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ABSTRACT OF THE DISSERTATION 

ELEMENTAL ANALYSIS OF PRINTING INKS USING TANDEM LASER- INDUCED 

BREAKDOWN SPECTROSCOPY AND LASER ABLATION INDUCTIVELY 

COUPLED PLASMA MASS SPECTROMETRY 

 by 

Kiran Subedi 

Florida International University, 2015 

Miami, Florida 

Professor José R. Almirall, Major Professor 

As a consequence of the widespread use of computers coupled to high-quality 

printers and different types of papers, forgery, counterfeiting, change of wills, 

anonymous letter writing and felonious use of the documents have become serious 

problems. Forensic analysts are always seeking methods that can provide reliable 

information on whether a specimen collected at the crime scene is linked to the crime or 

to a source of known origin. Sensitive methods that can provide more detailed 

characterization of natural or man-made materials or even provide information not 

previously available to forensic examiners. 

Recent advances in rapid solid sampling of materials using laser ablation (LA) 

coupled to inductively coupled plasma mass spectroscopy (ICP-MS) have led to this 

analytical method to be regarded as the gold standard in the field of elemental analysis 

for trace level components in solids. Another, emerging, analytical technique that uses 

the same laser pulse to generate a plasma that can be interrogated with spectroscopy is 

laser induced break down spectroscopy (LIBS).  



 vii 

The analysis of ink and paper is also possible because of the surface removal 

effect of laser interactions with the samples. In the present study, printing inks were 

analyzed using LIBS, LA-ICP-MS and both of them in tandem mode. In the tandem 

setup, the light generated during the relaxation of the excited species (LIBS) was used to 

create a spectral signature of the elements, and the mass-to-charge ratio of the ejected 

particles (ICP-MS) was used to create a mass spectrum.  

For a set of 319 printing ink samples, LA-ICP-MS alone provided discrimination 

greater than 99%. A subset of 43 printing inks, having a very similar elemental profile, 

was analyzed by tandem LIBS/LA-ICP-MS. The fusion of LIBS and LA-ICP-MS 

provided additional discrimination through the detection of elements like Ca, Si, Fe, and 

K by LIBS, that are difficult to detect and confirm using standalone ICP-MS because of 

the spectral interferences (isobaric and polyatomic) involved. The combination of these 

two sensors was found to minimize the individual limitations and provide a more 

complete and representative chemical characterization of printing inks. 
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Chapter 1. Introduction 
	
  

1.1 Motivation for Research 
	
  

Ink and paper have been widely used in criminal cases in the form of counterfeit 

currencies, changed wills, ransom letters, and altered checks. Various techniques have 

been developed to analyze ink and paper. Non-destructive tools like the optical 

microscopy, Video Spectral Comparator (VSC), X-Ray Fluorescence (XRF)1,2, Thin 

Layer Chromatography (TLC)3, and Scanning Electron Microscopy (SEM)4-6 are usually 

the tools of choice. But these tools have a high limit of detection (LOD), which make it 

impossible when trace elements (present below 1 part per million) have to be detected. 

Elemental analysis of microscopic evidence present at trace levels (low parts per million 

in a matrix) can provide a very high degree of discrimination between samples suspected 

of sharing the same source of origin. The two of the commonly used laser based 

analytical tools are LIBS and LA-ICP-MS that provide elemental information of inks7-12. 

Both these sensors have benefits and limitations. The present study focuses on combining 

the two techniques into one setup that minimizes their individual drawbacks and provides 

complementary information for both sensors. 

Both LIBS and LA-ICP-MS use a laser beam to ablate small amounts of solid 

particles from the sample. Qualitative and semi-quantitative analysis can be performed 

using these two sensors. The typical limits of detection are in the order of sub ppm to ppb 

for LIBS, and LA-ICP-MS, respectively for the analysis of solid samples. These two 

methods have intrinsic benefits for document analysis, especially the ability for spatial 

resolution and quasi-non destructive nature of the lasers commercially available. The spot 
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size of the laser can be varied from a few microns to hundreds of microns, which permits 

to remove ink from a single letter in a document if necessary and also to study the sample 

homogeneity. LA-ICP-MS is the instrument of choice for any analyst looking for trace 

elements in different matrices. Also the time for analysis is very short, usually 30 seconds 

per replicate. The major limitations of LA-ICP-MS include the high cost, the presence of 

isobaric and polyatomic interferences making some of the elements very difficult to 

detect. LIBS is a simple to use, cost-effective instrument, having a wide range of 

applications. The tedious and complicated acid digestion step for extremely hard 

materials can be avoided by the use of laser.  Almost nothing touches the sample, which 

decreases the chances of any sample contamination. Nevertheless, it is accompanied by 

some drawbacks such as higher limits of detections, which makes the detection of trace 

elements very challenging. It complements LA-ICP-MS by providing interference free 

emission lines for elements suffering from isobaric and polyatomic interferences in ICP-

plasma.  

The common drawback for both LIBS and LA-ICP-MS is the unavailability of 

suitable matrix matched standards for different matrices including inks. Matrix effects are 

reported in literature for laser-induced plasmas13-16. Physical matrix effects depend on the 

concentration of the samples. It is found to be more pronounced in concentrated samples 

than in dilute samples, even though the laser energy is constant throughout14. Similarly 

the detection limit of the elements have been reported to vary depending on the 

morphology (coarse/fine) of the solid sample17. Some of the solutions to the matrix effect 

are the application of matrix-matched standards, use of a suitable internal standard or 

normalization of the spectrum. 
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1.2 Goals of This Research 
	
  

The goals of the research were to design and develop analytical tools, LIBS and 

LA-ICP-MS for the chemical characterization of printing inks, and build an ink database.  

A novel tandem method was designed and developed for the elemental and isotopic 

analysis of printing inks by combining LIBS and LA-ICP-MS in a single set up. The 

goals were based on the following facts. 

1) Elements such as S, K, Ca, Fe, are very difficult to detect using a quadrupole ICP-MS 

because of the spectral interferences (isobaric and polyatomic). Interference free emission 

lines of these elements, obtained from LIBS spectrum could be used as points of 

comparison. 

2) Elements present at trace levels (<10 ppm) are difficult to detect using standalone LIBS 

while LA-ICP-MS has detection limits in sub ppm levels.  Therefore, trace elements can 

be detected using LA-ICP-MS, while major elements that are present at higher 

concentrations (%wt.) can be monitored using LIBS instead of LA-ICP-MS to protect the 

ICP-MS detector from saturation. 

3) The application of tandem LIBS/LA-ICP-MS will minimize the amount of sample 

consumed as compared to the amount when two separate samples are introduced to LIBS 

and LA-ICP-MS in two standalone experiments. In real cases, the amount of sample (as 

evidence) is usually very small and could be insufficient for the analysis by two 

instruments. Tandem LIBS/LA-ICP-MS can be an ideal tool in such circumstances. 

4) Tandem experiment also saves the total analysis time, as it is shorter compared to the 

analysis by two individual instruments. 



 4 

5) LIBS can be used for the rapid screening of the ink sample while LA-ICP-MS can be 

used for the confirmation of the elements. Thus LIBS can be used to create an element 

menu for LA-ICP-MS. 

6) A suitable element from LIBS can be used to normalize the LA-ICP-MS signals and vice-

versa. Glass is a solid matrix that contains approximately 70% of Silicon dioxide (SiO2). 

Any laser shot to shot fluctuation can be accounted by measuring the amount of Silicon 

ablated. A suitable interference free Silicon emission line obtained in LIBS can be used 

to normalize the mass spectrum. 

1.3 Introduction to Analytical Tools 

1.3.1 LIBS 
 

Laser Induced Breakdown Spectroscopy (LIBS) uses a laser of suitable 

wavelength that is focused on the surface of a solid surface to create a plasma that can be 

analyzed. The laser interacts with the sample and ablates a small amount of sample, and 

if the laser power density is greater than the breakdown threshold value of the solid 

surface, it creates a micro plasma plume just above the irradiated spot18. Inside the micro 

plasma, an electron absorbs a photon, in doing so, it reaches a higher energy quantum 

mechanical level. The higher energy state or the excited state of the atom is an unstable 

state, so it tries to return back to the ground state. In doing so, it releases energy in the 

form of characteristic photon energies. The energy associated with a photon is given by 

equation (1). 

!"#$%$& = ℎ)***!!(1) 

!!!!!!!!!!!" = $/&!!!!(2) 



 5 

!"#$%$& = ℎ)/+,!!(3) 

Where Ephoton, h and !!! correspond to the energy, plank’s constant and the frequency 

associated with the photon. Similarly, energy of the photon is related to its wavelength by 

equation (3). 

These photons are collected using fused silica lenses coupled onto a fiber-optic 

cable, which transports the light to a spectrometer. The spectrometer consists of a Czerny 

Turner Spectrograph with dual gratings, which separate the photons into wavelengths. 

The light obtained from the excited species in the plasma provides elemental signature of 

the material. The intensity of the peak at a particular wavelength reflects the 

concentration of that element. Figure 1 shows the schematic of LIBS where a 266nm 

wavelength laser is focused on a sample containing a standard solution (10,000ppm) of 

various elements spiked on paper. 

Argon 
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Figure 1. A 266nm laser focused on the surface of an ink sample placed inside an 
ablation chamber, produces a microplasma in the Argon atmosphere, the light emitted by 
the elements present in the ink sample are collected using Silica lens and transported by 
fiber optic cables to a spectrometer where the light is separated into spectral components 
and the signal is displayed as a function of wavelength. 



 6 

1.3.1.1 The Physics of Plasma in LIBS 

 The plasma formed after the laser interaction with the sample is short lived. 

Figure 2 shows the evolution of plasma across different time regimes. A white light or 

continuum dominates the plasma light in the beginning, which is because of the free-free 

(bremsstrahlung) and free-bound  (recombination) transitions18. Bremsstrahlung occurs 

when free electrons collide to produce photons, similarly when an atom or an ion 

captures an electron, some photons are emitted, which is called the recombination 

event19. As the plasma expands away from the surface of the material, it starts to cool, 

and line emission from ions, atoms and molecules dominate. The continuum emission, 

because of the hot plasma decays at a faster rate than the line emission (ions, atoms and 

neutrals) from the cold plasma as shown in Figure 2.22 

Due to the high electron density in the LIBS plasma, and the dominant collisional 

processes over the radiative processes, Local Thermodynamic Equilibrium (LTE) is 

assumed to exist in local regions of the plasma20. Two commonly used equations to study 

the population distribution of excited species and ions inside the plasma are the 

Boltzmann equation and the Saha equation21. The Boltzmann equation is used to 

calculate the differences in distributions of excited species in the plasma22. It can be 

described by equation 4. 

 
!"
!#

= %"
& exp

*+"
,- (4)!

 
 
Where N1 and N0 is the number of atoms in the excited and ground state respectively. 

Similarly g1 represents the degeneracy at excited state, while Z denotes the partition 

function at the ground state, K is the Boltzmann’s constant, and T is the temperature.  
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The Saha equation can also be used to calculate the ionization temperature inside 

the LIBS plasma23,24. It is given by equation 5. 

!"!#
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= 2'()*
ℎ,

-
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where ni is the density of atoms in  the i-th state of ionization,  

ne is the electron density, na is the density of atoms, Z is the partition function 

m is the mass of electron, and Ei is the ionization energy of the species21.  

 

Figure 2. Temporal evolution of LIBS plasma22. 
 
  The detector in LIBS has to be gated to avoid the continuum and to capture the 

light emitted by the ions and excited atoms which are of analytical interest. 
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1.3.2 LA-ICP-MS 
 
 Laser Ablation Inductively Coupled Plasma Mass Spectrometry is an analytical 

technique that uses laser as a sampling tool. In LA-ICP-MS, a high-energy (109-1011 

W/cm2) short (ns) laser pulse (in the IR 1064 nm, VIS 532 nm or UV 266 nm) is focused 

on the surface of the material to generate small particles that are transferred to the ICP-

MS for analysis. A typical LA-ICP-MS includes a laser, a camera (CCD), an ablation 

chamber, and a ICP-MS.  A CCD camera helps to locate the sampling spot and focus the 

laser on the surface of the sample. The laser ablates a small amount of material, which is 

carried by a carrier gas to the ICP, where it gets atomized and ionized. The ions are 

analyzed on the basis of their mass to charge (m/z) ratios by a quadrupole mass analyzer 

and finally detected by a detector, Electron Multiplier Tube (EMT). The use of laser 

makes it possible to analyze solid samples without tedious sample preparation. Lower 

limits of detection (below parts per million) is another important feature of LA-ICP-MS 

that has attracted the trace-element community. Inductively Coupled Plasma Mass 

Spectrometry (ICP-OES) is another technique that offers multi-element detection but the 

detection capability is not as good as compared to ICP-MS. Electro-thermal Atomization 

(ETA) offers lower detection limits but does not provide the sample throughput compared 

to ICP-MS and ICP-OES25. The isotopic signature of the elements obtained from ICP-MS 

provides an unambiguous identity of the elements. The other notable feature of ICP-MS 

is the analytical range, which is nine orders of magnitude. However, ICP is plagued by 

the presence of isobaric and polyatomic interferences, which make it difficult to analyze 

elements like S, K, Ca, and Fe. 
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The ICP consists of three main parts: a torch, a radiofrequency (RF) coil and a 

power supply. The torch is made of quartz and consists of three concentric tubes. Argon 

gas is introduced between the two outlets, which helps to keep the outer tube from 

melting.  The auxiliary gas, which is usually Argon, is used to keep the plasma from 

getting too close and it also prevents the injector tip from melting. Nebulizer gas passes 

along with the sample through the central tube. The radiofrequency coil is made of Cu 

tubing, which is coiled around the outer tube of the torch. This coil is held grounded and 

AC (Alternate Current) RF power is applied. This causes an electromagnetic field to the 

torch. A spark then supplies a few seed electrons, which are accelerated by the RF field. 

These electrons collide with the Argon atoms in the torch knocking off more electrons 

from the outermost orbit of Argon atoms resulting in a chain reaction, which sustains the 

plasma (hence the name inductively coupled plasma with RF)26. Energy supplied to the 

coil by the RF generator couples with free electrons to produce plasma. Plasma 

temperature is around 10,000K on the outer side while it is from 5000 to 7000 in the 

center where the sample is introduced. Figure 3 shows the different parts of an ICP torch. 

Plasma tail

Analytical zone 

Initial radiation zone 

} Coupling Coils 

Induction zone 

Plasma Coolant gas
Auxiliary gas

Nebulizer gas
 

Figure 3. Various components inside an ICP torch. 
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Argon is usually used as fuel gas because of its high ionization potential (15.8eV), 

which is greater than the first ionization potential for most of the other elements, thus 

most of the elements can be ionized. However the ionization potential of Argon is lower 

than the second ionization energy of other elements which helps to minimize the doubly 

charged ions25. As soon as the sample is introduced into the ICP, the solvent is dried off 

in the pre-heating zone, atomization occurs in the initial radiation zone, and ionization 

occurs in the analytical zone. Once the ions are formed at atmospheric pressure (760 

Torr), they must be directed to the mass spectrometer that is under vacuum. The pressure 

reduction is done by the application of an interface, which helps to filter out the undesired 

chemical species namely photons, particles and neutral species from reaching the mass 

spectrometer. Two cones (namely sampler cone and skimmer cone) are placed inside the 

interface region with a design for down streaming focusing of ion beams. The sampler 

cone (1mm in diameter) allows only a narrow beam of ions to pass through it and the 

vacuum is reduced to 1-2 Torr. The skimmer cone (0.5mm in diameter) is placed 

immediately after the sampling cone which allows an even smaller beam of ions to pass 

through and reduces the vacuum to 10-3-10-6 Torr25. A photon stop prevents photons and 

neutral species from entering to the detector 26. There is no ideal voltage that can produce 

the maximum transport efficiency for all ions when multiple elements are being 

measured. The voltages are scanned in concert with the mass spectrometer, which helps 

provide the optimal lens voltage for the isotope being analyzed27. The quadrupole is the 

most commonly used mass analyzer with a unit mass resolution. It consists of four 

parallel rods, each usually 25cm in length, with two adjacent rods having opposite 

polarity. The separation and filtration of ions occurs through the application of a dc 
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potential and an oscillating radiofrequency (RF) potential applied to the pair of rods. At a 

specific potential, ions with particular m/z can only pass through it, while others are 

either destabilized or discharged by collision with rods28. The ions finally reach the 

detector, which is usually an EMT (Electron Multiplier Tube), where the signal is 

magnified to 10
6 fold. Figure 4 shows the schematic of LA-ICP-MS for a standard 

sample containing 500 ppm of various elements like Li, Na, Al, Mn, Fe, Cu, and Sr. 
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Figure 4. A pulsed laser (266nm) is focused on an ink sample, which ablates a small 
amount of the sample. These fine particles are transported to the ICP by using Helium 
gas, where they get ionized. The ions are separated on the basis of their m/z ratio by a 
quadrupole mass analyzer and detected by using an Electron Multiplier Tube. 
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1.4 Literature Review of LIBS and LA-ICP-MS on Ink Analysis 
	
  

Most of the methods used for the analysis of documents involve the analysis of 

ink and paper by their physical properties, microscopic and optical examination, Thin 

Layer Chromatography (TLC)3, X-ray fluorescence (XRF)29, Raman Spectroscopy2,30-35, 

FTIR2, and Desorption/Ionization Mass Spectrometry 32,36.  

LIBS has been used for a wide range of applications like remote analysis of rocks 

on Mars37, chemical mapping38, high spatial resolution,39 and also for in situ analysis40.  It 

has also been used for the inorganic analysis of printing inks. LIBS has been used to 

classify the pigments and pen inks33, gel inks12 and recently toners and inkjets41. It has 

also been used for the identification of inks used in artistic prints9, the examination of 

writing inks for forensic purposes42,43, the rapid characterization of Parchment44, and the 

quantitative analysis of silver nanoparticle inks7. LIBS has been carried out using 

different excitation wavelengths (at 532 nm and 1064 nm) for questioned documents 

analysis45.  LIBS has been successfully used for the analysis of white office paper, 

ballpoint inks (blue and black), black inkjet inks and black toners46. Multivariate 

statistical analysis using LIBS has been performed for the discrimination of paper types 

and prints made by various printers47.  

ICP-MS has also been used in the study of ink and paper. Koenig has used LA-

ICP-MS for the analysis of inkjet inks8. Wagner et al48 have shown the use of LA-ICP-

MS for the investigation of the written heritage by investigating the distribution of 

elements like Fe, Cu, and Mn. Elements like Fe and Cu have also been determined in old 

manuscripts by the application of LA-ICP-MS49. Isotope ratio mass spectrometry (IRMS) 

has been used for the analysis of stable isotopes of Nitrogen, Carbon, Hydrogen and 
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Oxygen to characterize ballpoint ink and also gel inks50. LA-ICP-MS has been used with 

for the analysis of different types of printing inks, and it was found that the fusion of 

SEM and LA-ICP-MS provided additional discrimination51. Szynkowska et al. have used 

LA- ICP-TOF-MS for the identification and discrimination of toners from different 

producers on the basis of their elemental composition52. Data fusion from different 

sensors has also been performed for the analysis of printing inks. Our group has 

performed data fusion for 319 different printing inks obtained from five different sensors 

namely, Infrared Spectroscopy (IR), SEM-EDS, Pyrolysis GC-MS, LA-ICP-MS and 

Direct Analysis in Real Time Mass Spectrometry (DART)6. 

1.5 Tandem LIBS/LA-ICP-MS 

1.5.1 Principles of Tandem LIBS/LA-ICP-MS 
 

LIBS and LA-ICP-MS are combined in a single set up. Two phenomena take 

place simultaneously from the same sample. Figure 5 shows the schematic of tandem 

LIBS/LA-ICP-MS for a standard sample containing 10,000ppm of elements like Li, Na, 

Al, Mg, K, Sc, Ti, Mn, Fe, Cu, Zn, Pb41. A laser is focused on the surface of a sample; it 

ablates a small amount of sample and a micro-plasma is formed on top of the sample, 

where the neutral and ionic species are excited to a higher energy state. LIBS utilizes the 

characteristic photons emitted from the excited species (neutral and ionic) to create a 

spectral signature of the elements. The particles ejected from the same laser sample 

interaction are then transferred to the ICP using a tubing with a flow gas at 0.9L/min to 

an ICP. Argon is used as a carrier gas, which also acts as an ambient gas for LIBS, and 

increases the lifetime of excited species in the LIBS plasma. 
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Figure 5. Schematic of tandem LIBS/LA-ICP-MS. Two sensors, LIBS and LA-ICP-MS 
are performed simultaneously on the same printing ink41. 
 

LIBS utilizes the characteristic photons emitted from the excited species (neutral 

and ionic) to create a spectral signature of the elements present in the ink sample. Once 

the particles reach the ICP, they are atomized, and ionized. The ions are analyzed by a 

quadrupole mass analyzer, and detected by EMT. The same laser performs micro 

sampling and acts as an agent that breaks down material to feed the ICP, while it acts as a 

plasma-forming agent in LIBS. In this way the two techniques, ICP-MS and LIBS can be 

performed simultaneously on the same sample41. The laser parameters like the laser 

energy, the laser frequency, the laser spot-size, and the scanning speed have to be 

optimized in a way that it favors both the techniques. 
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1.5.2 Significance of Tandem LIBS/LA-ICP-MS 
 

There are several notable benefits of using a tandem LIBS/LA-ICP-MS. The 

tandem technique allows the rapid screening of elements using LIBS, and further 

confirmation can be achieved using LA-ICP-MS. Since the LIBS spectrum and the mass 

spectrum are created from the same sample, there is a correlation between the two53. A 

number of factors affect the ablation yield such as the variation in the laser’s power and 

in the laser’s temporal and spatial profiles. Similarly, the transportation of the ablated 

particles to the ICP may vary depending on the ablated particle size distribution54. To 

account for the laser shot to shot fluctuation and any differences in the amount of mass 

ablated during the laser ablation, a suitable element (usually present in higher 

concentration) from LIBS can be used as an internal standard to normalize the LA-ICP-

MS spectrum and vice versa. In a realistic case, the amount of sample for forensic 

analysis is usually low and may not be sufficient for two different instruments. In such a 

case, a tandem mode is favorable as the sample is the same for both instruments. Also the 

time to analyze the ink samples in a tandem mode is shorter than its analysis by two 

different instruments. Thus it saves the amount of sample consumed and the analysis time 

as well. These two methods also complement each other in several ways. Elements like S, 

Ca, Fe, and K are very difficult to detect and confirm using a standalone LA-ICP-MS 

because of the spectral interferences (polyatomic and isobaric) involved. These 

problematic elements emit multiple emission photons, in LIBS and the interference free 

wavelengths can be used to confirm these elements. The major drawback of LIBS is the 

sensitivity. Trace elements present below 10 ppm are very difficult to detect using LIBS 

while LA-ICP-MS has detection limits in sub ppm level, which makes the detection of 
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trace elements feasible. Alternatively, major elements present at higher concentration (% 

Wt.) can be monitored using LIBS alone, which saves the mass detector from saturation. 

Isotopic information obtained from mass spectrum further provides unambiguous 

identification of the elements41. Thus the combination of these two sensors in a single 

setup allows the detection of most of the elements in the periodic table and also expands 

the dynamic range of the analysis.  

1.5.3 Literature Review of LIBS and LA-ICP-MS Used Together 
 
 The combination of LIBS and LA-ICP-MS is fairly a novel concept.  Kaiser et al, 

used LIBS and LA-ICP-MS for the chemical mapping of   Pb, Mg and Cu accumulated in 

plant tissues55. Novotny et al, also used these two sensors for the mapping of different 

structures on a large area of granite samples. Latkcozy et al, used LIBS and LA-ICP-MS 

simultaneously for the analysis of industrial samples53. Chirinos et al, used LIBS and LA-

ICP-MS for the three dimensional elemental mapping of rocks56. The first use of LIBS 

and LA-ICP-MS in tandem was done by Latkcozy et al53. The present research is the first 

time a tandem LIBS/LA-ICP-MS has been used for the analysis of printing inks. 

1.6 Introduction to Printing Inks 
	
  

Printing inks can be solid (usually toners), liquid (inkjets) or a paste (offset, 

intaglio), which are used to color the surface of any substrate or produce a design or text.  

There are basically three ingredients in ink57. 

1) Pigments and dyes 

 Pigments can be organic (containing Carbon and Hydrogen and made from 

petroleum) or inorganic (containing elements besides Carbon and Hydrogen) formed by 
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precipitation. The function of pigments is to impart color to the ink. Pigments are 

insoluble while dyes are soluble. 

2) Vehicles (Resin and solvent) 

The liquid portion of the ink that holds and binds the pigment to the substrate is 

called vehicle. Vehicles are usually made with resins and solvents.  

3) Ink Additives 

Several additives are used in ink for different purposes. Varnishes or oils are used 

to reduce the stickiness of ink and for better ink penetration and setting. Metallic salts are 

used as driers to speed the oxidation and drying of the oil vehicle58. Alternatively 

antioxidants are used to prevent ink on ink rollers from skinning and drying in the form 

of anti-skinning agents59.   

1.6.1 Types of Printing Inks 
 
The current study focuses on the following four main types of printing inks. 

1.6.1.1 Inkjet Printing Inks 

In the inkjet printing methodology, a digitally controlled print head is used to eject 

very small droplets of ink on to a substrate which can be either continuous (CIJ) or drop 

on demand (DOD)60. The first method ejects the drops continuously which are charged 

according to the image to be printed and then controlled electronically. The un-deflected 

droplets which cannot make up to the paper substrate are then redirected to a circulation 

container so that they can be reused61. In DOD inkjets, the ejection is done only when 

required. The method used to eject the ink for DOD could be heat (thermal inkjet), 

pressure (piezoelectric inkjet), or electrostatic field (Electrostatic inkjet).  
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Figure 6 shows the schematic of inkjet printing. Inkjet formulations could be one 

of these four types: solvent-based, water-based, UV curable and phase change62. Dyes are 

preferred over pigments for inkjets, and when pigments have to be used, the particle size 

of the pigment should be less than 1µm63. The major applications include marking of 

packages or products, graphics for signs and posters, trade show displays, billboards, 

banners etc60. 

1)  Liquid droplets  
generated through nozzle 
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2) Contact with 
the substrate 

3) Wetting and 
evaporation of ink 

4) Penetration, absorption  
and  evaporation 

5) Fixing and drying 

Figure 6. Liquid droplets are generated through the nozzle of ink reservoir, which wet the 
substrate on contact. Evaporation, of the solvent takes place followed by penetration and 
absorption of ink on to the paper fibers. Finally the ink is fixed and dried. 

 

1.6.1.2 Toner Printing Inks 

A toner is usually a solid powder, but can also be in liquid form. It is an 

electrostatically charged powder containing a pigment, a resin and some charge control 

agents. The typical resins are styrene acrylic polymers57. The laser printing mechanism 

can be explained as below64,65. 

A corona wire/roller charges the drum inside the printer. As the drum rolls, a tiny 

laser light shines on the charged drum and discharges the negative charge on a certain 

portion of the drum where the image is to be formed65. Thus an image is formed in static 

electricity on the surface of the photoconductive drum. The drum is then exposed to 

toners (negatively charged). The toners stick only to that part which contains the opposite 

charge (neutralized negative charge) while the negatively charged drum is left unaffected. 
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The image is then transferred to the paper. Heat (up to 200 degree centigrade) and 

pressure is applied to fuse the plastic toner to the paper. Figure 7 shows the general 

schematic of toner printing. 
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Figure 7. The drum inside the printer is negatively charged by a corona wire. A tiny laser 
light shone on the drum where the image is to be formed, discharges the negative charge. 
The toners stick to the image part, which is transferred to the paper using heat and 
pressure. 
 

1.6.1.3 Intaglio Printing Inks 

Intaglio printing is a relatively more complex and expensive. It is used specially 

for printing high security documents. Most of the banknotes and visas have intaglio 

printing inks. The intaglio inks are printed in a different way compared to toners and 

inkjets. First, master plates are prepared, which contain grooves where the images to be 

printed are incised. The grooves are filled with highly viscous ink66. The damped paper 

and the roller are made to roll over the plates, exerting a heavy pressure (7,500 to 15,000 

psi) that helps transfer the ink and emboss the paper67. Figure 8 shows the schematic of 

intaglio printing. 
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The image is etched or 
engraved into the 
surface of Printing 
plate (with indents) 

The plate is then 
covered with the  
thick viscous 
(intaglio) ink 

The paper  is pressed against the 
plate with  great force which 
squeezes it into the grooves 

The ink is transferred from 
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slightly raised print surface 

Engraved line Intaglio ink Steel plate Ink deposited on paper  

Figure 8. An image is itched into the surface of printing plate, which is then covered with 
intaglio ink. A paper is pressed against the plate, to force the ink into the grooves on 
paper. The final appearance is a raised print surface on the paper. 

 

1.6.1.4 Offset Printing Inks 

The technique is usually employed for mass production printing like in the 

production of newspapers. Here the images are transferred from metal plates first to 

rubber blankets or rollers and then subsequently to the paper57 as shown in Figure 9. The 

paper does not come directly in contact with the metal plates, which make the plates long 

lasting. Newspapers, magazines, brochures, flyers are some of the examples of offset 

printing.  

1) An image is 
transferred 
photographically 
to the printing 
plate 

2) Rollers apply 
water and oil 
based ink to the 
plates. 

3) Oil based ink 
will adhere only to 
the image areas, 
water on the non 
image areas 

4) The inked image 
is then transferred to 
a rubber blanket 
covered cylinder 

5) This rubber blanket 
transfers the image (offsets) 
to the substrate as it passes 
between it and an 
impression cylinder 

 

Figure 9. Schematic of offset printing. 
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Chapter 2. Experimental and Materials for LA-ICP-MS 

 2.1 Sample Set Collection 
	
  

Four main types of printing inks, namely toners, inkjet, intaglio and offset were 

used for this study. A total of 319 samples of printing inks were collected and analyzed. 

Figure 10 shows the distribution of four inks in this set of printing inks.  
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Figure 10. Pie chart (left) and bar graph (right) showing the distribution of printing inks. 

2.1.1 Toner Collection Set 
 
 A total of 76 toner samples belonging to 16 different brands were used in the 

study. Figure 11 shows the distribution of different brands of inks for the toner set. The 

majority of toner samples were from Hewlett Packard (HP), constituting of 33% of the 

total set. There was an equal number of toners (six) that belonged to Canon and OKI 

brands. There was one toner from each of the brands Sharp, Toshiba and Office Depot. 

Three of the toners from the RICOH brand, which were in liquid form, were deposited in 

Whatman filter paper. 
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Brother 2.6% 
Cannon 7.9% 

Dell 3.9% 
HB 5.3% 

HP 32.9% 
IMEX 5.3% 

Konica 5.3% 
Office Depot 1.3% 

OKI 7.9% 
Panasonic 1.3% 

RICOH 6.6% 

Samsung 5.3% 
Sharp 1.3% 

Toshiba 1.3% 
Xerox 6.6% 

XeiKon 5.3% 

 

Figure 11. Pie Chart showing the distribution of different brands in the toner set. 
 

All of the toners had one of the four colors (Cyan, Magenta, Yellow, Black). 

Black toners dominated the collection set. Figure 12 shows the distribution of four 

different colors in the toner set.  

Black  
51% 

Magenta  
16% 

Cyan  
16% 

Yellow 
17% 

 

Figure 12. Pie chart showing the distribution of different colors in the toner set. 
 

2.1.2 Inkjet Collection Set 
 
 A variety of brands were included in the inkjet collection set.  It consisted of nine 

different brands and represented four colors. The four colors were Cyan, Magenta, 

Yellow and Black (CMYK) as shown in figure 13. A total of 31% of the inkjets were 

from HP. The three most commonly used brands were HP, Cannon, and Epson.  
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Black, 42.3% 

Cyan, 20.5% 

Magenta, 20.5% 

Yellow, 16.7% 

 

Figure 13. Pie Chart showing the distribution of four colors in inkjet samples. 

2.1.3 Intaglio Collection set 
 

Intaglio set was not limited to CMYK colors. Most of the intaglio samples were 

green, followed by blue and black. Some of the intaglio printing inks were maroon, 

purple, gold, brown, orange and aqua in color. Figure 14 shows the distribution of colors 

in intaglio printing inks. Intaglio printing inks were collected from the banknotes of 

different countries. A total of 86 intaglio ink samples were collected from 24 countries 

around the world. Two of the samples were collected from a training business card while 

three of the collection sets were from a Lincoln Visa document provided by the HSI lab. 

Aqua, 
2.3% 

Black, 11.6% 

Blue, 11.6% 

Brown, 10.5% 

Brownish orange, 
1.2% 

Dark Blue, 12.8% 

Dark Green , 3.5% 

Dark Magenta, 1.2% 

Dark Yellow, 2.3% 
Gold, 2.3% 

Green, 20.9% 

Light Blue, 1.2% 
Maroon, 3.5% 

Orange, 1.2% Purple, 4.7% 
Red , 8.1% 

Yellow , 
1.2% 

 

Figure 14. Pie Chart showing the distribution of various colors in intaglio set. 
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Most of the samples were from Costa Rica (14%) followed by Italy, Russia, and 

the United States (each 7%). Figure 15 shows the percentage of the intaglio samples 

belonging to 24 different countries. The country of origin for five samples was unknown, 

but they were identified as intaglio printing inks. 

Argentina 1.2% 

Barbados 4.7% 
Canada 2.3% 

Cayman Islands 2.3% 
China  3.5% 

Costa Rica 14.0% 

Cuba 2.3% 

Czech Republic 1.2% 

Europe (Italy) 7.0% 

Guatemala 3.5% 

Haiti 2.3% 

Honduras 1.2% 

Jamaica 3.5% South Korea 4.7% 
Nepal 2.3% 

New Zealand  4.7% 

Peru 4.7% 

Russia 7.0% 

Trinidad and Tobago 3.5% 

Tunisia 3.5% 

Ukraine 5.8% 

UAE 1.2% 

United States 7.0% 

Uzbekistan 
1.2% 

N/A 5.8% 

 

Figure 15. Pie Chart showing the distribution of intaglio inks collected from different 
countries. 
 

2.1.4 Offset Collection Set  
 

A total of 79 offset samples were collected for analysis. The set contained 39 

printouts from 5 different manufacturers, 16 raw paste inks obtained from 2 different 

manufacturers, 8 print outs from Lincoln Visa, 15 printouts from a US passport, and 1 

from a training business card. Figure 16 shows the distribution of offset samples (in 

percentage) collected from different types of manufacturers. 
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Business Card, 1% US passport, 19% 

Lincoln Visa, 10% 

Raw paste, 20% 

Print outs, 50% 

 

Figure 16. Pie Chart showing the distribution of sources for the offset collection set. 
 

The offset collection set had a variety of colors besides CMYK. The most 

frequently appearing color was black, followed by Yellow, Cyan, Magenta and Red. 

Figure 17 shows the distribution of different colors in the offset collection set. 

Black 
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3% 
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3% 

Green 
4% 

Light blue 
1% 
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3% 
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1% 
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1% 
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1% 
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9% 
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14% 

 

Figure 17. Pie Chart showing the distribution of colors in offset sample set. 
 

2.2 Sample Preparation 
 

The four types of printing ink were prepared using different methods. The sample 

preparation for each of the set is described below. 
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 2.1.2.1 Sample Preparation for Toner Printing Inks 

The deposition of the ink above the paper in toner printing inks makes it easier to 

remove only the ink using a laser. Whatman Grade 42 paper (Whatman Ltd, NJ) was cut 

into 8.5 by 11 inch pieces and used as a substrate for toner inks. Letters and numbers 

were used for each print out with the cartridge and printer information. For making a 

thick layer of ink on the paper some of the inks were printed several times on the same 

place (10 layers). In order to ensure there was no mixture of colors, the printouts were 

examined through Keyence 3d microscope, which showed only one of the four (CMYK) 

colors was present for each of the ink samples. One of the toners was selected as a control 

(TN 37) and was used before and after the end of the experiment, so as to examine the 

overall performance of the instrument. For those toners, which did not have a known 

printer model, sample preparation was done by a deposition method to simulate the 

printout samples. The following steps were followed for the sample preparation41,51.  

The toner powder was extracted from the ink cartridge in its pure form. About 

0.1gms of powder was rolled on the paper substrate atop a clean microscope glass slide. 

The glass slide was placed on the surface of a hot block and heated till the toner began to 

melt (140-1800C). The molten toner was smeared homogeneously on the Whatman paper 

using a glass cover slide. The sample was allowed to cool. Thus prepared samples were 

affixed to the stage within the ablation chamber using a double-sided tape.  

2.1.2.3 Sample Preparation for Inkjet Printing Inks 

 Similar to the toner inks, inkjet inks were also printed directly whenever the 

printer model was available and examined through the Keyence 3d microscope. Pure 
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color ink was extracted from those inkjet cartridges lacking a printer model. About 5µl of 

the inkjet ink was then carefully pipetted and spiked directly to Whatman paper (3 x 4 

cm). A smaller piece was cut with a blade and placed inside the ablation chamber. 

2.1.2.4 Sample Preparation for Intaglio Printing Inks 

  Most of the intaglio samples came from bank notes. The intaglio regions were 

first confirmed using Keesing Documentchecker (Keesing reference systems Inc.) and for 

further verification a microscope was used. For most of the intaglio inks, the ink part was 

slightly elevated from the paper. Figure 18 shows an example of intaglio ink present in 

the coat of George Washington in a one-dollar United States currency.  

 

Figure 18. Intaglio ink present in a United States 1-dollar currency. 
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2.1.2.5 Sample Preparation for Offset Printing Inks 

For print out offset samples, no sample preparation was done. The offset part of the print 

out was carefully cut and analyzed directly.  

Figure 19 shows an example of offset printing ink.  For raw paste offset samples, 

they were first homogenized with a vortex mixer, and deposited onto Whatman paper 

forming a thin layer on the paper. These samples were then dried at room temperature 

and analyzed. 

 

Figure 19. Example of an offset sample cut from an expired US passport. 
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Chapter 3. Method Development and Optimization of Standalone LA-ICP-MS 
	
  

Method development and optimization was aimed at characterization of the ink 

precisely and accurately, while minimizing damage to the paper. Different parameters 

like laser energy, laser frequency, scan speed, were optimized. Similarly the nature of the 

carrier gas, and the gas flow were also optimized.  

3.1 Experimental for LA-ICP-MS 
 
 Two different types of laser systems were coupled to ICP-MS. A 213 nm ns-ND: 

YAG laser ablation system (NW UP 213, New Wave, CA) and a 266nm ns-ND: YAG 

(J200, Tandem LA-LIBS, Applied Spectra, CA) were used for ink sampling.  The laser 

power of UP-213 nm laser was 3mJ (at 100% Energy) while the J200 had a power of 

18mJ at full power. Both systems had a CCD camera for visualization and focusing of the 

sample, automated valves and controllers for carrier gas introduction into the sample cell, 

automated x-y-z stages for rastering the laser beam across the sample. The J200 LIBS 

system had a micro camera and a macro camera for achieving better positioning of the 

sample with respect to the focused laser beam. The J200 laser ablation also consisted of 6 

channel broad band spectrograph (190nm to 1040 nm) with a spectral resolution > 0.1nm 

for UV to VIS and <0.12 for VIS to NIR for LIBS system.  A quadrupole ELAN DRC II 

(Perkin Elmer LAS, Shelton CT USA) was the mass analyzer used.  

The ink samples were carefully cut into small pieces so as to accommodate inside 

the ablation chamber. The ink samples were securely attached to the surface of the 

ablation chamber by using a double-sided tape.  
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3.2 Method Development and Optimization 
 
 The four ink types have different physical properties and differ in the way they 

are deposited on paper, so each of these inks were optimized independently. The 

parameters affecting the laser ablation are the laser energy, frequency, scanning speed, 

and the mode of ablation. Because of the relatively thin layer of ink over paper, spot 

mode was not favorable for laser ablation, as it would create deep craters and ablate 

through paper. So a line mode of laser ablation was used. Different laser frequencies were 

tested ranging from 2 Hz to 10 Hz. Similarly different laser spot sizes were tested ranging 

from 100µm to 250 µm. The best spot size was that which provided good sensitivity and 

provided representative composition of the bulk. Similarly the scanning speed of the laser 

was varied from 10µms-1  to 35µms-1. A lower scan speed rate allowed firing more shots 

per location, thus shortening the ablation line but in the mean time it created deeper 

craters with significant amount of paper contribution.  The flash lamp voltage was varied 

from 20% to a maximum of 80%. The combination of laser parameters (energy, 

frequency, and spot size), that provided the best precision, the highest signal, signal to 

noise ratio and caused least damage to the paper substrate were used as the final 

optimized parameters. The ablated craters were examined through Keyence 3d 

microscope. There is always some paper contribution despite the mild ablation 

conditions, so the analysis of paper was also done simultaneously and the paper 

background was subtracted: the final result being the only contribution from the ink41.  
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3.2.1 Optimization of Parameters for Toner Printing Inks  
 

Usually toners are solid powders, although some liquid toners were also 

collected in the present study. The thickness of the print out was <100 µm. The 

parameters that were optimized were the signal intensity, signal to noise ratio and the 

precision. As the laser energy increased, so did the signal of the elements but at the cost 

of higher paper contribution. The laser energy was varied from 10% to 80%. It was found 

that the background noise was prominent at lower laser energies, which also suppressed 

the peaks at lower wavelength. The laser output energy at 70% was found to be optimum 

for toners. To account for the sample heterogeneity, a larger spot size (200µm) was used. 

The flow of Helium gas (carrier gas) was also optimized. The optimized parameters for 

the analysis of toner printing inks are listed in Table 1. 

Table 1. Optimized parameters for the analysis of toners by LA-ICP-MS. 

Parameter Toners 

Laser wavelength 213 nm 

Spot size  190 µm 

Laser energy 40% (0.3mJ) 

Ablation mode Line 

Stage speed 25 µm/s 

Repetition rate 10 Hz 

Carrier gas He (0.9 L/min) 

Ablation length 950 µm 

Data acquisition mode Mass scan    m/z 7-238 

Elements in ink (Al, Ba, Ca, Cr, Cu, Fe, Hf, K, Mg, 
Mn, Mo, Na, Nb, Sb, Si, Sn, Sr, Ti, W, 
Zn, Zr) Elements in paper substrate Ba, Ca, Na, Si, Zn 
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3.2.2 Optimization of Parameters for Inkjet Printing Inks 
 

As inkjet printing inks are embedded with the paper fiber, they are distributed 

more homogeneously compared to toners. The thickness of ink is minimal compared to 

the toners. This makes the laser ablation of inkjet printing ink without damaging the 

paper substrate a more challenging task when compared to toners. Different laser 

parameters and the gas flow were optimized for inkjet printing ink analysis by LA-ICP-

MS. A mass scan method starting from m/z 7 (Li) to m/z 238 (U) was applied throughout 

the inkjet analysis. Table 2 lists the optimized parameters for the analysis of inkjet 

printing inks by LA-ICP-MS. 

Table 2. Optimized parameters for the analysis of inkjet printing inks by LA-ICP-MS. 

Parameter Inkjets 

Laser wavelength 213 nm 

Spot size  190 µm 

Laser energy 40% (0.3mJ) 

Ablation mode Line 

Stage speed 25 µm/s 

Repetition rate 10 Hz 

Carrier gas He (0.9 L/min) 

Ablation length 950 µm 

Data acquisition mode Mass scan    m/z 7-238 

Elements in ink 
(Al, B, Ba, Cu, Hf, K, Li, Mg, Na, S, 
Sn, Zr)   

Elements detected in paper substrate Ba, Ca, Na, Si, Zn 
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3.2.3 Optimization of Parameters for Intaglio Printing Inks 
 

During intaglio printing, ink is deposited on to the substrate. Ink is slightly 

embossed above the paper substrate, which makes the removal of ink, by laser ablation 

without causing any damage to the paper substrate more convenient in intaglio inks 

compared to other three types of printing inks. Figure 18 shows an example of intaglio 

ink elevated above paper. As the paper in intaglio inks (usually currencies) has security 

features inside them, it also contains a wide variety of elements. To ensure that there is no 

background contribution from paper, the paper was also analyzed and was subtracted 

from all the intaglio inks. Thus paper background subtracted intaglio printing inks were 

used for the discrimination purpose. Table 3 summarizes the optimized parameters for the 

analysis of intaglio inks. 

Table 3. Optimized parameters for the analysis of intaglio printing inks by LA-ICP-MS. 

Parameter Intaglio 

Laser wavelength 213 nm 

Spot size  190 µm 

Laser energy 35% (0.3mJ) 

Ablation mode Line 

Stage speed 25 µm/s 

Repetition rate 10 Hz 

Carrier gas He (0.9 L/min) 

Ablation length 800 µm 

Data acquisition mode Mass scan    m/z 7-238 

Element menu for ink 
(Al, Ba, Bi, Ca, Co, Cu, Fe, Hf, K, Mg, Mn, Mo, Na, Nb, 

Pb, Sb, Si, Sn, Sr, Ti, W, Zn, Zr) 

Elements in paper 
substrate 

Co, Cu, Eu, Fe, Hg, Hf, Ho, K, Na, Pb, Sn, Sm, Sr, Ti, U, 
W, Zr 
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3.2.4 Optimization of Parameters for Offset Printing Inks 
 
 The thickness of offset print out is less than that of toners and intaglio and is 

similar to inkjets. During the offset printing, a thin film of ink is partially embedded into 

the paper fibers. Laser energy was reduced to 25% (0.1mJ) to reduce the extent of paper 

damage. Various kinds of papers are used in offset printing inks. The current set of offset 

printing inks also had a wide variety of paper. The paper contribution was also taken into 

account during the analysis. The ink ablation was followed by paper ablation and the 

contribution of different elements in the paper was subtracted from the ink. The final 

result provided the net contribution for elements present only in the ink. Table 4 

summarizes the optimized parameters for the analysis of offset printing inks. 

Table 4. Optimized parameters for the analysis of offset printing inks by LA-ICP-MS. 

Parameter Offset printing ink 

Laser wavelength 213 nm 

Spot size  190 µm 

Laser energy 25% (0.1mJ) 

Ablation mode Line 

Stage speed 25 µm/s 

Repetition rate 10 Hz 

Carrier gas He (0.9 L/min) 

Ablation length 800 µm 

Data acquisition mode Mass scan    m/z 7-238 

Element menu for ink 
22 elements (Al, Ag, Ba, Ca, Ce, Co, Cu, K, Mg, Mn, 

Mo, Na, Nb, Rh, S, Si, Sn, Sr, Ti, W, Zn, Zr) 

Element menu for paper 
substrate Al, Ba, Ca, Mg, Na, Ti, Si, Sr, Eu, Zn 
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Chapter 4. Data Acquisition, Analysis and Results by Standalone LA-ICP-MS 
	
  

The obtained LA-ICP-MS spectra were used for data analysis. The scan 

method provided the m/z of elements from Li (m/z= 6) to U (m/z =238). As the 

resolution of the quadrupole mass spectrometer is one atomic mass unit, certain isotopes 

(40Ca, 32S, 56Fe) could not be resolved from their interferences: namely (40Ar, 32O, 

40Ar16O). These mass regions, dominated by isobaric and polyatomic interferences, were 

avoided to protect the detector from saturation. Also isotopes of elements like Carbon 

(12C), Nitrogen isotopes (14N, 15N, 14N 14N), Oxygen isotopes (16O, 17O, 18O, 16O16O), 

Argon isotopes (36Ar, 38Ar, 40Ar) and major polyatomic interferences (40Ar16O, 40Ar40Ar 

and all the nArnAr isotopic combinations from m/zn + n 72 to 80) were not selected for 

detection, during the scanning method to prevent detector saturation11,41.  

Potassium, being an important discriminator, was also included in the 

elemental menu. The resolution of the 39K peak was customized to 0.4amu (atomic mass 

units) to minimize interferences from Ca and Ar isotopes. For the rest of the elements and 

their isotopes the default quadrupole resolution of 0.7amu was used11,41.  The intensity of 

the elements reflected the concentration of the element in the ink sample. The presence 

and absence of elements and the difference in the intensity of the element peaks were 

used to distinguish between different ink samples. 

4.1. Data Reduction and Comparison Strategies for LA-ICP-MS 
	
  
 Two different data acquisition modes were tested during the present study. The 

first approach was using a transient mode, where a list of elements was selected to create 

a menu, and then the intensity of these elements were measured with respect to time. The 
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area under the curve reflected the concentration of the element. However, to use this 

method, a list of the elements present in the ink had to be known previously. One element 

menu does not work for 319 different inks as they have different elements. The other 

mode of data acquisition was a scan mode. This consisted of scanning the elements from 

7Li to 248U so that no element is left out or missed and no prior knowledge of the 

elemental composition of the ink is required. Also the scan mode is suitable in 

circumstances when multiple comparisons are needed or when a certain database has to 

search for a possible match. Due to the unavailability of a single internal standard that 

works for all four types of inks, the total sum of the peaks was used to normalize each 

peak in the spectrum. This approach has already been described in literature41,68,69. 

4.2 Match Criteria 
	
  

The data analysis was done using different match criteria. Spectral Overlay, 

Univariate and Multivariate Statistics were applied for the association and discrimination 

of printing inks. 

4.2.1 Spectral Overlay 
 

Four replicates of two inks were overlaid and compared using the Plot software 

(Plot 2 Version 2.0.8). Comparing the variation within replicates to the variation between 

replicates, a decision was made. If the variance within the replicates was similar to or less 

than the variance between replicates, then two samples were concluded to be 

indistinguishable. If the variance between replicates was larger than the variance within 

replicates, then the two samples were concluded to be distinguishable.  In Figure 20, two 

types of inks are different by Mg isotopes while they are similar by Antimony isotopes. 
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Figure 20. Spectral Overlay Comparison showing two different inks (left) differing by 
Mg concentration and two similar inks by Sb. 
 

4.2.2 Univariate Statistics (Significance Testing for Pairwise Comparisons) 
 

In univariate analysis, a single variable is under study. Two hypotheses are tested 

using a statistical test, to make a decision if there is any significant difference between 

the pairs or not. The number of possible pairs is given by equation (6), 

!"#$%&'()'*(++,$-%'*.,&+ = 0'(021)
2 (6)!

 

Where n= total number of specimens under study. The means of two populations 

are compared using a t-test under the assumption that the data are normally distributed. 

Using a suitable test such as a ‘t’ test, a ‘p’ value is calculated, and the value is compared 

to a pre-determined tabulated value for that fixed degree of freedom at a certain 

significance level (α =0.01 for 99% confidence level or α =0.05 for 95% confidence 

level). α is the level of significance. If the calculated p value is less than the Table value, 

the null hypothesis is rejected or vice versa70. In an ideal case, a null hypothesis would be 

rejected when it is false, and would always be accepted when it is true. But this is not 

always the case. There are some errors associated with the hypothesis testing as well. The 
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incorrect rejection of a true null hypothesis is known as Type I or false positive error. 

Contrarily, another type of error that can occur during the hypothesis testing is Type II 

error, which is failing to reject a null when it is not true. The probability of a Type II 

error occurring is given by β. Power of sensitivity of a test is measured as 1-β. 

4.2.2.1 Analysis of Variance (ANOVA) 

 The comparison between two means can be done using a ‘t’ test, but when there 

are more than two means, ANOVA is used. It is because the chances of committing type I 

error increases with the increase in the number of comparison pairs when a ‘t’ test is 

used. So ANOVA is a statistical test used to determine any significant differences 

between three or more means. It is based on the comparison of variation between groups 

and the variation within groups70.  

The ANOVA F statistic is calculated using equation 7. 

! = #$%&$$'()*+,-(./*0/'1$
20%ℎ0'()*+,-(./*0'/1$ (((((((((((7)! 

Between group variance and within group variances are calculated as shown in equation 

8 and 9 respectively. 

!"#$""%&'()*+&,-(.-%/" = 1231& 4(8)! 
!"#ℎ"%&'()*+&,-("-%./ = 123413

5(9)! 

4.2.2.2 Tukey’s Honestly Significant Difference Test 

The ANOVA test can determine if the means differ significantly but it alone 

cannot determine which means are significantly different. When the alternate hypothesis 

is accepted, it means that there is a significant difference between the groups in the 

sample, but the question still remains, which groups in the sample differ significantly. In 
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such a case, Tukey’s Honestly Significant Difference Test is performed to determine 

which means significantly differ. 

4.2.3 Multivariate Statistics 
 
 Mass spectrometry and emission spectroscopy provide spectra that are rich in 

information about different elements present in the matrix. Each of these elements can be 

considered as a variable. Multivariate statistics takes into account more than one variable 

at a time. This helps to visualize the contribution of all the elements at once. To simplify 

the visualization, the contribution of different elements is represented in 2dimenisons 

(using x and y axis) or in 3dimensions (using x, y and z axis) after data reduction. 

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Partial Least 

Square Discriminant Analysis (PLS-DA), K-NN (K Nearest Neighbor Classification), 

and Cluster Analysis are some of the commonly used multivariate statistical tools.  

 4.2.3.1 Principal Component Analysis (PCA) 

 It is an unsupervised visualization technique. A set of linear combinations, also 

known as Principal Components (PCs), is created by the linear combination of the 

variables. A total of N-1 principal components that are orthogonal to each other are 

generated where N is the total number of variables. The first Principal Component 

provides the maximum variance, followed by second and third components. Since it is an 

unsupervised technique, prior knowledge of the samples is not required. It can be used as 

a classification and an exploratory technique. PCA helps to find out which group the 

unknown sample would be more similar to70. 
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4.2.3.2 Linear Discriminant Analysis (LDA) 

Unlike PCA, Linear Discriminant Analysis is a supervised technique, where 

the identity of all the samples is known. Two datasets, a training dataset and a test 

dataset, are required for this analysis. LDA builds a model based on training data set and 

uses the model to predict the test data set whose identity is already known. Cross 

validation is done using a Jackknife or leave one out method. The final result is presented 

in the form of a matrix, which shows the total percentage of correct classification and 

mis-classifications. This matrix is also known as confusion matrix70. 

4.2.3.3 Cluster Analysis 

 As the name implies, cluster analysis is a technique that divides samples into 

groups. Samples that exhibit similar properties are clustered into a group, while samples 

that are entirely different from each other are in separate groups. Hierarchical Cluster 

Analysis is one of the widely used cluster analysis methods. The clustering begins from 

each row, and builds up by combining the clusters together that are closest to each other 

based on their Euclidean distance71. The final result is a dendrogram, which shows the 

tree structure of different clusters. 

4.3 Results for comparison of Toner Printing Inks 
	
  

LA-ICP-MS provided a very good discrimination for toners belonging to different 

brands. The applicability of LA-ICP-MS was evaluated on the basis of its distinguishing 

power for samples originating from different sources, and also for its associating ability 

for the samples sharing a common origin. Type I and type II errors were evaluated.  
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Table 5. List of elements detected in toner printing inks by LA-ICP-MS. 
TN Na Mg Al Si K Ca Ti Cr Mn Fe Cu Zn Sr Zr Nb Mo Sn Sb Ba Hf W

1 Ti Sn Sb
2 Mg Al K Cu Zr
3 Mg Al Cu Sn
4 Na Mg Al Cu
5 Mg Al Cu Sn
6 Mg Al Ti Nb
7 Mg Al Ti Zr Sn
8 Na Mg Al K Ti Zr Sn
9 Al Mn Fe Zn Sr

10 Mg Al Ti Cu Zr
11
12 Mn Fe Zn 
13 Mn Fe Zn 
14 Ca
15 Mn Fe
16 Al Ti Mn Fe
17 Mn Fe
18 Mn Fe Zn 
19 Mn Fe
20 Mn Fe
21 Mg Al Si Ti Zr Nb
22 Mg Al Ti Cu
23 Mg Al Cu
24 Mg Al Ti Zr Nb
25 Al Si Ti Zn
26 Mg Al Si Ti Nb
27 Al Si Zn
28 Ti Zn Sn Sb Ba
29 Ti Cu Zn Sb Ba
30 Ti Zn Sb Ba
31 Ti Zn Sb Ba
32 Na Mg Ti Sr
33 Mg Ti Cu Sr
34 Mg Ti Sr Zr W
35 Na Mg Ti Sr Nb
36 Fe
37 Sn
38 Sn
39 Cu Zn Sn
40 Zn Sn Ba
41 Zn Sn
42 Ti Zr Sn
43 Ti Cu Nb Sn
44 Ca Ti Sr Nb Sn  
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TN Na Mg Al Si K Ca Ti Cr Mn Fe Cu Zn Sr Zr Nb Mo Sn Sb Ba Hf W

45 Ca Ti Sr Nb Sn
46 Al Cu Sn Sb
47 Al Cu Sn Sb
48 Al Sn Sb
49 Al Sn Sb
50 Al Sn
51 Cr
52 Ti Zr Nb Sn Hf
53 Ti Zr Nb Sn Hf

54 Mg Al K Ti

55 Al Si Zn

56 Mg Al K Ti Zr Nb

57 Ti Sr Zr Sn Hf

58 Al Ti Mn Fe Zn Sr

60 Al Ti Fe Cu Sr Sn
61 Zn Sn
62 Zn Sn

63 Mg Al Ti Cu

64 Mg Al Ti Nb

65 Mg Al Ti Nb

66 Al K Ti Fe
67 Na Al Ti Cu Nb Sn
68 Na Al Ti Sn
69 Fe Sn

70 Na Cu Sr Mo

71 Na Mg K

72 Na
73 Ti Nb Sn Sb
74 Ti Cu Sr Sb
75 Ti Sr Sb
76 K Ti Sn Sb

77 Mn Fe
 

A total of 21 elements were detected in toners. The detailed list of elements is 

tabulated in Table 5. Elements like Ti, Al, and Sn were found in more than 10% of the 

toner samples. Figure 21 shows that Ti was found in most of the toners (13.6%), while 

Cr, Mo, and W were found in only a few toners (0.3% each). Elements like Zr, Hf, Mo, 
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and W are rarely found in the ink samples. The use of these elements can be found in 

literature. For example, Zr has been found to be used in inks to promote adhesions to 

metals and plastics and as cross linkers, and Zr has also been found to be the primary 

source of Hafnium72. Tungsten (W) has been found to be used in the fixing of ink toners 

as substrate73. Similarly, Molybdenum is another useful element used in electrostatic 

toners. It has been found to be used as a charge controlling agent specially in blue 

toners74. 
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Figure 21. Bar graph showing the distribution of elements in toner printing inks. 
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Figure 22. Bar graph showing discrimination capability of different elements in toners. 
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Different elements had different contribution in discrimination. Elements like Ti 

and Al were able to discriminate 70.7% and 62.5% of the comparison pairs, while Mo 

and W were only able to discriminate 2% and 2.6% of the pairs, as shown in Figure 22. 

4.3.1 Black Toner Printing Inks 
 

Most of the toner inks were black in color. A total of 19 elements were detected in 

this subset. Most of the black toners contained Ti (48.7%), followed by Sn (41%). 

Elements like Si, Ca, Cr, and Ba were detected in less than 5% of the black toners, while 

elements like W and Mo were completely absent. Figure 23 shows the distribution of 

elements in black toners. 
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Figure 23. Bar graph showing the distribution of elements (in %) in black toners. 

4.3.2 Cyan Toner Printing Inks 
 

A total of 16% of the toners were cyan in color. Cu was the only element that was 

present in all cyan colors. It has been reported in the literature that Cu pthalocyanines is 

the most widely used pigment in blue inks75. The chemical structure of Cu pthalocyanine 

is shown in Figure 24. 
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Figure 24. Chemical structure of Cu Pthalocyanine. 

 
Similarly, Ti and Aluminum were present in 58% and 50% of the cyan toners 

respectively. Molybdenum and Ba were present in only two of the cyan toners. Some 

elements, like Si, K, Ca, Cr, Mn, Fe, Zr, Hf, and W, were completely absent in this 

subset. Figure 25 shows the detection of different elements in cyan toners. 
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Figure 25. Bar graph showing the distribution of elements in cyan toners. 

4.3.3 Yellow Toner Printing Inks 
 
 A total of 14 elements were detected in yellow toners.  Aluminum, Ti, and Tin 

were present in 46.2% of the yellow toners, while elements like Cr, Mn, Fe, Zr, Mo, Hf, 

and W were completely absent. Similarly, 7.7% of the yellow toners had K, Ca, Cu, and 

Ba. Figure 26 shows the distribution of different elements in yellow toners. 
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Figure 26. Bar graph showing the distribution of elements in yellow toners. 
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Figure 27. Bar graph showing the distribution of elements in the magenta toners. 

4.3.4 Magenta Toner Printing Inks 
 

Figure 27 shows the percentage of magenta toners containing different elements. 

Titanium was the most frequently detected element in magenta toners. It was detected in 

eight out of twelve magenta toners (2/3rd). Elements like K, Cr, Mn, Fe, Mo, and Hf were 

completely absent in this set. Cu, Ca, and W were detected in 8.3% of the magenta 

toners. Na, Zn, Sr and Nb were detected in one-fourth of this set. Similarly Ba and Zr 
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were the other rare elements that were detected in this set. Aluminum was detected in 

50% of magenta toners. 

4.3.5 Overall Discrimination for Toner Printing Inks 
 

Overall discrimination using LA-ICP-MS was found to be 99.1% with 0.9% false 

exclusion. Out of the 25 indistinguishable pairs, 14 of them shared the same brand. The 

indistinguishable toner pairs were mostly from HP brand. The remaining nine of them 

were Hewlett Packard versus Sharp and Cannon. The overall discrimination is 

summarized in Table 6. Table 7 shows the list of indistinguishable pairs.  

Table 6. Discrimination capability of LA-ICP-MS for the analysis of toner printing inks. 

# Samples 76 

# Samples from different sources 76 

# Comparison Pairs (2850 comparison pairs) 

Duplicate controls from same sources 4 quality controls, 20 duplicate controls                          
(26 comparison pairs) 

% Discrimination 99.1% (2825 out of 2850) 

% False exclusions 7.7% (2 out 26) 

% False inclusions 0.9% (25 out of 2850) 
 

Of these 25 indistinguishable pairs, 18 pairs were black, 2 pairs were yellow, and 

4 pairs were of different colors (magenta Vs. yellow), as shown in Table 7. Of these 4 

pairs with different colors, 3 pairs shared a common brand. These indistinguishable pairs 

were found to have a very similar elemental profile. Four of the pairs were discriminated 

by either Na or K or both. These elements are sometimes transferred through 

contamination by hands. The discrimination of toners without taking Na and K as 

discriminators is 98.98% (2821 out of 2850). 
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Table 7. List of toner pairs that were indistinguishable by LA-ICP-MS. 

Indistinguishable Pairs Color Brand 

12TN Vs. 13TN Black HP 

12TN Vs. 19TN Black HP 

13TN Vs. 19TN Black HP 

13TN Vs. 18TN Black HP 

15TN Vs. 17TN Black HP 

15TN Vs. 18TN Black HP 

17TN Vs. 18TN Black HP 

17TN Vs. 20TN Black HP 

18TN Vs. 19TN Black HP 

37TN Vs. 38TN Black OKI 

54TN Vs. 56TN Black HP 

52TN Vs. 53TN Black RICOH 

12TN Vs. 77TN Black HP Vs. SH 

13TN Vs. 77TN Black HP Vs. SH 

14TN Vs. 77TN Black HP Vs. SH 

17TN Vs. 77TN Black HP Vs. SH 

18TN Vs. 77TN Black HP Vs. SH 

19TN Vs. 77TN Black HP Vs. SH 

22TN Vs. 63 TN Cyan HP Vs. CN 

27TN Vs. 55 TN Yellow HP 

27TN Vs. 65 TN Yellow HP Vs. CN 

30TN Vs. 31 TN Magenta 

Vs. 

Yellow 

IM 

44TN Vs. 45 TN Magenta 

Vs. 

Yellow 

XR 

64TN Vs. 26 TN Magenta 

Vs. 

Yellow 

CN Vs. HP 

64TN Vs. 65 TN Magenta 

Vs. 

Yellow 

CN 
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Table 8. Overall Discrimination for toners in CMYK colors. 

  Black Cyan Magenta Yellow 

# Samples 39 12 12 13 
# Samples from 
different sources 

39 12 12 13 

# Comparison 
pairs 

741  66  66  78 

% Discrimination 97.6%(723/741) 98.5% (65/66) 100% (66/66) 97.4 (76/78) 

% False inclusions 2.4% (18/741) 1.5% (1/66) 0 (0/20) 2.6% (2/78) 

 

The discrimination capability of LA-ICP-MS for toners across four different 

colors is shown Table 8. Only one of the pairs (Toner 64 and Toner 26) was from 

different brands, CN and HP, respectively. Similarly, Toner 52 and Toner 53 were from 

two cartridges that were part of the same package and batch. Besides discrimination, 

association of the controls was also studied to ensure that the experimental conditions 

remained the same between days and within days. Toner 37 was used at the beginning 

and end of the day as a control. The replicates were compared using Spectral Overlay and 

One-Way ANOVA to validate the performance of the instrument. Tin was the only 

element found in Toner 37 and all the isotopes of Sn were monitored for inter-day and 

intra-day variation as shown in Figure 28. The overlapping of the replicates was detected 

through spectral overlay, which meant that TN 37 remained constant throughout the 

experiment. It meant that the overall experimental conditions remained constant. 

Similarly, One-Way ANOVA with Tukey’s HSD was also performed for the integrated 

peaks of Sn isotopes. Figure 29 is the One-Way ANOVA with Tukey’s HSD plot for the 

toner controls, which shows no significant difference between the Sn isotopes. 
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Figure 28. Spectral Overlay showing overlapping of different replicates of control TN 37. 
 
 
 

 

 
 
Figure 29. One Way ANOVA for Sn isotopes (116Sn on the left and 117Sn on the right) for 
TN 37 (Control). 
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4.3.6 Multivariate Analysis of Toner Printing Inks 
 
 The multivariate analysis of inkjet samples was performed by the application of 

Linear Discriminant Analysis and Principal Component Analysis. There were a total of 

3635 data points in the entire mass spectrum. All the regions in the mass spectrum were 

not significant; hence, only those elements that were significantly higher than the noise 

(three times the intensity of paper) were used for statistical analysis. The peaks for the 

corresponding elements were integrated using Plot software (Plot 0.997). Thus, the 

obtained peak areas were used as variables for the multivariate analysis. 

4.3.6.1 Principal Component Analysis of Toner Printing Inks 

 The visualization of 76 toners was done with Principal Component Analysis. A 

total of 21 elements were detected in the toner set. PCA was performed using these 21 

different variables, which reduced the dimensionality of the analysis to three major 

Principal Components (PCs). Figure 30 shows the PCA plot for toner samples in two 

dimensions. Similarly, Figure 31 is the three dimensional PCA plot for toners that shows 

the classification of 76 different toner printing inks. The variance explained by the first 

three Principal Components, using 21 different elements, is summarized in Table 9. 

Table 9. PCA scores for first three components. 

PC1 PC2 PC3 Cumulative variance 

16.7% 14.6% 12.9% 44.2% 
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Figure 30. Two-dimensional PCA plot for toners. 

 

Figure 31. Three-dimensional PCA plot for 77 toners. 
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4.3.6.2 Principal Component Analysis by Brand 

 All the toners belonged to one of the sixteen brands. The classification of the 

brands can be visualized in Figure 32. The HP brand were randomly spread all over the 

PCA plot which accounted for almost one third (32.8%) of the total toner samples. XR 

(Xerox), and OD (office Depot), and RC (Ricoh) brands were clearly separated from the 

remaining toners. Sixteen different brands can be visualized through the two-dimensional 

and three-dimensional PCA plots as shown in Figure 32 and 33 respectively. 

 

Figure 32. Two-dimensional PCA plot for 77 toners by brand. 
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Figure 33. Three-dimensional PCA plot for 77 toners by brand. 
 

4.3.6.3 Linear Discriminant Analysis (LDA) of Toner Printing Inks 

Linear Discriminant Analysis was used for discrimination of 76 toner printing inks using 

leave-one-out cross validation. A total of 41 pairs were misclassified by LDA, resulting 

in 98.48% of total correct classification.  Table 10 lists the misclassified pairs. Out of the 

41 pairs, 9 pairs were also found to be indistinguishable by Spectral Overlay. These 

common pairs are listed in table 11. 
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Table 10. Misclassified pairs by linear discriminant analysis 

Toner Pairs Color Brand 
TN 12 Vs.TN 55 Black Vs. Yellow HP 
TN 12 Vs.TN 72 Black Vs. Yellow HP Vs. RC 
TN 13 Vs.TN 19 Black HP 
TN 15 Vs.TN 58 Black HP Vs. CN 
TN 15 Vs.TN 36 Black HP Vs. OD 
TN 18 Vs.TN 36 Black HP Vs. OKI 
TN 18 Vs.TN 9 Black HP 
TN 18 Vs.TN 15 Black HP 
TN 19 Vs.TN 15 Black HP 
TN 20 Vs.TN 18 Black HP 
TN 22 Vs.TN 17 Cyan Vs. Black HP 
TN 22 Vs.TN 63 Cyan  HP Vs.  CN 
TN 25 Vs.TN 21 Magenta Vs. Black HP 
TN 27 Vs.TN 26 Magenta Vs. Yellow HP 
TN 30 Vs.TN 72 Magenta Vs. Yellow IMX Vs. RC 
TN 31 Vs.TN 30 Magenta Vs. Yellow IMX 
TN 31 Vs.TN 28 Black Vs. Yellow IMX 
TN 33 Vs.TN 28 Cyan Vs. Black KN Vs.  IMX 
TN 33 Vs.TN 55 Cyan Vs. Yellow KN Vs. HP 
TN 33 Vs.TN 35 Cyan Vs. Yellow KN 
TN 36 Vs.TN 35 Yellow Vs. Black KN Vs. OD 
TN 37 Vs.TN 51 Black  OKI Vs. XR 
TN 38 Vs.TN 37 Black OKI 
TN 40 Vs.TN 61 Magenta Vs. Yellow OKI 
TN 41 Vs.TN 37 Yellow Vs. Black OKI 
TN 42 Vs.TN 38 Black XR Vs. OKI 
TN 42 Vs.TN 44 Black Vs. Magenta XR 
TN 46 Vs.TN 44 Black Vs. Magenta XK Vs. XR 
TN 46 Vs.TN 47 Black Vs. Cyan XK 
TN 46 Vs.TN 45 Black Vs. Yellow XK Vs. XR 
TN 49 Vs.TN 47 Yellow Vs. Cyan XK 
TN 49 Vs.TN 48 Yellow Vs. Magenta XK 
TN 49 Vs.TN 62 Yellow Vs. Black XK Vs.CN 
TN 49 Vs.TN 48 Magenta Vs. Yellow XK 
TN 51 Vs.TN 48 Black Vs. Magenta XR Vs. XK 
TN 54 Vs.TN 72 Black Vs. Yellow HP Vs. RC 
TN 61 Vs.TN 54 Yellow Vs. Black OKI Vs. HP 
TN 64 Vs.TN 38 Magenta Vs. Black CN Vs. OKI 
TN 74 Vs.TN 24 Magenta Vs. Cyan SM Vs. HP 
TN 77 Vs.TN 74 Black Vs. Magenta SH Vs. SM 
TN 77 Vs.TN 20 Black SH Vs. HP 
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Table 11. List of common toner pairs that were not distinguished by Spectral Overlay and 
were also misclassified by LDA. 
 

  Toner Pairs Color Brand Elements detected 
1) TN 12 K HP Black HP (Mn, Fe) 

TN 19 K HP Black HP (Mn, Fe) 
  TN 15 K HP Black HP (Mn, Fe) 
2) TN 17 K HP Black HP (Mn, Fe) 

TN 15 K HP Black HP (Mn, Fe) 
3) TN 18 K HP Black HP (Mn, Fe) 

TN 17 K HP Black HP (Mn, Fe) 
4) TN 20 K HP Black HP (Mn, Fe) 

TN 18 K HP Black HP (Mn, Fe) 
5) TN 19 K HP Black HP (Mn, Fe) 

TN 54 K HP Black HP (Mg, Al, K, Ti, Zr, Nb) 
6) TN 56 K HP Black HP (Mg, Al, K, Ti, Zr, Nb) 

TN 22 C HP Cyan HP (Mg, Al, Ti, Cu) 
7) TN 63 C CN Cyan CN (Mg, Al, Ti, Cu) 

TN 22 C HP Cyan HP (Mg, Al, Ti, Cu) 
8) TN 63 C CN Cyan CN (Mg, Al, Ti, Cu) 

TN 30 M IMX Magenta IMX Ti, Zn, Sb, Ba) 
  TN 31 Y IMX Yellow IMX Ti, Zn, Sb, Ba) 
9) TN 63 C CN Cyan CN (Mg, Al, Ti, Cu) 

TN 22 C HP Cyan HP (Mg, Al, Ti, Cu) 
 

 Most of the indistinguishable pairs in Spectral Overlay and also the misclassified 

pairs by Linear Discriminant Analysis were either of the same color or were of the same 

brand as shown in Table 10 and 11. 

4.3.6.4 Partial Least Squares Discriminant Analysis (PLS-DA) for Toner Printing Inks 

 An ink database was created with 76 toner printing inks. The replicates of ink 

were divided into two parts: one for training the database and the other for testing the 

database. The training or the reference database provides the background information 

about different kinds of available samples, while the testing database contains the 

information about a new or unknown ink sample.  Spectral classification was done by 
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PLS-DA by using LIA-GIU (Laser Induced Acoustics- Graphic User Interface) software 

developed by CoVar technology in collaboration with Applied Spectra. This software 

performs PLSDA using chemometrics and machine learning algorithm. For the 20 

duplicate controls, PLS-DA showed a very good agreement between the reference 

database and the test database. If the correct duplicate was listed as one of top five 

selections provided by the PLSDA algorithm, then it was predicted to be a match. For 

very similar inks coming from the same manufacturer, the rationale was that the correct 

matches could be multiple and be listed as second, third or fourth. 

Figure 34. PLS-DA plot showing the correct association of a duplicate toner control with 
the same toner ink in the database. 
 

From Figure 34, it can be seen that the duplicate control of toner 32 correctly 

matches to toner 32 in the database. In the Y-axis positive value shows the extent of 

similarity between the test sample (in this case duplicate controls of Toner 32 and the ink 

samples in the database. The similarity score on the Y-axis for TN 32 in the database is 

0.4, which is the highest out of five possible matches, as shown in Figure 34. Eight 

duplicates (controls) of TN 32 correctly associate with the TN 32 in the database. The 

PLS-DA algorithm showed that 18 out of 20 duplicate controls were correctly associated 

with their respective sources in the ink database providing 90% correct classification. 
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4.3.6.5 K- Nearest Neighbor analysis (KNN classification) for Toner Printing Inks 

The number of neighbors taken for classification was ten. So a classification was 

said to be correct if any of the top 10 similar spectra identified by KNN as a possible 

match for the test sample was correctly identified.  

Data points for LA-ICP-MS 

N
or

m
al

iz
ed

 in
te

ns
ity

 

 

Figure 35. KNN plot for duplicate control TN 34 showing the correct association in the 
ink database. 

 
Figure 35 shows that Toner 34 by KNN approach is correctly listed in the first four 

neighbors pulled out by the algorithm from the database. Only two of the duplicate toners 

were incorrectly classified, providing a correct classification of 90% for the 20 duplicate 

controls. 
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4.4 Results for Comparison of Inkjet Printing Inks 
	
  
 The number of elements detected in inkjet inks was relatively lower as compared 

to toners. However, a very good discrimination was detected for the pairwise comparison 

of inkjet inks. The element that was only detected in inkjet printing inks was Li. It is used 

as a conductive element in the form of Lithium nitrate and also as a drier. Elements like 

Mg and Zr are used as extenders and driers, respectively, for some inkjets57. 

Table 12. List of elements detected in inkjet inks. 

Inkjets Li Na Mg Al S K Cu Fe Zr Sn Ba Hf 
1.       Li Na       K             
2.                               
3.         Na       K             
4.         Na                     
5.         Na                     
6.         Na         Cu           
7.         Na       K             
8.         Na         Cu   Zr   Ba   
9.         Na                     
10.     Na                     
11.     Na       K     Zr       
12.   Li Na Mg     K Cu           
13.     Na       K             
14.   Li Na Mg     K Cu           
15.   Li Na Mg     K Cu           
16.   Li Na Mg     K             
17.     Na Mg     K Cu           
18.     Na Mg       Cu           
19.   Li Na Mg       Cu           
20.     Na       K             
21.     Na Mg   S   Cu           
22.     Na Mg   S               
23.     Na Mg   S K             
24.     Na       K             
25.     Na Mg   S   Cu           
26.     Na Mg   S               
27.     Na Mg   S               
28.     Na       K     Zr       
29.     Na       K       Sn     
30.     Na       K Cu   Zr Sn   Hf 
31.     Na       K Cu   Zr Sn   Hf 
32.     Na       K     Zr Sn   Hf 
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33.     Na       K     Zr Sn     
34.     Na     S   Cu     Sn     
35.     Na     S         Sn     
36.     Na     S         Sn     
37.     Na       K             
38.   Li Na     S K             
39.   Li Na     S               
40.     Na     S   Cu           
41.     Na       K             
42.     Na     S   Cu Fe         
43.     Na       K             
44.     Na                     
45.     Na       K Cu           
46.     Na       K             
47.     Na                     
48.   Li Na                     
49.     Na       K     Zr       
50.     Na       K     Zr Sn     
51.     Na       K     Zr       
52.     Na       K     Zr       
53.     Na         Cu           
54.     Na                     
55.     Na                     
56.     Na   Al   K             
57.     Na   Al   K             
58.         Al   K Cu   Zr       
59.     Na   Al S K             
60.         Al   K             
61.     Na       K             
62.     Na     S               
63.     Na     S K             
64.     Na                     
65.     Na     S               
66.     Na     S   Cu           
67.     Na     S               
68.   Li Na                     
69.     Na       K             
70.     Na     S   Cu           
71.     Na     S               
72.     Na     S               
73.     Na       K             
74.     Na       K             
75.     Na Mg   S   Cu           
76   Na     S               
77   Na     S   Cu           
78 Li Na       K Cu           
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A total of 12 elements were detected for the inkjet set. Sodium was present in 

almost all of the inkjets (94.9%) and K was present in half of the samples as shown in 

figure 36. Table 12 shows the list of elements that were detected in inkjet set.  
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Figure 36. Bar graph showing the distribution of elements in inkjet inks. 
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Figure 37. Bar graph showing the contribution of each element for pairwise comparison 
of inkjet printing inks. 
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The contribution of each individual element was also analyzed. It was found that 

Na and K were the most useful in discriminating the inkjet inks. Figure 37 shows the 

contribution of each element for the discrimination of 78 inkjet printing inks. 

4.4.1 Black Inkjet Printing Inks 
 

Almost all of the black inkjets (31 out of 32) contained Na. The other elements 

that were present were Al, Sn, Cu, Mg, Zr, Li, and K. Elements like S, Fe, Ba, and Hf 

were absent in black inkjets. The percentage of different elements is shown in Figure 38. 
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Figure 38. Bar graph showing the distribution of elements in black inkjets. 

4.4.2 Cyan Inkjet Printing Inks 
 
 Like toners, all of the cyan inkjets also contained Cu. Similarly; Na was also 

present in all the cyan inkjet samples. At least one element from the element menu of 

inkjet set was present in all of the cyan inkjets. Figure 38 shows that Al, Fe, Ba, Hf, and 

Li were detected in only 6.7% of the total cyan inkjets. 
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Figure 39. Bar graph showing the distribution of elements for cyan inkjets. 

4.4.3 Yellow Inkjet Printing Inks 
 

Sodium was the detected in most of the yellow inkjets (13 out of 14). Elements 

like Cu, Fe, Ba, and Li were not detected in yellow inkjets. Figure 40 shows the 

distribution of different elements in yellow inkjets. 
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Figure 40. Bar graph showing the distribution of elements in yellow inkjets. 
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4.4.4 Magenta Inkjet Printing Inks 
 
 Sodium was present in all of the magenta inkjets. Elements like Iron and Ba were 

not detected in this subset. Elements like Al, Zr, and Hf were detected only in 6.3% of the 

magenta inkjets while Mg, Cu, Sn, and Li were detected in 12.5% of the samples, as 

shown in Figure 41. 
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Figure 41. Bar graph showing the distribution of elements in magenta inkjets. 

4.4.5 Overall Discrimination for Inkjet Printing Inks 
 

Similar to toners, the discrimination capability of LA-ICP-MS for inkjets was also 

very high. Despite the lesser number of elements detected, a total of 99.6% 

discrimination was detected for inkjet printing inks. Only 13 pairs of the inkjet printing 

inks were not distinguishable out of a total of 3003 pairs. Table 13 shows the overall 

discrimination for inkjet samples using LA-ICP-MS. Most of these indistinguishable 

pairs were either from the same manufacturer (brand) or were of same color as shown in 

Table 14. The discrimination capability for each color of inkjets is shown in the Table 15. 
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Table 13. Discrimination capability of LA-ICP-MS for inkjet inks. 

Number of samples 78 

Number of samples from different 
sources 

78 (3003 comparison pairs) 

Duplicate controls from same 
sources 

3 quality controls  (3 comparison pairs) 

% Discrimination 99.64% (2992 out of 3003) 

% False exclusions 0%  (0 out of 3) 

% False inclusions 0.36%  (11 out of 3003) 

 
Table 14. List of indistinguishable inkjet pairs by LA-ICP-MS. 

Indistinguishable Pairs Color Brand 
56IJ Vs. 57IJ Black KD  
05IJ Vs. 54IJ Magenta CN 
05IJ Vs. 44IJ  Magenta Vs. Yellow CN Vs. OL 
04IJ Vs. 10IJ Yellow CN Vs. EP 
05 IJ Vs. 55IJ  Magenta Vs. Yellow CN   
54IJ Vs. 55IJ Magenta Vs. Yellow CN 
65IJ Vs. 67IJ  Yellow Vs. Magenta BR 
71IJ Vs. 72IJ  Yellow Vs. Magenta BR 
26IJ Vs. 27IJ Magenta Vs. Yellow HP 
09IJ Vs. 10IJ  Magenta Vs. Yellow EP 
04IJ Vs. 09IJ  Yellow Vs. Magenta CN Vs. EP 

 
Table 15. Discrimination capability of LA-ICP-MS in CMYK inkjets. 

  Black Cyan Magenta Yellow 

# Samples 33 16 16 13 
# Samples from 
different sources 33 16 16 13 

# Comparison pairs 528 120 120 78 

% Discrimination 99.8%  
(527/528) 

100% 
(120/120) 

99.2%  
(119/120) 

98.7%  
(77/78) 

% False inclusions 0.2%(1/528) 0 (0/120) 0.8%(1/120) 1.3% (1/78) 
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Controls were used at all times during the analysis of inkjets to ensure the 

optimum instrument performance. All the controls were correctly associated, resulting in 

100% correct association. Figure 42 shows the spectral overlay for inkjet controls. 
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Figure 42. Spectral Overlay Analysis of Mg isotopes in inkjet controls.  

 
 
 
 
 
 
 
 
 
 
 
Figure 43. One-Way ANOVA with Tukey’s HSD plot for 24Mg (left) and 25Mg (right) in 
inkjet control (IJ 25).  
 
 Similarly the statistical analysis also showed that the controls used on a daily 

basis were not significantly different. Figure 43 is the One-Way ANOVA with Tukey’s 

HSD plot shows considerable overlapping of the controls and no significant difference 

between the controls. 
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4.4.6 Multivariate Analysis of Inkjet Printing Inks 
	
  

4.4.6.1 Principal Component Analysis of Inkjet Printing Inks  

All the peaks, that were at least three times greater than in the paper (background) 

were integrated and used for statistical analysis. A total of 12 elements were detected in 

the inkjet printing inks. Principal Component Analysis of inkjets was performed using 

these 12 variables. The total dimensionality was reduced to three components by PCA. 

The first three principal components provided the maximum variance between the inkjet 

printing inks. Table 16 shows the variance explained by each of the first three principal 

components. 

Table 16. PCA scores for the first three principal components in inkjets. 
 

PC1 PC2 PC3 Cumulative Variance 

23% 18.80% 15% 57% 

 
Inkjet 30 and 31 are grouped in a different region compared to other inkjets as 

shown in Figure 44. It might be a result of the fact that the largest number of elements 

was detected in these two inks. They both have Na, K, Cu, Zr, Sn, and Hf. They are 

grouped closer to each other and farther from the remaining inks. Figure 44 shows the 

two-dimensional PCA plot of inkjets. A total of 57% of the total variance was explained 

by the first three principal components as shown in Table 16. 
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Figure 44. Two-dimensional PCA plot for inkjets by LA-ICP-MS.  

 

 
Figure 45. Three-dimensional PCA plot for inkjets by LA-ICP-MS. 
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The three dimensional PCA plot for inkjet printing inks is shown in Figure 45. 

The PCA plot on the basis of brands also showed classification of nine different brands. 

Brand HP had features similar to most of the inks, and it was also the largest brand (in 

quantity) for inkjet set. Figure 45 shows HP brand scattered all over the plot. Brand 

Lexmark is grouped distinctly from all other groups. Similarly, Kodak brand can also be 

discriminated visually from all other brands as shown in Figure 46. Figure 47 is the three 

dimensional PCA plot for inkjets based on their brands. The three-dimensional plot also 

shows that Hewlett Packard (HP) brand, which is the manufacturer for most of the 

inkjets, is scattered throughout the plot. Kodak (KD) brand can be seen to be in a group 

different from other brands. Similarly Olivetti brand (OL) and Lexmark (LX) also have 

distinct groups as shown in Figure 46 and Figure 47. 

 
Figure 46. Two-dimensional PCA plot showing different brands of inkjets. 
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Figure 47. Three-dimensional PCA plot for inkjets showing different brands. 
 

4.4.6.2 Linear Discriminant Analysis of Inkjet Printing Inks  

 A total of 45 pairs of inkjet printing inks were misclassified using LDA. These 45 

pairs are shown in Table 17. It was found that most of the indistinguishable pairs were of 

the same color. Only 16 of the misclassified pairs were of two different colors. Of those 

same colored indistinguishable inkjet pairs, 27% were black and also 27% were cyan. 

There were three yellow colored indistinguishable inkjet samples and two magenta 

colored samples. Figure 48 shows the total percentage of indistinguishable pairs in four 

different colors. 
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Table 17. List of inkjet pairs misclassified by LDA. 
Number Misclassified pairs Color Brand 
1 03 IN Vs.37 IN Black Cannon 
2 04 IN Vs.10 IN Yellow CN Vs. EP 
3 04 IN Vs.05 IN Yellow Vs. Magenta CN 
4 05 IN Vs.65 IN Magenta Vs. Yellow CN Vs.  BR 
5 11 IN Vs.33 IN Black LX 
6 15 IN Vs.14 IN Black HP 
7 19 IN Vs.18 IN Black HP 
8 19 IN Vs.15 IN Black  HP 
9 20 IN Vs.04 IN Black Vs. Yellow HP Vs. CN 
10 24 IN Vs.74 IN Black HP vs. DL 
11 24 IN Vs.41 IN Black  HP 
12 29 IN Vs.46 IN Black Vs. Magenta LX Vs. HP 
13 34 IN Vs.53 IN Cyan LX Vs. CN 
14 36 IN Vs.67 IN Yellow Vs. Magenta LX Vs. BR 
15 37 IN Vs.20 IN Black CN Vs. HP 
16 40 IN Vs.34 IN Cyan HP Vs. LX 
17 40 IN Vs.53 IN Cyan HP Vs. CN 
18 42 IN Vs.70 IN Cyan HP Vs. SH 
19 42 IN Vs.40 IN Cyan OL Vs. HP 
20 44 IN Vs.76 IN Yellow OL Vs. DL 
21 44 IN Vs.67 IN Yellow Vs. Magenta OL Vs. BR 
22 48 IN Vs.68 IN Black BR 
23 49 IN Vs.33 IN Black SH Vs. LX 
24 49 IN Vs.50 IN Black SH 
25 50 IN Vs.47 IN Black CN Vs. HP 
26 53 IN Vs.42 IN Cyan CN Vs. OL 
27 54 IN Vs.72 IN Magenta CN Vs. SH 
28 54 IN Vs.65 IN Magenta Vs. Yellow CN Vs. BR 
29 55 IN Vs.67 IN Yellow Vs. Black CN Vs. KD 
30 54 IN Vs.55 IN Magenta vs. Yellow CN 
31 56 IN Vs.57 IN Black KD  
32 62 IN Vs.42 IN Cyan EP Vs. OL 
33 62 IN Vs.78 IN Cyan EP Vs. HP 
34 66 IN Vs.70 IN Cyan BR Vs. SH 
35 66 IN Vs.40 IN Cyan BR Vs. HP 
36 66 IN Vs.62 IN Cyan BR Vs. EP 
37 67 IN Vs.36 IN Magenta Vs. Yellow BR Vs. LX 
38 65 IN Vs.67 IN Yellow vs. Magenta BR 
39 65 IN Vs.71 IN Yellow BR Vs. SH 
40 56 IN Vs.72 IN Black Vs. Magenta KD Vs. SH 
41 44 IN Vs.72 IN Yellow Vs. Magenta OL Vs. SH 
42 72 IN Vs.67 IN Magenta SH Vs. BR 
43 65 IN Vs.72 IN Yellow Vs. Magenta BR Vs. SH 
44 73 IN Vs.33 IN Black DL Vs. LX 
45 78 IN Vs.70 IN Cyan HP Vs. SH 
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Figure 48. Pie chart showing the percentage of misclassified pairs in four different colors. 

 
Four of the misclassified pairs were also indistinguishable by Spectral Overlay. 

These common pairs are listed in Table 18. 

Table 18. List of common pairs indistinguishable by Spectral Overlay and LDA. 

Indistinguishable Pairs Color Brand 

56IJ Vs. 57IJ Black KD  

04IJ Vs. 10 IJ Yellow CN vs. EP 

54IJ Vs. 55IJ Magenta vs. Yellow CN 

65IJ Vs. 67IJ  Yellow vs. Magenta BR 

 

4.4.6.3 Partial Least Squares Discriminant Analysis of Inkjet Printing Inks  

 Inkjet 25 was chosen as the quality control for the analysis of inkjet printing inks. 

The database was populated with 77 inkjets. When duplicates of IJ 25 were searched 

through the entire database of 77 inkjets, it correctly associated with IJ 25 from the 

database. Figure 49 shows the PLS-DA plot for IJ 25. The other closely related inkjet 
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samples are IJ 26, IJ 21, IJ 23, and IJ 22, but the similarity score for IJ 25 (0.28) is the 

highest compared to other four possible inks.  

 

Figure 49. PLS-DA plot showing the correct matching of IJ 25 in the ink database. 
 

4.4.6.4 K-Nearest Neighbor Analysis of Inkjet Printing Inks  

When IJ 25, a quality control was searched through the database using the KNN 

algorithm, all the four replicates of IJ 25 were shown to be the first four closest 

neighbors. This provided a 100% correct association for the three IJ 25 controls. Figure 

49 shows the K-NN plot for IJ 25. Of the ten closest spectra for IJ 25, its four replicates 

that were in the database as sample (not controls) were predicted as the nearest neighbors 

by the algorithm as shown in Figure 50. 
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Figure 50. K-NN plot for IJ 25 showing the first 10 nearest neighbors. 
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4.5 Results for Comparison of Offset Printing Inks 
	
  

Similar to inkjet samples, offset samples were also embedded into the paper 

fibers. There was always some paper contribution due to the thin layer of offset ink on 

paper, so the paper background was subtracted from the offset inks.   

Table 19. List of elements detected in offset samples. 
OF Na Mg Al Si S K Ca Ti Mn Co Cu Zr Zn Sr Nb Mo Rh Ag Sn Ba Ce W
1     
 Mn Co Cu
2     
 S Mn Co Cu
3     
 Na Si Mn Co
4     
 Mn Co Cu
5     
 Co Cu Zn Rh
6     
 Mg Si Mn Co
7     
 Al Mn Co Cu Mo W
8     
 S Mn Cu Mo Ce
9     
 Mn Co Cu Ag
10  Mn Co Cu Mo Ag
11  Si Mn Co Ag
12  Mn Co Ag
13  Na Mn Co Sn

14  Mn Co Cu

15  Al Si Mn Co Sn

16  Na Al Si S Mn Co

17  Mn Co Cu Sn

18  Mn Co Cu

19  Na Si S Mn Co Sn

20  Na Si Mn Co Sn

21  Mn Co Sn

22  Mn Co Sn

23  S Mn Co Sr Sn Ba

24  Na Mn Co Cu

25  Mn Co Cu Mo
26  Mn Co Sn

27  Mn Co Sn

28  Mn Co Ba

29  Co Ba

30  Mn Co Sn Ba  
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OF Na Mg Al Si S K Ca Ti Mn Co Cu Zr Zn Sr Nb Mo Rh Ag Sn Ba Ce W
31  Mn Co Cu Sr
32  Mn Co Ba
33  Mn
34  Na Mg Al Mn Co Sr Sn
35  Mn Co Mo
36  Mn Co Cu Mo
37  Mn Co Cu Sn
38  Mn Co Cu Mo W
39  Mn Co Cu Sn
40  Na Mg K Mn Co Zn
41  Cu Mo W
42  Cu Mo W
43  Mo W
44  Si Cu Mo W
45  W
46  Mn W
47  
48  Ca Cu Zn W
49  Cu
50  
51  Mg Ca Co Sn
52  Si Ti
53  Si Ca Cu
54  Cu Ag
55  Ti Mn
56  Si Cu
57  Si Cu W
58  Na Si Mn
59  Si Ca Cu
60  Co W
61  Si K Cu
62  Si Cu Zn Nb Mo W
63  Si
64  Ca
65  Mn Co Cu
66  Al Mn Co
67  Mg Al Mn Co
68  Mg Al Cu
69  Mg Al Cu
70  Mg Cu Sr Ba
71  Mg Al
72  Mg Cu Zr
73  Mg Cu
74  Mg Al Sr Ba
75  Mg Al
76 Mg Al Cu W
77 Mg Cu
78 Mg Al Sr Ba
79 Mg

No elements detected

No elements detected

 

 Table 19 lists all the different elements present in offset ink. A total of 22 

elements were detected in offset samples. Elements like W and Ba were detected in some 
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of the offset samples. Figure 51 shows the distribution of different elements in the offset 

samples. Elements like Co and Mn were the elements found in more than half of the 

offset samples while elements like Zr, Nb, Rh and Ce were present in 1% of the total 

samples as shown in Figure 51. 
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Figure 51. Bar graph showing the distribution of elements in offset samples. 
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Figure 52. Bar graph showing the distribution of elements in black offset inks. 

4.5.1 Black Offset Printing Inks 
 
 There were 13 offset samples that were black. Cu was detected in most of these 

black colored samples whereas elements like S, Si, Ti, Sr, Rh, Ba and Ce were absent. 

Figure 52 shows the distribution of different elements in 13 black offset samples. 
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4.5.2 Cyan Offset Printing Inks 
 
 A total of 11 elements were detected in cyan offset samples. Copper was found in 

most of the cyan inks  (toners and inkjets). It was also found in all of the cyan offsets. 

Another element that was most frequently detected was Mn. Some cyan offsets had Mo, 

Ce and W, which were not detected in toners or inkjets. Elements like Si, K, Ca, Ti, Zr, 

Zn, Sr, Nb, Rh, Sn, and Ba were not detected in this subset.  Figure 53 shows the list of 

elements and their relative frequency (in terms of percentage) in offset samples. 
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Figure 53. Bar graph showing the distribution of elements in cyan offset samples. 

4.5.3 Yellow Offset Printing Inks 
 

Two kinds of yellow color were seen in the offset samples. Some of the samples 

were light yellow while some were dark yellow. A total of nine elements were detected. 

Mn and Co were the two most frequently detected elements in yellow offset samples. 

Figure 54 shows the distribution of elements in yellow offset samples. 

4.5.4 Blue Offset Printing Inks 
 

Offset samples were not limited to CMYK colors. Some of the samples collected 

were either light blue or dark blue or had stripes of yellow, and orange color.   
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Figure 54. Bar graph showing the distribution of elements in Yellow offset samples. 

A total of six elements were detected in this subset. Mn, Cu and W were detected 

in 25% of the total set while Na, K and Mo were detected in 13% of the samples. All 

other elements listed in the element menu for offset inks were completely absent as 

shown in Figure 55. 
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Figure 55. Bar graph showing the list of elements detected in blue offset samples. 

4.5.5 Magenta Offset Printing Inks 
 
 A total of 12 elements were detected in magenta offset samples. Similar to the 

yellow offsets, Mn and Co were the elements most frequently detected in this subset. 

Various elements like K, Ca, Ti, Zr, Zn, Nb, Mo, Rh, Ce, and W were completely absent. 
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Figure 56 shows the list of elements that were detected in the magenta offset printing 

inks. 
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Figure 56. Bar graph showing the list of elements detected in magenta offset samples. 
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Figure 57. Bar graph showing the list of elements present in red offset samples. 

4.5.6 Red Offset Printing Inks 
 
 There were seven offset samples that were red. A total of 11 elements were 

detected in these set. Co and Cu were the two most frequently encountered elements. 

Elements like Na, Al, Si, S, K, Ti, Zr, Zn, Nb, Rh, and Ce weren’t detected in the red 

offset samples. Figure 57 shows the percentage of different elements detected in this set. 
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4.5.7 Different Colored Offset Printing Inks 
 
 This subset of printing inks was composed of many colors like bronze, brown, 

orange, pink, purple and green. There was only one offset sample that was bronze. Only 

two elements, Mn and W were detected. Similarly, there were two brown offsets. Ca, Co, 

Rh, W, Cu, Zn were the elements detected in these offset samples. Cu and Zn were 

present in all of the brown offsets. For four orange offset samples only four elements 

were detected; Sn, Mn, Co, and Ba. The list of elements along with their frequency of 

occurrence (in terms of percentage) is illustrated in Figure 58. 
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Figure 58. List of elements present in Bronze, Brown and Orange offset inks. 

Similarly, the offset set also contained three pink and three purple inks. For pink 

offset samples, Mn was the element that was detected in two-thirds of the samples.  

One third of the samples contained elements like Na, Mg, Al, Co, Cu, Sr, Mo, Sn, 

W, Mn. In purple inks, Mn and Co was detected in all three inks. Elements like Sn, Cu, 

and Mo were also detected in some of the purple inks. Figure 59 shows the presence of 

these elements in pink and purple offset samples. 
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Figure 59. Bar graph showing the list of elements detected in pink and purple offsets. 

4.5.8 Overall Discrimination for Offset Printing Inks 
 

The overall discrimination for offset samples was found to be 99.8%. Only six 

pairs of samples were not distinguished by LA-ICP-MS7. Table 20 summarizes the 

discrimination potential of LA-ICP-MS for the analysis of offset printing inks. 

Table 20. Discrimination capability of LA-ICP-MS for the analysis of offset printing 
inks. 

# Samples 79 
# Samples from different sources 79   (3081 comparison pairs) 

Duplicate controls from same sources 7 quality controls, 16 duplicate controls    (37 

comparison pairs) 
% Discrimination 99.8%  (3075 out of 3081) 
% False exclusions 0  (0 out of 37) 

% False inclusions 0.2%  (6 out of 3081) 
  

A closer look at the indistinguishable pairs reveals that most of the inks were 

either of the same color or were manufactured by the same manufacturer. Table 21 shows 

the list of the offset pairs that were not distinguished by LA-ICP-MS. One of the pairs, 

OF 18 and OF 65, were of different colors and belonged to different manufacturers, while 

the other pairs either shared the same manufacturer or the same color. 
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Table 21. List of offset printing ink pairs that were not distinguishable by LA-ICP-MS. 
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Figure 60. Spectral Overlay showing Tungsten peaks in offset control (OF-7). 
 

The association of controls was also confirmed using spectral overlay and One-

Way ANOVA. Figure 60 shows well-overlapped Tungsten peaks for each of the isotopes. 

Similarly statistical comparison of the controls was performed. One Way ANOVA with 

Tukey’s HSD test showed no significant difference between the controls, as shown in 

Figure 61. 

Indistinguishable Pairs Color Source 

21OF vs. 27OF Black vs. Yellow Graphic Ink Co. 

47OF vs. 50OF Green vs. Orange Lincoln visa vs. US passport 

18OF vs. 65OF Cyan vs. Black Sunchemicals (USA) vs. Brilliant 
(Germany) 

71OF vs. 75OF Yellow Sunchemicals 

73OF vs. 77OF Cyan Sunchemicals 

74OF vs. 78OF Magenta Sunchemicals 
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Figure 61. One Way ANOVA for Tungsten (W) isotopes in offset control (OF-7). 

4.5.9 Multivariate Analysis of Offset Printing Inks 
 

Principal Component Analysis and Linear Discriminant Analysis were performed 

using the integrated areas of the detected elements in LA-ICP-MS spectrum. The area 

under the peak reflected the concentration of the elements in the ink sample. 

4.5.9.1 Principal Component Analysis of Offset Printing Inks 

Principal Component Analysis showed the classification of 79 offset samples 

based on the integrated areas of the detected elements. The total variance explained by 

the first three principal components is 34.23% as shown in table 22. Figure 62 and Figure 

63 show the two-dimensional and three-dimensional PCA of offset samples. 

Table 22. PCA scores for the first three PCs in offset printing inks. 

PC1 PC2 PC3 Cumulative variance 

14.50% 11.50% 8.23% 34.23% 
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Figure 62. Two-dimensional PCA of offset samples by LA-ICP-MS. 

 
Principal Component Analysis of offset samples by brand showed classification 

of 10 different brands. Offset inks manufactured from GI (Graphic Ink Company) are 

similar to most of the other inks in terms of elemental profile. They can be seen scattered 

all over the PCA plot.  Offset inks with USPN brand are grouped very close to each 

other, as shown in PCA plots in Figure 64 and Figure 65. 
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Figure 63. Three-dimensional PCA of offset inks by LA-ICP-MS. 

 
Figure 64. Two-dimensional PCA plot (by brand) for offset samples. 
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Figure 65. Three-dimensional PCA plot (by brand) for offset samples.  
 

4.5.9.2 Linear Discriminant Analysis of Offset Printing Inks 

 Linear Discriminant Analysis showed a misclassification of 23 pairs of offset 

samples. These pairs are listed in Table 23. Sample OF 07 that was used as a control was 

also misclassified (correctly associated) with the offset sample OF 07. 
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Table 23. List of misclassified offset pairs by LDA. 

Misclassified pairs Source/Brand Color 
06OF Vs. 04OF FG Yellow Vs. Black 
07OF Vs. 50OF FG Vs. USPB Cyan Vs.  Orange 
14OF Vs. 01OF SC Vs. FG Cyan 
18OF Vs. 01OF SC Vs. FG Cyan 
22OF Vs. 37OF GI Yellow Vs. Purple 
28OF Vs. 29OF GI Orange 
32OF Vs. 28OF GI Red Vs. Orange 
34OF Vs. 35OF GI Pink Vs. Purple 
40OF Vs. 15OF RIT Vs. SC Black Vs. Yellow 
41OF Vs. 45OF LIVI Green Vs. Blue 
43OF Vs. 42OF LIVI Blue & Orange Stripes Vs.  Pink 
43OF Vs. 44OF LIVI Blue & Orange Stripes Vs.  Red 
44OF Vs. 50OF LIVI Vs. USPB Red Vs. Blue/Pink/Orange Lines 
48OF Vs. 45OF LIVI Brown/Orange vs. Red 
50OF Vs. 63OF USPN Orange Vs. Blue 
52OF Vs. 51OF USPB Red Vs. Blue 
53OF Vs. 63OF USPB Vs. USPN Red Vs. Blue 
57OF Vs. 63OF USPN Black Vs. Blue 
58OF Vs. 56OF USPN Blue Vs. Yellow 
59OF Vs. 50OF USPN Vs. USPB Black Vs. Orange 
62OF Vs. 50OF USPN Vs. USPB Black Vs. Blue/Pink/Orange 
69OF Vs. 73OF SC Cyan 
73OF Vs. 77OF SC Cyan 
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Figure 66. Pie chart showing the distribution of misclassified offset pairs in different 
brands.  

	
  



 88 

Linear Discriminant Analysis showed that one of the indistinguishable pairs (by 

Spectral Overlay) was also misclassified. The pair common to both LDA and Spectral 

Overlay is listed in Table 24. This pair was of same color and also belonged to same 

manufacturer. Out of the 23 misclassified pairs, 8 pairs were from different sources, 

while the remaining 15 shared the same manufacturer as shown in Figure 66. 

Table 24. Common offset pair that was indistinguishable (Spectral Overlay) and also 
misclassified (LDA). 

Indistinguishable Pair/ Misclassified pair Color Source 

73OF vs. 77OF Cyan Sunchemicals 
 

4.5.9.3 Partial Least Square Discriminant Analysis of Offset Printing Inks 
 
 A total of 17 controls were used during the offset printing ink analysis by LA-

ICP-MS. Only one of the controls was not correctly associated with the correct offset ink 

from the database. Figure 66 is a PLS-DA plot that shows the correct classification of 

offset control 7 to the same sample in the database. When the entire database is searched 

for that particular control, OF 7 is shown to be the closest one with the highest similarity 

index (0.52) as shown in Figure 67. 

Figure 67. PLSD-DA plot showing correct association of offset control 7 to the same 
sample in the database. 
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4.5.9.4 K-Nearest Neighbor Analysis of Offset Printing Inks 

 The K-NN analysis also provided similar results to PLS-DA. Only one of the 

offset duplicate controls was incorrectly associated with a different offset sample from 

the database. The K-NN analysis provided 94.1% correct association between the 

duplicate controls and the quality controls. Figure 68 shows the correct association of a 

duplicate control, OF 70 to itself in the database. All the four replicates of sample OF 70 

in the database were the first four nearest neighbors for the test sample.  
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Data points for LA-ICP-MS  

Figure 68. KNN-plot for OF-70 showing correct association to in the database. 
 

4.6 Results for Comparison of Intaglio Printing Inks 
	
  

Intaglio inks had a wide variety of elements. Twenty-three elements were detected 

in eighty-six inks. Table 25 shows the complete list of elements detected in all intaglio 

inks by LA-ICP-MS. Manganese was most frequently detected in the intaglio samples 

while elements like W, Sb, and Mo were detected only in a few inks. Figure 69 shows the 

distribution of different elements detected in intaglio inks in terms of percentage. 
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Table 25. List of elements detected by LA-ICP-MS in 86 intaglio inks. 
IN Na Mg Al Si K Ca Ti Mn Fe Co Cu Zn Sr Zr Nb Mo Sn Sb Ba Hf W Pb Bi
1 Mg Al Ca Ti Mn Fe Co Cu Sr Zr Ba Hf
2 Na Mg K Ca
3 Mg Al Ca Mn Fe Co Cu Zn Sr Zr Sn Hf Pb
4 Mg Ca Ti Mn Co Cu Sr Zr Hf
5 Mg Al Mn Co Cu Zr Hf
6 Mg Al Mn Fe Co Zr Hf
7 Mg Al K Ca Mn Fe Co Cu Zn Sr Zr Hf
8 Mg Al Ca Mn Fe Co Cu Sr Zr Hf
9 Mg Al Ca Mn Fe Co Sr Zr Hf
10 Mg Al Ca Mn Co Sr Zr Hf
11 Mg Al Ca Mn Co Sr Zr Hf
12 Na Mg K Ti Zn
13 Ca Mn Co Cu Sr Zr Ba Hf
14 Mg Al Ca Mn Fe Co Cu Sr Zr Ba
15 Mg Al K Ca Mn Fe Co Cu Zn Sr Zr Sn Ba Hf Pb
16 Mg K Ca Mn Fe Co Cu Sr Zr Hf Pb
17 Na Mg K Ca Mn Fe Co Cu Sr Zr Hf
18 Mg Ca Mn Fe Co Cu Zr Ba Hf
19 Mg K Ca Mn Fe Co Cu Zn Sr Zr Ba Hf
20 Mg Ca Mn Fe Co Cu Zn Sr Nb Mo Ba Hf
21 Mg Ca Mn Co Cu Sr Zr Nb Sn Ba Hf
22 Mg Ca Mn Co Cu Sr Zr Nb Sn Ba Hf Pb
23 Mg Ca Mn Fe Co Cu Sr Zr Nb Sn Hf Pb
24 Na Al Si Ca Mn Fe Co Cu Sr Zr Nb Hf
25 Mg Al Si Ca Mn Fe Co Cu Sr Zr Nb Hf Pb
26 Na Mg Al K Ca Mn Co Cu Zn Sr Zr Nb Sn Ba Hf W Pb
27 Mg Ca Mn Fe Co Sr Zr Nb Hf
28 Mg Al Si Ca Mn Fe Co Cu Zn Sr Zr Nb Hf
29 Mg Al Si Ca Mn Fe Co Cu Zn Sr Zr Nb Hf
30 Mg Al Si Ca Mn Co Cu Sr Zr Nb Hf
31 Mg Al Ca Mn Co Sr Zr Nb Hf
32 Mg Ca Ti Mn Co Cu Sr Zr Nb Hf
33 Mg Mn Co Cu Sr Zr Nb Hf Pb
34 Mg Si Ca Mn Co Sr Zr Nb Hf
35 Mg Ca Ti Mn Co Cu Zr Nb Hf
36 Mg Ca Ti Mn Co Cu Zr Nb Hf
37 Mg Ca Fe Co Sr Zr Nb Hf
38 Mg Si Ca Mn Fe Co Cu Sr Zr Nb Sn Hf
39 Mg Si Ca Mn Cu Sr Zr Nb Hf
40 Mg Ca Mn Fe Co Cu Sr Zr Nb Hf Bi
41 Mg Ca Mn Fe Cu Sr Zr Nb Sb Hf Pb
42 Mg Si Ca Mn Cu Sr Zr Nb Hf Pb
43 Mg Ca Mn Cu Sr Zr Nb Hf Pb
44 Mg Ca Mn Cu Sr Zr Nb Hf Pb Bi  
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IN Na Mg Al Si K Ca Ti Mn Fe Co Cu Zn Sr Zr Nb Mo Sn Sb Ba Hf W Pb Bi
45 Mg Ca Mn Co Sr Zr Nb Hf
46 Mg Ca Mn Co Sr Zr Nb Hf Bi
47 Mg Al Si Ca Mn Fe Co Cu Sr Zr Sn Pb Bi
48 Ca Mn Sr Zr Nb Hf Bi
49 Ca Mn Co Cu Mo Sb
50 Ca Ti Mn Fe Cu Sr Mo Sb
51 Ca Ti Mn Fe Cu Mo Sb
52 Mg Al Si K Ca Mn Fe Co Cu Sr Zr Sn Hf
53 Na Mg Al Si Ca Mn Fe Co Cu Zn Sr Zr Pb Bi
54 Mg Al Si Ca Mn Fe Co Sr Pb
55 Mg Ti Mn Fe Co Zn Sr Ba Pb
56 Ti Mn Co Cu Zr Sn Hf
57 Ti Mn Co Zr Hf
58 Mg Al Si Mn Co Zr Sn Sb Hf
59 Mg Si Ca Mn Fe Co Cu Sr Zr Hf
60 Mg Al Ca Mn Fe Co Cu Zn Sr Zr Hf Pb
61 Mg Al Ca Mn Fe Co Cu Zn Sr Zr Hf
62 Mg Al Ca Mn Fe Co Cu Zn Sr Zr Hf Pb
63 Na Mg Al K Ca Mn Fe Co Cu Sr Zr
64 Na Mg Al Si K Ca Mn Fe Co Cu Sr Zr Pb Bi
65 Na Mg Al K Ca Mn Co Cu Sr Zr Pb Bi
66 Ca Mn Co Cu Sr Zr Hf
67 Na Ca Mn Co Cu Zn Sr Zr Hf Pb
68 Mg Ca Ti Mn Co Cu Sr Zr Hf
69 Mg Ca Mn Co Cu Sr Zr Hf
70 MgC Al Si Ca Mn Co Cu Zn Sr Zr Sn Ba Hf W
71 MgC Al Si Ca Mn Fe Co Cu Sr Zr Sn Hf Pb
72 MgC Al K Ca Mn Co Cu Sr Zr Ba Hf Bi
73 Al Ca Mn Fe Co Sr Zr Ba Hf
74 Al Ca Mn Co Sr Zr Ba Hf
75 Mg Si K Ca Mn Fe Cu Zn Sr Zr Bi
76 Mg Al Si Ca Mn Fe Cu Sr Zr Sn
77 Mg Ca Mn Cu Sr Ba Pb
78 Mg Al Si Ca Mn Fe Cu Zn Sr Sn Pb Bi
79 Na Mg Al K CCa Mn Fe Co Cu Sr Sn
80 Mg Ca Mn Fe Co Cu Sr Zr Sn Pb
81 Ca Cu Zn Sr Ba W
82 Mg Al Ca Mn Fe Co Cu Sr Zr Sn Hf Pb
83 Ca Mn Co Cu Sr Zr Ba Hf
84 Mg K Ca Mn Fe Co Cu Zn Sr Zr Sn Ba Pb
85 Mg Al Ca Mn Co Cu Sr Zr Hf
86 Mg Al Si Ca Ti Mn Co Sr Sn  
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Figure 69. Bar graph showing the distribution of elements in the intaglio ink set. 

4.6.1 Aqua Intaglio Printing Inks 
 
 There were two aqua intaglio samples. Three elements, Mn, Co, and Cu, were 

always present in this subset. Elements like Mg, Al, Ca, Zr, Mo, Sb, and Hf were 

detected in one or the other aqua intaglio ink. All other elements were either not detected 

or below the detection limit in this subset. Figure 69 shows the list of elements that were 

detected in the aqua subset. 
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Figure 70.  Bar graph showing the distribution of elements in aqua intaglio inks. 
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4.6.2 Gold Intaglio Printing Inks 
 

There were two gold-colored inks in the intaglio set. In all of these inks, Mg, Al, 

Mn, Co, Zr, and Hf were detected. Si, Ca, Sr, Sn and Sb were present in half of this 

subset. The remaining elements in the element menu for intaglio inks were absent in gold 

intaglio inks. Figure 71 shows the list of elements detected in gold intaglio inks in terms 

of percentage. 
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Figure 71. Bar graph showing the list of elements detected in gold intaglio inks. 

4.6.3 Black Intaglio Printing Inks 
 
 A total of 19 elements were detected in ten black intaglio inks. Mn and Sr were 

present in nine of the black intaglio samples. Elements like Nb, Mo, Sb and W were 

completely absent in this set. Figure 72 shows the list of elements that were present in the 

black intaglio inks in terms of percentage. 
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Figure 72. Bar graph showing the list of elements detected in black intaglio inks. 

4.6.4 Yellow Intaglio Printing Inks 
 
 Three of the samples from Costa Rica were Yellow in color. In all of these 

samples Mg, Ca, Mn, Sr, Zr, Nb, and Hf were detected. Cu, Pb, and Bi were detected in 

only one the samples. Co was detected in two-thirds of Yellow intaglio samples. Other 

elements were absent in this subset as shown in Figure 73. 
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Figure 73. Bar graph showing the list of elements detected in yellow intaglio inks. 
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4.6.4 Blue Intaglio Printing Inks 
 
 A total of 22 of the intaglio printing inks were blue in color. All of them had Mn 

and Cu. Except W all other elements in the element menu for intaglio inks were present 

in the blue intaglio. Figure 74 shows the total number of elements present in the blue 

intaglio inks along with their percentage. 
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Figure 74. Bar graph showing the list of elements detected in blue intaglio inks. 

4.6.5 Brown Intaglio Printing Inks 
 
 There were a total of nine brown intaglio samples. Ca was the only element that 

was detected in all of these inks. Mo, Sb and W were the only elements from the element 

menu that were not detected in this subset. Figure 75 shows the list of elements that were 

detected in brown intaglio samples and their relative percentage in the total set. 
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Figure 75. Bar graph showing the list of elements detected in brown intaglio inks. 

4.6.6 Red Intaglio Printing Inks 
 
   A total of seven red intaglio inks were present in the set. Co was the only element 

that was detected in all of these inks. Elements like Na, K, Mo, Sb, Ba, W, Pb, and Bi 

were completely absent in this subset. Figure 76 shows the list of elements present in this 

subset. 
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Figure 76. Bar graph showing the list of elements detected in red intaglio inks. 
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4.6.6 Green Intaglio Printing Inks 
 
 A total of 21 intaglio samples were green in color. Mn and Sr were detected in all 

of the green intaglio samples. The only element that was not detected was Mo out of the 

element menu. Figure 77 summarizes the list of elements detected in green intaglio 

samples. 
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Figure 77. Bar graph showing the list of elements detected in green intaglio samples. 

4.6.7 Purple Intaglio Printing Inks 
 
 Four of the intaglio samples were purple in color. Four elements, Ca, Cu, Zn, Sr 

and Ba were present in all of these purple intaglio samples. Some elements from the 

element menu like Na, Ti, Sb, Pb and Bi were completely absent. Figure 78 shows the list 

of the detected and the undetected elements. 



 98 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Na Ti Sb Pb Bi Al Si K Nb Mo Sn Mg Fe Zr W Mn Co Hf Ca Cu Zn Sr Ba 

0% 0% 0% 0% 0% 

25% 25% 25% 25% 25% 25% 

50% 50% 50% 50% 

75% 75% 75% 

100% 100% 100% 100% 100% 

%
 o

f P
ur

pl
e 

in
ta

gl
io

 

Figure 78. Bar graph showing the list of elements detected in purple intaglio. 

4.6.8 Maroon Intaglio Printing Inks 
 

Three of the intaglio samples were maroon in color. Six elements, Mg, Mn, Cu, 

Sr, Zr, and Hf were detected in all of the maroon intaglio samples. One third of the 

samples had Al, Fe, Zn, and Bi while Ca, Co, Nb, and Pb were detected in two-thirds of 

the samples. Figure 79 shows the list of the elements detected in maroon intaglio 

samples. 
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Figure 79. Bar graph showing the list of elements detected in maroon intaglio inks.  
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4.6.9 Orange Intaglio Printing Inks 
 
 Two of the intaglio samples were orange colored. A total of 16 elements were 

detected in this subset. All the orange intaglio contained Mg, Al, Ca, Mn, Co, Sr, and Zr. 

Elements like Na, Si, Fe, Cu, Zn, Nb, Hf, and Pb were detected in 50% of the samples. 

Some elements like K, Ti, Mo, Sn, Sb, Ba, and W were completely absent in this subset.  

Figure 80 shows the list of the elements present in orange intaglio samples.  
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Figure 80. Bar graph showing the list of elements detected in orange intaglio samples. 
 

4.6.10 Overall Discrimination for Intaglio Printing Inks 
 

Spectral Overlay comparison was able to distinguish 3653 pairs of intaglio inks 

out of 3653 possible combinations. The discrimination was the highest compared to all 

other three printing inks. Only two pairs were indistinguishable using LA-ICP-MS.  

These two pairs are listed in Table 26. 

Table 26. List of indistinguishable intaglio pairs by LA-ICP-MS. 

Indistinguishable pairs Source Common elements detected 
10IT Vs. 11 IT Ukraine (2011) Mg, Al, Ca, Mn, Co, Sr, Zr, Hf 
35IT Vs. 36IT Italy (2002)  Mg, Ca, Ti, Mn, Co, Cu, Zr, Nb, Hf 
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All the duplicate controls were correctly associated providing 100% correct 

association. Table 27 summarizes the overall discrimination for intaglio printing inks by 

Spectral Overlay. 

Table 27. Overall discrimination capability of LA-ICP-MS for the analysis of intaglio 
printing inks. 

# Samples 86 

# Samples from different sources 86  (3655 comparison pairs) 

Duplicate controls from same 
sources 

3 quality controls, 3 duplicate controls                                          
(6 comparison pairs) 

% Discrimination 99.95%  (3653 out of 3655) 

% False exclusions 0%  (0 out of 6) 

% False inclusions 0.05% (2 out of 3655) 
 

 Spectral Overlay and One –Way ANOVA were used to study the 

association of controls. For two controls OF 04 and OF 06, 55Mn and 59Co were 

monitored. Spectral Overlay showed no difference between the duplicates run on 

different days as shown in Figures 81 and 82. One Way ANOVA with Tukey’s HSD test 

also showed no significant difference within these controls. Figure 83 and Figure 84 are 

the One Way ANOVA plots showing a significant difference in Mn and Co concentration 

in the two controls (IT 04 and IT 06), but no significant difference within the controls. 
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Figure 81. Spectral Overlay comparison for two Intaglio Controls on the right (IT 06) and 
left (IT 04) by Mn. 
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Figure 82. Spectral Overlay comparison for two intaglio controls (IT 06 on right and IT 
04 on left) by Co. 
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Figure 83. One Way ANOVA with Tukey's HSD test for the analysis of 55Mn in intaglio 
controls.  
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Figure 84. One Way ANOVA with Tukey's HSD test for the analysis of 59Co in intaglio 
controls. 
 

4.6.11 Multivariate Analysis of Intaglio Printing Inks 
 

Principal Component Analysis and Linear Discriminant Analysis were performed 

for the multivariate analysis of intaglio printing inks. 

4.6.11.1 Principal Component Analysis of Intaglio Printing Inks 

Principal Component Analysis of 86 different intaglio printing inks was performed. 

The integrated areas of all the elements, which were at least three times the background. 
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The PCA plot obtained from only the first two principal components is shown in Figure 

85. Some of the intaglio printing inks are well classified (For e.g., IT 58 shown as green 

cross marks in the upper first quadrant). The first three PC explained 43.3% of the total 

variance. 

Table 28. PCA scores for the first three Principal Components in intaglio inks. 

PC1 PC2 PC3 Cumulative variance 

18.50% 14.70% 10.10% 43.30% 
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Figure 85. Two-dimensional PCA plot for intaglio printing inks by LA-ICP-MS. 
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Figure 86. Three-dimensional PCA plot for intaglio printing inks by LA-ICP-MS. 
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Figure 87. Two-dimensional PCA plot obtained from LA-ICP-MS data for intaglio 
samples by country. 

 

Figure 88. Three-dimensional PCA plot for intaglio inks by country.  
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4.6.11.2 Linear Discriminant Analysis of Intaglio Printing Inks 

Linear Discriminant Analysis discriminated most of the intaglio pairs. Only seven 

pairs of intaglio inks were misclassified as shown in Table 29. The controls that were 

used to study inter day and intra day variation were also shown as misclassified (correct 

association). Table 29 is the confusion matrix that shows the list of intaglio printing ink 

pairs that were misclassified by LDA 

Table 29. List of intaglio printing ink pairs misclassified by LDA. 

Misclassified pairs Source 
06IT Vs. 11IT Barbados (2007) Vs. Ukraine (2011)  
29IT Vs. 30IT Peru (2009) 
32IT Vs. 33IT Trinidad and Tobago (2006) 
35IT Vs. 36IT Italy (2002) 
66IT Vs. 69 IT Costa Rica (2000) 
73IT Vs. 74 IT Italy (2013) 
74IT Vs. 81IT Italy (2013) Vs. Nepal (2009) 

 

Most of these pairs were of the same source and were manufactured in the same 

year. Figure 89 shows that 71% of the misclassified pairs were from the same country 

and were manufactured in the same year, while 29% of the misclassified pairs were from 

different countries and were manufactured in different years.   

Pairs from 
different 

countries, 29% 

Pairs from same 
country, 71% 

 

Figure 89. Pie chart showing the percentage of misclassified pairs from different sources. 
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There was some agreement between Spectral Overlay and LDA. One of the two 

pairs that was not distinguishable by Spectral Overlay was also misclassified by LDA. 

Table 30 lists that common pair. 

Table 30. Common intaglio pairs indistinguishable by Spectral Overlay and LDA. 

Common indistinguishable pairs 

(Spectral Overlay and LDA) 

Source Common elements detected 
35IT Vs. 36IT Italy (2002)  Mg, Ca, Ti, Mn, Co, Cu, Zr, 

Nb, Hf  

4.6.11.3 Partial Least Square Discriminant Analysis of Intaglio Printing Inks 
 

Two duplicate controls were used for the Partial Least Square Discriminant 

Analysis. These two duplicate controls were IT 04 and IT 06. Twelve replicates of each 

of these duplicates were searched through the intaglio database containing 88 inks. Both 

of these intaglio duplicates were correctly associated as shown in Figure 90 and Figure 

91. This resulted in 100% correct association of duplicate controls. 

 

Figure 90. PLS-DA plot for IT 04 showing the correct association in the ink database. 

 
Figure 91. PLS-DA plot for IT06 showing the correct association in the ink database. 
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4.6.11.4 K-Nearest Neighbor Analysis of Intaglio Printing Inks 

Of the two controls used, one of the controls was not correctly associated with 

itself in the database. This provided 50% correct association by K-NN analysis. Figure 92 

shows the correct association of one of the intaglio controls using K-NN algorithm. 
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Figure 92. K-NN plot for IT06 showing the correct association with itself in the ink 
database. 

 

4.7 Canonical Discriminant Analysis of Intaglio Printing Inks 
 
 Canonical Discriminant Analysis is a supervised algorithm used to classify 

objects based on their characteristic features. The group membership of the objects is 

known prior to analysis. This is a dimension reduction technique, which minimizes the 

dimension of the study by extracting useful features from a set of variables, in the form of 
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discriminant functions. The first function (canonical component 1) is built to maximize 

the group differences61. The next functions (Canonical 2, Canonical 3.) are built to be 

orthogonal to the first, and still maximize group differences. The process of extracting 

canonical components can be repeated until the number of canonical components equals 

the number of original variables or the number of classes minus one, whichever is 

smaller61. 
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Figure 93. Two-dimensional Canonical Plot for 391 ink samples from four different 
groups. 
 

The number of functions derived is equal to max N-1 (for four printing ink types, 

there will be a maximum of three Canonical Components).  Figure 93 is a two-

dimensional Canonical Plot for 319 printing inks using the LA-ICP-MS spectrum. It 
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shows that four different types of inks, which differ in their morphology, and the way in 

which the ink is deposited, can be classified into four distinct classes using LA-ICP-MS. 

Some overlapping between the two different ink groups (toners and offsets) can be 

visualized in figure 93. The use of different chemical agents as taggants, and additives 

make some of the inks different from its group (for example addition of Molybdenum in 

toners, as charge controlling agent). Intaglio inks can be seen to be the least overlapping 

inks in the figure. This is due to the fact that, intaglio inks have various elements, which 

are not present in toners, inkjets or offset inks. 
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Figure 94. Three-dimensional Canonical plot for 319 different types of inks.  
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4.8 Conclusion 
 
 LA-ICP-MS provided discrimination greater than 99% for all four types of inks. 

The elemental characterization of four different types of printing inks was successful 

using this tool. A very good association of the controls used was also detected. Both 

Spectral Overlay and Statistical analysis showed a good discrimination between inks 

originating from different sources, while showing a correct association between the inks 

sharing the same origin. Table 31 summarizes the discrimination potential of LA-ICP-MS 

for all four different types of inks. 

Table 31. Overall discrimination of four inks by LA-ICP-MS6. 

  Inkjet Toner Intaglio Offset 

# Samples 78 76 86 79 

# Samples from 
different sources 78 76 86 79 

# Comparison Pairs 3003 2850 3655 3081 

Duplicate Controls 0 20 3 16 

Quality controls 3 4 3 7 

Total Comparison pairs 
for controls 3 26 6 37 

% Discrimination 99.6%                              
(2990/3003) 

99.1%                                  
(2825/2850) 

99.95%                                       
(3653/3655) 

99.8%                                 
(3075/3081) 

% False exclusions 0%                                       
(0/3) 

7.7%                                     
(2 out 26) 

0%                                                   
(0/6) 

0                                             
(0/37) 

% False inclusions 0.4%                                 
(11/3003) 

0.9%                                   
(25/2850) 

0.05%                                            
(2/3655) 

0.2%                                      
(6/3081) 
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Chapter 5. Analysis of Ink Samples by LIBS 
	
  

LIBS was also used for elemental detection of inks. LIBS provided multiple lines 

for comparison for different elements. Figure 95 shows a typical LIBS spectrum of a 

standard sample containing 10,000ppm concentration of different elements like Na, Mg, 

Al, Ti, K, Ti, Mn, Fe, Cu, Zn, Sr, and Pb. 
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Figure 95. A LIBS spectrum for a 10,000ppm standard sample. 

5.1 Instrumentation of LIBS 
	
  
 The LIBS instrument used for the analysis of printing inks was a RT 100HP 

system from Applied Spectra, Fremont, CA. This LIBS system consisted of an IR laser 

with a 1064nm ns-Nd:YAG laser and a Czerny Turner spectrograph (Princeton 

Instruments, NJ) with an ICCD detector (Gen II, Andor Technology, CT) and dual 

grating turret (operated at 2400 grooves/mm). This system also had an automated X-Y-Z 

stage that could be moved in three different directions with a speed range from 1-20 

µm/s.  
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5.2 Sample Preparation for Analysis by LIBS 
	
  

The intaglio regions were first confirmed using Keesing Documentchecker 

(Keesing reference systems Inc.) and for further verification a microscope was used. The 

sample was carefully handled with dedicated gloves and was affixed to the sample stage 

using a double-sided tape. Figure 96 shows a section of the intaglio ink that was analyzed 

by using LIBS. 

25x 
300x 1000x 

 

Figure 96. Intaglio ink present in a United States banknote. 
 

5.3 Optimization of LIBS for the Analysis of Inks 
	
  

The optimization protocol for the analysis of inks by LIBS was very similar to 

LA-ICP-MS. The optimization was based on the signal intensity, signal to noise ratio and 

the extent of paper contribution. To minimize the damage to the paper fibers, low laser 

energy (20%) was used as higher energy resulted in significant paper contribution as 

shown in figure 9711. 
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A line scan mode was suitable for the ink analysis as the spot mode caused more 

damage to the paper.  A spot size of 350µm/s was used to account for any sample 

heterogeneity.  Different laser frequencies ranging from 1 to 10 Hz were tested. Similarly 

the scan speed was also varied from 10µm/s to 30µm/s. A high laser frequency resulted in 

more damage to the paper, so the scan speed was also varied accordingly to minimize the 

impact of laser on the paper fibers. 

20%E
25%E

30%
E

35%
E

 

Figure 97. Effect of increasing laser energy and the extent of paper damage11. 

  

5.3.1 Use of Argon as an Ambient Gas 
 
 The use of different gases like Argon, Helium has been reported in 

literature23,24,76. In the present study Argon was used as an ambient gas to increase the 

signal intensity. It was found that the use of Argon gas increased the signal in LIBS by 

approximately four times as shown in figure. The flow of Argon gas had also effect in the 

precision of the measurement as shown in figure 99. It was found that at lower flow rate 
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the precision was low. Figure 99 shows that precision is poor at a flow rate of 0.5L/min 

compared to those at higher flow rates. The overall optimized parameters for the analysis 

of intaglio inks are tabulated in table 32. 
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Figure 98. Effect of Helium (left) and Argon (right) as ambient gas on the intensity of 
emission lines in LIBS. 
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Figure 99. Effect of Argon gas flow on the precision of peak intensity in LIBS. 
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Table 32. Optimized parameters for the analysis of intaglio inks by LIBS. 
 

Parameters Intaglio 

Ablation mode  Single line 

Laser spot size 350µm 

Frequency 2 Hz 

Laser energy 20% (4.1mJ) 

Ablation rate  25µm/s 

Gate Delay  1µs 

Argon flow in the cell  0.7L/min 

Number of shots 100 

Length of line 1.25mm 

 

5.4 Data Analysis of LIBS for the Analysis of Printing Inks (Intaglio) 
	
  

Aurora data analysis software was used for the detection and confirmation of 

LIBS emission lines. Several elements were detected using LIBS. The analysis of paper 

was also done. Various elements were also present in paper. Those elements that were 

significantly higher (at least 3 times) than paper, were only reported as detected. The list 

of elements that were detected in intaglio inks is tabulated in Table 33. Figure 100 shows 

the overlay of two spectra (ink and paper). All the emission lines in red color are from ink 

while the ones in cyan color are from paper. The confirmation of these elements was 

done through the LIBS and NIST database. Most of the elements had more than two 

interference free emission lines. The presence of more than two emission lines with no 

interferences and highest intensities confirmed the presence of an element. Figure 101 

shows the confirmation of Ti in inks through the detection of multiple emission lines. 
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Table 33. List of elements detected by standalone LIBS. 
 

Elements detected Emission lines (nm) 

Ca 393.3 (II), 396.8 (II) 

Mg 517.3 (I), 516.7 (I) 

Ti 332.3(I), 334.9 (II), 334.2 (I) 

Cu 324.3 (I), 327.4 (I) 

Na 588.9 (I), 589.6 (I) 

Fe  356.5 (I), 357.0 (I), 358.2 (I) 

Mn 358.7 (I), 360.9 (I) 

Si  390.5(I), 288.1 (I) 

Zn  330.3 (I), 472.2 (I) 
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Figure 100. LIBS spectra for ink and paper. 
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Figure 101. Multiple Ti emission lines detected by LIBS in intaglio ink. 

Most of the peaks in the LIBS spectrum were identified to be from Ca. The paper 

also contained Ca, but the relative intensity of Ca in the paper was very low as compared 

to the ink as shown in Figure 102. 
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Figure 102. Ca emission lines detected in ink and paper by LIBS. 
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5.4 Conclusion 
	
  

LIBS provided information about the major and minor elements present in ink. 

Some elements like K were also present in the paper. For the confirmation of the 

elements in inks, paper background cannot be ignored. For qualitative analysis, only 

those elements are considered which are at least three times higher than in the paper. 

Elements have multiple emission lines; hence, there are chances of overlapping of 

emission lines (interferences) from different elements. Only those lines that are free from 

interferences can be considered for comparison purposes. LIBS analysis of intaglio inks 

provided good information about the different kind of elements present in the inks and 

was used to create an elemental menu for LA-ICP-MS. 
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Chapter 6. Analysis of Printing Inks by Tandem LIBS/LA-ICP-MS and Normalization 

Study 

	
  
 Most of the contents in this chapter have already been published41 

[http://dx.doi.org/10.1016/j.sab.2014.11.011]. The operating conditions for LIBS and 

LA-ICP-MS are different as they operate under different principles. They have to be 

optimized differently when operated in standalone mode in comparison to tandem mode. 

For example, the most important factor for LIBS is the efficient excitation of the atomic 

and ionic species and their subsequent correct timing for the optical collection of the 

emission lines; while for ICP-MS, the production of sub-micron sized particles with 

efficient particle transport to the ICP plays the most critical role. Also, the ionization of 

the particles in ICP depends on the particle size, as smaller particles ionize better than the 

large chunks. LIBS is also affected by the ambient gas environment, which determines 

the shape, size and life duration of the microplasma. The ideal conditions for tandem 

LIBS/LA-ICP-MS should result in long and stable microplasma for LIBS, with a fine and 

uniform aerosol travelling with uniform velocity to the ICP-plasma19,26. When LIBS and 

LA-ICP-MS are operated in tandem mode, different instrumental conditions have to be 

optimized to achieve a balanced state with compromised analytical signals compared to 

their optimum signals when performed in standalone modes. LA-ICP-MS has sensitivity 

that is at least one order of magnitude higher than LIBS, so the approach was to first 

optimize the acquisition parameters for LIBS and then re-optimize the parameters for the 

tandem mode. This resulted in sacrificing some ICP-MS sensitivity to obtain 
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simultaneous information with considerable precision (less than 10% RSD for LIBS and 

less than 5% RSD for LA-ICP-MS). 

6.1 Sample selection for Tandem LIBS/LA-ICP-MS Analysis 
	
  
 For each of the four printing ink types, the samples were chosen from the set of 

319 inks. These pairs were selected because they exhibited a similar elemental profile 

when analyzed by standalone LA-ICP-MS. This subset of inks consisted of 9 black 

toners, 10 inkjets, 13 offsets, and 12 intaglio printing inks as shown in Figure 103. 
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Figure 103. Bar graph showing the distribution of four printing inks for the tandem 
LIBS/LA-ICP-MS study. 
 

6.2 Analysis of toner printing inks by tandem LIBS/LA-ICP-MS 
 
 Nine black toners out of 77 toners were selected for the tandem analysis. All these 

pairs had the same set of elements and were of the same concentration. Table 32 shows 

the list of all the toner printing inks included in this subset for tandem LIBS/LA-ICP-MS 

study. Standalone LA-ICP-MS was able to detect only Mn and Fe in eight of these toners 

(~89%), while in one of the pairs, only Ti, Zr, Nb, Sn, and Hf was detected. Five of the 

samples were from HP brand. Two of the toners belonged to RC brand while there was 
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one toner each from TS and SH brand as shown in table 34. Table 35 shows the list of the 

toner pairs that had a very similar LA-ICP-MS elemental profile. Ten of the 

indistinguishable pairs had a common HP brand. 

Table 34. List of toner pairs used for the tandem LIBS/LA-ICP-MS study. 
 

Toners Brand 
TN12 HP 
TN13 HP 
TN17 HP 
TN18 HP 
TN19 HP 
TN52 RC 
TN53 RC 
TN57 TS 
TN77 SH 

  

Table 35. List of toner pairs that were indistinguishable by LA-ICP-MS. 
 
Indistinguishable 

pairs  

(LA-ICP-MS) 

Elements detected by LA-ICP-MS Source (Brand) 
TN 12 and TN 13 Mn, Fe HP 
TN 12 and TN 17 Mn, Fe HP 
TN 12 and TN 18 Mn, Fe HP 
TN 12 and TN 19 Mn, Fe HP 
TN 12 and TN 77 Mn, Fe HP and SH 
TN 13 and TN 17 Mn, Fe HP 
TN 13 and TN 18 Mn, Fe HP 
TN 13 and TN 19 Mn, Fe HP 
TN 17 and TN 18 Mn, Fe HP 
TN 17 and TN 19 Mn, Fe HP 
TN 18 and TN 19 Mn, Fe HP 
TN 52 and TN 53 Ti, Zr, Nb, Sn, Hf RC 
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6.2.1 Optimization of Tandem LIBS/LA-ICP-MS for the Analysis of Toners 
 
 The parameters measured for the optimization of tandem LIBS/LA-ICP-MS were 

signal intensity, signal to noise ratio (S/N), precision (%RSD) and the extent of paper 

damage. It is desired to use maximum laser energy to ablate the ink off the paper with 

minimal destruction to the paper substrate. With the increase in the laser energy, the 

signal intensity also increased, but it also increased the paper contribution as shown in 

figure 97. A variation of laser energy starting from 10% to 80% was studied. With laser 

energy lower than 20%, background noise dominated the spectrum, in addition to 

suppression of peaks at lower wavelength. The laser energy that was optimum for toners 

was found to be 70% (37.6 J/cm2). A 200µm laser spot size was chosen to account for 

any sample heterogeneity. Table 36 shows the list of optimized parameters for the 

analysis of toners by tandem LIBS/LA-ICP-MS41. 

Table 36. Optimized parameters for the analysis of toners by tandem LIBS/LA-ICP-MS. 
 

Parameters Toners 

Ablation mode  Single line 

Laser spot size  200 µm 

Frequency  1.8Hz 

Laser energy 70% (13mJ) 

Ablation rate  40µm/s 

Gate Delay  0.8µs 

Argon flow in the cell  0.6L/min 
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6.2.2 Results from the Tandem LIBS/LA-ICP-MS Analysis of Toners 
 

The data normalization for LA-ICP-MS was done by dividing the intensity of 

each element by the total sum of the peaks of the elements in the spectrum as described in 

Chapter 4.1. LA-ICP-MS with a quadrupole mass analyzer suffers from isobaric and 

polyatomic interferences. The detection of Ca in toners is difficult because of the isobaric 

interference from Argon at mass 40 (40Ar) and the presence of polyatomic interferences, 

such as 39Ar1H, formed in the ICP. Less abundant isotopes like 44Ca (2.1% abundance) 

are difficult to detect at lower concentrations.  Similarly, 28Si has a major interference 

from 14N14N. Therefore, this isotope had to be avoided and the less abundant isotope 29Si 

(4.7% abundance) had to be monitored during the analysis in the mass spectrum. Multiple 

emission lines for these elements (Ca and Si) were detected by LIBS with very few 

interference in the emission spectrum. Tandem LIBS/LA-ICP-MS analysis of toners 

provided valuable information about Ca, Si and Na as well. Na proved to be a good 

emitter in LIBS and could be detected in most of the toner inks. Figure 104 shows the 

detection of Si in one of the pairs that was indistinguishable by standalone LA-ICP-MS.  
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Figure 104. Si peaks for TN 12 and TN 77 detected in LIBS spectrum41.  
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LA-ICP-MS was able to detect more elements than LIBS because of the its 

sensitivity. Table 37 lists all the elements that were detected by LA-ICP-MS and LIBS 

when performed in tandem mode. The additional elements detected by LIBS are in bold. 

Table 37. List of elements detected in toners by LA-ICP-MS and LIBS in tandem mode41. 

Toners Brand Elements detected by LA-ICP-MS Elements detected by LIBS 

TN12 HP Na, Mg, Fe, Mn, Zn, Sr, Ba Na, Ca, K, Fe 

TN13 HP Mn, Fe Na, Ca 

TN17 HP Mn, Fe Na, K, Fe, Mn 

TN18 HP Mn, Fe Na, Ca, K 

TN19 HP Mn, Fe Na, Ca 

TN52 RC Ti, Zr, Nb, Sn, Hf Na, K, Ca, Ti, 

TN53 RC Ti, Zr, Nb, Sn, Hf Na, Si, Ti, Ca 

TN57 TS Ti, Sr, Zr, Sn, Hf Na, Si, K, Ca, Ti 

TN77 SH Mn, Fe Na, Si, Ca, Mn, Fe 

 

 Similarly, Ca and K were also detected in most of the pairs. Silicon was detected 

in two of the toner pairs and provided additional discrimination for these pairs. The 

presence of additional elements in LIBS spectrum was confirmed on the basis of 

detection of more than two emission lines for that element. Table 35 shows the list of 

additional elements detected by LIBS that contributed in discrimination of those 

indistinguishable pairs. 
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6.2.3 3 Multivariate Analysis of the Tandem LIBS/LA-ICP-MS data for Toners 
 

The multivariate analysis of toners was performed using PCA, LDA and cluster 

analysis. The performance of LIBS, the performance of LA-ICP-MS and their fusion are 

analyzed independently and compared. 

6.2.3.1 Principal Component Analysis of Toners by LA-ICP-MS Spectrum  

The application of PCA to the integrated areas of different elements detected in 

ink resulted in classification of the inks. Figure 105 and Figure 106 show the two-

dimensional and three-dimensional PCA plots for toners using the data from LA-ICP-MS 

only. The first three Principal Components explained a total of 80.2% of variance, as 

shown in Table 38. 

Table 38. Variances explained by the first three Principal Components. 

Principal Components PC1 PC2 PC3 Cumulative 

Variance Explained 42.7% 29.3% 8.3% 80.3% 
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Figure 105. Two-dimensional PCA plot for toners from data obtained by LA-ICP-MS. 
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Figure 106. Three-dimensional PCA plot using data obtained from LA-ICP-MS. 
 

6.2.3.2 Principal Component Analysis of Toners by LIBS Spectrum  

A fewer elements were detected by LIBS as compared to LA-ICP-MS.  The peak 

area of these detected elements were integrated and used as variables for PCA. The first 

three Principal Components explained a total of 70.9% variance, which is less than that 

obtained from LA-ICP-MS. Table 39 lists the percentage of variance explained by each 

of the first three Principal Components. Figure 107 and Figure 108 show the two-

dimensional and three-dimensional PCA plots for toners using LIBS spectrum. 
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Table 39. Variances explained by the first three PCs (LIBS). 

Principal Components PC1 PC2 PC3 Cumulative 

Variance Explained 35.6 23.1 12.2 70.9 

 

 
Figure 107. Two-dimensional PCA plot for toners using data obtained from LIBS. 

 

Figure 108. Three-dimensional PCA plot for toners obtained by using LA-ICP-MS data. 
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6.2.3.3 Principal Component Analysis of Toners by the Fusion of LIBS and LA-ICP-MS 

Spectrum 

The fusion of LIBS and LA-ICP-MS provided some additional discrimination and better 

classification. Because of the correlation between some of the variables in LIBS and LA-

ICP-MS the total percentage of variance explained by the Principal Components did not 

significantly increase. Replicates of same toner inks are grouped together as shown by the 

ellipses in Figure 109. Figure 109 and Figure 110 show the two-dimensional and three-

dimensional PCA plots for toners after the data fusion of LIBS and LA-ICP-MS. The first 

three PCs explained 70.1% of the total variance as shown in Table 40.  

 

Figure 109. Two-dimensional PCA plot for toners after fusion of LIBS and LA-ICP-MS. 
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Table 40. Variances from the first three PCs after the fusion of LIBS and LA-ICP-MS. 
 
Principal Components PC1 PC2 PC3 Cumulative 

Variance Explained 28.9 23.5 17.7 70.1 
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Figure 110. Three-dimensional PCA plot obtained after the fusion of LIBS and LA-ICP-
MS. 
 

6.2.3.4 Linear Discriminant Analysis of Toners by LIBS  

LIBS provided an excellent discrimination for toner samples. Only one of the pairs was 

not correctly classified. Table 41 is a confusion matrix showing the correct classification  
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(35 pairs) and 1 misclassification of toners. The pair that was incorrectly classified by 

LDA is shown in Table 42. 

Table 41. Confusion matrix obtained from LDA of toners using LIBS only 

Toners TN12 TN13 TN17 TN18 TN19 TN52 TN53 TN57 TN77 
TN12 4 0 0 0 0 0 0 0 0 
TN13 1 3 0 0 0 0 0 0 0 
TN17 0 0 4 0 0 0 0 0 0 
TN18 0 0 0 3 0 0 0 0 0 
TN19 0 0 0 0 3 0 0 0 0 
TN52 0 0 0 0 0 3 0 0 0 
TN53 0 0 0 0 0 0 3 0 0 
TN57 0 0 0 0 0 0 0 3 0 
TN77 0 0 0 0 0 0 0 0 4 

 
Table 42. Misclassified toner pair by LDA using data from LIBS. 

 
Misclassified/Indistinguishable Pairs Color Brand 

12TN vs. 13TN Black HP 
  

The same toner pair was also indistinguishable by Spectral Overlay using 

standalone LA-ICP-MS. They were of same color and also from the same brand as listed 

in Table 42.  

6.2.3.5 Linear Discriminant Analysis of Toners by LA-ICP-MS 

 Linear Discriminant Analysis of toners using LA-ICP-MS also provided 

an excellent discrimination. Only one pair was misclassified out of possible 36 possible 

combinations. Table 43 is a confusion matrix that shows the correctly classified pairs and 

the incorrectly classified pair. The toner pair that was incorrectly classified is listed in 

Table 44. Toner 13 and toner 18 were both black and belonged to same HP brand. This 

pair was also indistinguishable by Spectral Overlay using standalone LA-ICP-MS. 
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Table 43. Confusion matrix from LDA for toners using LA-ICP-MS only. 

Row TN12 TN13 TN17 TN18 TN19 TN52 TN53 TN57 TN77 
TN12 4 0 0 0 0 0 0 0 0 
TN13 0 3 0 1 0 0 0 0 0 
TN17 0 0 4 0 0 0 0 0 0 
TN18 0 0 0 3 0 0 0 0 0 
TN19 0 0 0 0 3 0 0 0 0 
TN52 0 0 0 0 0 3 0 0 0 
TN53 0 0 0 0 0 0 3 0 0 
TN57 0 0 0 0 0 0 0 3 0 
TN77 0 0 0 0 0 0 0 0 4 

  
Table 44. Misclassified toner pair by LDA using data from LA-ICP-MS only. 

Misclassified/Indistinguishable Pairs Color Brand 

0013TN vs. 0018TN Black HP 

 

6.2.3.6 Linear Discriminant Analysis of Toners by the Fusion of LIBS and LA-ICP-MS 

The fusion of LIBS and LA-ICP-MS provided a 100% correct discrimination of 

toner printing inks. Table 45 is the confusion matrix showing the correct classification of 

all nine toner inks. 

Table 45. Confusion matrix from LDA for toners after fusion of LIBS and LA-ICP-MS. 

Toners TN12 TN13 TN17 TN18 TN19 TN52 TN53 TN57 TN77 
TN12 4 0 0 0 0 0 0 0 0 
TN13 0 4 0 0 0 0 0 0 0 
TN17 0 0 4 0 0 0 0 0 0 
TN18 0 0 0 3 0 0 0 0 0 
TN19 0 0 0 0 3 0 0 0 0 
TN52 0 0 0 0 0 3 0 0 0 
TN53 0 0 0 0 0 0 3 0 0 
TN57 0 0 0 0 0 0 0 3 0 
TN77 0 0 0 0 0 0 0 0 4 
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6.2.3.7 Canonical Discriminant Analysis of Toners by Tandem LIBS/LA-ICP-MS  

Canonical Discriminant Analysis produces Canonical Components that provides 

maximum separation among different groups. Figure 111 shows the two-dimensional 

Canonical plot obtained using LIBS, LA-ICP-MS and the fusion of LIBS and LA-ICP-

MS. The fusion of LIBS and LA-ICP-MS provided clear separation of groups as shown 

in Figure 111and Figure 112. The replicates of the same ink are clustered together while 

the separation between different ink groups is maximized. 

 

Figure 111. Canonical plots for toners using a) LIBS b) LA-ICP-MS and c) fusion of 
LIBS and LA-ICP-MS. 
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Figure 112. Three-dimensional Canonical Plot for toners using a) LIBS b) LA-ICP-MS, 
c) fusion of LIBS and LA-ICP-MS. 
 

6.2.3.8 Cluster Analysis of Toners by Tandem LIBS/LA-ICP-MS  

 Cluster Analysis helps to visualize which pairs are similar and which pairs are 

different. It clusters the similar inks together while separating them from different inks. 

Figure 113 is a Hierarchical Cluster Analysis plot for toners using LIBS, LA-ICP-MS and 

fusion of LIBS and LA-ICP-MS. This plot shows that the fusion has grouped the 

replicates of the same ink together. The same color in the cluster shows correct 

association and different colors in the same cluster means that there is some 

misclassification or incorrect association. For example, TN 13 in LIBS (a) is very similar 
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to TN 18 and TN 19 while it looks similar to TN 18, TN 19, 57,77 in LA-ICP-MS (b), the 

fusion clusters all the four replicates to one group which is close to TN 18 and 19 only. 

Toner 13, 18 and 19 are all from the same HP manufacturer. 

 

Figure 113. Hierarchical cluster Analysis for toners using a) LIBS b) LA-ICP-MS c) 
Fusion of LIBS and LA-ICP-MS. 
 

Another way of presenting the clusters is using the constellation plot. The ink 

samples are arranged as the endpoints. The lines drawn from the points represent the 

proximity between different clusters. Shorter lines show smaller differences while longer 

lines show greater variation between the samples.  Figure 114 shows the constellation 

plot for toners for LIBS, LA-ICP-MS and the fusion of LIBS and LA-ICP-MS. 
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Figure 114. Constellation plot for toners using a) LIBS b) LA-ICP-MS and c) fusion of 
LIBS and LA-ICP-MS. 

 

6.3 Analysis of Inkjet Printing Inks by Tandem LIBS/LA-ICP-MS 
 
 Ten inkjets of four different colors (CMYK) belonging to six different brands 

were used for the tandem study. Out of these 45 possible pairs, 4 pairs were not 

distinguishable by standalone LA-ICP-MS. Table 46 shows the list of inkjet inks used for 

the tandem LIBS/LA-ICP-MS study. 
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Table 46. List of inkjet printing inks used for the tandem LIBS/LA-ICP-MS study. 

Inkjet Brand Color 
 IN 01 BR Black 
 IN 04 CN Yellow 
 IN 05 CN Magenta 
 IN 09 EP Magenta 
 IN 10 EP Yellow 
 IN 40 HP Cyan 
 IN 56 KD Black 
 IN 57 KD Black 
 IN 66 BR Cyan 
 IN 70 SH Cyan 

 

The four pairs of inkjet printing inks, which were indistinguishable by standalone 

LA-ICP-MS, are listed in Table 47. 

Table 47. List of indistinguishable inkjet pairs when analyzed by standalone LA-ICP-MS. 

Indistinguishable pairs (LA-ICP-MS) Source Color 

IN 4 and IN 9 CN vs. EP Yellow vs. Magenta 

IN 4 and IN 10 CN vs. EP Yellow 

IN 9 and IN 10 EP Magenta vs. Yellow 

IN 56 and IN 57 KD Black 

 

6.3.1 Optimization of Tandem LIBS/LA-ICP-MS for the Analysis of Inkjets  
 

Inkjet printing inks were challenging to analyze by laser ablation due to their 

relative thin layer embedded onto the paper fibers. Different laser parameters in addition 

to the carrier gas flow, gate delay and scanning speed, were optimized. Relatively lower 

laser energy  (40%) was used for inkjet inks. Table 48 summarizes the optimized 

parameters for the analysis of inkjet samples by tandem LIBS/LA-ICP-MS. 
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Table 48. Optimized parameters for the analysis of inkjets by tandem LIBS-LA-ICP-MS. 

Parameters Inkjets 

Ablation mode  Single line 

Laser spot size  200 µm 

Frequency  0.8Hz 

Laser energy 40% (7.8mJ) 

Ablation rate  50µm/s 

Gate Delay  0.1µs 

Argon flow in the cell  0.9L/min 

 

6.3.2 Results for the Tandem LIBS/LA-ICP-MS Analysis of Inkjets 
 

Elements like Ca and K were detected by LIBS in inkjet inks. These elements are 

difficult to detect by a quadrupole ICP-MS due to the isobaric and polyatomic 

interferences formed inside the ICP. Figure 115 shows the detection of K emission lines 

in an inkjet sample (IJ 9) while being absent in IJ 10, and thus providing additional 

discrimination.  
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Figure 115. K peaks for IJ 9 and IJ 10 detected by LIBS41. 
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Sodium was detected in all of these inkjet inks by LA-ICP-MS, while Li was 

detected in only one of the inkjet printing inks. Additional elements detected by LIBS 

were K, and Ca as shown in bold in Table 49.  

Table 49. List of elements detected by LIBS and LA-ICP-MS in inkjets in tandem mode. 

Inkjet Brand Color Elements detected 

by LA-ICP-MS 

Elements detected 

by LIBS  IN 01 BR Black  Li, Na, K  Li, Na, K 
 IN 04 CN Yellow  Na  Na, Ca 
 IN 05 CN Magenta  Na  Na, Ca, K 
 IN 09 EP Magenta  Na  Na 
 IN 10 EP Yellow  Na  Na 
 IN 40 HP Cyan  Na, Cu, S  Na 
 IN 56 KD Black  Na, Al, K  Na, K 
 IN 57 KD Black  Na, Al, K  Na, K 
 IN 66 BR Cyan  Na, S, Cu  Na, K, Cu 
 IN 70 SH Cyan  Na, S, Cu  Na, K, Cu 

 

Four pairs of inks were indistinguishable when analyzed by LA-ICP-MS alone. 

For these pairs, LIBS provided additional discrimination through the detection of 

elements like Ca and K.  

6.3.3 Multivariate Analysis of the Tandem LIBS/LA-ICP-MS data for Inkjets 
 
 Principal Component Analysis (PCA) and Linear Discriminant Analysis were 

performed on the data obtained from LIBS and LA-ICP-MS. The detected elements in 

LIBS and LA-ICP-MS were integrated and combined for the multivariate analysis. 

6.3.3.1 Principal Component Analysis of Inkjets by LA-ICP-MS 

Only five elements were detected in this subset by LA-ICP-MS. Principal 

Component Analysis of inkjets using the five variables can be visualized through Figure 
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116 and Figure 117. The first three Principal Components were able to explain 74.4% of 

the total variance in this subset as listed in Table 50. 
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Figure 116. Two-dimensional PCA plot for inkjets by LA-ICP-MS. 

 

 

Figure 117. Three-dimensional PCA plot for inkjets by LA-ICP-MS. 
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Table 50. Variances explained by first three PCs using LA-ICP-MS. 

Principal Components (PCs) PC1 PC2 PC3 Cumulative 

Variance explained 30.8% 24.5% 19.1% 74.4% 

 

6.3.3.2 Principal Component Analysis of Inkjets by LIBS 

 Four elements were detected in inkjet printing inks using LIBS.  The four 

variables Na, K, Ca, and Cu were used for the Principal Component Analysis. The 

classification can be visualized through 2d and 3d PCA plots in Figure 118 and Figure 

119 respectively. The first three Principal Components explained 74.5% of the total 

variance for inkjets as shown in Table 51. 

Table 51. Variances explained by the first three PCs. 

Principal Components (PCs) PC1 PC2 PC3 Cumulative 

Variance explained 64.3% 19.9% 12.1% 96.3% 

 

 

Figure 118. Two-dimensional PCA plot for inkjets using LIBS. 
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Figure 119. Three-dimensional PCA plot for inkjets using LIBS. 
 

6.3.3.3 Principal Component Analysis of Inkjets by the Fusion of LIBS and LA-ICP-MS 

The fusion of LIBS and LA-ICP-MS provided a distinct classification of inkjet 

inks. The pairs that had similar elemental composition were grouped together. For 

example, two inkjets 56 and 57 are clustered very close to each other as shown in Figure 

120 and Figure 121. These two inks indistinguishable using the standalone LA-ICP-MS. 

Similarly, inkjet 9 and 10 are also clustered together which also have similar elemental 

profile. A total of nine elements (four from LIBS and five from LA-ICP-MS) were used 

for the PCA analysis. The first three Principal Components explained a total of 77.2% of 

the total variance as shown in Table 52. 
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Table 52. Variances explained by the first three PCs after the fusion of LIBS and LA-
ICP-MS 

Principal Components (PCs) PC1 PC2 PC3 Cumulative variance 

Variance explained 40.7% 22.3% 13.2% 77.2% 

 

 

Figure 120. Two-dimensional PCA plot for inkjets from the fusion of LIBS and LA-ICP-
MS. 

 

 

Figure 121. Three-dimensional PCA plot for inkjets from the fusion of LIBS and LA-
ICP-MS. 
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6.3.3.4 Linear Discriminant Analysis of Inkjet Printing Inks by Tandem LIBS/LA-ICP-MS 

The Linear Discriminant Analysis was first performed individually with LIBS and 

LA-ICP-MS, and compared to the fusion of LIBS and LA-ICP-MS. 

6.3.3.4.1 Linear Discriminant Analysis using LA-ICP-MS for inkjets 
 

Linear Discriminant Analysis with leave one out cross validation was performed 

on the data obtained from LIBS spectrum to separate the groups based on their 

discriminant functions. LDA correctly discriminated 39 pairs out of 45 pairs. This 

provided 86.7% correct discrimination as shown in Table 53. Linear Discriminant 

Analysis also provided canonical variables that best separated the groups. Figure 122 and 

Figure 123 provide the two-dimensional and three-dimensional canonical plots 

respectively showing the different groups for inkjets. 

 

Figure 122. Two-dimensional Canonical Plot for inkjets from LA-ICP-MS data. 
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Table 53. Confusion matrix from LDA for inkjets using LA-ICP-MS. 

INKJET IJ-1 IJ-10 IJ-4 IJ-40 IJ-5 IJ-56 IJ-57 IJ-66 IJ-70 IJ-9 
IJ-1 4 0 0 0 0 0 0 0 0 0 
IJ-10 0 3 1 0 0 0 0 0 0 0 
IJ-4 0 1 3 0 0 0 0 0 0 0 
IJ-40 0 0 0 3 0 0 0 0 1 0 
IJ-5 0 0 0 0 4 0 0 0 0 0 
IJ-56 0 0 0 0 0 4 0 0 0 0 
IJ-57 0 0 0 0 0 0 4 0 0 0 
IJ-66 0 0 0 0 1 0 0 3 0 0 
IJ-70 0 0 0 1 0 0 0 0 3 0 
IJ-9 0 0 1 0 0 0 0 0 0 3 

 

 

Figure 123. Three-dimensional Canonical plot for inkjets based on LA-ICP-MS 
spectrum. 
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6.3.3.4.2 Linear Discriminant Analysis Using LIBS for Inkjets 
 

The elements detected by LIBS were used for the linear Discriminant Analysis. 

LDA using LIBS data only showed 8 misclassified pairs, resulting 82.3% correct 

discrimination of the inkjet pairs. Table 54 is the tabulated confusion matrix obtained 

after LDA using data from LIBS only. 

 The canonical plots shown in Figure 124 and Figure 125 show classification of 10 

different inkjets. Inkjets with very similar elemental profile are grouped very close to 

each other. For example IJ 56 and IJ 57 can be seen to be very closely related as shown in 

Figure 124 and 125. Similarly IJ 1 is grouped separately from other inks. 
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Figure 124. Two-dimensional PCA plot for inkjets using LIBS data. 
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Figure 125. Three-dimensional Canonical plot for inkjets by LIBS. 

Table 54. Confusion matrix from LDA for inkjets using LIBS. 

 
Inkjet IJ-1 IJ-10 IJ-4 IJ-40 IJ-5 IJ-56 IJ-57 IJ-66 IJ-70 IJ-9 
IJ-1 4 0 0 0 0 0 0 0 0 0 
IJ-10 0 2 0 0 0 0 0 0 0 1 
IJ-4 0 0 4 0 0 0 0 0 0 0 
IJ-40 0 0 0 3 0 0 0 0 0 0 
IJ-5 0 0 0 0 4 0 0 0 0 0 
IJ-56 0 0 0 0 0 3 1 0 0 0 
IJ-57 0 0 0 0 0 1 3 0 0 0 
IJ-66 0 0 0 1 0 0 0 3 0 0 
IJ-70 0 1 0 0 0 0 0 0 3 0 
IJ-9 0 1 0 0 0 0 0 0 0 3 
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6.3.3.5 Linear Discriminant Analysis of Inkjets by the Fusion of LIBS and LA-ICP-MS  

The elements detected from the two sensors were merged and the discriminant 

analysis was performed again. The combination provided an increased correct 

classification rate. All the 10 inks were correctly classified as shown in Table 55. The 

canonical plots shown in Figure 126 and 127 also illustrate a distinct classification 

compared to the individual performance of two sensors. 
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Figure 126. Two-dimensional Canonical Plot for inkjets from the fusion of LIBS and LA-
ICP-MS. 
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Table 55. Confusion matrix from LDA for inkjets after data fusion of LIBS and LA-ICP-
MS. 

Row IJ-1 IJ-10 IJ-4 IJ-40 IJ-5 IJ-56 IJ-57 IJ-66 IJ-70 IJ-9 
IJ-1 4 0 0 0 0 0 0 0 0 0 
IJ-10 0 4 0 0 0 0 0 0 0 0 
IJ-4 0 0 4 0 0 0 0 0 0 0 
IJ-40 0 0 0 4 0 0 0 0 0 0 
IJ-5 0 0 0 0 4 0 0 0 0 0 
IJ-56 0 0 0 0 0 4 0 0 0 0 
IJ-57 0 0 0 0 0 0 4 0 0 0 
IJ-66 0 0 0 0 0 0 0 4 0 0 
IJ-70 0 0 0 0 0 0 0 0 4 0 
IJ-9 0 0 0 0 0 0 0 0 0 4 

 

 

Figure 127. Three-dimensional Canonical plot for inkjets after data fusion of LIBS and 
LA-ICP-MS. 
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6.3.3.6 Cluster Analysis for Inkjet Printing Inks 

Cluster Analysis was performed on the inkjet printing inks using LIBS and LA-

ICP-MS spectrum. The comparison was made between the cluster analysis by LIBS and 

LA-ICP-MS. Finally these two cluster analyses were compared to the analysis by fusion 

of LIBS and LA-ICP-MS. Figure 128 shows the hierarchical cluster analysis by LIBS (on 

the left), LA-ICP-MS (on the right) and by fusion of LIBS and LA-ICP-MS (on the 

bottom). Presence of two or many colors in the same cluster shows incorrect association, 

whereas the presence of same color for a certain cluster means the correct association. 

Figure 128 shows that IJ 70 is clustered with IJ 40 by LIBS (a) and also by LA-ICP-MS 

(b), but the fusion shows that all the replicates of IJ 70 are clustered together. 

 

Figure 128. Hierarchical cluster analysis for inkjets by a) LIBS b) LA-ICP-MS c) fusion 
of LIBS and LA-ICP-MS. 
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Figure 129. Constellation plot for inkjets by a) LIBS b) LA-ICP-MS c) fusion of LIBS 
and LA-ICP-MS. 
 

Figure 129 is a constellation plot showing that the replicates of the same inks are 

branched closer while different replicates are farther from the joint. The constellation plot 

for the fusion shows better clustering of the replicates belonging to the same ink 

compared to LIBS and LA-ICP-MS alone. 
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6.4 Analysis of Intaglio Printing Inks by Tandem LIBS/LA-ICP-MS 
 
 A total of 12 intaglio printing inks were selected from the set of 86 intaglio inks. 

This subset contained all those pairs that were not distinguishable by standalone LA-ICP-

MS. Table 56 shows the list of intaglio printing inks that were used for the tandem study. 

All of these inks were from bank notes that were collected from different countries. The 

inks were selected on the basis of the similar LA-ICP-MS elemental profile. 

Table 56. List of intaglio inks selected for tandem LIBS/LA-ICP-MS study. 

Intaglio Color Country 
IT 4 Dark Green Argentina 
IT 6 Dark Magenta Barbados 
IT 9 Black Ukraine 
IT 10 Red Ukraine 
IT 11 Gold Ukraine 
IT 27 Red Honduras 
IT 33 Maroon Trinidad and Tobago 
IT 35 Brown Europe (Italy) 
IT 36 Brown Europe (Italy) 
IT 40 Green Costa Rica 
IT 44 Green  Costa Rica 
IT 50 Dark Blue Tunisia 

 

Four pairs of these inks had very similar elemental profile when analyzed by 

standalone LA-ICP-MS. These pairs are listed in Table 57. 

Table 57. List of indistinguishable pairs for standalone LA-ICP-MS.  

Intaglio Color Country 
IT 10 Red Ukraine 
IT 11 Gold Ukraine 
IT 35 Brown Europe (Italy) 
IT 36 Brown Europe (Italy) 
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6.4.1 Optimization of Tandem LIBS/LA-ICP-MS for the Analysis of Intaglio Printing 
Inks 
 

The optimization process was similar to toners and inkjets. First LIBS was 

optimized, then the tandem system was re-optimized with parameters that worked best 

for both LIBS and LA-ICP-MS. Due to the relative thickness of intaglio ink over paper, 

higher laser energy (2.1mJ) was used.  The optimized parameters for the analysis of 

intaglio inks by tandem LIBS/LA-ICP-MS are listed in Table 58. 

Table 58. Optimized parameters for the analysis of intaglio inks by tandem LIBS/LA-
ICP-MS. 

Parameters Intaglio 
Ablation mode  Single line 
Laser spot size  200 µm 
Frequency 4 Hz 
Laser energy 20% (4.1mJ) 
Ablation rate  30µm/s 
Gate Delay  0.1µs 
Argon flow in the cell  0.75L/min 

 

6.4.2 Results from Tandem LIBS/LA-ICP-MS Analysis of Intaglio Printing Inks 
 

For these indistinguishable pairs LIBS was able to detect elements like K, which 

suffered from isobaric interference from 40Ar and also from polyatomic interference 

(39Ar1H). K was able to discriminate one of the two indistinguishable pairs as shown in 

Figure 130. LA-ICP-MS was able to detect a larger number of elements compared to 

LIBS. Table 59 lists the additional elements detected by LIBS (in bold).  
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Figure 130. Spectral Overlay of two intaglio samples discriminated by K emission lines 
in LIBS spectrum41. 
 
Table 59. List of elements detected by LA-ICP-MS and additional elements detected by 
LIBS for intaglio printing inks. 

Intaglio Elements detected by LA-ICP-MS Elements detected by LIBS 

IT 4 Mg, Ca, Ti, Mn, Co, Cu, Sr, Zr, Hf Ca 

IT 6 Mg, Al, Mn, Fe, Co, Zr, Hf Mg, Ca 

IT 9 Mg, Al, Ca, Mn, Fe, Co, Sr, Zr, Hf Na, Ca, K 

IT 10 Mg, Al, Ca, Mn, Co, Sr, Zr, Hf Na, K 

IT 11 Mg, Al, Ca, Mn, Co, Sr, Zr, Hf Na, K 

IT 27 Mg, Ca, Mn, Fe, Co, Sr, Zr, Nb, Hf ND 

IT 33 Mg, Mn, Co, Cu, Sr, Zr, Nb, Hf, Pb ND 

IT 35 Mg, Ca, Ti, Mn, Co, Cu, Zr, Nb, Hf Na, K 

IT 36 Mg, Ca, Ti, Mn, Co, Cu, Zr, Nb, Hf Na, Ca, K 

IT 40 Mg, Ca, Mn, Fe, Co, Cu, Sr, Zr, Nb, Hf, 

Bi 

Mg, Ca 

IT 44 Mg, Ca, Mn, Cu, Sr, Zr, Nb, Hf, Pb, Bi Na, Ca, K 

IT 50 Ca, Ti, Mn, Fe, Cu, Sr, Mo, Sb Na, Ca 
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6.4.3 Multivariate Analysis of Intaglio Printing Inks by Tandem LIBS/LA-ICP-MS 
 
 Principal Component Analysis, Linear Discriminant Analysis and Cluster 

Analysis were performed on the data obtained from two sensors. Analysis was done for 

the individual sensors and also for the fusion of the two sensors. 

6.4.3.1 Principal Component Analysis of intaglio printing inks by LIBS 

 A total of six elements were detected by LIBS in this subset of intaglio inks. 

These six elements namely Na, Mg, K, Ti and Sr were used for the PCA analysis. The 

two dimensional and three dimensional PCA plots for intaglio inks show that most of the 

inks are very similar and are not distinctly classified by LIBS as shown in Figure 131 and 

Figure 132.  
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Figure 131. Two-dimensional PCA plot for intaglio inks by LIBS. 
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Table 60 shows that the first three Principal Components explained the 81.6% of the total 

variance for intaglio inks. 

Table 60. Variances explained by the first three PCs for intaglio inks by LIBS. 

Principal Components PC1 PC2 PC3 Cumulative 

Variance Explained (%) 46.4% 20.4% 14.8% 81.6% 

 

  
 
Figure 132. Three-dimensional PCA plot for intaglio printing inks by LIBS. 

 

6.4.3.2 Principal Component Analysis of Intaglio Printing Inks by LA-ICP-MS 

Most of the intaglio inks had similar elemental profile as shown in Table 57. The 

PCA plots in Figure 133 and Figure 134 also showed that most of the similar inks were 
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classified together. However, IT 50 was found to be different from other inks. This is 

because IT 50 contains elements like Mo and Sb, while these elements were completely 

absent in other intaglio inks. Similarly, IT 40 and IT 44 contained element Bi, which was 

found to be absent in other inks. These two inks are also separated from rest of the other 

intaglio inks and are classified closer to each other, as shown in Figure 133 and Figure 

134. The first three Principal components explained 72.5% of the total variance as shown 

in Table 61. 

Table 61. Variances explained by first three PCs for intaglio inks by LA-ICP-MS. 

Principal Components PC1 PC2 PC3 Cumulative Variance 
Variance Explained (%) 44.9% 15% 12.6% 72.5% 
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Figure 133. Two-dimensional PCA plot for intaglio by LA-ICP-MS. 
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Figure 134. Three-dimensional PCA plot for intaglio by LA-ICP-MS. 

 

6.4.3.3 Principal Component Analysis of Intaglio Printing Inks by the Fusion of LIBS and 

LA-ICP-MS 

The fusion of LIBS and LA-ICP-MS was performed by combining the elements 

detected by the two sensors. Figure 135 and Figure 136 represent the two-dimensional 

and three-dimensional PCA plots obtained after the fusion of LIBS and LA-ICP-MS 

respectively. 

Table 62. Variances explained by first three PCs after fusion of LIBS and LA-ICP-MS. 

Principal Components PC1 PC2 PC3 Cumulative Variance 
Variance Explained (%) 35.7% 13.4% 12.1% 62.2% 
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Figure 135. Two-dimensional PCA plot for intaglio after the fusion of LIBS and LA-ICP-
MS. 

 
Figure 136. Three-dimensional PCA plot for intaglio after the fusion of LIBS and LA-
ICP-MS. 
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6.4.3.4 Linear Discriminant Analysis of Intaglio Printing Inks by LIBS 

 Out of 66 pairs, 25 pairs were misclassified by LIBS. Table 63 is the confusion 

matrix obtained from Linear Discriminant Analysis of intaglio inks. The misclassified 

intaglio samples are labeled as 1, while the correctly associated are labeled as 0. 

Table 63. Confusion matrix for intaglio printing inks by LDA using LIBS. 
IT IT10 IT11 IT27 IT33 IT35 IT36 IT4 IT40 IT44 IT50 IT6 IT9 

IT10 0 5 0 0 0 0 0 0 0 0 0 0 

IT11 1 0 0 0 0 0 0 0 0 0 0 0 

IT27 0 0 0 0 0 0 0 0 0 0 0 0 

IT33 0 0 0 0 0 0 0 0 0 0 0 0 

IT35 0 0 0 0 0 0 0 0 0 0 0 0 

IT36 0 0 0 0 0 0 0 0 0 0 1 0 

IT4 0 0 0 1 0 0 0 0 0 0 0 0 

IT40 0 0 0 0 0 0 0 0 0 0 0 0 

IT44 0 0 0 0 0 0 0 0 0 0 0 0 

IT50 0 0 0 0 0 0 0 0 0 0 0 0 

IT6 0 0 0 1 0 1 0 0 0 0 0 0 

IT9 0 0 0 0 0 0 0 0 0 0 0 0 

 

6.4.3.5 Linear Discriminant Analysis of Intaglio Printing Inks by LA-ICP-MS 

Out of 66 pairs, 4 pairs were misclassified by LA-ICP-MS. Table 64 is the 

confusion matrix obtained from Linear Discriminant Analysis of intaglio inks. 

Misclassified intaglio samples are labeled as 1, while the correctly associated are labeled 

as 0 in the table. 

 

 



 161 

Table 64. Confusion matrix for intaglio by LDA using LA-ICP-MS. 

IT 
IT10 IT11 IT27 IT33 IT35 IT36 IT4 IT40 IT44 IT50 IT6 IT9 

IT10 0 5 0 0 0 0 0 0 0 0 0 0 

IT11 1 0 0 0 0 0 0 0 0 0 0 0 

IT27 0 0 0 0 0 0 0 0 0 0 0 0 

IT33 0 0 0 0 0 0 0 0 0 0 0 0 

IT35 0 0 0 0 0 0 0 0 0 0 0 0 

IT36 0 0 0 0 0 0 0 0 0 0 1 0 

IT4 0 0 0 1 0 0 0 0 0 0 0 0 

IT40 0 0 0 0 0 0 0 0 0 0 0 0 

IT44 0 0 0 0 0 0 0 0 0 0 0 0 

IT50 0 0 0 0 0 0 0 0 0 0 0 0 

IT6 0 0 0 1 0 1 0 0 0 0 0 0 

IT9 0 0 0 0 0 0 0 0 0 0 0 0 

 

6.4.3.6 Linear Discriminant Analysis of Intaglio Printing Inks after the Fusion of LIBS 

and LA-ICP-MS 

Out of 66 possible pairs, only 1 pair was misclassified by the fusion of LIBS and LA-

ICP-MS. Table 65 is the confusion matrix obtained from Linear Discriminant Analysis of 

intaglio inks. In the table, misclassified intaglio samples are labeled as 1, while the 

correctly associated are labeled as 0. The fusion of LIBS and LA-ICP-MS resulted in 

improvement in the classification of intaglio printing inks by Linear Discriminant 

Analysis. The Canonical plots from linear Discriminant Analysis also showed more 

distinct grouping of the intaglio inks after the fusion of the two sensors as shown in 

Figure 137 and Figure 138. 
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Table 65. Confusion matrix from LDA for intaglio after fusion of LIBS and LA-ICP-MS. 
Intaglio IT1

0 

IT11 IT27 IT33 IT35 IT36 IT4 IT40 IT44 IT50 IT6 IT9 
IT10 0 5 0 0 0 0 0 0 0 0 0 0 
IT11 1 0 0 0 0 0 0 0 0 0 0 0 
IT27 0 0 0 0 0 0 0 0 0 0 0 0 
IT33 0 0 0 0 0 0 1 0 0 0 0 0 
IT35 0 0 0 0 0 0 0 0 0 0 0 0 
IT36 0 0 0 0 0 0 0 0 0 0 1 0 
IT4 0 0 0 0 0 0 0 0 0 0 0 0 
IT40 0 0 0 0 0 0 0 0 0 0 0 0 
IT44 0 0 0 0 0 0 0 0 0 0 0 0 
IT50 0 0 0 0 0 0 0 0 0 0 0 0 
IT6 0 0 0 0 0 0 0 0 0 0 0 0 
IT9 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

Figure 137. Two dimensional Canonical plot for intaglio by LIBS (top left), LA-ICP-MS 
(top right) and the fusion of LIBS and LA-ICP-MS (bottom). 
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Figure 138. Three-dimensional Canonical plot for intaglio by LIBS (top left), LA-ICP-
MS (top right) and the fusion of LIBS and LA-ICP-MS (bottom). 
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than LIBS in cluster analysis. Figure 139 shows the performance of each sensor and the 

performance of the fusion. Presence of more than one color in a cluster indicates 

incorrect inclusion of different intaglio samples. The clusters obtained after fusion of 

LIBS and LA-ICP-MS show that similar intaglio inks (same color in the cluster) are 

clustered closer.  

 

Figure 139. Hierarchical cluster analysis for intaglio inks by a) LIBS b) LA-ICP-MS c) 
Fusion of LIBS and LA-ICP-MS. 
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The intaglio inks IT 4 and IT 40, for example, are clustered incorrectly with IT 5 and 60 

in LIBS (top-left), while they have separate clusters in the fusion (bottom). This indicates 

that the fusion of LIBS and LA-ICP-MS performs better than the two individual sensors.   

-10

0

10

20

Y

4

4

4

4

4

4
4

4 4

4

4

6

6 6 6

6

6

6

6

6

6

9

9

9

9

99

9

9
9

9

9

10 10

10

10

10

10

10

1010

10

1011

1111

11

1111

11

11

11

11

11

27
27

27

27

27
27
27

27

27

27

27

33

33

33

33

33

33
33

33

3333 33

35

35
3535

35
3535

35

35

35

35 36

3636

36

36

36 36 36 36

3636

40

4040

40

40

40

40

40

44

44
44

44

44

44

44

44

44

44

44

50
50

5050

50

50 50
50

5050

50

-25 -20 -15 -10 -5 0 5 10
X

-15

-10

-5

0

5

10

15

20

25

Y

4 4

4

4 4
4

44
4

4 4

6 6
6
6

66

6
6

6

6
99
99

99
99 999
1010

10
1010

10
101010 1010

11

111111 11111111
11
11

11

2727

27
27

2727

27
27
27

27

27

33
3333

3333
33

33

33

33

33

33

35

35
35

35
3535

3535

353535
3636

36

36

36

36

36
36
36

36

36

40

4040
40 40 40

40
40 4444 4444

4444

44
44

4444 44

50
50

50 50
50

50

5050

50
50
50

-20 -10 0 10 20
X

-20
-15

-10

-5

0

5

10

15

20

Y

44

4

4
4

4

4

44
44

6

66
6

666
6

6 6

9
9

9

9

99

9
9 9

9 9

1010
10

10
10

10
10

1010

10

10
11

1111 11

1111
11

1111 1111

2727
2727

27

2727

27
27

27

27

33 33
33

333333

33

33

33

33

33
35

35
35
35 35
35
35
3535
35

35

36
3636

3636

3636

36

3636

36

40 40 404040 40
4040

4444
44 44

44
4444 44

44
44

44

50
50
5050
50

50 5050

50
50
50

-20 -15 -10 -5 0 5 10 15
X

 
Figure 140. Constellation plot for intaglio inks by LIBS (top-left), LA-ICP-MS (top-
right) and fusion of LIBS and LA-ICP-MS (bottom). 

 

6.5 Analysis of Offset Printing Inks by Tandem LIBS/LA-ICP-MS 
 

A total of 13 offset printing inks were used for the tandem LIBS/LA-ICP-MS 

study. These inks were from six different manufacturers and they were of different colors 

as shown in Table 66. These offset printing inks were from five different brands. 
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Table 66. List of offset printing inks used for tandem LIBS/LA-ICP-MS study. 

Offset Source Color 
OF 18 SC Cyan 
OF 21 GI Black 
OF 27 GI Yellow 
OF 47 LIVI Green 
OF 50 USPB Blue/Pink/Orange Lines 
OF 65 UB Cyan 
OF 71 SC Yellow 
OF 73 SC Cyan 
OF 74 SC Magenta 
OF 75 SC Yellow 
OF 76 SC Black 
OF 77 SC Cyan 
OF 78 SC Magenta 

 

 In this subset of offset printing inks, six pairs were indistinguishable using LA-

ICP-MS alone. These pairs are listed in Table 67. 

Table 67. List of indistinguishable pairs of offset inks when analyzed by LA-ICP-MS 
 

Offset Source Color 
OF 21 Vs. OF 27 GI Black Vs. Yellow 
OF 47 Vs. OF 50 LIVI Vs. USB Green vs. Blue/Pink/Orange Lines 
OF 18 Vs. OF 65 SC Vs. UB Cyan 
OF 71 Vs. OF 75 SC Yellow 
OF 73 Vs. OF 77  SC Cyan 
OF 74 Vs. OF 78 SC Magenta 

 

6.5.1 Optimization of Tandem LIBS/LA-ICP-MS for the Analysis of Offset Inks 
 

Like inkjets, the offset inks are also embedded on paper. A number of parameters 

including the laser energy, the frequency of the laser shots, gate delay, and scanning 

speed had to be optimized for both LIBS and LA-ICP-MS. Table 68 lists the optimized 

parameters for the analysis of offset printing inks using tandem LIBS/LA-ICP-MS. 
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Table 68. Optimized parameters for the analysis of offsets by tandem LIBS/LA-ICP-MS. 

Parameters Offset  
Ablation mode  Single line 
Laser spot size  200 µm 
Frequency 4 Hz 
Laser energy 20% (4.1mJ) 
Ablation rate  30µm/s 
Gate Delay  0.1µs 
Argon flow in the cell  0.7L/min 

 

6.5.2 Results from Tandem LIBS/LA-ICP-MS Analysis of Offset Printing Inks 
 

Additional elements like Ca, K, and Si were detected by LIBS. These elements 

were very helpful in discriminating the six pairs of the indistinguishable inks listed in 

Table 69. It can be seen in Figure 141 two offset inks, OF 21 and OF 27, both have Ca in 

them, but the concentration of Ca is different in these two inks, which is reflected by their 

intensities. Different elements detected by LIBS and LA-ICP-MS in the tandem analysis 

of offset printing inks is tabulated in Table 69. The additional elements detected by LIBS 

are in bold. 
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Figure 141. Spectral Overlay of Ca emission lines obtained through LIBS spectrum for 
two offset printing inks41. 
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Table 69. List of elements detected in offset printing inks by LIBS and LA-ICP-MS in 
tandem mode41. 

Offset Elements detected by LA-ICP-MS Elements detected by LIBS 

OF 18 Mn, Co, Cu Na, Ca 

OF 21 Mn, Co, Sn Ca 

OF 27 Mn, Co, Sn Ca 

OF 47 ND Na, Ca, K 

OF 50 ND Na 

OF 65 Mn, Co, Cu Na 

OF 71 Mg, Al Na 

OF 73 Mg, Cu Mg, Ca, Cu, Si 

OF 74 Mg, Al, Sr, Ba Na, Mg, Ca, Si 

OF 75 Mg, Al Na, Si, Ca 

OF 77 Mg, Cu Na, Ca 

OF 78 Mg, Al, Sr, Ba Ca, Sr 

 

6.5.3 Multivariate Analysis of Offset Printing Inks by tandem LIBS/LA-ICP-MS 
 

Principal Component Analysis, Linear Discriminant Analysis, and Cluster 

Analysis were performed on the data obtained from two sensors: LIBS and LA-ICP-MS. 

Performance of these two sensors was compared with each other, and with the fusion of 

the two sensors. 

6.5.3.1 Principal Component Analysis of Offset Printing Inks by LIBS 

Figure 142 and Figure 143 represent the two-dimensional and three-dimensional 

PCA plots for offset printing inks using LIBS. Some offset samples are classified 

distinctly apart from the other offset inks. For example, offset 73 and offset 21 are 
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classified in different regions from the other offset samples. The first three Principal 

Components provided 62.2% of the total variance as shown in Table 70. 

Table 70. Variances explained in offset samples by first three PCs using LIBS 

Principal Components PC1 PC2 PC3 Cumulative Variance 
Variance Explained (%) 57.3% 27% 12.4% 92.4% 
 

 

Figure 142. Two-dimensional PCA plot for offset samples by LIBS. 
 

 

Figure 143. Three-dimensional PCA plot for offset samples by LIBS. 
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6.5.3.2 Principal Component Analysis of Offset Printing Inks by LA-ICP-MS 

Figure 137 and Figure 138 represent the two-dimensional and three-dimensional 

PCA plots for offset printing inks using LA-ICP-MS, respectively. Some offset samples 

are classified distinctly apart from the others. For example, OF 76 and OF 73 are 

classified in different regions from the other offset samples as shown in Figure 144 and 

Figure 145.The first three Principal Components explained 79.9% of the total variance as 

shown in Table 71. 

Table 71. Variances explained in offset samples by first three PCs using LA-ICP-MS. 

Principal Components PC1 PC2 PC3 Cumulative Variance 

Variance Explained (%) 35.8% 24.9% 19.2% 79.9% 

 

 

Figure 144. Two-dimensional PCA plot for offset samples after fusion of LIBS and LA-
ICP-MS. 
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Figure 145. Three-dimensional PCA plot for offset samples after fusion of LIBS and LA-
ICP-MS. 

 

6.5.3.3 Principal Component Analysis of Offset Printing Inks by tandem LIBS/ LA-ICP-

MS 

Figure 146 and Figure 147 represent the two-dimensional and three-dimensional 

PCA plots for offset printing inks obtained after the fusion of LIBS and LA-ICP-MS. The 

first three PCs provided 79.9% of the total variance as shown in Table 72. 

Table 72. Variances explained in offset samples by first three PCs after fusion of LIBS 
and LA-ICP-MS 

 
Principal Components PC1 PC2 PC3 Cumulative Variance 
Variance Explained (%) 28.9% 23.5% 17.7% 70.1% 
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Figure 146. Two-dimensional PCA plot for offset inks from the fusion of LIBS and LA-
ICP-MS. 
 

 

Figure 147. Three-dimensional PCA plot for offset inks after fusion of LIBS and LA-
ICP-MS. 
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6.5.3.4 Linear Discriminant Analysis of Offset Printing Inks by LIBS 

A total of 12 pairs were incorrectly classified by LDA using the elements from 

LIBS only. This provided 15.4% misclassification, or a correct classification of 84.6%.  

Table 73 is the confusion matrix obtained from linear discriminant analysis using LIBS. 

The digit ‘0’ indicates correct classification while ‘1’ indicates misclassification. 

Table 73. Confusion matrix from LDA for offset samples by LIBS 

 

6.5.3.5 Linear Discriminant Analysis of Offset Printing Inks by LA-ICP-MS 

A total of 5 pairs were incorrectly classified by LDA using the elements from LA-

ICP-MS only. This provided 6.4% misclassification, or a correct classification of 93.6%.  

Table 74 is the confusion matrix obtained from linear discriminant analysis using LA-

ICP-MS data. The digit ‘0’ indicates correct classification while ‘1’ indicates 

misclassification. 

 

OF OF18 OF21 OF27 OF47 OF50 OF65 OF71 OF73 OF74 OF75 OF76 OF77 OF78 

OF18 0 

            OF21 1 0 

           OF27 0 0 0 0 1 0 0 0 0 0 0 

  OF47 0 1 0 0 1 0 0 0 0 0 0 0 0 

OF50 0 0 1 1 0 0 0 0 0 0 0 0 0 

OF65 0 0 0 0 1 0 0 0 0 0 0 0 0 

OF71 0 0 0 0 1 0 0 0 0 0 0 0 0 

OF73 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF74 0 0 0 1 1 0 0 0 0 0 0 0 0 

OF75 0 0 0 0 1 0 0 0 0 0 0 0 0 

OF76 0 0 0 0 1 0 0 0 0 0 0 0 0 

OF77 0 0 0 0 1 0 0 0 0 0 0 0 0 

OF78 0 0 0 0 1 0 0 0 0 0 0 0 0 
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Table 74. Confusion matrix for offset inks from LDA by LA-ICP-MS. 
OF OF18 OF21 OF27 OF47 OF50 OF65 OF71 OF73 OF74 OF75 OF76 OF77 OF78 

OF18 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF21 0 0 2 0 0 0 0 0 0 0 0 0 0 

OF27 0 1 0 0 0 0 0 0 0 0 0 0 0 

OF47 0 0 0 0 3 0 0 0 0 1 0 0 0 

OF50 0 0 0 1 0 0 0 0 0 0 0 0 0 

OF65 0 0 0 1 0 0 0 0 0 0 0 0 0 

OF71 0 0 0 0 0 0 0 0 0 2 0 0 0 

OF73 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF74 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF75 0 0 0 1 0 0 1 0 0 0 0 0 0 

OF76 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF77 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF78 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

6.5.3.6 Linear Discriminant Analysis of Offset Printing Inks after the Fusion of LIBS and 

LA-ICP-MS 

A total of two pairs were incorrectly classified by LDA using the elements from 

the fusion of LIBS and LA-ICP-MS.  

Table 75. Confusion matrix for offset inks from LDA after fusion of LIBS and LA-ICP-
MS. 

OF OF18 OF21 OF27 OF47 OF50 OF65 OF71 OF73 OF74 OF75 OF76 OF77 OF78 

OF18 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF21 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF27 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF47 0 0 0 0 1 0 0 0 0 0 0 0 0 

OF50 0 0 0 1 0 0 0 0 0 0 0 0 0 

OF65 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF71 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF73 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF74 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF75 0 0 0 0 0 0 1 0 0 0 0 0 0 

OF76 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF77 0 0 0 0 0 0 0 0 0 0 0 0 0 

OF78 0 0 0 0 0 0 0 0 0 0 0 0 0 
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The Linear Discriminant Analysis provided 2.6% misclassification, or a correct 

classification of 97.4%.  Table 75 is the confusion matrix obtained from linear 

discriminant analysis after the data fusion. The digit ‘0’ indicates correct classification 

while ‘1’ indicates misclassification. 

 

Figure 148. Two dimensional Canonical plot for offset samples by a) LIBS b) LA-ICP-
MS c) fusion of LIBS and LA-ICP-MS. 
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149 are the two dimensional and three dimensional canonical plots for LIBS (a), LA-ICP-

MS (b), and after the fusion of LIBS and LA-ICP-MS (c). Different offset inks are shown 

inside ellipses in Figure 148(c), which indicates that, the fusion of LIBS and LA-ICP-MS 

provides better classification than the individual sensors. 

 

Figure 149. Three dimensional Canonical plot for offset samples by a) LIBS b) LA-ICP-
MS c) fusion of LIBS and LA-ICP-MS. 

a)	
  LIBS b)	
  LA-­‐‑CP-­‐‑MS 

c) Tandem LIBS/ LA-CP-MS 

Offset
18
21
27
47
50
65
71
73
74
75
76
77
78



 177 

6.5.3.7 Cluster Analysis of Offset Printing Inks by LIBS 

 Hierarchical cluster analysis was performed on the data obtained from LIBS and 

LA-ICP-MS to evaluate their performances individually and in comparison to the fusion 

of LIBS and LA-ICP-MS. Figure 150 (c) shows the hierarchical cluster plot for the 

fusion. The fusion classifies the offset ink samples with less misclassification (same 

colored lines) compared to LIBS (a) and LA-ICP-MS (b). 

 

Figure 150. Hierarchical cluster analysis of offset samples by a) LIBS b) LA-ICP-MS c) 
fusion of LIBS and LA-ICP-MS.  
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Figure 150 is the constellation plot obtained from LIBS (a), LA-ICP-MS (b), and 

fusion of LIBS and LA-ICP-MS (c). OF 18 and OF 21 are branched in the same joint in 

the constellation plot for LIBS, similarly, OF 21 and OF 27 are clustered together in the 

plot for LA-ICP-MS, while they are well classified in their own joints after the fusion of 

LIBS and LA-ICP-MS. This is an example showing the utility of fusion of LIBS and LA-

ICP-MS for the correct classification of offset printing inks. 
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Figure 151. Constellation plot for offset samples by a) LIBS b) LA-ICP-MS c) fusion of 
LIBS and LA-ICP-MS. 



 179 

6.6 Analysis of Controls in Tandem LIBS/LA-ICP-MS Study 
 

Besides discrimination, association of the samples originating from the same 

source was also studied. Both Spectral Overlay and One-Way ANOVA showed no 

significant difference between the controls. Two controls were used for this study. One of 

the controls was an offset sample, OF 74, while the other control was 5,000ppm of Sr 

solution spiked on paper. 
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Figure 152. One-Way ANOVA for two controls for 86Sr from mass spectrum. 
 

One-Way ANOVA with Tukey’s HSD test showed a significant difference 

between the two controls while no significant difference within the two controls.  
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Figure 153. One-Way ANOVA for two controls for 88Sr from mass spectrum. 
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Similar to mass spectrum, the emission spectrum from LIBS also produced 

spectra indistinguishable from each other for the same two controls. Figure 152 and 

Figure 153 are the One-Way ANOVA plots using the integrated peak areas of 86Sr, and 

88Sr respectively from the mass spectrum. 
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Figure 154. One-Way ANOVA for two controls for  Sr 421nm emission line from LIBS. 
 

The two emission lines at 407.8nm and 421.6nm provided unambiguous 

identification of Sr. One-Way ANOVA with Tukey’s HSD test was used to determine if 

there was any significant difference between the two. Figure 154 and Figure 155 show 

the One-Way ANOVA plots for two Sr controls. No significant difference was found 

between the controls providing a 100% correct association. 
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Figure 155. One Way ANOVA for two controls based on Sr 407.8nm emission line from 
LIBS. 
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6.7 Calibration Curves and Limit of Detections 
	
  
 The lack of standard reference materials for inks makes their quantitative analysis 

by LIBS and LA-ICP-MS a challenging task. A paper substrate (Whatman 42) that had 

only a few elements in low concentrations was chosen as a substrate. Standard solutions 

of different concentrations ranging from 100 to 1000ppm were prepared. One microliter 

of the standard solution was spiked on paper. The paper was left to dry overnight. 

Tandem LIBS/LA-ICP-MS was performed on the dried samples41. 
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Figure 156. Calibration curves for Mg (top) and Al (bottom) from LA-ICP-MS and LIBS 
respectively in the tandem mode. 

 
Calibration curves were built taking the integrated peak areas of the elements for 

both LIBS and LA-ICP-MS. These integrated areas were background subtracted prior to 

calibration curve analysis. The calibration curves for most of the elements were linear 

and reproducible. The R square values were higher than 0.97 for all elements as shown in 

Figure 156. The relative standard deviation was less than 10% for all of the elements.  
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The limits of detections were calculated as three times the standard deviation of 

blank. The obtained limits of detections ranged from subparts per million to parts per 

million for both LIBS and LA-ICP-MS as shown in Table 7641. 

Table 76. Limits of detection for LIBS and LA-ICP-MS in tandem mode41. 

Element  LA-ICP-MS (ppm) LIBS (ppm) 
Li 0.7 3.4 
Na 79.2 36.4 
Mg 17 32 
Al 29.3 102.8 
K 33.8 7.7 
Ca 393.9 58.3 
Mn 0.6 133.5 
Fe 30.3 190.9 
Ni 1.2 150.4 
Co 0.2 38 
Cu 9.9 61.3 
Zn 5.5 94.3 
Sr 4 7.2 

 

The limits of detection for LA-ICP-MS obtained in tandem mode are at least one 

order of magnitude higher, as compared to the previous studies performed by using the 

standalone LA-ICP-MS10. The reason for this is the loss in the sensitivity of LA-ICP-MS 

due to the compromised parameters, so as to obtain a balanced situation for both LIBS 

and LA-ICP-MS. As expected, the obtained limits of detection for LA-ICP-MS were 

lower than LIBS for most of the elements. For some of the elements like K and Ca the 

limits of detection for LIBS are lower than that of LA-ICP-MS. This is because the most 

abundant isotopes have isobaric and polyatomic interferences from Argon, so the least 

abundant isotopes 39K, and 42Ca had to be used. Sr proved to be a good emitter in LIBS, 

and also was able to be detected in trace level in ICP-MS. 
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6.8 Data Fusion Using Machine Learning Algorithm and Chemometrics 
 

Data fusion was accomplished using software developed by Covar Technology in 

collaboration with Applied Spectra. The software used was LIA-GUI (Laser Induced 

Acoustics, Graphic User Interface), which is available as MATLAB source code. The 

software utilizes Machine Learning algorithm and cheomometrics for data fusion.  The 

data fusion for LIBS and LA-ICP-MS was performed by taking the mean of the outputs 

of the PLSDA classifier for LIBS and LA-ICP-MS6. The following three steps were 

involved for the data fusion of LIBS and LA-ICP-MS. 

1) PLS-DA  (classifier) LIBS = PLS-DA (LIBS spectrum) 

2) PLS-DA  (classifier) LA-ICP-MS= PLS-DA (LA-ICP-MS) spectrum 

3) Fusion Value= mean (PLSDA classifier LIBS spectrum, PLSDA classifier LA-

ICP-MS spectrum) 

Figure 157 shows an example of data fusion between LIBS and LA-ICP-MS. The 

database was populated with 17 offset samples for the tandem LIBS/LA-ICP-MS fusion 

study. Each sample had eight replicates. Four replicates were used to create a reference 

library while the remaining four were used as test samples. 

The values on the ‘X’ axis of figure 157 refer to the inks present in the database. 

The length of the bars corresponds to the similarity score for a particular ink in x-axis. 

The higher the value of similarity index in y-axis, the more likely the reference sample 

would a ‘match’ to the test sample. The test sample in figure 157 is OF 74. OF 74 and OF 

78 are two samples from the same manufacturer called Sunchemicals. They both are 

Magenta colored and have same set of elements when analyzed by standalone LA-ICP-

MS. LIBS was found to be better at discriminating while being poor at associating the 
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similar inks together, while LA-ICP-MS was found to perform better in associating the 

inks sharing common origin and having similar elemental profile.  
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Figure 157. PLSDA plot showing the discrimination by LIBS (top), LA-ICP-MS 
(middle) and the fusion of LIBS and LA-ICP-MS (bottom). 

 
 The fusion also maximizes the separation between the two closely related pairs. 

OF-47 with a similarity score of 0.18 is found to be the second closest match to the test 

sample OF 74 by LIBS analysis, but the similarity score decreases to 0.09 for OF 47 after 

fusion. Similarly, the closely related sample OF-78, with a similarity score of 0.25 when 

analyzed by LA-ICP-MS alone, has a decreased score of 0.13 after the fusion. Thus the 
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fusion has helped to maximize the separation between the two closely related pairs and 

provide an unambiguous identification of the test sample. 

6.8 Overall Results from Tandem LIBS/LA-ICP-MS Study of Printing Inks 
 

LIBS and LA-ICP-MS have been successfully used in tandem for the first time 

for the analysis of printing inks. Qualitative and semi- quantitative tandem LIBS-LA-

ICP-MS methods have been developed, optimized, and tested for the elemental and 

isotopic analysis of printing inks. For those particular printing inks, having similar 

elemental LA-ICP-MS profile, LIBS was successful to detect those elements that were 

difficult to monitor using the quadrupole ICP-MS41.  

All the four sets of inks have different elemental compositions that largely depend 

on the source of manufacture. The results show that major, minor, and trace elements 

present in the ink samples can serve as discriminators. LIBS provided complementary 

information to LA-ICP-MS through the detection of those elements that suffer from 

isobaric and polyatomic interferences in quadrupole ICP-MS.  

For those samples known to produce indistinguishable LA-ICP-MS spectra (very 

similar formulations), the ability of LIBS to detect the major and minor elements can 

provide additional discrimination over a discrimination using only LA-ICP-MS. LIBS 

has higher detection limits, meaning that it cannot detect elements at trace level. LA-ICP-

MS can overcome this weakness by detecting trace elements. The combination has 

proved to be mutually beneficial and more representative for the elemental 

characterization of printing inks. The overall result is summarized in Table 77. 
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Table 77. Overall discrimination for LIBS and LA-ICP-MS and their fusion for four 
printing ink types41. 

 
  % Discrimination 

Ink type Number of samples LIBS LA-ICP-MS 

Tandem (fusion of) 

LIBS/LA-ICP-MS 

Toners 9 (36 comparison pairs) 100% 66.60% 100% 

Inkjets 10 (45 comparison pairs) 97.80% 91.10% 100% 

Offsets 13 (78 comparison pairs) 92.42% 90.90% 100% 

Intaglios 12 (66 comparison pairs) 87.88% 96.97% 98.50% 

 

6.9. Normalization of LA-ICP-MS Spectrum Using LIBS Spectrum 
 

LIBS and LA-ICP-MS have been successfully used for the chemical analysis of 

different materials of forensic interest. Both of these laser based analytical tools when 

used in tandem have synergistic effect. LIBS provides multiple interference free emission 

lines for elements that suffer from isobaric and polyatomic interferences in a quadrupole 

mass analyzer (for e.g., Ca, Si, K, Fe) while LA-ICP-MS can detect trace elements that 

are beyond the detection limits of LIBS, in addition to providing isotopic information, 

thus both techniques complement each other when used in tandem. The major 

disadvantages of LA-ICP-MS are the shot to shot laser fluctuations which alters the 

ablation yield and increases the Relative Standard Deviations (RSDs) making the 

quantitative analysis very difficult. Similarly, for LIBS in addition to the laser shot to 

shot fluctuation, instability of the spectroscopic plasma signals, is another issue which 

also makes the quantitative study by LIBS very challenging. In the present study, NIST 
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glass standards (NIST 610, 612, 1831, FGS1 and FGS2) have been analyzed for the first 

time by tandem LIBS-LA-ICP-MS. The present study shows another important utility of 

a tandem LIBS/LA-ICP-MS where the LA-ICP-MS signal obtained from 29Si (element 

present at the highest concentration) can be used for the normalization of LIBS data. 

Similarly, one of the emission lines from an element, having low self-absorption 

coefficient in the LIBS spectrum (Si 288.1nm), can be used as an internal standard to 

normalize LA-ICP-MS spectrum.  

6.9.1 Optimization of Tandem LIBS/LA-ICP-MS for the Analysis of Glass Samples 
 

Different parameters for glass were optimized for the tandem LIBS/LA-ICP-MS 

study. Similar to the tandem analysis of printing inks, parameters like laser output energy, 

gate delay, scanning speed, carrier gas flow were optimized. The most important 

parameter for LIBS was finding the correct gate delay, as it affects both the signal 

intensity, and the signal to noise ratio. Parameters were optimized based on their 

intensities, signal to noise ratio, and the precision.  Figure 158 shows that a gate delay of 

0.1µs provides the highest intensities for elements like Na, Al, K, Ca and Fe. Signal 

intensities in LA-ICP-MS were not affected by the change in gate delay. 

 It was found that use of Argon gas increased the signal intensities in LIBS about 

four times compared to when no gas or air was used. Higher flow of Argon gas was 

favorable for LIBS, but signal suppression in LA-ICP-MS was detected at higher flows. 

The optimized gas flow was found to be 0.6L/min for LA-ICP-MS as shown in Figure 

159.	
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Figure 158. Variation of emission intensities with gate delay for LIBS. 
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Figure 159. Optimization of Helium gas flow through precision analysis. 

 The optimized parameters for the analysis of glass by tandem LIBS/LA-ICP-MS 

are summarized in Table 78. 
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Table 78. Optimized parameters for the analysis of glass by tandem LIBS/LA-ICP-MS. 

Laser energy 20% 
Frequency 5 Hz 
Spot size 200µm 
Ablation rate 150µm/s 
Gate Delay 0.1µs 
Ar flow rate 0.6/0.6 Lmin-1 
Number of shots 168 

 

6.9.2 Silicon as an Internal Standard 
 
 Silicon is present in high percentage in glass in the form of Silicon dioxide. More 

than 70% of the total glass is composed of Silicon dioxide. Any change in the laser 

energy is accompanied by the similar change in the amount of Silicon removed from the 

glass. Thus the mass of different elements removed from the glass is correlated to the 

mass of Silicon removed during the laser ablation. Figure 160 shows the correlation 

between different elements like Al, K, Mg and Sr with Si for NIST 1831. 
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Figure 160. Correlation plot for a) 27Al b) 39 K c) 24Mg d) 88Sr with Si (I) 288.1 line. 
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6.9.3 Normalization of LA-ICP-MS Spectra Using Si 288.1nm 
 

Silicon emission line at 288.1nm was used to monitor the amount of Si ablated 

from glass. All the peaks in the mass spectrum were normalized to Si 288.1nm. The 

precision was improved for LA-ICP-MS (RSDs’ below 5% for most of the elements) 

maintaining a good linearity in the calibration curves (R2 values > 0.95). The 

concentration of Hafnium was close to detection limit, so the precision was found to be 

the least for it as shown in figure 161. The values in parentheses in X axis are the 

concentration of respective elements in ppm. The differences in precision before and after 

normalization are shown in Figure 161. 
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Figure 161. Bar graph showing the Relative Standard Deviations before and after 
normalization for elements in mass spectrum for NIST 1831. 
 

Similar results were also obtained for NIST 610 glass standards as shown in 

Figure 162. 
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Figure 162. Bar graph showing the Relative Standard Deviations before and after 
normalization for elements in mass spectrum for NIST 610. 
 

6.9.4 Comparison with the Standard Test Method for Glass Analysis by LA-ICP-MS 
 

The RSD’s obtained after normalization were compared to those obtained from 

Standard Test Method for Determination of Trace Elements in Soda-Lime Glass Samples 

Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Forensic 

Comparisons also known as E292777.  
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Figure 163. Comparison of RSDs obtained from Tandem method with the Standard 
method for NIST 1831 by LA-ICP-MS. 
 

It can be seen from Figure 163 and Figure 164 that RSDs are below 5% for all of 

the elements in tandem mode for both NIST and FGS glass standards. The precision 

obtained after normalization to LIBS are comparable to those obtained from the standard 

method for the analysis of glass using LA-ICP-MS.  
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Figure 164. Comparison of RSDs obtained from Tandem method with the Standard 
method for FGS1 glass analysis.  
 

The precision for LIBS was below 6% for most of the elements in the tandem 

mode. Figure 165 shows the precision in terms of RSD for different elements in NIST 

and FGS glass standards by LIBS in the tandem mode. 
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Figure 165. Bar graph showing the Relative Standard Deviations for elements in LIBS 
spectrum for NIST and FGS glass standards. 
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6.9.5 Conclusion 
	
  

Shot to shot fluctuations in laser energy is one of the primary factors for 

sacrificing precision for both LIBS and LA-ICP-MS. Silicon, being the most abundant 

element in glass, served as a good internal standard for normalization of both LIBS and 

LA-ICP-MS spectrum. The precision was improved for LA-ICP-MS (RSDs’ below 5% 

for most of the elements) maintaining a good linearity in the calibration curves (R2 values 

> 0.95). The precision obtained by normalization using tandem LIBS-LA-ICP-MS when 

compared to the ASTM method for glass analysis (E2927) by LA-ICP-MS (standalone) 

was found to be comparable for some of the elements. Similarly, RSDs’ were found to be 

below 6% for most of the elements in LIBS spectrum proving that the tandem method is 

mutually beneficial for both LIBS and LA-ICP-MS. 
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Chapter 7. Contamination Study Using Tandem LIBS/LA-ICP-MS 
	
  

Sodium and Potassium are two important elements for discriminating printing 

inks. However, these elements are also present in human sweat and can be transferred to 

the ink samples if they are not handled with care. This can lead to erroneous results and 

false discrimination. In order to evaluate the effect of contamination on inks by 

manipulation with bare hands and sweated hands, a contamination study was performed 

for printing inks. The contaminated inks were subjected to the tandem LIBS-LA-ICP-MS 

using the optimized parameters for the respective inks types and compared with the 

uncontaminated samples.  

7.1 Sample Preparation 
	
  

Two printing inks, an inkjet (IN 47), and a toner (TN 21) were used for the 

contamination study. For inkjet ink, 5µl of the liquid ink was deposited on Whatman 

paper (Grade 42) and was left for drying at room temperature. For toner, a small amount 

of toner powder was carefully rolled on to a paper substrate, mounted over a glass slide, 

and was allowed to melt at 180 degree centigrade. The melted ink was then 

homogeneously smeared around the Whatman paper. These two untouched inks (NT) 

were then contaminated in two different ways. One way of contaminating the inks was by 

touching them with bare hands from multiple people (MT), and the other way of 

contamination was through the application of sweat from a marathon runner after running 

five miles (ST).  
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7.2 Method Optimization 
	
  

The optimized parameters are listed in Table 79. The listed optimized parameters 

provided the best values for signal, signal to noise ratio, precision, and also resulted in 

minimum damage to the paper substrate. Data normalization was achieved by dividing 

the peak intensity at each data point by the sum of the total intensities of all the data 

points in the spectrum. 

Table 79. Optimized parameters for the analysis of toners and inkjets by tandem 
LIBS/LA-ICP-MS. 

Parameters Inkjets Toners 

Ablation mode  Single line  Single line 

Laser spot size  200 µm  200 µm 

Frequency  0.8Hz  1.8Hz 

Laser Energy 40% (7.8mJ) 70% (13mJ) 

Ablation rate  50µm/s  40µm/s 

Gate Delay  0.1µs  0.8µs 

Argon flow in the cell  0.90L/min  0.60L/min 

 

7.3 Results and Discussion 
	
  

The combination of LIBS and LA-ICP-MS in a single set up resulted in two 

distinct fingerprint spectra providing information from atomic/ionic emissions and 

isotopic composition (m/z) for each ink sample.  The concentration of 23Na was found to 

be different for both toners and inkjets handled in three different ways as shown in Figure 

166. It was found to be present in the highest concentration in the inks heavily 

contaminated with sweat followed by the ink handled with many hands. Similarly, K was 
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detected by LIBS and found to be at higher concentrations in both the contaminated inks 

(MT and ST) as compared to the untouched ones (NT) as shown in Figure 167.  

 

Figure 166. Spectral Overlay of 23Na peaks for contaminated and clean toners (right) and 
inkjets (left). 
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Figure 167. Spectral Overlay of K emission lines for contaminated and clean toners. 
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Since normalization of all the peaks was done using the sum of all the peaks in the 

spectra, a significant decrease in the intensity of other elements was detected in the 

contaminated inks due to the increase in 23Na concentration. Figure 168 shows the 

intensity of 48Ti for the three ink types, which is found to be very high in the untouched 

inks (NT), as it has low 23Na concentration, while other inks (MT and ST) have lower 

intensities of 48Ti due to their high 23Na concentration.  
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Figure 168. Variation of 48Ti peaks in contaminated and pristine toners. 

 
On removing the contribution from 23Na and 39K, 48Ti was found to have similar 

peak profile for NT, MT and ST inks. The Spectral Overlay plot shows that all the 

replicates of NT, MT and ST inks overlap with each other after the removal of these 

contaminants as shown in figure 169. 
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Figure 169. Ti peaks in contaminated and clean toners after removing the contribution 
from Na and K. 

	
  

7.4 Statistical Analysis of Contaminated and Clean Printing Inks 
	
  
 One Way-ANOVA, Principal Component Analysis, Canonical Correlation 

analysis were performed on the contaminated and untouched inks for comparison. These 

tests detected significant differences between the three types of inks. 

7.4.1 One-Way ANOVA for Contaminated and Clean Printing Inks 
 
 One-Way ANOVA with Tukey’s HSD test was performed on these three types of 

inks.  One Way ANOVA with Tukey’s HSD test revealed significant difference between 

these inks based on the concentration of Na as shown in Figure 170 and 171 for toners 

and inkjets respectively. 
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Figure 170. One Way ANOVA plot for contaminated and clean toner by 23Na. 
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Figure 171. One Way ANOVA plot for contaminated and clean inkjet samples by 23Na. 

	
  
Similarly, concentration of Ti in the three types of inks was found to be different. 

One-Way ANOVA with Tukey’s HSD test showed a significant difference in the 

concentration of Ti among the three inks. It was found to be in the highest concentrations 

in clean samples compared to the contaminated ones as shown in Figure 172. 
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Figure 172. One Way ANOVA plot for contaminated and clean toner inks by 48Ti. 

 
After removing the contribution from Na and K, Ti peaks in all the three types of 

inks were found to be similar and no significant difference between them was detected as 

shown in Figure 173. It suggested that, the presence of Na and K as contaminants can 

affect the concentration of other elements. 
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Figure 173. One Way ANOVA plot for contaminated and clean toner inks by 48Ti after 
removing the contribution from Na and K. 
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7.4.2 Principal Component Analysis of Contaminated and Clean Printing Inks 
 
 PCA was performed after the data fusion of LIBS and LA-ICP-MS for all the 

three types of inks. PCA also showed a clear separation of three distinct classes of inks as 

shown in Figure 174. The three ellipses in Figure 174 indicated three different classes of 

same inkjet 47.  

 

Figure 174. Three-dimensional PCA plot for contaminated and clean inkjets. 

 

7.4.3 Cluster Analysis for contaminated and clean printing inks 
 

Hierarchical Cluster analysis was performed on the contaminated and clean 

printing inks. Three separate clusters were detected for three differently contaminated 

inks as shown in Figure 175. This suggested that contamination might cause the 

misclassification of the ink when elements like Na and K are used for the discrimination 

purpose. 
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Figure 175. Hierarchical cluster analyses for contaminated and clean inkjet printing inks. 
 

7.4.3 Canonical Correlation Analysis of Contaminated and Clean Printing Inks 
 

The canonical analysis was performed after data fusion of LIBS and LA-ICP-MS 

for the contaminated and clean inks. Figure 176 represents the three dimensional 

Canonical plot for toners and inkjets. Six distinct classes can be seen in the canonical plot 

for two types of inks, Inkjet 47 and TN 21. 

 

Figure 176. Three-dimensional Canonical Plot for toners and inkjets. 
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7.5 Conclusion 
 

The present study shows that both Na and K could be incorporated into inks 

through contamination. These elements shouldn’t be taken into account for 

discrimination purposes if the inks are handled with bare hands or are contaminated with 

sweat. The results from contamination study showed a significant difference in the 

intensities of Na and K for the three inks. One-Way ANOVA also showed a distinct 

effect of contamination from other elements like Ti. Principal Component Analysis 

(PCA) analysis also showed three distinct classes of manipulated inks. The examination 

of contaminated inks suggests that these elements should be closely monitored and 

avoided for discrimination purposes, unless their magnitude of difference is significantly 

larger from the observed threshold level of hand-manipulation contamination, and 

therefore can be attributed to truly differences in their formulations. In the present study 

of four different types of printing inks (319 total) the contamination of the inks was 

carefully avoided. Toners and inkjets were either printed or extracted in the purest form 

from the inner ink cartridge using dedicated gloves and clean sample preparation area. 

For intaglio and offset printing inks, the paper background was also subtracted. The 

rationale behind the paper subtraction was that any contamination in the ink is also 

followed by the contamination in the paper. Thus the subtraction of paper background 

ensured the subtraction of any possible contaminants in the ink. 
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Chapter 8. Summary 

Toners, inkjets, intaglio and offset printing inks were found to have different 

elemental composition depending upon their source of manufacture. Major, minor and 

trace elements present in these ink samples serve as good discriminators when a high 

degree of certainty is sought. A total of 319 different inks were analyzed by standalone 

LA-ICP-MS. It provided information about the major, minor, and trace elements that were 

present in the printing inks. LA-ICP-MS itself provided more than 99% discrimination for 

four different types of inks.  

Due to the higher detection limits of LIBS compared to LA-ICP-MS, it was able to 

provide information mainly about the major and minor elements present in inks. The 

detection of trace elements by LA-ICP-MS and the simultaneous detection of major and 

minor elements (which suffer from isobaric and polyatomic interference in ICP), by using 

LIBS proved to be a useful concept for the representation of an overall chemical profile of 

printing inks. A novel tool that combines the benefits of two individual sensors (LIBS and 

ICP-MS) was successfully set up and used for the analysis of printing inks for the first 

time.  Successful development, optimization, and testing of qualitative and semi-

quantitative tandem LIBS-LA-ICP-MS methods were performed for the elemental and 

isotopic analysis of four different types of printing inks. Particularly, for those samples 

known to produce indistinguishable LA-ICP-MS spectra (very similar chemical 

formulations), the tandem method provided rich elemental information by exploiting the 

ability of LIBS to detect the major and minor elements that suffered from interferences in 

LA-ICP-MS. This resulted in additional discrimination over a discrimination using 
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standalone LA-ICP-MS. For the four different types of inks, it was found that the 

application of LIBS was successful to overcome the spectral interferences of ICP-MS for 

the elements K, Ca, Si, and Fe, which proved to be good discriminators. The synergy 

between LIBS and LA-ICP-MS has provided complementary information, and enhanced 

the discrimination for all four types of inks. 

Contamination of inks can significantly alter the results of ink analysis. Elements 

like Na and K, which are present in human sweat, could be transferred to ink by contact. 

Spectral Overlay and Multivariate Statistical Analysis both showed a significant 

difference in the concentration of these elements in contaminated inks. The concentration 

of other elements present in the inks was also affected as a consequence of contamination. 

The examination of contaminated inks suggested that elements like Na and K have to be 

closely monitored before using them for discrimination purposes. 

The present study illustrates another important utility of tandem LIBS/LA-ICP-MS 

where the signal of one of the elements present in higher concentration in LIBS can be 

used to normalize the LA-ICP-MS spectra. The precision was improved after 

normalization. This also ameliorates the laser (energy) shot to shot fluctuation during the 

laser ablation and enhances the precision of the measurement.  

 In summary, LIBS and LA-ICP-MS, despite their inherent limitations have been 

used as standalone sensors for the discrimination of a variety of matrices including 

printing inks. The fusion of these two sensors into a single setup not only ameliorated the 

drawbacks of both techniques but also provided additional discrimination. 
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8.1 Future Directions of the Research Work 

In the present research, printing inks and papers were analyzed by LIBS, LA-ICP-

MS and tandem LIBS/LA-ICP-MS. The use of controls for each type of printing ink and 

their correct association validated the consistent instrument performance and the 

normalization of the spectrum to the total sum of the peaks addressed the matrix effects to 

some extent. However, the use of an internal standard or matrix match standards, would 

have resulted a more quantitative analysis of the inks.  

The analysis of four different types of inks, namely toners, inkjets, intaglio and 

offsets showed that different kinds of elements are present in each of these four inks. 

These elements can be used to create an element menu for the ink standards. Matrix 

matched standard for printing inks and the use of a suitable internal standard that behaves 

in a similar way, as the analyte of interest would be the future work for this project. In the 

present study, all the inks were paper background subtracted to remove the paper 

contribution and also to avoid the contamination. It was hypothesized that any 

contamination in the ink is also followed by the contamination on paper; however, ink and 

paper are two different types of matrices. To better understand the extent of contamination 

on ink and paper a more detailed study of contamination of the individual matrices (ink 

and paper) is recommended for future work. 
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