaporation of samples at high temperature [100].  

Nonetheless, DART-MS has shown great potential for application in the analysis of drugs 

in the forensic laboratory setting as mentioned previously. 

4.2.1 Optimization of Parameters 

The direct analysis in real time (DART) ion source was initially operated with 

helium gas as a reagent gas at 350 °C and a flow rate of 2 L/min as described in the 

previous study performed by Lesiak et al. [31].  During the preliminary study, samples 

were introduced using a closed-end capillary tube after dipping into the standard solution.  

The fragmentor voltage in the QTOF-MS was optimized first because the voltage plays 

an important role to transmit ions into the mass spectrometer.  The fragment voltage is 

applied to the exit end of capillary, which is a part of ion optics maximizing the signal, 

but minimizing the noise contribution [122].  At high voltage, ions may produce 

fragments acting as an in-source fragmentor, while ions are not efficiently delivered into 

the quadrupole at low voltage [123].  Therefore, it is crucial to find the optimal voltage to 
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maximize the transmission of ions of interest.  Different fragmentor voltages from 50 to 

400 V were applied during optimization using the individual standard solutions of bk-

EBDB and α-PVP.  To ensure the consistency of results, the analysis was duplicated 

using three replicates each day.  It is showed that ions are effectively transmitted at the 

voltage between 200 and 300 V without fragmentation possibly happening at higher than 

300 V.  Considering optimal voltage for both compounds, 250 V is chosen in this study 

as shown in Figure 25. 

 

Figure 25. Optimization of the fragmentor voltage for the QTOF-MS.  

The ideal voltage was 250 V for both compounds between replicates. 

 

Although sample introduction using the capillary tube is simple and fast, the 

amount of sample introduced into the mass spectrometer is not consistent.  For liquid 

analysis, a linear rail system with 1D transmission module can be utilized to alleviate the 

problem with the capability of automated sample introduction.  Up to 10 samples can be 

automatically introduced into the mass spectrometer after being delivered onto mesh 

spots.  In the stage of optimization during experiments, each substance was analyzed in 

triplicate after the analysis of blank spot in the direction of analysis order as illustrated in 
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Figure 26.  Since instrumental responses (represented in abundance of ions) are 

dependent on the exposure time of each sample on the spot, the amount of delivered 

sample onto the mesh spot and the sample speed are important factors.  To investigate the 

relationship between these two factors and the instrument response, different amounts of 

bk-MDDMA standard solution were delivered ranging from 5 to 20 ng and analyzed at 

different sample speed ranging from 1.0 to 2.5 mm/sec (Figure 28 (a)).  The results 

showed that response from the instrument is proportional to the increased amount of 

sample delivered as expected.  However, it is also observed that samples are not 

completely desorbed from the mesh when more than 15 ng is delivered, resulting in 

carryover.  The sample speed is related to the exposure time of each mesh spot.  It is 

possibly explained that faster sample speed (2.5 mm/sec) results in less exposure time at 

each spot.  Although there was no clear relationship established between the sample 

speed and delivered amount of sample in terms of instrument response, it was observed 

that faster sample speed produces carryover between analyses.  Therefore, the optimal 

parameters for the sample speed and sample delivery were chosen to be 1.5 mm/sec and 

10 ng, respectively. 

 

Figure 26. Sample introduction by 1D transmission module using 

the linear rail system. 
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During the investigation of the sample speed and amount of sample delivery using the 

transmission module, it was noticed that samples deposited toward the end of the mesh 

(refer to ‘back’) tend to be less sensitive than those deposited toward the front of mesh 

(refer to ‘front’).  In order to prove the tendency, the same compound, α-PVP, was 

delivered onto two different portions of mesh.  The results showed that abundances 

between front and back portions were significantly different (Figure 28 (b)).  It might be 

a result from the loss of analyte while samples in the back portion are waiting.  Therefore, 

samples were delivered in the back portion of mesh only during the limits of detection 

study. 

Figure 27 shows different types of insulating caps that can be utilized in DART 

analysis.  The flat cap is normally used for the on-axis orientation of the DART source, 

whereas the angle cap is utilized for the 45° angle configuration [100].  Although the 

angle cap is not commonly used for the on-axis surface or transition mode, the 

performance between two caps were evaluated.  As presented in Figure 28 (c), the 

instrument response were slightly greater when the angle cap was used than the flat cap.  

It might be because the angle cap transports the heated reagent gas closer to the mash 

spot than the flat cap.  However, the flat cap is used during the rest of research because 

abundances between two caps are not significantly different and the variation between 

replicates was larger when the angle cap was used than the flat one. 
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Figure 27. Different types of insulating caps: (a) flat cap and (b) angle cap. 

 

Lastly, the distance between the DART source and the inlet of mass spectrometer was 

optimized to prevent the loss of analyte introducing to the mass spectrometer.  It is 

important to have the optimal distance because the space is also where samples are 

introduced.  As shown in Figure 28 (d), instrument response was greater when the gap is 

kept in 3 cm. 
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Figure 28. Optimized operating conditions for (a) the sample speed and amount of sample 

delivered, (b) different positions for sample delivery, (c) different types of insulating cap, 

and (d) distance between the DART source and the inlet of MS. 

 

4.2.2 Analysis of NPS standards 

The same set of NPS from the study using the Barringer IMS was investigated for 

the rapid identification of those compounds using DART-QTOF-MS.  As previously 

described, the DART source is considered as a soft ionization technique producing 

protonated molecular ions in the positive mode.  Therefore, protonated molecular ion 

species ([M+H]+) for each analyte were successfully identified in full scan mode with 

high mass accuracy less than 4.68 ppm as summarized in Table 7.  Mass accuracy is a 
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term to describe the mass difference between the theoretical mass (exact mass) and 

measured mass (accurate mass) [124].  In this study, mass accuracy is expressed in parts 

per million (ppm).In full scan mass spectra, [M+H]+ is typically present as a base peak 

and other peaks (m/z 72.0811, 135.1016, 177.1481, 279.1593, and 462.1487) potentially 

derived from the atmospheric background may be found with relatively small abundances 

as shown in Figure 29.  These atmospheric background peaks can be excluded by 

acquiring air blanks before and after the sample analysis.  In summation, the presence of 

[M+H]+ with high mass accuracy can facilitate the rapid screening and identification of 

these emerging NPS.   

Table 7. List of 35 NPS analyzed by DART-QTOF-MS [119].  High mass accuracy was 

observed for NPS of interest (≤ 4.68 ppm). 

NPS 
Molecular 

Formula 

Theoretical 

[M+H]+ 

Measured  

[M+H]+ 

Mass accuracy 

(ppm) 

Synthetic cathinones  

2,3-MDPV C16H21NO3 276.1594 276.1594 0.00 

MDPV C16H21NO3 276.1594 276.1601 2.53 

2,3-MDMC C11H13NO3 208.0968 208.0967 0.48 

Methylone C11H13NO3 208.0968 208.0970 0.96 

2,3-Pentylone C13H17NO3 236.1281 236.1278 1.27 

Pentylone C13H17NO3 236.1281 236.1271 4.23 

bk-DMBDB C13H17NO3 236.1281 236.1273 3.39 

bk-EBDB C13H17NO3 236.1281 236.1270 4.66 

2-MePBP C15H21NO 232.1696 232.1692 1.72 

3-MePBP C15H21NO 232.1696 232.1691 2.15 

4-MePBP C15H21NO 232.1696 232.1693 1.29 

α-PVP C15H21NO 232.1696 232.1692 1.72 

3-FMC C10H12FNO 182.0976 182.0982 3.29 

4-FMC C10H12FNO 182.0976 182.0979 1.65 

4-MEC C12H17NO 192.1383 192.1392 4.68 
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NPS 
Molecular 

Formula 

Theoretical 

[M+H]+ 

Measured  

[M+H]+ 

Mass accuracy 

(ppm) 

Pentedrone C12H17NO 192.1383 192.1389 3.12 

4-MMC C11H15NO 178.1226 178.1220 3.37 

Buphedrone C11H15NO 178.1226 178.1221 2.81 

4'-MeOPPP C14H19NO2 234.1489 234.1489 0.00 

4'-MePHP C17H25NO 260.2009 260.2008 0.38 

4'-MePPP C14H19NO 218.1539 218.1531 3.67 

bk-MDDMA C12H15NO3 222.1125 222.1121 1.80 

bk-MDEA C12H15NO3 222.1125 222.1118 3.15 

Butylone C12H15NO3 222.1125 222.1124 0.45 

Naphyrone C19H23NO 282.1852 282.1858 2.13 

α-Naphyrone C19H23NO 282.1852 282.1858 2.13 

Synthetic cannabinoids  

AM1220 C26H26N2O 383.2118 383.2110 2.09 

AM2233 C22H23IN2O 459.0928 459.0924 0.87 

CPE C24H28N2O2 377.2224 377.2210 3.71 

JWH-018 C24H23NO 342.1852 342.1854 0.58 

APICA C24H32N2O 365.2587 365.2577 2.74 

MAM2201 C25H24FNO 374.1915 374.1902 3.47 

UR-144 C21H29NO 312.2322 312.2315 2.24 

XLR-11 C21H28FNO 330.2228 330.2216 3.63 

Phenethylamines  

25I-NBOMe C18H22INO3 428.0717 428.0714 0.70 
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Figure 29. Full scan MS obtained using DART-QTOF-MS, (a) α-PVP, 

(b) bk-MDDMA, and (c) XLR-11 [119].  The protonated molecular 

ion for each compound was observed as a base peak. 

 

However, the differentiation of isomers is often challenging in full scan mode 

because isomers will present the same protonated molecular ions with the identical exact 

mass.  In the case of constitutional isomers, it is possible to differentiate these isomers by 

comparing fragmentation patterns in product ion scan MS resulting from CID.  

Previously, the fragmentation of synthetic cannabinoids and synthetic cathinones were 

studied by Musah et al. and Lesiak et al. using DART-TOF-MS, varying the electrode 
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voltage at the inlet cone of the instrument, so called in-source CID [30-31].  In our 

application of DART, the QTOF mass spectrometer was used enabling CID in the 

collision cell.  The advantage of this QTOF-MS over TOF-MS is the simultaneous 

acquisition of full scan and product ion scan mass spectra during the MS/MS analysis, 

which may not be possible with in-source CID.  In QTOF, the ions of interest are filtered 

and selected in quadrupole and the fragmentation happens in the collision cell where the 

collision energy (CE) is applied.  The product ion scan mass spectra for bk-MDEA and 

bk-MDDMA are shown in Figure 30 for example.  In the differentiation of constitutional 

isomers, the product ion scan mass spectra at the CE of 20 eV were compared because 

most of precursor ions were extensively fragmented at 40 eV.  For example, bk-MDEA 

and bk-MDDMA can be differentiated comparing product ion scan MS at CE 20eV with 

the presence of m/z 174.0913 and 204.1014 for bk-MDEA, which correspond to the loss 

of C2H7O and H2O. 
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Figure 30. Product ion MS of bk-MDEA (left) and bk-MDDMA (right) at different 

collision energies of 10, 20, and 40 eV [119].  Two constitutional isomers showed 

different fragmentation at CE of 20 eV. 

 

The presence of these characteristic peaks in each product ion scan spectrum may also 

facilitate the qualitative analysis of isomer mixtures.  As shown in Figure 31, the 

characteristic peaks, m/z 204.1008 and 177.0529 for bk-MDEA and bk-MDDMA, 

respectively, are present with the significant relative intensity.  In addition, there were 

evident changes in the relative peak intensity for m/z 147.0424 and 72.0806.  The 

identification of other product ion peaks with relative intensities can be found in 

Appendix 2.  The presence and relative intensity of product ions resulting from CID were 

consistent and repeatable in our investigation.  The fragmentation of other NPS are also 

presented in Appendix 2. 
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Figure 31. Product ion MS of a bk-MDEA and bk-MDDMA mixture at CE of 20 eV.  

Characteristic peaks from each compound were identified in the mixture analysis. 

 

Each product ion scan MS from individual compounds was also compared to the 

library constructed by the same instrument, but equipped with an ESI source.  The 

relative intensities of each peak in the mass spectra at the different CE for the same 

compounds were very similar to each other, demonstrating the benefit of the ESI mass 

spectral library. In addition, the fragmentation pathway for various synthetic cathinones 

was extensively elaborated in previous studies by other groups using LC-QTOF-MS [96, 

125].  In the comparison between DART-QTOF and LC-QTOF product ion mass spectra 

at different collision energies for methylone, butylone, pentylone, MDPV, 4'-MePPP, bk-

MDEA, bk-MDDMA, and naphyrone were compared, and the presence and the relative 

intensity of each fragment peak were virtually identical.  However, product ion mass 

spectra at CE of 10 eV for butylone and 20 eV for MDPV and naphyrone showed slightly 

different relative intensities for some fragment peaks.  Although there was a minor 

discrepancy in the relative abundance between our results and previous studies, DART-

QTOF-MS is still a valuable alternative technique for the rapid qualitative analysis of 

NPS with the capability of simultaneous acquisition of full scan and product ion scan 

mass spectra as well as fast analysis time less than two minutes. 
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4.2.3 Determination of Detection Limits 

As described in 4.1.2, the same approach was applied to determine the limits of 

detection for bk-EBDB, bk-MDDMA, and APICA utilizing this DART-QTOF-MS.  The 

calibration curves were constructed on the basis of the calibration solutions ranging from 

0.05 to 3.0 μg/mL versus instrumental responses for each calibrator.  The response from 

the instrument refers to abundance, determined by integrating the peak area of extracted 

protonated molecular ion.  The relationship between the amount of sample delivered and 

abundance showed a good linearity (0.9913 ≥ R2 ≥ 0.9417) in the linear range of 50 to 

1500 pg (Figure 32).  The calculated LODs for bk-EBDB, bk-MDDMA, and APICA by 

DART-QTOF-MS were ranging from 300 to 340 ng.  Although the determined detection 

limits of DART-QTOF-MS were approximately 10 times higher than the Barringer IMS, 

this DART-QTOF-MS instrument provides better dynamic range than the IMS with the 

capability of identification for compound. 
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Figure 32. Calibration curves for bk-EBDB (top), bk-MDDMA (middle), and APICA 

(bottom) in three different days by DART-QTOF-MS. 

 

4.2.4 Analysis of Seized Samples 

As a continuation to the study from the analysis of seized drug samples using the 

Barringer IMS, the same set of seized samples prepared from 4.1.3 was analyzed using 

DART-QTOF-MS.  Each sample was evaluated in positive mode with both full scan and 

product ion scan.  The identification of each sample was determined after product ion 

scan mass spectra from the seized samples were searched using the database constructed 

by the ESI-QTOF.  The results of product ion scan spectra at different CE are shown in 

Figure 33.  On the basis of library search results, blind samples 1 and 2 were identified as 
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the same single compound, α-PVP, while blind samples 3 and 4 were identified as bk-

MDEA and butylone, respectively.  The results from the DART analysis were in 

agreement with the previous screening test results by the Barringer IMS and also the 

results from the local forensic laboratory.  In the case of blind sample 4, the alarm was 

obtained for two compounds (butylone and bk-MDEA) from the 63Ni-IMS results 

although there was only one peak present in the ion mobility spectrum.  According to the 

product ion scan spectrum obtained at CE of 40 eV during the identification study by 

DART-QTOF-MS, it is found that blind sample 4 was butylone addressing the false 

positive alarm that occurred for bk-MDEA.  It is important to note that some compounds 

are differentiated more effectively at CE of 40 eV than 20 eV.  Nevertheless, both results 

from the DART analysis and the local forensic laboratory were also agreed each other for 

blind sample 4.  On the other hand, blind sample 3 showed some challenges in the 

analysis of mixture using the DART-QTOF-MS.  The result from the analysis of blind 

sample 3 revealed that the identification of this sample was found to be bk-MDEA 

according to the library search.  Unfortunately, the result was only partially correct 

compared to the screening test result obtained by the Barringer IMS and the forensic 

laboratory result.  There are two possible reasons for the discrepancy; the use of auto 

MS/MS mode and the lack of separation capabilities in this DART technique.  While the 

latter is inevitable, a different MS/MS mode can be used to alleviate the analysis of 

mixture.  In auto MS/MS mode, the most abundant ion peak (base peak) is automatically 

selected for the precursor ion.  In blind sample 3, bk-MEDA might have been dominant 

compared to another compound possibly contained.  Therefore, targeted MS/MS mode 

was utilized to pre-select the ion of interest in an acquisition method.  As shown in Figure 
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33, the selection was made for m/z 232.1672 and it was found that the compound was 

identified as α-PVP according to the library search, which provided a positive result 

compared to the forensic laboratory result. 

 

Figure 33. Product ion scan mass spectra of seized drug samples at 

different collision energies [119]. 
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4.2.5 Conclusions 

The novelty of DART-QTOF-MS is the rapid identification of compounds with 

total analysis time in less than two minutes per sample.  The capability of soft ionization 

in the DART source allows for the presence of the protonated molecular ion.  It is the 

greatest advantage of DART-QTOF-MS to identify molecular ions as an alternative 

screening technique compared to the Barringer IMS while both techniques can provide 

sub-nanogram detection capabilities.  The coupling of DART with QTOF-MS also 

provides profiles of produced ions with high mass accuracy, which may facilitate the 

identification of unknown compounds in the purpose of seized drug analysis.  In addition, 

it was found that product ion scan spectra between the DART ion source and ESI source 

produces no significant differences, allowing for the use of spectral libraries generated by 

ESI-QTOF.  It has been shown that these libraries can be used to identify unknown 

compounds using product ion scan mass spectra.  Moreover, the utilization of the QTOF 

mass spectrometer is beneficial for the differentiation of constitutional isomers with 

distinctive fragmentation patterns in product ion scan mass spectra between them.  

Therefore, DART-QTOF-MS can facilitate the analysis of these emerging NPS by 

providing the capabilities of minimal to no sample preparation and rapid identification as 

a promising alternative screening tool.  The utilization of DART-QTOF-MS for the 

analysis of NPS has been published in peer-reviewed literature [119]. 
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CHAPTER 5. DEVELOPMENT OF CONFIRMATORY METHODS FOR NPS 

5.1 Gas Chromatography Tandem Mass Spectrometry 

As the gold standard analytical technique, GC-MS is commonly used for the 

identification of unknown drugs with its high sensitivity, and capability to isolate 

compounds of interest from complex mixtures [126].  However, the analysis of drugs 

using traditional GC-MS with the EI source often results in equivocal identification of 

compounds that are structurally close to each other.  The ambiguous identification of 

compounds is mainly because EI mass spectra of these compounds are nearly identical 

with the lack of molecular ions and extensive fragmentation.  The application of GC-

MS/MS has been a potential alternative to provide the unambiguous identification of 

these compounds.  With the aid of GC-MS/MS, the mass spectrometric differentiation of 

designer drug regioisomers has been successfully achieved with the implementation of EI 

and/or CI sources [20, 22-23, 29, 126-127].  GC-MS/MS has also been applied to the 

identification and quantitation of traditional drugs of abuse, especially for the presence of 

GHB, opioids, cocaine, and amphetamine derivatives in human hair where a method of 

high sensitivity is required [88-89, 128].  In this section 5.1, the qualitative identification 

of 244 NPS was performed by GC-MS/MS with EI and CI sources to investigate the 

potential of the instrument as an alternative confirmatory technique in seized drug 

analysis. 

5.1.1 Retention-Time Locking and Multiple Reaction Monitoring Mode Optimization 

Prior to the analysis of NPS, an acquisition method used in the investigation was 

locked to proadifen using a retention-time locking (RTL) feature integrated in the Agilent 
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Chemstation software.  Retention time is an important component for the qualitative 

identification of substances in chromatography [129].  However, there are some variables 

that may affect the consistency of retention times between GC systems including slight 

difference in length, diameter, and film thickness of column as well as small deviation in 

the inlet pressure and oven temperature.  The goal of retention-time locking (RTL) is to 

achieve same retention times between different GC systems, but same working conditions 

[130].  While the mathematical theory of RTL is comprehensively demonstrated in the 

literature [131], the procedure to lock a method using the RTL is only described in this 

section.  First, the selection of a target compound was performed considering the ease of 

identification in the method.  It is also recommended that the elution time of the target 

compound should be in the middle of the chromatogram.  Once the target compound was 

determined, five calibration runs were initiated at different inlet pressures: target pressure 

(nominal method pressure), ± 10%, and ± 20%.  A plot of inlet pressures versus the 

corresponding retention times acquired from those five runs was used to fix the retention 

time of the target compound.  In our study, proadifen was used as a target compound to 

lock the retention time at 20.765 min.  The calibration curve constructed from the RTL 

was stored in the acquisition method and used to relock the retention time whenever 

column maintenance was performed.  In addition, the flow rate of the carrier gas (He) 

was adjusted in accordance with the optimized inlet pressure for the target compound. 

The parameters for MRM mode with both EI and CI was optimized on the basis of 

a preliminary study of NPS in full scan mode.  The optimization process consists of 

choosing appropriate precursor ion(s), selecting 2 to 3 transitions from the precursor 

ion(s) to product ion(s), and finding desirable collision energy and dwell time for each 
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transition.  The basic criteria for the selection of precursor ions included ions with high 

mass, abundance of ions, and uniqueness of ions.  A molecular ion was the first choice in 

most cases when it is present with an acceptable relative intensity larger than 20%.  

However, the base peak was also selected as a precursor ion to improve the sensitivity 

when the intensity of the molecular ion was less than 10% (for example, in EI MRM 

mode).  Once the precursor ion is chosen, product ion mass spectra were acquired at 

various CE of 5, 10, 15, 20, 25, and 30 eV.  A series of product ion scan methods at 

different CE was generated using the software called ‘Design Experiments Assistant’ by 

Agilent Technologies after a template product ion scan method is created.  The acquired 

product ion scan mass spectra were examined using the MassHunter Qualitative Analysis 

software in order to select the quantifier and qualifier transitions.  After a temporary 

MRM method was established from the selected transitions, a new set of MRM methods 

at different CE from 4 eV up to 60 eV were generated using the Design Experiment 

Assistant software.  The results of MRM mass spectra at various CE was subsequently 

evaluated using the software ‘Analyze Experiment Assistant’, in which the loaded data is 

automatically analyzed.  As a result, the final MRM method was produced with ideal 

collision energies where the product ions are most abundant at the specific transition.   

Finally, the Dynamic MRM assistant software (Agilent Technologies) was used to 

optimize the dwell times for each transition. 

5.1.2 Qualitative analysis of 244 compounds 

A total of 244 compounds listed in Appendix 1 were successfully analyzed by GC-

MS/MS with EI, CI, or both in full scan and MRM mode.  The list of 244 compounds 
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includes 148 synthetic cannabinoids, 53 synthetic cathinones, 24 phenethylamines, 1 

ketamine, 4 tryptamines, 6 piperazines, and 8 additional compounds.  Of 244 compounds, 

the different types of 34 NPS were selected carefully as a subset in the basis of drug 

schedules by U.S. DEA [132].  The comparison of these 34 NPS between EI and CI in 

full scan mode was performed and presented as a preliminary study.  Table 8 summarizes 

major peaks (a base peak and two other abundant peaks) from EI and CI full scan mass 

spectra for these 34 NPS of interest with their relative abundance.  The molecular ions 

were present in EI full scan spectra for most of the synthetic cannabinoids (16 out of 34), 

whereas extensive fragmentation was observed for all of the synthetic cathinones and 

some of the synthetic cannabinoids (18 out of 34), which are highlighted in gray. 

Table 8. Summary of major peaks in EI and CI full scan MS for the analytes of interest 

with the molecular ions, shown in bold.  Molecular ions are absent for the highlighted 

analytes in EI full scan MS [133]. 

Analyte 

Retention 

Time 

(min) 

Molecular 

Weight 

(amu) 

Major Peaks in EI Full Scan MS 

(Relative Abundance, %) 

Major Peaks in CI Full Scan MS 

(Relative Abundance, %) 

3-FMC 9.715 181.09 58 (100),  95 (12.3), 123 (6.1) 182 (100), 164 (36.0), 58 (7.7) 

4-MMC 11.635 177.12 58 (100), 91 (8.7), 119 (5.8) 160 (100), 178 (72.1), 58(17.8) 

4-MEC 12.352 191.13 72 (100), 91(8.3),  119(5.5) 192 (100), 174 (69.3), 72 (14.0) 

3,4-DMMC 13.188 191.13 58 (100), 133 (5.5) 174 (100), 192 (82.3), 163 (24.0) 

Methedrone 13.685 193.11 58 (100), 135(8.3), 77(6.2) 176 (100), 194 (60.6), 165 (29.2) 

Methylone 14.685 207.09 58 (100), 149 (6.2) 190 (100), 208 (99.9), 160 (41.3)  

MDPV 19.124 275.15 126 (100), 149 (5.5) 276 (100), 126 (55.0), 207 (42.4) 

CP-47,497 22.919 318.26 215 (100), 233 (72.9), 318 (5.9) 301 (100), 233 (39.3), 318 (5.8) 

XLR-11 22.976 329.22 232 (100), 144 (24.9), 329 (7.2) 330 (100), 310 (67.6), 125 (18.6) 

CP-47,497 C8 23.670 332.27 215 (100), 233 (75.1), 332 (6.3) 315 (100),  247 (25.7), 332 (5.5) 

JWH-251 24.783 319.19 214 (100), 144 (23.5), 116 (6.5) 320 (100), 214 (22.9), 304 (22.1) 

JWH-203 25.399 339.14 214 (100), 144 (24.6), 116 (7.0) 340 (100), 214 (24.1), 127 (13.1) 

JWH-250 25.466 335.19 214 (100), 144 (24.3), 116 (6.0) 336 (100), 214 (30.5), 320 (18.8) 

JWH-302 25.732 335.19 214 (100), 144 (23.9), 116 (5.9) 336 (100), 214 (19.2), 320 (5.0) 

RCS-4 25.867 321.17 135 (100), 321 (87.3), 264 (78.9) 322 (100), 188 (34.0), 135 (21.5) 

JWH-249 26.065 383.10 214 (100), 144 (21.4), 116 (5.4) 384 (100), 288 (66.8), 214 (46.5) 

JWH-201 26.093 335.19 214 (100), 144 (22.5) 336 (100), 188 (36.2), 214 (27.0) 

AM694 26.596 435.05 232 (100), 435 (51.8), 220 (49.5) 436 (100), 310 (23.7), 231 (12.3) 

JWH-073 26.596 327.16 200 (100), 327 (92.6), 284 (66.6) 328 (100), 200 (9.9) 
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Figure 34 shows EI full scan mass spectra for some of the phenylacetylindoles, 

including JWH-251, JWH-250, and JWH-249.  The common fragment ions at m/z 214, 

144, and 116 were observed with significant relative abundance, but extremely low 

relative intensity for a molecular ion (< 1%).  The EI mass spectra of JWH-250 

regioisomers, JWH-201 and JWH-302, were virtually identical as Figure 34 with the lack 

of molecular information.  The low abundance of molecular ions is inconsistent with the 

study reported by Uchiyama et al. where they reported the presence of the molecular ion 

for JWH-250 and JWH-251 with a relative intensity of 5% [134]. 

 

Analyte 

Retention 

Time 

(min) 

Molecular 

Weight 

(amu) 

Major Peaks in EI Full Scan MS 

(Relative Abundance, %) 

Major Peaks in CI Full Scan MS 

(Relative Abundance, %) 

APINACA 26.918 365.25 215 (100), 294 (29.8), 365 (16.3) 135 (100), 366 (23.7), 214 (14.1) 

JWH-022 27.144 339.16 155 (100), 127 (72.0), 339(58.5) 340 (100), 212 (10.2) 

JWH-018 27.161 341.18 214 (100), 284 (83.0), 341 (75.2) 342 (100), 214 (14.4), 155 (9.6) 

JWH-019 27.759 355.19 355 (100), 284 (96.1), 228(94.4) 356 (100), 202 (20.9), 157 (8.8) 

AM2201 27.884 359.17 359 (100), 232 (98.7), 284 (93.7) 360 (100), 340 (11.8), 232 (10.7) 

CPE 28.008 376.22 98 (100), 70 (5.9) 377 (100), 98 (65.2), 359 (7.3) 

JWH-122 28.031 355.19 355 (100), 214 (83.8), 298 (75.0) 356 (100), 214 (14.2), 169 (8.5) 

RCS-8 28.256 375.22 254 (100), 144 (21.0), 55 (9.2) 376 (100), 360 (33.6), 254 (29.2) 

JWH-398 28.369 375.14 214 (100), 375 (67.1), 318 (63.4) 376 (100), 214 (16.5), 189 (8.4) 

AM2233 28.409 458.09 98 (100), 70 (6.1) 459 (100), 98 (65.0), 331 (8.2) 

CB-13 28.420 368.18 171 (100), 368 (47.7), 297 (44.8) 369 (100), 241 (10.7), 155 (8.3) 

APICA 28.437 364.25 214 (100), 307 (28.3), 364 (21.7) 365 (100), 135 (43.4), 213 (22.3) 

JWH-081 29.104 371.19 371 (100), 214 (71.1), 314 (65.0) 372 (100), 188 (34.5), 355 (17.6) 

AM1220 30.018 382.20 98 (100), 70 (6.3) 383 (100), 98 (96.6), 286 (14.5) 

JWH-200 30.425 384.18 100 (100), 127 (5.9), 56 (5.5) 385 (100), 100 (15.0), 281 (10.3) 
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Figure 34. EI full scan mass spectra for (a) JWH-251, (b) JWH-250, and 

(c) JWH-249 [133].  Unambiguous identification of these compound is 

challenging in EI full scan mode because of the mass spectral similarity. 

 

Other kinds of cannabimimetic indoles, such as CPE, AM2233, and AM1220, also 

demonstrated the same issue as shown in Figure 35.  EI full scan mass spectra for these 

compounds are similar to each other with the presence of common fragment ions at m/z 

98 and 70.  Molecular ions were barely observed in the mass spectra for each compound 

in our investigation, whereas a trace of molecular ions was seen in EI mass spectra of 

AM-1220 and AM-2233 reported by the other study [135].  The identification of these 

substances that are extensively fragmented with the EI source is often challenging 

because of the similar mass spectra with the absence or relatively low abundance of the 

molecular ion. 
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Figure 35. EI full scan mass spectra for (a) CPE, (b) AM2233, and (c) AM1220 

[133].  Similar mass spectra were observed for these compounds in EI full scan 

mode. 

 

For those substances that are easily fragmented in EI, the implementation of the CI 

source will be beneficial because protonated molecular ions are normally present in CI 

mass spectra with its softer ionization capability as mentioned previously in 2.3.3.1.  

Table 8 shows the summary of major peaks from CI full scan mass spectra for each 

substance with protonated molecular ions as the most abundant peak, except CP 47, 497, 

and its C8 homolog.  The actual CI full scan mass spectra of JWH-251, JWH-250, and 

JWH-249 are shown in Figure 36 with molecular information of each substance.  It is 

expected that the collection of CI mass spectra can be used for a supplemental library 

database in the identification of unknown compounds.  As a result, the identification of 
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NPS can be facilitated with the presence of protonated molecular ions in the CI mass 

spectra. 

 

 

Figure 36. CI full scan mass spectra for (a) JWH-251, (b) JWH-250, and 

(c) JWH-249 [133].  The protonated molecular ion from each compound 

were observed with the characteristic ethyl adduct in CI full scan mode. 

 

Highly selective analysis of these NPS was also achieved by MRM mode using a 

GC-MS/MS instrument.  The presence of isomers and the similar retention times for 

some compound may cause the inaccurate identification of compounds and co-elution in 

the analysis of mixtures.  However, with the implementation of MRM mode, some of the 

co-eluted compounds can be separated by extracting chromatograms for specific 

transitions from the co-eluted peak.  In order to isolate the specific analyte of interest, it is 
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necessary for these analytes to have characteristic transitions that can help differentiate 

them from others.  The extensive fragmentation in the EI source may result in the 

generation of the same transitions with the lack of molecular information.  Therefore, the 

EI MRM method may not be adequate to separate the co-elution.  Yet, the CI MRM 

method is more useful because it provides characteristic transitions from the molecular 

ion in terms of specificity.  Optimized MRM transitions for 34 NPS of interest utilizing 

the EI and CI sources are shown in Appendix 3 and Appendix 4.  The most commonly 

encountered problem in the characterization of NPS is the presence of regioisomers, for 

example, 2-FMC, 3-FMC, and 4-FMC.  A previous study has shown the differentiation of 

regioisomers, fluorocathinones and fluoroamphetamine, with the implementation of the 

CI source and product ion scan mass spectrometry [20, 29].  In our investigation, 

regioisomeric phenylacetylindoles with the methoxy group at ortho-, metha-, and para-

positions (JWH-250, JWH-302, and JWH-201) were evaluated.  With the application of 

the CI MRM method, it was possible to differentiate these regioisomers with the presence 

of characteristic transitions at different relative abundances on top of the common 

product ion at m/z 121 as shown in Figure 37. 
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Figure 37. CI MRM mass spectra for the regioisomers of synthetic cannabinoids: 

JWH-250, JWH-302, and JWH-201 [133]. 

 

5.1.3 Determination of Detection Limits 

The developed MRM method was validated by determining the limits of detection 

(LODs) for seven compounds.  The calibration solutions were prepared in methanol at 

various concentrations ranging from 50 to 1200 ng/mL by serial dilution.  A couple of 

parameters were re-optimized to achieve the best performance during the LOD study with 

both EI and CI sources, including a gain factor of MS increased from 1 to 50, a flow rate 

of helium quench gas at 2.0 mL/min, and the pulsed splitless injection mode.  Each 

calibration solution was analyzed in 3 replicate injections in order to ensure the reliability 

of the qualitative analytical method for those NPS.  The criteria for each calibrator was a 

signal-to-noise ratio (S/N) of three.  The calibration curves were subsequently 

constructed in the different linear ranges using Agilent MassHunter Quantitative Analysis 

as shown in Figure 38.  The results from other compounds are shown and compared 
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between the EI and CI sources in Table 9.  The calibration curves for each compound 

showed a good correlation coefficient of linearity (R2 ≥ 0.99).   

 

 

Figure 38. Four-point calibration curves for JWH-250 from GC-MS/MS with (a) EI 

and (b) CI using the software MassHunter Quantitative Analysis.  White points were 

excluded from constructing calibration curves because of the disqualification for S/N 

of three. 

 

The LODs were calculated on the basis of the standard error and slope of linear 

correlation for each compound as previously discussed in 4.1.2. The comparison of LOD 

between EI and CI demonstrated that EI-MS/MS is more sensitive than CI-MS/MS 

according to our results shown in Table 9.  Nevertheless, the CI MRM method can play 

an important role in providing soft identification of these emerging NPS with the 

presence of molecular ions and its analogs as a qualitative analysis tool when a sufficient 

amount of sample is available.  Therefore, the implementation of the CI source as well as 

MRM mode with both EI and CI may facilitate the unambiguous identification of seized 

designer drugs and their analogs by providing additional spectral library database. 
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Table 9. Limits of detection (LODs) comparison between EI and CI for representative 

compounds [133]. 

NPS 

EI CI 

Linear 

range 

(ng/mL) 

Slope R2 
LOD 

(ng/mL) 

Linear 

range 

(ng/mL) 

Slope R2 
LOD 

(ng/mL) 

4-MMC 100-800 123.88 0.999 37.5 100-1200 39.71 0.993 123.5 

MDPV 100-800 397.57 0.997 63.5 200-1200 14.84 0.990 162.9 

CP-47,497 50-800 57.96 0.995 19.9 200-1200 25.33 0.990 147.8 

CP-47,497 C8  50-800 102.38 0.997 43.2 200-1200 13.95 0.991 149.4 

JWH-250 100-800 313.68 0.998 42.9 200-1200 54.06 0.992 135.5 

JWH-302 100-800 104.53 0.997 49.9 200-1200 10.84 0.995 91.1 

AM694 100-800 22.30 0.996 68.8 200-1200 4.81 0.993 106.2 

 

5.1.4 Analysis of Seized Samples 

A total number of 9 seized drug samples extracted with methanol were provided by 

a local forensic laboratory in 2013.  The identity and concentration of each sample was 

not provided at the time of receipt for the purpose of blind testing.  The qualitative 

analysis of these samples was performed using GC-MS/MS in full scan mode with EI and 

CI as well as in MRM mode with CI after further dilution with methanol (1:1000, v/v) to 

prevent overloading of samples in the GC system.  It was found that all seized samples 

contained a single compound, which was identified as methylone with the retention time 

at 14.722 ± 0.003 min for CI and 14.717 ± 0.007 min for EI.  Although the average 

retention time from these samples were slightly discrepant with the results from the 

analysis of the standard solution (Table 8), it is still within the fair range of variation, 

0.25 % for CI and 0.22 % for EI, similar to previous reports by Giarrocco et al. [129].  

One example of acquired mass spectra from the seized samples is shown in Figure 39.  
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As previously discussed, the main disadvantage of the EI source is extensive 

fragmentation for some compounds.  It is assumed that the seized sample falls into the 

synthetic cathinone or phenethylamine groups with the base peak commonly observed as 

a result of the formation of the immonium ion, m/z 58.  Further investigation was 

performed to identify the seized sample by CI full scan and MRM mode.  The acquired 

CI full scan spectrum enabled the unambiguous identification of the compound with the 

presence of the protonated molecular ion (m/z 208) as well as the byproduct species, 

[M+C2H5]+ and [M+C3H5]+, corresponding to m/z 236 and 248, respectively. 

 

Figure 39. Mass spectra of seized sample by EI full scan (top), CI full scan 

(middle), and CI MRM (bottom). 
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Further confirmation of the seized sample identity was performed with the CI MRM 

mass spectrum providing additional information as shown in Figure 39.  Each mass 

spectrum acquired from the seized sample was also compared to mass spectra obtained 

from the standard solution as shown in Figure 40.  Although there were variations in the 

relative intensity of peaks in CI full scan and MRM mass spectra, those variations were 

not significant enough for the identification of the seized sample. 

 

Figure 40. Mass spectra of methylone by EI full scan (top), CI full scan 

(middle), and CI MRM (bottom). 
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5.1.5 Conclusions 

The qualitative analysis of 244 NPS was performed by GC-MS/MS with two 

different ionization sources, EI and CI.  Of 244 substances, only 34 NPS are selectively 

shown for the results from the evaluation of GC-MS/MS as an alternative confirmatory 

technique.  The conventional method for the analysis of NPS using GC-MS with an EI 

source suffers from the lack of spectral information because of the structural similarity 

between related NPS.  In order to solve the problem, methods for the analysis of these 

substances with enhanced specificity are necessary to facilitate the identification of these 

compounds.  It is evident that the implementation of the CI source is beneficial for the 

easier identification of these emerging NPS that are extensively fragmented in the EI 

source with the level of below parts per million detection capabilities.  The analysis of 

seized drug samples has shown that the use of the CI source makes relatively easier than 

the EI source for the identification of the unknown sample.  In addition, the transitions of 

a specific precursor ion monitored by MRM mode provided additional spectral 

information to identify the isomers of interest.  Consequently, it is reported that a 

sensitive and selective method using GC-MS/MS can be used for the positive 

identification of these increasingly important NPS at the level of qualitative seized-drug 

analysis.  The corresponding mass spectra from these substances are reported for the 

potential use of supplemental spectral library database.  The qualitative analysis of 34 

compounds by GC-MS/MS has been published in peer-reviewed literature [133]. 
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5.2 Gas Chromatography Quadrupole Time-of-Flight  

As discussed previously in 2.3.3.2, a high-resolution quadrupole time-of-flight 

(QTOF) mass analyzer has been commonly coupled to the LC system in a variety of 

applications.  In this section 5.2, a QTOF mass analyzer hyphenated with the GC system 

(Figure 41) was utilized for the qualitative analysis of emerging NPS.  The  relatively 

new analytical instrument, especially Agilent GC-QTOF-MS, provides high resolution 

full scan and targeted MS/MS spectra with accurate mass, improved mass resolution of 

TOF allowing the extracted ion chromatograms with narrower mass window, and a scan 

rate as fast as 50 Hz [136].  With these advantages mentioned, GC-QTOF-MS instrument 

has been mostly applied in food safety for screening of pesticide residues [136-137] as 

well as in environmental science for screening and identification of organic pollutants in 

water [138-139]. 

 

Figure 41. Picture of GC-QTOF-MS system. 

 

The QTOF mass analyzer for the GC system was developed with the idea of 

combining the advantages of both a triple quadrupole mass analyzer for the GC system 

and a QTOF mass analyzer for the LC system [140].  Figure 42 shows the schematic of 

the QTOF mass analyzer, which is partially different from the QTOF-MS designed for 
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the LC system described in Figure 17.  The main difference between two QTOF mass 

analyzers is the position of ionization source.  In GC-QTOF-MS, the ionization sources, 

EI and CI, are under high vacuum, while the ESI or APCI sources used in LC-QTOF-MS 

are under atmospheric pressure.  The GC-QTOF-MS system is equipped with a 

removable ion source, which enables changing of the ionization source without venting 

the entire mass analyzer (Figure 43).  Although the automated removable ion source 

procedure is composed of multiple steps of purging, venting, pumping down and gate 

opening/closing, it can be done within 30 minutes. 

 

Figure 42. Schematic of a high resolution QTOF mass analyzer for GC-MS. Adapted and 

reproduced from [140]. 

 

 

Figure 43. Picture of removable ion source apparatus. 
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Recently, the analysis of NPS has encountered difficulties because of the increased 

number of newly identified substances, the absence of reference standards, and the 

complexity of analytes in mixtures or biological matrices [141].  It is believed that 

chromatography coupled with high resolution mass spectrometry plays an important role 

in identifying analytes in complex matrices [141].  Therefore, the qualitative analysis of 

NPS using the GC-QTOF-MS instrument was demonstrated in this dissertation for the 

first time. 

5.2.1 Qualitative Analysis of NPS standards  

A total number of 256 NPS were analyzed by GC-QTOF-MS in both EI and CI 

mode to create a database.  Among total compounds, the same set of 244 NPS was also 

analyzed in the previous section and the list of these substances can be found in 

Appendix 1.  The additional 12 substances were also provided by Cayman Chemical and 

were prepared with different organic solvent at different target concentrations as listed in 

Table 10.  These additional compounds were further diluted with methanol at 10 µg/mL, 

which were used as a working solution.  The operating conditions for the GC system was 

already developed and optimized during the previous study by GC-MS/MS, but only a 

couple of parameters, such as injection volume, injection mode, and temperature of 

transfer line, were modified as described in 3.4. 

The analysis of 256 NPS was performed after compounds were divided into two 

groups, 157 synthetic cannabinoids and 99 additional types of NPS.  On the basis of the 

previous study by GC-MS/MS, it was revealed that most synthetic cannabinoids could be 
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readily identified with the presence of molecular information in EI mass spectra, while 

most synthetic cathinones are ambiguously identified because of extensive fragmentation 

in the EI source.  Therefore, 157 synthetic cannabinoids were first analyzed by GC-

QTOF-MS with the EI source.  As a result, it was found that 78% of synthetic 

cannabinoids showed molecular information in EI mass spectra with high mass accuracy 

less than 4.8 ppm (1.3 mDa) as shown in Figure 44 (a).  The molecular ion was not found 

or shown in very low relative abundance for the other 20% of these compounds, which 

may result in an ambiguous identification by GC-QTOF-MS in EI mode.  The other 2% 

of synthetic cannabinoids showed either poor mass accuracy for the molecular ion or very 

low abundance in the chromatogram. 

Table 10. List of additional 12 substances analyzed by GC-QTOF-MS. 

 
NPS 

Molecular 

Formula 

Concentration 

(µg/mL) 
Solvent 

1 AM1241 C22H22IN2O 1000 MeOH 

2 AM630 C23H25IN2O3 1000 DMSO 

3 CB-25 C23H21NO 1000 MeOH 

4 CB-52 C25H41NO3 1000 MeOH 

5 CB-86 C26H43NO3 10000 EtOH 

6 CP 47,497-para-quinone analog C21H32O3 1000 MeOH 

7 JP104 C25H30N2O3 1000 MeOH 

8 MDA 77 C21H23N3O3 1000 MeOH 

9 URB447 C25H21ClN2O 1000 MeOH 

10 4-Fluoroisocathinone C9H10FNO 1000 MeOH 

11 Ketazolam C20H17ClN2O3 1000 DMSO 

12 Methylhexanamine C7H17N 1000 MeOH 
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Figure 44. Summary of results from (a) synthetic cannabinoids and (b) additional 

types of NPS analyzed by GC-QTOF-MS in EI full scan. 

 

The other set of 99 NPS was also analyzed by GC-QTOF-MS with the EI source.  Figure 

44 (b) shows that molecular ions were present only for 19% of the subset of additional 

types of NPS with mass accuracy less than 4.78 ppm (1.3 mDa).  These substances were 

mainly piperazines or phenethylamines (2C class).  However, molecular ions were not 

observed in the majority of NPS (81%) in the subset.  Those compounds shown extensive 

fragmentation in EI mass spectra were analyzed in CI full scan mode with the expected 

presence of protonated molecular ions.  In the subset of 99 NPS, molecular ions were 

successfully identified for most of them, except 2-fluoromethcathinone and 4-

fluoroisocathinone.  Mass accuracy of these 97 NPS was between 0.32 and 10.24 ppm, 

which corresponds to 0.0 - 2 mDa.  Although the degree of mass error in CI mode was 

greater than EI mode, the utilization of the CI source was still beneficial to identify those 

substances that were extensively fragmented with the EI source.  In addition, the 

acquisition of molecular information with accurate mass is essential in terms of unknown 

analysis.  
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5.2.2 Determination of Detection Limits 

The limits of detection (LODs) were determined to provide a figure of merit as an 

analytical tool in the analysis of NPS using GC-QTOF-MS in EI full scan mode.  

Calibration solutions containing CP-47,497 and JWH-250 were prepared from 100 to 

3200 ng/mL with methanol.  Each solution was injected three times and average peak 

area from each injection was calculated after quantifier ions were extracted.  Since the 

QTOF-MS gives accurate mass, a range of target exact mass was extracted for quantifier 

and qualifier ions as shown in Table 11.  The minimum criteria for both quantifier and 

qualifier ions was a threefold signal-to-noise ratio (S/N). 

 

Table 11. Ranges of quantifier and qualifier ions for CP-47,497 and JWH-250 during the 

determination of detection limits. 

Analyte Quantifier Ion Qualifier Ion 1 Qualifier Ion 2 

CP-47,497 215.0000-215.2000 318.1000-318.4000 233.1000-233.3000 

JWH-250 214.1000-214.3000 144.0000-144.3000 116.0000-116.3000 

 

Calibration curves were plotted in the linear range of 800 to 3200 ng/mL for CP-47,497 

and 400 to 3200 ng/mL for JWH-200 as shown in Figure 45.  The LOD calculation was 

made on the basis of three times of the standard error divided by the slope of linear 

correlation for each compound.  The LODs were determined to be 370.0 ng/mL and 

145.3 ng/mL for CP-47,497 and JWH-250, respectively, on average from the three 

different days.  The determined detection capabilities of GC-QTOF-MS were higher than 

that of GC-MS/MS from the previous section for those two compounds, CP-47, 497 and 
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JWH-250.  The difference is mainly because of the scan modes used during the 

evaluation, full scan (GC-QTOF-MS) and MRM (GC-MS/MS) modes. 

 

 

Figure 45. Calibration curves for CP-47,497 and JWH-250 by GC-

QTOF-MS with the EI source in three different days. 

 

5.2.3 Analysis of Seized Samples 

To evaluate the applicability of GC-QTOF-MS in the qualitative analysis of NPS, 

two seized drug samples analyzed by the Barringer IMS and DART-QTOF-MS were 

selected and investigated in this section.  The analysis of these two samples was 

performed using GC-QTOF-MS in EI full scan mode in accordance with the method used 

for the analysis of NPS standards.  Figure 46 shows the chromatograms and mass spectra 

of two seized samples.  In EI scan mass spectra, unambiguous identification was not 

possible because of lack of molecular information.  It was also found that the 

identification of unknown is even more challenging when it comes to a mixture.  As 

addressed in the previous section in 5.1, the implementation of the CI source in GC-
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QTOF-MS will facilitate the unambiguous identification with the presence of protonated 

molecular ions.  However, the separation of multi-compounds mixture can be still 

challenging in mass spectra when one compound is significantly prevalent over the other 

compound unless a mixture can be separated in chromatograms.  In terms of rapid 

separation capability, the Barringer IMS is more efficient to characterize mixtures with 

multiple compounds for the rapid screening capability and ease of instrument operation. 

 

Figure 46. Chromatograms and mass spectra of two seized drug samples by GC-QTOF-

MS in EI full scan mode. 

 

5.2.4 Conclusions 

Continuing from the analysis by GC-MS/MS, a GC system coupled to a state-of-

the-art high resolution QTOF mass spectrometer was utilized in the analysis of emerging 

NPS in both EI and CI mode for the first time.  Evidently, the use of CI in GC-MS is 
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advantageous for the unambiguous identification of compounds that are easily 

fragmented and lacking molecular information in EI mass spectra.  Although the analysis 

of mixture is challenging when components are not separated in chromatograms, the 

presence of protonated molecular ions with accurate mass can facilitate the identification 

of multiple components in CI mode.  There are a number of challenges associated with 

the analysis of these NPS, including the endless emergence of newly identified 

substances, presence of various isomers, complexity of analytes and matrices, and lack of 

reference standards for new substances.  Therefore, the application of high resolution 

mass spectrometry in drug analysis, especially for emerging NPS, will be beneficial with 

high sensitivity and selective capabilities of the GC-QTOF-MS instrument.  

 

5.3 Electrospray Ionization Ion Mobility Spectrometry Mass Spectrometry 

The coupling of IMS with MS provides a number of advantages over traditional 

IMS with a radioactive ionization source as briefly described in previous section 2.3.2.2.  

Consequently, the development of this hyphenated technique has enabled many new 

applications of IMS with the identification capabilities of unknowns on the basis of the 

mobility and mass-to-charge ratio of an ion [70].  These applications include the analysis 

of biomolecules [76, 79-80], the detection and identification of drugs [32-35, 142], and 

the analysis of explosives [35, 143].  Many fundamental studies have been done utilizing 

ESI-IMS-MS for charge competition during the ionization process [34], the selection of 

drift gas for selectivity [144], the separation mechanism of chiral compounds [142], and 

the speciation effects of solvent system [35].  Recently, a couple of studies on new 
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synthetic drugs referred to NPS have been reported using the IMS coupled to different 

types of MS [116-118].  In this section, a number of synthetic cathinones were 

investigated using a commercially available high performance IMS (Excellims, Acton, 

MA, USA) coupled with QC-150 quadrupole (Extrel CMS, Pittsburgh, PA, USA), which 

offers a resolving power of 60 to 100 (Figure 47) [145]. 

 

 

Figure 47. Excellims ESI-IMS-MS (RA4100). 

 

In this ESI-IMS-MS system, an air-cooled ESI source is utilized as shown in Figure 

48.  The source is different than a water-cooled ESI source that was originally developed 

and used in the study by Wu et al. [76].  Nevertheless, the purpose of the air-cooled ESI 

source is to cool the spray needle from the heated drift gas in order to prevent the 

evaporation of solvent inside the needle.  The electrospray released from the tip of spray 

needle is moved toward a mesh screen by the electrical potential applied between the 

needle and the mesh screen.  Finally, the charged droplets are introduced into the 

desolvation region where solvent is evaporated during the migration of droplets through 
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an electric field [76].  A close-up picture of the air-cooled ESI source coupled to the IMS 

is also shown in Figure 49. 

 

 

Figure 48. An air-cooled ESI source used in the Excellims ESI-IMS-MS. 

 

 

Figure 49. Close-up of a cooled ESI source coupled to the IMS. 

 

5.3.1 Optimization of Solvent System 

In the ESI source, only a small portion of analytes are ionized generating gas-phase 

ions that are transported into the mass analyzer [146].  Although ESI is not the best 

ionization technique to produce gas-phase ions, the capability of soft ionization and less 

restrictions on the masses of anayltes have caused the ESI source to become one of the 

Spray needle 

Air-cooling fan Mesh screen 
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most commonly used ionization techniques in modern mass spectrometers.  Ionization 

efficiency of ESI describes how competently the analytes or ions can produce gas-phase 

ions during the ESI process [146].  A number of studies have actively evaluated the 

ionization efficiency in ESI with the application of IMS [32, 34-35].  It is demonstrated 

that the addition of an acetic acid modifier in the gas phase improved the intensity of 

detected ions [32, 34].  Another study investigated the effect of the solvent system 

comprehensively when the ESI source is implemented with IMS-MS [35].  A wide range 

of different solvent compositions was evaluated with different amounts of acidic 

modifier.  In addition, the different types of ionic species in both positive and negative 

modes were determined thoroughly.  In this section, different solvent compositions for 

synthetic cathinones were evaluated for the greatest ionization efficiency in the ESI 

source.  Three synthetic cathinones, 4-MEC, methedrone, and MDPV, were selected for 

the solvent study on the basis of the functional group, a methyl group on the amine, ethyl 

group on the amine, and pyrrolidine group (Figure 3).  The previous study performed by 

Howard et al. showed that the optimal solvent system was methanol and water in a ratio 

of 80 to 20 (v/v) with 2.5% of formic acid [35].  Also, it is recommended to contain less 

water in the solvent system.  Therefore, only a small range of methanol and water ratio, 

80:20 (v/v) and 90:10 (v/v), was evaluated with the addition of different amounts of 

formic acid (FA) ranging from 0 to 2.5%.  Each solvent was used to prepare a sample 

solution containing a target compound.  The measurement of the sample solution was 

performed in triplicate to obtain average intensity.  As shown in Figure 50, addition of an 

acidic modifier improved the average intensity of analytes compared to other solutions 

with the same solvent composition.  Although each compound showed different 
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ionization efficiency, the solvent composition of 80:20 (v/v) with 2.5% FA was selected 

because of the consistent intensity throughout all three compounds. 

 

 

Figure 50. Optimization of elctrospray ionization solvent system for three different 

groups of synthetic cathinones.  The consistent average intensity was observed the 

solvent composition of 80:20 with 2.5% FA for three compounds. 

 

5.3.2 Analysis of synthetic cathinones  

The identification capability of 6 representative synthetic cathinones, including 4-

MMC, 4-MEC, 3-FMC, methedrone, methylone, and MDPV, was investigated using the 

Exellims ESI-IMS-MS system.  Table 12 shows the analytes of interest with the drift 

time and reduced mobility (K0) resulting from the evaluation along with the known K0 

values from literatures.  The drift time of each analyte was measured in triplicate before 

and after running a blank solvent.  The K0 of these analytes (td ukn) was calculated on the 

basis of Equation 4 as described in 2.3.2.  Before the analysis of these compounds, 

cocaine was analyzed under the same conditions as a chemical standard of each synthetic 

cathinone.  The obtained drift time of cocaine was used as the drift time of the reference 
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standard, td ref, and the K0 of cocaine (K0 ref, 1.19 cm2/Vsec) was from the literature.[147]  

The calculated K0 of 6 synthetic cathinones by ESI-IMS-MS were compared to the values 

obtained by Barringer IMS (4.1.1) as well as previously reported in the literature.  It is 

shown that the K0 of MDPV is consistent with the results from the Barringer IMS and the 

literature.  For 4-MMC, 4-MEC, and methylone, the obtained K0 was slightly different 

from the Barringer IMS results and the literature (± 0.05 cm2/Vsec).  The drift time shift 

between analyses may have affected variations in the K0 values of 4-MMC, 4-MEC, and 

methylone.  However, the calculated K0 of 3-FMC showed an exceptional difference with 

the previous result by the Barringer IMS.  It is assumed that the main component of the 

ion swarm produced from the 63Ni radioactive source is different from the ESI source. 

Table 12. List of 6 NPS analyzed by ESI-IMS-MS and the results from the study. 

NPS 
Molecular 

Weight (amu) 

Drift Time 

(ms) 

K0 

(cm2/Vsec) 
Reference K0 (cm2/Vsec) 

4-MMC 177.24 9.68 1.45 1.499 [116] 

4-MEC 191.70 10.01 1.41 1.447 [115], 1.30* [117], 1.41 [118] 

3-FMC 181.21 9.75 1.44 1.530 [115] 

Methedrone 193.24 9.93 1.42  

Methylone 207.23 10.13 1.39 1.435 [115], 1.435 [116], 1.28† [117] 

MDPV 275.34 11.65 1.21 1.199 [115], 1.201 [116], 1.18 [117] 

*: 1.30 for m/z 192.14 in APCI and ESI and 1.41 for m/z 190.12 in APCI 

†: 1.28 for m/z 208.10 in APCI and ESI and 1.35 for m/z 206.08 in APCI 

 

Ion mobility spectra of six synthetic cathinones are shown in Figure 51.  Each 

compound was individually analyzed via the direct infusion using a gas-tight syringe 

delivering 100 μL at a flow rate of 3 μL/min as previously described in section 3.5.  
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Although the amount of sample loaded into the syringe was 100 μL, the sample used in 

the analysis is much less than that.  The less amount of loaded sampled is because a 

sample was pumped into the system before the acquisition of the ion mobility spectrum 

and full scan mass spectrum in order for pre-conditioning of the injection capillary 

column and the ESI source.  The background ion peak (BIP) or solvent peak is commonly 

observed in ion mobility spectra acquired by ESI-IMS-MS.  The BIP is a result of the 

formation of methanol clusters in positive mode, corresponding to the most dominant 

ions of m/z 65 [(CH3OH)2H+] and 97 [(CH3OH)3H+] [35]. 

 

 

Figure 51. Overlaid ion mobility spectra of 6 synthetic cathinones by direct infusion.  

Each substance was successfully detected by ESI-IMS-MS.  

 

Figure 52 shows full scan mass spectra of 6 synthetic cathinones analyzed in the 

investigation.  Each analyte was successfully identified with the presence of the 

protonated molecular ion as a base peak in each mass spectrum.  In addition, the selected 

ion mode, which monitors the protonated molecular ion, was also simultaneously 

performed during the acquisition of both ion mobility spectra and scan mass spectra.  

Although it was not presented in this section, the plot of selected ion monitoring also 
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showed a good agreement with the ion mobility spectrum.  Therefore, the results suggest 

that ESI-IMS-MS can be potentially used as a confirmation method in the rapid analysis 

of synthetic cathinones with a total analysis time less than five minutes. 

 

 

Figure 52. Full scan mass spectra of 6 synthetic cathinones by ESI-IMS-MS.  

Each substance was identified with the presence of a protonated molecular ion. 
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5.3.3 Separation of two-analyte mixtures 

The separation capability of ESI-IMS-MS was subsequently evaluated by analyzing 

mixtures of two compounds.  A mixture of 4-MMC and methedrone at 100 μg/mL was 

first analyzed by ESI-IMS-MS and its ion mobility spectrum and full scan mass spectrum 

are shown in Figure 53.  Although the protonated molecular ions of both compounds 

were observed in the mass spectrum, the separation of two analytes was not accomplished 

in the ion mobility spectrum.  It might be because the drift times of 4-MMC (9.68 ms) 

and methedrone (9.93 ms) were too close each other.  In addition, it is important to note 

that the BIP (solvent peak) was not observed in the ion mobility spectra, which indicates 

the amount of charge available was completely used to ionize the analytes at high 

concentrations [34]. 

 

Figure 53. Ion mobility spectrum (top) and mass spectrum (bottom) of a 

mixture of 4-MMC and methedrone by ESI-IMS-MS.  The presence of two 

compounds in the mixture was confirmed with protonated molecular ions. 
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In order to investigate the separation capabilities of compounds that have essentially 

distinguished drift times, methylone (10.13 ms) and MDPV (11.65 ms), were selected for 

the analysis of mixtures.  Figure 54 shows overlaid ion mobility spectra of two mixtures 

with mass spectra from each mixture.  These two mixtures are composed of the same 

compounds, but different relative concentrations of MDPV.  First, the mixture of 

methylone and MDPV at 100 μg/mL was prepared and analyzed by ESI-IMS-MS.  

Unexpectedly, it was shown that only one peak potentially associated with MDPV was 

observed both in the ion mobility spectrum and mass spectrum, which indicates that there 

is charge competition between two analytes preferentially ionizing MDPV in the solution.  

The charge competition has been commonly found in the ESI process over many years as 

a main limitation in the analysis of mixtures in ESI-IMS-MS [34-35].  Since the 

ionization occurs in a solution before a sample is introduced into the IMS through the ESI 

source, it may be inevitable to avoid charge competition unless a capillary column is 

added prior to ionization.  At least to minimize the charge competition between 

methylone and MDPV, another mixture was prepared with different concentrations of 

MDPV (i.e. methylone at 100 μg/mL and MDPV at 20 μg/mL), which is shown as ‘bold 

line’ in Figure 54.  As a result, two compounds were successfully separated in the ion 

mobility spectrum and the protonated molecular ions from both analytes were observed in 

the full scan mass spectrum. 
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Figure 54. Ion mobility spectra and full scan mass spectra of two mixtures with 

different relative concentration.  Charge competition between methylone and 

MDPV were observed in mixture analysis. 

 

The analysis of mixtures were also performed for other compounds as shown in Figure 

55.  A total number of four mixtures were prepared by combining MDPV with four other 

synthetic cathinones at the different concentration of each analyte, 20 μg/mL for MDPV 

and 100 μg/mL for other compounds.  It is shown that the separation of these 4 mixtures 

were successfully achieved under the previously described conditions.  Other two-analyte 

mixtures were prepared using five synthetic cathinones, excluding MDPV, and analyzed 

to investigate separation capabilities.  Unfortunately, the baseline separation of mixtures 

was not successful because of the drift time similarity between these compounds.  

Despite the limited cases, the separation of two-analytes mixtures was possible with mass 

spectral information using ESI-IMS-MS. 
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Figure 55. Ion mobility spectra of mixtures with a different ratio of two compounds 

in concentration. 

 

5.3.4 Determination of Detection Limits 

The limits of detection (LODs) for these six synthetic cathinones were determined 

to address figures of merit for the application of  ESI-IMS-MS.  The calibration solutions 

were prepared in the range of 5 to 100 μg/mL and analyzed in three replicates by 

Excellims ESI-IMS-MS.  The ratio of max intensity of analyte to that of solvent peak 

(BIP) was used for the instrument response because the absolute response varied between 

runs even from the same solution.  The calibration curves for 6 compounds were 

constructed according to the ratio of analyte peak to solvent peak versus the 
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concentration of each sample as shown in Figure 56.  In the different linear ranges 

between these analytes, each compound showed a good linearity of R2 > 0.98.  The LODs 

was calculated as three times the standard deviation of the intercept divided by the slope 

of the linear regression as described previously.  It was determined that the LODs were 

19.1, 10.6, 10.7, 6.75, 13.5, and 2.0 μg/mL for 4-MMC, 4-MEC, 3-FMC, methedrone, 

methylone, and MDPV, respectively.  The comparison of detection limits between 

analytical techniques from the previous chapters shows that ESI-IMS-MS is less sensitive 

than other techniques.  

 

 

Figure 56. Calibration curves of six synthetic cathinones by ESI-IMS-MS.  

A good linearity was shown for each substance in different linear ranges. 
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5.3.5 Analysis of Seized Samples 

A total number of four seized drug samples provided by a local forensic laboratory 

were also analyzed by ESI-IMS-MS.  These four samples were prepared in methanol and 

the same approach was applied in the analysis of seized samples as described in the 

previous evaluation for the analysis of standard solutions.  Figure 57 shows the results 

from the blind study for one of the seized samples.  The seized sample was successfully 

detected with a drift time of 10.06 ms, which is similar to that of 4-MEC (10.01 ms) and 

methylone (10.13 ms) as previously demonstrated in Table 12.  For the confirmation of 

the analyte in the seized sample, the analyte was identified by the presence of the 

protonated molecular ion in the full scan mass spectrum.  It is shown that the coupling of 

IMS with MS can be utilized as a confirmatory test in the qualitative analysis of seized 

drug samples providing additional mass spectral information. 

 

Figure 57. Ion mobility spectrum (top) and corresponding mass spectrum 

(bottom) of the seized drug sample by ESI-IMS-MS.  The seized drug sample was 

found to be methylone with the presence of protonated molecular ion. 
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5.3.6 Conclusions 

The rapid detection (20 ms) and identification of 6 synthetic cathinones were 

successfully accomplished using a commercially available ESI-IMS-MS.  The optimal 

solvent system was found to be a ratio of methanol to water 80 to 20 (v/v) with 2.5% 

formic acid for the efficient protonation of all analytes.  In the analysis of mixtures, the 

concentration of the analytes with higher proton affinity (e.g. MDPV) was reduced in 

order to increase the ionization of other compounds with less proton affinity in mixtures, 

overcoming preferential ionization.  Although the baseline separation of two-analyte 

mixtures was achieved only for MDPV with other substances, the presence of different 

analytes were also confirmed in other mixtures with the observed protonated molecular 

ions in their mass spectra.  It is important to emphasize that the coupling of IMS 

(Category B) with MS (Category A) can be used as a confirmatory technique, qualifying 

the identification criteria described in the SWGDRUG recommendation as previously 

mentioned in 2.2.  The results from the analysis of four seized drug samples using ESI-

IMS-MS have shown that the ESI-IMS-MS instrument can be readily used as a 

confirmatory test in the qualitative analysis of synthetic cathinones with a rapid analysis 

time of less than five minutes. 
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CHAPTER 6. RAPID DETECTION AND IDENTIFICATION OF FLAKKA 

The applicability of the developed rapid screening methods is highlighted in this 

chapter to emphasize the usefulness of the proposed analytical techniques, IMS and 

DART-QTOF-MS.  The rapid detection and identification capabilities of IMS and 

DART-QTOF-MS were evaluated in the analysis of a relatively new substance called 

‘Flakka’.  The following sections will cover focusing on a brief introduction to the new 

trend of drug abuse, rapid detection and characterization of flakka by IMS, and rapid 

identification by DART-QTOF-MS. 

6.1 Introduction to Flakka 

A relatively new substance of abuse, ‘Flakka’ (also called ‘$5 insanity’ or ‘gravel’) 

has recently proliferated in Florida from zero cases in 2010 to 670 cases in 2014 [148-

149].  It is known that one Florida county toxicology laboratory reports up to 10 cases 

related with flakka every day in 2015.  Flakka is a street name referring to alpha-

pyrrolidinopentiophenone (α-PVP), a second-generation synthetic cathinone, as shown in 

Figure 58.  The second generation of synthetic cathinones are characterized by containing 

a pyrrolidine group similar to 3,4-methylenedioxypyrovalerone (MDPV) and also 

includes, but is not limited to pyrovalerone, alpha-pyrrolidinopropiophenone (α-PPP), 4'-

methyl-alpha-pyrrolidinopropiophenone (4'-MePPP), alpha-pyrrolidinobutiophenone (α-

PBP) and 4-methyl-alpha-pyrrolidinobutiophenone (4-MePBP) [150-151].  Since 2014, 

α-PBP and α-PVP are controlled as Schedule I substances in federal and Florida statutes 

[132, 152]. 
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Figure 58. Chemical structures of alpha-PVP, 4-MePBP, alpha-PBP, and alpha-PPP. 

 

Casale and Hays employed nuclear magnetic resonance spectroscopy (NMR), 

Fourier transform infrared spectroscopy (FTIR), and gas chromatography mass 

spectrometry (GC-MS) in the characterization and identification of α-PVP in casework 

[153].  Recently, a number of toxicological studies have shown that these substances, 

containing the pyrrolidine group, are more potent than other stimulants, such as 

amphetamine and cocaine, as they block the uptake of dopamine and norepinephrine 

neurotransmitters [150, 154].  In the study of rapid detection and identification 

capabilities, α-PVP and its isomer, 4-MePBP, were analyzed using IMS and DART-

QTOF-MS. 

6.2 Rapid Detection and Characterization by Ion Mobility Spectrometry 

Figure 59 shows overlaid ion mobility spectra of α-PVP and 4-MePBP by the 

Barringer IMS.  The detection of these substances was successfully achieved within 20 

ms and the total analysis time was less than one minute from delivery of analyte to the 

response from the IMS instrument, the greatest advantage of the commercial Barringer 

IMS.  As explained earlier, the drift time of the analyte is often reported as the reduced 

mobility, K0 (cm2/Vs).  The calculated K0 for α-PVP and 4-MePBP from our study were 

1.3094 and 1.3024, respectively, as shown in Table 5.  During the evaluation, the K0 

value for α-PVP showed good agreement with the previously reported K0 value (1.306) 
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by Armenta et al. [115].  The reduced mobility of 4-MePBP has not been reported 

previously at the moment.  The results show the potential application of IMS as a rapid 

detection method of controlled substances.  However, false positive alarms are possible 

because of the similar reduced mobilities between analytes, which may limit the 63Ni-

IMS instrument only for screening purposes. 

 

 

Figure 59. Overlaid ion mobility spectra of α-PVP and 4-MePBP.  Both NPS 

were successfully detected with its characteristic mobility and a consistent 

reactant ion peak (RIP). 

 

6.3 Rapid Identification by Direct Analysis in Real Time Mass Spectrometry 

The analytes of interest were successfully identified with high mass accuracy using 

DART-QTOF-MS with the presence of protonated molecular ions of each substance as 

shown in Figure 60.  The implementation of the DART ion source enabled the rapid 

identification of analytes with minimal to no sample preparation and total analysis time 

of less than two minutes.  However, constitutional isomers are not distinguished in full 
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scan mode using the protonated molecular ion as the most abundant peak.  Thus, the auto 

MS/MS mode was used and different fragmentation patterns were observed at different 

collision energies for α-PVP and 4-MePBP.  A series of peaks for α-PVP including m/z 

91.0544, 105.0340, and 126.1278 was characteristic from the product ion scan mass 

spectrum at CE of 20 eV and was compared to 4-MePBP (m/z 105.0693, 112.1117, 

119.0483, and 133.1003).  Therefore, the differentiation of constitutional isomers is 

possible with high accuracy product ion scan (MS/MS) mass spectra at CE of 20 eV. 

 

 

Figure 60. Full scan and product ion scan mass spectra of (a) α-PVP and (b) 4-MePBP 

obtained using DART-QTOF-MS.  Differentiation between two compounds can be 

achieved with product ion scan mass spectra at CE of 20 eV. 
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6.4 Conclusions 

As a proof of concept, the rapid screening of the emerging substance ‘Flakka’ by 

63Ni-IMS and the identification with high mass accuracy by DART-QTOF-MS were 

successfully performed during the evaluation of two instruments, 63Ni-IMS and DART-

QTOF-MS.  It is shown that a product ion scan MS from DART-QTOF-MS provides a 

consistent relative abundance that can be searched using a library previously created 

using ESI ionization coupled to the same QTOF.   
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CHAPTER 7. DISCUSSION AND OVERALL CONCLUSIONS  

7.1 Rapid Screening Tests for NPS by IMS and DART-QTOF-MS 

The capabilities of rapid detection and characterization have been demonstrated for 

the qualitative analysis of emerging new psychoactive substances (NPS) by a bench-top 

commercial ion mobility spectrometer, Barringer IONSCAN 400B.  Ion mobility 

spectrometry is known as one of many well-established detection techniques for small 

organic compounds.  A number of advantages, including ease of operation, high 

sensitivity, atmospheric pressure operation, and fast response, have enabled the wide 

usage of the portable IMS instrument in the field.  The rapid detection and 

characterization of emerging NPS were successfully achieved with sub-nanogram 

detection capabilities using the Barringer IONSCAN instrument.  The characteristic 

reduced mobilities for these substances were observed allowing the detection of each 

compound with high sensitivity and fast response.  However, there were drawbacks in the 

utilization of the Barringer IONSCAN instrument, such as potential false positive alarms 

because of the similar reduced mobility between some compounds as well as depletion of 

reactant ions which may result in a small dynamic response range.  Nonetheless, the 

Barringer IMS is an attractive alternative screening tool for the rapid detection of NPS. 

The direct analysis in real time (DART) ion source coupled to mass spectrometry is 

a relatively new analytical technique that enables rapid analysis of compound with little 

to no sample preparation.  The DART is a versatile ambient ionization source that can be 

coupled to a variety of mass spectrometers.  In the application for the rapid identification 

of NPS, the DART source was interfaced with a high resolution quadrupole time-of-flight 
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mass spectrometer (QTOF-MS).  The uniqueness of DART-QTOF-MS is the production 

of protonated molecular ion in positive mode with high mass accuracy.  In addition, the 

ability of product ions scan through the auto MS/MS and targeted MS/MS modes enables 

the structural elucidation of compounds and differentiation of constitutional isomers.  To 

evaluate figures of merit from both Barringer IMS and DART-QTOF-MS, the seized 

drugs samples provided by a local forensic laboratory were analyzed and the results 

showed good agreement.  The findings from these two techniques have been published in 

a peer-reviewed journal. 

7.2 Confirmatory Techniques for NPS by GC-MS and ESI-IMS-MS 

Gas chromatography mass spectrometry (GC-MS) is the gold standard technique 

that is widely used in the forensic laboratories for various applications.  While GC-MS 

equipped with a single quadrupole mass spectrometer and an electron ionization (EI) 

source is the most commonly utilized setting, a GC system coupled with a triple 

quadrupole mass spectrometer (MS/MS or QqQ) was utilized in the qualitative analysis 

of emerging NPS proposing as a new confirmatory test.  The novelty of this GC-MS/MS 

is the capability of multiple transitions scan known as multiple reaction monitoring 

(MRM) mode.  With the MRM acquisition mode, only specific transitions can be 

monitored eliminating noises, background peaks, or other co-eluting analyte peaks.  In 

addition, it is shown that additional spectral information from product ion scan and MRM 

can be used to differentiate isomers, which is one of major challenges in the analysis of 

NPS.  Most importantly, the unambiguous identification of NPS was successfully 

achieved with the implementation of the chemical ionization (CI) source for those 
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substances that are extensively fragmented in EI mass spectra.  These results also have 

been reported and published in peer reviewed literature.  The GC system coupled to a 

high resolution QTOF mass spectrometer also has been proposed for an alternative 

confirmatory technique in the analysis of NPS.  The hyphenated analytical technique, 

GC-QTOF-MS, was developed to provide advantages to both GC-MS/MS and LC-

QTOF-MS.  The MS/MS capability from GC-MS/MS was enhanced switching the third 

quadrupole with a TOF mass analyzer.  As a result, high resolution full scan and MS/MS 

scan with a high scan rate was possible with enhanced resolving power in GC-QTOF-

MS.  To investigate the potential of GC-QTOF-MS as a confirmatory method, various 

NPS have been analyzed in both EI and CI mode.  From the preliminary results, it is 

expected that the creation of a database using the acquired high mass accuracy full scan 

and MS/MS scan mass spectra will be beneficial in various aspects. 

A total number of six synthetic cathinones were also analyzed using a commercial 

ESI-IMS-MS (Excellims RA4100).  This hybrid analytical technique consists of an ion 

mobility spectrometer (IMS) unit with an electrospray ionization (ESI) source and a 

single quadrupole mass analyzer.  The coupling of a gas-phase separation technique 

(IMS) to mass spectrometry is a competitive candidate as an alternative confirmatory 

method in drug analysis, especially for controlled substances, regarding the SWGDRUG 

guidelines.  With the development of an optimal solvent system for the ESI process, the 

capabilities of rapid detection and identification would provide low cost analysis for NPS 

in forensic laboratories. 
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Table 13. Comparison of various analytical techniques evaluated in this dissertation. 

 
63Ni-IMS DART-QTOF GC-MS/MS GC-QTOF ESI-IMS-MS 

 Screening techniques Confirmatory techniques 
A

d
v

an
ta

g
es

 

• Inexpensive 

analysis 

• High 

sensitivity 

• Fast 

detection  

• Easy 

operation & 

maintenance 

• Min. sample 

preparation 

• Easy 

operation & 

maintenance 

• MS/MS 

capability 

• Gold 

standard  

• High 

sensitivity 

• MS/MS 

capability 

• High 

sensitivity 

• High mass 

accuracy  

• High 

versatility 

• MS/MS 

capability 

• Fast 

confirmation 

• Inexpensive 

analysis 

D
is

ad
v

an
ta

g
es

 

• No 

identification  

• Small 

dynamic 

range 

• Semi-

quantitative 

analysis 

• No 

separation 

capability 

• Limited 

ionization 

capability 

• Expensive 

instrument 

• Time 

consuming 

analysis 

• Expensive 

instrument 

• Time 

consuming 

analysis 

• Novel 

technique 

• Incomplete 

separation 

L
O

D
 

~ 80 pg ~ 340 pg 

~ 350 pg 

(EI,MRM) 

~ 750 pg 

(CI,MRM) 

~ 370 pg 

(EI, Full scan) 
~ 19 ppm 

 

7.3 Concluding Remarks 

This dissertation evaluates various analytical techniques for the qualitative analysis 

of emerging new psychoactive substances (NPS), commonly referred to as designer drugs 

or legal highs, at different levels.  It has been demonstrated that each analytical technique 

has advantages and disadvantages in terms of costs, the degree of separation, the limit of 

detection, and the identification capability as shown in Table 13.  Regardless, the 

capabilities of rapid detection and characterization in the analysis of NPS by IMS is 

beneficial as it opens up the potential of on-site analysis by portable IMS.  In addition, 
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the application of DART-QTOF-MS in the analysis of controlled substances will 

facilitate the identification of compounds with high throughput and high-speed 

capabilities.  As a well-established analytical technique, GC-MS is the gold standard 

analytical method in most forensic laboratories.  However, the traditional GC-MS with a 

single quadrupole mass analyzer may face analytical challenges, including the 

complexity of analytes and matrices as well as the presence of isomers.  In the case of the 

isomer separation and analyte isolation from complex matrices, state-of-the-art 

instruments, such as GC-MS/MS and GC-QTOF-MS, can provide a solution with 

different types of scanning modes.  These instruments will be more common in forensic 

laboratories as they are becoming more popular and affordable.  Finally, the hybrid 

analytical technique, ESI-IMS-MS, would provide high speed and low cost analysis for 

the separation and identification of compound. 
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APPENDICES 

Appendix 1. List of compounds investigated in this dissertation and its abbreviations. 

 
NPS Abbreviation 

1 (-)-CP 47,497  

2 (-)-CP 55,940  

3 (+)-CP 47,497  

4 (+)-CP 55,940  

5 (+)WIN 55212-2  

6 (±)3epi CP 47,497-C8-homolog  

7 (±)5-epi CP 55,940  

8 (±)CP 47,497  

9 (±)-CP 47,497-C8-homolog  

10 (±)-CP 55,940  

11 (±)-epi CP 47, 497  

12 (±)WIN 55212 (mesylate)  

13 (S)-2-Diphenylmethylpyrrolidine (S)-Desoxy-D2PM 

14 1-(4-Fluorobenzyl) piperazine 4-FBP 

15 1-(p-Fluorophenyl) piperazine pFPP 

16 1,4-Dibenzylpiperazine DBZP 

17 1'-Naphthoyl Indole  

18 2,3-Methylenedioxy Pyrovalerone 2,3-MDPV 

19 2,3-Methylenedioxymethcathinone 2,3-MDMC 

20 2,3-Pentylone isomer  

21 4-iodo-2,5-dimethoxy-N-[(2-methoxyphenyl)methyl]-benzeneethanamine 25I-NBOMe 

22 2-Aminoindane 2-AI 

23 2,5-Dimethoxy-4-chlorophenethylamine 2C-C 

24 2,5-Dimethoxy-4-methylphenethylamine 2C-D 
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NPS Abbreviation 

25 2,5-Dimethoxy-4-ethylphenethylamine 2C-E 

26 2,5-Dimethoxyphenethylamine 2C-H 

27 2,5-Dimethoxy-4-iodophenethylamine 2C-I 

28 2,5-Dimethoxy-4-nitrophenethylamine 2C-N 

29 2,5-Dimethoxy-4-propylphenethylamine 2C-P 

30 2,5-Dimethoxy-4-ethylthiophenethylamine 2C-T-2 

31 2,5-Dimethoxy-4-isopropylthiophenethylamine 2C-T-4 

32 2-Ethylethcathinone 2-EEC 

33 2-Ethylmethcathinone 2-EMC 

34 2-Fluoroamphetamine 2-FA 

35 2-Fluoroethcathinone 2-FEC 

36 2-Fluoromethamphetamine 2-FMA 

37 2-Fluoromethcathinone 2-FMC 

38 2-Methoxymethcathinone 2-MeOMC 

39 2-Methylethcathinone 2-MEC 

40 2-Methylmethcathinone 2-MMC 

41 2-Methyl-α-pyrrolidinobutiophenone 2-MePBP 

42 3,4-Dimethoxymethamphetamine 3,4-DMMA 

43 3,4-Dimethylmethcathinone 3,4-DMMC 

44 3',4'-Methylenedioxy-α-pyrrolidinobutiophenone 3',4'-MDPBP 

45 3',4'-Methylenedioxy-α-pyrrolidinopropiophenone 3',4'-MDPPP 

46 3-Ethylethcathinone 3-EEC 

47 3-Ethylmethcathinone 3-EMC 

48 3-Fluoroamphetamine 3-FA 

49 3-Fluoroethcathinone 3-FEC 

50 3-Fluoromethamphetamine 3-FMA 
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NPS Abbreviation 

51 3-Fluoromethcathinone 3-FMC 

52 3-Methoxymethcathinone 3-MeOMC 

53 3-Methylethcathinone 3-MEC 

54 3-Methylmethcathinone 3-MMC 

55 3-Methyl-α-pyrrolidinobutiophenone 3-MePBP 

56 4-Ethylethcathinone 4-EEC 

57 4-Ethylmethcathinone 4-EMC 

58 4-ethyl-N,N-Dimethylcathinone 4-ethyl-N,N-DMC 

59 4-Fluoroamphetamine 4-FA 

60 4-Fluoroethcathinone 4-FEC 

61 4-Fluoromethamphetamine 4-FMA 

62 4-Fluoromethcathinone 4-FMC 

63 4-Methylethcathinone 4-MEC 

64 4-methoxy-N,N-Dimethyltryptamine 4-MeO DMT 

65 4'-Methoxy-α-pyrrolidinopropiophenone (tosylate) 4'-MeOPPP 

66 4-Methyl-α-pyrrolidinobutiophenone 4-MePBP 

67 4'-Methyl-α-pyrrolidinohexanophenone 4'-MePHP 

68 4'-Methyl-α-pyrrolidinopropiophenone 4'-MePPP 

69 4-Methylmethcathinone 4-MMC 

70 4-Quinolone-3-Carboxamide CB2 Ligand 4Q3C CB2 Ligand 

71 5-(2-Aminopropyl) Benzofuran 5-APB 

72 5-iodo-2-Aminoindane 5-IAI 

73 5-methoxy-N,N-Dimethyltryptamine 5-MeO-DMT 

74 N,N-Diallyl-5-Methoxytryptamine 

5-methoxy 

DALT 

75 5-methoxy-N-methyl-N-(1-methylethyl)-1H-Indole-3-ethanamine 5-MeO MiPT 
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NPS Abbreviation 

76 9-Octadecenamide Oleamide 

77 APINACA AKB48 

78 AM1220  

79 AM1235  

80 AM1248  

81 AM2201  

82 AM2201 2'-naphthyl isomer  

83 AM2201 4-methylnaphthyl analog MAM2201 

84 AM2201 N-(2-fluoropentyl) isomer  

85 AM2201 N-(3-fluoropentyl) isomer  

86 AM2201 N-(4-fluoropentyl) isomer  

87 AM2232  

88 AM2233  

89 AM679  

90 AM694  

91 AM694 3-iodo isomer  

92 AM694 4-iodo isomer  

93 Dibutylone bk-DMBDB 

94 Dimethylone bk-MDDMA 

95 bk-Methylenedioxyethylamphetamine (Ethylone) bk-MDEA 

96 α-methylamino-Butyrophenone Buphedrone 

97 β-keto MBDB Butylone 

98 Cannabidiol CBD 

99 Cannabipiperidiethanone CPE 

100 1-naphthalenyl[4-(pentylox)-1-naphthalenyl]-methanone (CRA-13) CB-13 

101 Diphenyl-2-pyrrolidinemethanol D2PM 
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NPS Abbreviation 

102 2-Diphenylmethylpiperidine (Desoxypipradrol) 2-DPMP 

103 Diethylcathinone DEC 

104 N-Ethylcathinone Ethcathinone 

105 β-keto-Ethylbenzodioxolylbutanamine (Eutylone) bk-EBDB 

106 Harmaline  

107 HU-210  

108 HU-211  

109 HU-308  

110 Indomethacin Morpholinylamide IMMA 

111 JWH 007  

112 JWH 011  

113 JWH 015  

114 JWH 016  

115 JWH 018  

116 JWH 018 2’-naphthyl-N-(1-ethylpropyl)  

117 JWH 018 2'-naphthyl isomer  

118 JWH 018 2'naphthyl-N-(1,1-dimethylpropyl) isomer  

119 JWH 018 2'-naphthyl-N-(1,2-dimethylpropyl) isomer  

120 JWH 018 2'-naphthyl-N-(1-methylbutyl) isomer  

121 JWH 018 2'-naphthyl-N-(2,2-dimethylpropyl) isomer  

122 JWH 018 2'-naphthyl-N-(2-methylbutyl) isomer  

123 JWH 018 2'-naphthyl-N-(3-methylbutyl) isomer  

124 JWH 018 6-methoxyindole analog  

125 JWH 018 adamantyl analog  

126 JWH 018 adamantyl carboxamide  

127 JWH 018 N-(1,1-dimethylpropyl) isomer  
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NPS Abbreviation 

128 JWH 018 N-(1,2-dimethylpropyl) isomer  

129 JWH 018 N-(1-ethylpropyl) isomer  

130 JWH 018 N-(1-methylbutyl) isomer  

131 JWH 018 N-(2,2dimethylpropyl) isomer  

132 JWH 018 N-(2-methylbutyl) isomer  

133 JWH 018 N-(3-methylbutyl) isomer  

134 JWH 018 N-(4,5-epoxypentyl) analog  

135 JWH 018 N-(5-bromopentyl) analog  

136 JWH 018 N-(5-chloropentyl) analog  

137 JWH 019  

138 JWH 020  

139 JWH 022  

140 JWH 030  

141 JWH 031  

142 JWH 072  

143 JWH 073  

144 JWH 073 2-methylnaphthyl analog  

145 JWH 073 2'-naphthyl isomer  

146 JWH 073 2'-naphthyl-N-(1,1-dimethylethyl) isomer  

147 JWH 073 2'-naphthyl-N-(1-methylpropyl) isomer  

148 JWH 073 2'-naphthyl-N-(2-methylpropyl) isomer  

149 JWH 073 4-methylnaphthyl analog  

150 JWH 073 N-(1,1-dimethylethyl) isomer  

151 JWH 073 N-(1-methylpropyl) isomer  

152 JWH 073 N-(2-methylpropyl) isomer  

153 JWH 081  
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NPS Abbreviation 

154 JWH 081 2-methoxynaphthyl isomer  

155 JWH 081 3-methoxynaphthyl isomer  

156 JWH 081 5-methoxynaphthyl isomer  

157 JWH 081 6-methoxynaphthyl isomer  

158 JWH 081 7-methoxynaphthyl isomer  

159 JWH 081 8-methoxynaphthyl isomer  

160 JWH 098  

161 JWH 122  

162 JWH 122 2-methylnaphthyl isomer  

163 JWH 122 3-methylnaphthyl isomer  

164 JWH 122 5-methylnaphthyl isomer  

165 JWH 122 6-methylnaphthyl isomer  

166 JWH 122 7-methylnaphthyl isomer  

167 JWH 122 8-methylnaphthyl isomer  

168 JWH 122 N-(4-pentenyl) Analog  

169 JWH 145  

170 JWH 147  

171 JWH 175  

172 JWH 180  

173 JWH 182  

174 JWH 200  

175 JWH 200 2'-naphthyl isomer  

176 JWH 201  

177 JWH 203  

178 JWH 203 3-chlorophenyl isomer  

179 JWH 203 4-chlorophenyl isomer  
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NPS Abbreviation 

180 JWH 210  

181 JWH 210 2-ethylnaphthyl isomer  

182 JWH 210 3-ethylnaphthyl isomer  

183 JWH 210 5-ethylnaphthyl isomer  

184 JWH 210 6-ethylnaphthyl isomer  

185 JWH 210 7-ethylnaphthyl isomer  

186 JWH 210 8-ethylnaphthyl isomer  

187 JWH 249  

188 JWH 250  

189 JWH 251  

190 JWH 251 3-methylphenyl isomer  

191 JWH 251 4-methylphenyl isomer  

192 JWH 302  

193 JWH 307  

194 JWH 309  

195 JWH 368  

196 JWH 369  

197 JWH 370  

198 JWH 398  

199 JWH 398 2-chloronaphthyl isomer  

200 JWH 398 3-chloronaphthyl isomer  

201 JWH 398 5-chloronaphthyl isomer  

202 JWH 398 6-chloronaphthyl isomer  

203 JWH 398 7-chloronaphthyl isomer  

204 JWH 398 8-chloronaphthyl isomer  

205 JWH 424  
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NPS Abbreviation 

206 (2Z)-2-(1-hexyl-1,2-dihydro-2-oxo-3H-indol-3-ylidene)hydrazide, benzoic acid MDA 19 

207 5,6-Methylenedioxy-2-aminoindane MDAI 

208 MDMA methylene homolog  

209 3,4-Methylenedioxy Pyrovalerone MDPV 

210 Meconin  

211 para-Methoxymethcathinone Methedrone 

212 Methoxetamine MXE 

213 3,4-Methylenedioxy-N-methylcathinone (bk-MDMA) Methylone 

214 9-methoxy Corynantheidine (Kratom) Mitragynine 

215 N,N-Dimethylcathinone N,N-DMC 

216 Naphpyrovalerone Naphyrone 

217 Naphyrone 1-naphthyl isomer α- Naphyrone 

218 Nor-Mephedrone  

219 Norsufentanil  

220 α-methylamino-Valerophenone Pentedrone 

221 Pentylone  

222 Phenazepam  

223 1-phenyl-piperazine Phenylpiperazine 

224 WIN 48,098 Pravadoline 

225 Pyrovalerone  

226 RCS-4  

227 RCS-4 2-methoxy isomer  

228 RCS-4 3-methoxy isomer  

229 RCS-4-C4 Homolog  

230 RCS-8  

231 RCS-8 3-methoxy isomer  
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NPS Abbreviation 

232 RCS-8 4-methoxy isomer  

233 N-adamantyl-1-fluoropentylindole-3-Carboxamide (5F-APICA) STS-135 

234 1-(m-Trifluoromethylphenyl) piperazine (hydrochloride) TFMPP 

235 2,4,5-Trimethoxyamphetamine TMA-2 

236 UR-144  

237 (3'-(aminocarbonyl)[1,1'-biphenyl]-3-yl)-cyclohexylcarbamate URB597 

238 [1,1'-biphenyl]-3-yl-carbamic acid, cyclohexyl ester URB602 

239 6-methyl-2-[(4-methylphenyl)amino]-1-benzoxazin-4-one URB754 

240 6-Bromopravadoline WIN 54,461 

241 5-fluoro UR-144 XLR-11 

242 α-pyrrolidinobutiophenone α-PBP 

243 α-pyrrolidinopentiophenone α-PPP 

244 α-pyrrolidinopropiophenone α-PVP 

 

Appendix 2. Fragmentation pattern of each substance at the collision energy of 20 eV.  

Theoretical mass was calculated using a mass calculator tool from Agilent MassHunter 

Qualitative Analysis. 

NPS 
Molecular 

formula 

Theoretical 

mass (m/z) 

Measured 

mass (m/z) 

Mass 

difference 

(m/z) 

Relative 

abundance 

(%) 

Measured 

mass loss 

(m/z) 

Fragment 

formula 

Synthetic cathinones  

2
,3

-M
D

P
V

 

C16H22NO3 276.1594 276.1588 0.0006 99.15   

C11H11NO3 205.0733 205.0856 -0.0123 11.55 71.0732 C5H11 

C11H11O2 175.0754 175.0750 0.0004 76.69 101.0838 C5H11NO 

C8H7O2 135.0441 135.0442 -0.0001 100.00 141.1146 C8H15NO 

C8H16N 126.1277 126.1271 0.0006 33.16 150.0317 C8H6O3 

C4H8N 70.0651 70.0663 -0.0012 7.85 206.0925 C12H14O3 

M D P V
 

C16H22NO3 276.1594 276.1592 0.0002 100.00   
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NPS 
Molecular 

formula 

Theoretical 

mass (m/z) 

Measured 

mass (m/z) 

Mass 

difference 

(m/z) 

Relative 

abundance 

(%) 

Measured 

mass loss 

(m/z) 

Fragment 

formula 

C11H11NO3 205.0733 205.0863 -0.0130 65.56 71.0729 C4H9 

C11H11O2 175.0754 175.0751 0.0003 63.85 101.0841 C5H11NO 

C8H5O3 149.0233 149.0328 -0.0095 36.19 127.1264 C8H17N 

C8H7O2 135.0441 135.0440 0.0001 58.84 141.1152 C8H15NO 

C8H16N 126.1277 126.1273 0.0004 67.12 150.0319 C8H6O3 

C5H10N 84.0808 84.0813 -0.0005 9.05 192.0779 C11H12O3 

2
,3

-M
D

M
C

 

C11H14NO3 208.0968 208.0961 0.0007 0.57   

C11H12NO2 190.0863 190.0887 -0.0024 3.79 18.0074 H2O 

C10H8O2 160.0519 160.0765 -0.0246 100.00 48.0196 CH6NO 

C9H7O2 147.0441 147.0446 -0.0005 10.94 61.0515 C2H7NO 

C9H10N 132.0808 132.0809 -0.0001 42.53 76.0152 C2H4O3 

C8H7N 117.0573 117.0580 -0.0007 3.05 91.0381 C3H7O3 

C7H7 91.0542 91.0543 -0.0001 4.23 117.0418 C4H7NO3 

M
et

h
y

lo
n

e 

C11H14NO3 208.0968 208.0949 0.0019 0.82   

C11H12NO2 190.0863 190.0877 -0.0014 13.32 18.0072 H2O 

C10H8O2 160.0519 160.0768 -0.0249 100.00 48.0181 CH6NO 

C9H7O2 147.0441 147.0452 -0.0011 7.64 61.0497 C2H7NO 

C9H10N 132.0808 132.0816 -0.0008 32.80 76.0133 C2H4O3 

C8H7N 117.0573 117.0581 -0.0005 1.71 91.0371 C3H7O3 

C7H7 91.0542 91.0530 0.0012 2.05 117.0419 C4H7NO3 

2
,3

-P
en

ty
lo

n
e 

C13H18NO3 236.1281 236.1246 0.0035 1.39   

C13H16NO2 218.1176 218.1176 0.0000 18.84 17.8824 H2O 

C12H12O2 188.0832 188.1068 -0.0236 100.00 47.8932 CH4NO 

C11H11O2 175.0754 175.0751 0.0003 41.08 60.9249 C2H7NO 

C11H14N 160.1121 160.1117 0.0004 23.59 75.8883 C2H4O3 

C8H7O2 135.0441 135.0437 0.0004 45.90 100.9563 C5H11NO 

C5H12N 86.0964 86.0970 -0.0006 11.82 149.9030 C8H6O3 

P
en

ty
lo

n
e 

C13H18NO3 236.1281 236.1294 -0.0013 1.89   

C13H16NO2 218.1176 218.1176 0.0000 23.76 17.8824 H2O 

C12H12O2 188.0832 188.1071 -0.0239 100.00 47.8929 CH4NO 

C11H11O2 175.0754 175.0688 0.0066 38.13 60.9312 C2H7NO 

C11H14N 160.1121 160.1113 0.0008 10.64 76.0000 C2H4O3 
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NPS 
Molecular 

formula 

Theoretical 

mass (m/z) 

Measured 

mass (m/z) 

Mass 

difference 

(m/z) 

Relative 

abundance 

(%) 

Measured 

mass loss 

(m/z) 

Fragment 

formula 

C8H7O2 135.0441 135.0438 0.0003 19.10 100.9562 C5H11NO 

C5H12N 86.0964 86.0971 -0.0007 24.15 149.9029 C8H6O3 

b
k
-D

M
B

D
B

 

C13H18NO3 236.1281 236.1289 -0.0008 19.24   

C11H13NO2 191.0941 191.0709 0.0232 38.91 45.0580 C2H5O 

C10H9O2 161.0597 161.0605 -0.0008 74.77 75.0684 C3H9NO 

C8H5O3 149.0233 149.0238 -0.0005 52.54 87.1051 C5H13N 

C10H13 133.1012 133.0654 0.0358 17.85 103.0635 C3H5NO3 

C8H9 105.0699 105.0705 -0.0006 9.32 131.0584 C5H9NO3 

C5H12N 86.0964 86.0972 -0.0008 100.00 150.0317 C8H6O3 

b
k
-E

B
D

B
 

C13H18NO3 236.1281 236.1298 -0.0017 2.47   

C13H16NO2 218.1176 218.1187 -0.0011 35.15 18.0111 H2O 

C12H12O2 188.0832 188.1079 -0.0247 100.00 48.0219 CH5NO 

C10H9O2 161.0597 161.0616 -0.0019 17.22 75.0682 C3H9NO 

C5H12N 86.0964 86.0974 -0.0010 16.15 150.0324 C8H6O3 

2
-M

eP
B

P
 

C15H22NO 232.1696 232.1692 0.0004 92.96   

C13H17NO 203.1305 203.1268 0.0037 3.60 29.0424 C2H5 

C11H13O 161.0961 161.0943 0.0018 68.35 71.0749 C4H9N 

C10H13 133.1012 133.1009 0.0003 31.74 99.0683 C5H9NO 

C8H7O 119.0491 119.0493 -0.0002 50.18 113.1199 C7H15N 

C7H14N 112.1121 112.1128 -0.0007 75.09 120.0564 C8H8O 

C8H9 105.0699 105.0698 0.0001 100.00 127.0994 C7H13NO 

C4H8N 70.0651 70.0637 0.0014 14.41 162.1055 C11H14O 

3
-M

eP
B

P
 

C15H22NO 232.1696 232.1699 -0.0003 67.42   

C13H17NO 203.1305 203.1301 0.0004 7.12 29.0398 C2H5 

C11H13O 161.0961 161.0955 0.0006 47.99 71.0744 C4H9N 

C10H13 133.1012 133.1010 0.0002 29.12 99.0689 C5H9NO 

C8H7O 119.0491 119.0486 0.0005 22.22 113.1213 C7H15N 

C7H14N 112.1121 112.1112 0.0009 31.16 120.0587 C8H8O 

C8H9 105.0699 105.0699 0.0000 100.00 127.1000 C7H13NO 

C4H8N 70.0651 70.0651 0.0000 19.75 162.1048 C11H14O 

4
-M

eP
B

P
 

C15H22NO 232.1696 232.1682 0.0014 49.07   

C13H17NO 203.1305 203.1257 0.0048 5.76 29.0425 C2H5 

C11H13O 161.0961 161.0953 0.0008 69.09 71.0729 C4H9N 
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NPS 
Molecular 

formula 

Theoretical 

mass (m/z) 

Measured 

mass (m/z) 

Mass 

difference 

(m/z) 

Relative 

abundance 

(%) 

Measured 

mass loss 

(m/z) 

Fragment 

formula 

C10H13 133.1012 133.1003 0.0009 36.33 99.0679 C5H9NO 

C8H7O 119.0491 119.0483 0.0008 22.91 113.1199 C7H15N 

C7H14N 112.1121 112.1117 0.0004 39.48 120.0565 C8H8O 

C8H9 105.0699 105.0693 0.0006 100.00 127.0989 C7H13NO 

C4H8N 70.0651 70.0649 0.0002 12.48 162.1033 C11H14O 

α
-P

V
P

 

C15H22NO 232.1696 232.1669 0.0027 70.03   

C12H15NO 189.1148 189.1131 0.0017 6.87 43.0538 C3H7 

C11H13O 161.0961 161.0936 0.0025 27.31 71.0733 C4H9N 

C8H16N 126.1277 126.1251 0.0026 29.98 106.0418 C7H6O 

C8H7O 119.0491 119.0473 0.0018 12.59 113.1196 C7H15N 

C7H5O 105.0335 105.0323 0.0012 26.84 127.1346 C7H13NO 

C7H7 91.0542 91.0532 0.0010 100.00 141.1137 C8H15NO 

C4H8N 70.0651 70.0648 0.0003 19.50 162.1021 C11H14O 

3
-F

M
C

 

C10H13FNO 182.0976 182.0974 0.0002 1.10   

C10H11FN 164.0870 164.0868 0.0002 51.05 18.0106 H2O 

C9H8FN 149.0635 149.0637 -0.0002 100.00 33.0337 CH5O 

C8H8F 123.0605 123.0601 0.0004 17.38 59.0373 C2H5NO 

C8H7 103.0542 103.0536 0.0006 12.89 79.0438 C2H6FNO 

C6H5 77.0386 77.0378 0.0008 2.13 105.0596 C4H8FNO 

4
-F

M
C

 

C10H13FNO 182.0976 182.0982 -0.0006 0.62   

C10H11FN 164.0870 164.0866 0.0004 51.46 18.0116 H2O 

C9H8FN 149.0635 149.0630 0.0005 100.00 33.0352 CH5O 

C8H8F 123.0610 123.0597 0.0013 22.65 59.0385 C2H5NO 

C8H7 103.0542 103.0541 0.0001 10.65 79.0441 C2H6FNO 

C6H5 77.0386 77.0385 0.0001 2.33 105.0597 C4H8FNO 

4
-M

E
C

 

C12H18NO 192.1383 192.1390 -0.0007 2.16   

C12H16N 174.1277 174.1274 0.0003 67.34 18.0116 H2O 

C11H13N 159.1043 159.1037 0.0006 33.09 33.0353 CH5O 

C10H11N 145.0886 145.0880 0.0006 100.00 47.0510 C2H7O 

C10H11 131.0861 131.0747 0.0114 23.31 61.0643 C2H7NO 

C9H11 119.0855 119.0847 0.0008 35.87 73.0543 C3H7NO 

C7H7 91.0542 91.0539 0.0003 9.74 101.0851 C5H11NO 
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NPS 
Molecular 

formula 

Theoretical 

mass (m/z) 

Measured 

mass (m/z) 

Mass 

difference 

(m/z) 

Relative 

abundance 

(%) 

Measured 

mass loss 

(m/z) 

Fragment 

formula 

C2H5NO 59.0366 59.0492 -0.0126 33.42 133.0898 C10H13 
P

en
te

d
ro

n
e 

C12H18NO 192.1383 192.1372 0.0011 2.02   

C12H16N 174.1277 174.1269 0.0008 31.79 18.0103 H2O 

C10H10N 144.0808 144.0813 -0.0005 17.64 48.0559 C2H8O 

C10H12 132.0934 132.0803 0.0131 100.00 60.0569 C2H6NO 

C9H9 117.0699 117.0569 0.0130 14.80 75.0803 C3H9NO 

C8H9 105.0699 105.0343 0.0356 16.00 87.1029 C4H9NO 

C7H7 91.0542 91.0541 0.0001 75.36 101.0831 C5H11NO 

C6H5 77.0386 77.0388 -0.0002 4.27 115.0984 C6H13NO 

C2H5NO 59.0366 59.0494 -0.0128 55.66 133.0878 C10H13 

4
-M

M
C

 

C11H16NO 178.1226 - - -   

C11H14N 160.1121 160.1110 0.0011 46.86 18.0116 H2O 

C10H11N 145.0886 145.0877 0.0009 100.00 33.0349 CH5O 

C9H11 119.0855 119.0825 0.0030 15.86 59.0401 C2H5NO 

C7H7 91.0542 91.0537 0.0005 6.22 87.1226 C4H9NO 

B
u

p
h

ed
ro

n
e 

C11H16NO 178.1226 178.1198 0.0028 0.61   

C11H14N 160.1121 160.1109 0.0012 40.21 17.8891 H2O 

C10H11N 145.0886 145.0879 0.0007 18.26 32.9121 CH5O 

C10H11 131.0855 131.0722 0.0133 100.00 46.9278 CH5NO 

C7H7 91.0542 91.0544 -0.0002 51.32 86.9456 C4H9NO 

C6H5 77.0386 77.0392 -0.0006 4.88 101.0000 C5H11NO 

4
'-

M
eO

P
P

P
 

C14H20NO2 234.1489 234.1476 0.0013 42.53   

C10H11O2 163.0754 163.0743 0.0011 60.87 71.0733 C4H9N 

C8H7O2 135.0441 135.0796 -0.0355 59.15 99.0680 C6H13N 

C6H12N 98.0964 98.0959 0.0005 100.00 136.0517 C8H8O2 

C4H8N 70.0651 70.0651 0.0000 3.15 164.0825 C10H12O2 

4
'-

M
eP

H
P

 

C17H26NO 260.2009 260.1999 0.0010 68.07   

C13H17O 189.1274 189.1260 0.0014 43.13 71.0739 C4H9N 

C9H18N 140.1434 140.1427 0.0007 21.71 120.0572 C8H8O 

C10H13 133.1012 133.0646 0.0366 11.23 127.1353 C7H13NO 

C8H7O 119.0491 119.0487 0.0004 24.17 141.1512 C9H19N 

C8H9 105.0699 105.0693 0.0006 100.00 155.1306 C9H17NO 

C4H8N 70.0651 70.0649 0.0002 8.18 190.1350 C13H18O 



156 

NPS 
Molecular 

formula 

Theoretical 

mass (m/z) 

Measured 

mass (m/z) 

Mass 

difference 

(m/z) 

Relative 

abundance 

(%) 

Measured 

mass loss 

(m/z) 

Fragment 

formula 

4
'-

M
eP

P
P

 
C14H20NO 218.1539 218.1524 0.0015 70.61   

C10H11O 147.0804 147.0792 0.0012 94.18 71.0732 C4H9N 

C9H11 119.0855 119.0845 0.0010 100.00 99.0679 C6H13N 

C6H12N 98.0964 98.0955 0.0009 57.47 120.0569 C8H8O 

C4H8N 70.0651 70.0645 0.0006 15.80 148.0879 C10H12O 

b
k
-M

D
D

M
A

 

C12H16NO3 222.1125 222.1126 -0.0001 20.36   

C10H9O3 177.0546 177.0546 0.0000 17.77 45.0580 C2H7N 

C9H7O2 147.0441 147.0441 0.0000 65.88 75.0685 C3H9NO 

C8H7O 119.0855 119.0485 0.0370 11.65 103.0641 C3H5NO3 

C7H7 91.0542 91.0546 -0.0004 7.00 131.0580 C5H9NO3 

C4H10N 72.0808 72.0813 -0.0005 100.00 150.0313 C8H6O3 

b
k
-M

D
E

A
 

C12H16NO3 222.1125 222.1121 0.0004 2.43   

C12H14NO2 204.1019 204.1014 0.0005 21.28 18.0107 H2O 

C11H11NO2 189.0784 189.0773 0.0011 4.81 33.1121 CH5O 

C11H10O2 174.0555 174.0913 -0.0358 100.00 48.0208 CH6NO 

C10H12N 146.0362 146.0958 -0.0596 16.46 76.0163 C2H4O3 

C8H7O 119.0855 119.0501 0.0354 2.46 103.0620 C4H9NO2 

C7H7 91.0542 91.0535 0.0007 2.53 131.0586 C5H9NO3 

C4H10N 72.0808 72.0809 -0.0001 12.52 150.0312 C8H6O3 

B
u
ty

lo
n

e 

C12H16NO3 222.1125 222.1116 0.0009 0.93   

C12H14NO2 204.1019 204.1016 0.0003 19.06 18.0100 H2O 

C11H10O2 174.0675 174.0915 -0.0240 100.00 48.0201 CH6NO 

C10H9O2 161.0597 161.0599 -0.0002 13.86 61.0517 C2H7NO 

C10H12N 146.0964 146.0960 0.0004 18.87 76.0156 C2H4O3 

C8H9 105.0699 105.0699 0.0000 3.95 117.0417 C4H7NO3 

C4H10N 72.0808 72.0816 -0.0008 16.81 150.0300 C8H6O3 

N
ap

h
y
ro

n
e 

C19H24NO 282.1852 282.1854 -0.0002 93.08   

C15H15O 211.1117 211.1122 -0.0005 82.03 71.0732 C4H9N 

C11H7O 155.0491 155.0481 0.0010 17.42 127.1373 C8H17N 

C11H9 141.0699 141.0698 0.0001 100.00 141.1156 C8H15NO 

C8H16N 126.1277 126.1277 0.0000 28.35 156.0577 C11H8O 

C4H8N 70.0651 70.0651 0.0000 12.40 212.1203 C15H16O 
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NPS 
Molecular 

formula 

Theoretical 

mass (m/z) 

Measured 

mass (m/z) 

Mass 

difference 

(m/z) 

Relative 

abundance 

(%) 

Measured 

mass loss 

(m/z) 

Fragment 

formula 

α
-N

ap
h

y
ro

n
e 

C19H24NO 282.1852 282.1857 -0.0005 100.00   

C15H15O 211.1117 211.1121 -0.0004 76.52 71.0736 C4H9N 

C11H7O 155.0491 155.0489 0.0002 30.86 127.1368 C8H17N 

C11H9 141.0699 141.0697 0.0002 58.06 141.1160 C8H15NO 

C8H16N 126.1277 126.1276 0.0001 74.75 156.0581 C11H8O 

C4H8N 70.0651 70.0653 -0.0002 6.84 212.1204 C15H16O 

Synthetic cannabinoids  

A
M

1
2

2
0
 

C26H27N2O 383.2118 383.2110 0.0008 44.71   

C20H16NO 286.1226 286.1211 0.0015 31.51 97.0899 C6H11N 

C11H7O 155.0491 155.0484 0.0007 40.45 228.1626 C15H20N2 

C7H14N 112.1121 112.1116 0.0005 100.00 271.0994 C19H13NO 

C6H12N 98.0964 98.0962 0.0002 95.52 285.1148 C20H15NO 

C4H8N 70.0651 70.0641 0.0010 3.96 313.1469 C22H19NO 

A
M

2
2

3
3
 

C22H24IN2O 459.0928 459.0909 0.0019 100.00   

C16H13INO 362.0036 362.0020 0.0016 35.40 97.0889 C6H11N 

C7H4IO 230.9301 230.9286 0.0015 22.29 228.1623 C15H20N2 

C7H14N 112.1126 112.1115 0.0011 77.23 346.9794 C15H10INO 

C6H12N 98.0964 98.0959 0.0005 97.31 360.9950 C16H12INO 

C4H8N 70.0651 70.0647 0.0004 2.68 389.0262 C18H16INO 

C
P

E
 

C24H29N2O2 377.2224 377.2203 0.0021 63.77   

C18H18NO2 280.1332 280.1311 0.0021 11.56 97.0892 C6H11N 

C15H21N2 229.1699 229.1681 0.0018 28.59 148.0522 C9H8O2 

C8H9O 121.0648 121.0636 0.0012 62.24 256.1567 C16H20N2O 

C7H14N 112.1121 112.1114 0.0007 100.00 265.1089 C17H15NO2 

C6H12N 98.0964 98.0954 0.0010 32.35 279.1249 C18H17NO2 

JW
H

-0
1
8
 C24H24NO 342.1852 342.1826 0.0026 75.63   

C14H16NO 214.1226 214.1210 0.0016 19.72 128.0616 C10H8 

C11H7O 155.0491 155.0477 0.0014 100.00 187.1349 C13H17N 

C10H7 127.0542 127.0525 0.0017 6.81 215.1301 C14H17NO 

A
P

IC
A

 C24H33N2O 365.2587 365.2561 0.0026 100.00   

C14H16NO 214.1226 214.1218 0.0008 15.49 151.1343 C10H17N 

C10H15 135.1168 135.1157 0.0011 50.50 230.1404 C14H18N2O 

C8H11 107.0861 107.0836 0.0025 2.33 258.1725 C16H22N2O 
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NPS 
Molecular 

formula 

Theoretical 

mass (m/z) 

Measured 

mass (m/z) 

Mass 

difference 

(m/z) 

Relative 

abundance 

(%) 

Measured 

mass loss 

(m/z) 

Fragment 

formula 

M
A

M
2
2

0
1

 
C25H25FNO 374.1915 374.1897 0.0018 100.00   

C14H15FNO 232.1132 232.1116 0.0016 28.40 142.0781 C11H10 

C12H9O 169.0648 169.0638 0.0010 90.30 205.1259 C13H16FN 

C11H9 141.0699 141.0673 0.0026 4.23 233.1224 C14H16FNO 

U
R

-1
4

4
 

C21H30NO 312.2322 312.2310 0.0012 100.00  
 

C21H28N 294.2216 294.2217 -0.0001 10.38 18.0093 H2O 

C14H16NO 214.1226 214.1198 0.0028 28.33 98.1112 C7H14 

C9H6NO 144.0444 144.0435 0.0009 1.97 168.1875 C12H24 

C8H13O 125.0961 125.0951 0.0010 78.29 187.1359 C13H17O 

C7H13 97.1012 97.0997 0.0015 9.10 215.1313 C14H17NO 

X
L

R
-1

1
 C21H29FNO 330.2228 330.2202 0.0026 100.00  

 
C21H27FN 312.2122 312.2101 0.0021 9.76 18.0101 H2O 

C14H15FNO 232.1132 232.1117 0.0015 17.84 98.1085 C7H14 

C8H13O 125.0961 125.0953 0.0008 51.38 205.1249 C13H16FN 

Phenethylamines  

2
5

I-
N

B
O

M
e C18H23INO3 428.0717 428.0681 0.0036 11.60  

 
C16H18NO3 272.1281 272.1387 -0.0106 3.81 155.9294 C2H5I 

C8H9O 121.0648 121.0640 0.0008 100.00 307.0041 C10H14INO2 

C7H7 91.0542 91.0536 0.0006 9.20 337.0145 C11H16INO3 
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Appendix 3. Optimized EI MRM transitions for 34 compounds of interest with the average relative abundance 

(%) and selected collision energy (CE, V).  The most abundant ions are in bold. 
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Appendix 4. Optimized CI MRM transitions for 34 compounds of interest with the average relative abundance 

(%) and selected collision energy (CE, V).  The most abundant ions are in bold. 
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